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Introduction

In this thesis we study Lie group actions on symplectic manifolds. The origin of this area,
equivariant symplectic geometry, lies in classical mechanics where the phase space of a
physical system represents a symplectic manifold and the symmetries of the system are re-
presented by an action of a Lie group on the phase space. The evolution of a physical system
in time is governed by a Hamiltonian function on its phase space. A successful generalization
of such a Hamiltonian function is the so-called momentum map, introduced by Kostant [27]
and Souriau [40].

Equivariant symplectic geometry is related to many other areas in mathematics and theoreti-
cal physics such as completely integrable systems, Hamiltonian dynamics, Poisson geometry,
Morse–Bott theory, representation theory, combinatorics, equivariant cohomology, algebraic
geometry, (almost) complex geometry, gauge theory and quantum field theory. The aim of
this thesis is to explore some of these relations by studying several spectacular theorems con-
cerning Hamiltonian torus actions on symplectic manifolds. Specifically, we will prove the
Marsden–Weinstein–Meyer symplectic reduction theorem, the Atiyah–Guillemin–Sternberg
convexity theorem and the Duistermaat–Heckman theorems. Another aim is to provide a
text in which these theorems are studied assuming minimal background knowledge.

Structure, Prerequisites and Assumptions

This thesis is structured as follows.

In the first chapter we briefly discuss symplectic geometry to better understand the notion
of a symplectic form and other relevant structures, namely Riemannian metrics, almost
complex structures and the Poisson bracket. If more background information is desired, we
recommend to supplement your knowledge on this subject with, for example, chapters 1, 2,
6-8, 12, 13, 18, 19 from Cannas da Silva’s book Lectures on Symplectic Geometry [9].

The purpose of the second chapter is two-fold. First, we recall some theory regarding
Lie groups and Lie group actions on manifolds. Then we introduce our main object of
study, namely the momentum map associated to a Hamiltonian action of a Lie group on a
symplectic manifold. We use the momentum map to prove the Marsden–Weinstein–Meyer
symplectic reduction theorem, which is a method of taking quotients in the setting of sym-
plectic geometry.

From the third chapter onward, we restrict our attention to the Abelian Lie groups called
tori. We first state some facts about tori and discuss how we can use the exponential map of
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a torus to ‘generate subtori’. Furthermore, this chapter provides a fast introduction to repre-
sentation theory and Morse–Bott theory. Then we incorporate these topics into our study of
the momentum map and use it to prove the Atiyah–Guillemin–Sternberg convexity theorem.

The fourth chapter is on the Duistermaat–Heckman theorems. After briefly studying princi-
pal bundles and connection one-forms, we prove the Duistermaat–Heckman theorem which
compares certain de Rham cohomology classes of reduced spaces (obtained by symplectic
reduction). Finally, we study the Cartan model of equivariant differential forms. We use
this model to prove the Atiyah–Bott–Berline–Vergne localization theorem in the more gen-
eral setting of equivariant cohomology. In this way, we obtain the Duistermaat–Heckman
localization theorem as a corollary.

We assume that the reader is familiar with differential topology on the level of a first course
on smooth manifolds, for example, chapters 1-5, 7-10, 14-17, (20-21) of Lee’s Introduction
to Smooth Manifolds [28].

All manifolds are assumed to be smooth, second-countable and Hausdorff, possibly with
boundary.
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Chapter 1

Symplectic Geometry

1.1 Symplectic Linear Algebra

Definition 1.1.1. Let (V, ω) be a finite-dimensional real vector space V together with a
skew-symmetric bilinear map ω : V × V → R. The pair (V, ω) is a symplectic vector
space if the map ω is nondegenerate, that is: ω(v, w) = 0 for all w ∈ V implies v = 0. We
refer to the map ω as the symplectic structure of (V, ω).

We define the rank of a skew-symmetric bilinear map ω : V × V → R to be the rank of the
natural linear map

ω : V → V ∗, v 7→ ω(v, ·),
which we also denote by ω. Similarly, we define the kernel of ω to be the kernel of
ω : V → V ∗. We see that ω is nondegenerate if and only if ω has full rank if and only
if ω has trivial kernel.

The following theorem describes a standard form for nondegenerate skew-symmetric bilin-
ear maps, which may be proven using a skew-symmetric analogue of the Gram-Schmidt
procedure.

Theorem 1.1.2. [9, Theorem 1.1] Let (V, ω) be a symplectic vector space. Then there
exists an ordered basis e1, . . . , em, f1, . . . , fm of V such that the following holds, for all
j, k = 1, . . . ,m:

ω(ej , ek) = 0 = ω(fj , fk), ω(ej , fk) = δj,k. (1.1)

In particular, this theorem implies that any symplectic vector space (V, ω) is even-dimensional.
An ordered basis as in Theorem 1.1.2 is called a symplectic basis.

Definition 1.1.3. Let (V, ω) and (V ′, ω′) be two symplectic vector spaces of dimension 2m.
A symplectomorphism between (V, ω) and (V ′, ω′) is a linear isomorphism Φ : V → V ′

which preserves the symplectic structure, meaning that

Φ∗ω′ = ω.

In this case, we say that (V, ω) and (V ′, ω′) are symplectomorphic.

In view of Theorem 1.1.2, we find that two symplectic vector spaces are symplectomorphic
if and only if their dimensions agree.
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Definition 1.1.4. Let (V, ω) be a symplectic vector space, and let W ⊆ V be a linear
subspace. The symplectic complement, denoted Wω, is the linear subspace of V defined
by

Wω := {v ∈ V : ω(v, w) = 0 for all w ∈W}

Note that the symplectic complement does not share all of the properties of the orthogonal
complement. For example, the intersection of W with its symplectic complement Wω is not
necessarily trivial.

Definition 1.1.5. Let (V, ω) be a symplectic vector space, and W ⊆ V a linear subspace.
The subspace W is called

• isotropic if W ⊆Wω,

• coisotropic if Wω ⊆W ,

• symplectic if W ∩Wω = {0},

• Lagrangian if W = Wω.

However, the symplectic complement does have some properties in common with the notion
of orthogonal complement, as the following proposition asserts.

Proposition 1.1.6. [34, Lemma 2.1.1] Let (V, ω) be a symplectic vector space, and let
W ⊆ V be a linear subspace. Then

dimW + dimWω = dimV, (Wω)ω = W.

1.2 Symplectic Manifolds

Definition 1.2.1. Let M be a manifold. A two-form ω ∈ Ω2(M) is a symplectic form
if it is closed (dω = 0) and the skew-symmetric bilinear map ωp : TpM × TpM → R is
nondegenerate for every p ∈ M . In this case, the pair (M,ω) is called a symplectic
manifold.

Given any two-form η ∈ Ω2(M), we define the rank of η at a point p ∈ M to be the rank
of the resulting linear map ηp : TpM → T ∗pM . Thus, a symplectic form is a closed two-form
on M which has full rank everywhere. Note that if (M,ω) is a symplectic manifold, each
pair (TpM,ωp) is a symplectic vector space.

As a consequence of Theorem 1.1.2, we find that a symplectic manifold is necessarily even-
dimensional.

Example 1.2.2. We describe the standard symplectic structure on R2m.
Let x1, . . . , xm, y1, . . . , ym be standard coordinates on R2m. Define ω0 ∈ Ω2(R2m) by

ω0 =

m∑
j=1

dxj ∧ dyj ,
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which is clearly nondegenerate. As the de Rham differential squares to zero, we find that
ω0 is closed. Thus, we conclude that (R2m, ω0) is a symplectic manifold. Note that for each
p ∈M the ordered basis(

∂

∂x1

)
p

, . . . ,

(
∂

∂xm

)
p

,

(
∂

∂y1

)
p

, . . . ,

(
∂

∂ym

)
p

is a symplectic basis of (TpM,ωp).

Definition 1.2.3. Let (M,ω) and (M ′, ω′) be 2m-dimensional symplectic manifolds. A
symplectomorphism between (M,ω) and (M ′, ω′) is a diffeomorphism Φ : M →M ′ which
preserves the symplectic forms in the sense that Φ∗ω′ = ω. We denote by Sympl(M,ω) the
group of symplectomorphisms from (M,ω) to itself.

Definition 1.2.4. Let (M,ω) be a symplectic manifold, and let S ⊆M be a submanifold.
The submanifold S is isotropic (coisotropic, symplectic, Lagrangian) if for all p ∈ S
the tangent space TpS is an isotropic (coisotropic, symplectic, Lagrangian) subspace of the
symplectic vector space (TpM,ωp).

Example 1.2.5. We show that the unit sphere S2 ⊆ R3 admits a symplectic form. Define
the two-form ω ∈ Ω2(S2) pointwise by

ωp(u, v) = 〈p, u× v〉, for u, v ∈ TpS2,

where 〈·, ·〉 is the Euclidean inner product and × denotes the cross product. Note that ω
is trivially closed being a two-form on a two-manifold. Figure 1.1 illustrates that ω is a
nondegenerate two-form on S2.

Figure 1.1: By application of the right hand rule we deduce that ω is a nondegenerate form
on the sphere S2.

By checking the values of ωp on basis tangent vectors of TpS2, we find that ω is the standard
volume form on the two-sphere, namely:

ω = x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2 ∈ Ω2(S2).

By similar arguments, we find that any orientable surface admits a symplectic form.
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Which manifolds admit a symplectic structure?

We study necessary properties of a manifold to be a symplectic manifold. The main purpose
of this subsection is to show that a symplectic manifold is orientable and to recall some
theory regarding de Rham cohomology.

Proposition 1.2.6. Let V be a 2m-dimensional vector space equipped with a skew-symmetric
bilinear form ω. Then ω is symplectic if and only if m-fold wedge product ωm = ω ∧ · · · ∧ω
does not vanish.

Proof. In view of Theorem 1.1.2, we may assume without loss of generality that (V, ω) =
(Rn, ω0) (under suitable identifications). We find that the m-fold wedge product of ω0 =∑m
j=1 dxj ∧ dyj is given by

ωm0 = m! dx1 ∧ dy1 ∧ · · · ∧ dxm ∧ dym. (1.2)

It follows that ωm0 does not vanish.

We prove the converse statement by contraposition. Suppose that kerω 6= {0}. Then there
exists a nonzero vector u ∈ V such that ω(u, ·) ≡ 0. We find that

iuω
m = m(ıuω) ∧ ωm−1 = 0,

which implies that ωm vanishes.

Let (M,ω) be a 2m-dimensional symplectic manifold. The above proposition implies that
ωmp 6= 0 for all p ∈ M , or equivalently, that ωm ∈ Ω2m(M) is a volume form. Recall that
a volume form induces an orientation [28, Proposition 15.5]. Thus, a symplectic manifold
(M,ω) is canonically oriented through the symplectic form. The above discussion and the
constant appearing in Equation (1.2) leads to the following definition.

Definition 1.2.7. Let (M,ω) be a 2m-dimensional symplectic manifold. The Liouville
volume form on M is the volume form ωm

m! ∈ Ω2m(M).

Whenever we use the orientability of a symplectic manifold (M,ω), we refer to the orienta-
tion on M induced by the Liouville volume form.

Proposition 1.2.8. [4, Proposition II.1.6] Let (M,ω) be a 2m-dimensional compact con-
nected symplectic manifold without boundary. For each k = 1, . . . , n the de Rham coho-
mology group H2k

dR(M) is non-trivial.

Proof. By definition, the symplectic form ω is closed, so that ω represents a cohomology
class [ω] ∈ H2

dR(M) and similarly we have [ωk] ∈ H2k
dR(M) for k = 1, . . . ,m. For the sake of

contradiction, suppose that H2k
dR(M) = {0} for some k. Then ωk = dη for some 2k− 1-form

η ∈ Ω2k−1(M). Since ω is closed and the de Rham differential is a derivation, we have
d(η ∧ ωm−k) = ωm. By Stoke’s theorem, we have∫

M

ωm =

∫
M

d(η ∧ ωm−k) =

∫
∂M

η ∧ ωm−k = 0,

which contradicts the fact that ωm ∈ Ω2m(M) is a volume form.
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Example 1.2.9. Recall that H2
dR(S2m) = {0} for m > 1 [28, Theorem 17.21]. In view of

Proposition 1.2.8, we find that the 2m-sphere S2m (m > 1) does not admit a symplectic
structure.

Thus, the even-dimensional de Rham cohomology groups form a potential obstruction for
the existence of a symplectic structure.

1.3 Riemannian Manifolds

We now discuss another important structure on manifolds, namely Riemannian metrics.
The main purpose of this subsection is to quickly get to the definition of a geodesic, which is
necessary to define the exponential map of a Riemannian metric. In the subsequent sections,
we will use the exponential map of a Riemannian metric to construct a local model of a
manifold. This subsection is based on Lee’s Introduction to Riemannian Manifolds [29].

Definition 1.3.1. Let M be a manifold. A Riemannian metric on M , denoted by 〈·, ·〉
or m, is a smooth assignment of an inner product 〈·, ·〉p on the tangent space TpM to each
point p ∈ M . We require a Riemannian metric to be smooth in the sense that, for vector
fields X,Y ∈ X(M), the real-valued function M 3 p 7→ 〈Xp, Yp〉p is smooth.

A Riemannian manifold is a pair (M, 〈·, ·〉), where M is a manifold and 〈·, ·〉 is a Rie-
mannian metric on M .

A Riemannian metric always exists, as the following proposition asserts. It may be proven
using a partition of unity argument.

Proposition 1.3.2. [29, Proposition 2.4] Every manifold admits a Riemannian metric.

Definition 1.3.3. Let (M,m) and (M ′,m′) be Riemannian manifolds. A diffeomorphism
F : M → M ′ is an isometry from (M,m) to (M ′,m′) if the map F preserves the Rie-
mannian metric, meaning that F ∗m′ = m. Explicitly, a diffeomorphism F is an isometry
if

(F ∗m′)p(u, v) = m′F (p)(dFp(u), dFp(v)) = mp(u, v), for p ∈M, u, v ∈ TpM.

An isometry of (M,m) is an isometry from (M,m) to itself.

Definition 1.3.4. Let π : E →M be a vector bundle over a manifold M , and let Γ(E) be
the vector space of sections corresponding to π : E →M . A connection on E is a map

∇ : X(M)× Γ(E)→ Γ(E), (X, s) 7→ ∇Xs,

which satisfies the following properties, for all X ∈ X(M), s ∈ Γ(E), f ∈ C∞(M):

• ∇Xs is C∞(M)-linear in X;

• ∇Xs is R-linear in s;

• ∇X(fs) = LX(f)s+∇Xs.

Let M be a manifold, and consider the tangent bundle TM → M . Recall that Γ(TM) =
X(M), so that a connection on the tangent bundle is a map

∇ : X(M)× X(M)→ X(M)

satisfying the three properties above. In this setting, we have the following notion.
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Definition 1.3.5. Let M be a manifold, and let ∇ be a connection on the tangent bundle
TM →M . We define the torsion T∇ of the connection ∇ by

T∇ : X(M)× X(M)→ X(M), T (X,Y ) = ∇XY −∇YX − [X,Y ].

A connection on the tangent bundle TM is called torsion-free if T∇ ≡ 0.

Definition 1.3.6. Let (M, 〈·, ·〉) be a Riemannian manifold. A connection ∇ on the tangent
bundle TM is compatible with the metric 〈·, ·〉 if for all vector fields X,Y, Z ∈ X(M),
we have:

LX〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉.

Theorem 1.3.7 (Levi-Civita Connection). [29, Theorem 5.10] Let (M,m) be a Rie-
mannian manifold. There exists a unique ∇ on the tangent bundle TM which is compatible
with the metric m and torsion-free. This connection is called the Levi-Civita connection
associated to the metric m.

Definition 1.3.8. Let M be a manifold, and let γ : I →M be a smooth curve. A vector
field along the curve γ is a smooth map V : I → TM such that V (t) ∈ Tγ(t)M for all
t ∈ I. We denote by X(γ) the vector space of vector fields along the curve γ. By definition
of the pullback bundle, we have X(γ) = Γ(γ∗(TM)).)

Let M be a manifold, and suppose γ : I → M is a smooth curve. A natural example of a
vector field along γ is the map γ′ defined by

γ′ : I → TM, s 7→ γ′(s) :=
dγ

dt

∣∣∣∣
t=s

.

We will need the following proposition.

Proposition 1.3.9 (Covariant Derivative Along a Curve). [29, Theorem 4.24] Let M
be a manifold and let ∇ be a connection on the tangent bundle TM . Suppose γ : I → M
is a smooth curve. Then the connection ∇ determines a unique operator

Dt : X(γ)→ X(γ)

satisfying the following properties, for all V ∈ X(γ) and f ∈ C∞(I):

• Dt is linear over R.

• Dt(fV ) = df
dtV + fDt(V ).

• If there exists a local vector field Ṽ defined on a neighborhood of γ(I) such that
V (t) = Ṽγ(t) for all t ∈ I, then

DtV (t) = ∇γ′(t)Ṽ .

The map Dt : X(γ)→ X(γ) is called the covariant derivative along the curve γ. Finally,
we introduce the notion of a geodesic:

Definition 1.3.10. Let M be a manifold, and let ∇ be a connection on the tangent bundle
TM . A smooth curve γ : I → M is a geodesic if the covariant derivative of the velocity
vector field γ′ ∈ X(γ) along γ is identically zero, that is: Dt(γ

′) ≡ 0.
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Note that we only used a connection on the tangent bundle to define geodesics, and that
we did not make use of a Riemannian structure. Whenever we refer to a geodesic on a
Riemannian manifold (M,m), we implicitly assume that the curve is a geodesic with respect
to the Levi-Civita connection associated with the metric m. Fortunately, geodesics always
exist and are unique.

Theorem 1.3.11. [29, Corollary 4.28, 6.22] Let M be a manifold, and let ∇ be a connection
in the tangent bundle TM . For each p ∈M and each tangent vector v ∈ TpM , there exists
a unique maximal geodesic γ : I → M satisfying γ(0) = p and γ′(0) = v, defined on an
open interval I containing 0. If in addition, the Riemannian manifold M is compact, then
maximal geodesics exist for all time.

Geodesics are well-behaved under composition with an isometry:

Proposition 1.3.12. [29, Corollary 5.14] Let (M,m) and (M ′,m′) be Riemannian mani-
folds. Suppose that F : M →M ′ is an isometry. Then F takes geodesics to geodesics. More
precisely, if γ is a geodesic in (M,m), then the composition F ◦ γ is a geodesic in (M ′,m′).

Exponential map of a Riemannian metric

We now introduce the exponential map of a Riemannian metric. There exists also an
exponential map of a Lie group, which we will introduce later on. The construction of an
exponential map is roughly as follows. Suppose we have a manifold endowed with some
structure. We consider the curve on the manifold which reflects properties of the structure
and satisfies some specified initial conditions, then the exponential map is defined to be the
value of the curve at time t = 1. In the case of a Riemannian manifold (M,m), the structure
on the manifold is the Riemannian metric, and the relevant curves are the geodesics with
respect to the Levi-Civita connection.

Definition 1.3.13. Let (M,m) be a Riemannian manifold, and let p ∈ M . Let U be am
open neighborhood of 0 ∈ TpM such that for each v ∈ U the maximal geodesic γv(t) satis-
fying γv(0) = p, γ′v(0) = v is defined for all t ∈ [0, 1]. (If M is compact, we set U := TpM .)

We define the exponential map of the Riemannian metric (at p), denoted by expp, to
be the map

expp : TpM ⊇ U →M, v 7→ γv(1),

where γv : R → M is the unique maximal geodesic satisfying γv(0) = p and γ′(0) = v. In
view of Theorem 1.3.11 this map is well-defined.

We summarize some of its properties.

Proposition 1.3.14. [29, Proposition 5.19] Let (M,m) be a Riemannian manifold, and let
p ∈M . The exponential map expp : TpM ⊇ U →M of the Riemannian metric satisfies the
following properties.

• The exponential map is smooth.

• For each tangent vector v ∈ TpM , the geodesic γv starting at p with initial velocity v
is given by

γv(t) = expp(tv). (1.3)
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• The differential d(expp)0 : TpM → TpM at 0 is the identity map on the tangent space
TpM .

By virtue of the inverse function theorem, the latter property implies that expp is a local
diffeomorphism from an open neighborhood of 0 ∈ TpM to an open neighborhood of p ∈M .
In this way, we obtain a local model (a local parametrization compatible with the relevant
structures) of each point in the manifold.

1.4 The Darboux Theorem

We have seen that symplectic vector spaces of the same dimension are symplectomorphic.
A natural question would be to ask if symplectic manifolds of the same dimension are also
symplectomorphic. It turns out that this is true locally, a result due to Darboux. We will
take the following theorem, due to A. Weinstein and J. Moser, for granted.

Theorem 1.4.1 (Moser–Weinstein Theorem). [4, Theorem II.1.9] Let S ⊆ M be a
submanifold of M . Let ω0 and ω1 be two symplectic forms on M such that (ω0)p = (ω1)p
for all p ∈ S. Then there exists a neighborhood U of S in M and a smooth map Φ : U →M
such that i∗Φ = IdS and Φ∗ω1 = ω0.

We will use it to prove the Darboux Theorem. Note the role played by the exponential map
of a Riemannian metric to identify a neighborhood of the manifold with a neighborhood of
the tangent space.

Corollary 1.4.2 (Darboux Theorem). [4, Corollary II.1.11] Let (M,ω) be a 2m-dimensional
symplectic manifold. For every p ∈ M there exist local coordinates x1, . . . , xm, y1, . . . , ym
centered at p in which the symplectic form ω on M is the standard symplectic form

∑m
j=1 dxj∧

dyj.

Proof. Let p ∈ M . Choose a Riemannian metric on M , and consider the exponential map
of the metric. By Proposition 1.3.14, there exists an open neighborhood V of 0 in TpM
and an open neighborhood U of p in M such that expp maps V diffeomorphically onto U ,
denote ϕ = expp : V → U . Then (ϕ−1)∗(ωp), ω ∈ Ω2(U) are two symplectic forms on U ,
which coincide at the submanifold Y := {p}.

By application of the Moser–Weinstein theorem (and shrinking U if necessary), there exists
an open neighborhood U ′ of p in M and a diffeomorphism Φ : U → U ′ such that

Φ∗ω = (ϕ−1)∗(ωp). (1.4)

By Theorem 1.1.2, there exist coordinates x1, . . . , xm, y1, . . . , ym on V ⊆ TpM such that
ωp =

∑
j dxj ∧ dyj . Now, Equation (1.4) implies that

(Φ ◦ ϕ)∗ω = ωp =

m∑
j=1

dxj ∧ dyj ,

which proves the claim.

As a consequence of the Darboux Theorem, we conclude that all symplectic manifolds of
equal dimension are locally symplectomorphic.
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1.5 Almost Complex Structures

We start this subsection with a motivating example.

Example 1.5.1. Consider Cm with the Hermitian inner product

H : Cm × Cm → C, H(u, v) =

m∑
j=1

ujvj .

Define a map J : Cm → Cm by Ju := iu. Note that J2 = −IdCm . We decompose the
Hermitian form into a real part and an imaginary part:

H(u, v) = 〈u, v〉+ iω0(u, v),

so that 〈·, ·〉 = Re H(·, ·) and ω0(·, ·) = Im H(·, ·). Note that 〈·, ·〉 is the standard Euclidean
inner product on Cm ∼= R2m. Since H(u, v) = H(v, u), we have that ω0 : Cm × Cm → R is
a skew-symmetric bilinear map. Note that H(u, Jv) = iH(u, v), this implies that

〈u, v〉 = ω0(u, Jv), for u, v ∈ Cm.

From this equality, it follows that ω0 is nondegenerate. Thus, ω = Im H is a symplectic
form on Cm. Writing the complex coordinates on Cm as zj = xj + iyj , it is readily verified
that ω is the standard symplectic form

∑m
j=1 dxj ∧ dyj . Indeed, let u ∈ Cm be an arbitrary

nonzero vector, then
ω0(u, Ju) = 〈u, u〉 > 0.

Since H(Ju, Jv) = iiH(u, v) = H(u, v), we find that J preserves the symplectic structure
ω0 in the sense that

ω0(Ju, Jv) = ω0(u, v), for all u, v ∈ Cm.

These observations motivate the following definition.

Definition 1.5.2. A linear complex structure on a real finite-dimensional vector space
V is an automorphism J : V → V satisfying J2 = −IdV .

Let (V, ω) be a symplectic vector space. A complex structure J on V is called ω-compatible
if ω(Ju, Jv) = ω(u, v) for all u, v ∈ V and ω(u, Ju) for all nonzero u ∈ V .

Let (V, ω) be a symplectic vector space, and suppose J is a complex structure on V . Note
that the condition that J is ω-compatible is equivalent to the condition that the symmetric
bilinear form mJ(u, v) := ω(u, Jv) defines an inner product on V . We generalize this
definition to a symplectic manifold, as follows.

Definition 1.5.3. An almost complex structure on a manifold M is a section J ∈
Γ(End(TM)) such that at each point p ∈ M the map Jp : TpM → TpM satisfies J2

p =
−IdTpM . The pair (M,J) is called an almost complex manifold.

Let (M,ω) be a symplectic manifold. An almost complex structure J on M is called ω-
compatible if at each p ∈M we have:
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• ωp(Jpu, Jpv) = ωp(u, v) for all tangent vectors u, v ∈ TpM ;

• ωp(u, Jpu) > 0 for each nonzero tangent vector u ∈ TpM .

Let (M,ω) be a symplectic manifold equipped with an almost complex structure J . The
almost complex structure is ω-compatible if and only if the map mJ , defined pointwise by

(mJ)p : TpM × TpM → R, (mJ)p(u, v) := ωp(u, Jv), (1.5)

is a Riemannian metric on M . The almost complex structure J turns each tangent space
(TpM,Jp) into a complex vector space via

(a+ ib) · v := av + bJp(v), for a, b ∈ R, v ∈ TpM.

Proposition 1.5.4 (Polar Decomposition [37, Theorem 6.59]). Let (H, 〈·, ·〉) be a Hilbert
space, and let A : H → H be an invertible continuous linear operator. Then there exists
a unique decomposition A = |A|J into a symmetric positive-definite operator |A| and an
isometry J . The operators A and |A| commute.

Proposition 1.5.5. [4, Lemma II.2.1.] Let (V, ω) be a symplectic vector space. Then there
exists an ω-compatible complex structure J on V .

Proof. We equip the vector space V with an inner product 〈·, ·〉. As ω and 〈·, ·〉 are nonde-
generate pairings, the equation

〈Au, v〉 = ω(u, v), for u, v ∈ V (1.6)

defines a linear isomorphism A : V → V .

Let u, v ∈ V be arbitary vectors. We find

〈Au, v〉 = ω(u, v) = −ω(v, u) = −〈Av, u〉 = −〈u,Av〉,

it follows that A is skew-symmetric with respect to 〈·, ·〉, that is, we have AT = −A.
Applying the polar decomposition, we write A = |A|J . Since |A| is symmetric and A is
skew-symmetric, we obtain

JT = (|A|−1A)T = AT |A|−1 = −A|A|−1 = −|A|−1A = −J. (1.7)

The map J is an isometry for the inner product 〈·, ·〉, meaning that Id = JTJ . Combining
this with Equation (1.7) we find J2 = −Id, so that J is a complex structure on V . We
compute

−|A|J = −A = AT = (|A|J)T = JT |A|T = −J |A|,

which shows that |A| and J commute. Thus, for all u, v ∈ V , we obtain:

ω(Ju, Jv) = 〈AJu, Jv〉 = 〈JAu, Jv〉 = 〈JTJAu, v〉 = 〈Au, v〉 = ω(u, v). (1.8)

Using positive-definiteness of |A|, we find for all nonzero vectors u ∈ V that:

ω(u, Ju) = 〈Au, Ju〉 = 〈−JAu, u〉 = 〈|A|u, u〉 > 0. (1.9)

By Equation (1.8) and Equation (1.9), we conclude that J is an ω-compatible complex
structure on the symplectic vector space (V, ω).
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Remark 1.5.6. Note that the inner product defined by mJ(·, ·) := ω(·, J ·) = 〈|A|·, ·〉 is
generally different from the inner product 〈·, ·〉 that we started with.

Let (M,ω) be a symplectic manifold. By Proposition 1.3.2 there exists a Riemannian metric
〈·, ·〉 on M . For each p ∈M we obtain an ω-compatible complex structure Jp on the tangent
space (TpM,ωp). One can verify that the polar decomposition is smooth (cf. [9, 12.2]), so
that we obtain the following corollary:

Corollary 1.5.7. Let (M,ω) be a symplectic manifold. Then there exists an ω-compatible
almost complex structure J on (M,ω).

The following proposition gives a useful criterion to check that a submanifold is a symplectic
submanifold.

Proposition 1.5.8. Let (M,ω) be a symplectic manifold equipped with an ω-compatible
almost complex structure J . Suppose S ⊆M is a submanifold which is J-invariant, that is:
Jp(TpS) ⊆ TpS for all p ∈ S. Then (S, i∗ω) is a symplectic submanifold of (M,ω), where
i : S ↪→M denotes the inclusion map.

Proof. Let p ∈ S, and let v ∈ TpS be any nonzero tangent vector. Since the submanifold S
is J-invariant, we have that Jp(v) ∈ TpS. As J is ω-compatible, it follows that

ωp(v, Jp(v)) > 0,

which implies that the restricted form i∗ω is nondegenerate. As the de Rham differential
and pullbacks commute, we also have that i∗ω is closed. We conclude that (S, i∗ω) is a
symplectic submanifold.

1.6 Hamiltonian Vector Fields

Let (M,ω) be a symplectic manifold. By nondegeneracy of ω, we obtain a bijection between
vector fields on M and one-forms on M through the map

ω : X(M)→ Ω1(M), V 7→ iV ω.

This leads to the following definition.

Definition 1.6.1. Let (M,ω) be a symplectic manifold, and let H ∈ C∞(M) be a smooth
real-valued function on M . The unique vector field XH ∈ X(M) satisfying iXHω = dH is the
Hamiltonian vector field of H. In this case, the function H is called the Hamiltonian
for the vector field XH ∈ X(M).

Equivalently, a Hamiltonian vector field is a vector field V such that the one-form iV ω is
exact.

Definition 1.6.2. Let (M,ω) be a symplectic manifold. A vector field V ∈ X(M) is a
symplectic vector field if the one-form iV ω is closed.

Suppose V ∈ X(M) is a symplectic vector field. Since dω = 0, Cartan’s formula

LV = diV + iV d

implies that the vector field V is symplectic if and only if LV ω = 0. By definition of the
Lie derivative, this is equivalent to the flow ρt of V preserving the symplectic structure,
meaning that ρ∗tω = ω for all t.
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Remark 1.6.3. By virtue of the Poincaré lemma any closed form is locally exact. This
explains why symplectic vector fields are also called locally Hamiltonian vector fields.

Definition 1.6.4. Let (M,ω) be a symplectic manifold. We define the Poisson bracket,
denoted by {·, ·}, on the algebra of smooth functions C∞(M) as the following bilinear map:

{·, ·} : C∞(M)× C∞(M)→ C∞(M), {f, g} := ω(Xf , Xg).

The following proposition summarizes some of the properties of the Poisson bracket, an
important consequence being that (C∞(M), {·, ·}) is a Lie algebra.

Proposition 1.6.5. [9, 18.3] Let M be a manifold. The Poisson bracket {·, ·} on C∞(M)
satisfies the following properties. For smooth real-valued functions f, g, h ∈ C∞(M), we
have:

• {f, g} = −{g, f} (Skew-symmetry);

• {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi-identity);

• {f, gh} = {f, g} · h+ g · {f, h} (Leibniz rule);

• X{f,g} = −[Xf , Xg] (Preservation of brackets).

Theorem 1.6.6. [9, Theorem 18.9] Let (M,ω) be a symplectic manifold, and let H, f ∈
C∞(M) be smooth functions on M . Then f and H Poisson commute ({f,H} = 0) if and
only if f is constant along the integral curves of the Hamiltonian vector field XH ∈ X(M).

Proof. Denote the flow of the Hamiltonian vector field XH by ρt. By definition of a Hamil-
tonian vector field and Cartan’s magic formula, we have

LXHf =
d

dt

∣∣∣∣
t=0

ρ∗t f =
d

dt

∣∣∣∣
t=0

f(ρt(·))

= iXHdf = iXH iXfω = ω(Xf , XH) = {f,H},

which proves the assertion.

Let (M,ω) be a symplectic manifold, and H ∈ C∞(M) a smooth function. An important
special case of this proposition is that the integral curves of a Hamiltonian vector field XH

are contained in the level set of H, that is,

H(ρt(p)) = H(p), for all t,

where ρt denotes the flow of XH ∈ X(M). If we think of the Hamiltonian H as the total
energy, this observation amounts to the conservation of total energy. The following example
is in similar spirit.

Example 1.6.7 (Hamilton’s Equations of Motion [9, 18.2]). Consider the phase-space
R2m with coordinates (q1, . . . , qm, p1, . . . , pm), equipped with the standard symplectic form
ω0 =

∑
j dqj ∧ dpj . Here we think of the coordinates qj as position vectors and the coor-

dinates pj as momentum vectors of a physical system, which is subject to a Hamiltonian
function H : R2m → R.
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Let γ(t) = (q1(t), . . . , qm(t), p1(t), . . . , pm(t)) denote an integral curve of the Hamiltonian
vector field XH . Hamilton’s equations of motions dictate that the component functions
satisfy

dqj
dt

=
∂H

∂pj
,
dpj
dt

= −∂H
∂qj

, j = 1, . . . ,m.

It follows that the vector field XH ∈ X(R2m) can be written as:

XH =

m∑
j=1

∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj
.

This explains why the defining relation iXHω = dH of a Hamiltonian vector field is com-
monly refered to as Hamilton’s equations. Note that the Poisson bracket is given by

{f, g} = ω(Xf , Xg) =
m∑
j=1

∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj
,

so that we can rewrite Hamilton’s equations, as follows:

{H, pj} =
dpj
dt
, {H, qj} =

dqj
dt

j = 1, . . . ,m.

Summary

In this chapter we studied several structures regarding symplectic geometry. We looked
at symplectic structures, Riemannian metrics, almost complex structures and the Poisson
bracket. Furthermore, we defined Hamiltonian vector fields using the symplectic structure.
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Chapter 2

Momentum Maps and
Symplectic Reduction

In the previous chapter we saw that any smooth real-valued function on a symplectic ma-
nifold (M,ω) gives rise to a Hamiltonian vector field. We now want to explore this notion
in the setting of a Lie group G acting on our manifold (M,ω) in a “Hamiltonian fashion”.
The main goal of this section is to introduce Lie groups and the momentum map µ, which
encodes how the Lie group G generates Hamiltonian vector fields on M .

We start with a recollection of the definitions and basic properties concerning Lie groups.
Then we introduce an important tool called the exponential map of a Lie group and apply
it in our study of Lie group actions on manifolds. Next we define Hamiltonian actions
and their associated momentum maps. Finally, we will use the previously mentioned tools
to prove the symplectic reduction theorem, which states that (under some conditions) the
quotient of a symplectic manifold by a Lie group is also a symplectic manifold.

2.1 Lie Groups

The following two sections are based on M. Audin’s Torus Actions on Symplectic Manifolds
[4], E. van den Ban’s Lecture Notes - Lie Groups [5], and J. Lee’s Introduction to Smooth
Manifolds [28].

Definition 2.1.1. A Lie group is a manifold G equipped with a compatible group struc-
ture, meaning that the group operations multiplication m : G × G → G, (g, h) 7→ gh and
inversion j : G→ G, g 7→ g−1 are smooth maps.

Suppose we have a subgroup H of a Lie group G. We say that H is a Lie subgroup of G
if it also an embedded submanifold of G. This definition ensures that H is a Lie group with
group operations inherited from G by restriction. Indeed, since H is a submanifold, the
inclusion map i : H ↪→ G is smooth, which implies that m|H×H = m ◦ (i, i) and j|H = j ◦ i
are smooth.

Definition 2.1.2. Let G and H be Lie groups. A Lie group homomorphism from G to
H is a smooth group homomorphism Φ : G → H. If it is invertible and Φ−1 : H → G is
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also a Lie group homomorphism, we say that Φ is a Lie group isomorphism and that G,
H are isomorphic Lie groups.

Note that if H is a Lie subgroup of G, then the inclusion map i : H ↪→ G is an injective Lie
group homomorphism.

Example 2.1.3.

• The vector space (Rn,+) is an Abelian Lie group.

• The circle S1 ⊆ C∗ is an Abelian Lie group under multiplication by complex numbers.
The Cartesian product of Lie groups is a Lie group under componentwise multiplica-
tion. For example, the torus Tn = S1 × · · · × S1 is a compact connected Abelian Lie
group being the n-fold product of circles, with multiplication given by:

τ · τ ′ = (z1, . . . , zn) · (z′1, . . . , z′n) = (z1 · z′1, . . . , zn · z′n)

for τ, τ ′ ∈ Tn. Note that the inclusion S1 ↪→ Tn given by z 7→ (z, z, . . . , z) is indeed a
Lie group homomorphism.

• The general linear group GL(n,R), consisting of invertible n×nmatrices, is a Lie group
under matrix multiplication. By continuity of the determinant GL(n,R) ⊆ M(n,R)
is open and thus a submanifold of M(n,R). The multiplication map (X,Y ) 7→ XY is
smooth as it is given by polynomials in the entries of X,Y . Similarly, the inversion
map is smooth by Cramer’s rule.

We introduce the notion of a Lie algebra, which can be interpreted as an infinitesimal version
of the object it is associated with.

Definition 2.1.4. A Lie algebra is a real vector space g equipped with a bilinear map
(called a Lie bracket)

[·, ·] : g× g→ g,

which is antisymmetric and satisfies the Jacobi identity, for all X,Y, Z ∈ g:

• [X,Y ] = −[Y,X];

• [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

A Lie subalgebra of g is a linear subspace of g, which is closed under the Lie bracket.

Suppose G is a Lie group. For every g ∈ G, define the left translation map Lg : G→ G by
Lg(h) = gh. Let X ∈ X(G) be a smooth vector field on G, we say that X is a left-invariant
vector field if (Lg)∗X = X for all g ∈ G. Denote by Lie(G) the set of all left-invariant
smooth vector fields on G. By naturality of Lie brackets we have for all X,Y ∈ Lie(G):

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ].

Hence the Lie bracket on X(G) induces a Lie bracket on Lie(G). This is the Lie algebra of
the Lie group G. We recall the following result:

Proposition 2.1.5. LetG be a Lie group. Then the evaluation map ε : Lie(G)→ TeG,X 7→
Xe is a vector space isomorphism.
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Henceforth, we won’t distinguish between the two and will denote by g the Lie algebra of
the Lie group G.

Definition 2.1.6. Let g and h be Lie algebras. A Lie algebra homomorphism from g
to h is a linear map L : g→ h which is compatible with brackets, meaning that:

L[X,Y ] = [LX,LY ]

for all X,Y ∈ g. Similarly, we define a Lie algebra antihomomorphism K by the relation
K[X,Y ] = −[KX,KY ].

Given a Lie group homomorphism, there exists a natural induced Lie algebra homomor-
phism, as the following proposition shows.

Proposition 2.1.7. Let G and H be Lie groups with Lie algebras g and h, respectively.
Suppose Φ : G → H is a Lie group homomorphism. Then Φ∗ : g → h defined by Φ∗(X) =
dΦe(X) is a Lie algebra homomorphism.

Proposition 2.1.8. Let Φ : G→ H be a Lie group homomorphism. Then Φ has constant
rank.

Corollary 2.1.9. Let Φ : G → H be a Lie group homomorphism. If Φ is injective (sur-
jective, bijective), then the induced Lie algebra homomorphism Φ∗ is injective (surjective,
bijective).

Let H be a Lie subgroup of G. We have seen that the inclusion map i : H ↪→ G is an
injective Lie group homomorphism. By the above, the induced Lie algebra homomorphism
i∗ : h ↪→ g is injective. Therefore we identify h with the Lie subalgebra i∗(h) of g.

The following theorem, due to Cartan, gives a very useful criterion for a subgroup to be a
Lie subgroup.

Theorem 2.1.10 (Cartan’s Closed Subgroup Theorem). A (topologically) closed sub-
group of a Lie group is an embedded Lie subgroup.

Exponential map of a Lie group

We recall the definition of an integral curve. Let V be a smooth vector field on a manifold
M . A smooth curve γ : J →M is an integral curve of V if

γ′(t0) = Vγ(t0) for all t0 ∈ J.

We now introduce an important tool, called the exponential map of a Lie group. This map
allows us to study the Lie group, by working instead with the Lie algebra, a vector space. In
the case of a group action on a manifold, we will use the exponential map of the Lie group
to generate vector fields on the manifold.

Definition 2.1.11. Let G be a Lie group with Lie algebra g. Define the exponential map
by

exp : g→ G, X 7→ γX(1),

where γ : R→ G is the (maximal) integral curve of X which starts at the identity.
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Remark 2.1.12. Recall that a left-invariant vector field on a Lie group is complete ([28,
Proposition 9.17]) so that the previous definition makes sense.

Note that, by definition, the image of the exponential map is contained in the path-
component of the identity element of G. We now look at some properties of the exponential
map.

Proposition 2.1.13. Let G be a Lie group with Lie algebra g. The exponential map
exp : g→ G satisfies the following properties:

1. For any X ∈ g, the integral curve γX of X is given by γX(t) = exp(tX).

2. The exponential map exp : g→ G is a smooth map.

3. For any X ∈ g and s, t ∈ R, exp(s+ t)X = exp sX exp tX.

4. For any X ∈ g, (expX)−1 = exp(−X).

5. The exponential map is a local diffeomorphism from 0 ∈ g to the identity e ∈ G.

6. Let G,H be Lie groups with Lie algebras g, h respectively and Φ : G → H be a Lie
group homomorphism. Then the following diagram commutes:

g h

G H.

Φ∗

exp exp

Φ

7. Suppose H be a Lie subgroup of G, then h ⊆ g is given by

h = {X ∈ g : exp(tX) ∈ H for all t ∈ R}

8. If G is Abelian, then for any X,Y ∈ g, exp(X + Y ) = expX expY .

9. The exponential map for the matrix Lie groups is the ordinary matrix exponential.

Example 2.1.14.

• Suppose G is an Abelian Lie group, then the Lie bracket is trivial. One way to see this
is by noting that the inversion map i : G → G, g 7→ g−1 is a group homomorphism.
By Proposition 2.1.7 we have that die : g → g preserves Lie brackets. We have that
die(X) = −X. Indeed, γ(t) = exp tX is a smooth curve starting at the identity with
initial velocity X. In view of Proposition 2.1.13.4 we find:

die(X) = (i ◦ γ)′(0) =
d

dt

∣∣∣∣
t=0

exp(−tX) = −X.

Thus:
−[X,Y ] = die[X,Y ] = [die(X), die(Y )] = [X,Y ],

which implies that the Lie bracket is trivial.
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• We determine the Lie algebra s of the circle S1. As the circle is one-dimensional its
Lie algebra is one-dimensional also. Define

∂

∂θ
:=

d

dt

∣∣∣∣
t=0

e2πit ∈ s,

which is the tangent vector at the identity determined by rotation with period 1.

Consider the torus Tn = S1 × · · · × S1 with Lie algebra t. Similarly as before, we can
find tangent vectors to the identity of the torus by rotating the j’th S1-factor:

∂

∂θj
:=

d

dt

∣∣∣∣
t=0

(1, . . . , 1, e2πit, 1, . . . , 1) ∈ t,

where j runs from 1 to n. The resulting tangent vectors at the identity span the Lie
algebra of the torus. Using this basis we identify the Lie algebra t of the torus with
Rn. Then the exponential map of the torus is given by:

exp : Rn → Tn, (x1, . . . , xn) 7→ (e2πix1 , . . . , e2πixn).

• We determine the Lie algebra u(k) of the unitary group U(k). Recall that

U(k) = {U ∈ GL(k,C) : U−1 = U∗},

where U∗ is the adjoint (or Hermitian) of U , which is obtained by conjugating and
transposing the matrix U . Define g : GL(k,C) → GL(k,C) by g(X) = XX∗ − I, so
that U(k) = g−1(0). Differentiating the expression g(X) = 0 at the identity I yields

0 = g(X + I)− g(X) = (X + I)(X + I)∗ −XX∗ = X +X∗.

Thus the Lie algebra u(k) is given by

u(k) = {X ∈M(k,C) : X∗ = −X},

that is, the space of skew-adjoint matrices.

2.2 Lie Group Actions on Manifolds

We now consider Lie group actions on manifolds. Let G be a Lie group and M a manifold.

Definition 2.2.1. A smooth action of G on M is a smooth map ψ : G × M → M
satisfying the following properties,

• ψg ◦ ψg = ψgg′ ;

• ψe = IdM ,

for all g, g′ ∈ G. The action is either denoted by ψg : M →M or by the shorthand notation
g · p.

Note that ψg is a diffeomorphism, since ψg−1 is its smooth inverse. Therefore, we often think
of ψ as a group homomorphism ψ : G→ Diff(M). We recall some definitions regarding group
actions.
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Definition 2.2.2. Let ψ : G×M →M be a smooth action, and let p ∈M .

The point p is a fixed point of the G-action on M if g ·p = p for all g ∈ G. The fixed point
set of the action is denoted by MG.

Define the orbit of p, denoted G · p, to be the images of p in M under the action ψ. In
other words:

G · p = {ψg(p) : g ∈ G} ⊆M.

Define the stabilizer of p, denoted by Gp, by the subgroup of G consisting of all the group
elements fixing p, that is:

Gp = {g ∈ G : ψg(p) = p} ⊆ G.

The action ψ is said to be free if all the stabilizers are trivial, or equivalently if the identity
e ∈ G is the only element that fixes points on the manifold M .

We describe a common procedure to generate vector fields on our manifold M using elements
of the Lie algebra. Let X ∈ g an element of the Lie algebra. Using the exponential map, we
find for any t ∈ R, a group element exp(tX) ∈ G. By letting t vary we obtain for each point
p in M a smooth curve contained in the orbit of p, defined by R → M, t 7→ ψexp(tX)(p).

Differentiating at t = 0 results in a tangent vector at p: d
dt

∣∣
t=0

ψexp(tX)(p) ∈ TpM . This
leads to the following definition.

Definition 2.2.3. Let X ∈ g be an element of the Lie algebra. We define the fundamental
vector field of X on M , denoted X, pointwise by:

Xp :=
d

dt

∣∣∣∣
t=0

exp tX · p ∈ TpM.

The map ψ : g → X(M) defined by ψ(X) = X is called the infinitesimal generator of
the action.

It turns out that the infinitesimal generator of the action is a Lie algebra antihomomorphism,
(Theorem 20.18, [28]).

Proposition 2.2.4. Let ψ : G × M → M be a smooth action of a Lie group G on a
manifold M . Then the infinitesimal generator of the action ψ : g → X(M) is a Lie algebra
antihomomorphism: [X,Y ] = −[X,Y ] for all X,Y ∈ g.

Let us now try to relate the stabilizer of p to the orbit of p in M . For this, define the orbit
map Ψp : G → M by Ψp(g) = g · p. Note that the image of Ψp is the orbit of p, and the
stabilizer of p is the pre-image of p, that is:

Ψp(M) = G · p, Ψ−1
p (p) = Gp.

This shows that for any p ∈ M the stabilizer Gp is closed, and thus a Lie subgroup of G.
Denote by gp ⊆ g its Lie algebra. The following result describes this Lie algebra in more
detail.

Lemma 2.2.5. For any p ∈M , the Lie algebra gp of the stabilizer of p is given by

gp = {X ∈ g : Xp = 0}.
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Proof. Let p ∈M . By a previous proposition, we have the following characterization of gp:

gp = {X ∈ g : exp tX ∈ Gp for all t ∈ R}.

Let X ∈ gp. This characterization implies

Xp =
d

dt

∣∣∣∣
t=0

exp(tX) · p = 0,

which proves the first inclusion.

Now suppose X ∈ g such that Xp = 0. Let t0 ∈ R arbitrarily. Then by virtue of the chain
rule,

d

dt

∣∣∣∣
t=t0

ψexp tX(p) =
d

ds

∣∣∣∣
s=0

ψexp(t0+s)X(p) =
d

ds

∣∣∣∣
s=0

ψexp t0X ◦ ψexp sX(p)

= (dψexp t0X)p
d

ds

∣∣∣∣
s=0

ψexp sX(p) = (dψexp t0X)p(Xp) = 0.

Hence t 7→ exp tX · p is constant and thus exp tX · p = p for all t ∈ R. In view of the
mentioned characterization, this proves the opposite inclusion.

We use this lemma in the following important result. We will implicitly use that the left
coset space G/Gp is a quotient manifold (with dimension dimG − dimGp and that its
tangent space at the identity may be identified with g/gp ([28, Theorem 21.17]).

Proposition 2.2.6. The orbit map Ψp : G → M descends to an injective immersion

Ψ̃p : G/Gp →M . In particular, it follows that dim(G · p) = dim(G)− dim(Gp).

Proof. We argue that it suffices to show that Ψ̃p is immersive at the identity. Define the
right translation Rg : G→ G by Rg(h) = hg, which is readily seen to be a diffeomorphism.
Since Ψp ◦ Rg = Ψg·p, it follows by the chain rule that d(Ψp)g ◦ d(Rg)e = (dΨg·p)e. Then
d(Ψp)g is injective if and only if d(Ψg·p)e is injective, because d(Rg)e is an isomorphism.

Consider d(Ψp)e : g → TpM . Let X ∈ g such that d(Ψp)e(X) = 0. Consider the smooth
curve γ(t) = exp(tX), which satisfies: γ(0) = p and γ′(0) = X. We find that:

0 = d(Ψp)e(X) = (Ψp ◦ γ)′(0) =
d

dt

∣∣∣∣
t=0

exp tX · p = Xp,

which implies that ker(dΨp)e = {X ∈ g : Xp = 0} = gp. Hence Ψ̃p : G/Gp → M is an

injective immersion. The last assertion follows by noting that the image of Ψ̃p is the orbit
of p.

Note that the previous proposition implies that any orbit of the action is an immersed
submanifold. A crucial fact is that the fundamental vector fields generate the tangent
spaces to the orbits, meaning that:

Tp(G · p) = {Xp : X ∈ g}.

Inspecting the proof again, we see that d(Ψp)e(X) = Xp for any X ∈ g. This shows
that {Xp : X ∈ g} is a linear subspace of Tp(G · p). The result of the proposition

23



gives that their dimensions are equal: rank [d(Ψp)e] = dimTp(G · p), which implies that
Tp(G · p) = {Xp : X ∈ g}.

Note that the orbit map Ψp is compatible with the group actions of G on G and M in the
sense that Ψp(g · g′) = g · Ψp(g

′). We will see many examples of such equivariant maps in
the subsequent sections. This observation leads us to the following definition:

Definition 2.2.7. Let M and N be manifolds equipped with a smooth action of a Lie group
G and let ϕ : M → N be a smooth map. It is said that ϕ is an equivariant map if

ϕ(g · p) = g · ϕ(p)

for all g ∈ G and p ∈M .

Finally, we state the quotient manifold theorem, which we will use in the proof of the
symplectic reduction theorem. This remarkable theorem is also an inspiration for equivariant
cohomology, which we will explore in section 4.3.

Theorem 2.2.8 (Quotient Manifold Theorem [28, Theorem 21.10]). Suppose G is a
compact Lie group acting freely on a manifold M . Then the orbit space M/G is a topological
manifold of dimension dimM −dimG, and has a unique smooth structure with the property
that π : M →M/G is a smooth submersion.

Adjoint and coadjoint actions

Suppose we have a smooth G-action ψ : G × M → M on a manifold M . We describe
a natural G-action on the Lie algebra g and its dual g∗. Recall that G acts on itself by
conjugation, let g ∈ G:

Cg : G→ G, h 7→ ghg−1.

We see that Cg is a diffeomorphism with smooth inverse Cg−1 , thus differentiating Cg at
the identity e ∈ G yields an isomorphism d(Cg)e : g→ g. Allowing g ∈ G to vary, we obtain
the adjoint action of G on the Lie algebra g:

Ad : G→ GL(g), g 7→ Adg.

Let 〈·, ·〉 : g∗ × g → R, (ξ,X) 7→ 〈ξ,X〉 = ξ(X) be the pairing between the Lie algebra
and its dual. Since g is finite-dimensional, any linear map A : g → g gives rise to a unique
dual map A∗ : g∗ → g∗ defined by A∗ξ = ξ ◦ A for ξ ∈ g∗. As the adjoint action gives an
endomorphism of the Lie algebra for each element in the group, we may apply the above
procedure to obtain endomorphisms of the dual of the Lie algebra.

Given ξ ∈ g∗, define Ad∗g by the equation 〈Ad∗gξ,X〉 = 〈ξ,Adg−1X〉, where X ∈ g. This
construction yields the coadjoint action of G on the dual of the Lie algebra g∗:

Ad∗ : G→ GL(g∗), g 7→ Ad∗g.

The terms adjoint and coadjoint action are not fully substantiated yet: it remains to check
that they are indeed group homomorphisms.

Proposition 2.2.9. Let G be a Lie group with Lie algebra g. The adjoint action Ad of G
on g and the coadjoint action Ad∗ of G on g∗ are group homomorphisms.
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Proof. Let g, h ∈ G. Note that Cg ◦ Ch = Cgh, we have that:

Adg ◦Adh = d(Cg)e ◦ d(Ch)e = d(Cg ◦ Ch)e = d(Cgh)e = Adgh.

Hence, the adjoint action is a group homomorphism.

Let ξ ∈ g∗, X ∈ g, we find:

〈Ad∗g ◦Ad∗hξ,X〉 = 〈Ad∗hξ, Adg−1X〉 = 〈ξ,Adh−1 ◦Adg−1X〉 = 〈ξ,Ad(gh)−1X〉 = 〈Ad∗ghξ,X〉,

which shows that the coadjoint action is a group homomorphism.

Now it is natural to ask how the fundamental vector fields of the adjoint- and coadjoint
action look like. The following proposition gives a result in this direction.

Proposition 2.2.10 ([4], [9]). Let G be a Lie group. Let X,Y ∈ g and ξ ∈ g∗. Denote by
XY the fundamental vector field at Y on the Lie algebra g associated to the adjoint action,
and by Xξ the fundamental vector field at ξ on g∗ associated to the coadjoint action. Then:

• XY = [X,Y ];

• 〈Xξ, Y 〉 = 〈ξ, [Y,X]〉.

Note that the first part of this proposition gives another way of seeing that the Lie bracket
of Abelian Lie groups is trivial.

2.3 Momentum Maps

Throughout the following, let G be a Lie group and (M,ω) be a symplectic manifold.

Definition 2.3.1. Let ψ be a smooth action of G on M . We say that ψ : G×M → M is
a symplectic action if it preserves the symplectic structure for all g ∈ G, that is:

ψ∗gω = ω.

Thus ψg : M → M is a symplectomorphism for all g ∈ G, consequently we think of a
symplectic action as a group homomorphism ψ : G→ Sympl(M,ω).

Let ψ : G×M →M be a symplectic action of G on M . The above definition is natural in the
sense that elements of the Lie algebra give rise to symplectic fundamental vector fields on M .

To see this, let X ∈ g and consider its fundamental vector field X on M . The flow ρt of X
is given by ρt = ψexp tX , which implies that

LXω =
d

dt

∣∣∣∣
t=t0

(ψexp tX)∗ω = 0.

Since ω is closed, it follows by Cartan’s formula LX = d ◦ iX + iX ◦ d that iXω is closed:
the fundamental vector field X is a symplectic vector field on M .
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One particular class of symplectic actions are those where the one-forms iXω are exact for
all elements X ∈ g. We now want to introduce the notion of a Hamiltonian action of G on
(M,ω). Let us first think of which properties it should have. Similarly as in the case of a
symplectic action, we want each element of the Lie algebra to give rise to a Hamiltonian
fundamental vector field on M . As any Hamiltonian vector field is in particular a symplectic
vector field, we must require that the action ψ is symplectic.

Now suppose we have a symplectic action ψ : G×M →M such that each fundamental vector
field is Hamiltonian. Let X1, . . . , Xk be a basis for the Lie algebra g, and let µ1, . . . , µk ∈
C∞(M) be the Hamiltonians corresponding to the fundamental vector fields X1, . . . , Xk.

Let X =
∑k
j=1 ajXk ∈ g be an arbitrary element of the Lie algebra expressed in this

basis. As the assignment g → X(M), X 7→ X is linear, the function µX :=
∑k
j=1 ajµj is a

Hamiltonian for the fundamental vector field X:

dµX =

k∑
j=1

ajdµj =

k∑
j=1

ajiXjω = iXω.

In this way we obtain a linear map µ : g→ C∞(M) satisfying

dµX = iXω, for all X ∈ g.

Let 〈·, ·〉 : g∗ × g→ R be the (nondegenerate) pairing between the Lie algebra and its dual.
By the expression

〈µ(p), X〉 = µX(p)

we may equivalently view the linear map µ : g → C∞(M) as a smooth map µ : M → g∗

(and the other way around). We will only use such maps µ : M → g∗ which are equivariant
with respect to the coadjoint action. The above discussion leads to the following definition:

Definition 2.3.2. A symplectic action ψ : G→ Sympl(M,ω) is a Hamiltonian action if
there exists a smooth map µ : M → g∗, satisfying the following properties:

• For each X ∈ g, the smooth function µX := 〈µ,X〉 ∈ C∞(M) is a Hamiltonian
function for the fundamental vector field X on M :

dµX = iXω. (2.1)

Here 〈·, ·〉 : g∗ × g→ R is the natural pairing, so that we read µX : p 7→ 〈µ(p), X〉.

• The map µ : M → g∗ is equivariant with respect to the action of G on M and the
coadjoint action of G on g∗:

µ(g · p) = Ad∗g · µ(p) (2.2)

for all g ∈ G and p ∈M .

In this case, it is said that µ : M → g∗ is a momentum map for the Hamiltonian action
of G on M . The tuple (M,ω,G, µ) is called a Hamiltonian G-space.

Remark 2.3.3. A more physics-oriented motivation of the momentum map can be found in
Souriau’s Structure des systèmes dynamiques [40], where it is introduced as a generalization
of Noether’s theorem.

26



Before moving on to examples of Hamiltonian actions, let us study some important proper-
ties of the momentum map.

Proposition 2.3.4. Let µ : M → g∗ be a momentum map for the Hamiltonian action of a
Lie group G on a symplectic manifold (M,ω), and let p ∈M . Then the following holds.

• For all X ∈ g, v ∈ TpM , we have:

〈dµp(v), X〉 = ωp(Xp, v). (2.3)

• For all X ∈ g, we have:
dµp(Xp) = Xµ(p). (2.4)

• The linear map
µ : g→ C∞(M), X 7→ µX (2.5)

is a Lie algebra homomorphism: µ[X,Y ] = {µX , µY } for all X,Y ∈ g.

Proof. Let X ∈ g. By definition of a momentum map, µX is the Hamiltonian function for the
fundamental vector field X, that is, iXω = dµX . Define the contraction map cX : g∗ → R
by cX(ξ) = 〈ξ,X〉, so that we can write µX = cX ◦ µ. Since g∗ is a vector space and cX
is linear, it follows that (dcX)µ(p) = cX , where we identify the tangent space of g∗ with g∗.
By application of the chain rule, we find:

ωp(Xp, v) = (dµX)p(v) = (dcX)µ(p) ◦ dµp(v) = cX ◦ dµp(v) = 〈dµp(v), X〉.

This proves the first assertion.

By equivariance of µ, we find:

Xµ(p) =
d

dt

∣∣∣∣
t=0

Ad∗exp tX · µ(p) =
d

dt

∣∣∣∣
t=0

µ(exp tX · p) = dµp(Xp),

since t 7→ exp tX · p is a smooth curve starting at p with initial velocity Xp.

Let X,Y ∈ g. Note that µX , µY are Hamiltonian functions for the fundamental vector
fields X,Y on M , so that their Poisson bracket is given by {µX , µY }(p) = ωp(Xp, Y p).
By the first and second paragraph we obtain ωp(Xp, Y p) = 〈dµp(Y p), X〉 = 〈Y µ(p), X〉.
Recall from Proposition 2.2.10 that 〈Y µ(p), X〉 = 〈µ(p), [X,Y ]〉 = µ[X,Y ](p). Combining the
above equalities yields µ[X,Y ] = {µX , µY }, which proves that µ : X 7→ µX is a Lie algebra
homomorphism.

Example 2.3.5.

1. We show that the symplectic action of S1 on (Cn, ω0) given by s · (z1, . . . , zn) =
(s · z1, . . . , s · zn) is a Hamiltonian action with momentum map

µ : Cn → R, µ(z1, . . . , zn) = −π
n∑
j=1

|zj |2.

Here we identify the dual of the Lie algebra s∗ with R∗ using the previously mentioned
basis and identify R∗ with R through the inner product. Write the complex coordinates
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as zk = xk + iyk so that the symplectic form on Cn is given by ω0 =
∑n
j=1 dxj ∧ dyj .

The fundamental vector field of X := ∂
∂θ ∈ s is given by:

X = 2π · (
n∑
j=1

−yj
∂

∂xj
+ xj

∂

∂yj
),

which is the vector field on Cn generated by rotations.

As µ = µX we find:

iXω0 = 2π

n∑
j=1

(−yjω0(
∂

∂xj
, · )− xjω0( · , ∂

∂yj
)) = −2π

n∑
j=1

(yjdyj + xjdxj) = dµX

Thus dµX = iXω holds and µ is S1-invariant, so that µ(z1, . . . , zn) = −π
∑n
j=1 |zj |2 is

a momentum map for the action.

2. The symplectic action of the torus Tn on (Cn, ω0) given by

(t1, . . . , tn) · (z1, . . . , zn) = (t1 · zn, . . . , tn · zn)

is Hamiltonian with momentum map

µ : Cn → Rn, µ(z1, . . . , zn) = −π(|z1|2, . . . , |zn|2).

This can be seen by identifying the Lie algebra t with Rn, where the basis vectors of
t are the tangent vectors to the identity obtained by rotating a single S1-factor, and
then following the above procedure for each basis vector of t.

3. Consider the symplectic action of S1 on the sphere (S2, ω) by rotation about the z-axis:

S1 × S2 → S2, θ · (ϕ, h) = (θ + ϕ, h).

Here (ϕ, h) = (ρ(h)eiϕ, h) are cylindrical coordinates on the sphere, so that the stan-
dard volume form on the sphere is given by ω = dϕ∧dh. (Here ρ(h) is the distance of a
point p to the z-axis as a function of height.) We show that the action is Hamiltonian
with momentum map

µ : S2 → R, µ(ϕ, h) = 2πh.

The fundamental vector field of X := ∂
∂θ ∈ s on the sphere at a point p = (ϕ, h) =

(ρ(h) · eiϕ, h) is given by

Xp =
d

dt

∣∣∣∣
t=0

e2πit · p =
d

dt

∣∣∣∣
t=0

(e2πitρ(h)eiϕ, h) = 2π
∂

∂ϕ

∣∣∣∣
p

∈ TpS2.

As µ = µX , we find iXω = 2πdh = dµX , so that µX is a Hamiltonian function for
the fundamental vector field X on the sphere. The momentum map µ(ϕ, h) = 2πh is
S1-invariant, so that µ is a momentum map for the action.
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4. Consider the action of U(k) on Ck via matrix multiplication:

U(k)× Ck → Ck, (U, z) 7→ Uz.

We show that
µ : u(k)→ C∞(Ck), X 7→ µX .

where µX(z) := i
2z
∗Xz, is a momentum map for the action. Here we view the sym-

plectic form ω0 as the imaginary part of the Hermitian inner product H(u, v) = v∗u,
that is,

ω0 : Ck × Ck → R, ω0(u, v) = Im(H(u, v)).

As unitary matrices act by isometries (w.r.t the Hermitian inner product H and thus
ω0), the action is symplectic.

Let X ∈ u(k), so that X is a skew-adjoint matrix (X∗ = −X). Using the matrix
exponential we find that the fundamental vector field of X at a point z ∈ Ck is given
by

Xz =
d

dt

∣∣∣∣
t=0

etXz = Xz.

We find:

(dµX)z(v) =
d

dt

∣∣∣∣
t=0

µX(z + tv) =
d

dt

∣∣∣∣
t=0

i

2
[(z + tv)∗X(z + tv)] =

i

2
[v∗Xz + z∗Xv]

=
i

2
[H(Xz, v) +H(Xv, z)] =

i

2
[H(Xz, v) +H(v,X∗z)]

=
i

2
[H(Xz, v)−H(v,Xz)] = Im[H(Xz, v)] = ω0(Xz, v),

which shows that µX is a Hamiltonian function for the fundamental vector field
X ∈ X(Cn).

Let U ∈ U(k), we show that µ is equivariant with respect to the coadjoint action:

µX(U · z) =
i

2
(Uz)∗X(Uz) =

i

2
z∗U∗XUz = Ad∗U · µX(z)

for all X ∈ u(k), z ∈ Cn. We conclude that µ is a momentum map for the action.
By identifying the dual u(k)∗ with the Lie algebra u(k) through the inner product on
M(k,C), we can write the momentum map as µ : Ck → u(k), µ(z) = i

2zz
∗.

Proposition 2.3.6. Let µ : M → g∗ be the momentum map for a Hamiltonian action of
a Lie group G on M . Suppose H ⊆ G is a Lie subgroup of G. Denote by i : h ↪→ g the
inclusion map with dual map pr : g∗ → h∗. Then µ′ = pr ◦µ : M → h∗ is a momentum map
for the restricted action of H on M .

Proof. Let 〈·, ·〉 : g∗ × g→ R be the natural pairing. Recall that pr : g∗ → h∗ being a dual
map for i : h ↪→ g precisely means that 〈pr(ξ), X〉 = 〈ξ, i(X)〉 for all ξ ∈ g∗, X ∈ h.

Let X ∈ h. Then µ′X = 〈µ′, X〉 = 〈pr ◦ µ,X〉 = 〈µ, i(X)〉 = µi(X) implies:

d(µ′X) = dµi(X) = ω(i(X), ·) = ω(X, ·),

so that µ′X is a Hamiltonian function for the fundamental vector field of X ∈ h.
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Note that this proposition gives another way of finding the momentum map for the circle-
action in Example 2.3.5. Let S1 → Tn, i(z) = (z, . . . , z) denote the inclusion map of S1

into the torus, with induced Lie algebra homomorphism the inclusion of its Lie algebra
i : R ↪→ Rn, i(v) = (v, . . . , v). Then the projection pr : Rn → R dual to the inclu-
sion is given by pr(w1, . . . , wn) = w1 + · · · + wn. Then composing the momentum map of
the torus-action with the projection pr indeed gives the momentum map of the circle-action.

As previously mentioned, a crucial property of the momentum map is that it satisfies
Noether’s theorem, which relates the invariance of a Hamiltonian under transformations
(symmetries of the system) to corresponding conservation laws. Classical examples of
Noether’s theorem include: translational invariance implies conservation of linear momen-
tum and rotational invariance implies conservation of angular momentum.

Theorem 2.3.7 (Noether’s theorem). Let ψ : G → Sympl(M,ω) be a Hamiltonian
action of G on M with corresponding momentum map µ. A smooth function H : M → R
is G-invariant if and only if µ is constant on the integral curves of the Hamiltonian vector
field XH of H. (Here G-invariant means that ψ∗gH = H for all g ∈ G.)

Proof. Let X ∈ g with fundamental vector field X on M . The flow of X is given by ψexp tX .
By definition of momentum map and Hamiltonian vector field we have:

LXHµX = iXHdµX = iXH iXω = −iX iXHω = −LXH = − d

dt

∣∣∣∣
t=0

(ψexp tX)∗H.

Thus, µ is constant on the integral curves of XH if and only if the smooth function H is
G-invariant.

2.4 Symplectic Reduction

The goal of this section is to prove the symplectic reduction theorem, which states that
under some conditions the quotient of a symplectic manifold by a Lie group is again a
symplectic manifold. In this thesis we will use symplectic reduction to obtain interesting
examples of symplectic manifolds. In mechanics, it serves as a method to reduce the number
of (redundant) variables in the presence of a symmetry (see, for example, Introduction to
Mechanics and Symmetry [32]). We follow the proof of symplectic reduction as done in Torus
Actions on Symplectic Manifolds [4] and Symplectic geometry and analytical mechanics [30].

We briefly sketch the procedure of symplectic reduction. Consider a momentum map µ :
M → g∗ and suppose ξ is a regular value of µ. Let i : µ−1(ξ) ↪→M be the inclusion map and
π : µ−1(ξ)→Mred be the (submersive) projection onto what we call the reduced symplectic
manifold (Mred, ωred). The defining equation for the reduced symplectic form ωred on the
reduced symplectic manifold Mred is given by:

π∗ωred = i∗ω.

We recall a notion from linear algebra concerning the natural pairing of a vector space with
its dual. Note the similarity with the definition of an orthogonal complement.

Definition 2.4.1. Let V be a vector space with a linear subspace F ⊆ V , and consider the
natural pairing 〈·, ·〉 : V ∗ × V → R. Define the annihilator of F , denoted by F 0, as the
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linear subspace of V ∗ whose elements are identically zero on F , that is:

F 0 = {α ∈ V ∗ : 〈α, v〉 = 0 for all v ∈ F}.

The following lemma studies the differential of the momentum map dµp : TpM → g∗.

Lemma 2.4.2. Suppose µ : M → g∗ be the momentum map of a Hamiltonian action of G on
the symplectic manifold (M,ω), and let p ∈M . Then the following hold for dµp : TpM → g∗:

1. ker dµp = (Tp(G · p))ω;

2. Im dµp = g0
p.

Proof. Let v ∈ TpM . By Proposition 2.3.4, we have 〈dµp(v), Xp〉 = ωp(Xp, v). This implies
that v ∈ ker dµp if and only if v ∈ {Xp : X ∈ g}ω. As the fundamental vector fields generate
the tangent spaces to the orbits, we conclude ker dµp = (Tp(G · p))ω.

We determine the dual map dµ∗p : g→ T ∗pM : the unique map which satisfies 〈dµp(v), X〉 =
〈v, (dµp)∗X〉 for all v ∈ TpM,X ∈ g. In view of 〈dµp(v), X〉 = ωp(Xp, v), we find that
(dµp)

∗ is given by (dµp)
∗(X) = (iXω)p. for X ∈ g. By linear algebraic considerations

we see that Im dµp = (ker dµ∗p)
0. If X is in the kernel of the dual map dµ∗p, it follows by

nondegeneracy of ω that Xp = 0. By Lemma 2.2.5 we have that Xp = 0 if and only if

X ∈ gp, where gp ⊆ g is the Lie algebra of the stabilizer of p, so that Im dµp = g0
p.

Suppose ξ is a regular value of a momentum map µ : M → g∗. Then µ−1(ξ) ⊆ M is a
submanifold of M and thus the inclusion map iξ : µ−1(ξ) ↪→ M is smooth. Note that the
above lemma yields that the stabilizer of a point p is discrete, that is, zero-dimensional. We
will now study in more detail the geometry of µ−1(ξ) with the restricted form i∗ξω (note
that this form is generally not a symplectic form). The goal is to smoothly quotient out the
kernel of this restricted form to obtain a nondegenerate form. Assuming that the reduced
form ωred exists and is nondegenerate, the relation π∗ωred = i∗ω shows that the restricted
form i∗ξω must have constant rank. This is the content of the following lemma.

Lemma 2.4.3. Let µ : M → g∗ be the momentum map of a Hamiltonian action, and let ξ
be a regular value of µ. The restricted form i∗ξω has constant rank, and its kernel at a point

p ∈ µ−1(ξ) is given by ker(i∗ξωp) = Tp(Gξ · p).

Proof. To determine the kernel of the form (i∗ξω)p, we view it as a linear map

(i∗ξω)p : Tp(µ
−1(ξ))→ T ∗p (µ−1(ξ)).

Thus, we have that
ker(i∗ξω)p = Tp(µ

−1(ξ)) ∩ (Tp(µ
−1(ξ))ω.

Since ξ is a regular value of µ, we find by application of the regular value theorem that
ker dµp = Tp(µ

−1(ξ)). Using Lemma 2.4.2 we can then rewrite the kernel as follows:

ker(i∗ξω)p = ker dµp ∩ Tp(G · p).

As the fundamental vector fields generate the tangent spaces to the orbits, we have that
v ∈ ker dµp ∩ Tp(G · p) if and only if v = Xp for some X ∈ g and Xp ∈ ker dµp. In view of
Proposition 2.3.4 and Lemma 2.2.5, the following implications hold:

Xp ∈ ker dµp ⇔ Xξ = Xµ(p) = 0⇔ X ∈ gξ.
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As fundamental vector field generate the tangent spaces to the orbits, we have X ∈ gξ if
and only if Xp ∈ Tp(Gξ · p), so we conclude that ker(i∗ξω)p = Tp(Gξ · p).

As ξ is a regular value of µ and p ∈ µ−1(ξ), it follows that the rank of dµp is maximal,
and by Lemma 2.4.2 that the stabilizer Gp of p is zero-dimensional. In particular, (Gξ)p is
zero-dimensional. Recall that dimGξ − dim(Gξ)p = dimGξ · p, it follows that:

rank(i∗ξω)p = dimµ−1(ξ)− dimGξ · p
= dimµ−1(ξ)− dimGξ.

We see that i∗ξω has constant rank on µ−1(ξ).

The following theorem, called the Symplectic Reduction Theorem, is due to Marsden,Weinstein
[33] and Meyer [35] independently.

Theorem 2.4.4 (Marsden-Weinstein-Meyer Symplectic Reduction). Let (M,ω) be
a symplectic manifold equipped with a Hamiltonian action ψ of a compact Lie group G. Let
µ : M → g∗ be the momentum map associated to the Hamiltonian action. Suppose ξ ∈ g∗ is
a regular value of µ and that the stabilizer Gξ of ξ (w.r.t. the coadjoint action) acts freely
on µ−1(ξ). Then Mred = µ−1(ξ)/Gξ is a manifold and there exists a symplectic form ωred

on Mred satisfying
π∗ξωred = i∗ξω,

where iξ : µ−1(ξ) ↪→M is the inclusion map and πξ : µ−1(ξ)→Mred is the projection map.

Proof. As ξ is a regular value of µ, the regular value theorem yields that µ−1(ξ) is a sub-
manifold of M . Let us now establish that Mred = µ−1(ξ)/Gξ is a manifold. For this, let
p ∈ µ−1(ξ) and g ∈ Gξ. Since µ is equivariant, we find

µ(g · p) = Ad∗g · µ(p) = Ad∗g · ξ = ξ,

which implies that g · p ∈ µ−1(ξ). As Gξ is a Lie subgroup of the compact Lie group G, the

action ψ thus restricts to a (smooth) free action of Gξ, denoted by ψ̂:

ψ̂ : Gξ × µ−1(ξ)→ µ−1(ξ).

By virtue of the quotient manifold theorem (Theorem 2.2.8), it follows thatMred = µ−1(ξ)/Gξ
is a manifold with the property that the projection π : µ−1(ξ) → Mred is a submer-
sion. Furthermore, the tangent space of Mred at π(p) = Gξ · p can be canonically iden-
tified with the quotient vector space Tp(µ

−1(ξ))/Tp(Gξ · p) through the surjective map
dπp : Tp(µ

−1(ξ))→ Tπ(p)Mred, which has kernel ker dπp = Tp(Gξ · p).

We make the identification Tp(µ
−1(ξ))/Tp(Gξ · p) ∼= Tπ(p)Mred as above. Define ωred ∈

Ω2(Mred) pointwise by:
(ωred)π(p)([u], [v]) = ωp(u, v)

for [u], [v] ∈ Tp(µ
−1(ξ))/Tp(Gξ · p). Note that [u] = dπp(u) and [v] = dπp(v), so that

π∗ξωred = i∗ξω holds by construction. We show that ωred is well-defined:

• Since the kernel of the restricted form (i∗ξω)p is Tp(Gξ · p) and ω is bilinear, the
value of ωred is independent of the representatives picked for the equivalence classes
[u], [v] ∈ Tp(µ−1(ξ))/Tp(Gξ · p).
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• It remains to show that (ωred)π(p) is independent of the point in Gξ · p used for
the identification of Tπ(p)Mred. To this end, note that for g ∈ Gξ the differential

d(ψ̂g)p : Tp(µ
−1(ξ)) → Tg·p(µ

−1(ξ)) is an isomorphism which sends Tp(Gξ · p) into

Tg·p(Gξ · p). Thus d(ψ̂g)p descends to an isomorphism

d(ψ̂g)p : Tp(µ
−1(ξ))/Tp(Gξ · p)

'−−→ Tg·(µ
−1(ξ))/Tg·p(Gξ · p).

We have π ◦ ψ̂g = π by definition of the projection π, so the following diagram com-
mutes:

Tp(µ
−1(ξ))/Tp(Gξ · p) Tg·p(µ

−1(ξ))/Tg·p(Gξ · p)

Tπ(p)Mred

d(ψ̂g)p

dπp dπg·p
.

As ψ̂∗gω = ω for all g ∈ Gξ, we conclude that ωred is well-defined.

In view of the lemma above, the restriction i∗ξω has constant rank with kernel at points

p ∈ µ−1(ξ) given by Tp(Gξ · p) so that ωred is nondegenerate.

Using that ω is closed and the fact that pullbacks and the de Rham differential commute,
we find:

π∗dωred = dπ∗ωred = di∗ξω = i∗ξdω = 0.

Since π is a submersion, it follows that π∗ : Ω∗(Mred) → Ω∗(µ−1(ξ)) is an injective linear
map. Then the result dωred ∈ ker(π∗) implies that dωred = 0. We conclude that ωred is a
symplectic form on Mred.

Corollary 2.4.5. Let µ : M → g∗ be the momentum map associated to a Hamiltonian
action. Suppose G acts freely on µ−1(0). Then Mred = µ−1(0)/G is a manifold and there
exists a symplectic form ωred on Mred satisfying

π∗ωred = i∗ω.

Proof. As G acts freely on µ−1(0), it follows that 0 is a regular value of µ. Note that the
stabilizer of 0 with respect to the coadjoint action is the group G. The assertion now follows
by application of the symplectic reduction theorem.

We end this section with two examples of symplectic quotient manifolds, which can be found
as exercises in [4], [9], [34].

Example 2.4.6 (Complex Projective Space). Recall that the complex projective
space of complex dimension n, denoted by CPn, is defined as the space of all complex lines
in Cn+1. Thus we can write

CPn = {[z0 : z1 : · · · : zn] : (z0, z1, . . . , zn) ∈ Cn+1\{0}},

where [z0 : z1 : · · · : zn] denotes the equivalence class of (z0, z1, . . . , zn) under the equivalence
relation

(z0, z1, . . . , zn) ∼ (z′0, z
′
1, . . . , z

′
n)⇔ (z′0, z

′
1, . . . , zn) = (λz0, λz1, . . . , λzn)
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for some non-zero complex scalar λ ∈ C∗. We can also view CPn as the quotient S2n/S1.
Consider again the Hamiltonian action of the circle S1 on Cn+1:

S1 × Cn+1 → Cn+1, s · (z1, . . . zn) = (s · z1, . . . , s · zn),

with momentum map

µ : Cn → R, µ(z1, . . . , zn) = −π
n∑
j=1

|zj |2.

We now show that CPn is a symplectic manifold. As µ−1(−1
π ) = S2n and S1 acts freely on

the sphere S2n, we conclude by application of the symplectic reduction theorem that CPn =
µ−1(−1

π )/S1 is a symplectic quotient manifold. The corresponding reduced symplectic form
ωred on CPn obtained in this way is called the Fubini-Study form.

Example 2.4.7 (Complex Grassmanian). We introduce the Stiefel manifold

Vk(Cn) = {A ∈ Ck×n : AA∗ = Ik},

which is the space of all ordered orthonormal k-frames in Cn, and the Complex Grass-
mannian by

Gk(Cn) = {k-dimensional subspaces of Cn}.

Here a k-frame is an ordered set which consists of k linearly independent vectors.

The map
Vk(Cn)/U(k)→ Gk(Cn), [A] = U(k) ·A 7→ AT (Ck)

defines a bijection between the quotient of the Stiefel manifold by the unitary group U(k)
and the complex Grassmannian. We think of AT (C) as the span of the k linearly inde-
pendent vectors. We now show that the complex Grassmannian is a symplectic quotient
manifold.

Let k ≤ n be two positive integers. Consider the symplectic action of the unitary group
U(k) on (Ck×n, ω0) by matrix multiplication:

U(k)× Ck×n → Ck×n, (U,A) 7→ UA.

This action is Hamiltonian with a momentum map given by

µ : Ck×n → u(k), µ(A) =
i

2
AA∗.

To see this, note that if we have n Hamiltonian actions of a Lie group G on symplectic
manifolds (Mj , ωj) ( j ∈ {1, . . . , n}) with momentum maps µ : Mj → g∗, then

µ : M1 × · · · ×Mn → g∗, µ(p1, . . . , pn) = µ1(p1) + · · ·+ µn(pn)

is a momentum map for the action

G× (M1 × · · · ×Mn)→M1 × · · · ×Mn, g · (p1, . . . , pn) 7→ (g · p1, . . . , g · pn).
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(The symplectic form ω on M1 × · · · ×Mn is given by ω = pr∗1ω1 + · · · + pr∗nωn, where
prj : M1 × · · · ×Mn →Mj the projection maps onto the j’th factor.)

Take Mj = Ck for j = 1, . . . , n and consider the Hamiltonian U(k)-action from Exam-
ple 2.3.5.4 with momentum maps µj : Ck → u(k), µj(zj) = i

2zjz
∗
j . Write a complex matrix

A ∈ Ck×n as an n-tuple of its column vectors: A = (z1, · · · , zn) with zj ∈ Ck. By the above
remark we find that µ : Ck×n → u(k) defined by

µ(A) = µ(z1, . . . , zn) =
i

2
(z1z

∗
1 + · · ·+ znz

∗
n) =

i

2
AA∗

is a momentum map for the action on Ck×n.

Note that µ−1( i2Ik) = Vk(Cn), and i
2Ik ∈ u(k) is a fixed point of the adjoint action of

U(k) on its Lie algebra u(k) and U(k) acts freely on Vk(Cn). By application of the Sym-
plectic Reduction theorem, we conclude that the complex Grassmannian µ−1( i2Ik)/U(k) =
Vk(C)/U(k) = Gk(Cn) is a symplectic manifold.

Summary

We first introduced Lie groups and Lie group actions on manifolds. In the case of such a
Lie group action on a manifold, we used the exponential map to generate a vector field on
the manifold for each element in the Lie algebra, called the fundamental vector fields. We
then introduced Hamiltonian actions that are characterized by the existence of a momentum
map, that is, an equivariant map µ : M → g∗ which gives a Hamiltonian function for each
fundamental vector field. Finally, we used the momentum map to prove the symplectic re-
duction theorem, which allows us to obtain new symplectic manifolds by taking the quotient
of symplectic manifolds with a Hamiltonian action by a Lie group.
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Chapter 3

Atiyah–Guillemin–Sternberg
Convexity Theorem

In the last chapter we have seen several examples of Hamiltonian torus actions, and that
the image µ(M) of the momentum map is convex in these cases. Atiyah and Guillemin and
Sternberg have shown that the convexity of the image holds for any Hamiltonian torus action
on a compact symplectic manifold. The main goal of this section is to prove the Atiyah–
Guillemin–Sternberg Convexity Theorem. For this, we will first learn some representation
theory about compact Abelian Lie groups and apply Morse–Bott theory to the functions
µX obtained from the momentum map.

3.1 Tori

In this chapter and the subsequent sections we will mainly use torus actions, so we spend
some time on several characterizations of tori. Let Tn be a torus. Throughout, we identify
the Lie algebra t ∼= Rn using the basis obtained by the tangent vectors obtained by rotating
a single S1-factor with period 1.

In the last section, we have seen the torus Tn = S1 × · · · × S1 as a compact connected
Abelian Lie group being the Cartesian product of circles, with componentwise multiplication.
Consider the Lie group homomorphism

Φ : Rn → Tn, (x1, . . . , xn) 7→ (e2πix1 , . . . , e2πixn)

between Abelian Lie groups. This map has kernel Zn, so by the first isomorphism theorem
for groups, Φ descends to a Lie group isomorphism ([28, Example 21.14]):

Φ̃ : Rn/Zn → Tn.

Let π : Rn → Rn/Zn denote the quotient map of the quotient manifold Rn/Zn. Under the
identification Tn = Rn/Zn, the exponential map exp : t ∼= Rn → Tn and the quotient map
π : Rn → Rn/Zn are identical.

In practice, the latter viewpoint might be more useful when studying the image of a linear
subspace under the exponential map.
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Example 3.1.1. [28, Example 4.20] Let T be a torus, and let X ∈ Rn be an element in
the Lie algebra with rationally independent coefficients. Then the curve t 7→ exp(tX) in the
torus is dense:

{exp(tX) : t ∈ R} = T.

The following theorem can be viewed as a generalization of the preceding example.

Theorem 3.1.2. [13, Corollary 1.12.4] Let G be a connected Abelian Lie group. Then G
is isomorphic to (Ra/Za) × Rb for some integers a, b. In particular, if in addition G is
compact, it is isomorphic (as a Lie group) to Rn/Zn, where n = dim(G).

Let Tn be a torus, with Lie algebra t ∼= Rn. The above theorem allows us to generate
subtori. More explicitly, let V ⊆ Rn be a linear subspace. Consider the set

H := exp(V ) ⊆ Tn

obtained by taking the closure of the image of V under the exponential map. Using that
Tn is Abelian, one readily verifies that H is an Abelian subgroup of the torus. It is a
closed subgroup, so H is a Lie subgroup by Cartan’s Closed Subgroup Theorem. Then H
is compact as well, being a closed subset of a compact space. This implies that H ⊆ Tn is
a subtorus by application of the theorem.

For example, if X ∈ Rn has rationally dependent coefficients, one finds that exp(R ·X) =
π(R ·X) ⊆ Tn is closed, and thus a one-dimensional subtorus of Tn, which we identify with
a circle S1. We generalize these observations by the following definition.

Definition 3.1.3. Let Tn be a torus, and suppose X ∈ Rn is an element of the Lie algebra.
Define the torus generated by X, denoted TX , to be:

TX := {exp(tX) : t ∈ R} ⊆ Tn.

The previous discussion shows that TX is indeed a subtorus of Tn.

Proposition 3.1.4. Let T be a torus, with exponential map exp : t → T. Then the
following holds.

• The exponential map is surjective.

• The exponential map is a Lie group homomorphism, where we view the Lie algebra t
as an Abelian Lie group.

Remark 3.1.5. In the coming chapters we will mainly prove theorems for Hamiltonian
actions of a torus. However, these theorems are also of use in the study of Hamiltonian
actions of non-Abelian compact Lie groups. The reason being that a compact connected
Lie group G contains a maximal torus T ⊆ G ([13, Theorem 3.7.1]). We say that a torus
T ⊆ G is maximal if T ⊆ T′ for some other subtorus T′ of G implies that T = T′.

Haar measure

The goal of this section is to show that a symplectic action of a compact Lie group G
gives rise to an invariant Riemannian metric and subsequently an invariant almost complex
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structure J . The main tool to derive such invariant structures is the so-called Haar measure.

The Lebesgue measure λ defined on the Borel measurable subsets of Euclidean space is
invariant under translations, that is, for all a ∈ Rn and Borel measurable sets B ⊆ Rn we
have:

λ(a+B) = λ(B)

One can generalize such Borel measures to locally compact Lie groups:

Definition 3.1.6. Let G be a locally compact Lie group, and let ν be a nonzero regular
Borel measure on G. We say that ν is a left Haar measure if it is invariant under left
translations, meaning that ν(Lg(B)) = ν(B) for all g ∈ G and all Borel measurable sets
B ⊆ G.

Proposition 3.1.7 (Haar measure [10, Theorem 9.2.2.]). Let G be a compact Lie group.
There exists a unique normalized left Haar measure on G, denoted by dh, satisfying

∫
G
dh =

1. This normalized Haar measure is also a right Haar measure.

Let f ∈ C∞(G) be a smooth function on a compact Lie group, then the left invariance of
the Haar measure dh implies that∫

G

f(gh) dh =

∫
G

f(h) dh, for all g ∈ G.

Suppose we have a symplectic action ψ : G×M →M of a compact Lie group on a symplectic
manifold (M,ω). We construct a G-invariant Riemannian metric m0 on M as follows. Let
m be an arbitrary Riemannian metric on M , and define m0, with respect to the normalized
left Haar measure, pointwise by:

(m0)p(u, v) :=

∫
G

(ψ∗hm)p(u, v) dh,

for u, v ∈ TpM . This is well-defined, as the function h 7→ (ψ∗hm)p(u, v) is smooth. It can be
checked that m0 defines a Riemannian metric on M . This Riemannian metric is G-invariant,
since the pullback is a contravariant functor and the left Haar measure is G-invariant:

ψ∗gm0 =

∫
G

ψ∗g ◦ (ψ∗hm) dh =

∫
G

(ψhg)
∗m dh =

∫
G

ψ∗hm dh = m0.

We say that the G-invariant Riemannian metric m0 is obtained by averaging a Riemannian
metric on M over the group G, and that ψg acts by isometries with respect to m0. (This
construction only works for compact Lie groups, as a Haar measure for non-compact groups
is not finite, that is,

∫
G
dh =∞ ([10, Proposition 9.3.3.]).

We use this metric to obtain a G-invariant ω-compatible almost complex structure J on
M , meaning that ψ∗gJ = J for all g ∈ G. Unpacking this property, we require the almost
complex structure J ∈ Γ(End(TM)) to satisfy:

d(ψg)p ◦ Jp = Jg·p ◦ d(ψg)p

for all p ∈ M and g ∈ G. In view of the construction of an ω-compatible almost complex
structure in section 1.5, we note that it suffices to show that A ∈ Γ(End(TM)) defined by

(m0)p(Ap(u), v) = ωp(u, v) (u, v ∈ TpM)
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is G-invariant. Recall that we used the polar decomposition to write A = |A|J . Let
u, v ∈ TpM . Using the G-invariance of the symplectic structure and the Riemannian metric,
we find:

(m0)g·p(d(ψg)p ◦Ap(u), v) = (m0)p(Ap(u), d(ψg−1)g·p(v))

= ωp(u, d(ψg−1)g·p(v))

= ωg·p(d(ψg)p(u), v)

= (m0)g·p(Ag·p ◦ d(ψg)p(u), v).

We conclude that A is G-invariant, so that J is G-invariant. It is readily checked that
mJ(·, ·) := ω(·, J ·) is also a G-invariant Riemannian metric. Let us summarize this subsec-
tion:

Proposition 3.1.8. Suppose we have a symplectic action ψ : G ×M → M of a compact
Lie group G on a symplectic manifold (M,ω). Then there exists an ω-compatible almost
complex structure J on M , which is G-invariant:

ψ∗gJ = J, for all g ∈ G.

Furthermore, the Riemannian metric mJ defined by mJ(·, ·) := ω(·, J ·) is G-invariant. The
form H defined by H(·, ·) := mJ(·, ·) + iω(·, ·) is a G-invariant Hermitian form.

In particular, the result holds for a symplectic action of a torus T.

Representation theory and Equivariant Darboux Theorem

Let ψ : G ×M → M be a symplectic action of a compact Lie group G on a symplectic
manifold (M,ω), and suppose p ∈M is a fixed point of the action. Then we find a smooth
action of the group G on the tangent space TpM , as follows:

π : G→ GL(TpM), π(g) := d(ψg)p : TpM → TpM.

In this subsection we study the above action of G on the tangent space TpM of a fixed
point p. For this, we will first delve into representation theory, based on Duistermaat and
Kolk’s book Lie Groups [13]. Then, using representation theory and an equivariant version
of the Darboux Theorem, we describe the action ψ on M near a fixed point, in the case that
G = T is a torus.

Definition 3.1.9. Let V be a finite-dimensional vector space over C, and let G be a Lie
group. A representation of G in V is a Lie group homomorphism

π : G→ GL(V ).

We say that π is a finite-dimensional, complex representation of G to reflect that V is a
finite-dimensional complex vector space. Furthermore, the dimension of π is defined to be
the dimension of V .

Definition 3.1.10. Let π be a finite-dim. representation of G in a complex vector space
V .

• A linear subspace U ⊆ V of a representation is said to be π(G)-invariant if U is
π(g)-invariant for all g ∈ G:

π(g)(U) ⊆ U.
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• We say that the representation π of G in V is an irreducible representation if V
does not have proper and nontrivial π(G)-invariant linear subspaces. Equivalently, if
U ⊆ V is a π(G)-invariant subspace, then U = 0 or U = V .

• The representation π of G in V is completely reducible if for every π(G)-invariant
linear subspace U ⊆ V there exists another π(G)-invariant linear subspace U ′ ⊆ V
such that V splits as their direct sum:

V = U ⊕ U ′.

• Suppose that σ : G → GL(W ) is another finite-dimensional representation of G in a
complex vector space W . We say that π and σ are equivalent representations if there
exists a linear isomorphism L : V →W such that:

L ◦ π(g) = σ(g) ◦ L, for all g ∈ G.

• Suppose that H : V × V → C is a Hermitian inner product on V . The representation
π is unitary (with respect to H) if

H(π(g)(v), π(g)(w)) = H(v, w), for all g ∈ G, v,w ∈ V.

Definition 3.1.11. Let π be a finite-dimensional representation of G in V . A character
of the representation, denoted by χπ, is a map

χπ : G→ C, g 7→ Tr(π(g)).

A multiplicative character of the group G is a Lie group homomorphism

χ : G→ C×.

Theorem 3.1.12 (Schur’s lemma for Abelian groups [13, Cor. 4.1.2.]). Let G be a
compact Abelian Lie group, and suppose that π : G → GL(V ) is an irreducible, finite-
dimensional, complex representation of G. Then the representation π is one-dimensional.
Moreover, the character χπ of the representation π is a multiplicative character of G:

χπ : G→ C×,

and π(g) acts on V via multiplication by the nonzero complex scalar χπ(g):

π(g) : v 7→ χπ(g) · v.

Theorem 3.1.13. [13, Cor. 4.2.2.] Let π be a unitary representation of a compact Lie
group G in a finite-dimensional complex vector space V with a Hermitian inner product.
Then π is completely reducible, and V splits as a direct sum of π(G)-invariant mutually
orthogonal linear subspaces Vj, such that π|Vj : g 7→ π(g)|Vj is irreducible for each index j.

We will need the following proposition:

Proposition 3.1.14. [5, Ex. 27.5] Let T = Rn/Zn be the n-dimensional torus. The multi-
plicative characters of the torus are given by:

χλ : T→ C×, exp(X) 7→ e2πi〈λ,X〉,

where λ = (λ1, . . . , λn) ∈ Zn is an n-tuple in the lattice of the torus. (Here we view X ∈ Rn,
and exp(X) ∈ T.)
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Definition 3.1.15. Denote by χλj : Tn → S1 the character of an irreducible Tn represen-
tation on a complex line Vj . By differentiating the character χλj at the identity, we obtain
a linear map

λj : t→ R, X 7→ 〈λj , X〉 =

n∑
k=1

(λj)k ·Xk,

which we view as an element in the dual t∗ of the Lie algebra of the torus. We define the
weight of the representation of Tn on Vj to be this dual element.

We now apply representation theory to construct a local model of a Hamiltonian torus action
around a fixed point. Let ψ : Tn ×M → M be a Hamiltonian torus action on a compact
symplectic manifold (M,ω) with momentum map µ : M → t∗, and suppose p ∈ MT is a
fixed point. Then we have a representation π of the torus on the tangent space TpM which
preserves the symplectic structure ωp:

π : T→ GL(TpM), g 7→ d(ψg)p : TpM → TpM.

Since T is compact, we obtain by Proposition 3.1.8 a T-invariant ω-compatible almost
complex structure J on M , which makes (TpM,Jp) into a complex vector space. Since
J is Tn-invariant, we find that π is a finite-dimensional complex representation. The
resulting Riemannian metric mJ(·, ·) := ω(·, J ·) is also T-invariant, so that ψ acts by
isometries on M with respect to the metric mJ . Similarly, the Hermitian inner product
H(·, ·) = mJ(·, ·) + iω(·, ·) is T-invariant, so that T acts by unitary transformations on
(TpM,Jp).

By the above theorems, we can split TpM as follows:

TpM = V1 ⊕ · · · ⊕ Vm, (3.1)

where the summands V1, . . . , Vm are T-invariant mutually orthogonal complex lines. Thus,
we have a vector ej in each complex line Vj such that e1, . . . , em is an orthonormal C-basis
for the tangent space TpM . The action of T on each line Vj is given by:

π(exp(X))(ej) = e2πi〈λj ,X〉ej , (3.2)

for some λj ∈ Zn, j = 1, . . . ,m. Since e1, . . . , em is an orthonormal C-basis and Jp is an
ω-compatible complex structure, it follows that e1, . . . , em, Je1, . . . , Jem is a symplectic ba-
sis for (TpM,ωp). This symplectic basis provides a symplectomorphism between (TpM,ωp)
and (Cn, ω0), where ω0 is the standard symplectic structure.

As we have seen before, the exponential map of a Riemannian metric allows us to identify
a neighborhood of the tangent space with a neighborhood of the manifold. We show that
the exponential map

expp : TpM →M

associated to the T-invariant Riemannian metric mJ is T-equivariant, so that we can make
an equivariant identification. Let γv be the geodesic starting at p such that expp(v) = γv(1).
For g ∈ T, the initial velocity of the curve ψg ◦ γ is given by:

d

dt

∣∣∣∣
t=0

(ψg ◦ γv)(t) = d(ψg)p(v).
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As ψ acts by isometries, it takes geodesics to geodesics, so that we conclude:

expp(π(g)(v)) = expp(d(ψg)p(v)) = ψg(expp(v)),

for v ∈ TpM and g ∈ T. This proves that the exponential map is T-equivariant. In order to
construct a local model, we will make use of the following equivariant Darboux theorem:

Theorem 3.1.16 (Equivariant Darboux Theorem [19, Theorem 22.1]). Let X be a
manifold equipped with an action of a compact Lie group G, and let x ∈ XG be a fixed point.
Suppose ω1, ω2 are G-invariant symplectic forms on X such that (ω1)x = (ω2)x. Then
there exist G-invariant open neighborhoods V and W of x together with a G-equivariant
diffeomorphism Φ : V →W such that Φ(x) = x and Φ∗ω2 = ω1.

We take a G-invariant open neighborhood V0 of 0 in TpM and an open neighborhood Up of
p in M such that

expp : V0 → Up

is a T-equivariant diffeomorphism. Then exp∗p ω and ωp are T-invariant symplectic forms on

V0 ⊆ TpM which agree at 0 ∈ V T
0 . By the equivariant Darboux theorem (and restricting V0

if necessary), we obtain an open neighborhood V of 0 ∈ TpM together with a T-equivariant
symplectomorphism

Φ : V → V0 (3.3)

satisfying Φ(0) = 0 and Φ∗ exp∗p ω = ωp.

Consider the symplectic Tn-action on (Cm, ω0) given by

Tn × Cm → Cm, exp(X) · (z1, . . . , zm) = (e2πi〈λ1,X〉z1, . . . , e
2πi〈λm,X〉zm).

This linear action is Hamiltonian with momentum map

µ0 : Cm → t∗, µ0(z1, . . . , zm) = µ(p)− π
m∑
j=1

|zj |2λj . (3.4)

In view of the decomposition in Equation (3.1) and the remarks thereafter, we obtain a
T-equivariant symplectomorphism

ϕ : (Cm, ω0)→ (TpM,ωp)

satisfying ϕ(0) = 0 and ϕ∗ωp = ω0. It follows that

Ψ := expp ◦ Φ ◦ ϕ : (ϕ−1(V ), ω0)→ (Up, ω) (3.5)

is a T-equivariant symplectomorphism satisfying Ψ(0) = p and Ψ∗ω = ω0. Then

µ ◦Ψ : ϕ−1(V )→ t∗ (3.6)

is another momentum map for the T-action on (ϕ−1(V ), ω0) ⊆ (Cm, ω0). As momentum
maps are unique up to a constant, we find that in local coordinates around the fixed point
p ∈M the momentum map µ : M → t∗ is given by:

µ̂(z1, . . . , zm) = µ(p)− π
m∑
j=1

|zj |2 λj . (3.7)

The process of finding such a local model of a Hamiltonian torus action on M around a
fixed point is called linearization of the action near a fixed point.
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Example 3.1.17. The exponential map of a T-invariant Riemannian metric provides a
T-equivariant identification between a neighborhood of 0 in the tangent space and a neigh-
borhood of the the manifold containing a fixed point of the action. As this idea played a
key role in constructing the local model above, we illustrate it for the usual circle action on
the sphere S2 in Figure 3.1.

Figure 3.1: The circle acts on S2 by rotations. The North pole is a fixed point of the action,
so that the circle acts on the tangent space. The exponential map intertwines the circle
action on the tangent space with the circle action on the sphere.

3.2 Morse–Bott Theory

A successful theory in differential topology is Morse theory, where functions on a manifold
with isolated critical points are used to study the topology of the manifold. Suppose we
have a Hamiltonian action of a Lie group G on a symplectic manifold M with momentum
map µ : M → g∗, this map gives us a smooth function µX for each element X in the
Lie algebra of G. Thus, we can study the Hamiltonian action by applying Morse theory.
However, as the momentum map is equivariant, the critical points of the smooth functions
µX ∈ C∞(M) are generally not isolated, but contain orbits of the action. Therefore we will
use an extension of Morse theory which allows the critical points of a smooth function to
be smooth submanifolds, namely Morse–Bott theory.

Definition 3.2.1. Let N ⊆ M be a submanifold of M . Consider the tangent bundle
π : TM →M . We define the restriction of the tangent bundle of M to N to be

TM |N =
⊔
p∈N

TpM,

which is a vector bundle over N . The normal bundle of a submanifold N in the ambient
manifold M is the following quotient bundle over N :

νM (N) := (TM)|N/TN =
⊔
p∈N

TpM/TpN.
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Another way of thinking about the normal bundle is as follows: the normal bundle of N in
M is the vector bundle over N which makes the following sequence of vector bundles over
N exact:

0 −→ TN −→ TM |N −→ νM (N) −→ 0.

If (M, 〈·, ·〉) is a Riemannian manifold with submanifold N ⊆M , then we can alternatively
define the normal bundle by:

νM (N) :=
⊔
p∈N

TpN
⊥,

which is isomorphic (as a vector bundle) to the previously defined notionof the normal bun-
dle of N in M .

Let f ∈ C∞(M). Recall that a critical point of f is a point p ∈M such that dfp = 0.

Definition 3.2.2. Let p be a critical point of a smooth real-valued function f : M → R.
Define the Hessian of f at p, denoted Hp(f), by the following bilinear form:

Hp(f) : TpM × TpM → R, Hp(f)(v, w) := (VWf)(p) (= (LV LW f)(p)),

where V,W are vector fields on M such that Vp = v,Wp = w.

The Hessian is well-defined, since a tangent vector can always be extended to a vector field
([28, Proposition 8.7]) and the Hessian is independent of the extension used.

Note that the Hessian is a symmetric bilinear form. Indeed, we find:

Hp(f)(v, w)−Hp(f)(w, v) = (LV LW f − LWLV f)(p) = L[V,W ]f(p) = dfp([V,W ]) = 0,

because p is a critical point.

Definition 3.2.3. Let f : M → R be a smooth function, and let Crit(f) denote the set
of critical points of f . A compact connected submanifold C ⊆ M is a nondegenerate
critical submanifold of f if C ⊆ Crit(f) and for all p ∈ C we have kerHp(f) = TpC. The
function f is a Morse–Bott function if Crit(f) is a disjoint union of nondegenerate critical
submanifolds.

Let 〈·, ·〉 be a Riemannian metric on M , and suppose p is a critical point for a Morse–Bott
function f ∈ C∞(M). As the Riemannian metric is a nondegenerate pairing, we can define
an endomorphism hp(f) : TpM → TpM by:

Hp(f)(v, w) = 〈hp(f)(v), w〉p, for all v, w ∈ TpM.

Note that hp is self-adjoint with respect to the metric as the Hessian is a symmetric bilinear
form. Using the Riemannian metric we decompose TpM as follows:

TpM = TpC ⊕ νp(C).

Since the Hessian hp(f) : TpM → TpM is self-adjoint, we can further decompose TpM into
the eigenspaces of hp(f):

TpM = TpC ⊕ ν+
p (C)⊕ ν−p (C). (3.8)

We elaborate on this decomposition:
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• As the function f is Morse–Bott, the 0-eigenspace of hp(f) is given by:

kerhp(f) = kerHp(f) = TpC.

• The subspaces ν±p (C) of the normal space νp(C) are spanned by eigenvectors of hp(f)
corresponding to positive and negative eigenvalues, respectively.

We can find an explicit expression for the Hessian hp(f) : TpM → TpM . Let ∇ be the
Levi-Civita connection associated to the metric 〈·, ·〉, and let gradf ∈ X(M) be the unique
vector field satisfying 〈gradf, V 〉 = df(V ) for all V ∈ X(M). Define hp(f) ∈ End(TpM)
by hp(f)(v) := ∇V grad(f), where V is an extension of v to a vector field on M . We show
that Hp(f)(v, w) = 〈hp(f)(v), w〉 holds. The Levi-Civita connection is compatible with the
metric, so we find:

〈hp(f)(v), w〉 = 〈∇V grad(f), w〉
= V 〈grad(f),W 〉 − 〈grad(f),∇VW 〉
= LV LW f(p)− dfp(∇VW ) = Hp(f)(v, w).

We will need the following lemma. Its purpose is to extend the decomposition in eq. (3.8)
to a decomposition of the tangent bundle of M to an open subset of M .

Lemma 3.2.4 (Morse–Bott lemma [6]). Let f : M → R be a Morse–Bott function and
C ⊆ Crit(f) a d-dimensional nondegenerate critical submanifold. Let dimM = m. For each
p ∈ C there exists a chart (U,ϕ) of p in the ambient manifold M adapted to C such that:

• ϕ(p) = 0;

• (f ◦ ϕ−1)(x1, . . . , xd, y1, . . . , ym−d) = f(C)− y2
1 − · · · y2

k + y2
k+1 + · · ·+ y2

m−d.

In this way we obtain a local splitting of the normal bundle and subsequently the tangent
bundle:

TM |U = TC|U ⊕ ν+
M (C)|U ⊕ ν−M (C)|U ,

where ν±q (C) (q ∈ U) are spanned by the eigenvectors of the Hessian hq(f) corresponding
to positive and negative eigenvalues, respectively.

As a consequence of this lemma we find that C 3 p 7→ dim ν−p (C) is locally constant on
C. Since a nondegenerate critical submanifold is connected, it follows that p 7→ dim ν−p (C)
is constant on C. Similarly, p 7→ dim ν+

p (C) is constant on C. This leads to the following
definition:

Definition 3.2.5. Let f ∈ C∞(M) be a Morse–Bott function, and C a nondegenerate
critical submanifold of f . We define the index of C, denoted by n−(C), to be the common
value of dim ν−p (C) (p ∈ C). Similarly, the coindex of C, denoted n+(C), is the common
value of dim ν+

p (C) (p ∈ C).

Intuitively, the index of a criticial submanifold is the number of negative directions normal
to the submanifold. We now look at some examples of Morse–Bott functions.

Example 3.2.6. The height function on T2 (see Figure 3.2) is a Morse–Bott function with
two circles as critical submanifolds. The green arc indicates that the critical submanifold
has index 1, that is, one negative direction normal to the critical submanifold. The red arc
indicates that the critical submanifold has coindex 1.
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Figure 3.2: The torus T2.

We will need the following connectivity lemma, due to Atiyah [1], for the proof of the AGS
convexity theorem:

Lemma 3.2.7 (Connectivity Theorem). Let f : M → R be a Morse–Bott function on
a compact connected manifold M . Suppose that all the nondegenerate critical submanifolds
have index and coindex n±(C) 6= 1. Then f−1(c) is connected for every c ∈ R. Furthermore,
the function f has a unique local maximum and a unique local minimum.

The following example demonstrates that level sets of a Morse–Bott function with index or
coindex equal to 1 need not be connected.

Example 3.2.8. Consider the height function f on the torus standing vertically (see Figure
3.3). If the height function crosses a critical value of (co)index 1 (f(Q) and f(R) here), the
number of connected components of the fibers changes.

Figure 3.3: The vertical torus T2 with height function f .
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Transversality and normal bundles

Definition 3.2.9. Let S and N be embedded submanifolds of M , and let p ∈ S ∩N . One
says that S and N intersect transversally at p if

TpM = TpS + TpN. (3.9)

If eq. (3.9) holds for all p ∈ S ∩ N , then we say that S and N intersect transversally, and
denote S t N .

Proposition 3.2.10. [28, Theorem 6.30] Let S,N ⊆M be submanifolds of M . Suppose S
and N intersect transversally. Then the following holds:

• The intersection S ∩N is an embedded submanifold of M with codimension

codim(S ∩N) = codim(S) + codim(N).

• For all p ∈ S ∩N , we have:

Tp(S ∩N) = TpS ∩ TpN.

Proposition 3.2.11. Let S,N ⊆ M be submanifolds of M . Suppose S and N intersect
transversally. Then the normal bundle of S ∩N in N is isomorphic to the restriction of the
normal bundle of S in M to S ∩N . More explicitly, we have:

νN (S ∩N) ∼= νM (S)|S∩N .

Proof. Let p ∈ S ∩N . Since S and Q are transversal at p, we find:

νN (S ∩N)p = TpN/Tp(S ∩N) = TpN/(TpS ∩ TpN) ∼= (TpS + TpN)/TpS = TpM/TpS,

where the indicated isomorphism is a consequence of the second isomorphism theorem for
linear subspaces. As νM (S)p = TpM/TpS, we find that:

νN (S ∩N)p ∼= νM (S)p

for all p ∈ S ∩N . The assertion now follows by doing the above approach fiberwise.

We discuss an application in the setting of Morse–Bott functions. Let f : M → R be
a Morse–Bott function with C as a nondegenerate critical submanifold, which intersects
transversally with a submanifold N . Then Proposition 3.2.10 shows that C ∩N is a nonde-
generate critical submanifold of f |N : N → R, and Proposition 3.2.11 implies that the pair
(f |N , C ∩N) has the same index and coindex as the pair (f, C).

Momentum map

We will now prove that a momentum map µ : M → t∗ ∼= Rn of a Hamiltonian torus
action gives rise to Morse–Bott functions µX ∈ C∞(M) which satisfy the conditions of the
Connectivity Theorem. The following lemma, due to Frankel ([15]), demonstrates another
reason why the functions obtained from the momentum map are good choices in order to
study the action. The critical points of µX correspond to the fixed points of the action (of
a subtorus). We follow the approach as done in Torus Actions on Symplectic Manifolds [4]
and Introduction to Symplectic Topology [34].
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Lemma 3.2.12. Suppose we have a Hamiltonian action ψ of a torus Tn on a compact
connected symplectic manifold (M,ω) with momentum map µ : M → Rn. For each X ∈ Rn,
the smooth function µX = 〈µ,X〉 ∈ C∞(M) is a Morse–Bott function with even-dimensional
nondegenerate critical submanifolds of even index (and even coindex). Moreover, the critical
submanifolds

Crit(µX) = MTX

are T-invariant symplectic submanifolds.

Proof. Let J be the T-invariant ω-compatible almost complex structure with Tn-invariant
Riemannian metric mJ(·, ·) := ω(·, J ·). Let G ⊆ T be a subgroup, and p ∈MG a fixed point
of the G-action.

We use the exponential map of the invariant Riemannian metric mJ to obtain a local
model of MG, proving that MG is a submanifold of M . Recall that the exponential map
expp : TpM →M is T-equivariant:

expp(d(ψg)p(v)) = ψg(expp(v)),

for all v ∈ TpM and all g ∈ G. As the exponential map is a local diffeomorphism, we
find for sufficiently small v that v is a fixed point of G on the tangent space if and only if
expp(v) is a fixed point of G on the manifold M . Thus, the exponential map defines a local

parametrization of the fixed points MG on M by the vector space (TpM)G. We conclude
that MG is a submanifold of M with tangent space at p is given by:

Tp(M
G) = (TpM)G.

By G-invariance of J , it follows that (TpM)G is J-invariant:

d(ψg)p ◦ Jp(v) = Jp ◦ d(ψg)p(v) = Jp(v),

for v ∈ (TpM)G and g ∈ G. Thus, we conclude that MG is a symplectic submanifold of M .
Note that d(µX)p = 0 if and only if Xp = 0 if and only if p ∈MTX , it follows that:

Crit(µX) = MTX .

As M is compact, we obtain that Crit(µX) is a finite disjoint union of compact connected
submanifolds.

It remains to show that the critical submanifolds of µX are nondegenerate (in the normal
direction). We will do this by linearizing the action around the fixed point p ∈ MTX . Let
C be the critical component of µX containing p. Let λ1, . . . , λm ∈ t∗ denote the weights
corresponding to the representation of TX on TpM . By Equation (3.7) and Proposition 2.3.6,
we find that µX in local coordinates around p is given by:

µ̂X(z1, . . . , zm) = µX(p)−
m∑
j=1

(x2
j + y2

j ) 〈λj , X〉, (3.10)

where we write zj = xj + iyj . Since a weight λj is zero if and only if the basis vector of the
complex line Vj is a fixed point of the torus action on the tangent space, we find that µX is
normal to the critical submanifold C. Thus, we have that µX is Morse–Bott. Furthermore,
from Equation (3.10) we read off that the critical submanifold C of µX has even index and
even coindex.
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3.3 The Atiyah–Guillemin–Sternberg Convexity Theo-
rem

Following Atiyah’s proof [1] as explained in Introduction to Symplectic Topology [34], we
now prove the convexity theorem for Hamiltonian torus actions. The convexity theorem
was proved by Atiyah [1], and by Guillemin and Sternberg [20] independently.
In order to state the theorem, we need the definition of a convex hull:

Definition 3.3.1. Let η1, . . . , ηN ∈ Rn be a finite number of points in Rn. The convex
hull of the points η1, . . . , ηN , denoted by [η1, . . . , ηN ], is defined by:

[η1, . . . , ηN ] := {
N∑
j=1

tjηj : tj ≥ 0 and

N∑
j=1

tj = 1}.

Equivalently, the convex hull of η1, . . . , ηN is the smallest convex subset of Rn containing
the points η1, . . . , ηN .

Theorem 3.3.2 (Atiyah–Guillemin–Sternberg Convexity Theorem). Let (M,ω) be
a compact connected symplectic manifold. Let ψ : Tn ×M → M be a Hamiltonian torus
action on M with momentum map µ : M → Rn. Then the following holds.

• The regular level sets µ−1(η) are connected.

• The image µ(M) of the momentum map is convex.

• The fixed point set MT is a finite disjoint union of compact connected submanifolds
C1, . . . , CN , on which the momentum map µ is constant. Moreover, the image µ(M)
is the convex hull of the images µ(Cj) =: ηj of the fixed points.

We briefly outline the proof. Consider the following statements:

• (An): The regular level sets µ−1(η) are connected, for every Hamiltonian Tn-action
on M .

• (Bn): The image µ(M) is convex, for every Hamiltonian Tn-action on M .

• (Cn): The image µ(M) is the convex hull of the images of the fixed points under µ,
for every Hamiltonian Tn action on M .

The proof is done by induction on the dimension n of the torus Tn. We divide the proof
into three steps. First, we will prove by induction that (An) holds for all n. Here we
will mainly use the Morse–Bott theory introduced in the previous section. Secondly, we
prove that (An) implies (Bn+1). The idea behind this statement is roughly as follows. Let
µ = (µ1, . . . , µn+1) be a momentum map for a torus action, and pr : Rn+1 → Rn be any
linear projection. Writing µ′ = pr ◦ µ, we find for any η ∈ Rn that:

µ(M) ∩ pr−1(η) = µ(µ′−1(η)).

If µ′−1(η) is connected, then the image of µ(M) intersected (or “cut out”) by the line pr−1(η)
is connected. If the image µ(M) “cut out” by any line is connected, we may conclude that
it is convex. The difficulty here lies in the fact that µ′ = pr ◦ µ is not necessarily a momen-
tum map coming from a Hamiltonian torus action. Finally, we prove that (Bn) implies (Cn).
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The first thing is to rule out trivial cases where the induction step follows immediately from
the induction hypothesis. This leads to the following definition and lemma.

Definition 3.3.3. Let µ : M → Rn be a momentum map of a Hamiltonian torus ac-
tion. We say that the momentum map µ is irreducible (or effective) if the differentials
dµ1, . . . , dµn are linearly independent, and reducible if the differentials are linearly depen-
dent. If dµ1, . . . , dµn are linearly dependent, then there exists an element X = (X1, . . . , Xn)
in the Lie algebra such that µX =

∑
j Xjµj is constant, because the manifold is connected.

Lemma 3.3.4. Let µ : M → Rn be the momentum map for a Hamiltonian action ψ of
an n-torus Tn on a symplectic manifold (M,ω). If µ is reducible, then the action can be
reduced to the action of an (n− 1)-torus.

Proof. Suppose that µ : M → Rn is reducible. Then there exists an element X ∈ Rn in the
Lie algebra such that ψexp tX = Id for all t ∈ R. By a continuity argument, we find a vector
XQ, with rationally dependent components, satisfying ψexp tXQ = Id for all t ∈ R.

We split the Lie algebra of the torus into a direct sum of the line spanned by XQ and its
orthogonal hyperplane:

Rn = R ·XQ ⊕X⊥Q .

Since XQ has rationally dependent components, it follows that exp(X⊥Q ) = Tn−1 ⊆ Tn is an
(n− 1)-dimensional subtorus. Consider the following diagram:

R ·XQ ⊕X⊥Q X⊥Q

Tn Tn−1

Sympl(M,ω)

pr

exp exp

ψ
ψ′=ψ◦i

Here the projection pr is the transpose of the inclusion of Lie algebras i : X⊥Q ↪→ Rn induced

by the inclusion i : Tn−1 ↪→ T. Therefore the inclusion i : X⊥Q ↪→ Rn can be represented by
an integer matrix, so that we can also use the projection pr as a Lie group homomorphism
between these tori. The above diagram is commutative. For this, let v ∈ Rn and write
v = x + y with x ∈ R · XQ and y ∈ X⊥Q . Since the exponential map is a Lie group
homomorphism, we find:

ψexp(v) = ψexp(x+y) = ψexp(x)·exp(y)

= ψexp(x) ◦ ψexp(y) = Id ◦ ψexp(y) = ψexp(y).

Then ψ′ : Tn−1 → Sympl(M,ω) given by ψ′ = ψ◦i is a Hamiltonian action, with momentum
map µ′, satisfying:

ψ = ψ′ ◦ pr, µ = i ◦ µ′.

Or equivalently, the action reduces to a Hamiltonian action of an (n − 1)-dimensional
subtorus.
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Proof of the AGS Convexity Theorem.
Part 1: Connectedness of the regular levels.

We prove by induction on n = dimTn that the regular level sets of a momentum map µ of a
Hamiltonian torus action are connected. For the base case n = 1, we have that µ : M → R
is a Morse–Bott function with even indices and coindices by Lemma 3.2.12. By application
of the Connectivity Theorem, it follows that the (regular) level sets of µ are connected.

For the induction step, suppose that for any Hamiltonian Tn-action the regular level sets
of the corresponding momentum map are connected. We now prove that the regular levels
of the momentum map for any Hamiltonian Tn+1-action are connected. Let µ : M → Rn+1

be a momentum map for a Tn+1-action. If µ is reducible, then by Lemma 3.3.4 it does
not have regular values. Thus, we assume that µ is irreducible. In this case, the function
µX ∈ C∞(M) is nonconstant for every nonzero element X ∈ Rn+1 in the Lie algebra.
Consider the set

Z :=
⋃
X 6=0

Crit(µX) =
⋃
||X||=1

Crit(µX)

By Lemma 3.2.12 we have that Crit(µX) = MTX is an even-dimensional submanifold of
M , for all X. Since µ is irreducible, these submanifolds must necessarily be proper sub-
manifolds. Note that TX ⊆ TY implies that MTY ⊆ MTX (M). In any subtorus generated
by an element X we can find a circle, which in turn is generated by an element in the Lie
algebra with rationally dependent components. There are countably many elements X ∈ Rn
with rationally dependent components and satisfying ||X|| = 1. Hence, Z is a countable
union of proper even-dimensional submanifolds. We now show that M − Z is open and
dense. For density, note that M − Z is a countable intersection of open dense subsets.
By virtue of Baire’s Category Theorem, which states that a countable intersection of open
dense subsets is still dense, we conclude that M − Z is dense. Note that p ∈M − Z if and
only if the differentials (dµ1)p, . . . , (dµn+1)p are linearly independent. By continuity of the
determinant, it follows that linear independence is an open condition, so that M−Z is open.

Denote the set of regular values of the momentum map µ by t∗reg (with some abuse of
notation). We show that µ(M) ∩ t∗reg is dense in µ(M) by showing for each point in the
image there is a sequence contained in the intersection which converges to this point. Let
η = µ(x) ∈ µ(M). Since M − Z is dense, there is a sequence (xj)j∈N ⊆ M − Z such that
xj → x as j → ∞. For each j ∈ N, there is an open neighborhood Uj ⊆ M − Z contain-
ing xj . As µ is a submersion on these neighborhoods, the image µ(M) contains an open
neighborhood Vj of µ(xj), for each j ∈ N. (Note that Vj is open in Rn+1 and thus has
nonzero measure.) By application of Sard’s Theorem, which states that the critical values
have negligible measure, we find a regular value ηj ∈ Vj ⊆ µ(M) arbitrarily close to µ(xj).
Thus, we have found a sequence (ηj)j∈N ⊆ µ(M) ∩ t∗reg which converges to η. Denote by

t̃∗reg the set of values η ∈ Rn+1 such that (η1, . . . , ηn) is a regular value for the reduced

momentum map µ̃ = (µ1, . . . , µn). Similarly, we find that that µ(M) ∩ t̃∗reg is dense in the
image µ(M).

Suppose that η ∈ Rn+1 is a regular value for the momentum map µ and that η̃ := (η1, . . . , ηn)
is a regular value for the reduced momentum map µ̃, that is: η ∈ t∗reg∩ t̃∗reg. By the induction
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hypothesis (and the regular value theorem), we have that

N := µ̃−1(η̃) = µ−1
1 (η1) ∩ · · · ∩ µ−1

n (ηn)

is a connected submanifold. We show that the function µn+1|N : N → R is a Morse–Bott
function with even index and coindex, so that we may apply the Connectivity Theorem to
deduce that the submanifold

(µn+1|N )−1(ηn+1) = N ∩ µ−1
n+1(ηn+1) = µ−1(η)

is connected. Subject to the constraints given by N , we use Lagrange multipliers to find that
a point p ∈ N is a critical point for µn+1|N if and only if there exists a vector (λ1, . . . , λn) ∈
Rn such that

n∑
j=1

λj(dµj)p + (dµn+1)p = 0.

Thus, p is a critical point for the function µX , where X := (λ1, . . . , λn, 1) ∈ Rn+1. By
lemma 3.2.12, it follows that µX is Morse–Bott with nondegenerate critical submanifolds of
even index and coindex. Let C be the critical submanifold containing p. We show that C
and N intersect transversally at p. By linear algebraic considerations, we find:

(TpC + TpN)0 = TpC
0 ∩ TpN0 = TpC

0 ∩ span{(dµ1)p, · · · , (dµn)p}.

The last equality can be seen by noting that span{(dµ1)p, · · · , (dµn)p} ⊆ TpN
0 and that

their dimensions agree. Therefore, to show that C and N intersect transversally at p,
it suffices to show that (dµ1)|TpC , . . . , (dµn)p|TpC are linearly independent. Consider the
fundamental vector field X on M with flow given by ψexp(tX). As each µj is T-invariant,
the coadjoint action being trivial, we find (for all j):

{µj , µX} = dµj(X) =
d

dt

∣∣∣∣
t=0

µj(ψexp(tX)) = 0.

We find that the Poisson brackets of µj and µX commute for all j = 1, . . . , n. By Theo-
rem 1.6.6, we find that µX is constant along the integral curves of Xµj . It follows that the
integral curves of each vector field Xµj are contained in the critical submanifold C of µX , so
that necessarily Xµj ∈ TpC for all j = 1, . . . , n. By Lemma 3.2.12 the critical submanifold
C is a symplectic submanifold: the symplectic form ωp is nondegenerate on TpC. Thus, for
any tangent vector Yp =

∑
j ajXµj ∈ TpC there exists some tangent vector v ∈ TpC such

that:

0 6= ωp(Yp, u) =

n∑
j=1

aj(dµj)p(v).

Or equivalently, the 1-forms (dµ1)p|TpC , . . . , (dµn)p|TpC are linearly independent, which
proves that C and N intersect transversally in any point p ∈ C ∩ N . As the critical sub-
manifold C of µX has even index and coindex, an application of Proposition 3.2.11 yields
that (µX |N , C ∩N) is a Morse–Bott function with critical submanifold C ∩N of even index
and coindex. Note that µX |N − µn+1|N =

∑n
j=1 λjµj |N is constant on N . It follows that

µn+1|N is Morse–Bott with critical submanifold C ∩N of even index and coindex.
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Applying the Connectivity Theorem to the function µn+1|N , we find that

(µn+1|N )−1(ηn+1) = N ∩ µ−1(ηn+1) = µ−1(η)

is connected.

Thus, we have proved that if η ∈ Rn+1 is a regular value for µ such that (η1, . . . , ηn) is a
regular value for the reduced momentum map µ̃ = (µ1, . . . , µn), then the level set µ−1(η) is
connected. We extend this result to all regular values of the momentum map µ : M → Rn+1.
Note that µ(M)∩ t∗reg is open in µ(M), since M is compact. Let ξ ∈ µ(M)∩ t∗reg be a regular
value of µ, and let U ⊆ µ(M)∩ t∗reg be a connected open neighborhood of ξ contained in the
image of µ. Then we have that

µ : µ−1(U)→ U

is a proper surjective submersion. By Ehresmann’s fibration theorem [14], which states that
a proper surjective submersion is a (locally trivial) fiber bundle, we obtain that the regu-
lar level sets over points in U are diffeomorphic to each other. Since µ(M) ∩ t∗reg ∩ t̃∗reg ⊆
µ(M) ∩ t∗reg is dense (by Sard’s theorem) and µ−1(η) connected for η ∈ t∗reg ∩ t̃∗reg, it follows
that each regular level set of µ is connected.

Part 2: Convexity of the image.

We prove by induction on n = dimTn that the image µ(M) is convex. For n = 1, note
that µ(M) ⊆ R is connected as M is connected. Thus, for the base case, µ(M) is convex.
For the induction step, suppose that the image of the momentum map of any Hamiltonian
Tn-action on M is convex. Let µ : M → Rn+1 be a momentum map of a Hamiltonian
Tn+1-action on M , we show that its image µ(M) is convex. Suppose that µ is reducible. By
Lemma 3.3.4 we may write µ = i ◦ µ′, where µ′ is a momentum map of a Tn-action on M
and i an inclusion of Lie algebras. By the induction hypothesis, we immediately find that
µ(M) is convex.

Hence, we assume that µ : M → Rn+1 is irreducible. Let i : Rn → Rn+1 be an injective
linear map, represented by an integer matrix. Set pr := iT : Rn+1 → Rn, which we think of
as a projection map. Since i : Rn → Rn+1 is represented by an integer matrix, we may use
it as a Lie group homomorphism between tori: i : Tn → Tn+1 is well-defined.

Using the given action ψ, we define a torus action of Tn on M by:

Tn ×M →M, τ · p := ψi(τ)(p).

This action is Hamiltonian with momentum map given by:

µ′ = pr ◦ µ : M → Rn.

Recall that µ(M) ∩ t∗reg is dense in the image µ(M) ⊆ Rn+1, as µ is irreducible. Then the
momentum map µ′ = pr ◦µ is also irreducible, so that µ′(M)∩ t′∗reg is dense in µ′(M) ⊆ Rn.
(Here t′∗reg denotes the set of regular values of µ′ in Rn.)

Let η′ ∈ µ′(M) be a regular value of µ′, so that µ′−1(η′) is a non-empty connected subman-
ifold of M . Let p0 ∈ µ′−1(η′) arbitrarily. By definition of µ′ we may then write the regular
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level set µ′−1(η′) in the following way:

µ′−1(η′) = {p ∈M : µ(p) ∈ µ(p0) + ker(pr)}.

Suppose p1 ∈ µ′−1(η′) is another point in this regular level set. Since this level set is a
connected submanifold, there exists a path γ : I → µ′−1(η′) connecting p0 and p1. It follows
that

µ(γ(t)) ∈ µ(p0) + ker(pr), for all t ∈ I.

Since the kernel of pr : Rn+1 → R is one-dimensional and µ(γ(I)) ⊆ µ(M) is connected, we
obtain that

(1− t)µ(p0) + tµ(p1) ∈ µ(M), for all t ∈ I.

Thus, for a regular value η′ of µ′ and any two points p0, p1 ∈ µ′−1(η′), we have established
that the image µ(M) contains all convex combinations of µ(p0) and µ(p1).

Let x, y ∈M be arbitrary points in the manifold. We can approximate x and y by sequences
(xk)k∈N, (yk)k∈N ⊆M such that for each k there exists a surjective projection prk : Rn+1 →
Rn, represented by an integer matrix, satisfying:

µ(xk) ∈ µ(yk) + ker(prk).

Since µ′(M) ∩ t′reg ⊆ µ′(M) is dense, we may assume that µ′(yk) is a regular value of
µ′ = pr◦µ. By the previous paragraph, we know that µ(M) contains all convex combinations
of (1− t)µ(xk) + tµ(yk). Note that µ(M) is closed by compactness of M . Now, taking the
limit k →∞, we find that

(1− t)µ(x) + tµ(y) ∈ µ(M), for all t ∈ I.

As the points x, y ∈M were picked arbitrarily, we conclude that µ(M) is convex.

Part 3: The image is a convex polytope.

Finally, we show that µ(M) is the convex hull of the images of the fixed points. By
Lemma 3.2.12 and compactness of M , the components of the fixed point set FixT(M) are
a finite number of symplectic submanifolds C1, . . . , CN of M . Since the critical points of
the momentum map correspond to fixed points of the action (of a subtorus), we find that
µ is constant on each component Cj . Thus, for each Cj , we have that µ(Cj) = ηj for some
ηj ∈ Rn. The image µ(M) is convex so it contains the convex hull [η1, . . . , ηN ] of the points
ηj .

Let η be a vector which is not contained in the convex hull [η1, . . . , ηN ]. In view of the
Cauchy-Schwarz (in)equality, there exists some X ∈ Rn in the Lie algebra satisfying:

〈ηj , X〉 < 〈η,X〉 for j = 1, . . . , N.

By perturbing this element X slightly, we may assume that it has rationally independent
coefficients. It follows that TX = T. Thus, we have

Crit(µX) = MT =

N⊔
j=1

Cj .
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In view of the Connectivity Theorem, the above implies that µX attains a global maximum
on one of the components Cj . Taking the supremum of µX over M , we find:

sup
p∈M
〈µ(p), X〉 < 〈η,X〉,

which implies that η is not contained in the image µ(M). We conclude that the image µ(M)
is the convex hull of the images of the fixed points: µ(M) = [η1, . . . , ηN ].

Now that we have established that the image of the momentum map of a Hamiltonian torus
action on a compact connected symplectic manifold is a convex polytope, we call µ(M) the
momentum polytope and denote µ(M) = ∆.

The following example can be found in [34, Example 5.5.2], [4, IV.4.6].

Example 3.3.5. Consider the following symplectic torus action of T3 on (CP 3, ωFS):

(t1, t2, t3) · [z0 : z1 : z2 : z3] = [z0 : −t1z1 : −t2z2 : −t3z3].

This action is Hamiltonian with momentum map µ given by:

µ : CP 3 → R3, µ([z0 : z1 : z2 : z3]) = π(
|z1|2∑3
j=0 |zj |2

, . . . ,
|z3|2∑3
j=1 |zj |2

).

One verifies that the action has 4 fixed points, namely:

p1 = [1 : 0 : 0 : 0], p2 = [0 : 1 : 0 : 0], p3 = [0 : 0 : 1 : 0], and p4 = [0 : 0 : 0 : 1].

By virtue of the Atiyah–Guillemin–Sternberg convexity theorem, we find that the image
µ(M) is given by the simplex displayed in Figure 3.4.

Figure 3.4: The image µ(M) = ∆ of the momentum map.
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The amount of vertices of the resulting polytope ∆ is related to the following proposition.

Proposition 3.3.6. Let µ : M → Rn be the momentum map of a Hamiltonian torus action
on a compact connected symplectic manifold (M,ω). If the action is effective, that is, each
1 6= τ ∈ T moves at least one point on the manifold, then the resulting polytope µ(M) = ∆
has at least n+ 1 vertices.

Proof. Since the action is effective, there exists some point p ∈M , such that dµp : TpM →
Rn is a surjection. Thus, µ is a submersion on a sufficiently small neighborhood U around
p. Therefore, µ|U is an open map, and the polytope µ(M) = ∆ contains an open (in Rn).
This implies that µ(M) must have at least n+ 1 vertices.

In particular, an effective Hamiltonian Tn action has atleast n + 1 fixed points. In Hamil-
toniens périodiques et images convexes de l’application moment [11], Delzant has shown
that, for effective Hamiltonian torus actions with dimT = 1

2 dimM , the momentum poly-
tope completely determines the torus action.

Summary

In this chapter, we first used the Haar measure of a torus to obtain an invariant almost
complex structure and an invariant Riemannian metric on the manifold M . Using these
invariant structures, we applied representation theory and the equivariant Darboux Theorem
to derive a local model (with a linear torus action) for a Hamiltonian torus action near a
fixed point p ∈M . This local model allowed us to show that the momentum map functions
µX are Morse–Bott functions with even index and coindex. Finally, we proved by induction
on the dimension of the torus that the image µ(M) for a momentum map of a Hamiltonian
torus action is a convex polytope. This polytope ∆ is the convex hull of the images of the
fixed points.
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Chapter 4

Duistermaat–Heckman
Theorems

In the previous chapter we have studied the image of the momentum map. In this section
we explore two additional ways of studying the momentum map. Firstly, we prove the
Duistermaat–Heckman theorem and we use it to relate the image to the reduced symplec-
tic manifolds. Secondly, we prove the Duistermaat–Heckman localization theorem which
computes an important integral for Hamiltonian actions in terms of fixed point data.

4.1 Principal Bundles

We follow L. Tu’s book Differential Geometry [42] for this subsection.

Definition 4.1.1. Let E and M be manifolds. A smooth surjection π : E →M is a fiber
bundle with fiber F over M if there exists an open covering U = (Ui)i∈I of M together
with diffeomorphisms ϕUi : π−1(Ui)→ Ui × F such that the following diagram commutes:

π−1(U) U × F

U.

ϕUi

π pr1

Here pr1 : U × F → U is the projection onto the first factor. We say that ϕUi are local
trivializations of the fiber bundle π : E →M . The manifold E is called the total space,
and M is called the base space.

Given a fiber bundle π : E → M , the existence of local trivializations imply that π is a
submersion. Indeed, for any open neighborhood Ui ∈ U , we have π|π−1(U) = pr1 ◦ϕUi which
is a composition of submersions. Another consequence of the definition is that the local
trivializations restrict to diffeomorphisms of the fibers. More precisely, for all x ∈ Ui, we
have that

ϕUi |π−1(x) : π−1(x)→ {x} × F
is a diffeomorphism. We now restrict our attention to a special type of fiber bundle, namely
a fiber bundle where a Lie group acts freely on the total space.
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Definition 4.1.2. Let P and M be manifolds, and let G be a Lie group. A principal
G-bundle is a fiber bundle with fiber G together with a free left-action of G on P such that
the local trivializations

ϕUi : π−1(Ui)→ Ui ×G

are G-equivariant. Explicitly, for p ∈ P and g ∈ G, we have:

ϕUi(g · p) = g · ϕUi(p).

(The left-action of G on Ui ×G is given by g · (u, h) := (u, gh).)

Note that the fibers of π are necessarily G-invariant by equivariance of the local trivializa-
tions. Furthermore, we may identify the base space M of a principal G-bundle π : P →M
with the quotient manifold P/G. To see this, consider the quotient map π̃ : P → P/G,
which is a submersion. Since the principal G-bundle π : P → M and the quotient map
π̃ : P → P/G are both surjective submersions which respect each other’s fibers, it follows
that M and P/G are diffeomorphic ([28, Theorem 4.31]).

We will need the following proposition.

Proposition 4.1.3. [9, Theorem 23.4] Let G be a compact Lie group, and let P be a
manifold. Suppose G acts freely on P . Then the quotient map π : P → P/G is a principal
G-bundle.

Definition 4.1.4. Let π : P → M be a principal G-bundle. We define the vertical
subbundle of the tangent bundle TP , denoted V , pointwise by:

Vp := ker dπp ⊆ TpM, for p ∈ P.

We call the tangent vectors in Vp ⊆ TpM vertical vectors (at p).

Proposition 4.1.5. Let π : P →M be a principal G-bundle. The vertical vectors are given
by the fundamental vectors: Vp = {Xp : X ∈ g}. Moreover, the vertical subbundle is trivial,
that is, the vector bundle V → P is isomorphic to the product vector bundle P × g→ P .

Proof. Let p ∈ P arbitrarily, and consider the orbit map Ψp : G → P . Differentiating at
the identity yields a map d(Ψp)e : g → TpP , given by d(Ψp)e(X) = X. Since the fibers of
the principal bundle π are G-invariant, we find that π ◦ Ψp = π. Thus, we obtain that π
is constant on the orbits of G. Recall that the fundamental vectors generate the tangent
spaces to the orbits, it follows that the fundamental vectors are vertical: dπp(X) = 0 for all
X ∈ g.

As G acts freely on P , the orbit map is an immersion. This implies that the dimension
of the linear subspace {Xp : X ∈ g} is equal to the dimension of G and thus equal to the
dimension of Vp. We conclude, for all p ∈ P , that

{Xp : X ∈ g} = Vp.

The required vector bundle isomorphism is given by

P × g→ V, (p,X) 7→ d(Ψp)e(X) = Xp,

which proves the last assertion.
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The above proposition shows tht the vertical vectors are tangent to the fibers of π, which is
the reason we call these vectors vertical. In due course, we describe the notion of a connec-
tion on a principal G-bundle, which can be viewed as a choice of subbundle of the tangent
bundle TP complementary to the vertical subbundle. Equivalently, a connection can be
described by a Lie algebra-valued one-form on P , so we briefly study Lie algebra-valued
differential forms.

Definition 4.1.6. Let G be a Lie group with Lie algebra g, and let P be a manifold. We
define the space of differential k-forms with values in the Lie algebra by

Ωk(P, g) := Γ((

k∧
T ∗P )⊗ g).

A form α ∈ Ωk(P, g) assigns smoothly to each point p in the manifold P an alternating
k-linear map

αp : TpP × · · · × TpP → g.

Let X1, . . . , Xn be a basis for the Lie algebra g of G. Suppose α ∈ Ωk(P, g) is a Lie
algebra-valued k-form on P . For a point p ∈ P and k tangent vectors v1, . . . , vk ∈ TpP , we
find:

αp(v1, . . . , vk) =

n∑
j=1

αjp(v1, . . . , vk) ·Xj ∈ g,

where αjp(v1, . . . , vk) denotes the coefficient of Xj for each j. In this way we obtain n

real-valued differential k-forms α1, . . . , αn ∈ Ωk(P ), so we may identify α as follows:

α =

n∑
j=1

αj ⊗Xj ∈ Ωk(P, g).

The de Rham differential d : Ωk(P, g)→ Ωk+1(P, g) extends to Lie algebra-valued forms in
the following way:

dα :=

n∑
j=1

dαj ⊗Xj ∈ Ωk+1(P, g).

Definition 4.1.7. Let π : P → M be a principal G-bundle, and let α ∈ Ωk(P, g) be a Lie
algebra-valued k-form on P . Denote the left-action of G on P by ψ.

• The form α is horizontal if iXα = 0 for all X ∈ g. Equivalently, the form β pairs to
zero on vertical vectors.

• The form α is equivariant if, for all g ∈ G, we have:

ψ∗gα = Adg(α).

• The form α is basic if it is an element of the image of the injective linear map
π∗ : Ωk(M, g)→ Ωk(P, g). That is, there is a unique δ ∈ Ωk(M, g) such that π∗δ = α.

The following proposition gives a useful criterion to check whether a form is basic.
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Proposition 4.1.8. [42, Theorem 31.12] Let π : P → M be a principal G-bundle, and
let α ∈ Ωk(P, g). The k-form α with values in the Lie algebra is basic if and only if it is
horizontal and G-invariant.

Definition 4.1.9. Let π : P →M be a principal G-bundle. A one-form α ∈ Ω1(P, g) with
values in the Lie algebra g is a connection one-form (for π) if it is a G-equivariant form
such that α(X) = X for all X ∈ g.

An Ehresmann connection for the principal bundle π : P →M is a subbundle H of the
tangent bundle TP complementary to the vertical subbundle:

TpP = Vp ⊕Hp, for all p ∈ P,

with the property that H is G-invariant:

(dψg)p(Hp) = Hgp, for all p ∈ P, g ∈ G.

The subbundle H is called the horizontal subbundle of π.

The following proposition asserts that the above definitions of a connection on a principal
bundle are equivalent.

Proposition 4.1.10. [42, Theorem 28.1] Let π : P →M be a principal G-bundle.

• Suppose α ∈ Ω1(P, g) is a connection one-form for π. Then the subbundle H defined
pointwise by Hp := kerαp ⊆ TpP is an Ehresmann connection.

• Suppose H is an Ehresmann connection, then αp := (dΨp)
−1
e ◦ prVp : TpP → g defines

a connection one-form on P . Here Ψp : G→ P is the orbit map, and prVp : TpP → Vp
the projection onto the vertical subspace at p.

Proposition 4.1.11. Let π : P →M be a principal G-bundle. Then π admits a connection
one-form.

Proof. Consider first the trivial principal G-bundle M×G→M , where the free left-action of
G on M×G is given by g ·(x, h) := (x, gh) for g, h ∈ G, x ∈M . In view of Proposition 4.1.10,
it suffices to exhibit an Ehresmann connection H of the tangent bundle of the total space.
For a point p = (x, g) ∈M ×G, define

Hp := TxM × {0} ⊆ Tp(M ×G),

which defines a G-invariant horizontal subbundle by varying p. Let (σi)i∈I be a smooth
partition of unity subordinate to the open cover U of M associated to the principal bundle
π : P → M . By the above, there exists a connection one-form αi on Ui ×G for each i ∈ I.
Define α ∈ Ω1(P, g) pointwise by

αp =
∑
i∈I

σi(π(p)) · (ϕ∗Uiαi)p,

which is readily seen to be a connection one-form on P .
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We now restrict to the case where G = Tn is an n-torus, with Lie algebra t. Suppose
π : P → M is a principal Tn-bundle. As before, we use X1 := ∂

∂θ1
, . . . , Xn := ∂

∂θn
∈ t as a

basis for the Lie algebra t of the torus. We fix a connection one-form α ∈ Ω1(P, t), and we
now look at some of its properties.

Write α =
∑n
j=1 αj ⊗Xj , where the αj ’s are ordinary one-forms on P . By differentiating,

we find

dα =

n∑
j=1

dαj ⊗Xj ∈ Ω2(P, t).

We claim that dα is basic. In view of Proposition 4.1.8, we need to check that dα is
horizontal and Tn-invariant. The connection one-form α is Tn-invariant, as the adjoint
action is trivial. Using that the de Rham differential and pullbacks commute, it follows that
dα is also Tn-invariant. By application of Cartan’s magic formula and Tn-invariance of α,
we obtain:

iXdα = LXα− diXα = −diXα.

Since α(X) = X for elements of the Lie algebra, it follows that

−diXα = −d(
∑
j=1

αj(Xj)⊗Xj) = −d(

n∑
j=1

1⊗Xj) = 0.

Combining the two equations, we conclude that dα is horizontal, so that we have proved
that dα is basic. Thus, there exists a unique two-form β ∈ Ω2(M, t) such that

π∗β = dα.

Note that 0 = dπ∗β = π∗dβ, which implies that dβ = 0 by the injectivity of π∗. Writing
β =

∑n
j=1 β

j ⊗Xj , we see that each ordinary 2-form βj ∈ Ω2(M) represents a cohomology

class [βj ] ∈ H2
dR(M). We can also view [β] ∈ H2

dR(M) ⊗ t. This discussion leads to the
following definition.

Definition 4.1.12. Let π : P → M be a principal Tn-bundle with connection one-form
α ∈ Ω1(P, t). The curvature of the connection α is the unique closed two-form β ∈ Ω2(M, t)
on the base satisfying π∗β = dα.

We show that the cohomology class of the curvature form does not depend on the connection.
For this, suppose we have two connection one-forms α, α′ ∈ Ω1(P, t) with curvature forms
β, β′ ∈ Ω2(M, t), respectively. Then α − α′ is horizontal and Tn-invariant, so that there
exists a one-form τ ∈ Ω1(M, t) such that α− α′ = π∗τ . Then

π∗(dτ) = dπ∗τ = dα− dα′ = π∗(β − β′),

which implies β − β′ = dτ by injectivity of π∗. We conclude

[β] = [β′] ∈ H2
dR(M)⊗ t.

Thus, we have established an algebraic invariant of the principal Tn-bundle π : P → M :
the de Rham cohomology class of the curvature form.

Remark 4.1.13. The cohomology class [β] ∈ H2
dR(M) ⊗ t of the curvature form has a

special name, it is called the Chern class of the principal bundle, we denote c = [β].
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We work out the connection one-form and the curvature form in a familiar example. The fol-
lowing example can be found in Torus Actions on Symplectic Manifolds [4, Example V.4.4.]

Example 4.1.14 (A Connection and Curvature Form on the Hopf Fibration).
Consider the principal S1-bundle πH : S2n+1 → CPn, where S1 acts on S2n+1 ⊆ Cn+1 by

s · (z1, . . . , zn+1) := (sz1, . . . , szn+1).

We compute a connection one-form for πH. If we identify the Lie algebra s of the circle
with R, the condition that α ∈ Ω1(S2n+1) is a connection-one form reads as follows. Take
X = ∂

∂θ ∈ s, then α ∈ Ω1(S2n+1) must satisfy:

• iXα = 1;

• LXα = 0.

The fundamental vector field generated by X = ∂
∂θ ∈ s is given by

X = 2π

n+1∑
j=1

(−yj
∂

∂xj
+ xj

∂

∂yj
) ∈ X(S2n+1),

where we write zj = xj + iyj for all j. Define α ∈ Ω1(S2n+1) by

α =
1

2π

n+1∑
j=1

(−yjdxj + xjdyj).

We compute

iXα =
1

2π

n+1∑
j=1

−yjdxj(X) + xjdyj(Xj) =

n+1∑
j=1

y2
j + x2

j = 1,

so that, by application of Cartan’s formula, we have

LXα = iXdα =
1

π
· iX(j∗ω0) = −

n+1∑
j=1

(2yjdyj + 2xjdxj) = −d(

n+1∑
j=1

(y2
j + x2

j )) = −d(1) = 0,

where ω0 =
∑n+1
j=1 dxj ∧ dyj is the symplectic form on Cn+1 and j : S2n+1 ↪→ Cn+1 the

inclusion map. We conclude that α ∈ Ω1(S2n+1) is a connection one-form for the principal
S1-bundle πH : S2n+1 → CPn.

By the symplectic reduction theorem, we have:

dα =
1

π
j∗ω0 =

1

π
π∗HωFS.

Therefore the curvature form on the base is β := 1
πωFS ∈ Ω2(CPn).
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4.2 Cohomology Classes of Reduced Symplectic Forms

The goal of this section is to prove the Duistermaat–Heckman Theorem. We follow the
proof of the theorem as explained by V. Guillemin in Moment Maps and Combinatorial
Invariants of Hamiltonian Tn Spaces [17, ]. The following theorem, due to A. Weinstein
[44], plays an important role in the proof.

Theorem 4.2.1 (The Equivariant Coisotropic Embedding Theorem [44]). Let (M0, ω0)
and (M,ω) be two symplectic manifolds of dimension 2m. Let G be a compact Lie group act-
ing in a Hamiltonian fashion on (M0, ω0) and (M,ω) with momentum maps µ0 : M0 → g∗

and µ : M → g∗, respectively. Let Z be a manifold of dimension k ≤ m. Suppose
ι0 : Z ↪→ M0 and ι : Z ↪→ M are G-equivariant coisotropic embeddings. In addition,
suppose that ι∗0ω0 = ι∗ω and ι∗0µ0 = ι∗µ. Then there exist G-invariant neighborhoods U0

of ι0(Z) ⊆ M0 and U of ι(Z) ⊆ M , and a G-equivariant symplectomorphism φ : U0 → U
satisfying φ ◦ ι0 = ι and µ0 = µ ◦ φ.

Assumptions. Suppose that (M,ω) is a compact symplectic manifold equipped with a
Hamiltonian action of a torus Tn, and denote its momentum map by µ : M → t∗. In
addition, suppose that Tn acts freely on the level set Z := µ−1(0). By the symplectic
reduction theorem, we have that

(Mred, ωred) = (Z/Tn, ωred)

is a reduced symplectic manifold. Since Tn acts freely on µ−1(0) and M is compact, there
exists a convex open neighborhood V of 0 in t∗ such that Tn acts freely on the level set
µ−1(ξ) for all ξ ∈ V . We denote by

(Mξ, ωξ) = (µ−1(ξ)/Tn, ωξ)

the reduced symplectic manifolds for 0 6= ξ ∈ V . Since Tn acts freely on µ−1(ξ) (ξ ∈ V ),
the level sets µ−1(ξ) are submanifolds of M of codimension n. Thus, by Proposition 4.1.3,
we have that

π : Z →Mred

is a principal Tn-bundle. We fix a connection one-form α ∈ Ω1(Z, t) for this principal bundle,
and denote by β ∈ Ω2(Mred, t) its curvature form on the base Mred.

Theorem 4.2.2 (The Duistermaat–Heckman Theorem [12]). Under the assumptions
above, there exists a diffeomorphism Mξ →Mred for each ξ ∈ V , which allows us to identify
the de Rham cohomology groups H∗dR(Mξ) ∼= H∗dR(Mred). Moreover, using this identification,
the cohomology class of the symplectic form ωξ varies linearly in ξ ∈ V :

[ωξ] = [ωred]− 〈ξ, c〉 ∈ H2
dR(Mξ),

where c = [β] ∈ H2
dR(Mred)⊗ t is the Chern class of the principal Tn-bundle π : Z →Mred.

Proof. The reduced symplectic ωred on Mred satisfies ι∗ω = π∗ωred, where ι : Z ↪→M is the
inclusion map and π : Z → Mred is the principal Tn-bundle. By the symplectic reduction
theorem, we find that ι : Z ↪→M is a Tn-equivariant coisotropic embedding.
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Let X1 := ∂
∂θ1

, . . . , Xn := ∂
∂θn
∈ t be the usual basis for the Lie algebra t of the torus. In

this basis, we write the connection one-form α ∈ Ω1(Z, t as follows:

α =

n∑
j=1

αj ⊗Xj .

By definition of a connection one-form, the ordinary one-forms αj ∈ Ω1(Z) are Tn-invariant
and satisfy αj(Xk) = δj,k.

We identify t∗ = Rn, and consider the product manifold M0 := Z×(−ε, ε)n with projections
prZ : M0 → Z and prj : M0 → (−ε, ε) the projection onto the j’th (−ε, ε)-factor. For each j,
let xj denote linear coordinates on the j’th (−ε, ε)-factor. We define a two-form ω0 ∈ Ω2(M0)
on M0 by:

ω0 := pr∗Z(π∗ωred)−
n∑
j=1

d[pr∗j (xj) · pr∗Z(αj)] ∈ Ω2(M0).

The action of Tn on the manifold M0 = Z × (−ε, ε)n is inherited from the action on Z, it is
given by:

t · (z, x1, . . . , xn) := (tz, x1, . . . , xn).

Note that ω0 is Tn-invariant, because the αj ’s are Tn-invariant and π∗ωred = ι∗ω is Tn-
invariant by symplecticity of the action on Z. Since ωred is closed and d2 = 0, we see that ω0

is a closed form. We now check that ω0 is nondegenerate on the submanifold Z×{0} ⊆M0.
We have

ω0|Z×{0} = pr∗Z(π∗ωred)−
n∑
j=1

[pr∗j (dxj) ∧ pr∗Z(αj)],

so that we have

ω0|Z×{0}(
∂

∂xj
, Xj) = −1.

This implies that ω0 is nondegenerate along Z × {0}. Since nondegeneracy is an open con-
dition, there exists an ε > 0 sufficiently small such that ω0 is nondegenerate on M0. We
conclude that ω0 ∈ Ω2(M0) is a symplectic form on M0.

We determine a momentum map for the Tn-action on M0. For k = 1, . . . , n, we compute:

iXkω0 = iXkpr∗Z(π∗ωred)−
n∑
j=1

iXkd[pr∗j (xj) · pr∗Z(αj)]

= −iXkd[pr∗k(xk) · pr∗Z(αk)]

= diXk [pr∗k(xk) · pr∗Z(αk)]

= d[pr∗k(xk)].

Here we have used the symplectic reduction theorem and the property αj(Xk) = δj,k for
the second equality, and Cartan’s magic formula together with Tn-invariance of αk for the
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third equality. We conclude that the action of Tn on M0 is Hamiltonian with momentum
map µ0 given by:

µ0 : M0 → Rn, µ0(z, x1, . . . , xn) = (x1, . . . , xn).

Note that ι0 : Z →M0, z 7→ (z, 0) is a Tn-equivariant coisotropic embedding.

We check that ι∗0ω0 = ι∗ω. Note that prj ◦ ι0 = 0 for all j and prZ ◦ ι0 = IdZ . Since
the pullback is a contravariant functor and commutes with the de Rham differential, we
compute:

ι∗0ω0 = ι∗0pr∗Z(π∗ωred)−
n∑
j=1

ι∗0d[pr∗j (xj) · pr∗Z(αj)]

= (prZ ◦ ι0)∗(π∗ωred)−
n∑
j=1

d[(prj ◦ ι0)∗(xj) · (prZ ◦ ι0)∗(αj)]

= π∗ωred = ι∗ω.

By definition of Z, we find that ι∗µ = 0 = ι∗0µ0. By virtue of the equivariant coisotropic
embedding theorem, we obtain a Tn-equivariant symplectomorphism φ : U0 → U between
neighborhoods of ι0(Z) and ι(Z) intertwining the inclusions and momentum maps. This
implies that (Mξ, ωξ) is symplectomorphic to the symplectic reduction of the level set
µ−1

0 (ξ) ⊆ (M0, ω0). Note that µ−1
0 (ξ) = Z × {ξ} and Z are equivariantly diffeomorphic,

which implies that µ−1
0 (ξ)/Tn and Mred = Z/Tn are diffeomorphic. In particular, we have

established a diffeomorphism between Mred and Mξ, so that we may identify their respective
de Rham cohomology groups:

H2
dR(Mred) ∼= H2

dR(Mξ).

By equivariantly identifying µ−1
0 (ξ) = Z × {ξ} with Z, we see that the quotient map

µ−1
0 (ξ) → µ−1

0 (ξ)/Tn is identical to the principal Tn-bundle π : Z → Mred. There-
fore, we may use π to compute the unique symplectic form on µ−1

0 (ξ)/Tn = Mred. Let
jξ : µ−1

0 (ξ) → M0 denote the denote the inclusion map, and write ξ = (ξ1, . . . , ξn). Recall
that the curvature form β of the connection one-form α satisfies π∗β = dα. We find:

j∗ξω0 = j∗ξpr∗Z(π∗ωred)−
n∑
j=1

d[j∗ξpr∗j (xj) · j∗ξpr∗Z(αj)]

= (prZ ◦ jξ)∗(π∗ωred)−
n∑
j=1

d[ξj · (prZ ◦ jξ)∗(αj)]

= π∗ωred −
n∑
j=1

ξj · dαj

= π∗ωred −
∑
j=1

ξj · π∗βj

= π∗(ωred − 〈ξ, β〉).

Thus, we find that (Mξ, ωξ) and (Mred, ωred − 〈ξ, β〉) are symplectomorphic.
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Recall that the Chern class c = [β] ∈ H2
dR(Mred)⊗ t is the cohomology class of the curvature

form. We conclude:
[ωξ] = [ωred]− 〈ξ, c〉 ∈ H2

dR(Mξ).

Polynomial behavior of the Duistermaat–Heckman measure

In this subsection we study a global invariant of Hamiltonian Tn-spaces, namely the Duistermaat–
Heckman measure on the dual g∗ of the Lie algebra and we show that its density function
with respect to the Lebesgue measure on g∗ is piecewise polynomial. Throughout, let B(X)
denote the Borel measurable subsets on any topological measurable space X.

Definition 4.2.3. Let (M,ω) be a 2m-dimensional symplectic manifold. We define the
Liouville measure, denoted by Lω, to be the measure on (M,B(M)) that assigns the
symplectic volume to each Borel measurable subset A ⊆M . Explicitly, we have

Lω(A) :=

∫
A

ωm

m!
, A ∈ B(M).

Note that the Liouville volumes are invariant under symplectomorphisms.

If the manifold M admits a Hamiltonian action, then we can use the momentum map to
define a measure on the dual g∗ of the Lie algebra g. This leads to the following definition.

Definition 4.2.4. Let (M,ω) be a symplectic manifold equipped with a Hamiltonian action
of a compact Lie group G, and suppose the associated momentum map µ : M → g∗ is
proper. The Duistermaat–Heckman measure mDH on (g∗,B(g∗)) is the pushforward of
the Liouville measure under the momentum map:

mDH(B) := µ∗(Lω)(B) = Lω(µ−1(B)) =

∫
µ−1(B)

ωm

m!
, B ∈ B(g∗).

One can integrate compactly-supported smooth functions h ∈ C∞c (g∗) with respect to the
Duistermaat–Heckman measure as follows:∫

g∗
h dmDH =

∫
M

(h ◦ µ)
ωm

m!
. (4.1)

To see this, consider first a simple function h =
∑N
j=1 yj ·1Bj , where yj ∈ R and Bj ∈ B(g∗)

are disjoint Borel measurable sets. Noting that 1µ−1(Bj) = (1Bj ◦ µ), we obtain:

∫
g∗
h dmDH =

N∑
j=1

yj

∫
M

1µ−1(Bj)
ωm

m!
=

∫
M

N∑
j=1

yj · (1Bj ◦ µ)
ωm

m!
=

∫
M

(h ◦ µ)
ωm

m!
.

Then apply the sombrero lemma [38, Theorem 8.8] to find the expression for all h ∈ C∞c (g∗).

Now suppose (M,ω, µ) is a compact connected Hamiltonian Tn-space, and in addition sup-
pose that the action is effective. We can now compare two measures on the dual (t∗,B(t∗))

68



of the Lie algebra, namely the Duistermaat–Heckman measure mDH and the Lebesgue mea-
sure mλ.

Since the action is effective, the Duistermaat–Heckman measure is absolutely continuous
with respect to the (σ-finite) Lebesgue measure mλ [12, Theorem 3.1]. Then, by the Radon–
Nikodym theorem [38, Theorem 20.2], there exists an almost everywhere unique density
function f : t∗ → [0,∞) satisfying

mDH(B) =

∫
B

f(ξ) dmλ(ξ), B ∈ B(t∗).

We denote f = dmDH

dmλ
and one says that f is the Radon–Nikodym derivative for the

Duistermaat–Heckman measure. We show that f = dmDH

dmλ
is a polynomial function on

each connected component of t∗reg.

Theorem 4.2.5. Let (M,ω, µ) be a Hamiltonian Tn-space with momentum map µ : M →
t∗. Suppose that Tn acts freely on M outside of fixed points. On each connected component
of t∗ the Radon–Nikodym derivative f = dmDH

dmλ
: t∗ → [0,∞) of the Duistermaat–Heckman

measure is polynomial in ξ.

Proof. We follow the proof as explained by Cannas da Silva [9, 30.3], and adapt the
same notations as in the proof of the Duistermaat–Heckman theorem. Since (Mξ, ωξ) and
(Mred, ωred) are symplectomorphic (for ξ ∈ (−ε, ε)n), we obtain:

Lω(Mξ) =

∫
Mξ

exp(ωξ) =

∫
Mred

exp(ωred − 〈ξ, β〉), (4.2)

where β ∈ Ω2(Mred, t) is the curvature form on the base of the principal bundle π : Z →Mred

corresponding to the connection one-form α ∈ Ω1(Z, t).

Let U ∈ B((−ε, ε)n) be a Borel-measurable subset of (−ε, ε)n. Since (Z × (−ε, ε)n, ω0) and
(µ−1((−ε, ε)n), ω) are isomorphic Hamiltonian Tn-spaces, it follows that

mDH(U) =

∫
Z×U

exp(ω0).

By definition ω0 = pr∗Z(π∗ωred)−
∑n
j=1 d[pr∗j (xj) · pr∗Z(αj)], so we compute

ωm0
m!

=
1

(m− n)!
(pr∗Z(π∗ωred)−

n∑
j=1

pr∗j (xj)·pr∗Z(dαj))m−n∧pr∗Z(α1)∧· · ·∧pr∗Z(αn)∧pr∗1(dx1)∧· · ·∧pr∗n(dxn).

We suppress the pullbacks by projections from the notation. By application of Fubini’s
theorem ([38, Ch.13]) and using dαj = π∗βj , we find

mDH(U) =

∫
U

[

∫
Z

π∗(ωred −
∑n
j=1 xj · βj)m−n

(m− n)!
∧ α1 ∧ · · · ∧ αn] ∧ dx1 ∧ · · · ∧ dxn

=

∫
U

[

∫
Z

π∗(ωred −
∑n
j=1 xj · βj)m−n

(m− n)!
∧ α1 ∧ · · · ∧ αn] dmλ(x).

69



Since the Radon–Nikodym derivative is a.e. unique, we find that

f(x) = [

∫
Z

π∗(ωred −
∑n
j=1 xj · βj)m−n

(m− n)!
∧ α1 ∧ · · · ∧ αn],

so it remains to evaluate this integral. One can show ([17, p.27]) that Lωξ(Mξ) is the latter
integral, so that we have

f(ξ) = Lωξ(Mξ), for ξ ∈ (−ε, ε)n.

In view of Equation (4.2) we see that f is polynomial on (−ε, ε)n. Since we may add any
constant to the momentum map, we find that f is polynomial on any connected component
of the regular values.

Example 4.2.6 (Archimedes’ observation). Suppose (M,ω, µ) is a 2n-dimensional
Hamiltonian Tn-space such that the torus acts freely outside fixed points. By the con-
vexity theorem, the regular fibers are connected, so that all the reduced spaces are single
points (in view of the dimensions). Hence, the reduced spaces all have Liouville volume equal
to one. Therefore, the Radon–Nikodym derivative of the Duistermaat–Heckman measure is
equal to the characteristic function of the momentum polytope outside a mλ-negligible set.
By the above theorem, we conclude that the Liouville volume of M is equal to the Lebesgue
measure of the momentum polytope:

mDH(∆) =

∫
M

ωn

n!
=

∫
t∗

1∆(ξ) dmλ(ξ) = mλ(∆)

In the case of the S1-action on the sphere S2 by rotations, we recover Archimedes’ observation
(∼230 B.C.), namely the surface area between two horizontal circles is only dependent on
the height.

The purpose of the following example is to show that extending the action to the Delzant
case (if possible) is a useful tool in computing the Duistermaat–Heckman measure for non-
Delzant actions.

Example 4.2.7. Consider the symplectic T2-action on the complex projective space (CP 2, ωFS)
given by

(t1, t2) · [z0, z1, z2] := [z0 : −t1z1 : −t2z2].

This action is Hamiltonian with momentum map µ given by:

µ : CP 2 → R2, µ([z0 : z1 : z2]) = π(
|z1|2∑3
j=0 |zj |2

,
|z2|2∑3
j=1 |zj |2

).

Let us now restrict the action to {1}×S1. This circle action is Hamiltonian with momentum
map given by

µ′ : CP 2 → R, µ′ = pr ◦ µ,

where pr : R2 → R, (x, y) 7→ y is the projection onto the last coordinate. Denote the
n-dimensional Lebesgue measure on Rn by mλn . By the previous example, we know that
the Duistermaat–Heckman measure of µ is given by mDH = mλ2 |∆, where ∆ = µ(M) is the
momentum polytope. Note that the regular values of µ′ are given by the open interval (0, π).
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Figure 4.1: Left: The image µ(M) = ∆ of the momentum map µ. Right: The Radon–
Nikodym derivative for the Duistermaat-Heckman measure associated to µ′.

We compute the Radon–Nikodym derivative f : R → [0,∞) of the Duistermaat–Heckman
measure m′DH associated to the momentum map µ′. For a Borel set B ∈ B(R), we find

m′DH(B) = (µ′)∗(LωFS
)(B) = LωFS

(µ′−1(B))

= LωFS
(µ−1(pr−1(B))) = mDH(pr−1(B))

= pr∗(mDH)(B) = pr∗(mλ2
|∆)(B).

Thus, the Duistermaat–Heckman measure m′DH is given by the pushforward of the Lebesgue
measure on the momentum polytope ∆ = µ(M) under the projection pr. Let U ⊆ R be an
open subset. Using this characterization of m′DH, we find

m′DH(U) = mλ2 |∆(R× U)

=

∫
∆

1R×U (x, y) dmλ2(x, y)

=

∫ π

0

∫ π−y

0

1U (y′) dx′dy′

=

∫
∆′

1U (y) · (π − y) dy

=

∫
U

1∆′(y) · (π − y) dmλ1(y),

where we have used Riemann integration for the iterated integral. We conclude that the

Radon–Nikodym derivative f =
dm′DH

dmλ1
is given by:

f : R→ [0,∞), f(ξ) = 1∆′(ξ) · (π − ξ).

In agreement with Theorem 4.2.5, we find that the Liouville volumes of the symplectic
reduced surfaces (Mξ, ωξ), ξ ∈ (0, π) vary linearly in ξ with slope −1, which encodes infor-
mation about the Chern class of each of the principal S1-bundles µ−1(ξ)→Mξ, ξ ∈ (0, π).

The Duistermaat–Heckman measure has been used as an invariant to obtain classification
results for complexity one Hamiltonian T-spaces ( 1

2 dimM − dimT = 1). J. Moser [36]
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has shown that symplectic surfaces are classified by their genus and Liouville area (up to
symplectomorphism). If the action of the torus is free on a level set of the momentum map,
the Radon–Nikodym derivative of the Duistermaat–Heckman measure returns the Liouville
area of the corresponding reduced symplectic surface, so that Moser’s classification may be
used. For more information, see Y. Karshon and S. Tolman’s paper Centered complexity
one Hamiltonian torus actions [23].

4.3 The Cartan Model: Equivariant Differential Forms

Suppose we have a smooth left action ψ of a compact connected Lie group G on a manifold
M :

ψ : G×M →M.

This action induces a left action of G on the algebra of complex-valued differential forms
Ω∗(M,C) on M by the formula

G× Ω∗(M,C)→ Ω∗(M,C), g · η := (ψg−1)∗η. (4.3)

We now introduce the Cartan model of equivariant differential forms, due to H. Cartan.

Definition 4.3.1. Let ψ denote a left action of a compact connected Lie group G on a
manifold M . An equivariant differential form on M is a polynomial map α : g →
Ω∗(M,C) which is G-equivariant, meaning that

α(Adg(X)) = (ψg−1)∗(α(X)), for all g ∈ G, X ∈ g. (4.4)

We denote the space of equivariant differential forms on M by Ω∗G(M).

Let α, β ∈ Ω∗G(M) be two equivariant differential forms, and let X ∈ g be any element of
the Lie algebra. We denote by α(X)[j] the (homogeneous) component of α(X) which is of
degree j, so that we have

α(X) =

dimM∑
j=1

α(X)[j] ∈ Ω∗(M).

The wedge product of two equivariant differential forms is given by

(α ∧ β)(X) := α(X) ∧ β(X),

and one readily checks that α ∧ β : g → Ω∗(M,C) is again an equivariant differential form
on M , which makes (Ω∗G(M), · ∧ ·) into an algebra.

Definition 4.3.2. We define the equivariant differential, denoted dG, on Ω∗G(M) by the
formula

(dGα)(X) = d(α(X))− iX(α(X)), α ∈ Ω∗G(M), X ∈ g.

An equivariant differential form α is called equivariantly closed if dGα = 0, and it is
called equivariantly exact if there exists an equivariant differential form β ∈ Ω∗G(M) such
that dGβ = α.
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A first observation is that the equivariant differential defines a map dG : Ω∗G(M)→ Ω∗G(M).
We check that d2

G = 0 on Ω∗G(M), so that we have justified naming dG a differential. Let
α ∈ Ω∗G(M) arbitarily, and let X ∈ g be any element of the Lie algebra. By equivariance of
the form α : g→ Ω∗(M,C) and consideration of the adjoint action, we find

α(X) = α(Adexp−tX(X)) = (ψexp tX)∗(α(X)),

which in turn implies that
LX(α(X)) = 0.

Now, by application of Cartan’s formula, we obtain

d2
G(α(X)) = d2α(X) + iX iXα(X)− diXα(X)− iXdα(X) = −LX(α(X)) = 0.

This leads to the following definition.

Definition 4.3.3. We define the equivariant cohomology of M (in the Cartan model),
denoted H∗G(M), to be the cohomology of the complex (Ω∗G(M), dG). That is,

H∗G(M) :=
ker dG
Im dG

.

Remark 4.3.4. There is a grading on the algebra Ω∗G(M) such that the equivariant differen-
tial dG maps ΩkG(M) into Ωk+1

G (M), but we have omitted this viewpoint here for simplicity.
See, for example, Heat Kernels and Dirac Operators [8, Chapter 7.1] for more information.

The following example demonstrates the effectiveness of equivariant cohomology in the set-
ting of Hamiltonian actions. Furthermore, this example will play an important role in the
proof of the Duistermaat–Heckman Localization Theorem.

Example 4.3.5. Let (M,ω) be a symplectic manifold equipped with a Hamiltonian action
of a compact connected Lie group G and denote by µ : M → g∗ its corresponding momentum
map. Define a polynomial map ω̃ : g→ Ω∗(M) by ω̃(X) = µX +ω. Note that ω̃ is of mixed
degree:

ω̃(X)[0] = µX , and ω̃(X)[2] = ω.

We show that ω̃ is an equivariantly closed differential form on M . Let X ∈ g and g ∈ G
arbitrarily. Using that the momentum map is equivariant and that the symplectic structure
is G-invariant, we compute:

ω̃(Adg(X)) = µAdg(X) + ω

= 〈µ(·),Adg(X)〉+ ω

= 〈Ad∗g−1µ(·), X〉+ ω

= 〈µ(ψg−1(·)), X〉+ ω

= (ψg−1)∗µX + ω

= (ψg−1)∗(ω̃(X)),

which implies that ω̃ ∈ Ω∗G(M). It remains to show that ω̃ is equivariantly closed:

(dGω̃)(X) = (d− iX)ω̃(X)

= dµX − iXµX + dω − iXω
= dµX − iXω = 0.
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Here we have used that ω is closed, the interior product vanishes on smooth functions, and
the definition of a momentum map for the last equality.

Conversely, suppose that g → Ω∗(M), X 7→ JX + ω is an equivariantly closed differential
form on (M,ω), where J : M → g∗ is a smooth map. Then one verifies that J : M → g∗

defines a momentum map for the Hamiltonian G-action on (M,ω).

Note that we can integrate equivariant differential forms on M by pairing it with an element
of the Lie algebra and integrating it over the top degree component. This gives rise to a
map ∫

M

: Ω∗G(M)× g→ C, (α,X) 7→
∫
M

α(X)[dimM ].

For instance, instead of integrating the Liouville volume form ωm

m! , we can just integrate the

mixed degree form exp(ω) = 1 + ω + ω2

2 + · · ·+ ωm

m! .

4.4 Equivariant Localization

Throughout this section, let M be a manifold with an action of a compact Lie group G.
Consider a fundamental vector field X on M . We denote by

M0(X) := {p ∈M : Xp = 0}

the zeros of the fundamental vector field X on M . Let 〈·, ·〉 denote a G-invariant Riemannian
metric on M , which is obtained by averaging an arbitrary Riemannian metric over G using
the Haar measure. We write ||X||2 = 〈X,X〉.

Proposition 4.4.1. Let M be a 2m-dimensional manifold equipped with an action of a
compact Lie group G. Suppose that α ∈ Ω∗G(M) is an equivariantly closed differential form
on M . Then, for all X ∈ g, we have that the top degree component α(X)[dimM ] is exact on
the open submanifold M −M0(X) ⊆M .

Proof. Let X ∈ g be an element of the Lie algebra, and write dX = d− iX for the resulting
operator. We define a one-form θ ∈ Ω1(M), with respect to the G-invariant metric 〈·, ·〉,
pointwise by the formula

θp(v) = 〈X, v〉, for v ∈ TpM.

This one-form θ satisfies LXθ = 0 by invariance. Note that dXθ = dθ−||X||2, which implies
that dX(dXθ) = −LXθ = 0. We now show that dXθ is invertible on M −M0(X) in the
space of complex-valued differential forms with respect to the wedge product, that is, we
determine (dXθ)

−1 such that

(dXθ) ∧ (dXθ)
−1 = 1 = (dXθ)

−1 ∧ (dXθ).

By application of the von Neumann series (the operator-analogue of the geometric series),
we obtain on M −M0(X) that:

(dXθ)
−1 = (dθ − ||X||2)−1 = −||X||−2(1− ||X||−2dθ)−1

= −||X||−2(

m∑
k=0

||X||−2kdθk) =

m∑
k=0

−||X||−2(k+1)dθk.
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Indeed, with the dimension of M in consideration we compute:

(dXθ) ∧ (dXθ)
−1 = (dθ − ||X||2) ∧

m∑
k=0

−||X||−2(k+1)dθk

= dθ ∧
m∑
k=0

−||X||−2(k+1)dθk +

m∑
j=0

||X||−2jdθj

= −
m−1∑
k=0

||X||−2(k+1)dθk+1 +

m∑
j=0

||X||−2jdθj = 1,

and similarly (dXθ)
−1 ∧ (dXθ) = 1. Using this fact, we immediately have that

dX((dXθ) ∧ (dXθ)
−1) = 0. (4.5)

Since dX(dXθ) = 0, it follows that

dX((dXθ) ∧ (dXθ)
−1) = dX(dXθ) ∧ (dXθ)

−1 + (dXθ) ∧ dX(dXθ)
−1 = (dXθ) ∧ dX(dXθ)

−1.
(4.6)

Combining Equation (4.5) and Equation (4.6), we find

(dXθ) ∧ dX(dXθ)
−1 = 0,

and wedging both sides with (dXθ)
−1 yields dX(dXθ)

−1 = 0. Using dX(dXθ) = 0, dX(dXθ)
−1 =

0 and that α ∈ Ω∗G(M) is an equivariantly closed differential form on M , one verifies that

dX(θ ∧ (dXθ)
−1 ∧ α(X)) = α(X).

This implies that
d(θ ∧ (dXθ)

−1 ∧ α(X))[dimM−1] = α(X)[dimM ],

since the interior product operator iX lowers the degree of ordinary differential forms. We
conclude, for all X ∈ g, that α(X) is exact on the open submanifold M −M0(X).

Weights convention. Given a T-action on a manifold M and a fixed point p ∈ MT,
we obtain a representation T → GL(TpM) (cf. section 3.1). This representation is called
the isotropy representation at a fixed point. We require the induced orientation of this
representation to coincide with the orientation on TpM induced by the symplectic structure.

Localization Theorem 4.4.2. was proven independently by Atiyah–Bott [2] and Berline–
Vergne [8].

Theorem 4.4.2 (Atiyah–Bott–Berline–Vergne Localization Theorem [2],[8]). Let
M be a compact orientable 2m-dimensional manifold equipped with an action ψ of a torus
Tn. Suppose that the action only has isolated fixed points. In addition, suppose that for
each p ∈ MT there is a Tn-invariant complex structure Jp on the tangent space TpM . Let
α ∈ Ω∗G(M) be an equivariantly closed differential form on M . Suppose X ∈ t satisfies
M0(X) = MT, then we have:∫

M

α(X)[dimM ] =
∑
p∈MT

α(X)[0](p)

Πj〈λj,p, X〉
, (4.7)

where 0 6= λj,p ∈ t∗, j = 1, . . . ,m are the weights associated to the isotropy representation
at fixed points p ∈MT.
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Proof. We follow the proof by N. Berline and M. Vergne [8, Theorem 7.11]. Let p ∈ MT

be a fixed point of the action. We obtain a complex representation of the torus Tn on the
tangent space (TpM,Jp). Subsequently, there is a splitting of TpM into complex lines

TpM = V1 ⊕ · · · ⊕ Vm,

such that the torus Tn acts on each complex line Vj by

(expY ) · vj = e2πi〈λj,p,Y 〉 · vj ,

where the λj,p ∈ t∗, j = 1, . . . ,m are the associated isotropy weights.

By linearizing the action around p using a Tn-invariant Riemannian metric, we obtain a
Tn-invariant open neighborhood Up of p in M and corresponding local complex coordinates
(v1 = x1 + iy1, . . . , vm = xm + iym) such that the fundamental vector field X takes the
following form on Up:

X = 2π

m∑
j=1

〈λj,p, X〉 · (−yj
∂

∂xj
+ xj

∂

∂yj
).

SinceM0(X) = MT, the linearization of the action around fixed points implies that 〈λj,p, X〉 6=
0 for all j = 1, . . . ,m and p ∈MT.

We define a one-form θ(p) on the neighborhood Up by

θ(p) :=
1

2π

m∑
j=1

1

〈λj,p, X〉
· (−yjdxj + xjdyj) ∈ Ω1(Up).

Note that θ(p) satisfies LXθ(p) = 0 and θ(p)(X) =
∑m
j=1 |vj |2. Using a Tn-invariant partition

of unity subordinate to the open cover U := (Up)p∈MT ∪ (M\M0(X)) we piece the one-forms

θ(p) together to obtain a one-form θ ∈ Ω1(M) satisfying the following properties [26, 5.2.11]:

• LXθ = 0;

• θ = θ(p) on a neighborhood of p contained in Up;

• dXθ invertible on M −M0(X).

For a fixed point p ∈ MT denote by Bεp := {v ∈ Up :
∑m
j=1 |vj |2 ≤ ε} ⊆ Up an ε-ball in Up

with respect to the local coordinates v1, . . . , vm on Up. By application of Proposition 4.4.1
and Stoke’s theorem, we find∫

M

α(X)[dimM ] = lim
ε→0

∫
M−∪

p∈MT [Bεp]

α(X)[dimM ]

= lim
ε→0

∫
M−∪

p∈MT [Bεp]

d(θ ∧ (dXθ)
−1 ∧ α(X))[dimM−1]

= lim
ε→0
−
∫
∪
p∈MT [∂(Bεp)]

(θ ∧ (dXθ)
−1 ∧ α(X))[dimM−1]

= −
∑
p∈MT

lim
ε→0

∫
∂(Bεp)

(θ ∧ (dXθ)
−1 ∧ α(X))[dimM−1].

(4.8)
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The minus sign is a result of switching the orientations of the spheres ∂(Bεp) about the fixed
points, see Figure 4.2.

Figure 4.2: The orientation on the manifold M minus the balls around the fixed points is
indicated in black, and the usual orientation on the sphere is indicated in red.

It remains to compute the limit of the integral over each sphere. Consider now a neigh-
borhood of a fixed point p ∈ MT such that θ = θ(p) on this neighborhood. We rescale the
local coordinates v1, . . . , vm on this neighborhood by ε, and denote the resulting map by
mε. Then we have m∗εθ = ε2θ and m∗ε (dXθ)

−1 = ε−2(dXθ)
−1, which together imply

m∗ε (θ ∧ (dXθ)
−1) = (θ ∧ (dXθ)

−1).

Note that
lim
ε→0

m∗εα(X) = α(X)[0](p).

Viewing the coordinate change mε as an orientation-preserving diffeomorphism from the
unit sphere S2m−1

1 to the ε-sphere ∂(Bεp) and using m∗ε (θ∧ (dXθ)
−1∧α(X)) = θ∧ (dXθ)

−1∧
m∗εα(X), we compute:

lim
ε→0

∫
∂(Bεp)

−(θ ∧ (dXθ)
−1 ∧ α(X))[2m−1]

= α(X)[0](p)

∫
S2m−1
1

−(θ ∧ (dXθ)
−1)[2m−1]

= α(X)[0](p)

∫
S2m−1
1

(θ ∧ (1− dθ)−1)[2m−1]

= α(X)[0](p)

∫
S2m−1
1

θ ∧ (dθ)m−1.

(4.9)
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We find, see for example Introductory Lectures on Equivariant Cohomology [43, Chapter 31],
that on S2m−1

1 we have:

dθ =
1

2π

m∑
j=1

1

〈λj,p, X〉
(−dyj ∧ dxj + dxj ∧ dyj) =

1

π

m∑
j=1

1

〈λj,p, X〉
(dxj ∧ dyj),

(dθ)m−1 =
1

πm−1

∑ (m− 1)!

〈λ1,p, X〉 · · · ̂〈λj,p, X〉 · · · 〈λm,p, X〉
dx1 ∧ dy1 ∧ · · · ∧ d̂xj ∧ d̂yj ∧ · · · ∧ dxm ∧ dym,

θ ∧ (dθ)m−1 =
1

2πm
(m− 1)!

Πj〈λj,p, X〉
· ηvol,

where ηvol ∈ Ω2m−1(S2m−1) denotes the standard volume form on the sphere S2m−1. Recall
that vol(S2m−1) = 2πm

(m−1)! . Therefore, we have

α(X)[0](p)

∫
S2m−1
1

θ ∧ (dθ)m−1 =
α(X)[0]

Πj〈λj,p, X〉
.

In view of Equation (4.8) and Equation (4.9), we conclude that∫
M

α(X)[dimM ] =
∑
p∈MT

α(X)[0](p)

Πj〈λj,p, X〉
. (4.10)

Note that the left-hand side of Equation (4.10) is a global quantity (an integral over the
entire manifold), whereas the right-hand side is a localized quantity (a sum over the fixed
point set). In this case, we say that the integral over M localizes onto the fixed point set.

Prior to the Atiyah–Bott–Berline–Vergne Localization Theorem, Duistermaat and Heckman
proved in the paper On the Variation in the Cohomology of the Symplectic Form of the
Reduced Phase Space [12] a localization theorem in the setting of Hamiltonian torus actions.

Theorem 4.4.3 (The Duistermaat–Heckman Localization Theorem [12]). Let (M,ω)
be a compact symplectic manifold equipped with a Hamiltonian action of a torus Tn, and
denote the associated momentum map by µ : M → t∗. Suppose that the action only has
isolated fixed points. If X ∈ t is an element of the Lie algebra such that M0(X) = MT, then
we have ∫

M

ei〈µ,X〉
ωm

m!
= (−i)m

∑
p∈MT

ei〈µ(p),X〉

Πj〈λj,p, X〉
, (4.11)

where λj,p ∈ t∗, j = 1, . . . ,m are the isotropy weights of the fixed points.

Proof. Let X ∈ t be an element in the Lie algebra of the torus Tn such that M0(X) consists
of finitely many points. Define an equivariant differential form eiω̃ ∈ Ω∗G(M) by

eiω̃ : t→ Ω∗(M,C), Y 7→ exp(i(µY + ω)) =

m∑
j=1

ei〈µ,Y 〉
(iω)j

j!
.
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Since the equivariant differential form ω̃(Y ) = µY + ω is equivariantly closed, it follows
that eiω̃ is equivariantly closed as well. Applying the Atiyah–Bott–Berline–Vergne Local-
ization Theorem to eiω̃(X) and noting that (eiω̃(X))[dimM ] = (i)mei〈µ,X〉 ω

m

m! , we obtain the
Duistermaat–Heckman Localization Theorem:∫

M

ei〈µ,X〉
ωm

m!
= (−i)m

∑
p∈MT

ei〈µ(p),X〉

Πj〈λj,p, X〉
.

In this way we have expressed the integral over exp(i(µX+ω)) solely in terms of information
at the fixed points. Note that we did not make use of the nondegeneracy of the symplectic
form ω.

Remark 4.4.4. There exists a similar result for the localization theorems where the fixed
point set does not necessarily consist of isolated points [2].

Applications of the Localization Theorems

Isotropy Weights and Hamiltonian Circle Actions

The Duistermaat–Heckman localization theorem implies relationships between the isotropy
weights. Let (M,ω, µ) be a compact connected 2m-dimensional Hamiltonian S1-space with
finitely many fixed points, and let X ∈ s be the element of the Lie algebra such that µ = µX .
Inspecting the proof again, we see that the following holds, for all nonzero t ∈ R :∫

M

etµ
ωm

m!
=

1

tm

∑
p∈MTn

etµ(p)

Πjλj,p
.

If we view the above expression as an equality of power series in t, we find (in particular)
the following two equations: ∑

p∈MTn

1

Πjλj,p
= 0 (4.12)

and

m! · Lω(M) =
∑

p∈MTn

µ(p)m

Πjλj,p
(4.13)

The following familiar example serves as a check for the various conventions we have em-
ployed regarding weights and orientations.

Example 4.4.5. Consider the Hamiltonian S1-space (S2, ω), where the circle acts by ro-
tations. Recall that the momentum map is given by µ : S2 → R, µ(ϕ, h) = 2πh. As the
orientations induced by the isotropy representations must coincide with the orientation of
the sphere, we find that the isotropy weights on the North- and South-pole are given by
λN = +1 and λS = −1, respectively. By application of eq. (4.13), we recover the Liouville
area of the sphere:

Lω(S2) =
2π

+1
+ (
−2π

−1
) = 4π
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V. Ginzburg has used Equation (4.12) in the paper Some remarks on symplectic actions of
compact groups [16] to simplify a proof by D. McDuff [31], which states that a symplectic
circle action on a compact four-dimensional symplectic manifold is Hamiltonian if and only
if it has fixed points.

Relation with the Duistermaat–Heckman measure

We show that the localization theorem is related to the Duistermaat–Heckman measure via
a Fourier transform.

Let Tn ×M → M be a Hamiltonian action of a torus T on a 2m-dim. compact connected
symplectic manifold (M,ω) with momentum map µ : M → t∗. By definition of the Fourier
transform of a Borel measure (cf. [38, Def. 19.1]), we find that the Fourier transform m̂DH

of the Duistermaat–Heckman measure is given by

m̂DH(−X) =

∫
t∗
ei〈ξ,X〉dmDH(ξ), for X ∈ t.

We substitute h ∈ C∞(t∗) defined by h(ξ) := ei〈ξ,X〉 in Equation (4.1) to obtain

m̂DH(−X) =

∫
M

ei〈µ,X〉
ωm

m!
,

which is the same integral that appeared in the localization theorem. This viewpoint has
been used by Guillemin, Lerman and Sternberg to express the Radon–Nikodym derivative
of the Duistermaat–Heckman measure in terms of fixed point data [18, p.736-741], assuming
that the fixed point set is finite.

Localization of the Partition Function of 2d Yang–Mills Theory

The localization principle has been applied to localize quantum partition functions of certain
quantum mechanical systems. In order to make sense of localization in this setting, we need
a global formulation of quantum mechanics, opposed to the local formulation given by the
Schrödinger partial differential equation. We first discuss the path integral formalism for
quantum mechanics, and then we briefly discuss how two dimensional Yang–Mills theory, a
non-Abelian gauge theory on a surface, fits in with equivariant symplectic geometry.

A global formulation of quantum mechanics is provided by the Feynman path integral for-
malism, which expresses the probability amplitude of a system prepared in a state |q〉 at
time t = 0 to be found in another state |q′〉 at a later time t = T as an integral over all
continuous paths from |q1〉 to |q2〉. Explicitly, the path integral formalism dictates that the
quantum propagator is given by (see [45] for a derivation):

W (q2, q1;T ) := 〈q2, T | q1, 0〉 =

∫
q(0)=q1;q(T )=q2

Dq(t) e i~S[q(t)]. (4.14)

Here S[q(t)] is the classical action functional, that is, the time integral over the Lagrangian:

S[q(t)] =

∫ T

0

dt L(q(t), q̇(t)) =

∫ T

0

dt q̇(t)p(t)−H(q(t), p(t)), (4.15)
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and Dq(t) is the Feynman measure.

The classical partition function of a physical system with a 2m-dim. phase space (M,ω)
and a Hamiltonian function H ∈ C∞(M) is given by

Zcm(β) =

∫
M

e−βH
ωm

m!
, (4.16)

where β is a real number proportional to the inverse temperature. Recall that the partition
function determines the thermodynamical properties of the system. In the quantum case,
the partition function takes the following form [41]:

Zqm =

∫
Dq(t) e i~S[q(t)] δ(q(0)− q(T )), (4.17)

where δ represents the Dirac delta distribution so that we only integrate over the paths
which are loops (with period T ).

Let Σ be a compact orientable surface without boundary, and let G = SU(2) be the gauge
group. Since SU(2) is a simply-connected compact Lie group, any principal SU(2)-bundle
over a surface admits a global trivialization. Thus, we consider the trivial principal G-bundle

π : G× Σ→ Σ, (4.18)

where G acts on G× Σ by g · (h, σ) := (gh, σ).

For such a trivial principal bundle, we can identify the connection one-forms with the space
A = Ω1(Σ, g) of Lie-algebra valued one-forms on the base Σ. We define the curvature of a
connection A ∈ A to be the two-form FA ∈ Ω2(Σ, g) given by:

FA = dA− 1

2
[A,A] ∈ Ω2(Σ, g).

The group of gauge transformations G := C∞(Σ, G) acts on the space A of connection
one-forms, as follows:

G ×A → A, u ·A := Adu(A) + du u−1.

Analogous to the quantum partition function in Equation (4.17), we define the partition
function of two-dimensional quantum Yang–Mills theory on the surface Σ by the following
Feynman path integral [46, Equation 1.10]:

ZYM(ε) =
1

vol(G)

∫
A∈A
DA exp

(
−SYM[A]

ε

)
. (4.19)

Here ε is the Yang–Mills coupling constant, vol(G) is the volume of the gauge group G, DA
is a path integral measure, and SYM is the 2d Yang–Mills action defined by:

SYM(A) :=
1

2
(FA, FA), A ∈ A (4.20)

with respect to a suitable L2-inner product, which is invariant under the action of the group
G of gauge transformations.
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We describe the relation between 2d Yang–Mills theory and equivariant symplectic geometry.
Let 〈·, ·〉 be a Ad-invariant inner product on the Lie algebra g of G = SU(2). It turns out
that the space A of connection one-forms is affine (linear modulo a translation), so that we
may identify TAA = A. In the paper The Yang–Mills equations over Riemann surfaces [3]
Atiyah and Bott show that A admits a symplectic structure given by:

Ω : A×A → R, Ω(α, β) =

∫
Σ

〈α ∧ β〉.

The Lie algebra of G can be identified with the space of smooth maps Σ → g and we can
interpret Ω2(Σ, g) as the dual of the Lie algebra Lie(G) via the pairing 〈ξ, F 〉 :=

∫
Σ
〈ξ, F 〉

for ξ ∈ Ω0(Σ, g) = C∞(Σ, g), F ∈ Ω2(Σ, g) [34, p.214]. Furthermore, Atiyah and Bott
showed that the action of the group G of gauge transformations on A is Hamiltonian with
momentum map given by the curvature:

µ : A → Lie(G)∗ = Ω2(Σ, g), µ(A) = FA. (4.21)

Thus, we see that the Yang–Mills action in Equation (4.20) is proportional to the norm
squared of the momentum map ||µ||2. The critical point set of the norm squared of the
momentum map has been extensively studied in the setting of Morse–Bott theory by, for
example, F. Kirwan [24].

Since the Yang–Mills action is invariant under the group G, it is natural to quotient the
physically equivalent solutions, which are related by a gauge transformation. By a formal
application of the symplectic reduction procedure we can interpret the moduli space of flat
connections M := µ−1(0)/G as a symplectic reduced space (with singularities), it turns out
that this space is finite-dimensional [3].

By considerations of the Hodge star operator (the complex structure on A), it turns out
that the path integral measure DA and the Liouville/symplectic measure exp(ω) coincide
[7, p.190]. This allows us to rewrite the partition function of 2d Yang–Mills theory in terms
of equivariant symplectic data, as follows:

ZYM (ε) ∝ 1

vol(G)

∫
A

exp

(
Ω− ||µ||

2

2ε

)
. (4.22)

In Two dimensional gauge theories revisited [46] E. Witten derived a non-Abelian local-
ization formula for symplectic integrals of precisely this form. In particular, the partition
function ZYM (ε) localizes onto the critical set of the Yang–Mills action SYM = 1

2 (µ, µ), and
the connections in the critical set represent either a stable minimum (a flat connection) or
connections with nonzero curvature which obey the classical Yang–Mills equations [7, p.217-
p.218]. Furthermore, using this approach he recovers as a particular case the result that
the partition function ZYM (0) (zero coupling) agrees with the Liouville/symplectic volume∫
M exp(Ωred) of the moduli space (M,Ωred) [7, p.226].

Witten’s non-Abelian localization principle has been used by L. Jeffrey and F. Kirwan
in the paper Localization and the Quantization Conjecture [22] to prove the quantization
conjecture (quantization commutes with reduction) for certain symplectic manifolds with a
Hamiltonian action. For a discussion on the relation between Chern-Simons gauge theory
and equivariant symplectic geometry, see the paper Non-Abelian Localization for Chern-
Simons Theory [7, p.193-213] by C. Beasley and E. Witten.
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Summary

In this chapter we studied connection one-forms associated to principal T-bundles. Then
we used the equivariant coisotropic embedding theorem to prove the Duistermaat–Heckman
theorem, which states that the de Rham cohomology class of the reduced symplectic forms
varies linearly. This in turn implied that the Radon–Nikodym derivative of the Duistermaat–
Heckman measure (with respect to the Lebesgue measure) is locally polynomial. In order
to prove the Duistermaat–Heckman localization theorem, we studied the Cartan model of
equivariant cohomology and obtained this theorem as a consequence of the Atiyah–Bott–
Berline–Vergne localization theorem. Finally, we discussed some applications and general-
izations regarding the localization principle.
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Outlook

We have studied Hamiltonian actions on symplectic manifolds, a special class of symplectic
actions for which we have a momentum map. We proved the Marsden–Weinstein–Meyer
symplectic reduction theorem for free actions, this ensures that the symplectic reduced space
is a manifold. The symplectic reduction theorem holds for regular values of the momentum
map as well, but then the reduced spaces are generally orbifolds [4, p.85].

We have seen that the momentum map gives us smooth functions which reflect the action,
so that we could apply Morse–Bott theory to study Hamiltonian actions. This helped us
prove the Atiyah–Guillemin–Sternberg convexity theorem for compact Hamiltonian torus
spaces: the image of the momentum map is the convex hull of the images of the fixed
points. Kirwan [25] generalized this convexity theorem to Hamiltonian actions of arbitrary
compact Lie groups on compact symplectic manifolds, see also Sjamaar’s paper [39].

Finally, we studied the Cartan model of equivariant cohomology to prove the Atiyah–Bott–
Berline–Vergne localization theorem. In the setting of Hamiltonian torus actions, this
theorem implied the Duistermaat–Heckman localization theorem. We also compared the
Duistermaat–Heckman measure, the pushforward of the Liouville measure under the mo-
mentum map, with the Lebesgue measure and we saw that this measure is related to the
Duistermaat–Heckman localization theorem by a Fourier transform. It would be interesting
to study other models of equivariant cohomology, for example, the Borel model [4, Ch. VI],
[21, Ch. 1,2], [43, Ch. 23-26] and the Weil model [21, Ch. 3,4], [43, Ch. 19,20].

The reader should now be sufficiently prepared to take on Delzant’s classification theorem
[11], [4, IV.4.e], [9, Ch. 28,29]. This theorem asserts, for the case dimM = 2 dimT, that the
momentum polytope completely determines the Hamiltonian T-space.
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