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Abstract

In this thesis we want to understand an organization scheme for subatomic particles
proposed in 1961 by the physicist Murray Gell-Mann, called the Eightfold Way. We
do this mainly from a mathematical point of view. We combine representation theory
and the theory of quarks to obtain an insight in the Eightfold Way. More specifically, the
irreducible representations of the symmetry group of the quarks, the Lie group SU(3), will
help us to classify the light hadrons into multiples. Since the irreducible representations
of SU(3) play such an important role, the first part of this thesis is devoted to classifying
those representations. The second part will involve the classification of the light hadrons.





v

Contents

Abstract iii

1 Introduction 1

2 Lie groups and Lie algebras 3
2.1 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The Lie algebra of a Lie group . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Basic representation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Complete reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Connection between Lie group representations and Lie algebra rep-

resentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Operations on representations . . . . . . . . . . . . . . . . . . . . . 18

3 Irreducible representations of SU(3) 21
3.1 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 The representations of sl(2,C) . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 More on roots and weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 The representations of sl(3,C) . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 The group SU(3) and Quarks 47
4.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 61





1

1 Introduction

In the 1950’s, the field of particle physics was very chaotic. New particles were discovered
very frequently due to technological developments. Those particles could not be under-
stood or explained by the models available at the time. These turbulent times reminded
physicists of the period before the Periodic Table, when chemists were looking for order in
the observed elements. In the beginning of the 1960’s, the field of particle physics awaited
their own ‘Periodic Table’ ([8, p. 33]).

One of the people who played a big role, in bringing order to the chaos, was the
American physicist Murray Gell-Mann. He started grouping the new subatomic particles
according to their quantum numbers and found they arranged into peculiar geometric
patterns ([8, p. 33]). He published his findings, which he called the Eightfold Way, in a
paper in 1961. The Eightfold Way gave a way to classify the subatomic particles found
in the 1950’s and even predicted the existence of the Ω− particle, which was later found1.
Moreover, the Eightfold Way led to the postulation of quarks and the quark model. To
emphasise the importance of the Eightfold Way we quote David J. Griffiths2:

Classification is the first stage in the development of any science. The Eightfold
Way did more than merely classify the hadrons, but its real importance lies
in the organizational structure it provided. I think it’s fair to say that the
Eightfold Way initiated the modern era in particle physics.
(see [8, p. 37])

Our main goal is to understand the geometric patterns that appear in the Eightfold Way
from a mathematical point of view. To accomplish this we will apply representation theory
to the quark model. More specifically, the representation theory of the quark symmetry
group SU(3) is important. The thesis is divided into two parts: a mathematical part and a
physics part. In the mathematical part the main goal is to understand the representation
theory of SU(3), which is accomplished in Chapter 3. In Chapter 2 we will discuss the
preliminaries needed for Chapter 3, such as Lie groups, Lie algebras and some basic
representation theory. In Chapter 4 the application of the representation theory of SU(3)
to the quark model is given. Furthermore, an understanding of the geometric patterns
occurring in the Eightfold Way is established in Chapter 4.

Finally, this thesis was written for the most part during the COVID-19 pandemic. This
caused some practical issues here and there. Because of this, I would like to thank my
supervisor prof. dr. Erik van den Ban, since he made sure that our weekly meetings could
continue, even during the lockdown and bad internet connection. Moreover, I would like
to thank him for his involvement during the process and the time to answer my numerous
questions. Furthermore, I would like to thank prof. dr. Eric Laenen for answering my
questions concerning the quark model and providing me with useful literature.

1We will elaborate on this topic in Section 4.1.
2This quote talks about some concepts that are not yet defined. This will be done in Chapter 4.
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2 Lie groups and Lie algebras

In this chapter we introduce the objects that are central in this thesis, such as Lie groups
and a Lie algebras. These objects play an important role in many branches of mathematics
and physics. After a general discussion we will give some examples of Lie groups and
Lie algebras such as SU(3) and sl(3,C), which will be important throughout the thesis.
Furthermore we will discuss elementary representation theory and how this applies to Lie
groups and Lie algebras. We assume that the reader is familiar with group theory and
the basics of differential geometry such as the notion of a manifold and tangent space.

2.1 Lie groups
We start by introducing the notion of a Lie group.

Definition 2.1. A Lie group is a smooth manifold G equipped with a group structure so
that the group multiplication µ : G × G → G, (x, y) 7→ xy and the inversion ι : G → G,
x 7→ x−1 are smooth maps.

A very basic example of a Lie group would be Rn with ordinary addition and 0 as
neutral element. Another example of a Lie group, which is important for our purposes, is
SU(3): the set of unitary 3× 3 matrices with determinant 1. The reason Lie groups are
such powerful tools is that the theory of both groups and manifolds can be applied. For
Lie groups to be compared we need the right notion of structure preserving mappings,
which we define in the following definition.

Definition 2.2. Let G and H be Lie groups.

(a) A Lie group homomorphism from G to H is a smooth map φ : G→ H that is a
group homomorphism, so φ(xy) = φ(x)φ(y) for all x, y ∈ G.

(b) A Lie group isomorphism from G to H is a bijective Lie group homomorphism
φ : G→ H for which the inverse is also a Lie group homomorphism.

As said above, SU(3) is an important example for us. Further on in this thesis we will
intensively study SU(3). Therefore we will give some properties of this Lie group.

Lemma 2.3. The Lie group SU(3) is connected, compact and simply connected.

Proof. We start by showing SU(3) is connected. From linear algebra it is known that
every X ∈ SU(3) can be written as X = UΛU−1 with U ∈ U(3) and Λ of the form

Λ :=

e
iφ1 0

0 eiφ2 0

0 0 eiφ3

 ,
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with
∑3

i=1 φi = 0. Now define the map γ : [0, 1]→ SU(3) by

γ(t) = U

e
iφ1t 0

0 eiφ2t 0

0 0 eiφ3t

U−1.

Note that γ is a path in SU(3) with endpoints γ(0) = 1 and γ(1) = X. This shows that
for every element of SU(3) there exists a path with identity, hence SU(3) is connected.

Now we show that SU(3) is compact. Note that SU(3) = {X ∈ U(3) | det(X) = 1}.
Since the determinant is a continuous function it follows that SU(3) is a closed subset of
U(3). We claim that U(3) is compact. Since a closed subset of a compact set is compact
we conclude that SU(3) is compact. We will now show that U(3) is compact. Since
M(3,C) is isomorphic to C9, it is enough to show that U(3) is closed and bounded. Note
that, for every X ∈ U(3) we have UU∗ = 1. Hence (UU∗)ii = |ui1|2 + |ui2|2 + |ui3|2 = 1
for every i = 1, 2, 3. This shows that

∣∣uij∣∣ ≤ 1 for every i, j. Hence U(3) is bounded. To
prove that U(3) is closed we define a function f : M(3,C) → M(3,C) by f(X) = XX∗.
Note that f is a continuous function and that U(3) = f−1({1}), where {1 ⊂ M(3,C)}.
Furthermore, note that {1} ⊂ M(3,C) is closed. Hence U(3) is closed and bounded, thus
compact.

For the simply connectedness we refer to [9, Prop. 13.11]. �

Actually, the above theorem generalizes to SU(n) for arbitrary n ≥ 1.

2.2 Lie algebras
We now move on to the concept of a Lie algebra. We start by giving the abstract definition
and then we proceed to the Lie algebra of a Lie group in the next section.

Definition 2.4. A Lie algebra is a vector space g over a field K endowed with a bilinear
operation [·, ·] : g × g → g that satisfies the following conditions: For all X, Y, Z ∈ g we
have

(a) [X, Y ] = −[Y,X];

(b) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

In this thesis we will always work with the field K = R or K = C. Often the operation
[·, ·] : g× g→ g is called the (Lie) bracket. Due to condition (a) in Definition 2.4 we say
that the Lie bracket is skew-symmetric or anti-symmetric. Furthermore, condition (b) is
known as the Jacobi identity. A classic example of a Lie algebra is the space M(n,R)
with the commutator as bracket, thus [X, Y ] = XY − Y X.
Also here we want to specify what are the structure-preserving maps, which is done in
the following definition.

Definition 2.5. Let g, h be Lie algebras. Then a map φ : g → h is said to be a Lie
algebra homomorphism if it is linear and φ([X, Y ]g) = [φ(X), φ(Y )]h for all X, Y ∈ g,
where [·, ·]g and [·, ·]h denote the Lie brackets of g and h respectively.
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Note that Definition 2.5 tells us that a Lie algebra homomorphism preserves the Lie
bracket. Using the Lie bracket we can define a linear map by fixing the first entry, which
will give rise to an example of a Lie algebra homomorphism. This is done in the following
definition.

Definition 2.6. Let g be a Lie algebra. For X ∈ g we define the adjoint map ad(X) :
g→ g by ad(X)Y := [X, Y ]. The map ad : g→ End(g) is called the adjoint represen-
tation of g in g.

Lemma 2.7. The map ad : g → End(g) is a Lie algebra homomorphism, where the Lie
bracket on End(g) is the commutator bracket.

Proof. First we note that ad(X) is linear for every X ∈ g, since the Lie bracket is bilinear.
Therefore the claim in Definition 2.6 that ad maps to End(g) is justified. Moreover, the
bilinearity of the Lie bracket implies that the map ad is linear. Now let X, Y, Z ∈ g. Then
using the anti-symmetry and Jacobi identity of the Lie bracket we see

ad([X, Y ])(Z) =[[X, Y ], Z]

=− [[Y, Z], X]− [[Z,X], Y ]

=[X, [Y, Z]]− [Y, [X,Z]]

=ad(X) ◦ ad(Y )(Z)− ad(Y ) ◦ ad(X)(Z)

=(ad(X) ◦ ad(Y )− ad(Y ) ◦ ad(X))(Z).

The latter expression is precisely the commutator bracket on End(g) acting on Z. This
shows that ad is a Lie algebra homomorphism. �

The reason why ad is called the adjoint representation will become clear in Section
2.4 and Lemma 2.7 will play a role in that.

Now we will discuss special types of Lie algebras, namely simple and semisimple Lie
algebras. To define these objects we first need the notion of an ideal. An ideal of a Lie
algebra is quite similar to an ideal in ring theory, as can be seen in the following definition.

Definition 2.8. Let g be a Lie algebra. Then we say h ⊂ g is an ideal (notation h C g)
if h is a linear subspace of g and [g, h] ⊂ h.

Definition 2.9. A simple Lie algebra g is a nonabelian Lie algebra such that the only
ideals are {0} and g itself.

Definition 2.10. A Lie algebra g is said to be semisimple if it is the direct sum of
simple Lie algebras.

The reason to look at semisimple Lie algebras is that they have a very elegant classifi-
cation. This classification is made using the so called root system of the Lie algebra. We
will not go into great detail about root systems in this thesis. For more background about
root systems we refer to [12, Ch. 9]. We will limit ourself to very specific Lie algebras
which will turn out to be semisimple, namely the Lie algebras sl(2,C) and sl(3,C)1.

1See [9, Ex. 7.3] for a proof.
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2.3 The Lie algebra of a Lie group
In this section we assume that G is a Lie group and we follow [3, Ch. 4]. Before we
start our discussion on the correspondence between Lie groups and Lie algebras we need
to define the exponential map. To obtain this definition we need the notion of a left
invariant vector field. Since G is a Lie group we can define the left and right translation
maps for x ∈ G:

lx : G→ G, y 7→ xy, rx : G→ G, y 7→ yx. (2.1)

Note that, since G is a Lie group, lx and rx are diffeomorphisms from G onto itself.

Definition 2.11. Let M be a manifold and V ∈ X(M) a smooth vector field. We say V
is left invariant if

V (xy) = Ty(lx)V (y), (x, y ∈ G). (2.2)

The collection of all left invariant vector fields, denoted by X(M)L, is a linear subspace
of X(M). For y = e, Equation (2.2) implies the vector field V ∈ X(M)L is completely
defined by its value V (e) ∈ TeG at e. Hence, the map ε : X(M)L → TeG given by
V 7→ V (e) is an injective linear map. It turns out this map is surjective as well, as we
will see. Conversely, for X ∈ TeG we can define a vector field V ∈ X(M)L by

VX(x) = Te(lx)X, (x ∈ G). (2.3)

Lemma 2.12. The map X 7→ VX from TeG to X(M)L is a linear isomorphism, with
inverse the map ε from above.

Proof. See [3, Lemma 3.1]. �

Now, for X ∈ TeG we define αX to be the maximal integral curve of the corresponding
left invariant vector field vX starting at e. It is known that αX has domain R, for a proof
of this we refer to [3, Lemma 3.2]. Now we can define the exponential map.

Definition 2.13. Let G be a Lie group. The exponential map exp = expG : TeG→ G
is defined by

exp(X) = αX(1), (X ∈ TeG)

Remark 2.14. In the case of GL(V ), with V a finite dimensional vector space the ex-
ponential map coincides with the ordinary exponential map for endomorphisms X 7→ eX ,
End(V )→ GL(V ).

Proof. We refer to [3, Ex. 3.4]. �

The exponential map has some very nice properties, some of which we would expect
since the name is quite suggestive. These properties are captured in the following lemma.

Lemma 2.15. For all s, t ∈ R, X ∈ TeG we have

(a) exp(sX) = αX(s).

(b) exp((s+ t)X) = exp(sX)exp(tX).

(c) The tangent map of exp in the origin is given by T0exp = 1TeG.



2.3. The Lie algebra of a Lie group 7

(d) The map exp : TeG→ G is smooth and a local diffeomorphism at 0.

Proof. We omit the proof here and refer to Lemma 3.6 in [3]. �

The following lemma will be fundamental in our discussion this section and we will
use it a few times throughout this thesis.

Lemma 2.16. Let φ : G → H be a homomorphism of Lie groups. Then the following
diagram commutes:

G H

TeG TeH

φ

expG

Teφ

expH

Proof. We omit the proof here and refer to [3, Lemma 3.9]. �

Recall the left and right translation maps:

lx : G→ G, y 7→ xy, rx : G→ G, y 7→ yx. (2.4)

Furthermore, recall that lx and rx are diffeomorphisms from G onto itself. Then the map
Cx := lx ◦ rx : G → G, y 7→ xyx−1 is also a diffeomorphism. This means that for y ∈ G
its tangent map TyCx : TyG → TCx(y)G is a linear isomorphism. Note that Cx(e) = e,
therefore TeCx is a linear automorphism of TeG, thus TeCx ∈ GL(TeG). This leads to the
following definition.

Definition 2.17. Let x ∈ G. Then we define Ad(x) ∈ GL(TeG) by Ad(x) := TeCx. The
map Ad : G→ GL(TeG) is called the adjoint representation of G in TeG.

The adjoint has some neat properties, such as the following lemmas.

Lemma 2.18. Let x ∈ G. For every X ∈ TeG we have

x exp(X)x−1 = exp
(
Ad(x)X

)
.

Proof. It is easily seen that the conjugation map Cx : G → G is a Lie group homomor-
phism. Hence we may apply 2.16. Thus we find the following commuting diagram:

G G

TeG TeG

Cx

exp

Ad(x)

exp

Which gives us the desired result. �

Lemma 2.19. The map Ad : G→ GL(TeG) is a Lie group homomorphism.

Proof. Since G is a Lie group the map (x, y) 7→ xyx−1 from G × G to G is smooth.
Differentiating with respect to y at y = 0, it follows that x 7→ Ad(x) is smooth from TeG
to End(TeG). Since GL(TeG) is an open subset of End(TeG), which will be shown after
the proof, it follows that Ad : G→ GL(TeG) is smooth.

We note that Cxy = Cx◦Cy and Cx(e) = e for all x, y ∈ G. By differentiating the former
equation at e on both sides and applying the chain rule, we see Ad(xy) = Ad(x) ◦Ad(y).
Furthermore, we know Ce = 1G and thus Ad(e) = 1TeG �
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After a choice of basis we can identify elements of GL(TeG) and End(TeG) with real
matrices. From this, the fact the determinant is continuous, R \ {0} is open in R and
GL(n,R) = det−1(R\{0}) if follows that GL(TeG) is an open subset of End(TeG). There-
fore T1GL(TeG) = T1End(TeG) = End(TeG). We also note that Ad(e) = 1, hence the
tangent map of Ad at e is a linear map from TeG to End(TeG).

Definition 2.20. We define the linear map ad : TeG→ End(TeG) by ad := TeAd. With
the chain rule we see, for X ∈ TeG

ad(X) =
d

dt

∣∣∣∣
t=0

Ad(exp(tX)).

Here we used the same notation as in Definition 2.6. Later on in this section we will
see that this is justified.

Lemma 2.21. For all X ∈ TeG we have

Ad(exp(X)) = ead(X)

Proof. From Lemma 2.19 we know that Ad is a Lie group homomorphism, hence we can
apply Lemma 2.16 with φ = Ad and H = GL(TeG). Note that in this case TeH =
T1GL(TeH) = End(TeG) and expH is given by e· : End(TeG) → GL(TeG) by Remark
2.14. Thus we have the following commuting diagram:

G GL(TeG)

TeG End(TeG)

Ad

exp

ad

e·

This diagram yields Ad(exp(X)) = ead(X). �

The following example will give some motivation for why we used similar notation for
ad in this section in comparison with the previous section.

Example 2.22. Let V be a finite dimensional vector space. Then we consider the Lie
group GL(V ). Note that for x ∈ G the conjugation map Cx : GL(V ) → GL(V ) extends
to a linear map Cx : End(V ) → End(V ), hence Ad(x) : End(V ) → End(V ) is given by
Ad(x) = TeCx = Cx. Thus for Y ∈ End(V ) we have Ad(x)Y = xY x−1. If we take x = etX

for some X ∈ End(V ) and t ∈ R, we see by differentiating at t = 0

ad(X)Y =
d

dt

∣∣∣∣
t=0

Ad(etX)Y =
d

dt

∣∣∣∣
t=0

(
etXY e−tX

)
= XY − Y X.

We thus see that in this case ad coincides with the commutator bracket.

The next definition is strongly motivated by our findings in the previous example. It
also gives the justification for the similar notation in this section and the previous section.

Definition 2.23. For X, Y ∈ TeG we define a map [·, ·] : TeG× TeG→ TeG by

[X, Y ] := ad(X)Y. (2.5)

We call this map the Lie bracket.
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This name of the map in Definition 2.23 is very suggestive and we will show that it
satisfies the conditions in Definition 2.4, thus making TeG into a Lie algebra. We start
by proving the bilinearity and anti-symmetry.

Lemma 2.24. The map [·, ·] : TeG× TeG→ TeG is bilinear and anti-symmetric.

Proof. Since ad : TeG → End(TeG) is the tangent map of Ad, it is linear. This gives
linearity in the first component. The linearity in the second component follows from the
fact that ad(X) ∈ End(TeG) for all X ∈ TeG. Hence [·, ·] is bilinear. Now we will show
the anti-symmetry. Let t, s ∈ R and Z ∈ TeG, then by Lemma 2.15 and Lemma 2.18 we
see

exp(tZ) = exp(sZ) exp(tZ) exp(−sZ) = exp
(
Ad(exp(sZ))tZ

)
. (2.6)

Then by differentiating at t = 0 we find

Z = Ad(exp(sZ))Z.

Differentiating this expression another time at s = 0 we get

0 =
d

dt

∣∣∣∣
s=0

Ad(exp(sZ))Z = ad(Z)Z.

Hence we showed that [Z,Z] = 0 for all Z ∈ TeG. Now let X, Y ∈ TeG and set Z = X+Y ,
then by using the bilinearity of the bracket

0 = [X + Y,X + Y ] = [X,X] + [X, Y ] + [Y,X] + [Y, Y ] = [X, Y ] + [Y,X].

Therefore [X, Y ] = −[Y,X], proving the anti-symmetry. �

To be able to prove the Jacobi identity for the Lie bracket of Definition 2.23 we need
the following lemma.

Lemma 2.25. Let φ : G → H be a Lie group homomorphism. Then for all X, Y ∈ TeG
we have

Teφ([X, Y ]G) = [Teφ(X), Teφ(Y )]H

Proof. We refer to Lemma 4.10 in [3]. �

The above lemma is crucial for showing that the tangent map of a Lie group homo-
morphism is a Lie algebra homomorphism, as we will see later on. We now return to
showing the Jacobi identity for the Lie bracket of Definition 2.23.

Lemma 2.26. For all X, Y, Z ∈ TeG we have

[[X, Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]].

Proof. Let X, Y, Z ∈ TeG. Note that φ := Ad : G → GL(TeG) is a Lie group homomor-
phism. Furthermore, by Example 2.22 we know that [A,B]GL(TeG) = AB − BA for all
A,B ∈ End(TeG). Then by Lemma 2.25 we find

Teφ([X, Y ]) = TeφX ◦ TeφY − TeφY ◦ TeφX.
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Note that Teφ = ad, thus we have

ad([X, Y ]) = ad(X)ad(Y )− ad(Y )ad(X).

Applying both sides of the above equation to Z gives us the desired conclusion. �

The conclusion of Lemma 2.26 is actually equivalent to the Jacobi identity. This
can easily be seen by grouping the terms on one side of the equal sign and using the
anti-symmetry of the bracket multiple times. We leave this as a small exercise for the
reader.

Now we have shown that TeG applied with the bracket of Definition 2.23 is a Lie
algebra in the sense of Definition 2.4. This implies that the tangent map of a Lie group
homomorphism φ : G → H, namely Teφ : TeG → TeH is a map between Lie algebras.
Hence, by Lemma 2.25 Teφ is a Lie algebra homomorphism. From now on we will denote
the Lie algebra TeG with the Gothic letter g, in parallel with Section 2.2.

2.4 Basic representation theory
We have now defined the concepts of Lie group and Lie algebras and we have given
a connection between the two. The next idea we want to discuss is the notion of a
representation for a Lie group and a Lie algebra. In this section we will restrict ourselves
to finite dimensional representations.

2.4.1 Definitions and examples

Definition 2.27. Let G be a Lie group and let V be a finite dimensional vector space over
a field K = R,C. A representation of G is a pair (π, V ), where V is finite dimensional
vector space over the field K and π : G → GL(V ) is a Lie group homomorphism. If the
field is not mentioned, it is assumed to be K = C.

Often, if (π, V ) is a representation of G, it is said that π is a representation of G in V
or that V is a G-module2.

Example 2.28. The representation (π,C3) of SU(3) given by π(A)v = Av, where A ∈
SU(3) acts on v ∈ C3 as a matrix. We readily see that this is a representation in the
sense of the above definition. We call this representation the standard representation.

Example 2.29. Another example is the so called trivial representation. Which is
given, for an arbitrary Lie group G, by the pair (π,C), where π : G→ GL(C), x 7→ 1C.

Definition 2.30. Let g be a Lie algebra and let V be a vector space over a field K = R,C.
A representation of g is a pair (π, V ), where V is a finite dimensional vector space of a
field K and π : g → End(V ) is a Lie algebra homomorphism, where End(V ) is equipped
with the commutator bracket. Again, if the field is not mentioned it is assumed to be C.

2The reason V is called a G-module has to do with the group algebra. For more background see [6,
Sec. 3.4]
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An example of this is the adjoint representation ad. By Lemma 2.7 we know that ad
is a Lie algebra homomorphism. Since g is a linear space we conclude that (ad, g) is a
representation, hence the name. Another example of a representation of a Lie algebra g,
which is parallel to the one in Example 2.29, is the pair (π,C) such that π(X) = 0 ∈
End(C) for all X ∈ g. This representation is also called the trivial representation.

Of course we can have multiple representations of the same Lie group. We would like
to be able to compare those representations. For example, when would we want to say
two representations are essentially ‘the same’. This is captured in the following definition.

Definition 2.31. Suppose that (π1, V1), (π2, V2) are finite dimensional representations of
a Lie group G. A linear map T : V1 → V2 is said to be equivariant, or intertwining if
for all x ∈ G the following diagram commutes:

V1 V2

V1 V2

T

T

π1(x) π2(x)

We say (π1, V1) and (π2, V2) are equivalent if there exists a linear isomorphism T : V1 →
V2, which is equivariant. One also could say π1 and π2 are equivalent or V1 and V2 are
isomorphic.

For a Lie algebra g we have a definition analogous to Definition 2.31, where we replace
x ∈ G by X ∈ g.

Definition 2.32. Let (π, V ) be a representation of G. We say a linear subspace W ⊂ V
is invariant if π(x)W ⊂ W for all x ∈ G. The representation is said to be irreducible
if the only invariant subspaces of V are {0} and V itself.

Note that the trivial representation for both Lie groups and Lie algebras is irreducible,
since C has no non-trivial subspaces. An elementary result, yet truly useful, about irre-
ducible representations is Schur’s lemma.

Lemma 2.33 (Schur’s Lemma). Let (π, V ) and (ρ,W ) be irreducible representations
over C of a Lie group G or Lie algebra g and let T : V → W be an intertwining map,
then

(a) Either T is an isomorphism, or T = 0.

(b) If V = W and π = ρ, then T = λ1 for some λ ∈ C.

Proof. We start by proving the first claim. To do this we first show that ker(T ) ⊂ V
and im(T ) ⊂ W are invariant under the actions of π and ρ, respectively. Let x ∈ G and
v ∈ ker(T ). Then, since T intertwines the representations π and ρ we have

T (π(x)v) = ρ(x)(Tv) = ρ(x)0 = 0.

Hence π(x)v ∈ ker(T ), since this holds for all x ∈ G we conclude that ker(T ) is an
invariant subspace of V . Now let x ∈ G and w ∈ im(T ), then there exists a v ∈ V such
that w = Tv. We see

ρ(x)w = ρ(x)(Tv) = T (π(x)v).
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We note that π(x)v ∈ V , thus T (π(x)v) ∈ im(T ). Which shows that im(T ) is an invariant
subspace of W . Since (π, V ) is an irreducible representation, we know that ker(T ) = 0 or
ker(T ) = V . If ker(T ) = V , then T = 0. If ker(T ) = 0 it means that im(T ) 6= 0. Yet,
since (ρ,W ) is also an irreducible representation, we conclude that im(T ) = W . Showing
that T is an isomorphism.

Now suppose that V = W and π = ρ. We know that T has a complex eigenvalue λ,
since C is algebraically closed. Associated with this eigenvalue, there exists an eigenvector
v ∈ V . This means that (T − λ1)v = 0, hence ker(T − λ1) is not trivial. We readily see
that, since T : V → V is an intertwining map, T −λ1 : V → V is an intertwining map as
well. Since its kernel is not trivial it follows from our discussion above that T − λ1 = 0,
which shows our claim. The proof for a Lie algebra g is completely analogous as above,
but with the replacement of x ∈ G by X ∈ g. �

2.4.2 Complete reducibility

For certain Lie groups, irreducible representations can be viewed as the ‘atoms’ of their
representations, since every representation decomposes into irreducibles. This property is
captured in the following definition.

Definition 2.34. Let G be a Lie group and let (π, V ) be a representation of G. Then
(π, V ) is said to be completely reducible if there exists a direct sum decomposition

V =
n⊕
i=1

Vi,

where Vi is an invariant subspace for all 1 ≤ i ≤ n such that the representation (π|Vi , Vi)
is irreducible.

It turns out, not every representation is completely reducible. Actually, it is quite
a specific property of a representation. Yet, in this chapter we will see that specific
properties of the Lie group implies complete reducibility for its representations. Note
that, if every representation of a Lie group G is completely reducible, the study of its
representations reduces to the irreducible ones. Which drastically simplifies the discussion.
In this thesis we focus on the Lie group SU(3) and we will see that this Lie group has the
desirable properties for its representations to be completely reducible.

Definition 2.35. We say a representation (π, V ) of a Lie group G is unitarizable when
there exists a Hermitian inner product on V for which π(x) ∈ GL(V ) is unitary for every
x ∈ G.

Furthermore, we say a representation (π, V ) is unitary if for every x ∈ G the operator
π(x) is unitary. There is a useful characterization for a representation to be unitary. To
give this characterization we need the following lemma.

Lemma 2.36. Let G be a connected Lie group. Then the subgroup Ge generated by
exp(X), for X ∈ g, equals G. Actually, the converse is also true.

Proof. We refer to [3, Lemma 5.8]. �

For the following lemma, we follow the proof of [3, Lemma 29.2].
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Lemma 2.37. Let G be a connected compact Lie group and (π, V ) be a representation of
G. Then, π is unitary if and only if

π∗(X)∗ = −π∗(X) (2.7)

for X ∈ g. In the above equation π∗ denotes the tangent map Teπ : g→ End(V ).

Proof. Since π : G→ GL(V ) is a Lie group homomorphism, Lemma 2.16 tells us

π(exp(tX)) = etπ∗(X) (2.8)

for all X ∈ g and t ∈ R. If π is unitary, we see π(exp(tX))∗ = π(exp(−tX)). Hence, for
X ∈ g and t ∈ R

etπ∗(X)∗ = π(exp(−tX)) = e−tπ∗(X). (2.9)

Differentiating this equation at t = 0, yields

π∗(X)∗ = −π(X).

Now assume Equation (2.7) holds. Then we see Equation (2.9) holds for every X ∈ g and
t ∈ R. Hence, π(x) is unitary for every x ∈ exp(g) and thus for every x ∈ Ge. By Lemma
2.36 it follows Ge = G, which completes the proof. �

For unitarizable representations we will see that they are completely reducible. To
prove that we need the following lemma.

Lemma 2.38. Let (π, V ) be a unitarizable representation of a Lie group G. If U is an
invariant subspace of V , then U⊥ is also an invariant subspace and we have V = U ⊕U⊥.

Proof. Let U ⊂ V be an invariant subspace and let us denote the Hermitian inner product
on V , for which π(x) is unitary for every x ∈ G, by 〈·, ·〉. Since V is finite dimensional we
know V = U ⊕ U⊥ from linear algebra. Now let x ∈ G, v ∈ U and w ∈ U⊥. Then, using
the fact that π is a unitarizable representation, we find

〈v, π(x)w〉 =〈π(x−1)v, π(x−1)π(x)w〉
=〈π(x−1)v, w〉
=0,

because U is an invariant subspace, meaning that π(x−1)v ∈ U , and w ∈ U⊥. Since v ∈ U
was arbitrary we conclude that π(x)w ∈ U⊥. This argument holds for every x ∈ G, which
implies that U⊥ is an invariant subspace. �

Corollary 2.39. Let (π, V ) be a unitarizable representation of a Lie group G. Then
(π, V ) is completely reducible.

Proof. We consider a Hermitian inner product for which π(x) is unitary for all x ∈ G and
repeatedly apply Lemma 2.38. �

Now we state the main theorem of this section.
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Theorem 2.40. Let G be a compact Lie group. Then every representation (π, V ) is
completely reducible.

Corollary 2.41. Let (π, V ) be a representation of a compact Lie group G. Then every
invariant subspace is completely reducible.

Proof. Let U ⊂ V be an invariant subspace. Then apply Theorem 2.40 to the represen-
tation (π|U , U). �

Since SU(3) is a compact Lie group, this theorem shows that SU(3) is completely
reducible. To prove Theorem 2.40 we need a result about compact Lie groups and uni-
tarizable representations. To prove this result we need some object from measure theory,
namely the left Haar measure.

Definition 2.42. Let G be a locally compact Lie group and µ be a nonzero Borel measure3

on G. We say µ is a left Haar measure if it has the following properties:

(a) The measure µ is invariant under left translations: µ(xA) = µ(A) for every x ∈ G
and Borel set A ⊂ G.

(b) The measure µ if finite on compact subsets of G: µ(K) <∞ for all compact K ⊂ G.

(c) the measure µ is inner regular on open subsets U ⊂ G: µ(U) = sup{µ(K) | K ⊂
U compact}.

(d) the measure µ is outer regular on borel sets A ⊂ G: µ(A) = inf{µ(U) | A ⊂
U, U open}.

It can be proven that there exists a left Haar measure on every locally compact Lie
group G. This left Haar measure is unique up to a real positive factor. For a proof of
these statements we refer to [5, Thm. 9.2.2, 9.2.6]. Furthermore, it can be shown µ is
finite if and only if G is compact (see [5, Prop. 9.3.3]). Hence, for each compact Lie group
G there exists a unique left Haar measure, denoted by dx, such that∫

G

dx = 1.

Another property for the (normalized) left Haar measure of a compact Lie group G is
that it is bi-invariant (see [3, Remark 19.15]). As a consequence of this bi-invariance, one
can show ∫

G

f(yx)dx =

∫
G

f(x)dx,

∫
G

f(xy)dx =

∫
G

f(x)dx.

Where the first equation is a consequence of the left-invariance and the second of the
right-invariance.

Now we have enough background to prove Theorem 2.40 using the following lemma.

Lemma 2.43. Let G be a compact Lie group and (π, V ) a representation of G. Then the
representation (π, V ) is unitarizable.

3A Borel measure is any measure defined on the σ-algebra of Borel sets, see [5, Ch.1] for more
background
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Proof. Let 〈·, ·〉1 be any Hermitian inner product on V . Then we define a new Hermitian
inner product by ‘averaging’ over G: for v, w ∈ V we set

〈v, w〉 :=

∫
G

〈π(x)v, π(x)w〉dx.

Note that f : x 7→ 〈π(x)v, π(x)w〉 is a continuous function, hence the integral is well-
defined. It can easily be shown that this indeed defines another Hermitian inner product
on V . Now let y ∈ G, then we see

〈π(y)v, π(y)w〉 =

∫
G

〈π(x)π(y)v, π(x)π(y)w〉dx

=

∫
G

〈π(xy)v, π(xy)w〉dx

=

∫
G

f(xy)dx

=

∫
G

f(x)dx

=

∫
G

〈π(x)v, π(x)w〉dx

=〈v, w〉,

using the right invariance of the Haar measure. This shows π(y) is unitary with respect
to this new Hermitian inner product. Since this argument holds for all y ∈ G we conclude
that (π, V ) is unitarizable. �

Now Theorem 2.40 follows immediately from Lemma 2.43 and Corollary 2.39.

2.4.3 Connection between Lie group representations and Lie al-
gebra representations

Let (π, V ) be a representation of a Lie group G. Then by definition π : G→ GL(V ) is a
Lie group homomorphism. The from Lemma 2.25 we know that π∗ := Teπ : g→ End(V )
is a Lie algebra homomorphism. In view of Definition 2.30, we conclude that (π∗, V ) is a
representation of g. Using the chain rule we find for X ∈ g and v ∈ V

π∗(X)v =
d

dt

∣∣∣∣
t=0

π(exp(tX))v. (2.10)

Furthermore, from Lemma 2.16 we see

π(exp(X)) = eπ∗(X). (2.11)

An interesting question one could ask at this point is: does (π∗, V ) inherit properties from
(π, V ). Especially, a property like irreducibility. To get an answer we will use Lemma
2.36.

Theorem 2.44. Let G be a connected Lie group and let (π, V ), (ρ,W ) be representations
of G. Then the following assertions are valid
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(a) A linear subspace U ⊂ V is invariant under G if and only if it is invariant under g.

(b) (π, V ) is an irreducible representation of G if and only if (π∗, V ) is an irreducible
represenation of g.

(c) Let T : V → W be a linear map. Then T is G-equivariant if and only if it is
g-equivariant.

(d) (π, V ), (ρ,W ) are isomorphic as representations of G if and only if they are iso-
morphic as representations of g.

Proof. Assume that U ⊂ V is invariant under π. Let X ∈ g and v ∈ U . Then, because U
is invariant under π, we have π(exp(tX))v ∈ U for all t. Since U is a linear subspace, it
follows by differentiating at t = 0 from Equation (2.10) that π∗(X)v ∈ U .

Now assume that U ⊂ V is invariant under π∗. Let X ∈ g and v ∈ U . By Equation
(2.11) we see π(exp(X))v = eπ∗(X)v. Since U is invariant under π∗ we have π∗(X)v ∈ U ,
for all X ∈ g. Then by the power series of the exponential map for endomorphisms it
follows that eπ∗(X)v ∈ U . Hence π(exp(X))v ∈ U , for all X ∈ g. Therefore U is invariant
under Ge. Since G is connected it follows from Lemma 2.36 that G = Ge. Assertion (a)
follows.

Assertion (b) is a direct consequence of (a).
Assume that T is G-equivariant. Then for all x ∈ G we have T ◦ π(x) = ρ(x) ◦ T .

In particular, T ◦ π(exp(tX)) = ρ(exp(tX)) ◦ T holds for all t ∈ R and X ∈ g. Then by
straightforward differentiating at t = 0 and Equation (2.10) we get T ◦π∗(X) = ρ∗(X)◦T .
Hence T is g-equivariant.

Now assume T is g-equivariant, then T ◦ π∗(X) = ρ∗(X) ◦ T for all X ∈ g. Using the
last equation repeatedly we see

T ◦ π∗(X)n = ρ∗(X)n ◦ T

for all n ∈ N. Using the power series of the exponential map of Remark 2.14 it follows that
T ◦ eπ∗(X) = eρ∗(X) ◦T . Using Equation (2.11) the last equation becomes T ◦π(exp(X)) =
ρ(exp(X)) ◦ T . Hence T is Ge-equivariant. Again, because G is connected it follows from
Lemma 2.36 that Ge = G. The result follows.

Assertion (d) follows directly from assertion (c). �

Another useful tool to find representations of a Lie algebra g is the notion of its
complexification gC. It turns out that determining representations of the complexification
of a Lie algebra is usually easier, since C is algebraically complete.

Definition 2.45. Let W be a real vector space. The complexification4 of W is defined
by

WC = W ⊗R C,

as real linear space. WC is equipped with a complex scalar multiplication defined by
λ(v ⊗ z) = v ⊗ λz.

Note that we can embed W as a real linear subspace of WC by the map v 7→ v ⊗ 1.
Furthermore, every vector v ∈ WC can be uniquely written as v = v1 ⊗ 1 + v2 ⊗ i, by the

4For some background about the tensor product see [1].
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nature of the tensor product. Therefore we see WC ∼= W ⊕ iW , with the usual complex
multiplication. From now on we will always make this identification. If g is a Lie algebra,
then by a complex bilinear extension of the Lie bracket, its complexification gC is made
into a Lie algebra.

If ρ is a representation of g in a complex linear space V , there is a unique extension of
ρ to a representation of gC in V . We denote this representation by ρC and it is given by

ρC : gC → End(V ), ρC(X + iY ) = ρ(X) + iρ(Y ), (2.12)

for X, Y ∈ g. Also here we are interested in which properties are preserved after com-
plexifying. This captured in the following theorem.

Theorem 2.46. Let g be a Lie algebra and let (ρ, V ), (ρ′, V ′) be representations of g over
C. Then

(a) A linear subspace U ⊂ V is invariant under g if and only if it is invariant under
gC.

(b) (ρ, V ) is an irreducible representation of g if and only if (ρC, V ) is an irreducible
represenation of gC.

(c) Let T : V → V ′ be a (complex) linear map. Then T is g-equivariant if and only if
it is gC-equivariant.

(d) (ρ, V ), (ρ′, V ′) are isomorphic as representations of g if and only if (ρ, V ),(ρ′, V ′)
are isomorphic as representations of gC.

Proof. We start by showing assertion (a). Let U ⊂ V be invariant under ρ. This means
ρ(X) ∈ U for all X ∈ g. Since U is a (complex) subset of V we have ρC(X + iY ) =
ρ(X) + iρ(Y ) ∈ U , because ρ(X), iρ(Y ) ∈ U for all X, Y ∈ U . Since every element
Z ∈ gC can be uniquely written as Z = X + iY , for X, Y ∈ g, we conclude that U is
invariant under ρC.

Now suppose U is invariant under ρC, then ρC(Z)W ⊂ W for all Z ∈ gC. Note g is a
linear subspace of gC. Hence by restricting to g we see that U is invariant under ρ.

Now we will show assertion (c). Suppose T is g-equivariant. Then by straightforward
calculation we see, for X, Y ∈ g and v ∈ V

T ◦ ρC(X + iY )v = T (ρ(X)v + iρ(Y )v)

= T (ρ(X)v) + iT (ρ(Y )v)

= ρ′(X)(Tv) + iρ′(Y )(Tv)

= ρ′C(X + iY ) ◦ Tv.

Since every element of gC is of the form X + iY with X, Y ∈ g, the above calculation
shows that T is gC-equivariant. The other implication is immediate after restricting to g
as we did before.

Assertions (b) and (d) are direct consequences of (a) and (c), respectively. �

We now know that every representation of a Lie algebra g has a unique extension to a
representation of gC. The other way around is also true; if we start with a representation
of gC we can produce a representation of g by restricting the representation. Then from
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Theorem 2.46 it follows that there is a one-to-one correspondence between irreducible
representations of g and its complexification gC.

Example 2.47. The Lie algebra su(n) consists of complex n× n matrices X ∈ M(n,C)
such that trX = 0 and X∗ = −X. For a proof of this we refer to [9, Prop. 3.24]. Note
that isu(n) then consists of the matrices X ∈ M(n,C) such that trX = 0 and X∗ = X.
In particular, we see su(n) ∩ isu(n) = 0. Hence suC(n) = su(n) ⊕ isu(n). This implies
that the embedding su(n) ↪→ M(n,C) extends to a complex linear embedding

j : suC(n) ↪→ M(n,C).

Note that j maps into sl(n,C), since sl(n,C) consists of the traceless matrices5. On the
other hand if X ∈ sl(n,C), we can write X = 1

2
(X − X∗) + 1

2
(X + X∗). Note that

1
2
(X −X∗) ∈ su(n) and 1

2
(X +X∗) ∈ isu(n), hence X ∈ suC(n). This shows that j is an

isomorphism and we will identify suC(n) with sl(n,C) from now on.

This example will be quite extensively used in the next chapter. There we will classify
the irreducible representations of sl(3,C) and use the correspondence of Theorem 2.46 to
link them with irreducible representations of su(3). Yet, our main goal is classifying the
irreducible representations of SU(3), since those play a big role in the description of the
Eightfold Way. We now ask ourselves if there is a way to lift the representation of the Lie
algebra of a Lie group to a representation of the Lie group. It turns out this depends on
the topological structure of the Lie group, as is seen in the following theorem.

Theorem 2.48. Let G,H be Lie groups and let φ : g→ h be a Lie algebra homomorphism.
Suppose that G is connected and simply connected. Then there exists a unique Lie group
homomorphism Φ : G→ H such that its tangent map at e equals φ.

Proof. We refer to [2, Thm. A.1] or [16, Prop. 1.20]. �

Corollary 2.49. Let G be a connected simply connected Lie group and let (ρ, V ) be a
representation of g. Then there exists a unique representation (π, V ) of G such that
π∗ = ρ.

Proof. Direct consequence of Theorem 2.48. �

Since SU(3) is a connected simply connected Lie group, combining Theorem 2.48
and Theorem 2.46 tells us there is a one-to-one correspondence between the irreducible
representations of SU(3) and the irreducible representations of sl(3,C).

2.4.4 Operations on representations

Given representations of a Lie group or Lie algebra we can generate new representations
through several operations. Here we utilize the definitions in [9, Sec. 4.3]. Suppose
(π1, V1), (π2, V2) are representations of the a Lie group G. Then we can apply several
operations on the spaces V1 and V2, such as the direct sum and tensor product6. We
will now give the definitions of the direct sum representations, the tensor product of
representations and the dual of a representation.

5For a proof we refer to [9, Prop. 3.23].
6The definition of the tensor product and some useful theorems can be found in [1].
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Definition 2.50. Let G be a Lie group and g a Lie algebra and let (π1, V1), (π2, V2) be
representations of G or g.

(a) The direct sum of π1 and π2 is a representation of G in V1 ⊕ V2 defined by

(π1 ⊕ π2)(x)(v1, v2) := (π1(x)v1, π2(x)v2),

for x ∈ G. Similarly, the direct sum representation g in V1 ⊕ V2 is defined by

(π1 ⊕ π2)(X)(v1, v2) := (π1(X)v1, π2(X)v2),

for X ∈ G.

(b) The tensor product of π1 and π2 is a representation of G in V1 ⊗ V2 defined by

(π1 ⊗ π2)(x)(v1 ⊗ v2) = π1(x)v1 ⊗ π2(x)v2,

for x ∈ G. Similarly, the tensor product representation of g in V1⊗ V2 is defined by

(π1 ⊗ π2)(X)(v1 ⊗ v2) = π1(X)v1 ⊗ 1v2 + 1v1 ⊗ π2(X)v2,

for X ∈ g.

One can easily check that the above definitions actually define true representations in
the sense of Definition 2.27.
For the dual of a representation we need the notion of a dual space. Let V be a linear
space over a field K. The dual space of V is a linear space (with respect to pointwise
addition and scalar multiplication), denoted by V ∗, given by all linear maps φ : V → K.
If T : V → V is a linear map then we can define the dual or adjoint of T by T ∗ : V ∗ → V ∗,
φ 7→ φ ◦ T . We use this in the following definition.

Definition 2.51. Let G be a Lie group and let (π, V ) be a representation of G. Then the
dual representation of π is the representation of G in V ∗ defined by

π∨(x) = π(x−1)∗,

for x ∈ G. Similarly, the dual representation of g in V ∗ is defined by

π∨(X) = −π(X)∗,

for X ∈ g.

Note that the inverse of the element x in Definition 2.51 is necessary for π∨ to be
group homomorphism. Furthermore, it is readily seen that π∨ is smooth and thus π∨ is a
genuine representation. The same is true for the dual representation of a Lie algebra.
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3 Irreducible representations of SU(3)

As said before, our main focus is understanding the representations of SU(3). From
Theorem 2.40 we know it suffices to understand the irreducible representations, since
SU(3) is compact. From our discussion in Section 2.4.3 it follows that there is a one-to-
one correspondence between the irreducible representations of SU(3) and the irreducible
representations of sl(3,C). In this chapter we will classify the irreducible representations of
SU(3) through the one-to-one correspondence with sl(3,C). In the description of sl(3,C)
we will use some general machinery from representation theory called weights and roots.
Also, it will turn out that a description of the representations of sl(2,C) is very useful for
the classification of irreducible representations of sl(3,C). Therefore, this description is
included in this chapter as well.

3.1 Weights
We will begin with some general theory. In this section we will discuss the notion of
a weight and use Chapter 31 in [3] for reference. Furthermore, this chapter we assume
g is a semisimple Lie algebra coming from a compact Lie group. Let t ⊂ g be a finite
dimensional commutative subalgebra of g and (ρ, V ) a representation of t in V . We denote
the space of complex-valued linear functions on tC by t∗C. Note that the space of real linear
functionals, denoted by t∗, can be realized as a real linear subspace of t∗C. Since we can
identity t∗ with those λ ∈ t∗C that take values in R restricted to t. Similarly, the space it∗
can be identified with the λ ∈ t∗C such that λ|t maps to iR.

Let λ ∈ t∗C. Then we define the subspace Vλ ⊂ V by

Vλ =
⋂
H∈t

ker(ρ(H)− λ(H)1). (3.1)

If we take a closer look at Equation (3.1), we see that Vλ consists of those vectors that
satisfy ρ(H)v = λ(H)v for all H ∈ t. One could think of these vectors as a generalization
of eigenvectors with λ ∈ t∗C as a generalized eigenvalue.

Definition 3.1. We say λ ∈ t∗C is a weight if Vλ 6= 0. In that case the space Vλ is called the
associated weight space. The dimension of the weight space is called the multiplicity.
We denote the set of weights of t in V by Λ(ρ) (or sometimes by Λ(V )), [3, p.105].

We now define a subspace V ′ ⊂ V by

V ′ :=
∑
λ∈Λ(ρ)

Vλ, (3.2)

by which we mean that we take the vector sum of the spaces Vλ

Lemma 3.2. The vector sum in equation (3.2) is actually a direct sum.
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Proof. We refer to [3, Lemmma 31.2]. �

Lemma 3.3. If ρ(X) is diagonalizable for every X ∈ t, then V = V ′.

Proof. We also refer to [3, Lemma 31.2]. �

Lemma 3.4. The set Λ(ρ) is non-empty finite subset of t∗C.

Proof. From Lemma 3.2 we deduce that Λ(ρ) has at most dimV elements. So it is left
to show that Λ(ρ) is non-empty. Let X1, X2, . . . , Xn be a basis for t. The endomor-
phism ρ(X1) has at least one eigenvalue λ1 (maybe complex). Denote the corresponding
eigenspace by Eλ1 . Note that Eλ1 ⊂ V is a nontrivial invariant subspace for the endo-
morphism ρ(X2). This easily follows from the commutativity of t. Due to this invariance
we can restrict ρ(X2) to E1 and get an endomorphism of E1. Again, this endomorphism
has at least one eigenvalue, say λ2. We denote the corresponding eigenspace by E2, as
we did before. Note that E2 ⊂ E1 by construction. Continuing in this way we find after
a finite number of steps a sequence of non-trivial subspaces En ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ V
such that ρ(Xi)v = λiv for v ∈ Ei. Now define λ ∈ t∗C by λ(Xi) = λi. Note En ⊂ Vλ, thus
Vλ is not empty. As a consequence, it follows that λ ∈ Λ(ρ). Proving the assertion. �

Definition 3.5. We say t ⊂ g is a torus if it is a commutative subalgebra of g. We say
a torus t ⊂ g is called maximal if there exists no torus of g that properly contains t.

This definition is typically used for compact Lie algebras1. A basic result can be
deduced from the maximality of a torus, as is shown in the following lemma.

Lemma 3.6. The centralizer of a maximal torus t in g equals t.

Proof. Let t be a maximal torus. Since a torus t is commutative we know t ⊂ Z(t). On
the other hand, suppose X ∈ Z(t). Then t′ := t + RX is a commutative subalgebra of g
containing t. From the maximality of t it follows that t = t′, hence X ∈ t. Completing
the proof. �

Until this point we have only discussed representations of t. Yet, the objects we want
to consider are representations of g or equivalently gC. Let (π, V ) be a representation of
gC. We want to extend our notion of weights to the representation (π, V ). Since weights
are only defined for representations of a torus t, we need to construct a representation
of t from (π, V ). The most natural way to do this is by restriction. So, Λ(π) = Λ(π, t)
denotes set of the weights of the representation ρ := π|t of t in V . To use the previous
definitions ρ is substituted by π|t. As a direct consequence of Lemma 3.4 it follows that
Λ(π) is a finite subset of t∗C.

For every representation (π, V ) of a Lie group G we know its tangent map π∗ is a
representation of g in V. Furthermore, we have seen that there exists a unique extension
of π∗ to a representation of gC in V . Using this we can formulate the following lemma.

Lemma 3.7. Let (π, V ) be a representation of a compact Lie group G. Then Λ(π∗) is a
finite subset of it∗. Furthermore,

V =
⊕

λ∈Λ(π∗)

Vλ. (3.3)

1By a compact Lie algebra we mean a Lie algebra coming from a compact Lie group.
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Proof. Since G is a compact Lie group, there exists a Hermitian inner product on V
such that π(x) is unitary for every x ∈ G (see Lemma 2.43). We equip V with this
inner product and denote it by 〈·, ·〉. This means that π is now a function from G to
the unitary operators on V , denoted by U(V ). Hence its tangent map, π∗, maps g to
u(V ). Where u(V ) ⊂ End(V ) is the subalgebra of anti-Hermitian operators on V (see
[9, Prop. 3.24]). From linear algebra we know that anti-Hermitian operators on a finite
dimensional vector space are diagonalizable with imaginary eigenvalues. Equation 3.3
now follows after applying Lemma 3.2. �

3.2 Roots
At this point, we have developed some basic theory about weights for an arbitrary repre-
sentation of gC. In this section we will talk about the weights of an important representa-
tion, namely the adjoint representation ad. In this section we assume that t is a maximal
torus of g.

Note for every A ∈ End(g) there exists a unique complex linear extension to gC,
denoted by AC. Furthermore, End(g) can be viewed as a real linear subspace of End(gC)
by the map ι : End(g) → End(gC), A 7→ AC. Hence the adjoint representation Ad can
be viewed as a representation of a Lie group G in gC. And after extending its tangent
map, we may view the adjoint representation ad as a representation of gC in gC. Note
that the weight space gC0 is non-empty, since t ⊂ gC0. Hence 0 ∈ Λ(ad). Actually, using
the definition of a weight space one readily sees that gC0 = Z(t)C, where Z(t) denotes the
centralizer of t in g. From Lemma 3.6 it follows that Z(t) = t, hence gC0 = tC.

Definition 3.8. The nonzero weights of ad are called roots of t in gC. We denote the
set of roots by R = R(gC, t) and for α ∈ R the associated weight space, denoted by gCα, is
called the root space associated with α.

From the construction above it follows that we can apply Lemma 3.7 to obtain the so
called root space decomposition of gC.

Corollary 3.9. The set of roots R = R(gC, t) is a finite subset of it∗. Moreover, we have
the decomposition

gC = tC ⊕
⊕
α∈R

gCα.

It turns out there is a connection between roots and the weights of an arbitrary
representation. This connection, although easy to prove, will turn out to be very useful
for the classification of representations of sl(3,C), which we will discuss later on this
chapter.

Lemma 3.10. Let (π, V ) be a representation of gC. Then for every λ ∈ Λ(π) and α ∈ R
we have

π(gCα)Vλ ⊂ Vλ+α.

In particular, if λ+ α /∈ Λ(π) then π(gCα) annihilates Vλ.
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Proof. Let λ ∈ Λ(π) be a weight and α ∈ R be a root. Furthermore, let v ∈ Vλ and
X ∈ gCα. Then for H ∈ t we have

π(H)π(X)v = π(X)π(H)v + [π(H), π(X)]v

= λ(H)π(X)v + π([H,X])v

= λ(H)π(X)v + π(α(H)X)v

= (λ(H) + α(H))π(X)v.

The above calculation shows that π(X)v ∈ Vλ+α. If λ+ α /∈ Λ(π) it follows by definition
that Vλ+α = 0, hence π(gCα) annihilates Vλ. �

The above lemma has some neat consequence that we will discuss now.

Corollary 3.11. Let α, β ∈ R, then

[gCα, gCβ] ⊂ gC(α+β).

Specifically, if α + β /∈ R ∪ {0} then gCα and gCβ commute.

Proof. Apply Lemma 3.10 to the adjoint representation ad of gC and note Λ(ad) = R ∪
{0}. �

Corollary 3.12. Let (π, V ) be a representation of gC. Then, the space

W :=
⊕
λ∈Λ(π)

Vλ (3.4)

is a non-trivial invariant subspace for the representation (π, V ). In particular, if (π, V )
is irreducible then W = V .

Proof. From Lemma 3.4 it follows that Λ(π) is non-empty, hence W is non-trivial. Let
w ∈ W and X ∈ gC. Then there exists a weight λ ∈ Λ(π) such that w ∈ Vλ. Moreover,
either X ∈ tC or there exists a root α ∈ R such that X ∈ gCα, by Corollary 3.9. If X ∈ tC
it follows that π(X)w ∈ Vλ, by the definition of a weight space. On the other hand if
X ∈ gCα for some α ∈ R, Lemma 3.10 tells us that either π(X)w = 0 or π(X)w ∈ Vλ+α

where λ + α ∈ Λ(π). In both cases we have π(X)w ∈ W . Hence W is an invariant
subspace for the representation (π, V ). If (π, V ) is irreducible it follows, since W ⊂ V is
an invariant subspace, that W = V . �

3.3 The representations of sl(2,C)
So far, this chapter, we have developed the general notions of weights and roots and
showed some of their properties. At this point we are ready to apply this general theory
to a specific Lie algebra, namely the complexification of su(2): sl(2,C). The Lie algebra
sl(2,C) consists of traceless complex 2× 2 matrices2. The Lie algebra sl(2,C) has a very

2To see this we again refer to [9, Prop. 3.23].
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natural basis given by

H =

(
1 0

0 −1

)
, X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
.

In this section we will assume that (π, V ) is a representation of sl(2,C). Since sl(2,C)
is equipped with the commutator bracket we can calculate the commutation relations.
After a simple calculation we see

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H. (3.5)

Recall that su(2) consists of the complex 2 × 2 matrices X such that trX = 0 and
X∗ = −X. Then t = iRH is a maximal torus in su(2). Let us define the linear functional
α ∈ t∗C by α(H) = 2. For H ′ ∈ t, given by H ′ = irH with r ∈ R, we see by using the
commutation relations

[H ′, X] = ir[H,X] = 2irX = irα(H)X = α(H ′)X. (3.6)

Since the adjoint representation (ad, sl(2,C)) of sl(2,C) coincides with the commutation
bracket (see Example 2.22), Equation (3.6) shows that α ∈ R(sl(2,C), t). In a similar
way one can show that −α ∈ R(sl(2,C), t), with Y ∈ sl(2,C)−α. One can actually show,
through straightforward calculation, that sl(2,C)α = CX and sl(2,C)−α = CY . Also,
note that tC = CH. Since H,X, Y form a basis of sl(2,C) it follows that R(sl(2,C), t) =
{α,−α}. Now we can apply our theory of roots.

Lemma 3.13. Let v be an eigenvector of π(H) with eigenvalue λ ∈ C. Then

π(H)π(X)v = (λ+ 2)π(X)v, π(H)π(Y )v = (λ− 2)π(Y )v.

Showing, either π(X)v = 0 or π(X)v is again an eigenvector of π(H) with eigenvalue
λ+ 2. Similarly for π(Y )v but with eigenvalue λ− 2.

Proof. Since our torus t is one dimensional the functional λ̃ ∈ t∗C defined by λ̃(H) = λ
is actually a weight, so λ̃ ∈ Λ(π). Since α,−α are roots it follows from Lemma 3.10
that π(X)Vλ̃ ⊂ Vλ+α. In particular, this means π(H)π(X)v = (λ̃(H) + α(H))π(X)v =
(λ+ 2)π(X)v. In a similar way we get π(H)π(Y )v = (λ− 2)π(Y )v. �

Note that π(H) always has at least one eigenvalue, since C is algebraically complete.
Since the operator π(X) raises the eigenvalue of π(H), it is called, fittingly, the raising
operator. Similary, since π(Y ) lowers the eigenvalue of π(H), it is called the lowering
operator. If we repeatedly apply Lemma 3.13 we find

π(H)π(X)nv = (λ+ 2n)π(X)nv (3.7)

and a similar result for π(Y ). Yet, since V is finite dimensional π(H) only has finitely
many eigenvalues. Therefore, π(X)nv cannot be nonzero for every n ∈ N. Hence there
exists an N ∈ N such that π(X)Nv 6= 0, but π(X)N+1v = 0. This brings us to the
following definition.

Definition 3.14. We say v ∈ V \ {0} is a primitive vector if π(X)v = 0.
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By our discussion above Definition 3.14 it follows that every representation of sl(2,C)
has a primitive vector that is simultaneously an eigenvector of π(H), namely π(X)Nv.
Let us capture that property in a lemma.

Lemma 3.15. Let (π, V ) be a representation of sl(2,C), then there exists a primitive
vector that is simultaneously an eigenvector of π(H).

Let us denote w := π(X)Nv and its eigenvalue for π(H) by µ, which is equal to λ+2N .
Now we define the collection of vectors vk inductively by v0 = w and vk+1 = π(Y )vk. So
vk = π(Y )kw. By a similar reasoning as above there exists an n ∈ N such that vn 6= 0,
but vn+1 = 0.

Lemma 3.16. Assume the representation (π, V ) of sl(2,C) is irreducible.

(a) For every 0 ≤ k ≤ n, the following holds

π(H)vk = (µ− 2k)vk, π(X)vk = k(µ− k + 1)vk−1.

(b) The vectors vk for 0 ≤ k ≤ n form a basis for V .

(c) The eigenvalue µ equals dim(V )− 1

Proof. We start by proving (a). By repeated usage of Lemma 3.13,

π(H)vk = π(H)π(Y )kw

= (µ− 2k)π(Y )kw

= (µ− 2k)vk.

Proving the first part of (a). We will prove the second part of (a) by induction. For k = 0
we have vk = w. Since w is a primitive vector we know π(X)w = 0 = k(µ− k+ 1), so the
assertion is true for k = 0. Now assume the equality holds for some 0 ≤ k < n. Then for
k + 1,

π(X)vk+1 = π(X)π(Y )vk

= π(Y )π(X)vk + [π(X), π(Y )]vk

= π(Y )k(µ− k + 1)vk−1 + π([X, Y ])vk

= k(µ− k + 1)vk + π(H)vk

= k(µ− k + 1)vk + (µ− 2k)vk

= (kµ+ µ− k2 − k)vk

= (k + 1)(µ− (k + 1) + 1)vk.

Hence the second assertion of (a) is true for every 0 ≤ k ≤ n.
Now we prove part (b). We define W ⊂ V to be the linear span of the collection of

vectors vk. Note that, by the definition of the vectors vk it is clear that W is invariant
under the action of π(Y ). Furthermore from part (a) it follows that W is invariant
under the actions of π(H) and π(X), as well. Since H,X, Y form a basis of sl(2,C), it
follows that W is an invariant subspace (and non-trivial by definition) of V . Since the
representation (π, V ) is irreducible we conclude W = V , proving (b).
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For (c) we note that vn+1 = 0. Using the second part of (a) we see3

0 = (n+ 1)(µ− n)vn.

Since vn 6= 0 by construction and n + 1 > 0, we conclude µ = n. Note that, from (b) we
see that dim(V ) = n+ 1. Hence µ = dim(V )− 1, completing the proof. �

Corollary 3.17. Let (π, V ) be a (not necessarily irreducible) representation of sl(2,C).
Then, every eigenvalue of π(H) is an integer.

Proof. First we note that in the proof of part (c) we only used the irreducibility of (π, V )
to show that µ quals dim(V ) − 1. Yet, for a general representation the argument shows
that µ equals some natural number n. We argued before that µ = λ+ 2N , where N is a
natural number. Hence the original eigenvalue λ of π(H), from Lemma 3.13, is an integer.
Since this eigenvalue was arbitrary, the result follows. �

Note that it is not clear if a primitive vector is unique. We made an explicit choice
for our primitive vector, yet it is not excluded that other primitive vectors exist. It turns
out we need irreducibility to guarantee a uniqueness property of a primitive vector.

Corollary 3.18. Let (π, V ) be an irreducible representation of sl(2,C). A vector v ∈ V
is a primitive vector if and only if it is a nonzero multiple of v0.

Proof. Due to the linearity of π(X), it is clear that a nonzero multiple of v0 is a primitive
vector. Now let us assume that v ∈ V is a primitive vector, so π(X)v = 0. By Lemma
3.16(b) we know v can be represented as a linear combination of the vk’s. Hence

v =
n∑
j=0

λivi.

Yet, by the second equation of Lemma 3.16(a) it follows that λi must be zero for i > 0.
Otherwise, π(X)v = 0 cannot hold. Consequently, we are left with v = λ0v0. �

Remark 3.19. From Corollary 3.18 and Lemma 3.15 it follows that every primitive vector
is an eigenvector of π(H) with the same eigenvalue. Hence, the eigenvalue µ in Lemma
3.16 is unique.

Now we have all the tools to classify the irreducible representations of sl(2,C).

Theorem 3.20. Let (π, V ) and (π′, V ′) be irreducible representations of sl(2,C). Then V
and V ′ are isomorphic if and only if dim(V ) = dim(V ′). Moreover, if v ∈ V and v′ ∈ V ′
an primitive vectors then there exists a unique equivariant isomorphism T : V → V ′,
mapping v to v′.

Proof. Clearly, if V and V ′ are isomorphic their dimensions must be equal. Suppose
dim(V ) = dim(V ′) = n+ 1. By our discussion this section we know there exists primitive
vectors v, v′ in V, V ′, respectively. Let λ,λ′ denote the eigenvalue for π By Lemma 3.16(b)
we know v, π(Y )v, . . . , π(Y )nv forms a basis of V and v′, π′(Y )v′, . . . , π′(Y )nv′ forms a

3Note that, even though k should be between 0 and n for (a) the calculation in the proof of (a) still
holds for k = n+ 1.
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basis of V ′. Let us adopt the notation from before: vk := π(Y )kv and v′k := π′(Y )kv′ for
0 ≤ k ≤ n. Now define the linear map T : V → V ′ by vk 7→ v′k, for every 0 ≤ k ≤ n.
Clearly, T is an isomorphism of vector spaces. Now we show T is an intertwiner. Since
H,X, Y is a basis for sl(2,C), it suffices to show T intertwines the actions of H,X, Y . By
the definitions of T and the bases of V and V ′, for 0 ≤ k ≤ n

T (π(Y )vk) = T (vk+1)

= v′k+1

= π′(Y )v′k
= π′(Y )T (vk).

The above computation shows that T intertwines the action of Y . Using Lemma 3.16,
for 0 ≤ k ≤ n

T (π(H)vk) = (n− 2k)T (vk)

= (n− 2k)v′k
= π′(H)v′k
= π′(H)T (vk).

Hence T intertwines the action of H. Finally, again by Lemma 3.16

T (π(X)vk) = k(n− k + 1)T (vk−1)

= k(n− k + 1)v′k−1

= π′(H)v′k
= π′(H)T (vk),

for all 0 ≤ k ≤ n. Hence T is an intertwiner and thus V and V ′ are isomorphic.
Note that, if T : V → V ′ is an equivariant isomorphism mapping v to v′ we must have

T (vk) = T (π(Y )kv) = π′(Y )kT (v) = π′(Y )kv′ = v′k.

Hence T is uniquely defined. �

Due to the one-to-one correspondence between irreducible representations of sl(2,C)
and SU(2), the above theorem also classifies the irreducible representations of SU(2).

3.4 More on roots and weights
In our description of sl(2,C) we saw that the notion of a primitive vector was crucial
in the classification of irreducible representations. Yet, sl(2,C) has a very simple basis
which simplifies the discussion al lot. In this section we want to generalize the notion of
a primitive vector for more complicated Lie algebras. To obtain this generalization we
return to some general theory about roots and weights.

In this section we use [3, Ch. 31] as our main reference. Furthermore, we assume g is
a semisimple Lie algebra coming from a compact Lie group and t ⊂ g is a maximal torus.
We recall that the collection of roots R = R(gC, t) is a finite subset of it∗. Moreover, it∗
was identified with the real linear subspace of tC consisting of λ such that λ|t has values in
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iR. Note that, this is equivalent to requiring λ|it takes on real values. Hence, it∗ and (it)∗

are isomorphic. If we use this isomorphism to identify it∗ with (it)∗, then we can view R
as a finite subset of (it)∗ \ {0}. Since roots map to R, are linear and not identically zero,
they must be surjective. Hence, by the rank-nullity theorem it follows that kerα ⊂ it is
a hyperplane4, for all α ∈ R. Let us define H :=

⋃
α∈R kerα ⊂ it. Then, the complement

of H in it is a finite union of convex connected subsets of it. These subsets are referred
to by a special term, namely such a subset is called a Weyl chamber associated with R.
Let C be a fixed Weyl chamber. Since roots are linear maps between finite dimensional
vector spaces, they are continuous. Hence, by the intermediate value theorem and the
convexity of the Weyl chambers, every root is either positive or negative by construction
of C. Now we can define the notion of a system of positive roots, denoted by R+ := R+(C),
associated with C by

R+ = {α ∈ R | α > 0 on C}.

A system of positive roots turns out to give a useful decomposition of gC. To show this
we need the following lemma.

Lemma 3.21. Let α ∈ R be a root, then −α is also a root.

Proof. We start by defining a conjugate linear automorphism of gC regarded as a real Lie
algebra, which we will refer to as the conjugation map,

τ : gC → gC, τ(X + iY ) = X − iY.

Let Z = X + iY ∈ gC and H ∈ t. Then, by straightforward calculation

[H, τ(Z)] = [H, τ(X + iY )]

= [H,X − iY ]

= [H,X]− i[H, Y ]

= τ([H,Z]).

In particular, for Z = X + iY ∈ gCα the above calculation shows

[H, τ(Z)] = τ(α(H)Z) = α(H)τ(Z).

To complete the proof we note that R is a finite subset of it∗. Therefore, α(H) is a pure
imaginary number for all H ∈ t. Hence α(H) = −α(H), for H ∈ t. Using this we see
[H, τ(Z)] = −α(H)τ(Z), thus τ(Z) ∈ gC(−α). �

Remark 3.22. The proof of Lemma 3.21 shows that τ maps gCα to gC(−α). Note that,
it is easy to see τ is its own inverse. And due to symmetry in α and −α one could also
argue τ maps gC(−α) to gCα, hence τ 2 = id.

As said before, every root is either positive or negative on a Weyl chamber C. Lemma
3.21 shows, for every root α ∈ R, both α and −α are roots. Yet, only one of them is
contained in R+. Hence, we can write

R = R+ ∪ (−R+). (3.8)

4A hyperplane is a linear subspace whose dimension is one less than that of the total space.
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The above union is actually disjoint. This splitting of the collection of roots gives rise to
a decomposition of gC.

Lemma 3.23. Define the subspaces

g+
C :=

∑
α∈R+

gCα, g−C :=
∑

β∈(−R+)

gCβ

of gC. Then, the spaces g+
C and g−C are ad(t)-invariant subalgebras of gC. Moreover,

gC = tC ⊕ g+
C ⊕ g−C .

Proof. Let α, β ∈ R+. Then α + β must be positive on C. In particular, α + β 6= 0.
Suppose [gCα, gCβ] 6= 0, then by Corollary 3.11 and the fact α+ β 6= 0 we see α+ β ∈ R.
Note that, α + β > 0 on C as said before. Hence, the root α + β belongs to R+. This
implies that gC(α+β) ⊂ g+

C , thus [gCα, gCβ] ⊂ g+
C by Corollary 3.11. If gCα and gCβ do

commute it is clear that [gCα, gCβ] ⊂ g+
C . It follows that g+

C is a subalgebra of gC. A
similar argument shows that g−C is a subalgebra of gC.

The spaces g+
C and g−C are ad(t)-invariant, because root spaces are. Furthermore, the

direct sum decomposition is a direct consequence of Corollary 3.9 and Equation (3.8). �

Now we have developed enough theory to generalize the notion of a primitive vector
from Section 3.3.

Definition 3.24. Let (π, V ) be a representation of gC. Then a highest weight vector
of V , relative to the system of positive roots R+, is a non-trivial vector v ∈ V satisfying

(a) π(tC)v ⊂ Cv

(b) π(X)v = 0 for all X ∈ g+
C .

Note that the highest weight vector depends on the choice of Weyl chamber.

Lemma 3.25. Let (π, V ) be a representation of gC. Then, V has a highest weight vector.

Proof. Let C be the Weyl chamber corresponding to the system of positive roots R+ and
X ∈ C. Then α(X) > 0 for every α ∈ R+. On the other hand, let λ0 ∈ Λ(π) denote the
weight such that the real part of λ0(X) is maximal. Such a weight exists, because Λ(π) is
finite. Then λ0 +α /∈ Λ(π) for all α ∈ R+. Otherwise, because α(X) > 0 for α ∈ R+, the
real part of λ0(X) +α(X) would be bigger than the real part of λ0(X), contradicting the
definition of λ0. Then, by Lemma 3.10 we see π(gCα)Vλ0 = 0 for every α ∈ R+. Hence
π(g+

C)Vλ0 = 0. Consequently, every nonzero vector v ∈ Vλ0 is a highest weight vector. �

Definition 3.26. Let (π, V ) be a representation of gC. We say v ∈ V is cyclic, if the
smallest invariant subspace containing v is V itself.

The following lemma will be important for our understanding about highest weight
vectors and their corresponding weights. We closely follow the proof of [3, Prop. 31.20].
But first we introduce some notation. By NR+ we mean the collection of linear combina-
tions of positive roots with natural numbers as coefficients5.

5We use the convention that 0 ∈ N.
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Lemma 3.27. Let (π, V ) be a representation of gC and v ∈ V be a cyclic highest weight
vector. Then, the following assertions hold

(a) There exists a unique weight λ ∈ Λ(π) such that v ∈ Vλ. Moreover, Vλ = Cv.

(b) The space V is equal to the span of the vectors π(Y1)π(Y2) . . . π(Yn)v, where n ∈ N
and Yi ∈ g−C for every 0 ≤ j ≤ n.

(c) Every weight µ ∈ Λ(π) is of the form λ− ν, where ν ∈ NR+.

Proof. Since v ∈ V is a highest weight vector, by Definition 3.24 we know π(tC)v ⊂ Cv.
In particular, π(H)v = λ(H)v for every H ∈ t, where λ(H) ∈ C. Using this we can define
a weight λ ∈ Λ(π) such that it maps H to the corresponding complex number λ(H) on t.
Then, v ∈ Vλ by construction and λ is uniquely defined. We will inductively define linear
subspaces of V by V0 = Cv and Vn+1 = Vn + π(g−C) for n ≥ 1. Let W denote the union
of the spaces Vn. We claim that W is an invariant subspace of V . First we note that, by
definition,

π(g−C)Vn ⊂ Vn+1.

Hence W is g−C -invariant. We will show the tC- and g+
C -invariance of W by induction.

Note that tC-invariance is equivalent to being invariant under t. Since v is a highest
weight vector it follows that V0 is t-invariant. Now suppose that Vn is t-invariant for some
n ≥ 1. Furthermore, let u ∈ Vn and Y ∈ g−C . Then, for H ∈ t

π(H)π(Y )u = π(Y )π(H)u+ π([H,Y ])u.

By our assumption we see π(H)u ∈ Vn, hence π(Y )π(H)u ∈ Vn+1. On the other hand,
due to Lemma 3.23 it follows [H,Y ] ∈ g−C , thus π([H, Y ])u ∈ Vn+1. Consequently,
π(H)π(Y )u ∈ Vn+1. So we have shown

π(t)π(g−C)Vn ⊂ Vn+1.

Since Vn is t-invariant by assumption and Vn+1 = Vn + π(g−C)Vn we conclude Vn+1 is
t-invariant.

Again, since v is a highest weight vector it follows that the space V0 is g+
C -invariant.

Now assume Vn is g+
C -invariant for some n ≥ 1. Note that, by the above discussion and

this assumption we can deduce

π(gC)Vn ⊂ Vn+1. (3.9)

Let u ∈ V and Y ∈ g−C . Then, for X ∈ g+
C ,

π(X)π(Y )u = π(Y )π(X)u+ π([X, Y ])u.

By the induction hypothesis it follows π(X)u ∈ Vn, hence π(Y )π(X)u ∈ Vn+1. Further-
more, since [X, Y ] ∈ gC we see π([X, Y ])u ∈ Vn+1, by Equation (3.9). Thus, π(X)π(Y )u ∈
Vn+1. By a similar reasoning as before, we conclude Vn+1 is g+

C -invariant. Hence, W is an
invariant subspace of V . Note that, v ∈ W by construction. Since v is cyclic we conclude
W = V . This proves assertion (b).
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Let w ∈ W = V , then by the above we can write w = π(Y1) . . . π(Yn)v with n ∈ N,
Yi ∈ gC(−α) and α ∈ R+. Then, by Lemma 3.10 it follows that w ∈ Vλ−(α1+···+αn). Since
W = V is spanned by v and elements like w, we conclude every weight µ ∈ Λ(π) is of the
form λ− ν, where ν =

∑
α∈R+ nαα ∈ NR+. This concludes the proof of part (c).

Finally, the discussion for part (c) shows that any vector w = π(Y1) . . . π(Yn)v ∈ V
with n ≥ 1 cannot have weight λ. Hence the only vectors with weight λ are multiples of
v, concluding the proof of part (a). �

The weight of a highest weight vector is fittingly called the highest weight. We note
that if (π, V ) is an irreducible representation of gC, every vector v ∈ V is cyclic. Using
this and the previous lemma we obtain the follow corollary.

Corollary 3.28. Let (π, V ) be an irreducible representation of gC. Then V has a highest
weight vector, which is unique up to a scalar.

Proof. By Lemma 3.25 it follows that V has a highest weight v. Since (π, V ) is irreducible,
the vector v is cyclic. Hence, all assertions of Lemma 3.27 hold. Suppose w ∈ V is another
highest weight vector, with weight µ ∈ Λ(π). Then, again all assertions of Lemma 3.27
are valid for w and µ. By Lemma 3.27(c) we see µ = λ− ν1, where ν1 ∈ NR+. Similarly,
we can write λ = µ− ν2 with ν2 ∈ NR+. Combining the two equations shows ν1 = −ν2.
Since ν2 ∈ NR+, this means ν1 ∈ (−NR+). Which implies that ν1 ≤ 0 on C. Yet, we
also had ν1 ∈ NR+ so ν1 ≥ 0 on C. Therefore ν1 = 0 on C. Since C is a non-empty open
subset of it∗ it follows that ν1 = 0. This is because of the general fact, in a non-empty
open subset U of a vector space V , there exists a collection of vectors in U that form a
basis for V . Hence, if a linear map is zero on U , it is zero on a basis of V and thus zero on
V . Since ν1 = 0 we also have ν2 = 0, implying that λ = µ. Lemma 3.27(a) now implies
Cv = Vλ = Vµ = Cw. Consequently, there exists a complex number γ ∈ C such that
v = γw, completing the proof. �

Note the above proof also shows that the highest weight is unique. From now on
we assume the Lie group G, for which g is the associated Lie algebra, is furthermore
connected and simply connected. Then we can use the one-to-one correspondence between
irreducibles we discussed in Section 2.4.3. Combining this with the results of Section 2.4.2
we deduce that every representation (π, V ) of gC is completely reducible. Actually, this is
true for a general semisimple Lie algebra (see [9, Thm. 10.9]). Yet, the extra assumptions
make the discussion less involved. Moreover, we will apply the theory of this section
to the Lie algebra sl(3,C), which is the complexification of a Lie algebra coming from
a connected compact simply-connected Lie group. So, the assumptions suffices for our
purposes. The following lemma is a specific case of a more general proposition, namely
[9, Prop. A.17].

Lemma 3.29. Let (π, V ) be a representation of gC. Let λ1, . . . , λn ∈ Λ(π) be distinct
weights, with v1, . . . , vn ∈ V vectors in the associated weight spaces. If v1 + · · ·+ vn = 0,
then vi = 0 for all i. Furthermore, if v1 + · · ·+ vn is a weight vector with weight λ, then
λ = λi for some 1 ≤ i ≤ n and vj = 0 for all j 6= i.

Proof. We will prove the first part by induction. If n = 1, then v1 = 0 thus the claim
is true. Now let n > 1 and suppose the if sum of m < n vectors is zero it follows that
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each vector is zero. Then, choose H ∈ t such that λ1(H) 6= λ2(H). By applying the
endomorphism π(H)− λ2(H)1 to v1 + · · ·+ vn we see

0 = (π(H)− λ2(H)1)v1 + · · ·+ vn

=
n∑
i=1

(λi(H)− λ2(H))vi.

Note that, the second term in the sum above is zero. Hence, there are at most n − 1
terms in the sum. By the induction hypothesis we conclude that every term is zero. In
particular,

(λ1(H)− λ2(H))v1 = 0.

Since λ1(H) 6= λ2(H), we conclude v1 = 0. Therefore, the sum v1 + · · ·+ vn only contains
n− 1 terms. Again, by the induction hypothesis we conclude vi = 0 for all i.

Now suppose v := v1 + · · ·+ vn is a weight vector with weight λ. Then, there exists an
index j such that vj 6= 0 (since a weight vector is nonzero). Furthermore, for every H ∈ t
we see

0 = π(H)v − λ(H)v

=
n∑
i=1

(λi(H)− λ(H))vi

By the first part it follows that every term in the sum above must be zero. In particular,

(λj(H)− λ(H))vj = 0.

Since vj 6= 0, we conclude λj(H) = λ(H). Since this holds for every H ∈ t we see λj = λ.
But then the other terms become

(λi(H)− λj(H))vi = 0, (3.10)

for i 6= j. Since all the weights are distinct, for every i 6= j there exists an H ∈ t such
that λi(H) 6= λj(H). For this specific H, Equation (3.10) shows that vi = 0 for every
i 6= j. Hence, v = vj. �

Lemma 3.30. Suppose (π, V ) is a (completely reducible) representation of gC that has a
highest weight vector, which is cyclic. Then, (π, V ) is irreducible.

Proof. By the discussion directly above the lemma we know (π, V ) is completely re-
ducible6. Hence we can write

V =
n⊕
i=1

Vi, (3.11)

with Vi an irreducible subspace of V for every 1 ≤ i ≤ n. By Corollary 3.12, every Vi is the
direct sum of its weight spaces. Let v ∈ V be a highest weight vector that is also cyclic.

6The reason for requiring the complete reducibility in brackets is to emphasize the importance of the
property for the lemma to be true.
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Let us denote its weight by λ. From Equation (3.11) it follows that v = v1 + · · · + vn,
where vi ∈ Vi for 1 ≤ i ≤ n. Since every Vi is the direct sum of its weight spaces, vi is
a weight vector for every i. Hence by Lemma 3.29 it follows that λ must be a weight in
some Vi and it follows that v ∈ Vi. Therefore, Vi is an invariant subspace of V containing
v. Since v is cyclic we must have V = Vi. This shows that V is irreducible. �

At this point, we have enough background to prove the main theorem of this section
and perhaps of this chapter. This theorem will classify irreducible representations of gC
using the highest weight. Which we will use next section in our discussion of sl(3,C).

Theorem 3.31. Let (π, V ) and (ρ,W ) be two irreducible representations of gC. If (π, V )
and (ρ,W ) have the same highest weight, then (π, V ) and (ρ,W ) are equivalent.

Proof. Let v ∈ V and w ∈ W be highest weight vectors with highest weight λ. Consider
the direct sum of the representations (π, V ) and (ρ,W ), namely the representation (π ⊕
ρ, V ⊕ W ) defined in Definition 2.50. Let U denote the smallest invariant subspace of
V ⊕W that contains (v, w). By definition of the direct sum of representations it follows
that (v, w) is a highest weight vector with weight λ. Hence U contains a highest weight
vector that is also cyclic. Note that, the representation (π ⊕ ρ, V ⊕ W ) is completely
reducible by construction. Hence, by Corollary 2.41 and the one-to-one correspondence
between irreducibles of G and gC it follows that U is completely reducible. Therefore, by
Lemma 3.30 the representation ((π ⊕ ρ)

∣∣
U
, U) is irreducible.

Consider the projection maps pV : V ⊕W → V and pW : V ⊕W → W . Then for
v′ ∈ V,w′ ∈ W and x ∈ G we see

pV ((π ⊕ ρ)(x)(v′, w′)) = pV (π(x)v′, ρ(x)w′)

= π(x)v′

= π(x)pV (v′, w′).

Hence pV intertwines (π ⊕ ρ, V ⊕W ) with (π, V ). In a similar way we see that pW inter-
twines (π ⊕ ρ, V ⊕W ) with (ρ,W ). Therefore, pV |U and pW |U intertwine ((π ⊕ ρ)

∣∣
U
, U)

with (π, V ) and (ρ,W ), respectively. Note that pV |U and pW |U are not trivial since
pV |U (v, w) = v and pW |U (v, w) = w. Then by Schur’s lemma, pV |U is an isomorphism
between U and V and pW |U is an isomorphism between U and W . Hence V and W are
isomorphic. Note that, this isomorphism is also equivariant. Therefore (π, V ) and (ρ,W )
are equivalent. �

3.5 The representations of sl(3,C)
In his section we will be looking at the Lie algebra sl(3,C). More specifically, we want
to classify its irreducible representations. To accomplish this we will extensively use the
theory from the previous section. Recall, the irreducible representations of sl(3,C) are
relevant for the Eightfold Way since they correspond to the irreducible representations of
SU(3). Therefore, this section will be the main mathematical background for the next
chapter. In this section we use [9, Ch. 6] and [6, Ch. 12] as main reference.
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Similarly to sl(2,C), the Lie algebra sl(3,C) consists of traceless complex 3×3 matrices.
For which we choose the following basis

H1 =

1 0 0

0 −1 0

0 0 0

 , H2 =

0 0 0

0 1 0

0 0 −1

 ,

X1 =

0 1 0

0 0 0

0 0 0

 , X2 =

0 0 0

0 0 1

0 0 0

 , X3 =

0 0 1

0 0 0

0 0 0

 ,

Y1 =

0 0 0

1 0 0

0 0 0

 , Y2 =

0 0 0

0 0 0

0 1 0

 , Y3 =

0 0 0

0 0 0

0 1 0

 .

Again, similar to sl(2,C), we are interested in the commutation relations between the
basis elements. Before one starts computing commutators, it is worth to take a closer
look at some specific basis elements. Note that, by forgetting the last row and last
column we see that the subalgebra generated by H1, X1 and Y1 is isomorphic to sl(2,C).
We denote this subalgebra by s1. Similarly, the subalgebra generated by H2, X2 and Y2

is also isomorphic to sl(2,C) and we denote it by s2. Hence, the commutation relations
between these elements is know

[H1, X1] = 2X1, [H1, Y1] = 2Y1, [X1, Y1] = H1,

[H2, X2] = 2X2, [H2, Y2] = 2Y2, [X2, Y2] = H2.

After straightforward calculation, the other commutation relations are given by

[H1, H2] = 0;

[H1, X2] = −X2, [H1, Y2] = Y2, [H1, X3] = X3, [H1, Y3] = −Y3,

[H2, X1] = −X1, [H2, Y1] = Y1, [H2, X3] = X3, [H2, Y3] = −Y3;

[X1, X2] = X3, [X1, X3] = 0, [X1, Y2] = 0, [X1, Y3] = −Y2;

[X2, X3] = 0, [X2, Y1] = 0, [X2, Y3] = Y1;

[X3, Y1] = −X2, [X3, Y2] = X1, [X3, Y3] = H1 +H2;

[Y1, Y2] = −Y3, [Y1, Y3] = 0, [Y2, Y3] = 0.

Since H1 and H2 commute we have found candidates for a basis of our maximal torus t.
Just as in the case of sl(2,C) we define t ⊂ su(3) to be the real Lie algebra generated by
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iH1 and iH2. Then, tC ⊂ gC is the complex Lie generated by H1 and H2. Hence,

tC =


d1 0 0

0 d2 0

0 0 d3

 | d1, d2, d3 ∈ C, d1 + d2 + d3 = 0

 . (3.12)

Now that we have defined the maximal torus, we can talk about weights. Since sl(3,C)
contains subalgebras isomorphic to sl(2,C) we can use the theory of sl(2,C).

Lemma 3.32. Let (π, V ) be a representation of sl(3,C) and λ ∈ Λ(π). Then λ(H1) and
λ(H2) are integers.

Proof. First note that, since λ ∈ Λ(π) is a weight, λ(H1) and λ(H2) are eigenvalues of
π(H1) and π(H2), respectively. Consider the restriction of π to the subalgebra generated
by H1, X1, Y1. By Corollary 3.17 we see λ(H1) is an integer. Similarly, by restricting to
the subalgebra generated by H2, X2, Y2 it follows that λ(H2) is an integer. �

We want to apply the theory of the previous section to sl(3,C). Before we can achieve
that, we need to understand the root system of sl(3,C). First we try to find roots by
straightforward computation, let us make an observation. Let M be a matrix and D a
diagonal matrix with entries di on the diagonal. Then, left multiplication of M by D
multiplies the ith row of M by di. On the other hand, right multiplication of M by D
multiplies by the ith column of M by di. Let the entries of M be mij, then the entries of
the commutator [D,M ] are

(di − dj)mij. (3.13)

Observe that the commutator [D,M ] can only be a nonzero multiple of M if every entry
mij is zero but one.

Applying this observation to sl(3,C) we see, using the commutation relations, there
are six roots. The corresponding root spaces are CXi and CYi for i = 1, 2, 3, also by the
above discussion. To obtain neat expressions for these roots, let us define Li ∈ t∗C for
i = 1, 2, 3 by

Li(

d1 0 0

0 d2 0

0 0 d3

) = di.

Since tC has a very explicit form given in Equation (3.12), we can express t∗C in terms of
the Li’s

t∗C = CL1 ⊕ CL2 ⊕ CL3/C(L1 + L2 + L3).

The quotient in the above equation is needed to account for the tracelessness of elements
of tC. Then by (3.13) the roots of sl(3,C) are Li − Lj for i 6= j. Let us give some more
explicit names to the roots. Define

α1 := L1 − L2, α2 := L2 − L3, α3 := α1 + α2
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The other roots are then given by −α1,−α2 and −α3.
One could verify, there exists a Weyl chamber such that α1, α2, α3 ∈ R+. This veri-

fication is done by explicit calculations of the kernels of the roots. We denote this Weyl
chamber by C and keep it fixed throughout this section. Since gCαi = CXi for i = 1, 2, 3,
as said before, we conclude g+

C is the subalgebra generated by X1,X2 and X3. Similarly,
g−C is the subalgebra generated by Y1,Y2 and Y3. We call α1 and α2 are positive simple
roots, for some background about this naming we refer to [9, p. 206].

Now we are ready to apply the theory of the previous sections. One observation we
can make directly is that the difference of two weights, for an irreducible representation
of sl(3,C), is a linear combination of roots with integer coefficients. Since every vector is
cyclic in an irreducible representation and by Lemma 3.25, this observation follows from
Lemma 3.27(c). By ΛR we denote the lattice spanned by the αi’s and call it the root
lattice. Note that the root lattice is made of special points on a finer lattice, namely the
lattice spanned by L1,L2 and L3. This lattice is called the weight lattice and denoted
by ΛW . It turns out these lattices give a very neat visual depiction of the representation
theory of sl(3,C). Furthermore, these lattices are very symmetrical if an appropriate
Hermitian inner product is applied.

A beneficial way to construct this appropriate inner product is by starting with a
Hermitian inner product on tC and then lift it to tC. We choose the following Hermitian
inner product on tC, for H,H ′ ∈ tC

〈H,H ′〉 = tr(H∗H ′). (3.14)

Note that, the Hermitian inner product defined above is linear in the second argument,
which is not standard in mathematics. Since tC is a finite dimensional vector space, it
follows by the Riesz representation theorem7 that for every functional λ ∈ t∗C there exists
a unique element L ∈ tC such that

λ(H) = 〈L,H〉 (3.15)

for all H ∈ tC. This gives us a way to identify elements of tC with elements of t∗C.
After some thought one sees that the corresponding elements of α1 and α2 are H1 and
H2, respectively. From now on we will use the same letter for the functional and the
corresponding element in tC. In this setting our notion of a weight changes a bit. If (π, V )
is a representation of sl(3,C) (can also be done more general), then we say λ ∈ tC is a
weight when there exists a nonzero vector v ∈ V such that

π(H)v = 〈λ,H〉v

for all H ∈ tC.
We would like to introduce some terminology. Let λ be a weight, then we say λ is

integral if both 〈λ,H1〉 and 〈λ,H2〉 are integers. Furthermore, λ is called dominant if
〈λ,H1〉 ≥ 0 and 〈λ,H2〉 ≥ 0. We are interested in the weights, let us denote them by ω1

7For more background about this theorem we refer to [14, Thm. 5.2].
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and ω2, such that

〈ω1, α1〉 = 1, 〈ω1, α2〉 = 0

〈ω2, α1〉 = 0, 〈ω2, α2〉 = 1.

These weights are called the fundamental weights. This name comes from the identi-
fication of αi with Hi, for i = 1, 2, and Equation (3.15). It follows that ω1 is the weight
such that ω(H1) = 〈ω1, H1〉 = 1 and ω1(H2) = 〈ω1, H2〉 = 0. Similarly for ω2, it is the
weight such that ω(H2) = 〈ω2, H1〉 = 0 and ω2(H2) = 〈ω2, H2〉 = 1. Hence ω1 and ω2

are the most basic nonzero dominant integral elements. Consequently, every dominant
integral element must be of the form n1ω1 +n2ω2 with n1, n2 ∈ N. By Lemma 3.7 we know
ω1, ω2 ∈ it∗, which was isomorphic to (it)∗. Therefore, for the corresponding element of
ω1 in tC we can write ω1 = aH1 + bH2, with a, b ∈ R. Then, the equations 〈ω1, H1〉 = 1
and 〈ω1, H2〉 = 0 yield a system of two equations in a and b. Solving this system gives
a = 2

3
and b = 1

3
. A similar computation can be done for ω2. After this computation, one

finds the corresponding elements in tC are given by

ω1 =


2
3

0 0

0 −1
3

0

0 0 −1
3

 , ω2 =


1
3

0 0

0 1
3

0

0 0 −2
3

 .

Then we can write α1 = 2ω1 − ω2 and α2 = −ω1 + 2ω2. Note α1 and α2 have length
√

2
and 〈α1, α2〉 = −1. Hence, the angle θ between α1 and α2 equals 2

3
π. Using this we can

create an elegant and symmetrical depiction of the roots within the weight lattice (see
Figure 3.1).

ω1

ω2

α1

α2

Figure 3.1: The weight lattice for sl(3,C) relative to the Hermitain inner
product defined in Equation (3.14). The arrows denotes the roots and the
black dots are the dominant integral elements. Furthermore, the fundamen-

tal weights are depicted.

Now we have enough specific background to state the main theorem about irreducible
representations of sl(3,C). We follow the proof of [9, Prop. 6.17].

Theorem 3.33. (a) Two irreducible representations of sl(3,C), with the same highest
weight, are isomorphic.
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(b) If λ is the highest weight of an irreducible representation (π, V ) of sl(3,C), then
there exists n1, n2 ∈ N such that λ = n1ω1 + n2ω2.

(c) For every pair n1, n2 ∈ N, there exists an irreducible representation of sl(3,C) with
highest weight λ := n1ω1 + n2ω2.

Proof. Part (a) is a direct consequence of Theorem 3.31.
Now we will prove part (b). Suppose (π, V ) is an irreducible representation of sl(3,C)

with highest weight λ. By Lemma 3.32 it follows that λ(Hi) = 〈λ,Hi〉 ∈ Z for i = 1, 2. Let
v be a highest weight vector corresponding to λ. Then, by definition we know π(X1)v = 0
and π(X2)v = 0. If we restrict the representation to s1 and s2 we can apply our description
of sl(2,C). In the proof of Lemma 3.27 we discussed that µ := λ(H1) + 2N equals a
natural number8. Recall that N ∈ N was the natural number such that π(X1)Nv 6= 0,
but π(X)N+1v = 0. In this particular case we have N = 0, since v is a highest weight
vector. Therefore 〈λ,H1〉 = λ(H1) = µ − 2N = µ ∈ N. A similar argument shows
that 〈λ,H2〉 = λ(H2) ∈ N. So, λ is a dominant integral element and we can write
λ = 〈λ,H1〉ω1 + 〈λ,H2〉ω2. This completes the proof of part (b).

Finally, we will prove part (c). This will be a very constructive proof. We will start by
constructing irreducible representations with highest weights ω1 and ω2 and then using
tensor products to construct the rest. But first we note that, the trivial representation
has highest weight 0 ·ω1 + 0 ·ω2 and the trivial representation is irreducible. Consider the
standard representation of sl(3,C) acting on C3. It is easily seen that e1 is a highest weight
vector with highest weight ω1. Now it is left to show that this representation is irreducible.
Since sl(3,C) is the complexification of a Lie algebra coming from a compact connected
simply-connected Lie group, the standard representation is completely reducible. Hence
we can write

C3 = V1 ⊕ · · · ⊕ Vk,

where Vi ⊂ C3 is an irreducible subspace for every i. Define a subalgebra9 of sl(3,C) by

n := CX1 ⊕ CX2 ⊕ CX3.

Furtheremore, we define a subspace of C3 by

(C3)n = {v ∈ C3 | Xv = 0, for all X ∈ n}.

Note that

(C3)n = V n
1 ⊕ · · · ⊕ V n

k

By Lemma 3.28 it follows that V n
i is one dimensional for every i. Therefore, if dim(C3)n =

1 then the standard representation is irreducible. By explicit calculation we see

(C)n = Ce1.

8Note that, we do not use irreducibility here. The natural number we refer to is the one described
underneath Lemma 3.15.

9This subalgebra is actually g+C , but for simplicity we denote it by n.



40 Chapter 3. Irreducible representations of SU(3)

Now we consider the dual of the standard representation, given by

π∨(X) = −X∗

for X ∈ sl(3,C). It is easily shown that X∗ = XT , where T denotes the usual transpose
not the conjugate transpose. By a similar argument we see that this representation is
irreducible. One can easily check that e3 is a highest weight vector with highest weight
ω2. Let (π1, V1) and (π2, V2) denote the standard representation and its dual, respectively.
Furthermore, let v1 = e1 and v2 = e3 be the respective highest weight vectors. Then
define the representation πn1,n2 of sl(3,C) in

V := V1 ⊗ · · · ⊗ V1 ⊗ V2 ⊗ · · · ⊗ V2,

by

πn1,n2(X) := (π1 ⊗ · · · ⊗ π1 ⊗ π2 ⊗ · · · ⊗ π2)(X),

where π1 and V1 occur n1 times and π2 and V2 occur n2 times. One readily sees that

v := v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
n1 times

⊗ v2 ⊗ · · · ⊗ v2︸ ︷︷ ︸
n2 times

is a highest weight vector with highest weight n1ω1 + n2ω2. Let W ⊂ V be the smallest
invariant subspace that contains v. If we know (πn1,n2 ,W ) is completely reducible, Lemma
3.30 implies that the representation is irreducible. Which would conclude our proof of
part (c).

So, it remains to show that (πn1,n2 ,W ) is completely reducible. As we have seen before,
for X ∈ su(3) we have X∗ = −X. Hence, by Lemma 2.37 it follows that the lift of the
standard representation to a representation of SU(3) is unitary (which is the standard
representation of G). On the other hand, for the dual representation we see

(π∨(X))∗ = (−XT )∗

= −X
= XT

= −π∨(X)

for X ∈ su(3). Here we used that −X = X∗ = X
T for X ∈ su(3). Again, by Lemma 2.37

we see the lift of (π2, V ) to a representation of SU(3) is unitary. Using the properties of
the tensor product, if V and W are two inner product spaces there exists a unique inner
product10 〈·, ·〉 on V ⊗W such that

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉V 〈w1, w2〉W .

If we start with the inner products on V1 and V2 for which the lifts of π1 and π2 are
unitary, this property gives an inner product on V . One readily sees that the lift of πn1,n2

10This follows from the universal property of the tensor product ([1, Def. 2.8]).
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is unitary with respect to this inner product11. Let us denote this lift by π̃n1,n2 . Then, by
Theorem 2.40 we see (π̃n1,n2 , V ) is completely reducible, since SU(3) is compact. Hence,
by Corollary 2.41 and the one-to-one correspondence between irreducibles of SU(3) and
sl(3,C) it follows that (πn1,n2 ,W ) is completely reducible. �

The proof of Theorem 3.33 was quite involved. But it gives a way to construct an
irreducible representation with a particular highest weight. An example of such a con-
struction can be found in [9, Sec. 6.5]. Let us introduce some notation. Let (π, V ) be the
irreducible representation of sl(3,C) with highest weight λ = n1ω1 + n2ω2 constructed in
Theorem 3.33. Then we denote V by R(n1, n2).

The last part of this section is devoted to understanding the structure of these irre-
ducible representations, such as which other weights does the representation have and
what are the multiplicities. An important tool to accomplish is the so-called the Weyl
group. Let α ∈ R be a root. Then by sα : it→ it we denote the orthogonal reflection, with
respect to the inner product defined in Equation (3.14), in ker(α) in it. Since sα(α) = −α
and sα = 1 on ker(α) we deduce

sα(λ) = λ− 2
〈λ, α〉
〈α, α〉

α.

Definition 3.34. The Weyl group, denoted by W , of the pair (it, R) is the group gen-
erated by the sα’s for α ∈ R.

Since we know all the roots of sl(3,C), we easily see W is the group generated by sα1 ,
sα2 and sα3 . Note that, this group corresponds to the symmetry group of an equilateral
triangle, which is S3. Hence, W is isomorphic to S3. We note that, for a representation
(π, V ) of sl(3,C),W defines an action on Λ(π) by applying sαi to λ ∈ Λ(π), with i = 1, 2, 3.

Remark 3.35. The inner product defined in (3.14) is Weyl group invariant.

Proof. Note that sα, for α ∈ R, is defined as the orthogonal reflection with respect to the
inner product defined in (3.14). Therefore, the inner product is sα-invariant. Since W is
generated by sα we conclude the inner product is Weyl group invariant. �

The following theorem is a special case of [9, Thm. 9.3] and we adapted the proof to
the case of sl(3,C).

Theorem 3.36. Let (π, V ) be a representation of sl(3,C). If λ ∈ Λ(π) is a weight, then
w · λ is also a weight with the same multiplicity for all w ∈ W .

Proof. Since W is generated by si, for i = 1, 2, 3, it suffices to prove the claim for those
elements. Let αi be fixed, with i = 1, 2, 3. Then we define the operator

Sαi := eπ(Xi)e−π(Yi)eπ(Xi).

One can show that

Sαiπ(Hi)S
−1
αi

= −π(Hi).

11Here we use that, for SU(3), the lift of a tensor product representation is the tensor product repre-
sentation of the lifts. This follows from the unique lifting property of SU(3).
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For a proof of this claim we refer to [9, Thm. 4.34(3)]. Note that, −π(Hi) = π(sαi ·Hi)
since Hi is the element corresponding to αi. On the other hand, if 〈αi, H〉 = 0 for H ∈ tC
then π(H) commutes with π(Xi) and π(Yi). Note that, such an element H is contained
in kerαi. Since sαi is defined by its action on kerαi and (kerαi)

⊥ we conclude

Sαiπ(H)S−1
αi

= π(sαi ·H), (3.16)

for every H ∈ tC. Suppose v is a weight vector with weight λ, then for H ∈ tC Equation
3.16 tells us

π(H)S−1
αi
v = S−1

αi
π(sαi ·H)v.

In the case of sl(3,C) one can easily check, through explicit calculations, that sαi ·H1 and
sαi · H2 always equal a linear combination of H1 and H2 (for i = 1, 2, 3). Since H1, H2

form a basis for tC we conclude sαi · tC ⊂ tC, for i = 1, 2, 3. Therefore, since λ is a weight,
it follows that

S−1
αi
π(sαi ·H)v = S−1

αi
〈λ, sαi ·H〉v

= 〈s−1
αi
· λ,H〉S−1

αi
v.

Note that, the Weyl group invariance of the inner product is used in the last step of the
above computation. The calculation shows that S−1

αi
v is a weight vector for s−1

αi
·λ. Hence,

s−1
αi
· λ is a weight. The argument shows that S−1

αi
maps Vλ to Vs−1

αi
·λ. An almost identical

argument show shows that Sαi maps Vs−1
αi
·λ to Vλ, hence the two spaces are isomorphic.

This means that λ and s−1
αi
·λ have the same multiplicity. Note that, s−1

αi
= sαi . Therefore,

we have deduced that weights are invariant under sαi and thus invariant under the action
of W . �

Definition 3.37. For v1, . . . , vn vectors in a real or complex vector space, we define the
convex hull of v1, . . . , vn as the collection of vectors

c1v1 + c2v2 + · · ·+ cnvn

where the coefficients satisfy ci ≥ 0 for every i and
∑

i ci = 1.

In other words, the convex hull is the smallest convex set containing the vectors vi.
The proof of the following theorem is from [9, Thm. 6.24].

Theorem 3.38. Let λ be a dominant integral element and (π, V ) the irreducible repre-
sentation of sl(3,C) with highest weight λ. If µ ∈ Λ(π) is a weight, then µ belongs to the
convex hull of W · λ.

Proof. Let µ ∈ Λ(π) be a weight and denote the convex hull of W · µ by Conv(W · λ).
Then by Theorem 3.36 it follows w · µ ∈ Λ(π) for all w ∈ W . Note that, if µ ∈ W · λ the
claim is evident, by the definition of the convex hull. So suppose µ /∈ W ·λ. In particular,
one readily sees there exists an element w ∈ W such that w · µ is dominant. Hence, for
this particular element w ∈ W the weight w · µ lies in the closure of the positive Weyl
chamber C (which is the top-right pie slice in Figure 3.2). Since λ is the highest weight,
w · µ must lie in the intersection of Conv(W · µ) and C (this is the dark shaded area
depicted in Figure 3.2). Otherwise, if w · µ was in the complement of Conv ∩ C in C (the
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light shaded area in Figure 3.2) we would have that µ − λ ∈ NR+. Since w · µ 6= λ by
assumption, this would contradict Lemma 3.27(c). Let us define this Qλ := Conv ∩ C, so
w · µ ∈ Qλ. We want to show that Qµ is contained in Conv(W · λ). From Figure 3.2 we
see Qµ is convex, therefore it suffices to show the vertices are contained in Conv(W · λ).

Define,

ν :=
∑
w∈W

w · µ.

Note that, w · ν = ν for all w ∈ W , by construction. In particular, sαi · ν = ν for all
i = 1, 2, 3. By the definition of sαi , it follows that ν ∈ kerαi for every i = 1, 2, 3. One
could verify, by explicit computation,

3⋂
i=1

kerαi = 0.

Hence, ν = 0. Consequently, 0 ∈ Conv(W · λ). We define the point p1 as the intersection
of kerα1 and the line segment connecting λ and sα1(λ). Similarly, the point p2 is defined
as the intersection of kerα2 and the line segment connecting λ and sα2(λ) (see Figure
3.2). Explicitly, the points are given by

p1 =
1

2
(λ+ sα2(λ)), p2 =

1

2
(λ+ sα1(λ)).

From these expressions we immediately see p1, p2 ∈ Conv(W ·λ), by definition. Obviously,
λ ∈ Conv(W · λ) and thus all vertices of Qµ are contained in Conv(W · λ). Hence,
w · µ ∈ Qµ ⊂ Conv(W · λ). Clearly, W · λ is invariant under the action of W . Therefore,
Conv(W · λ) is invariant under W . Consequently, µ = w−1 · (w · µ) ∈ Conv(W · λ) since
w · µ is contained in Conv(W · λ). �

For the proof of the following lemma we use [9, Lemma 6.26].

Lemma 3.39. Let (π, V ) be an irreducible representation of sl(3,C) with highest weight
λ. Let µ be a weight, α a root, and suppose ν is a point on the line segment joining µ and
sα · µ such that µ− ν is an integer multiple of α. Then ν is a weight of (π, V ).

Proof. Since the orthogonal reflections sαi and s−αi are equal, suffices to only consider sαi
for i = 1, 2, 3. First, let s1 and s2 be as before and let s3 denote the subalgebra generated
by H3 := H1 +H2, X3 and Y3. Furthermore, let us denote the line segment connecting µ
and sα · µ by [µ, sα · µ]. Then the claim of the lemma translates to

[µ, sα · µ] ∩ (µ+ Zα) ⊂ Λ(π). (3.17)

Let i = 1, 2, 3 be a fixed index. Note that,

〈sαi · µ,Hi〉 = 〈µ, sαi ·Hi〉
= −〈µ,Hi〉.

In the above calculation we used a couple properties. Firstly, we used the Weyl group
invariance of the inner product. Secondly, we applied the fact that Hi is the element that
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α1

α2
λ

sα1(λ)

p1

p2

sα2(λ)

Figure 3.2: Weight diagram of (π, V ) with highest weight λ. The light
shaded area depicts the complement of Conv(W ·λ)∩C in C. These dominant
elements are said to be ‘higher’ than λ. And the dark shaded area depicts

Conv(W · λ) ∩ C, which are the dominant elements ‘lower’ than λ.

corresponds to αi, hence sαi · Hi = −Hi. Finally, we used that s2
αi

= 1. By the above
computation we can assume, without loss of generality, that k := 〈µ,Hi〉 ≥ 0. By explicit
calculation, we see

sαi · µ = µ− 〈µ, αi〉αi
= µ− 〈µ,Hi〉αi
= µ− kαi.

Hence,

[µ, sα · µ] ∩ (µ+ Zα) = {µ, µ− αi, . . . , µ− kαi}. (3.18)

Let v ∈ V \ {0} be a weight vector with weight µ. In particular, v is an eigenvector
of π(Hi) with eigenvalue µ(Hi) = 〈µ,Hi〉 = k. Let U ⊂ V be the smallest si-invariant
subspace containing v. Then, (π|si , U) induces a representation of sl(2,C) (not necessarily
irreducible). By Corollary 3.17 it follows that k = µ(Hi) ∈ Z. Yet, k ≥ 0 so k ∈ N.
Moreover, by repeated use of Lemma 3.13 we see π(Yi)

lv is a nonzero eigenvector of
π(Hi) with eigenvalue k − 2l, for every l = 0, . . . , k. This shows that all the values
−k,−k + 2, . . . , k − 2, k are eigenvalues of π(Hi). Recall, Yi is a root vector for αi.
Therefore π(Yi)v ∈ π(gCαi)

lv. By Lemma 3.10 it follows

π(gCαi)
lv ⊂ Vµ−lαi .

Consequently, π(Yi)v ∈ Vµ−lαi . Since π(Yi)v is nonzero we conclude µ − lαi is a weight,
for every l = 0, . . . , k. This shows

{µ, µ− αi, . . . , µ− kαi} ⊂ Λ(π),



3.5. The representations of sl(3,C) 45

which was the desired result stated in Equation (3.17). �

We will use this lemma to characterize the weights of an irreducible representation of
sl(3,C). This characterization is captured in the following theorem. For the proof we use
[9, Thm. 6.25].

Theorem 3.40. Let (π, V ) be an irreducible representation of sl(3,C) with highest weight
λ. If µ is an integral element satisfying

(a) λ− µ can be expressed as a linear combination of roots;

(b) µ is contained in Conv(W · λ),

then µ is a weight for (π, V ).

Proof. Suppose µ is an integral element satisfying the above conditions. Then, we can
write µ = λ − n1α1 − n2α2. Since µ must lie in the convex hull of W · λ, we conclude
n1, n2 ≥ 0. Let us assume n1 ≥ n2. We can rewrite the previous expression into

µ = λ− (n1 − n2)α1 − n2(α1 + α2)

= λ− (n1 − n2)α1 − n2α3.

Now, if we travel in the direction of α3 we will hit the boundary of Conv(W · λ) at a
given moment. Denote this point by ν. Since µ ∈ Conv(W · λ) and the assumption that
n1 ≥ n2, we know ν must lie on [λ, sα1 · λ]. Note that, every point on [λ, sα1 · λ] is of
the form λ − lα1, with l ∈ N (see Equation (3.18)). Hence, the point where we hit the
boundary is given by

ν = µ− (n1 − n2)α1,

since we only moved in the direction of α3. Note that, ν is on the line segment connecting
λ and sα1 · λ. Furthermore, λ − ν is an integer multiple of α1, namely (n1 − n2)α1.
Therefore, by Lemma 3.39 we see ν is a weight of (π, V ). By construction µ is on the line
segment connecting ν and sα3 ·ν and the difference ν−µ an integer multiple of α3, namely
n2α3. Hence, again by Lemma 3.39 it follows that µ is a weight of (π, V ). If n2 ≥ n1, a
similar argument would show µ is a weight of (π, V ) but with switched roles for α1 and
α2. �

At this point we have characterized all irreducible representations of sl(3,C) and under-
stand their weight structure. To conclude our discussion of the irreducible representations
of sl(3,C), we will give a formula for the dimension of the irreducible representations.

Theorem 3.41. Let (π, V ) be an irreducible representation of sl(3,C) with highest weight
λ = n1ω1 + n2ω2. Then,

dimV =
1

2
(n1 + 1)(n2 + 1)(n1 + n2 + 2).

Proof. It is a special case of the Weyl dimension fomula, see [9, Thm. 10.18]. �

At this point we have a very good understanding of the irreducible representations of
sl(3,C) and thus of SU(3). We will use this knowledge in the next chapter, where will
apply the theory of this chapter to the theory of quarks.
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4 The group SU(3) and Quarks

4.1 Historical background
In this section our main references are [8, Sec. 1.6,1.7] and [10, Sec. 1.1]. In the middle of
last century, in 1947, people thought the job of a particle physicist was done. Physicists
understood that a force called the strong force bound protons and neutrons together to
form nuclei. All the particles that undergo this strong force were called baryons ([10, p.
2]). Within this group of particles there were two distinctions, mesons (meaning ‘middle-
weight’) and baryons (meaning ‘heavy-weight’)1. The smallest building blocks of ordinary
matter were believed to be protons, neutrons, electrons and photons. Furthermore, some
more exotic particles were needed to explain observations made in cosmic ray experiments,
such as the pion, muon and neutrino. These latter particles caused some difficulties,
especially their role was a bit unclear ([8, p. 29]). Yet, they were understood fairly well.
Even the idea of antiparticles by Dirac and the discovery of the positron did not cause
much disturbance.

Yet, this prosperity took a turn in December of 1947, when Rochester and Butler
published a cloud chamber photo2. The photograph showed the production of a neutral
particle that eventually decayed into two charged particles. Thorough analysis showed
the charged decay products were π+ and π−. Rochester and Butler had found a new
particle, that was eventually called the kaon, which was denoted by K0 (See [8, p. 29]).
In the years that followed lots of new mesons and baryons were found. These discov-
eries were very unexpected and not well understood, therefore these new particles were
named ‘strange’. It turned out not only the unexpectedness of these particles made them
‘strange’. Experiments showed that these particles were produced on a very small time
scale, yet decayed relatively slowly (see [8, p. 32]). This was an indication that there was
a different mechanism at work, as suggested by Abraham Pais in 1952. Today we know
these ‘strange’ particles are produced by the strong force, the same one as before, but
they decay through the weak force ([8, p. 32]).

In 1953 Murray Gell-Mann and Kazuhiko Nishijima introduced a new property, pos-
tulated to be conserved in strong interactions but not in weak interactions. Gell-Mann
called this property strangeness ([8, p. 32]). The ‘old’ particles, such as the proton, were
assigned a strangeness of zero and the new ‘strange’ got strangeness ±1. In just over
a decade the field over particles physics went from a closed chapter to downright chaos.
Around 1960 a whole zoo of new ‘elementary’ particles (mesons and baryons) were found.
These particles were characterized by strangeness, charge and mass. Yet, there was no
underlying structure to explain it all ([8, p. 33]). This time period is now known as the
‘particle zoo’ era.

1See [8, Sec. 1.3].
2We refer to [8, p. 29]
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Σ0

Λ
Σ+Σ−

n p

Ξ− Ξ0

S = −1

S = 0

S = −2

Q = −1 Q = 0 Q = 1

Figure 4.1: Particles put in a geometric pattern according to their
strangeness (S) and charge (Q), called the baryon octet.

Yet, in 1961, there was some light at the end of the tunnel. In that year Gell-Mann
introduced, what he called the Eightfold Way (a similar description was given by Yuval
Ne’eman, independently). The Eightfold Way placed baryons and mesons in peculiar
geometric patterns based on their strangeness and charge (see Figure 4.1)3.

Many of these diagrams were made and different geometric patterns were seen. In
particular, there is an arrangement containing ten baryons and it is called the decuplet.
Gell-Mann found something astounding: only nine of these particles were experimen-
tally observed. A particle with strangeness −3 and charge −1 was missing. Gell-Mann
calculated the mass of the particle and explained how the particle could be found exper-
imentally. And, sure enough, the particle was found and named Ω−. This showed the
Eightfold Way was more than just bookkeeping ([8, p. 36]).

But the success of the Eightfold Way raises a lot of questions, such as ‘Why do these
patterns occur?’. Trying to answer this question lead Gell-Mann (and also George Zweig,
independently) to the theory of even more fundamental particles, which he called quarks
([8, Sec. 1.8]). In the next section we will provide the mathematical description of the
quark model proposed by Gell-Mann.

4.2 Quarks
The quark model proposed by Gell-Mann in 1964 states that every hadron consists of
quarks. There are three types4 of quarks, often called flavours, namely the up quark
(u), down quark (d) and strange quark (s). The model suggested that interchanging the
flavour of the quarks within a hadron would not change the physics since the strong force
interacts in the same way for every quark, regardless of their flavour5. Mathematically,
these replacements are given by elements of SU(3). Yet, it turns out the three quarks all
have different masses. Even though this difference in mass is very small, the result is that
SU(3) is only an approximate symmetry ([8, p. 121-122]). This symmetry is called the
flavour SU(3) symmetry.

3We refer to the beginning of [8, Sec. 1.7]
4Today, the standard model contains six types of quarks, but in this thesis we will restrict ourself to

the up, down and strange quark.
5This is called flavour independence and we refer to [13, Sec. 3.3.1].
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Σ0

Λ

Σ+Σ−

n p

Ξ− Ξ0

I3

Y

Figure 4.2: The baryon octet put in a geometric pattern according to
their third component of isospin (I3) and hypercharge (Y ).

Each quark is assigned spin ±1
2
and baryon number of B = 1

3
([10, p. 46]). The

other quantum numbers of the quarks can be found in Table 4.1. We refer to [10, Table
2.1] for the content of this table. Furthermore, baryons consist of three quarks (qqq)
and mesons consist of a quark-antiquark pair (qq). Note that the axes in Figure 4.1 are
a bit unnatural. Therefore, we define two new additive quantum numbers, namely the
hypercharge

Y := B + S

and the third component of isospin

I3 = Q− 1

2
Y.

A thorough discussion about isospin is given in [8, Sec. 4.5] and relies on the represen-
tation theory of SU(2), which we described6 in Section 3.3. Figure 4.1 now has natural
axes (see Figure 4.2). Now we will use the representation theory of SU(3). The previous
chapter tells us that every irreducible representation of SU(3) is constructed out of the
standard representation and its dual. Therefore, we expect the quarks to fit the stan-
dard representation of SU(3), which is reflected in the isospin and hypercharge quantum
numbers in Table 4.1.

Flavour Spin B Q I3 S Y

u 1
2

1
3

2
3

1
2

0 1
3

d 1
2

1
3
−1

3
−1

2
0 1

3

s 1
2

1
3
−1

3
0 −1 −2

3

Table 4.1: The quantum numbers of the different flavours of quarks

6Similar to SU(3), the Lie group SU(2) is also simply-connected. Therefore, there is a one-to-one
correspondence between the irreducible representations of SU(2) and sl(2,C), which we utilize here.
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4.2.1 Baryons

At this point we want to give a quantitative description of the subjects we discussed
before. In this section we will restrict ourselves to baryons, so particles consisting of three
quarks. The main idea is to decompose tensor products of the quark Hilbert space into
irreducible representations of the quark symmetry group SU(3) and link a specific basis
of these representation spaces to subatomic particles ([15, p. 225]).

We denote the quark Hilbert space by Q and identify

e1 := |u〉 , e2 := |d〉 , e3 := |s〉 . (4.1)

Then we see Q = C3. Consider the standard representation of SU(3). The corresponding
representation of sl(3,C) is also the standard one. Let us denote the standard represen-
tation of sl(3,C) by (π,Q). In this representation we see e1, e2 and e3 are weight vectors,
relative to tC (as defined in Equation (3.12)). Their corresponding weights are L1, L2 and
L3 (from Section 3.5). Note that, in the standard representation e1 is a highest weight
vector with highest weight L1.

Yet, the basis we chose in Section 3.5 (H1,H2) has no physical meaning. Therefore,
we introduce two operators on Q

Î3 =


1
2

0 0

0 −1
2

0

0 0 0

 , Ŷ =


1
3

0 0

0 1
3

0

0 0 −2
3

 . (4.2)

Note that, Î3 = 1
2
H1 and Ŷ = 1

3
(H1 + 2H2). Therefore Î3 and Ŷ form a basis of tC.

Moreover, the operators are self-adjoint, hence they represent observables. A close look
at Table 4.1 shows that Î3 and Ŷ represent the observables: (third component of) isospin
and hypercharge, respectively.

Now we move on to composed quark states and in particular to baryons. Baryons
consist of three quarks, hence their Hilbert space is given by

B := Q⊗Q⊗Q = C3 ⊗ C3 ⊗ C3.

The sl(3,C) representation we want to consider, for baryons, is the pair (π̃,B), where

π̃ := π ⊗ π ⊗ π.

Note that, the elements ei ⊗ ej ⊗ ek, for i, j, k = 1, 2, 3, form a basis of B. Furthermore,
every element ei⊗ej⊗ek is a weight vector with weight Li+Lj+Lk (for i, j, k = 1, 2, 3), by
Definition 2.50. By these two properties of the elements ei⊗ ej ⊗ ek, it follows that every
weight of (π̃,B) is of the form Li+Lj +Lk. Using this property, we can decompose B into
irreducible subspaces (this decomposition is unique up to isomorphism). The existence of
such a decomposition is guaranteed by the fact that SU(3) is compact and Theorem 2.40.
As we have seen in Section 3.5, an irreducible representation corresponds to a dominant
integral element (see Theorem 3.33). By the described property, we deduce that the
representation (π̃,B) has three dominant integral weights (see Figure 4.3), namely

λ1 := L1 + L1 + L1 = 3L1, λ2 := 2L1 + L2, λ3 := L1 + L2 + L3 = 0.
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α1

α2

Figure 4.3: The weight lattice ΛW of the representation (π̃,B). The gray
shaded area depicts the positive Weyl chamber C. Furthermore, the rings

indicate which integral elements are dominant.

We easily see that

Vλ1 = C(e1 ⊗ e1 ⊗ e1).

Furthermore, one easily verifies that the space Vλ2 is spanned by e1⊗ e1⊗ e2, e1⊗ e2⊗ e1

and e2 ⊗ e1 ⊗ e1. Similarly, the space Vλ3 is spanned by eσ(1) ⊗ eσ(2) ⊗ eσ(3), for σ ∈ S3

(here S3 denotes the permutation group of three elements).
We will verify that λ1 is a highest weight. Note that, the element e1 ⊗ e1 ⊗ e1 ∈ B is

a weight vector for λ1, such that

π̃(Xi)(e1 ⊗ e1 ⊗ e1) = (π(Xi)e1)⊗ e1 ⊗ e1 + e1 ⊗ (π(Xi)e1)⊗ e1 + e1 ⊗ e1 ⊗ (π(Xi)e1)

= 0

for i = 1, 2, 3. Here we used that e1 is a highest weight vector of (π,Q). Hence, the vector
e1 ⊗ e1 ⊗ e1 is a highest weight vector the corresponding irreducible representation, with
highest weight 3L1 = 3ω1, is a submodule of B. Note that, by Theorem 3.33 it follows this
submodule is isomorphic to R(3, 0)7. By Theorem 3.41 it follows that dimR(3, 0) = 10.
Let us denote the irreducible submodule of sl(3,C), with highest weight 3L1, by V10.

To find the other irreducible submodules of B, we are looking for other highest weight
vectors8. Since 2L1 +L2 is a dominant integral element, we want to find a highest weight
vector for 2L1 +L2. Since λ2 = 2L1 +L2 = ω1 + ω2, we see the corresponding irreducible
submodule of B is isomorphic to R(1, 1). Note that, every vector v ∈ Vλ2 is of the form

v = c1(e1 ⊗ e1 ⊗ e2) + c2(e1 ⊗ e2 ⊗ e1) + c3(e2 ⊗ e1 ⊗ e1),

7The numbers inside the parantheses correspond to the coefficients n1, n2 ∈ N in Theorem 3.33.
8Note that, since (π̃,B) is not irreducible, a highest weight is not necessarily unique.
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with c1, c2, c3 ∈ C. Let us write e112 for the element e1 ⊗ e1 ⊗ e2. Then, v = c1e112 +
c2e121 + c3e211. The vector v is a highest weight vector of a submodule, when

π̃(Xi)v = 0,

for every i = 1, 2, 3. Note that, e1 is a highest weight vector of (π,Q), so π(Xi)e1 = 0 for
every i. Moreover, one easily sees that π(Xi)e2 = 0 for i = 2, 3 and π(X1)e2 = e1. This
shows that π̃(Xi)v = 0 for i = 2, 3. For i = 1 we have

π̃(X1)v = (c1 + c2 + c3)e111.

Requiring that v is a highest weight vector implies that c1 + c2 + c3 = 0. Hence, the
subspace Vλ2 contains two linearly independent highest weight vectors. Both of these
highest weight vectors correspond to an irreducible submodule, isomorphic to R(1, 1).
Consequently, two irreducible submodules of B are isomorphic to R(1, 1). By Theorem
3.41 it follows that dimR(1, 1) = 8. Let us denote these two irreducible submodules by
V8 and V ′8 , respectively.

Finally, The last dominant integral element is λ3 = L1 + L2 + L3 = 0. Note that, the
space Vλ3 has dimension six. This is because every permutation of indices of e1 ⊗ e2 ⊗ e3

is an element of Vλ3 . Therefore, λ3 has multiplicity six. One readily sees that λ3 is a
weight for R(3, 0) with multiplicity one and a weight for R(1, 1) with multiplicity two.
Recall, B contains one submodule isomorphic to R(3, 0) and two submodules isomorphic
to R(1, 1). Therefore, if we strip away these submodules, we are left with the weight λ3

with multiplicity one. One can verify, in a similar way as we did for the weight λ2, that
Vλ3 contains a highest weight vector. Actually, through this method it follows that this
vector v3 is given by

v3 := e123 − e132 + e231 − e213 + e312 − e321.

Note that, this vector cannot be contained in V10, V8 or V ′8 , since a highest weight vector
is unique (up to a factor) in an irreducible representation. The irreducible submodule
of B corresponding to λ3 is isomorphic to R(0, 0), by Theorem 3.33. Let us denote this
irreducible submodule by V1. Note dimV1 = dimR(0, 0) = 1, by Theorem 3.41.

We note that,

dimV10 + dimV8 + dimV ′8 + dimV1 = 10 + 8 + 8 + 1 = 27.

Since dimB = 33 = 27 we conclude that the decomposition of B is given by

B = V10 ⊕ V8 ⊕ V ′8 ⊕ V1.

The next step in classifying the baryons is linking particle states to basis vectors of the
irreducible submodules. One way of doing this is through calculations of Clebsch-Gordan
coefficients, as is done in [7, Sec. 8.10] for mesons. For a calculation considering baryons
we refer to [7, Ex. 8.14, p. 270]. Yet, these calculations are quite involved. Therefore we
will not give these calculations of the Clebsch-Gordan coefficients in this thesis. We will
use the theory we have developed in Chapter 3.

We start with the irreducible submodule V10. Recall, the highest weight vector of the
module was e111 := e1 ⊗ e1 ⊗ e1. Since V10 is irreducible, every vector in V10 is cyclic and
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Baryon State Y I3

∆++ uuu 1 3
2

∆+ 1√
3
(uud+ udu+ duu) 1 1

2

∆0 1√
3
(udd+ dud+ ddu) 1 −1

2

∆− 1√
3
(uud+ udu+ duu) 1 −3

2

Σ∗+ 1√
3
(uus+ usu+ suu) 0 1

Σ∗0 1√
6
(uds+ usd+ sud+ sdu+ dsu+ dus) 0 0

Σ∗− 1√
3
(dds+ dsd+ sdd) 0 −1

Ξ∗+ 1√
3
(uss+ sus+ ssu) −1 1

2

Ξ∗− 1√
3
(dss+ sds+ ssd) −1 −1

2

Ω− sss −2 0

Table 4.2: The states of the baryon decuplet with corresponding quantum
numbers.

thus all the assertions of Lemma 3.27 hold. In particular, we can apply Lemma 3.27(b).
Recall, the action of Yi lowers a weight by αi. One can easily check that the following
vectors

e111, π̃(Y1)ke111, π̃(Y3)ke111, π̃(Y2)lπ̃(Y1)3e111, π̃(Y3)π̃(Y1)e111, (4.3)

for k = 1, 2, 3 and l = 1, 2 form a basis of V10. After explicit calculation we get the vectors

e111,

e112 + e121 + e211, 2(e122 + e212 + e221), 6e222,

e113 + e131 + e311, 2(e133 + e313 + e331), 6e333,

e223 + e232 + e322, 2(e233 + e323 + e332), 6e333,

e123 + e132 + e213 + e231 + e312 + e321.

These basis elements, after normalization, correspond to particle states. To see this, recall
that we chose the operators Î3 and Ŷ as basis for tC. Hence, the isospin and hypercharge
of the basis elements are known. Linking those values to the same quantum numbers for
isospin and hypercharge of baryons we know experimentally, gives us the correspondence.
In Table 4.2 we have depicted every baryon in the so-called baryon decuplet with their
corresponding state. If we plot the baryons of Table 4.2 according to their isospin and
hypercharge we find Figure 4.4. This figure is one of the geometric patterns described in
the Eightfold Way by Murray Gell-Mann.

We are left to find a basis for V8 and V ′8 . Recall, the highest weight vectors of V8 and
V ′8 are of the form

c1e112 + c2e121 + c3e211,
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Y

Figure 4.4: The baryon decuplet.

with c1 + c2 + c3 = 0. Let us choose9, c1 = 0 and c2 = −c3 for the highest weight vector
of V ′8 (as is done in [10, p. 51]). Then we have,

vA = e121 − e211.

Note that, the weight vector of V10 associated with the weight 2L1 + L2 is given by
e112+e121+e211. Thus, we see this vector and vA are orthogonal. If we require orthogonality
for the highest weight vector vS of V8 we find

vS = e121 + e211 − 2e112.

In a similar way to the baryon decuplet, a basis of V ′8 can be found through computations
similar to Equation (4.3). Furthermore, by requiring orthogonality, as we did for vS, we
find a basis for V8 ([10, p. 51]).

Note that, the vectors vS and vA have mixed symmetry. The subscripts tell us that
vS is symmetric under interchange of the first two quarks. Similarly, vA is anti-symmetric
under such an interchange. Actually, every vector in V8 is symmetric under interchange
of the first quarks and every vector in V ′8 is anti-symmetric under such an interchange.
Therefore, we give V8 and V ′8 the labels MS and MA, respectively. One may think both
V8 and V ′8 correspond to baryon octet, but it turns out there is only one baryon octet in
observed nature for the lowest-mass baryons (or ground state baryons). This has to do
with some properties of baryons.

It turns out that the baryon flavour states must be fully symmetric. This follows from
an internal quantum number of the quarks, namely colour. For more background about

9This choice is made due to symmetry considerations and will become clear later on.
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this topic we refer to [4, Sec. 4.5]. The crucial part for our discussion is that observed
baryons are postulated to be a colour singlet representation. This implies the wave func-
tion of baryons is completely anti-symmetric under interchange of colour indices10. Due
to the fact that quarks are fermions, the Pauli exclusion principle implies that the baryon
wave functions must be anti-symmetric with respect to interchange of all their charac-
teristics ([4, p. 62]). Since the wave functions are fully anti-symmetric with respect to
colour, the baryon wave functions must be fully symmetric with respect to space, spin
and flavour ([10, p. 53]). So, the baryon octet depicted in Figure 4.2 corresponds to fully
symmetric states. To fully understand why there is only one baryon octet, we need to
also consider spin. Since quarks are fermions, they have spin ±1

2
. The symmetry group

of spin is SU(2). The irreducible representations of SU(2) are classified by the discussion
in Section 3.3. Therefore, we could use this discussion to decompose tensor products of
spin spaces, but we will mainly refer to literature. Since baryons consist of three quarks,
physicists11 write their spin space as 2⊗2⊗2. In [10, Sec. 2.4] it is shown this spin space
decomposes as

2⊗ 2⊗ 2 = 4︸︷︷︸
S

⊕ 2︸︷︷︸
MS

⊕ 2︸︷︷︸
MA

. (4.4)

Here the labels indicate the symmetry within the representations, similar to the labels
we introduced for the vectors vS and vA. For example, the representation 4 is fully
symmetric under interchange of two spins. Moreover, the label MS means elements of the
representation are symmetric under interchange of the first two spins. One can verify, the
compositions of the spin ‘up’ state in the three spin representations of Equation (4.4) are
given by ([10, p. 52])

χ(S) =
1√
3

(↑↑↓ + ↑↓↑ + ↓↑↑),

χ(MS) =
1√
6

(↑↓↑ + ↓↑↑ −2 ↑↑↓),

χ(MA) =
1√
2

(↑↓↑ − ↓↑↑).

Now we want to combine the SU(3) flavour symmetry with the SU(2) spin symmetry, so
we are considering (SU(3), SU(2)) multiplets. It follows that, one of the fully symmetric
multiplet is an octet (See [10, Eq. 2.67]). This fully symmetric baryon octet is obtained
by

1√
2

( (8,2)︸ ︷︷ ︸
(MS ,MS)

+ (8,2)︸ ︷︷ ︸
(MA,MA)

). (4.5)

Here we used the notation of [10, Eq. 2.68]. The octet described in Equation (4.5) is
the one corresponding to the baryon octet depicted in Figure 4.2. The wave functions of
the particles in the baryon octet are obtained by considering combination according to
Equation (4.5). We will give the wave function of the spin-up proton. Denote pS = 1√

6
vS

10We refer to [4, p. 63] and [11, p. 59]
11In this notation we use the dimension to label the irreducible representations ([10, p. 40]).
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and pA = 1
2
vA. Then, using equation (4.1) we have

pS =
1√
6

(udu+ duu− 2uud), pA =
1

2
(udu− duu).

The wave function of the spin-up proton is then given by ([10, Eq. 2.71])

|p ↑〉 =
1

2
(pSχ(MS) + pAχ(MA))

=
1√
18

(uud(↑↓↑ + ↓↑↑ −2 ↑↑↓) + udu(↑↓↑ + ↓↑↑ −2 ↑↑↓)+

duu(↑↓↑ + ↓↑↑ −2 ↑↑↓)).

The other wave function can be calculated in a similar way or by using the lowering
operators π(Yi), for i = 1, 2, 3. The latter is done in [7, Ex. 8.15].

This concludes the discussion on the baryon octet and although we did not need the
spin consideration for the baryon decuplet, this can be incorporated in the discussion.
We omit the discussion here, but for more background and for the calculation of the
spin-flavour wave functions of the baryon decuplet we refer to [7, Sec. 8.11], [7, Ex. 8.14].

To conclude this section we take a closer look at our discussion of the baryon octet.
We considered (SU(3), SU(2)) multiplets. In fact, by incorporating spin we went from
three quark states to six quark states. Mathematically, we took the tensor product of
the quark Hilbert space (Q = C3) and the spin space (C2), which is isomorphic to C6.
On C3 ⊗ C2 ∼= C6 we can consider an action of SU(6) and we postulated that physics is
invariant under SU(6)-transformations of the six quark states into one another. We call
this SU(6) spin-flavour symmetry ([4, p. 58]). It turns out, the threefold tensor product
of the standard representation of SU(6) (denoted by physicists as 6) decomposes as12

6⊗ 6⊗ 6 = 56︸︷︷︸
S

⊗ 70︸︷︷︸
MS

⊗ 70︸︷︷︸
MA

⊗ 20︸︷︷︸
A

.

As said before, the spin-flavour wave functions of baryons must be fully symmetric. There-
fore, we will focus on the representation 56. Instead of the group SU(6), we can consider
the group SU(3)× SU(2) acting on C3 ⊗ C2 ∼= C6. This action is defined by

(T, S)(v ⊗ w) = Tv ⊗ Sw,

for T ∈ SU(3), S ∈ SU(2) and v⊗w ∈ C3⊗C2. Since both SU(3) and SU(2) are compact,
the group SU(3) × SU(2) is also compact. Hence, the space

⊗3(C3 ⊗ C2) ∼=
⊗3(C6)

decomposes into irreducible representations of SU(3) × SU(2), by Theorem 2.40. The
decomposition of 56 under this group is given by ([4, Eq. 4.3])

56 = (10,4)⊕ (8,2). (4.6)

In the notation of Equation 4.6, 10 and 8 denote irreducible representations of SU(3).
Similarly, 4 and 2 denote irreducible representations of SU(2). By the notation (10,4) we
mean the tensor product of the irreducible representation 10 of SU(3) and the irreducible
representation 4 of SU(2), similarly for (8,2). In the decomposition of Equation 4.6,

12We refer to [4, Eq. 4.4]
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α1

α2

Figure 4.5: The weight lattice ΛW of the representation (ρ,M). The
gray shaded are depicts the positive Weyl chamber C. Furthermore, the

rings indicate the dominant integral elements.

(10,4) corresponds to the baryon decuplet and (8,2) to the baryon octet. The SU(6)
spin-flavour symmetry thus explains why only one baryon octet is observed in nature. We
only gave a general discussion on spin-flavour symmetry and for further reading we refer
to [7, Sec. 8.11], [4, Sec. 4.2] and [11, Ch. 10].

4.2.2 Mesons

Finally, we want to consider the other type of hadrons: mesons. This will be a bit less
involved, since we do not have to consider spin-flavour symmetry13. Recall, mesons consist
of a quark and an antiquark bound together ([10, p. 47]). We denote the antiquarks by u, d
and s. Mathematically, these antiquarks correspond to the weight vectors of the dual of
the standard representation (see Definition 2.51). Recall, the corresponding representation
of sl(3,C) is given by

π∨(X) = −XT ,

for X ∈ sl(3,C). The Hilbert space of the antiquarks is given by A := Q∗ (the dual space
of Q). Let us denote the dual of the standard representation by (π∨,A) and we identify

f 1 := |u〉 , f 2 := |d〉, f 3 := |s〉 .

Then, we seeA is isomorphic to (C3)∗, which is in turn isomorphic to C3. Furthermore, the
vectors f 1, f 2 and f 3 are weight vectors of (π∨,A) with weights K1 := −L1, K2 := −L2

and K3 := −L3, respectively. Hence, the quantum numbers of the antiquarks are precisely
opposite of those of the quarks. This is what we would expect of anti-particles. It can be
verified through explicit calculations that f 3 is a highest weight vector of (π∨,A).

Now, the Hilbert space for mesons is given by

M := Q⊗A.
13One could apply this to mesons and for further reading we refer to [7, Sec. 8.11].
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Y

Figure 4.6: The meson octet.

The representation of sl(3,C) we want to consider is the pair (ρ,M), where

ρ := π ⊗ π∨.

Note that,M has dimension 32 = 9. Similar to the baryon case, we want to decompose
M into irreducible submodules. To obtain this decomposition we will analyze highest
weights. Again, by the definition of the tensor product representation it follows that
every weight of (ρ,M) can be written as the sum of individual weights: Li + Kj, with
i, j = 1, 2, 3. The weight diagram of (ρ,M) is given in Figure 4.5. Note that, (ρ,M) has
two integral elements:

λ1 := L1 +K3 = L1 − L3, λ2 := 0.

We readily see

Vλ1 = C(e1 ⊗ f 3).

Since e1 and f 3 are both highest weight vectors for the standard representation and
the dual of the standard representation, respectively, it follows that e1 ⊗ f 3 is a highest
weight vector. Note that, L1−L3 = ω1 +ω2. Hence,M contains an irreducible submodule
isomorphic to R(1, 1). Let us denote this submodule by V8. Since dimR(1, 1) = 8 and
dimM = 9 we expect the last irreducible submodule to be isomorphic to R(0, 0). By
explicit computation one can verify that

(Vλ2)
n = C(e1 ⊗ f 1 + e2 ⊗ f 2 + e3 ⊗ f 3).

So, indeed M contains an irreducible submodule isomorphic to R(0, 0), denoted by V1.
Then we see

M = V8 ⊕ V1.

A basis for V8 can be found in a similar way we did for the baryon decuplet. Only the
basis vectors of V8 corresponding to the weight λ2 are a bit tricky. Here we will use an
orthogonality argument to find the vectors. One of the basis vectors is part of an isospin
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Meson State Y I3

K+ us 1 1
2

K0 ds 1 −1
2

π+ ud 0 1

π0 1√
2
(uu− dd) 0 0

π− du 0 −1

K0 sd −1 1
2

K− su −1 −1
2

η 1√
6
(uu+ dd− 2ss) 0 0

η′ 1√
3
(uu+ dd+ ss) 0 0

Table 4.3: The states of the meson octet and singlet with corresponding
quantum numbers. The first eight mesons correspond to the octet and the

last meson to the singlet. We refer to [7, p. 233] and [10, p.47].

triplet and is computed by

ρ(Y1)ρ(Y2)(e1 ⊗ f 3) = e2 ⊗ f 2 − e1 ⊗ f 1.

The other basis vector follows from requiring it must orthogonal to e2⊗ f 2− e1⊗ f 1 and
e1 ⊗ f 1 + e2 ⊗ f 2 + e3 ⊗ f 3 (see [10, p. 47]). By explicit computation it follows this basis
vector is given by

e1 ⊗ f 1 + e2 ⊗ f 2 − 2e3 ⊗ f 3.

It follows that, the basis of V8 is given by

e1 ⊗ f 3, e2 ⊗ f 3,

e1 ⊗ f 2, e2 ⊗ f 2 − e1 ⊗ f 1, e1 ⊗ f 1 + e2 ⊗ f 2 − 2e3 ⊗ f 3, e2 ⊗ f 1,

e3 ⊗ f 1, e1 ⊗ f 2.

Again, after normalizing, we can identify these basis vectors to meson states by matching
the quantum numbers. This is shown in Table 4.3. Graphically, this corresponds to
the meson octet depicted in Figure 4.6. This also corresponds to one of the diagrams
proposed by Gell-Mann in the Eightfold Way. It turns out that many other mesons fit
into the expected quark-antiquark multiplets and at the time this was at the core for
accepting the quark model ([10, p. 49]).
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