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Abstract

In a fast-changing economy, demand for high-quality logistics solutions increases rapidly. The
number of parcels shipped worldwide has doubled since 2014 and is expected to have doubled
again by 2025. With this growing demand comes the need for first-class vehicle scheduling,
both from an environmental as well as an economic standpoint. The goal is to find optimal
planning solutions, but since these problems are NP-hard, this is not always possible in
reasonable time. Therefore, Local Search methods, like Simulated Annealing, are often used
to find good (not necessarily optimal) solutions. This study aims to find a way to combine
machine learning and simulated annealing by looking for good features with machine learning
of existing solutions and guiding the SA algorithm towards good solutions.

In this thesis, we look into capacitated vehicle scheduling in the context of garbage col-
lection. We propose a new variant of the SA algorithm, Smart Simulated Annealing (SSA).
This algorithm uses OrderVectors found by AdaGrad, a stochastic gradient descent algorithm.
We show that the number of iterations needed to find solutions compared to SA can be
reduced by 10 percent for short runs and by 17 percent for long runs. Our results indicate
that SSA can reduce the number of iterations needed to find good solutions. Future research
can focus on optimizing SSA and its parameters and on the robustness of the solutions to
check if theoretical solutions can be used in real-life.
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1 Introduction

In a fast-changing economy, demand for high-quality logistics solutions increases rapidly. The num-
ber of parcels shipped worldwide has doubled since 2014 and is expected to have doubled again
by 2025 [2]. With this growing demand comes the need for high-quality vehicle scheduling, both
from an environmental as well as an economic standpoint. In this thesis, we will consider vehicle
scheduling in the context of garbage collection. This is a capacitated single depot multi-vehicle
scheduling problem, a special case of the single-depot multi-vehicle scheduling problem. Solutions
we find in this thesis can also be applied to package delivery, medicine distribution, or food and
water distribution in third world countries among many other applications.

Single Depot Multi-Vehicle scheduling

In a single depot multi-vehicle scheduling problem, there is one depot and multiple
vehicles. Furthermore, there are customers that need a delivery or need something
picked up, a package for example. For each vehicle, a trip has to be made. Each trip
is represented by an ordered series of nodes between stops at the depot. The goal is
to minimize the driving costs and optional penalties. Penalties may be added to the
problem to allow declining orders or working overtime. Also, in some cases, the number
of vehicles is variable and in that case, vehicle costs are also part of the objective function.

In a capacitated single depot multi-vehicle scheduling problem, we use vehicles
with a certain capacity. For example, a garbage truck. We add a constraint to the
problem that does not allow the truck to use more than its capacity for the trip. So
there can not be more garbage picked up than the capacity allows. In the case of parcel
delivery, the truck can only deliver as many packages in one trip as the capacity of the
truck allows.

These problems are all NP-hard [20], meaning that they are hard to solve to optimality. Hence,
we might not be able to find an optimal solution within a reasonable time. For our case study,
we use a NP-hard problem and thus we will use Local Search since we won’t be able to find an
optimal solution in reasonable time.

Applying Local Search for vehicle scheduling problems has been previously studied by Groër et al.
[16] and by Mazidi et al. [21]. For a full overview of the different vehicle scheduling problems we
refer to the overview by Eksioglu et al. [12] or by Braekers et al. [4].

We will extend the Local Search algorithm and use machine learning to guide our algorithm on
the basis of earlier found solutions. By identifying good features of solutions, we can reduce the
number of iterations needed to find a good solution. With an increasing number of vehicles and
orders, the problem becomes even harder to solve and this increases the need for a reduction of
the time needed to find a good solution. There has been little research into this combination of
machine learning and simulated annealing.

Chou et al. [6] used a guiding function to find solutions for protein models and found the lowest
energy state compared to other methods. This is related to our research since their guiding function
is based on features of proteins and stimulates adding those features to the solution. Vermeulen
[30] proposed a new variant of SA, SACos, which is comparable to our algorithm SSA and found
that SACos outperformed SA. Solutions of lower-cost were found in the same number of iterations.
We will extend this research and look into whether the number of iterations can be reduced while
still finding solutions of equal quality.

In our case study, we will focus on garbage collection. We will make a schedule for two garbage
trucks for one week (Monday - Friday). There is an overview of 1177 companies who want their
garbage picked up with a given frequency (number of times per week). We can decline these orders,
but this comes at a cost. The garbage trucks have a limited capacity and can dump during the
day at a single landfill. In addition, this landfill is also the starting and endpoint of each trip.

2



The objective is to minimize the total time that a garbage truck is used, which includes driving,
dumping, and emptying time. The dumping time is the time needed to empty the garbage truck
at the landfill and the emptying time is the time needed to pick up the garbage for an order. The
penalty for declining orders, expressed in minutes, is added to this time.

We have chosen to use this case study since we already have a good solver in place, capable
of generating a dataset of good solutions. Remark that we can easily interchange the context in
which we apply the optimization and machine learning techniques. On the scheduling side, there
is no difference between picking up or delivering at a given set of locations. This model can be
used for package delivery and airline scheduling among many other applications.

Based on a dataset of more than three thousand good solutions we will try to find good solutions
for the capacitated vehicle scheduling problem in fewer iterations. For this, we have developed the
Smart Simulated Annealing algorithm. This algorithm is based on Simulated Annealing and has
a new acceptance function.

In this thesis, we will give a formal model description in Section 2. In Section 3 we will ex-
plain Local Search and Simulated Annealing, the algorithm that we will use in this thesis. We
will give an overview of the data mining and machine learning techniques used in Section 4. In
this section, we will also give an example for milk pickup, which is comparable to our case study.
Then, in Section 5, we explain the experiments conducted and present the results. We discuss
those results in Section 6.

Note to the reader: in this thesis, you may find some red or blue text boxes, just like with the
‘Single depot multi-vehicle scheduling’ at the beginning of the introduction. These boxes function
as explainers (red boxes) or give an insight into the implementation of some of the algorithms (blue
boxes). These boxes can be omitted on first reading, but provide interesting insights or can help
understanding subjects that are not familiar to the reader.
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2 Problem description

In this section, we will give a brief introduction into the problem that we will use as a case study
for this thesis. Thereafter we will give a complete problem description.

2.1 Introduction

The Van Gansewinkel Group, nowadays known as Renewi after a merger in 2017, is a large waste
management company based in the Netherlands with operations in northwest Europe. They had
to find the most cost-efficient vehicle schedule for industrial garbage collection in the province
‘Noord-Brabant’, the Netherlands. Companies can place orders and Van Gansewinkel can decide
whether they accept or decline the order. For each order, the location of the company, emptying
time, amount of garbage, and frequency is given. The frequency is equal to the number of times
that the garbage should be picked up per week.
We consider the scheduling problem for two trucks and one week (Monday - Friday). The costs are
equal to the total driving, emptying, and dumping time and penalties for declining orders. The
cost of declining an order is equal to three times the emptying time for an order.

2.2 Problem description

Assumptions

We assume that there are no constraints regarding the crew of the garbage trucks. So we do not
take working times and breaks into account.

Hard Constraints

The following hard constraints must be satisfied if not, a solution is called infeasible:

� Garbage trucks can only be used on weekdays between 6 a.m. and 6 p.m. and should be
empty at the landfill outside of those working hours.

� When a garbage truck is not used, it should be empty at the landfill.
� There can not be more garbage in the truck than the capacity allows.
� For each order, a frequency is given. This is the number of times garbage must be collected.

The collection has to be done according to a frequency pattern, for each frequency there
is at least one pattern and we are free to choose which pattern we will use for each order.
A frequency pattern prescribes on which days of the week garbage must be collected. The
different patterns for all possible frequencies are given in Table 1. Garbage collection must
take place on each of the ‘green’ days in the pattern.

Pattern Mon Tue Wed Thu Fri

1
2
3
4
5

(a) Frequency 1

Pattern Mon Tue Wed Thu Fri

1
2

(b) Frequency 2

Pattern Mon Tue Wed Thu Fri

1

(c) Frequency 3

Pattern Mon Tue Wed Thu Fri

1
2
3
4
5

(d) Frequency 4

Pattern Mon Tue Wed Thu Fri

1

(e) Frequency 5

Table 1: Frequency patterns for different frequencies

4



Soft Constraints

If possible, each order should be fulfilled. A penalty for non-fulfilled orders is added to the operating
time if this constraint is not met for a specific order, remark that orders can not be partially fulfilled.
This penalty is equal to three times the emptying time for that order.

Objective

The goal is to find a solution with minimum cost. As previously mentioned, the costs are equal to
the sum of traveling, emptying, and dumping times of the trucks. If an order is not fulfilled (and
per definition declined), the penalty for declining the order is added to the total cost.

Data and variables

The following input data is given and can not be changed:

� Two identical garbage trucks are available, with a capacity of 20.000 liter.
� A list of 1177 orders. For each other, the frequency, amount of garbage (not compacted, will

be compacted in the garbage truck and decrease volume by 80 percent), emptying time, and
location is known.

� An asymmetrical distance matrix containing traveling times for each pair of companies and
for each order and the landfill.

� Dumping the garbage at the landfill takes 30 minutes independent of how full the truck is.
Both trucks can dump at the same time.
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3 Local Search

In this chapter, we will give an introduction into Local Search and its many implementations,
explain Simulated Annealing, and demonstrate the working of neighborhoods.

3.1 Introduction

One thing we are interested in when we create an algorithm is the running time of this algorithm.
This is a metric for how long it will take to find a solution. We are interested in this metric since we
only have limited time available. The running time, expressed in the number of operations, of an
algorithm is also known as the complexity. When we analyze an algorithm, we want to determine
whether the complexity is polynomial with respect to the size of the input or not. This means that
we want to know if the complexity of our algorithm with an input of size n is equal to O(nk) for
some positive real k. If the complexity of the fastest algorithm for our problem is polynomial we
say that our problem is part of the class P.

If the fastest algorithm for some problem is not part of the class P, but the solutions can be
verified and saved in polynomial time, then we say that the problem is part of the class NP. We
can verify a solution in polynomial time if we can check in polynomial time if the solution is feasible
and meets our requirements. Remark that P ⊆ NP.

P versus NP
One of the Millenium prize problems is the “P versus NP” problem. The question at
hand is to prove whether P = NP or if P ( NP. It is hard to prove, but it is assumed
that P ( NP. To prove that all problems in NP can be solved in polynomial time,
we have to show that there exists a polynomial algorithm for a NP-complete problem.
Intuitively, a NP-complete problem is as ‘hard’ as all problems in NP and if we can
find a solution in polynomial time for a NP-complete problem, then we can also find a
solution in polynomial time for all problems in NP and thus that P = NP. Remark
that if we can prove that there is no polynomial algorithm for a NP-complete problem,
then P ( NP [8, 9].

As mentioned in the introduction, a problem can also be NP-hard. A problem is
NP-hard if it is as ‘hard’ as all problems in NP, but necessarily part of NP [9].

Consider the case where we have a problem that can be solved using an exponential algorithm.
Assume that instances of this problem can be verified in polynomial time. This means that this
problem is part of NP. It could be that the exponential algorithm is still quite fast for small
instances. With larger instances however, this will become increasingly more difficult. This is
where we could use Local Search.

Local Search is an iterative optimization technique where a current (possibly infeasible) solution
is iteratively changed and the result of this change is either accepted or declined. We might not
find an optimal solution using Local Search but we can get a solution close to the optimal solution.
Although, in contrast to approximation algorithms, we are not guaranteed to find a solution within
a certain distance from the optimal solution.

There are multiple variants of Local Search. In this thesis, we will use Simulated Annealing.
We will discuss this algorithm and two other algorithms, Hill Climbing and Tabu Search, that are
examples of Local Search algorithms. First, we have to define a neighborhood and a neighbor.

Definition 3.1. Neighborhood & Neighbor A neighborhood is a set of neighbors. All these
neighbors are solutions that are identical to the input solution except for one specific change.
These changes can be small, like adding or removing an item to or from the solution, or they can
be bigger, like reversing the order of (a part of) the solution. For more examples of neighborhoods
in the context of vehicle routing problems, see Section 3.3.
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With Local Search, we define neighborhoods and procedures to find the neighbors in these neigh-
borhoods. Algorithms that use Local Search will prescribe how the neighborhoods should be
evaluated and how the iterative process can use these neighborhoods to find a solution. Below, we
will discuss three variants of Local Search, Hill Climbing, Tabu Search, and Simulated Annealing.

Minimization problem

In this thesis, we will consider minimization problems. The goal in these types of prob-
lems is to minimize a given objective function. This function is also known as the cost
function. With this function, we can calculate the cost of a solution of the problem. This
function depends on the so-called decision variables. These are variables that we can
change in order to modify a solution and hopefully decrease the cost of the solution.

Hill Climbing ( [14, 26]) The Hill Climbing method will explore all neighbors and choose
the one that is the best improvement over the current cost. If there exists no neighbor that will
improve that cost, the algorithm will stop. There are variants of this algorithm that will explore
bigger neighborhoods, this means that the neighbors are ‘further away’ from the current solution.
For example, this could mean that more variables are changed or that some variable is changed
more compared to the standard Hill Climbing algorithm. This will still result in a local optimum
in most cases. This algorithm is good for problems with only a few local optima, since using
multiple restarts with random starting solutions will likely give an optimal solution. This makes
Hill Climbing especially useful for convex optimization problems.

Convex Optimization

Convex problems are optimization problems which have a convex objective function
f0(x), convex inequality functions fi(x) and affine equality constraints. This means that
for the convex real functions f0(x), f1(x), . . . , fm(x) we can create a convex optimization
problem of the form:

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . .m

A~x = ~b

We will state without proofa that for convex optimization problems, a local optimum is
also a global optimum. This is something that can be used when using Hill Climbing
optimization methods since these algorithms will find a local optimum and thus the
optimal solution for convex problems [3].

aA proof can be found in [3] in paragraph 4.2.2

Example 3.1. Hill Climbing We can use hill climbing to find the minimum of a real valued
function f depending on x. The neighborhood is defined by changing the value of x by a small
amount and checking whether the function returns a lower value. We can continue this process
until we have found a local minimum. This is the case if there are no neighbors left which give a
lower function value. Functions with a few (or preferably only one) local minima are more suited
for this technique (See Figure 1). Finding the minimum of f(x) = (x − 3)2 is independent of
the starting position, but with f(x) = sin(x) + sin

(
3xπ
2

)
+ sin(3x) + 3 it depends on the starting

position which local minimum we will find. ♦

Tabu Search ( [14, 15]) When using Tabu Search, a step that increases the cost is allowed if
there are no neighbors that decrease the current cost. Furthermore, the algorithm will keep track
of the solutions it has already ‘visited’ in a Tabu list and won’t look at these solutions for a number
of iterations. This algorithm will give deterministic results, meaning that given a begin solution,
running the algorithm twice will result in the same solution.
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f(x) = sin(x) + sin
(
3xπ
2

)
+ sin(3x) + 3

f(x) = (x− 3)2

Figure 1: Example 3.1

Simulated Annealing ( [7, 26]) Simulated Annealing will allow ‘worsening’ steps during the
process of finding the optimal solution. If a step is not an improvement, the algorithm will conduct
a chance experiment. This will determine, based on how much worse the solution will get and on
the current state of the process if the neighbor is accepted. In the beginning, more ‘worsening’ steps
are allowed compared to later in the run. The algorithm will not explore all possible neighbors each
step but will randomly pick one and evaluate the outcome. We will go over Simulated Annealing
and the acceptance function more extensively in the next section.

3.2 Simulated Annealing

As mentioned previously, we will use Simulated Annealing in this thesis. This is because our model
has many different local optima. Also, since we have defined many neighborhoods with each nu-
merous neighbors, we expect the number of iterations to be low if we explore each neighborhood
and neighbor at each iteration. In our case study, this would imply that we would have to do more
than a hundred thousand times more calculations per iteration.

We already have given a brief introduction into Simulated Annealing. With Simulated Annealing,
we can find solutions for problems that have a large number of different local optima. This is the
case since Simulated Annealing will allow in some circumstances for ‘worsening’ iterations which
we need to escape local optima.

At the beginning of a run, a new starting solution will be generated using a given procedure.
Depending on the use case, this can be an empty solution or a randomly generated solution given
some constraints. After all, the starting solution does not need to be a good solution, it should
be a solution that can be modified using the neighbors. A starting solution can fail to meet the
hard constraints, but as long as there exists neighborhoods that can change the solution so that it
meets the hard constraints, there is no problem. See Section 5.1 for the starting solutions that we
will use in our case study.

Example 3.2. Knapsack The Knapsack problem is a NP-hard optimization problem. The prob-
lem is defined as follows: Given a set I of n items, each item i of I has a value vi and a size si.
The problem is to find a subset K of I of the highest value such that the total size is smaller than
or equal to S. Remark that we can only add complete items to K [24].
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When we solve this problem with Local Search we can define a neighborhood that adds items
to K (the Knapsack) and a neighborhood that removes items from K. As a starting solution, we
can use an empty set K or we can put a random selection of I into K. ♦

At each iteration, the algorithm will randomly select a neighborhood and a neighbor out of that
neighborhood to explore. If this leads to an improvement, the change will be accepted, if not, a
chance experiment will be conducted. Let v1 be the cost of the solution before changing and v2 be
the cost after the change. Then this change will be accepted if for a uniformly chosen real-valued
r ∈ [0, 1], and the current temperature T , the following holds:

exp

{
v1 − v2
T

}
≥ r

The probability that we will accept a ‘worsening’ step is given in Figure 2. We see that for larger
values of T we accept certain increases in cost with a higher probability compared to smaller values
of T .

0 2 4 6 8
0

0.25

0.5

0.75

1

v2 − v1

A
cc

ep
ta

n
ce

p
ro

b
ab

il
it

y

T = 1
T = 2
T = 4

Figure 2: Acceptance test

The temperature T will be updated by multiplying it with a constant factor α. This constant α
must be real-valued and part of the interval [0, 1]. In this thesis, we will update T 8000 times
during a run. The number of iterations between each run will be calculated using this condition.
Furthermore, we will use T = 20 minutes and α = 0.9992, for more information about the values
used for our case study, see Section 5. In Figure 3 we have plotted the development of T over time,
we have also identified the number of updates needed to halve T . The SA algorithm is stated in
Algorithm 1 [22]. Remark that since we allow the cost of the solution to increase we also save the
best solution found. This way, if we escape a local minimum but end up in another worse local
minimum we still have the best solution found up to that point.
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Figure 3: Temperature over time

Annealing

The name of Simulated Annealing is closely connected to the process of annealing metals.
When a metal is heated to a temperature where the solid melts all atoms can move freely.
If the temperature is then slowly decreased the atoms can arrange themselves. After the
metal has solidified again and the annealing has been performed correctly the system
will be in its minimum energy state [29].
Simulated Annealing follows the same procedure wherein the beginning many ‘worsening’
steps are allowed and as the temperature decreases, the cost will converge to a local
optimum as less ‘worsening’ steps are allowed. This will hopefully lead to a global
minimum or local minimum with a cost close to the global minimum.

Algorithm 1 Simulated Annealing algorithm

1: Create a new starting solution S
2: Set Sbest equal to S
3: while Fixed number of iterations has not been reached do
4: If a fixed fraction1of the number of iterations has passed, multiply T by α.
5: Select a random neighbor n.
6: Calculate the cost with the new neighbor, the new cost is equal to Snew.
7: If the new cost is less than the old cost, accept the change. If the new cost is not less than

the old cost, select a random number R between 0 and 1. Now accept the change if

exp

{
cost(S)− cost(Snew)

T

}
≥ R

and reject otherwise.
8: If the change is accepted, set S is Snew.
9: If cost(S) is smaller than cost(Sbest), set Sbest is S

10: When finished, save Sbest.

1In this thesis we will use 1
8000

, for a total of 8000 updates of T independent of the total number of iterations.
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3.3 Traveling Salesman Problem

We will demonstrate the working of neighborhoods via an example about a traveling salesman.
The Traveling Salesman Problem (TSP) is about a salesman who wants to visit a given set of cities
exactly one time and return to the city where he started. Assume a possibly asymmetric distance
matrix is given. In this example, we will use the Euclidean distance between two points on the map.
Assume that the salesman can reach all nodes from each other node. This problem is NP-complete
[17]. When we are solving this problem using Local Search we should define the neighborhoods.
In this example, we will go over three neighborhoods for this problem, Push, Mirror, and Swap2 .

Definition 3.2. (Trip) For n cities, a trip is a finite sequence of length n, (a1a2 . . . an). Here,
each ai represents a city and after visiting an the salesman traveling will return to a1.

Push A neighbor in the the Push-neighborhood (also known as 2, 5-opt) will pick a point in the
trip and move it to a different spot in the sequence.
Formally this means that if point i is moved to position j in trip A, the new trip will become
(a1 . . . ai−1ai+1 . . . ajaiaj+1 . . . an) if i < j and (a1 . . . aj−1aiaj . . . ai−1ai+1 . . . an) if j < i.

See for example the trip (ADBCE) represented3 in Figure 4a. It is clear that this trip is not
an optimal solution. Using the Push-neighborhood, we will change the sequence by moving D in
between C and E. This will give the new sequence (ABCDE), which is drawn in Figure 4b. This
represents an optimal solution of this case4.

A

B

C

D

E

Figure 4a: Trip (ADBCE)

A

B

C

D

E

Figure 4b: Trip (ABCDE)

Mirror A neighbor in the Mirror-neighborhood (also known as 2-opt) will select a subsequence
of sequence A and reverse the order of this subsequence within the main sequence.
As a result, for i and j, with 1 ≤ i < j ≤ n and trip A of length n, the new trip will become
(a1 . . . ai−1ajaj−1 . . . ai+1aiaj+1 . . . an).

Consider the trip (ADCBE) represented in Figure 5a. It is clear that is is not an optimal so-
lution. Using the Mirror-neighborhood we will reverse the subtrip (DCB). This results in the trip
(ABCDE), which is drawn in Figure 5b and represents an optimal solution5.

2Please note that some neighborhoods could be known by a different name.
3For clarity, some edges have been curved. We will use the Euclidean distance between two nodes, not the length

of the edges.
4There is no guarantee to find an optimal solution after using a neighborhood for a certain number of times.
5See Footnote 4
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A
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E

Figure 5a: Trip (ADCBE)

A

B

C

D

E

Figure 5b: Trip (ABCDE)

Swap A neighbor in the Swap-neighborhood will swap two cities in the trip. This means that
for i and j with i < j the trip A will be changed to (a1 . . . ai−1ajai+1 . . . aj−1aiaj+1 . . . an).

Consider the trip (AECDBF ) in Figure 6a. By using the Swap-neighborhood to swap the po-
sitions of B and E, we get the trip (ABCDEF ) which is an optimal solution6 and is drawn in
Figure 6b.

A

B

C

D

E

F

Figure 6a: Trip (AECDBF )

A

B

C

D

E

F

Figure 6b: Trip (ABCDEF )

In this example we have given some examples of neighborhoods that can be used to find a solution
for the Traveling Salesman Problem with Local Search. ♦

6See Footnote 4
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4 Data Mining and Machine Learning

In this section, we will give an introduction into the data mining technique that we will use and how
the data is evaluated. In the first section, we will go over the data generation and data extraction.
In the second section, we will explain the machine learning techniques that have been used in our
case study. In the third section, we will formally introduce OrderVectors. These vectors will be
used to guide the Smart Simulated Annealing (SSA) algorithm.

4.1 Data Mining

When we have found multiple good solutions for an optimization problem using Local Search,
we are interested in features of these solutions that make a solution a good solution. If we can
identify these features, we can guide our SSA algorithm. Neighbors that increase the number of
good features will have a higher probability of being accepted if the new cost is greater than than
the old cost, compared to SA. Also, neighbors that decrease the number of good features will have
a lower probability of being accepted if the new cost is worse compared to the previous cost. This
is done by changing the value of the temperature used in the acceptance test (Line 7 of Algorithm
1). See Section 4.3.1 for more explanation of SSA.

We will give some intuition into what makes a feature a good feature using a simple example.
Remark that an instance of a single depot multi-vehicle scheduling problem can be represented as
a graph, where the nodes of the graph correspond to the location of the stops. When we compare
the distances between two nodes in the graph with the actual driving distances, we expect to see
a correlation. There are situations in which this is not the case. For example, if there is a barrier
such as a canal between two nodes.

Example 4.1. Consider the situation where we have to solve a capacitated single depot multi-
vehicle scheduling problem for milk pickup. Every three days, the dairy company will pick up milk
at farms and return to the depot. The company has three milk trucks and must visit all farms.
The total distance driven should be minimized.

We can easily visualize this problem by creating a node for each farm (nodes 1, 2, . . . , 9) and
an extra node for the depot (node D) (See Figure 7). We assume that there exists a road between
each pair of nodes and that the driving distance is related to the Euclidean distance between two
nodes in this graph.

1

2

3

4

5

6

78

9

D

Figure 7a: Solution A

1

2

3

4

5
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Figure 7b: Solution B
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Two solutions for this problem are given in Figures 7a and 7b. Each set of colored arrows corre-
sponds to a trip for one truck. Each trip starts and ends at the depot. When we compare these
solutions it becomes clear that the total driving distance of solution A is significantly lower than
the total driving distance of solution B.

For this example, we can say that having farms 3 and 4 in one trip is a good feature for a solution
since both farms are close to each other and relatively far away from the other farms. Also, not
having farms 3 and 8 in one trip could be a good feature since these farms are far apart and are
not in the same region. Furthermore, consider farms 2 and 3, these farms are also far apart but
are both in the southwest region of the graph. It could be a good feature to have both farms 2
and 3 in one trip because they are in the same region and they both have only a few other farms
nearby. Of course, many more relations can be identified.

We are not able to create this kind of rules for significantly larger instances, so we will use an
implicit way to identify whether two nodes should be together in one trip. Remark that although
most good solutions include some specific features, it is still possible to have comparable or even
better results without these features. ♦

To find good features, we need to have a dataset of good solutions. Since the case study for this
thesis is the same that has been used for the ‘Grote Opdracht’ of the course ‘Optimalisering en
Complexiteit’ we already have a good solver7 in place. This solver is able to run at a speed of 3
million iterations per second8. We have done runs of 300 million, 3 billion, and 15 billion iterations
to generate the following dataset:

Iterations Number of runs Average Standard dev. Best solution Worst solution

300 million 3046 5492 29 5400 5595
3 billion 54 5409 19 5366 5470
15 billion 7 5379 17 5348 5409

Table 2: Good solutions dataset

Solver

The solver used to generate the dataset is programmed in C++ and can generate solutions
of a certain number of iterations, store these solutions, and restart fully automatically
to create new solutions. The solutions will be stored and can then be evaluated by
another program verifying the cost and feasibility of the solutions. Between fifteen and
twenty five percent of the simulations will be infeasible, due to capacity and/or time
restrictions, this is dependant on the number of iterations and the penalties for capacity
and/or time restrictions.

In our solver, almost all infeasible solutions are infeasible due to a relatively small
penalty for going over the maximum capacity of the trucks. We have found that this
small penalty results in significantly better solutions, compared to a situation where
larger penalties were used, but at the cost of having some infeasible solutions. We have
chosen not to keep simulating until a solution would become feasible. If we would have
done this, the number of iterations is not equal for all simulations making it not possible
to compare sets of simulations.

Using these solutions we have created a co-occurrence matrix for all nodes. We will use these
co-occurrences to find OrderVectors which we will use to predict whether a neighbor will introduce
a good feature.

7This solver was also used to generate the best solution found by a student team during the 2019 Utrecht
University ‘Optimalisering en Complexiteit’ course.

8Tested on a desktop with an AMD Ryzen 5 2600 processor and 16GB of RAM.
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Definition 4.1. Co-occurrence matrix For i, j, n ∈ N and i, j ≤ n, a co-occurrence matrix for
n nodes is a n× n symmetrical matrix where aij is equal to the number of the times that node j
was in the context of node i in a given dataset. �

For our case study, we will use that nodes i and j are in each other’s context if they are part of
the same trip in a solution.

Example 4.2. Co-occurrence matrix Given four trips as seen in Figures 8a, 8b, 8c, and 8d we
can create the co-occurrence matrix given in Table 3.

It is clear that node 1 is part of a trip if and only if node 2 is part of a trip. Assuming that
all four trips represent good solutions we find that it is a good feature to have either both nodes
1 and 2 in a trip or to skip both nodes 1 and 2. Less clear is the connection between nodes 1, 4,
and 5. If node 5 is part of a trip, then it is unlikely that nodes 1 and 4 are also part of that trip.
Using OrderVectors, we will try to find these relations implicitly. ♦
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Figure 8a: Trip A
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Figure 8b: Trip B
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Figure 8c: Trip C
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Figure 8d: Trip D

node 1 node 2 node 3 node 4 node 5 node 6
node 1 × 3 2 1 2 3
node 2 3 × 2 1 2 3
node 3 2 2 × 2 2 3
node 4 1 1 2 × 1 2
node 5 2 2 2 1 × 3
node 6 3 3 3 2 3 ×

Table 3: Co-occurrence matrix for trips A, B, C, and D in Figures 8 - 8d.

Since not all nodes are part of a trip each time, we introduce a weighted co-occurrence matrix.
This will help find relations between orders that are not part of a trip frequently.

Definition 4.2. Weighted co-occurrence matrix For i, j, n ∈ N and i, j ≤ n, a weighted co-
occurrence matrix for n nodes is a n × n matrix. For this matrix, aij is equal to the number of
times that node j was in the context of node i divided by the total number of times that node i
was part of an item in the dataset. See Equation 1 in Section 4.2, in this equation Pij is equal to
entry of the weighted co-occurrence matrix. �
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Remark that each value aij in the weighted co-occurrence matrix corresponds to the probability
that orders i and j are part of a trip if order i is in a trip. We will discuss this probability further
in Section 4.2.

Example 4.3. Weighted co-occurrence matrix For an example of a weighted co-occurrence
matrix, we will use the co-occurrence matrix from Example 4.2, given in Table 3 and the trips
from Figure 8. We have that node 4 is part of a trip two times, nodes 1, 2, 3, 5 are part of trip
three times, and node 6 is four times part of a trip. This gives the weighted co-occurrence matrix
given in Table 4. Remark that by definition the co-occurrence matrix is symmetrical and that the
weighted co-occurrence matrix can be symmetrical, but is not always symmetrical.

node 1 node 2 node 3 node 4 node 5 node 6

node 1 × 3
3

2
3

1
3

2
3

3
3

node 2 3
3 × 2

3
1
3

2
3

3
3

node 3 2
3

2
3 × 2

3
2
3

3
3

node 4 1
2

1
2

2
2 × 1

2
2
2

node 5 2
3

2
3

2
3

1
3 × 3

3

node 6 3
4

3
4

3
4

2
4

3
4 ×

Table 4: Weighted co-occurrence matrix for trips A, B, C, and D in Figures 8 - 8d.

♦

4.2 Machine Learning

We will use the GloVe model to predict whether the neighbor will have a positive effect on the
cost of the solution in the long-term. The GloVe model was initially developed for applications in
word representation. Each word in a corpus9 is represented by a word vector. Using these word
vectors, predictions can be made on the probability that two words will be used in each other’s
context. The context is defined as an area of a fixed distance around a specific word.

For each corpus a co-occurrence matrix is made where Xij is equal to the number of times that
word j occurs in the context of word i. Furthermore, Xi is equal to the number of times any word
occurs in the context of word i, so

Xi =
∑
j

Xij .

Now, define for all i with Xi strictly greater then zero

Pij = P(j|i) =
Xij

Xi
. (1)

Remark that this probability distribution is well-defined, since

∑
j

P(j|i) =
∑
j

Xij

Xi
=

∑
j Xij

Xi
=
Xi

Xi
= 1

and
0 ≤ P(j|i) ≤ 1.

So Pij is equal to the probability that word j appears in the context of word i [5, 23]. Remark
that Pij is equal to the entry aij of the weighted co-occurrence matrix.

9A collection of written text. For example, all Wikipedia pages.
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Example 4.4. As seen in Table 1 and Section 3 of [23], we can already get some information from
these co-occurrence probabilities. Take for example the words ice and steam. We expect that the
probability that solid, which is more related to ice than it is to steam, occurs more frequently in
the context of ice than steam. So we expect the ratio

Psolid,ice
Psolid,steam

to be greater than one. We expect the opposite if we change solid for gas. For words that are
either related to both ice and steam, like water, or words that are not related to one of them, like
fashion, we expect that the ratio of co-occurrence probabilities is equal or close to one. See Table
5. Here we observe that the predicted behavior coincides with the co-occurrence probabilities. ♦

Probability and Ratio k=solid k=gas k=water k=fashion

P(k|ice) 1.9 · 10−4 6.6 · 10−5 3.0 · 10−3 1.7 · 10−5

P(k|steam) 2.2 · 10−5 7.8 · 10−4 2.2 · 10−3 1.8 · 10−5

P(k|ice)/P(k|steam) 8.9 8.5 · 10−2 1.36 0.96

Table 5: Co-occurrence probabilities and ratios for target words ice and steam [23]

.

Word vectors found by GloVe have dimensions of meaning. This means that the vectors capture
analogies. An analogy is a comparison between two words. Analogies can be used to explain the
meaning of a word using a familiar word. So for example “Berlin is to Germany as Paris is to
France” or “Land is to River as Body is to Veins”.

If we now take the vectors for each these words, wBerlin, wGermany, wParis and wFrance, then
these vectors must satisfy wBerlin −wGermany = wParis −wFrance, since if we remove the country
from the two cities we expect to find that they are both capitals and have features that correspond
to being a capital of a country. Another example is “bat is to ball as bow is to arrow”, for this
analogy we must have that that wbat − wball = wbow − warrow.
For words a, b, c and d and corresponding wordvectors wa, wb, wc and wd we have that if “a is to b
as c is to d” these vectors must satisfy wa − wb = wc − wd [23].

Pennington, Socher and Manning use this equation in [23] to find a missing word. If we want to
know “‘what’ is to foot as fingers is to hand” we need to find the word vector that is closest to
wfingers −whand +wfoot. Remark that the closest vector in this case is the vector w that has the
highest cosine similarity (See Definition 4.3) with wfingers − whand + wfoot. We expect that this
is the word vector wtoes.

To find these word vectors, we have to train the GloVe model [23]. We will train this model
using AdaGrad, a stochastic gradient descent algorithm. We will explain stochastic gradient de-
scent and AdaGrad in Sections 4.2.1 and 4.2.2. If we train the model using the co-occurrences Xij

from the word co-occurrence matrix, we have10 that wTi wj + bi + bj = log(Xij), in which bi is an
additional bias term. The bias terms are introduced to compensate for the total number of times
(Xi) that some order is observed and allows us to ‘shift’ all terms in which a particular order is
involved. We will train the model to find the word vectors and bias terms.

To find the vectors, we will optimize the following objective function, with d being the dimen-
sion of the co-occurrence matrix:

J =

d∑
i=1

d∑
j=1

f(Xij)
(
wTi wj + bi + bj − log(Xij)

)2
This function is equal to the sum of squared errors with bias correction. The weight function f can
be chosen freely as long as f(0) = 0, f(X) is non-decreasing, and relatively small for large values

10See full derivation in Section 3 of [23].
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of x. This last constrained is added to make sure that pairs of orders with high co-occurences are
not overweighed. [5, 23].
In this thesis we will test two different weight functions,

f(x) = x

and (for different real xmax in (0, 1] )

f(x) =

{
x

xmax
if x < xmax

1 else

The first function is the most basic function that satisfies the constraints. The second function is
proposed for the GloVe model [23].

4.2.1 Stochastic Gradient Descent

In order to define stochastic gradient descent (SGD), we first need to define batch gradient descent
(the most basic gradient descent algorithm and the basis for stochastic gradient descent). Gradient
descent is an algorithm used to optimize a minimization problem with a differentiable objective
function. This function is also known as the error function and represents the sum of squared
errors. For each data point, the distance between the value using the current parameters and the
actual value is squared and summed. The algorithm will find a local minimum, and if there is only
one extreme value, this is equal to the global minimum.

Gradient descent will update the decision variables by using the gradient of the objective function
with respect to these variabels. Given the one-dimensional minimization problem with θ as deci-

sion variable, the gradient of the objective function will be equal to ∇θJ(θ) = dJ(θ)
dθ .

Define θt as the value of θ at the tth iteration. Every step, the new value of θ, θt+1, will be
equal to θt minus the gradient times the learning rate η. The learning rate determines how ‘big’
the steps that the gradient descent algorithm takes are to find the optimal value. So,

θt+1 = θt − η∇θJ(θt)

and if θ is one-dimensional, this is equal to

θt+1 = θt − η
dJ(θ)

dθ

We can now define the gradient descent algorithm. First we have to define the objective function

J : Rn → R≥0

This function is equal to the sum of squared errors. Now that we have defined this function, we
can take its gradient, defined by ∇J which is a real-valued function of θ. This gives Algorithm 2
[1, 25].

Algorithm 2 Gradient Descent

Create a new random vector θ.
while Fixed number of iterations has not been reached do

For each sample in the training set, update θ to

θ − η ×∇J(θ)
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Example 4.5. Marketing and Sales Assume that we are interested in finding the relationship
between marketing expenses and revenue. We have three datapoints from three comparable com-
panies selling the same product at the same price. Company A spends 3 euro on marketing and
has a revenue of 30 euro, company B spends 9 euro for a revenue of 42, and company C spends
10 for a total revenue of 48. We want to make a prediction using the formula:

revenue = α ·marketing expenses + base revenue

Assume that there the base revenue is known and constant at 20 euros. Now, we are iterested in
the value of α. This is the extra revenue in euros for each euro spend on marketing. First, we have
to find the error function. This function is equal to

J(α) = (30− (α · 3 + 20))2 + (42− (α · 9 + 20))2 + (48− (α · 10 + 20))2

and thus we have that

∇J(α) = −6(30− (α · 3 + 20))− 18(42− (α · 9 + 20))− 20(48− (α · 10 + 20))

which is the same as
∇J(α) = 380α− 1016

We will use a learning rate η equal to 0.005. We first guess that α = 3, which gives Figure 9a.
Now we have that the gradient is equal to ∇J(3) = 380 · 3 − 1016 = 124, we will update α to
3 − 0.005 · 124 = 3 − 0.62 = 2.38, which gives Figure 9b. For this new value of α we have that
∇J(2.38) = −111.6 so we can now update α to 2.938 (See Figure 9c). We can keep updating α
until we find the value for α where the gradient is equal to zero and thus where is sum of squared
errors is minimal. In this case, the optimal value for α is equal to 2.67 and gives Figure 9d. Note
that we have skipped some steps between Figure 9c and Figure 9d. Looking at these plots we see
that the distance between the intermediate results and the optimal value converges to zero. In
Figure 10, the value of J(α) is given for each value of α within a reasonable interval. In this chart,
it becomes clear that at every step (a, b, c, and d), the updated value of α resulted in a lower value
for the objective function. ♦

Stochastic gradient descent Now that we have presented gradient descent we can define SGD.
Since the gradient algorithm optimizes for every parameter of θ and uses every data point available,
the algorithm is slow for large datasets. Also, in large datasets, there will be redundancies in the
data and thus redundant calculations. SGD tackles this problem by selecting a random parameter
and data point to calculate the value of the objective function and optimize correspondingly. Re-
mark that this algorithm does need more iterations before it finds the optimal value. However, the
iterations are much faster, so the algorithm will find the optimal value sooner compared to batch
gradient descent.

In the dataset of Example 4.5, we have two data points that are quite comparable being the
data from companies B and C. Here, we can train or model using one of those data points at each
iteration without having to accept worse results.

This gives a modified version of Algorithm 2 in which only one data point is used at each it-
eration. Remark that for each iteration a new selection is made [1, 25, 33].

Algorithm 3 Stochastic Gradient Descent

Create a new random vector θ.
while Fixed number of iterations has not been reached do

Select a random sample of the training set and update θ to

θ − η ×∇J(θ)
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Figure 9a: α = 3
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Figure 9b: α = 2.38
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Figure 9c: α = 2.938
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Figure 9d: α = 2.67
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Figure 10: Development of sum of squared erros

Mini-batch gradient descent Another type of gradient is descent is mini-batch gradient de-
scent. This algorithm is useful in situations where data points are grouped in sparse groups,
meaning that there are groups of closely related data points where from an optimization stand-
point, it is not relevant which variable is used in the training set. For example, companies B and
C in Example 4.5. In mini-batch gradient descent, a small batch of data points is randomly chosen
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to use for optimization. These data points are now used to do an iteration of the gradient descent
algorithm. After this iteration has been completed, a new random batch is selected. This process
is repeated for a set number of iterations [25].

4.2.2 AdaGrad

All gradient descent algorithms considered so far use a fixed learning rate for each iteration and
each variable. We will now introduce AdaGrad. This is an Adaptive Gradient descent algorithm
that changes the learning rate depending on the gradient. An adaptive gradient can be used for
batch, mini-batch, and stochastic gradient descent. We will use it in the context of stochastic
gradient descent.

Parameters for frequently occurring features will have low learning rates and parameters for infre-
quent occurring features will use a high learning rate. Intuitively, this means that the algorithm
is able to find features that are predictive but that do have only a few occurrences [11].

AdaGrad has proven to be successful in object recognition and speech recognition applications. It
was compared to other algorithms available in 2012 and showed better results on the ImageNet
object recognition challenge [10]. ImageNet is a large-scale image database with over 14 million
sorted images [18]. The ImageNet object recognition challenge is a way for researchers to compare
their image recognition algorithms [19].

AdaGrad uses the history of gradients for each parameter to determine the learning rate η. First,
we will define some variables and then we will give the modified SGD algorithm. Define for each
parameter i and iteration t the gradient gt,i = ∇θJ(θt,i). Now, we can define the sum of squared
gradients for each parameter at iteration t as follows:

Gt,i =

t∑
n=1

(
gn,i
)2
.

The learning step for AdaGrad is given by

θt+1,i = θt,i −
η√

Gt,i + ε
∇θJ(θ).

Here, ε is a very small number to avoid dividing by zero. Remark that compared to gradient
descent we now divide the learning rate by the square root of the sum of squared gradients [11,
25].

AdaGrad works well with sparse data. This means that there are some entries in the co-occurrence
matrix with relatively high values and a lot of entries with low values. This is the case in our case
study, as seen in Table 6. For 71.6% of the entries11 in our co-occurrence matrix, the number of
observed co-occurrences is less than 301 (which is 10% of the dataset). The location of the orders
and depot is comparable to the orders and depot in Figure 7. In good solutions, there will be
groups of orders that are frequently together in one trip or that are only together in a trip in one
or two solutions in the dataset.

Co-occurences Observed

0− 50 507434
51− 300 484154

301− 2000 380400
2001− 3000 10338

3001+ 1826

Table 6: Observed co-occurences

11Excluding the aii entries.
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AdaGrad

For this thesis we use a C# implementation of AdaGrad. Our implementation will read in
the co-occurrence matrix and run for a pre set number of iterations. The program runs on
a single core and does not support parallelization. Depending on the vector length, the
program will need between six (for 5-dimensional vectors) and nine (for 10-dimensional
vectors) hours to complete.

4.3 OrderVectors

We will use OrderVectors for our case study. For each order i let OVi be the OrderVector for order
i. So instead of word vectors wi for each word i we have OrderVectors OVi for each order i. We
have found these OrderVectors with AdaGrad and have trained the vectors so that for two orders
i and j we have that OVTi OVj is a good approximation of the number of co-occurrences in good
solutions (Xij). Remark that we have used the same objective function as used for the word vectors.

With these OrderVectors we can calculate a prediction for each neighbor indicating the likeli-
hood that a certain move will have a positive effect on the cost in the long term (See Example 4.6).

As mentioned previously, we can use the cosine similarity between two vectors to find pairs of
vectors that are most alike. We can use this to predict whether a neighbor will have a positive
effect on the cost of the solution in the long term.

Definition 4.3. (Cosine Similarity) When we compare two vectors of length n in a n-dimensional
vector space we can calculate the cosine of the angle between the two vectors. For vectors v and
w we do this by using the formula

cos(v, w) =
〈v, w〉
|v| · |w|

Remark that cos(v, w) ∈ [−1, 1] for all v, w ∈ Rn. To express the cosine similarity between two
orders, we use the formula

sim(v, w) =
1 + cos(v, w)

2

this way, we find an expression for the similarity of two orders in the interval [0, 1]. �

Now that we have the similarity between two orders, we want to use this in our case study. To
do this, we developed the Predictor. For each neighborhood, we will create a specific Predictor
with a procedure to calculate a prediction for a certain move. This is a prediction of how likely
it is that the neighbor will have a positive effect on the cost. A prediction p is real-valued, with
p ∈ [0, 1]. As input, the predictors will use the similarities between the OrderVectors for each node,
an exploration distance, and a threshold. We will discuss those last two variables in the following
example.

Example 4.6. Add order to trip In this example, we will give the intuition for the calculation
of a prediction. Given the path in Figure 11a and the situation where we would like to check
whether inserting order 4 between orders 3 and 5 would be a good move. First, we need to define
the exploration distance.

The exploration distance is used since we are only interested in the orders close to the place
where we want to add a new order. Recall Example 4.1 in which we pointed out some combina-
tions of orders close to each other. The clusters can be combined with other clusters in a trip. In
Figure 7 for example, orders 6 and 7 are likely to be in the same trip in a good solution. This
trip can further contain orders 8 and 9 or order 5. If we want to add an order between 6 and 7,
we are only interested in the probability that the new order and orders 6 and 7 are a good fit,
independently of the rest of the orders in the trip.

Definition 4.4. (Exploration distance) For a trip of length n, (a1 . . . ai−2ai−1aiai+1ai+2 . . . an)
and a neighbor that changes this trip at position i, the exploration distance is equal to the number
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of orders checked before and after the involved order. If the exploration distance is equal to two,
orders ai−2, ai−1, ai, ai+1, and ai+2 and similarities between these orders will be used to make a
prediction. �
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Figure 11b

We continue our example and will use an exploration distance equal to 2 in our algorithm. Hence,
in our example we are only interested in the similarities between the OrderVectors of orders 2, 3, 5,
and 6 and the OrderVector of order 4 since only these orders are within distance 2 of the order we
would like to add.

Since the predictions are unlikely to reach values in the interval [0.8, 1], we do scale the pre-
dictions using a threshold. This threshold will keep the predictions in [0, 1] but will scale the lower
predictions linearly and cap the predictions at 1.

Definition 4.5. (Threshold) The threshold is used to scale predictions. It is a real-valued
constant in the interval (0, 1]. If a prediction is smaller than the threshold, the prediction will be
divided by the threshold; if the prediction is greater than the threshold, it will be set to 1. This
way, the prediction will stay in [0, 1]. �

In this example, we set the threshold to 0.9. This means that we will round up all predictions
greater than 0.9 to 1 and increase all predictions smaller than 0.9 by about 11%. We do this to
correct for the fact that in practice, in almost all cases the prediction will be less than 0.9 due to
the fact that there are outliers in the dataset.

Since we would like that orders close to the change in the trip have a stronger influence on the
prediction compared to orders that are further away, we introduce a weight function w : N→ R .
Each similarity will be multiplied by this weight factor which depends on the distance from that
order to the added/changed order. Different weight functions will be tested. Some examples are
w(d) = 1, w(d) = 1

d , and w(d) = 1√
d
. See Figure 12. We have chosen to use these functions since

we are interested in the orders close to the update.

Now, the prediction before threshold correction is equal to

Pred =
sim(2, 4)w(2) + sim(3, 4)w(1) + sim(5, 4)w(1) + sim(6, 4)w(2)

2
∑ex.dist.
n=1 w(n)

After this, if Pred is smaller then 0.9 we will divide it by 0.9 and set it to 1 otherwise.
♦
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Figure 12: Distance weight functions

Furthermore, in this thesis, we will look at whether non-linear scaling functions can help improve
the predictions. They have the same purpose as the threshold. By applying these functions to our
predictions we hope to increase the prediction if it is already quite high (for example greater than
0.8) and to leave low predictions quite untouched. One of the functions that we will test is the
function

s : [0, 1]→ [0, 1], x 7→ sin

(
xπ

2

)
(2)

Predictions that were initially around 0.8 are now closer to 0.95. Furthermore, we will test the
function x 7→ x2 as a scaling function. This function will make sure that only neighbors with a
high probability will have a higher T value compared to SA (See Figure 13).

4.3.1 Smart Simulated Annealing

With these OrderVectors and Predictions in place, we can formally define the SSA algorithm. This
algorithm is a modified version of Algorithm 1 and is given in Algorithm 4. Remark that we have
added lines 7 and 8. Here, we calculate and use the prediction made using the OrderVectors.
We can see the effect of using Ttemp in Figure 14. If p(P) = 0.0, we predict that a ‘worsening’ step
won’t have a positive effect on the cost in the long term. In that case, we decrease the probability
that we will accept this ‘worsening’ step compared to the standard SA acceptance probability given
by p(P) = 0.5. However, if we expect that a ‘worsening’ step will improve the cost in the long
term, we have for example p(P) = 1.0 and then, we see that the probability that we accept this
step is greater than with the SA algorithm.
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Figure 14: Effect of different predictions for T = 3.

Example 4.7. Consider the case where we have the trip presented in Figure 15 and have a neighbor
where we add order 4 to this trip. We assume that this is a good feature. If, however, we add
order 4 between the start point and order 3, we get the trip presented in Figure 16. This is not an
optimal trip. By accepting this neighbor, we can rearrange the orders within the trip and get the
trip presented in Figure 17. It is clear that by accepting a neighbor that had a negative effect on
the cost we can get a better solution in the long term by rearranging the orders within the trip.

♦
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Algorithm 4 Smart Simulated Annealing algorithm

1: Create a new starting solution S
2: Set Sbest equal to S
3: while Fixed number of iterations has not been reached do
4: If a fixed fraction of the number of iterations has passed, multiply T by α.
5: Select a random neighbor n.
6: Compute the cost with the new neighbor, the new cost is equal to cost(Snew).
7: Create a predictor P for n, calculate the prediction p(P).
8: Calculate Ttemp which is equal to T multiplied by p(P) + 0.5.
9: If the new cost is less than the old cost, accept the change. If the new cost is not less than

the old cost, select a random number R between 0 and 1. Now accept the change if

exp

{
cost(S)− cost(Snew)

Ttemp

}
≥ R

and reject otherwise.
10: If the change is accepted, set S is Snew.
11: If cost(S) is smaller than cost(Sbest), set Sbest is S
12: When finished, save Sbest.

1

2

3

4

5

D
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Figure 17: Improved order within trip of Figure 16
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5 Experiments

In this section, we will give a deeper insight into the SA Solver, go over some other approaches we
have used, and finally present the results of the SSA algorithm.

5.1 SA Solver

For the base experiment, we used the solver that was also used for generating the dataset used to
get the OrderVectors. This solver functioned as the starting point for the solver that used SSA.
The neighborhoods that we will present are the same used for all solvers. Without proof in this
thesis12 we will state that the optimal values of α and T for the SA Solver are given by α = 0.9992
and T = 20. We have used the following neighborhoods:

AddOrder This neighborhood adds an order to a randomly selected point in a randomly
selected trip. If an order has a frequency not equal to one, this neighborhood
will take that into account and add the order following a selected pattern.
Remark that a pattern prescribes on which days the order must be fulfilled
(See Table 1). Within these days, the order is placed in a randomly selected
trip and at a randomly selected spot within that trip.

RemoveOrder All neighbors in this neighborhood will remove exactly one order from a trip.
If the frequency of this order is not equal to one, the order will be removed in
all trips of which this order is a part. This way, we ensure that there are no
partially fulfilled orders.

AddWaste This neighborhood will add a visit to a landfill between two orders in a trip,
this trip is then split into two trips. A visit to the landfill cannot be added
at the beginning or at the end of a trip. We add this last constraint since we
assume that each trip starts and ends at the landfill.

RemoveWaste This neighborhood will combine two trips by removing a visit to the landfill.

LocalPush This neighborhood is given as ‘Push’ in Section 3.3.

LocalPushTruck This neighborhood is equal to LocalPush except that now, the order will be
moved from a trip on one truck to a trip of another truck on the same day.

LocalSwap This neighborhood is given as ‘Swap’ in Section 3.3.

LocalPushTruck This neighborhood is equal to LocalSwap except that now, an order will be
swapped with an order from a trip of the other truck on the same day.

PermuteOrder With this neighborhood, the neighbors will change the frequency pattern of an
order. This means that if the frequency of an order is for example 2 and the
order was fulfilled on Tuesday and Friday, we will change this to Monday and
Thursday.

To generate a starting solution, we start with an empty solution, i.e., all orders are declined, then
we will for each order apply the AddOrder neighborhood. So we will add each order to the solution
and no orders are declined after generating the starting solution.

During the SA process, we do allow violations of the hard constraints. This way, the algorithm has
more freedom to find a good solution. However, since we are only interested in feasible solutions,
we encourage the algorithm to find feasible solutions. We do this by adding extra penalties to
the cost function. For the different types of violations, we add an extra cost to the total cost,
if a neighbor reduces the infeasibility of the solution, these penalty costs will decrease and this
will encourage the algorithm to find a good solution, while, if necessary, these constraints can be
violated. In the SA solver, we have two violations and penalties.

12These values were found during many experiments for the ‘Optimalisering and Complexiteit’ course for which
this solver was initially developed.
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The first is the time constraint, if for one truck, the total time for all trips on a certain day
is longer than tmax (12 hours in our case), we will add a penalty. The penalty is given by

penaltytime(t) = 70.5

(
t− tmax

tmax

)
.

The other violation that we allow at a cost, is going over waste capacity. This is the case if a truck
collects more waste on a trip than the capacity of the truck allows. Remark that the time penalty
is for one truck and a whole day, where the waste penalty is for a single trip. In order to define
the waste penalty, we first have to define the function wasteover, this function is given by

wasteover(w) =
w − wmax

wmax
.

Here, wmax = 20.000. The penalty for going over capacity is given by

penaltywaste(w) =

{
188 · wasteover(w) if wasteover(w) < 0.2

564 · wasteover(w) else

To calculate the total cost of a solution, we sum the driving, emptying, and dumping times. We
add the penalties for the declined orders (recall that this is three times the emptying time times the
frequency) and then we add the extra penalties. These are the time violation penalties penaltytime
for each day in the week and each truck and the waste violation penalties penaltywaste for each
trip. We will add these penalties in order to encourage the algorithm to find a good solution while
giving it the freedom to violate the hard constraints. These penalties with the same constants were
also used for all other solvers described below.

With this solver, we have generated the dataset given in Table 2. In an additional experiment, we
have also saved the intermediate costs at 0, 10, ..., and 90 percent of the total number of iterations.
This experiment consisted of 100 runs of which 76 were feasible solutions. This data is presented
in Figures 18 and 19.
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Figure 18: Development of the cost in the base experiment
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Figure 19: Development of the cost in the base experiment. One standard deviation is presented.

5.2 Other approaches

Subcost-guided approach

The subcost-guided simulated annealing algorithm is introduced by Wright ( [32] ) and is proven
to be successful for School timetabling problems. The subcost-guided approach will adjust the
temperature to increase the probability that ‘worsening’ steps for the total cost are accepted if
they have a good effect on a subproblem. Each of these subproblems will have its own cost
function, the subcost. In the school timetabling problem, a subcost can be defined by the number
of double bookings a teacher or class has.

School Timetabling Problem

In school timetabling problems, teachers and classes should be matched. Each class
should get a fixed and predetermined number of lessons taught from a set of departments,
within each department, there is a set of teachers. The teachers are interchangeable as
long as each class has only one teacher per department. Each class can only have one
lesson at the time and teachers can only teach one lesson per time block. When we solve
this problem, we will allow overlapping lessons at a cost. This way, we can use local
search to find a solution [32].

The subcost-guided simulated annealing algorithm is identical to Algorithm 1 except for line 7. In
this line, we change the acceptance test. Let B be the maximum decrease of all subcosts. If B is
greater than zero, the new acceptance test is given by:

exp


(
cost(S)− cost(Snew)

)
exp

{(
−θB

cost(S)−cost(Snew)

)}
T

 ≥ R
If B is negative, we will reject the neighbor.

In his paper, Wright uses different values for θ and finds that values between zero and ten can have
positive results, depending on the exact problem used. In later work, he shows that this subcost-
guided approach also can improve solutions for Sports timetabling and Flowshop problems [31].
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Flow Shop

In the Flow shop machine scheduling problem, we have n jobs and m machines. Each
job consists of exactly m ordered operations, we must process each i-th operation of each
job on the i-th machine. For each job i the processing time of operation j is given by
tij . We must execute the operations in the given order, which is the same for all jobs.
We are free to choose the order in which we execute the jobs. The objective is to make a
planning for all the machines and operations so that the time between starting with the
operations and completing all operations, the makespan, is minimized. Each machine
can only work on one operation at the time and work on the i-th operation of each job
can only start after operation i− 1 is completed [27].
A good example of these kinds of problems are assembly lines. For example a car factory;
the doors can only be fitted after the chassis is completed, and while all cars look the
same, each model has its characteristics which make that the time to finish the different
operations can vary.

We have tested this approach for our case study. We defined the driving costs for each trip (in-
cluding penalties for capacity) as subcosts, so the number of subcosts is equal to the number of
trips. We have tested this with different values for θ, with 50 runs for each experiment. The exact
results can be found in Table 7.

θ 0 0.25 0.5 1.5 3

Average 5490.12 5558.85 5569.58 5589.23 5567.25
Standard deviation 29 32 34 37 37

Table 7: Test results from the subcost-guided approach

We anticipated that the subcosts of our case study were independent enough to benefit from
this approach. In the end, we found that this was not the case. We attribute this to the fact that
most of the neighborhoods used in our case study involves moving orders from one trip to another
or removing orders from a trip which increases the overall decline penalty. By decreasing a subcost,
we would most definitely increase another subcost. This means that a subcost guided approach,
which depends on the fact that a decrease in one subcost will in the long run also decrease another
subcost, does not work for our case study.

TruckAppointer

The second approach we tested is one where we used the OrderVectors in a different way compared
to SSA. In SSA, we use the vectors after we have selected a single neighbor and determine if this
neighbor is likely to have a positive effect on the cost. With TruckAppointers we select a neighbor
from a randomly selected subset of neighbors, using the OrderVectors.

In the situation where we make use of the TruckAppointer, we provide the TruckAppointer -object
with multiple neighbors from the same neighborhood. Those neighbors are related in the sense
that there is only one variable changed between the different options, so for example, the order we
add in the AddOrder neighborhood stays the same. If we want to add order q to a trip on a certain
day, we can add this order to either truck 1 or truck 2. Also, multiple options for each truck are
considered. The TruckAppointer will return the neighbor of which the probability that it improves
the cost in the long term is the highest. To make these predictions it uses the same Predictors as
used in the SSA algorithm. With the TruckAppointer approach, we would make predictions for
both our trucks to see for which truck the order is the best fit. Hence the name TruckAppointer.
We will then add the order to this truck and provide the neighbor to the SA algorithm.

We discovered that the results of this approach were comparable to the results found by SA.
We decided not to move forward with this approach since the running time of the algorithm was
slowed down twelvefold by the additional calculations needed for the TruckAppointer.
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Also, since we did not change the SA algorithm, we found that, if a neighbor would have a positive
effect in the long term, it still was not accepted if it increased the cost too much. This became a
larger problem in the second part of the runs where T became smaller. In this stage of the anneal-
ing process, the maximum increase in cost is very low. A solution to this could be to integrate the
TruckAppointer into the SSA algorithm, but since we have seen that the TruckAppointer approach
slows the program down considerably, we decided not to use this combination.

5.3 Smart Simulated Annealing

OrderVectors With the SSA solver, we have found promising results. We have found a configu-
ration that is capable of finding comparable results compared to the SA solver in fewer iterations.

We have used two sets of vectors. In the first set, we used the co-occurrences between orders;
in the second set, we used the co-occurrences between the matrix-IDs of the orders. These IDs
are identifiers for the location of the order in the distance matrix. In the last, we decoupled the
frequency and amount of garbage from the location of the order and used the latter to find the
OrderVectors. The co-occurrences found using this approach differ from the co-occurrences be-
tween the orders since there multiple sets of orders that use the same matrix-ID. Remark that two
vectors co-occur in a solution if they are part of the same trip.

For the OrderVectors, we have used two ways to find the vectors. For the first set of vectors
(which we will call V1), we used the co-occurrences between the orders to find the vectors. For the
second set (V2), we use the co-occurrences between the matrix-IDs of the orders. We have used our
own AdaGrad implementation to find the vectors. We ran the algorithm for 150 million iterations.
We set η = 0.001 and we found that the optimal weight function f , is given by

f(x) = x.

Remark that it takes about 6 (for 5-dimensional vectors) up to 9 hours (for 10-dimensional vectors)
to find the vectors. We found that 15-dimensional vectors gave the best results.

We have found that optimal results are found using T = 20 and α = 0.9993. Remark that
this value for α is bigger than the one used in the SA solver. We did this in order to increase the
effectiveness of the predictions, especially in the last half of a run (See Figures 20 and 21).

Short runs In the short runs, we found that the V2 vectors gave better results compared to the
V1 vectors. We tested the different scaling function described earlier in Section 4.3. We found that
the best scaling function in our case is the function given by

s(p) = p2.

For the distance weight function, we will use

w(d) =
1

d

in combination with dexp = 4 and threshold= 1. Furthermore, as mentioned earlier, we will use
T = 20 minutes and α = 0.9993. We present the results in Table 8.

Solver Runs Iterations Feasible Average Standard deviation

SA solver 100 300 million 80 5491.85 28
SSA solver, V1 50 280 million 7 5491.20 23
SSA solver, V2 100 270 million 74 5492.13 30

Table 8: Test results long runs with different solvers.

In Figures 22 and 23 we have visualized the development of the cost over time. We find that for
short runs, the number of iterations needed compared to the SA solver is 7 to 10 percent less with
the SSA Solver.
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Figure 20: Comparison of temperature over time, for α = 0.9992 and α = 0.9993.
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Figure 21: Comparison of temperature over time, for α = 0.9992 and α = 0.9993.

Long runs For long runs, we found even better results. In line with the short runs showed
the runs using the V2 vectors better results compared to the runs using the V1 vectors. We will
compare our results to the results found in the dataset. To recall, the SA Solver needed 15 billion
iterations to find solutions with an average cost of 5378.74 minutes and a standard deviation of 17
minutes. In total, 7 runs were feasible.
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Figure 22: Development of the cost in short runs. One standard deviation is presented.
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Figure 23: Development of the cost in short runs. One standard deviation is presented.

For the runs that we did with the V1 and V2 vectors we used the following parameters

T = 20 α = 0.9993 s(p) = p2

w(d) =
1

d
dexp = 4 threshold = 1
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In the runs with the V1 vectors, we did 14 billion iterations (7% less) and in the runs with the V2
vectors, we did 12.5 billion iterations (17% less) (see Table 9 for a summary of the results).

Solver Runs Iterations Feasible Average Standard deviation

SA solver 10 15 billion 7 5378.74 17
SSA solver, V1 9 14 billion 7 5378.77 17
SSA solver, V2 10 12.5 billion 9 5386.94 14

Table 9: Test results long runs with different solvers.

For the last runs with the SSA Solver, we have plotted the score for the last 30% iterations in
Figure 24. We find that for long runs, the number of iterations needed compared to the SA solver
is 7 to 17 percent less with the SSA Solver.
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Figure 24: Development of the cost in long runs with the SSA Solver. One standard deviation is presented.
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6 Discussion

In this thesis, we found that we can find comparable results with the SSA algorithm compared to
the SA solver with 7 to 17 percent fewer iterations. Furthermore, we believe that there is room
to improve the SSA algorithm to improve even further. While these percentages may sound like a
small difference, in a world where costs are high and margins are small, like the parcel business,
even small differences can have a big effect. The total revenue of the two parcel companies in the
world, UPS and FedEx is over 130 billion US dollar [13, 28].

Remark that if we would change the problem by removing and adding some orders, we can now
still find a high-quality solution more easily compared to SA. With the V1-vectors, we trained the
GloVe model to find vectors for each order. We will have to retrain the model using new data
points found by the solutions generated with the new orders. We can add these new results to the
cost function of AdaGrad and use the ‘old’ vectors as a starting point. In the case where we used
the co-occurrences between the Matrix IDs, which we used to find the V2-vectors, we can add new
orders much more easily if the model has already been trained with orders that have the same
Matrix ID. We can create instances of the capacitated vehicle routing problem where we use that
(parts of a) street or small residential/commercial areas have the same Matrix ID.

One of the great features is that if we have to retrain the model we do not necessarily have
to start from the beginning. We can just add the new data point to the dataset and its error to
the objective function of the SGD algorithm and do additional iterations starting with the existing
vectors.

One of the advantages of using the vectors trained using the Matrix ID co-occurrences is that
this approach is frequency-independent. The vectors we are interested in for such a problem are
based on how frequently the different locations occur in each other’s context.

Remark that in our experiment, we have let the penalties for going over time or picking up too
much garbage untouched, we did this to keep the number of different variables within range. The
current penalties have been optimized for the ‘basic’ SA solver. It could be the case that these
penalties are not optimal for the SSA algorithm.

Future research As suggested above we would like to point out that the SSA algorithm used
currently and its implementation can be optimized. We believe that, especially for longer runs, it
could be beneficial to make more pre-computations in order to increase the iterations per second.
Also, we have tested many combinations of parameters, but since there are many combinations,
there could be a combination of variables that will give better results.

Since we only tested our algorithm with one dataset it would be useful to test the effect of changing
some variables. As an example, the capacity of the truck can be changed. Other variables include
the driving times and emptying times. We expect that we do not have to retrain the model com-
pletely since we can use the co-occurrences of the locations and if the locations don’t change we
expect that the influence of a larger or smaller capacity on the effect of SSA is small. We noticed
that for most good solutions each truck did one or two trips per day. However, if the driving times
change considerably, the vectors should be retrained using a new set of good solutions since we do
not know whether the solutions are still considered good under the new driving times.

An important area that we did not experiment with is the robustness of our solutions. With
our case study, we assumed that the driving times and garbage to be picked up are constant. In
real life this is of course far but the truth. We would suggest to run simulations with normally
distributed driving times (possibly taking into account time of day) and garbage amounts. With
the data found, one could create a robustness function and add this to the objective function in
order to maximize robustness.
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Concluding remarks In a changing economy, the need for high-quality vehicle scheduling so-
lutions increases. In this thesis, we have presented a way to integrate machine learning into Local
Search. With this new algorithm, we were able to reduce the number of iterations needed for
comparable solutions by 7 to 17 percent.

With this improvement, we have shown that it is beneficial to integrate machine learning into
a vehicle scheduling process. Also, this algorithm is more future proof since new orders can be
added more easily. In the approach where we have used OrderVectors based on the location of the
orders, we can add new orders to existing locations without the need to retrain the model. These
vectors also showed to give the best results.
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