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Abstract

The two main topics of this thesis are elliptic curves and the Yang-Baxter equation,
whose common theme is their connection to elliptic functions. Elliptic curves, on the
one hand, are algebraic objects with applications in for example number theory and
cryptography, and the subject of much current mathematical research. We prove a
number theoretical result due to Gauss about a specific elliptic curve, and we show
that elliptic curves can be parameterised using elliptic functions. The Yang-Baxter
equation, on the other hand, comes up when studying the scattering of identical par-
ticles in one dimensional integrable systems. We derive a solution for this equation
using the Jacobi elliptic functions, and we discuss how this solution can be used to
show that the one-dimensional XYZ Heisenberg model has infinitely many conserva-
tion laws.
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Introduction

The study of Diophantine equations, that is finding integer or rational solutions of
polynomial equations, has interested mathematicians for over two thousand years,
and is still an active area of research. One of the appealing things about Diophantine
equations, is that one can ask questions that are easy to understand, but very hard
to answer. For example, consider the statement that the equation

Xn + Y n = Zn (0.0.1)

has no integer solutions where X,Y and Z are all non-zero for n ≥ 3. This was
conjectured by Fermat in the seventeenth century, but even though the statement
can be understood by a high school student, it took more than three hundred years
before the British mathematician Andrew Wiles managed to prove that it was in fact
true. The statement is known as Fermat’s Last Theorem. One of the two main topics
of this thesis are elliptic curves, which, as we will see, are closely related to cubic
Diophantine equations in two variables. Much current research is done on elliptic
curves, and they have applications in fields like number theory and cryptography. In
fact, in his proof of Fermat’s Last Theorem, Andrew Wiles made ingenious use of
elliptic curves.

The other main topic of this thesis is the Yang-Baxter equation. This relation
comes up when studying the scattering of particles in one dimension, and ensures
that we can decompose the scattering of multiple particles into a series of two-particle
scatterings. A very nice application of the Yang-Baxter equation is in the quantum
inverse-scattering method. Most of the time in physics, we define a system and then
try to derive properties of this system. For example when we study a pendulum, we
first write down the Hamiltonian or Lagrangian for the system, and from there we
derive the equations of motion for the pendulum. However, in the quantum inverse-
scattering method we turn this process around. It turns out that we can show that
if we find a solution to the Yang-Baxter equation, then we can use this solution to
find some Hamiltonian of a system with infinitely many conservation laws. So then
we know that we are going to find a system with infinitely many conservation laws,
even before we know what system it will be.

The aim of this thesis is to give an introduction to both elliptic curves and the
Yang-Baxter equation, but also to show that these topics are not completely unre-
lated. It turns out that both elliptic curves and the Yang-Baxter equation are related
to so-called elliptic functions. We will connect elliptic curves and the Yang-Baxter
equation by exploring their links to elliptic functions.

Outline of the Thesis

In the first chapter, we will give an introduction to the projective plane and projective
curves. This is all set-up for the second chapter, where we introduce elliptic curves.
After defining what elliptic curves are, we will show how the points on an elliptic
curve in so-called Weierstrass normal form together form a group. In Chapter 3
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we will prove a number theoretical result originally proven by Gauss. Subsequently,
we will use this result to determine the group structure of a specific elliptic curve.
Chapter 4 forms the connection between the first three chapters and the last two. In
this chapter we will introduce elliptic functions and show how they can be used to
parameterise elliptic curves in Weierstrass normal form. Further, we will introduce the
Jacobi elliptic functions, which we will use to solve the Yang-Baxter equation in the
subsequent chapters. In this chapter we also explain where the name ‘elliptic’ comes
from. In Chapter 5 we derive the Yang-Baxter equation by looking at the scattering
of identical particles in a one-dimensional system. Lastly, in Chapter 6 we will give a
solution of the Yang-Baxter equation using the Jacobi elliptic functions from Chapter
4. Further, we will use this solution to construct the Hamiltonian of a system with
infinitely many conservation laws via the quantum inverse-scattering method. The
Hamiltonian we construct is that of the one-dimensional XYZ Heisenberg model.
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Chapter 1

Projective Geometry

In this chapter we will introduce the projective plane, following Appendix A from
Silverman and Tate [1]. We only consider the properties that we need in the rest of
this thesis.

1.1 A Motivating Example

We start with a famous problem from number theory. We want to find the solutions
(x, y) of the equation

xn + yn = 1, (1.1.1)

with x, y ∈ Q and n ≥ 3. We call such a solution non-trivial if both x and y are
non-zero. Suppose that we have a solution x = a/c and y = b/d, with a, b ∈ Z and
c, d ∈ Z \ {0}. Then we can assume the fractions to be simplified such that c and d
are both positive, and gcd(a, c) = gcd(b, d) = 1. Here we write gcd() for the greatest
common divisor of two integers. Filling in this solution, we can rewrite Equation
(1.1.1) to

andn + bncn = cndn. (1.1.2)

This implies that cn | andn. By assumption we have gcd(a, c) = 1, so we get cn | dn,
and therefore c | d. Similarly, we have dn | bncn and gcd(b, d) = 1, so d | c. Hence,
we find c = ±d. We assumed c and d to be both positive, so then c = d. Therefore
every solution of Equation (1.1.1) is of the form (a/c, b/c). Replacing d by c, we can
divide Equation (1.1.2) by cn to get

an + bn = cn. (1.1.3)

So we find that every non-trivial rational solution (a/c, b/c) of Equation (1.1.1) gives
us a non-trivial integer solution (a, b, c) of

Xn + Y n = Zn. (1.1.4)

Here non-trivial means that X,Y and Z are all non-zero. Conversely, if we have a
non-trivial integer solution (a, b, c) for Equation (1.1.4) with c 6= 0, then (a/c, b/c)
is a non-trivial solution of Equation (1.1.1). Now, one might think that we have a
one-to-one correspondence between the non-trivial solutions of Equation (1.1.1) and
the non-trivial solutions of Equation (1.1.4). This is in fact not true, because different
integer solutions (a, b, c) may lead to the same rational solution (a/c, b/c). Indeed,
suppose that we have an integer solution (a, b, c) with c 6= 0 of Equation (1.1.4). Then
for every non-zero integer t, the triple (ta, tb, tc) is also a non-trivial integer solution.
But we have (ta/tc, tb/tc) = (a/c, b/c), so their corresponding solutions of Equation

1



2 CHAPTER 1. PROJECTIVE GEOMETRY

(1.1.1) are the same. We can solve this problem by looking at equivalence classes
of solutions of Equation (1.1.4), where we identify solutions (a, b, c) and (a′, b′, c′) if
there exists a non-zero integer t such that (a′, b′, c′) = (ta, tb, tc). In that case we do
have a one-to-one correspondence between non-trivial rational solutions of Equation
(1.1.1) and equivalence classes of non-trivial integer solutions of Equation (1.1.4) with
Z 6= 0.

Our original question was to find non-trivial rational solutions of Equation (1.1.1)
for n ≥ 3, but now we know that this is equivalent to finding (equivalence classes of)
non-trivial integer solutions of Equation (1.1.4). We call Equation (1.1.4) the homog-
enization of Equation (1.1.1), which we will explain further in Section 1.3. You may
recognize Equation (1.1.4) from Fermat’s Last Theorem, FLT. This theorem states
that for n ≥ 3, there exist no non-trivial solutions to Equation (1.1.4)1. Therefore we
see that for n ≥ 3, there exist no non-trivial rational solutions of Equation (1.1.1).

Now one could ask: What about the solutions of Equation (1.1.4) where Z = 0?
Indeed, for odd n we also have the integer solutions (t,−t, 0) for t ∈ Z\{0}, but these
do not correspond to any solutions of Equation (1.1.1). To understand where they
come from, consider an infinite sequence of solutions

(a0, b0, c0), (a1, b1, c1), (a2, b2, c2), . . . (1.1.5)

such that ci 6= 0 for all i ∈ N, and

lim
i→∞

(ai, bi, ci) = (t,−t, 0) (1.1.6)

for some t ∈ Z \ {0}. Here the triples (ai, bi, ci) consist of real numbers that form
a solution of Equation (1.1.4). As ci 6= 0, we have for each triple a corresponding
real solution (ai/ci, bi/ci) of Equation (1.1.1). From Equation (1.1.6) we see that
(ai/ci, bi/ci) approaches (∞,−∞) as i → ∞. So somehow the solutions (t,−t, 0) of
Equation (1.1.4), i.e. the equivalence class of (1,−1, 0), correspond to a solution of
Equation (1.1.1) that lies “at infinity”. In the rest of this chapter we will see that
the theory of solutions of polynomial equations becomes more elegant if we include
these solutions “at infinity”, which is exactly what we do in projective geometry.

1.2 The Projective Plane P2

There are multiple ways in which you can interpret the projective plane. Here, we
will give an algebraic definition of a projective space. After this definition, we will
present a more geometrical way to look at the two-dimensional projective space, also
called the projective plane.

Let K be a field. If you are not familiar with fields as algebraic objects, you
should think of K as for example the real numbers R, complex numbers C, or rational
numbers Q. We define the set

Sn = {(a0, . . . , an) | a0, . . . , an ∈ K, (a0, . . . , an) 6= (0, . . . , 0)} (1.2.1)

as the set of all n + 1-tuples of elements in K except for (0, . . . , 0). We define the
equivalence relation ∼n on Sn as follows: (a0, . . . , an) ∼n (a′0, . . . , a

′
n) if and only

if there exists a non-zero t ∈ K such that a′0 = ta0, . . . , a′n = tan. We denote
the equivalence class of a tuple (a0, . . . , an) by [a0, . . . , an]. Now, we define the n-
dimensional projective space as follows.

1The first person to state this theorem was Fermat, writing it down in the margin of a book. He
also added that he had found a truly marvelous proof for this, but sadly it did not fit in the margin
of the page. For more than three hundred years the theorem remained unproven, until in 1995 a
correct proof was given by Andrew Wiles. In fact, elliptic curves played a major role in his proof.
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Definition 1.2.1. Let K be a field, and let the set Sn and relation ∼n be as described
above for some integer n ≥ 1. Then we define the n-dimensional projective space
Pn(K) as the set of equivalence classes [a0, . . . , an] of tuples (a0, . . . , an) in Sn. In
formula:

Pn(K) = Sn/ ∼n . (1.2.2)

We call the a0, . . . , an homogeneous coordinates for the point [a0, . . . , an].

In this thesis we will mostly be interested in the two-dimensional projective space
P2(K), called the projective plane. There each point [a, b, c] ∈ P2(K) has three
homogeneous coordinates a, b, c ∈ K.

Now, we want to be able to do geometry in the projective plane. In the next section
we will define curves in P2(K) in general, but here we already give the definition of
a line.

Definition 1.2.2. Let L ⊂ P2(K) be a subset of the projective plane. We say that L
is a line in P2(K) if there exists an equation of the form

αX + βY + γZ = 0 (1.2.3)

for some constants α, β, γ ∈ K not all zero, such that for every point [a, b, c] ∈ L we
have that (X,Y, Z) = (a, b, c) is a solution of this equation, and every solution of this
equation corresponds to a point in L.

Note that if a triple (a, b, c) is a solution of Equation (1.2.3), then the triple
(ta, tb, tc) for t 6= 0 is also a solution. So in our definition of a line, it doesn’t matter
which representant of [a, b, c] ∈ L we choose. Therefore everything is indeed well-
defined.

From the above definitions, it is not immediately clear what the projective plane
and its lines actually look like. It turns out that there is a one-to-one correspondence
between the projective plane P2(K) and the set K2 ∪ P1(K). We will call K2 the
affine part of the projective plane, and the set P1(K) we call the set of points at
infinity .

In K2, we know that lines are given by equations of the form

αy = βx+ γ. (1.2.4)

It would be nice if the lines in P2(K) would correspond to lines in K2, with perhaps
some extra points in P1(K), i.e. points at infinity. To see what happens, we first
make the correspondence between P2(K) and K2 ∪ P1(K) more precise. We define
the bijective map f : P2(K)→ K2 ∪ P1 by

f([a, b, c]) =

{(
a
c ,

b
c

)
∈ K2 if c 6= 0

[a, b] ∈ P1(K) if c = 0
. (1.2.5)

To see that f is a bijection, we construct another map g : K2 ∪ P1(K)→ P2(K) as

g(p) =

{
g1(p) if p ∈ K2

g2(p) if p ∈ P1(K)
(1.2.6)

Here the maps g1 : K2 → P2(K) and g2 : P1(K)→ P2(K) are given by

g1((x, y)) = [x, y, 1],

g2([a, b]) = [a, b, 0].
(1.2.7)
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Then the maps f and g are inverses of each other. Indeed, if we let a, b, c ∈ K with
c 6= 0, then

g ◦ f([a, b, c]) = g

((
a

c
,
b

c

))
=

[
a

c
,
b

c
, 1

]
= [a, b, c]. (1.2.8)

In the case c = 0 we get

g ◦ f([a, b, 0]) = g([a, b]) = [a, b, 0]. (1.2.9)

Conversely, if we let (x, y) ∈ K2 then

f ◦ g((x, y)) = f([x, y, 1]) = (x, y), (1.2.10)

and for [a, b] ∈ P1(K) we find

f ◦ g([a, b]) = f([a, b, 0]) = [a, b]. (1.2.11)

This proves that f and g are inverses of each other, and therefore f is indeed a
bijection.

This way, we have found a one-to-one correspondence between the points in the
projective plane P2(K) and the points in K2 ∪ P1(K). Now suppose that we have a
line L in P2(K). Then, according to Definition 1.2.2, there exist constants α, β, γ ∈ K
not all zero such that the homogeneous coordinates of points in L satisfy the equation

αX + βY + γZ = 0. (1.2.12)

Suppose first that α and β are not both zero. Then if we have a point [a, b, c] ∈ L
with c 6= 0, we see that

f([a, b, c]) =

(
a

c
,
b

c

)
. (1.2.13)

This is a point on the line αx + βy + γ = 0 in K2. We call this line L′. Note that
for every point in (x, y) ∈ L′ we have a corresponding point [x, y, 1] ∈ L. There is
exactly one point [a, b, c] ∈ L with c = 0, namely the point [−β, α, 0]. We find

f([−β, α, 0]) = [−β, α] ∈ P1(K). (1.2.14)

So we see that L corresponds to a line L′ in K2 together with one extra point in
P1(K). We call L′ the affine part of L. So, if we view L as a line in K2 ∪ P1, we see
that it consists of an affine part L′ and one point at infinity. By changing α, β and
γ, while making sure that α and β are not both zero, we see that for every line L′ in
K2 there exists a unique projective line L ⊂ P2(K) such that L′ is the affine part of
L. So the point at infinity on a projective line is determined by the affine part of the
line.

Now suppose that α and β are both 0. Then the coordinates of points in L satisfy
the equation

Z = 0. (1.2.15)

Therefore the points on L are precisely the points of the form [a, b, 0]. From Equation
(1.2.5) we see that these points correspond precisely to the set of points at infinity.
In K2 ∪ P1(K) we define the line at infinity , denoted by L∞, as the set of all points
at infinity. Then we see that every line in P2(K) corresponds to either the line at
infinity, or a unique line in K2 together with one point at infinity.

The following proposition gives an interesting property of lines in the projective
plane.
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Proposition 1.2.3. Let K be a field. Then any two distinct lines in the projective
plane P2(K) intersect in exactly one point, and for any two distinct points in P2(K)
there is a unique line through both points.

Proof. For the proof of this proposition, see the first section of Appendix A of Silver-
man and Tate [1].

1.3 Curves in the Projective Plane

In the previous section we already gave the definition of a line in the projective plane.
In this section we will generalize this to the definition of a curve.

Before looking at the projective plane, we first look at curves in K2 for some field
K.

Definition 1.3.1. Let K be a field. We define an algebraic curve in K2 as the set
of solutions to a polynomial equation in two variables,

f(x, y) = 0. (1.3.1)

For example, the polynomial equation x2 + y2 − 1 = 0 defines a circle in K2, and
2x − 3y2 + 1 = 0 gives a parabola. Circles and parabolas are therefore examples of
algebraic curves.

Now, we want to have a similar definition for curves in the projective plane. We
will first use our definition of P2(K) with homogeneous coordinates. Then we will look
what happens if we view the projective plane as K2 ∪ P1(K). Using homogeneous
coordinates, a point in the projective plane has three coordinates instead of two.
Therefore we will have to use polynomials in three variables instead of two. However,
one point in P2(K) can be represented by different choices for the homogeneous
coordinates. Therefore we only want to look at polynomials F (X,Y, Z) with the
property that F (a, b, c) = 0 implies that F (ta, tb, tc) = 0 for every non-zero t ∈ K.
These polynomials turn out to be the homogeneous polynomials, given by the following
definition.

Definition 1.3.2. Let K be a field. A polynomial F (X,Y, Z) in three variables
is called a homogeneous polynomial of degree d, if and only if it is a linear
combination of mononomials XiY jZk with i+ j + k = d.

From this definition it follows that for a homogeneous polynomial F (X,Y, Z) of
degree d we have

F (tX, tY, tZ) = tdF (X,Y, Z) (1.3.2)

for any t ∈ K. Therefore if F is homogeneous we find that indeed F (a, b, c) = 0 implies
F (ta, tb, tc) = 0 for every non-zero t ∈ K. Note that in Definition 1.3.2 the natural
numbers i, j and k are allowed to be 0. For example, we see that the polynomial
X2 + Y Z + 5Z2 is homogeneous of degree 2, but the polynomial 2XZ2 + 3Y 2 is not
homogeneous.

Now we can give the definition of a curve in the projective plane, which we will
call a projective curve.

Definition 1.3.3. Let K be a field. We define a projective curve C in the projective
plane P2(K) as the set of points whose homogeneous coordinates form a solution to a
polynomial equation

C : F (X,Y, Z) = 0, (1.3.3)

where F is a non-constant homogeneous polynomial. If it is clear from the context
that we are working with projective curves, we may also call C an algebraic curve or
just curve.
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By the degree of a projective curve we mean the degree of its corresponding
homogeneous polynomial. For instance, the projective curve

C : X2 + Y Z + 5Z2 = 0 (1.3.4)

has degree 2.
We will now show that it is indeed well-defined whether a point in the projective

plane lies on a given curve or not. Let p ∈ P2(K) be a point in the projective plane.
Suppose we have two triples of homogeneous coordinates representing the point p:

p = [a, b, c] and p = [a′, b′, c′]. (1.3.5)

Then there is a non-zero t ∈ K such that (a′, b′, c′) = (ta, tb, tc). Let C : F (X,Y, Z) =
0 be a projective curve of degree d. Because F is a homogeneous polynomial, we find

F (a′, b′, c′) = tdF (a, b, c). (1.3.6)

Therefore we see that F (a, b, c) = 0 if and only if F (a′, b′, c′) = 0, which is exactly
what we wanted to show.

To see what a projective curve looks like if we view the projective plane as K2 ∪
P1(K), we use the identification of our two versions of P2(K) given in the previous
section. Let C : F (X,Y, Z) = 0 be a projective curve of degree d. Suppose we have
a point p = [a, b, c] ∈ C with c 6= 0. Then the point p corresponds to the point(

a

c
,
b

c

)
∈ K2 ⊂ K2 ∪ P1(K). (1.3.7)

We know that F is homogeneous and F (a, b, c) = 0. Therefore we have

0 =
1

cd
F (a, b, c) = F

(
a

c
,
b

c
, 1

)
. (1.3.8)

We define the polynomial f(x, y) by

f(x, y) = F (x, y, 1). (1.3.9)

Then the subset of points (x, y) in K2 for which f(x, y) = 0 is an algebraic curve in
K2. We call this curve C ′. Using Equations (1.3.7) and (1.3.8) we see that for every
point p = [a, b, c] ∈ C with c 6= 0, its corresponding point in K2 ∪ P1(K) lies on the
curve C ′ ⊂ K2. Conversely, if we have a point (x, y) on C ′, then [x, y, 1] lies on the
curve C. Therefore the points [a, b, c] on C with c 6= 0 correspond to a curve C ′ in
K2. We call C ′ the affine part of C.

The points [a, b, c] on C for which c = 0 correspond to points in P1(K) ⊂ K2 ∪
P1(K), which we called points at infinity. We conclude that if we have a projective
curve C : F (X,Y, Z) = 0, we can write it as the union of its affine part C ′ and its
points at infinity. Here the affine curve C ′ is given by

C ′ : f(x, y) = F (x, y, 1) = 0. (1.3.10)

The points at infinity on C are the points of the form [a, b, 0] ∈ C.
The process of turning a homogeneous polynomial F (X,Y, Z) into the polynomial

f(x, y) = F (x, y, 1) is called dehomogenization (with respect to the variable Z). This
way we can find the affine part of a projective curve. Now, we would like to reverse
this process. Given an algebraic curve C ′ in K2, we want to find a projective curve
that has the curve C ′ as its affine part.
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Suppose that we have an algebraic curve C ′ in K2 given by

C ′ : f(x, y) = 0. (1.3.11)

To find the projective curve that has C ′ as its affine part, we must construct a
homogeneous polynomial F (X,Y, Z) such that f(x, y) = F (x, y, 1). We can write the
polynomial f(x, y) as

f(x, y) =
∑
i,j

aijx
iyj . (1.3.12)

We define the degree of f as the largest value of i+j for which aij is not zero, denoted
by deg(f). For example

deg(x3 − 6xy + y + x) = 3, and deg(y3 − y2x2 + x) = 4. (1.3.13)

Definition 1.3.4. For a polynomial in two variables f(x, y) =
∑

i,j aijx
iyj with

degree d, we define its homogenization F (X,Y, Z) as

F (X,Y, Z) =
∑
i,j

aijX
iY jZd−i−j . (1.3.14)

From this definition we see immediately that the homogenization F (X,Y, Z) of a
polynomial f(x, y) of degree d is homogeneous of degree d, and F (x, y, 1) = f(x, y).
Note that F (x, y, 1) = f(x, y) would also be the true if we defined F (X,Y, Z) as

F (X,Y, Z) =
∑
i,j

aijX
iY jZk−i−j , for any k > d. (1.3.15)

This way F (X,Y, Z) is also homogeneous, but of degree k > d. The problem with this
definition is that then we would have F (X,Y, 0) = 0, so the curve C : F (X,Y, Z) = 0
would contain all the points at infinity. To avoid this we defined the homogenization
of a polynomial to be homogeneous of the same degree as the polynomial itself.
Then the homogenization always contains a mononomial without the variable Z, and
therefore F (X,Y, 0) 6= 0. This way, for a given curve C ′ : f(x, y) = 0 in K2, we find
the unique curve C : F (X,Y, Z) = 0 that has affine part C ′ and does not contain all
points at infinity. Note that by using homogenization and dehomogenization, we get
a one-to-one correspondence between the algebraic curves in K2 and the projective
curves in P2(K) that do not contain the whole line at infinity.

It is important to note that in principle there is nothing special about the variable
Z. Given a homogeneous polynomial F (X,Y, Z) we can dehomogenize it with respect
to any of the variables X,Y or Z. For example dehomogenizing with respect to
Y would give the polynomial f(x, z) = F (x, 1, z). If we have a projective curve
C : F (X,Y, Z) = 0, then the set of points on C that lie at infinity depends on how
we dehomogenize F (X,Y, Z). For example, consider the projective curve

C : F (X,Y, Z) = Y 2Z −X3 − Z3 = 0 (1.3.16)

and the point p = [0, 1, 0] ∈ C. If we dehomogenize F (X,Y, Z) with respect to Z,
then the point p corresponds to the point [0, 1] ∈ P1(K) at infinity. In this case the
affine part of C is given by the curve

C ′Z : y2 − x3 − 1 = 0. (1.3.17)

If we instead homogenize F (X,Y, Z) with respect to Y , then the point p corresponds
to the point (x, z) = (0, 0) ∈ K2 in the affine part of C. The whole affine part of C
is in this case the curve

C ′Y : z − x3 − z3 = 0. (1.3.18)
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When studying points on a projective curve C, it is often easier if the point lies in the
affine part of C. So then it is sometimes better to dehomogenize to another variable
than Z, or even use different dehomogenizations for different points.

Now let us go back to our example in Section 1.1. There we wanted to find the
points (x, y) ∈ Q2 that satisfied the equation

xn + yn = 1. (1.3.19)

We found that these solutions were all of the form (a/c, b/c), for integers a, b, c.
Further, if we had such a solution, it corresponded to an equivalence class of solutions
of the equation

Xn + Y n = Zn (1.3.20)

with Z 6= 0. Now, we see that we were actually studying the affine part

C ′ : f(x, y) = xn + yn − 1 = 0 (1.3.21)

of the projective curve

C : F (X,Y, Z) = Xn + Y n − Zn = 0. (1.3.22)

The equivalence class of solutions corresponding to a solution (a/c, b/c) ∈ C ′ is just
the point [a, b, c] ∈ C ⊂ P2(Q). The extra solutions of Equation (1.3.20) we got
for Z = 0, are in fact the points at infinity on the curve C. Remember that we
were only interested in integer solutions of Equation (1.3.20). So in principle we
want the points C to have integer coordinates, but C ⊂ P2(Q). However, because
points in the projective plane are given by homogeneous coordinates, we can for every
point p ∈ P2(Q) clear the denominators of its coordinates to get integer coordinates
for p. So we find that we can indeed represent every point in P2(Q) using integer
homogeneous coordinates.

1.4 Tangent Lines

Given a point p on a curve C, algebraic or projective, an interesting question would be
whether the curve has a tangent line at p and how we can construct it. We will answer
this question by showing how to find the tangent line, and then we immediately see
when this does not work.

We start by looking at algebraic curves in R2. We can then of course view these
curves as the affine part of a projective curve. Suppose we have the curve

C ′ : f(x, y) = 0, (1.4.1)

and a point p = (px, py) ∈ C ′. If we want to construct the tangent line at p, this
comes down to finding the slope of the curve at the point p. For this we need the
following result from the implicit function theorem.

Theorem 1.4.1. Suppose that we have the polynomial equation

g(x, y) = 0, (1.4.2)

and a point q = (a, b) that satisfies the equation. Further, suppose that

∂g

∂y

∣∣∣∣
q

6= 0. (1.4.3)

Then there exists a neighborhood U of q such that in U we can write the variable y
as a function of x.
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Proof. This theorem is a special case of the implicit function theorem, which can be
found on for example page 733 of Adams and Essex [2].

Now, we can find the slope of C ′ using a technique called implicit differentiation.
We take the polynomial equation f(x, y) = 0, and take its derivative to the variable
x. However, and this is the special thing about implicit differentiation, we do this
wile viewing the variable y as a function of x. Then the derivative dy

dx = y′ gives
the slope of the curve. We know from the above theorem that this is locally possible
around any point p ∈ C ′, as long as

∂f

∂y

∣∣∣∣
p

6= 0. (1.4.4)

After taking the implicit derivative with respect to x of the equation f(x, y) = 0, we
end up with a polynomial equation in the variables x, y and y′. According to the
chain rule for functions of two variables we get

∂f

∂x
+
∂f

∂y
y′ = 0, (1.4.5)

see page 708 of Adams and Essex [2]. Suppose that we have solved this equation
for y′. Then filling in the coordinates of our point p = (px, py), we obtain the slope
y′(px, py) of C ′ at the point p. Now the tangent line to C ′ at p is the unique line
through p with slope y′(px, py). This line is given by

y = y′(px, py)(x− px) + py. (1.4.6)

We can rewrite this to

− y′(px, py)(x− px) + y − py = 0. (1.4.7)

Then, if we multiply this equation with ∂f
∂y (px, py) and use Equation (1.4.5) evaluated

in the point p, we obtain

∂f

∂x
(px, py)(x− px) +

∂f

∂y
(px, py)(y − py) = 0. (1.4.8)

This equation gives the tangent line to C ′ at the point p. Remember that we could
not find the slope y′ using implicit differentiation in points p where

∂f

∂y

∣∣∣∣
p

6= 0. (1.4.9)

However, we see that Equation (1.4.8) also works for these points, as long as not also

∂f

∂x

∣∣∣∣
p

6= 0. (1.4.10)

In that case the tangent line at p will be a vertical line, so therefore its slope is indeed
not defined. Because the partial derivative of a polynomial is defined for polynomials
over any field, we can use Equation (1.4.8) to give a definition of the tangent line to
a curve in the plane K2 for any field K.

Definition 1.4.2. Let K be a field. Suppose that we have the affine curve C ′ ⊂ K2

given by
C ′ : f(x, y) = 0, (1.4.11)

together with a point p = (px, py) ∈ C ′. Then the tangent line to C ′ at the point p
is given by Equation (1.4.8).
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Figure 1.1: The curve C1 : y2 =
x3 + x2 in R2

Figure 1.2: The curve C2 : y2 =
x3 in R2

We see that the above definition gives the tangent line in almost every point of a
curve

C ′ : f(x, y) = 0 (1.4.12)

in the plane K2 for some field K. The only problematic points are when both partial
derivatives of f are 0. We call these points singular points. Other points are called
non-singular points. For example, the curves

C1 : y2 = x3 + x2 and C2 : y2 = x3 (1.4.13)

both have the point p = (0, 0) as a singular point. If we sketch these curves in R2, we
see that C1 makes a loop and crosses itself at p, see Figure 1.1. Therefore the tangent
line is not well-defined because there are two distinct tangent directions. The curve
C2, on the other hand, has a so-called cusp at p. The curve forms a sharp point with
the point p at the tip, see Figure 1.2.

Definition 1.4.3. Let C be an algebraic curve. We say that C is a non-singular
curve if every point of C is non-singular. A non-singular curve is also called a
smooth curve.

From this definition, we immediately see that a non-singular curve has a well-
defined tangent line in all of its points.

Now what about projective curves? Suppose we have a projective curve C :
F (X,Y, Z) = 0 and a point p = [a, b, c] ∈ C. If c 6= 0, then p lies on the affine part
of C if we dehomogenize F with respect to Z. Then the point p corresponds to the
point

p′ =

(
a

c
,
b

c

)
on the affine curve C ′ : F (x, y, 1) = 0. (1.4.14)

We say that p is a singular point of C if and only if p′ is a singular point of C ′. In the
case that c = 0, we find that p corresponds to a point at infinity if we dehomogenize
F with respect to Z. We do not really know how to check whether a point at infinity
is a singular point, but we can avoid this problem by just dehomogenizing F with
respect to another variable. For example if a 6= 0, we can dehomogenize F with
respect to X. Then p corresponds to the point

p′′ =

(
b

a
,
c

a

)
on the affine curve C ′′ : F (1, y, z) = 0, (1.4.15)
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and we call p singular if and only if p′′ is singular. For this to be well defined, we
have to show that it is independent of the homogenization we choose whether a point
is singular or not. We will now prove that this is the case. Indeed, consider the curve

C : F (X,Y, Z) = 0. (1.4.16)

Recall from Equation (1.3.2) that for any t ∈ K we have

F (tX, tY, tZ) = tdF (X,Y, Z), (1.4.17)

where d is the degree of F . We can differentiate the above expression with respect to
t. Then, again using the multivariable chain rule [2], we get

X
∂F

∂X
(tX, tY, tZ)+Y

∂F

∂Y
(tX, tY, tZ)+Z

∂F

∂Z
(tX, tY, tZ) = dtd−1F (X,Y, Z). (1.4.18)

If we evaluate this expression in t = 1 we obtain

X
∂F

∂X
(X,Y, Z) + Y

∂F

∂Y
(X,Y, Z) + Z

∂F

∂Z
(X,Y, Z) = dF (X,Y, Z). (1.4.19)

Note that the partial derivatives of a homogeneous polynomial of degree d are them-
selves homogeneous polynomials of degree d − 1. Now, let p = [a, b, c] ∈ C be a
point on the curve. Then we have F (a, b, c) = 0. Filling this point in into the above
equation yields

a
∂F

∂X
(a, b, c) + b

∂F

∂Y
(a, b, c) + c

∂F

∂Z
(a, b, c) = 0. (1.4.20)

Because [a, b, c] is a point in the projective plane we know that at least one of its
homogeneous coordinates must be non-zero. We assume c 6= 0. Then we can deho-
mogenize the curve with respect to Z such that p corresponds to the point (a/c, b/c)
on the affine part of the curve. The affine part of the curve is then given by

C ′ : F (x, y, 1) = 0. (1.4.21)

Then, by definition, the point p is singular if and only if

∂F

∂x

(
a

c
,
b

c
, 1

)
=
∂F

∂y

(
a

c
,
b

c
, 1

)
= 0. (1.4.22)

Now, note that
∂F

∂x
=
∂F

∂X
and

∂F

∂y
=
∂F

∂Y
. (1.4.23)

Then, using the fact that the partial derivatives of F are homogeneous polynomials,
we see that Equation (1.4.22) implies

∂F

∂X
(a, b, c) =

∂F

∂Y
(a, b, c) = 0. (1.4.24)

Remember that we assumed c 6= 0, so then it follows from Equation (1.4.20) that also

∂F

∂Z
(a, b, c) = 0. (1.4.25)

Therefore, we see that all three partial derivatives of F vanish at p = [a, b, c]. This
implies that if we would have dehomogenized the curve with respect to the variables
X or Y , we would still find that [a, b, c] is a singular point on C. In this derivation
we assumed c 6= 0, but the cases a 6= 0 and b 6= 0 are completely analogous. So we
conclude that when we check whether a point on a projective curve is singular, the
result is indeed independent from the dehomogenization we work with.

Similar to our definition for algebraic curves, we call a projective curve C non-
singular or smooth if all of its points, including those at infinity, are non-singular. In
particular this implies that the affine part of a smooth projective curve is smooth.



Chapter 2

Elliptic Curves

In this chapter we will give the definition of an elliptic curve and derive some prop-
erties for elliptic curves. In particular we show how the points on an elliptic curve in
Weierstrass normal form together form an abelian group, and we derive explicit for-
mulas for the addition of two points. In this chapter we follow Chapter I of Silverman
and Tate [1].

2.1 Elliptic Curves and Weierstrass Normal Form

Now we are ready to start looking at elliptic curves, which are just special examples
of projective curves.

Definition 2.1.1. Let K be a field. Let

C : F (X,Y, Z) = 0 (2.1.1)

be a smooth projective curve in P2(K) with at least one point p ∈ C. If the polynomial
F (X,Y, Z) is homogeneous of degree 3, then we call C an elliptic curve.

A curve of degree 3 is also called a cubic. So elliptic curves are special examples
of cubics. Note that in the above definition we require an elliptic curve to contain at
least one point. This is needed because there exist in fact cubic curves that do not
contain any points. This happens for instance with the curve

3x3 + 4Y 3 + 5Z3 = 0 (2.1.2)

in P2(Q), as shown by Selmer [1]. Remember that for homogeneous polynomials
the projective integer and rational solutions coincide. Selmer showed that the only
integer solution to the above equation is (X,Y, Z) = (0, 0, 0), but that is not a point
in P2(Q). Therefore the curve has no points in P2(Q).

An important result for elliptic curves, is that any elliptic curve can be transformed
into an elliptic curve in so-called Weierstrass normal form [1]. This transformation
is such that there is a one-to-one correspondence between the points on the original
curve and the transformed curve. If we are working in P2(K) where the characteristic
of the field K is unequal to 2, then an elliptic curve in Weierstrass normal form is of
the form

Y 2Z = X3 + aX2Z + bXZ2 + cZ3. (2.1.3)

If we dehomogenize with respect to Z, we see that the affine part of a curve in normal
form is given by an equation of the form

y2 = f(x) = x3 + ax2 + bx+ c. (2.1.4)

12
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Figure 2.1: The smooth curve C1 :
y2 = x3 − x+ 1 in R2.

Figure 2.2: The smooth curve C2 :
y2 = x3 − x in R2.

The affine part of an elliptic curve in Weierstrass normal form typically looks like one
of the curves in Figures 2.1 and 2.2, depending on whether f(x) has one or three roots
in K. The curves in Figures 1.1 and 1.2 from the previous chapter are not elliptic
curves, as they are not smooth.

Proposition 2.1.2. A curve in K2 given by an equation of the form

y2 = f(x) = x3 + ax2 + bx+ c (2.1.5)

is smooth if and only if the discriminant of f is non-zero. In other words, it is smooth
if and only if f has three distinct roots in the algebraic closure of K.

Proof. For the proof of this proposition, see Proposition III.1.4 in Silverman [3].

See Appendix A if you are not familiar with the discriminant of a polynomial. To
see which points at infinity lie on a curve in normal form, we fill in Z = 0 in Equation
(2.1.3). Then we get

0 = X3, (2.1.6)

which has only one solution X = 0. Therefore an elliptic curve in normal form
has exactly one point at infinity, namely [0, 1, 0]. This is the point where vertical
lines in K2 meet. Note that because we found one point already, every smooth
projective curve given by an equation of the form in Equation (2.1.3) is an elliptic
curve. So by Proposition 2.1.2 we see that every affine curve given by an equation of
the form in Equation (2.1.4) defines the affine part of an elliptic curve if and only if
the discriminant of f is non-zero.

2.2 Intersections of a Line and a Curve

In the next section we will show that there is a group structure on the points of an
elliptic curve. But before we do this, we have to introduce the notion of intersection
multiplicity .

We start by looking at the unit circle S1 ⊂ R2. Note that this is not an elliptic
curve. Suppose that we take one point p in the unit circle and draw a line through
p. Then most of the time this line will intersect the circle in exactly one other point.
However, there is one exception, namely when we take the tangent line to S1 at p.
This tangent line has only one intersection with S1. Another way to think of this is
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Figure 2.3: Unit circle with tangent line at p = (
√

2/2,
√

2/2).

that the tangent line in p does intersect S1 twice, but both times in the same point
p. Intuitively this makes sense because suppose that we have a sequence of points
{qi}i∈N on S1 that converges to p. Then if we let i go to infinity, the line through p
and qi will approach the tangent line to S1 at p. However, we can also motivate this
from an algebraic point of view. The unit circle S1 is the curve given by the equation

x2 + y2 = 1. (2.2.1)

Now suppose that p is the point (
√

2/2,
√

2/2). Then the tangent line to S1 through
p is given by the equation

y = −x+
√

2. (2.2.2)

Now we can determine the intersections of the line and S1 by substituting y = −x+
√

2
into the equation for S1. Then we find

2x2 − 2
√

2x+ 1 = 0, (2.2.3)

which we can also write as (√
2x− 1

)2
= 0. (2.2.4)

Hence, we see that x =
√

2/2 is a double solution of this equation. In other words,
it is a root with multiplicity two. Of course, this solution corresponds to the point p.
Therefore we say that the tangent line at p intersects S1 at p with multiplicity 2.

Now, suppose we have a cubic curve C : F (X,Y, Z) = 0, together with a point
p ∈ C. Then if we draw a line through p, this line will in general intersect the curve
C in two more points. Just as for the circle, we can find these points algebraically.
Then we obtain a cubic equation for the coordinates of the intersection points. Note
that for a projective curve one of these points could lie at infinity. If we find a double
root of this equation, it means that the line is tangent to the curve in one point, and
has one other normal intersection point. However, this time we could also have a
triple root. This happens if we take the tangent line in an inflection point (Dutch:
buigpunt) of the curve. Therefore we say that the tangent line at an inflection point
of C intersects the curve with multiplicity 3. Note that if we find two roots of the
equation for the coordinates of intersection points (counting multiplicities), then we
automatically also get a third root. This is because we can factor out the the two
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known roots to obtain a linear equation for the third root. However, if we find only
one root, then it could be that there is only one root. For example the cubic

(x+ 1)(x2 + 1) = 0 (2.2.5)

has only one root in R, namely x = −1. The other two roots are complex. Therefore
we find that for any point p on a cubic curve, a line through p has either one or three
intersections with the curve, counting multiplicities. At least of these intersections is
of course at p itself.

2.3 The Group of Points on an Elliptic Curve

In this section we will define a group structure on the set of points on elliptic curves.
Remember that we can transform every elliptic curve into an elliptic curve in Weier-
strass normal form, in such a way that there is a one-to-one correspondence between
the points on the curves. Therefore we will only consider elliptic curves in Weierstrass
normal form.

Suppose that we have an elliptic curve in normal form

C : Y 2Z = X3 + aX2Z + bXZ2 + cZ3. (2.3.1)

At the end of Section 2.1 we showed that if we dehomogenize with respect to Z, then
this curve has exactly one point at infinity, namely [0, 1, 0]. We did this by looking
at the intersections of the line at infinity with the curve. Now using what we saw in
the previous section, we find that the line at infinity intersects the curve in [0, 1, 0]
with multiplicity 3. So the point [0, 1, 0] is actually an inflection point of the curve.
We call this point O, and it will be the identity element of the group of points on the
curve.

Now, the group structure on the set of points on an elliptic curve comes from the
following idea: Suppose that we have an elliptic curve C together with two points
p, q ∈ C. Then we can use these two points to construct a third point on C. Namely,
if we draw the line through p and q, then we saw in the previous section that this line
will intersect the curve in a third point. We denote this third point by p ∗ q. If we
have p = q, then we say that the line through p and itself is the tangent line to the
curve at p. This is motivated by the fact that this tangent line intersects the curve
with multiplicity at least 2, as we saw in the previous section.

So this gives us an operation ∗ that takes two points on an elliptic curve and spits
out a third one. Then one might think that the set of points on the curve together
with this operation forms a group. But it is relatively simple to see that this is not
the case, because there can not be a point that acts as the identity element for the
operation ∗. However, it turns out that if we modify the operation a bit, then we
can turn the set of points on an elliptic curve into an abelian group. Because the
group will be abelian, we denote the group operation by +. We define the operation
as follows:

Definition 2.3.1 (The addition of points on an elliptic curve). Given two points p, q
on an elliptic curve C, we can construct the point p ∗ q as described above. Then we
define the sum p+ q as the third intersection point with C of the line through O and
p ∗ q. So we have p+ q = O ∗ (p ∗ q).

In Figures 2.4 and 2.5 it is illustrated how the addition of points on an elliptic curve
works. Remember that O is the point [0, 1, 0] on the elliptic curve. We dehomogenized
the curve with respect to Z, so O is a point at infinity. Then how do we draw a line
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p q

 p ∗ q  

 p+ q

Figure 2.4: The addition of two points on an elliptic curve in Weierstrass normal
form.

p

p ∗ p   

p+ p  

Figure 2.5: Adding a point on an elliptic curve in Weierstrass normal form to itself.
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 p

−p

Figure 2.6: Finding the inverse of a point on an
elliptic curve in Weierstrass normal form.

through O and another point on the curve? It turns out that the projective lines
containing O are precisely the lines that have a vertical line as affine part. So if we
have a point p on the affine part of an elliptic curve and we want to draw the line
through p and O, then the affine part of this line will be the vertical line through p.

Theorem 2.3.2. Together with the operation + defined in Definition 2.3.1, the points
on an elliptic curve in Weierstrass normal form form an abelian group.

Proof. To show that together with the operation + the set of points of an elliptic
curve indeed forms an abelian group, we have to prove four things. Namely, the
operation + should be commutative, there must be an identity element, every point
must have an inverse, and the operation + should be associative. If we have two
points p, q on an elliptic curve, then the line through p and q is the same as the line
through q and p. Therefore we find p ∗ q = q ∗ p, which implies p + q = q + p. So
the operation + is indeed commutative. As we claimed before, the identity element
of the group is O. To see this, suppose that we add any point p to O. Then we get

p+O = O ∗ (p ∗ O). (2.3.2)

The point p ∗ O is the third intersection point of the line through p and O with the
curve. But then the line through O and p ∗ O will be the same line. So the point
O ∗ (p ∗ O) is again the point p. Hence p+O = p for any point p on the curve, so O
is indeed the identity element of the group. The inverse −p of a point p is given by
−p = p ∗ (O ∗O). Indeed, we get p ∗ (−p) = (O ∗O), so p+ (−p) = O ∗ (O ∗O) = O.
Now the only thing left to prove in order to show that the points form a group is the
associativity of the group operation. To prove that the operation + is associative is
very cumbersome and not particularly interesting. In the next section we will give
explicit formulas for the operation +, then in principle one could check associativity
just by writing everything out. We will not work out the calculation in this thesis.

It turns out that finding the inverse of a point on a curve in Weierstrass normal
form is pretty easy, as shown in the following proposition. See also Figure 2.6.

Proposition 2.3.3. Let p = (x, y) ∈ K2 be a point on the affine part of an elliptic
curve. Then we have

− p = p ∗ O = (x,−y). (2.3.3)
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Proof. In the previous proof we saw that

− p = p ∗ (O ∗ O). (2.3.4)

However, we can actually simplify this expression using the fact that we chose O such
that it is an inflection point of the curve. Namely, this implies that O ∗ O = O.
Therefore we see that the inverse of a point p is given by p ∗ O. By assumption
the point p lies in the affine part of the curve. Remember that in that case the line
through p and O is the vertical line through p. From Equation (2.1.4) we see that
the affine part of elliptic curve in Weierstrass normal form is symmetric around the
x-axis. Therefore the inverse of a point p is just the point we get when we reflect p
across the x-axis. Hence, we find that indeed

− p = p ∗ O = (x,−y). (2.3.5)

Corollary 2.3.4. From the above Proposition it follows that for two points p, q on
an elliptic curve we have

p+ q = −(p ∗ q). (2.3.6)

2.4 Explicit Formulas for the Group Operation

In this section we will derive explicit formulas for the addition of two points on
an elliptic curve in Weierstrass normal form. We do this by writing the points in
coordinates in the plane K2, such that we can explicitly calculate the line through
two points. However, there is one point on an elliptic curve in normal form that does
not lie in K2, namely the point O. But we know that O is the identity element of
the group. So if we add O to a any point p on the curve, then we just obtain p again.

Now, suppose that we have two points p1 and p2 both unequal to O that we want
to add to each other. The first case we consider is when p2 = −p1. Then we get
p1 + p2 = O. Now, consider the case when −p1 6= p2. Then both p1 ∗ p2 and p1 + p2
are unequal to O. Therefore we can write these points in coordinates as

p1 = (x1, y1), p2 = (x2, y2), p1 ∗ p2 = (x3,−y3). (2.4.1)

We chose the y-coordinate of p1 ∗ p2 as −y3, because then p1 + p2 will be equal to
(x3, y3). Indeed, this follows directly from Corollary 2.3.4 and Proposition 2.3.3.

Given the coordinates (x1, y1) and (x2, y2), we want to compute (x3, y3). Suppose
first that p1 6= p2. Then we can construct the line through p1 and p2. We write the
equation for this line as

y = λx+ ν. (2.4.2)

Then we find

λ =
y2 − y1
x2 − x1

and ν = y1 − λx1 = y2 − λx2. (2.4.3)

Now, the point p1 ∗ p2 = (x3,−y3) is the third intersection point of this line with the
curve. The affine part of the elliptic curve is given by the equation

y2 = x3 + ax2 + bx+ c, (2.4.4)

for some constants a, b, c ∈ K. To find the third intersection point we substitute

y2 = (λx+ ν)2 = x3 + ax2 + bx+ c. (2.4.5)
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We can rewrite this to

x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2) = 0. (2.4.6)

Then the roots of this equation will be x1, x2 and x3, the x-coordinates of the inter-
section points. Therefore we get

x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2) = (x− x1)(x− x2)(x− x3). (2.4.7)

This polynomial equation has to hold for any value of x. Therefore the coefficients in
front of each power of x must be the same. Equating the coefficients of the x2 term
of both sides yields

λ2 − a = x1 + x2 + x3. (2.4.8)

Hence, we find that the coordinates of the point p1 + p2 = (x3, y3) are given by

x3 = λ2 − a− x1 − x2, y3 = −(λx3 + ν). (2.4.9)

Now, the only case left to consider is when p2 = p1. In that case we want to
construct the tangent line to the curve at p1, and calculate its third intersection
point with the curve. If we let

f(x, y) = y2 − x3 − ax2 − bx− c, (2.4.10)

then the affine part of the curve is given by f(x, y) = 0. Then, according to Definition
1.4.2 the tangent line to the curve at the point p1 = (x1, y1) is given by

∂f

∂x
(x1, y1)(x− x1) +

∂f

∂y
(x1, y1)(y − y1) = 0. (2.4.11)

The partial derivatives of f(x, y) at the point p1 are

∂f

∂x
(x1, y1) = −3x21 − 2ax1 − b and

∂f

∂y
(x1, y1) = 2y1. (2.4.12)

Therefore the equation for the tangent line at p becomes

(−3x21 − 2ax1 − b)x+ (3x31 + 2ax21 + bx1) + 2y1y − 2y21 = 0. (2.4.13)

Remember that we assumed that p1 6= −p2. So in this case, p1 6= −p1. The elliptic
curve is smooth and symmetric about the x-axis. Therefore the tangent line at a
point on the curve with y-coordinate equal to 0 must be a vertical line. Then the
other intersection point of this line with the curve is O. So every intersection point of
the curve with the x-axis is its own inverse. Therefore, our assumption that p1 6= −p1
implies that y1 6= 0. Hence, we can divide the equation for the tangent line by 2y1.
Then we can rewrite it to

y =
3x21 + 2ax1 + b

2y1
x− 3x31 + 2ax21 + bx1

2y1
+ y1. (2.4.14)

So, if we write this line as y = λx+ ν, we get

λ =
3x21 + 2ax1 + b

2y1
, ν = −3x31 + 2ax21 + bx1

2y1
+ y1. (2.4.15)

Then, using these values for λ and ν, we can use Equation (2.4.9) to find the coordi-
nates of the point p1 + p2 = (x3, y3) in the case that p1 = p2.



20 CHAPTER 2. ELLIPTIC CURVES

2.5 Elliptic Curves over Finite Fields

For a prime number p, we denote by Fp the finite field of integers modulo p. In this
section we will take a closer look at elliptic curves in the projective plane P2(Fp),
following Section IV.1 of Silverman and Tate [1].

The field Fp consists of p elements, [0], . . . , [p−1]. These elements are equivalence
classes of integers, and two integers m,n ∈ Z belong to the same equivalence class if
and only if m ≡ n (mod p). Because Fp is a field, we can obtain its multiplicative
group F∗p by leaving out 0 and forgetting about addition. For this group we have the
following theorem:

Theorem 2.5.1. Let p be a prime number. Then the multiplicative group F∗p of the
finite field Fp is cyclic, i.e. F∗p ∼= Z/(p− 1)Z.

Proof. The proof of this theorem can be found in for example the proof of Theorem
IV.1.9 of Lang [4], or in Section 7.4 of Beukers [5] (Dutch). The statement of the
theorem is equivalent to saying that for every prime p there exists a primitive root
modulo p.

Suppose that we have an elliptic curve in P2(Fp)

C : F (X,Y, Z) = 0. (2.5.1)

We can dehomogenize this curve with respect to for instance Z, such that C becomes
an affine curve in F2

p together with one point at infinity (we assume the curve to
be in normal form). Everything we derived in the previous section for the group of
points on an elliptic curve also holds for curves in P2(Fp). That is, as long as p 6= 2,
because we need the characteristic of the field to be unequal to 2 to transform it
into Weierstrass normal form. So the set of points on C forms an abelian group. In
the case of a finite field, it is hard to visualize the group operation with lines and
intersections. However, we do not really need to visualize anything. We can just stick
to the formulas and use the explicit formulas for the group operation given in the
previous section.

As an example, we consider the curve

C : Y 2Z = X3 +XZ2 + Z3 (2.5.2)

in the projective space P2(F5). Note that it is already in Weierstrass normal form. If
we dehomogenize with respect to Z, then the affine part of this curve is given by

y2 = x3 + x+ 1, (2.5.3)

and the point O at infinity is [0, 1, 0] as always. Now, the field F5 only has 5 elements,
so to find the points on the affine part C we can just try every pair of points in F5 in
the equation. Then we find

C = {O, (0,±1), (2,±1), (3,±1), (4,±2)}. (2.5.4)

We find that there are nine point on C, so these points form an abelian group of order
nine. Then this group is either isomorphic to Z/9Z or Z/3Z × Z/3Z. To see which
group it is, we look at multiples of the point q = (0, 1) ∈ C. We write 2q = q + q,
3q = q+ q+ q and so on. We want to calculate these multiples using the formulas we
gave in Equation (2.4.9). We can write the tangent line to C at the point q as

y = λx+ ν. (2.5.5)
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From Equation (2.4.15) we find that

λ = −1

2
, ν = 1. (2.5.6)

We are working in F5, so 1/2 means 1 multiplied with the multiplicative inverse of 2.
We have 2 · 3 = 6 ≡ 1 (mod 5), so 1/2 = 3. Then using the explicit formulas, while
remembering that we are working modulo 5, we get

2q = (4, 2), 3q = (2, 1), 4q = (3,−1). (2.5.7)

We see that the order of q is greater than 3. Hence the group of points on C cannot
be isomorphic to Z/3Z× Z/3Z, so it is isomorphic to Z/9Z.

When the prime nuber p becomes larger, trying for every point in P2(Fp) sepa-
rately whether it lies on a given curve quickly becomes a lot of work. One thing that
we would like to know without trying every point, is how many points there are on
a given curve. In the next chapter we will look at the number of points on a specific
elliptic curve over a finite field. Here we will look at the number of points on a general
line in P2(Fp).

Suppose that we have a line L ⊂ P2(Fp). After dehomogenizing, we can write this
line as the union of one point at infinity and an affine part given by the equation

y = ax+ b (2.5.8)

for some constants a, b ∈ Fp. Now, for every value of x that we fill into this equation,
we get exactly one solution for y. Therefore the number of points on the affine part
of L is just the size of Fp, which is p. Then the total number of points on L is p+ 1,
because we have one extra point at infinity. So every line in P2(Fp) has p+ 1 points.



Chapter 3

A Theorem of Gauss

The main topic of this chapter will be a number theoretic result due to Gauss. In the
first section we will state and prove this result, and in the second section we will use it
to determine the group structure of the points on a specific elliptic curve in P2(F19).
The results we derive in this chapter will not be used in the rest of this thesis.

3.1 A Theorem of Gauss

In this section we will state and prove a theorem of Gauss following Section IV.2 of
Silverman and Tate [1].

We are interested in the number of solutions to the Fermat equation

x3 + y3 = 1, (3.1.1)

for x, y ∈ Fp. In homogeneous form this equation reads

X3 + Y 3 = Z3. (3.1.2)

We will consider the projective solutions [X,Y, Z] ∈ P2(Fp). Note that the solutions
to this equation are in one-to-one correspondence with solutions to the equation

X3 + Y 3 + Z3 = 0, (3.1.3)

by taking [X,Y, Z]→ [X,Y,−Z]. Now the theorem of Gauss can be stated as follows:

Theorem 3.1.1 (Gauss). Let Mp be the number of projective solutions [X,Y, Z] ∈
P2(Fp) to (3.1.3).
(a) If p 6≡ 1 (mod 3), then Mp = p+ 1.
(b) If p ≡ 1 (mod 3), then there exist integers A,B such that

4p = A2 + 27B2. (3.1.4)

Here A and B are unique up to changing their signs, and if we fix the sign of A such
that A ≡ 1 (mod 3), then

Mp = p+ 1 +A (3.1.5)

Note that in the case that p ≡ 1 (mod 3) and 4p = A2 + 27B2, it follows that
A2 ≡ 1 (mod 3). Therefore A ≡ ±1 (mod 3), so we can indeed always fix the sign of
A such that A ≡ 1 (mod 3).

Theorem 3.1.1 consists of two parts, (a) and (b). We start our proof of the theorem
by proving part (a), which is the easier one.

22
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Proof of Theorem 3.1.1(a). So we consider the case p 6≡ 1 (mod 3). Remember from
Theorem 2.5.1 that F∗p is a cyclic group. Therefore, there exists an element g ∈ F∗p
that generates the whole group. For p 6≡ 1 (mod 3) we have 3 6 | p− 1. We will show
that this implies that the map

f : F∗p → F∗p, f(x) = x3 (3.1.6)

is an isomorphism.

Suppose that we have x, y ∈ F∗p such that x3 = y3. Then x = gm and y = gn

for some n,m < p − 1. From x3 = y3 we find g3m = g3n, which implies 3m ≡ 3n
(mod p − 1). Now, because 3 6 | p − 1 and 3 is prime, this is equivalent to m ≡ n
(mod p − 1). Therefore we find m = n, so x = y. Hence f is an injection from a
finite set to itself and therefore a bijection. It is also a homomorphism because for
any u, v ∈ F∗p we have f(uv) = (uv)3 = u3v3 = f(u)f(v), where we use that F∗p is
commutative. We conclude that f is indeed an isomorphism.

Note that 03 = 0, so every element of Fp has a unique cubic root. Therefore the
number of solutions of x3 + y3 + z3 = 0 in Fp is equal to the number of solutions of
x + y + z = 0. For both equations we have that for any solution (x, y, z), the triple
(ax, ay, az) is also a solution for every a ∈ Fp. Therefore we obtain their number of
projective solutions by leaving out the trivial solution (0, 0, 0) and dividing by |F∗p|.
This implies that also the number of projective solutions must be the same for both
equations. The equation x + y + z = 0 defines a line in P2(Fp). Using our previous
result that lines contain exactly p + 1 projective points, we conclude that indeed
Mp = p+ 1.

The proof of part (b) takes more work, so we will first prove four lemmas. In
the rest of this section we let p be a prime number such that p ≡ 1 (mod 3). We
write p = 3m + 1. We will still denote by Mp the number of projective solutions to
x3 + y3 + z3 = 0. We also introduce a symbol. Let X,Y, Z be subsets of Fp. We
denote by [X,Y, Z] or [XY Z] the number of triples (x, y, z) such that

x ∈ X, y ∈ Y, z ∈ Z, and x+ y + z = 0. (3.1.7)

This symbol has the following properties, which follow immediately from its definition:

[XY (Z ∪W )] = [XY Z] + [XYW ] if Z ∩W = ∅,
[XY Z] = [aX, aY, aZ] for any a 6= 0, where aX = {ax | x ∈ X},
[XY Z] = [XZY ] = [Y XZ] = [Y ZX] = [ZXY ] = [ZY X],

[XY Fp] = |X||Y |.

(3.1.8)

Note that for the second property we use that for x, y ∈ Fp and a ∈ Fp, a 6= 0, we
have ax = ay if and only if x = y. This follows from the fact that a ∈ F∗p and that
F∗p is a group, because that implies that a has a multiplicative inverse a−1. Then we
can just multiply ax = ay with a−1 to obtain x = y.

Lemma 3.1.2. Let

R = {x3 | x ∈ F∗p} (3.1.9)

be the set of cubic residues in F∗p. Then R is a subgroup of F∗p with index 3, and if we
denote its other cosets by S and T we have

Mp = 9
[RTS]

m
. (3.1.10)
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Proof. We start by proving that R is a subgroup of F∗p with index 3. As we have seen
before, the map

f : F∗p → F∗p, f(x) = x3 (3.1.11)

is a group homomorphism. We saw that for p 6≡ 1 (mod 3) it was even an isomor-
phism. Now we have p = 3m+ 1. Then by theorem 2.5.1 we have F∗p ∼= Z/3mZ. This
implies that there are exactly two elements u, v ∈ F∗p different from 1 with order 3,
and they are related via v = u2. Therefore in this case the homomorphism f is not
injective, and its kernel is given by K = {1, u, u2}. We have that R = f(F∗p). So R
is the image of a homomorphism, and therefore a subgroup of F∗p. Now, according to
the first isomorphism theorem [6], we have

R ∼= F∗p/K. (3.1.12)

Therefore |R| = m, so R has indeed index 3 in F∗p.
We write S and T for the other two cosets of R in F∗p. Because F∗p is abelian we

have that R is a normal subgroup of F∗p. Therefore the cosets R,S, T form a group,
called the quotient group F∗p/R. In F∗p/R multiplication works as follows: (gR)(hR) =
(gh)R for g, h ∈ F∗p. This group has order 3, so we must have F∗p/R ∼= Z/3Z. Also
|R| = |S| = |T | = m, and

Fp = {0} tR t S t T. (3.1.13)

Note that (−1)3 = −1, so −1 ∈ R. That implies R = −R, and therefore we also have
S = −S and T = −T .

We want to express Mp in terms of R, S and T . For this, we use the symbol
[XY Z] we introduced. In terms of this symbol we find that the number of ways to
write 0 as the sum of three non-zero cubes is [RRR]. But for every non-zero cube
x3 ∈ R, we have x3 = (ux)3 = (u2x)3. The polynomial y3 = x3 in the variable y has
degree three. Therefore it cannot have more than three roots, see Corollary 3.1.3 in
[7]. Hence, we see that there cannot be another element y ∈ Fp such that y3 = x3.
So every non-zero cube has exactly 3 different roots in Fp. Hence, we find that the
number of solutions (x, y, z) to x3 + y3 + z3 = 0 with x, y, z all non-zero is 27[RRR].
Here we count (x, y, z) and (ax, ay, az) for some a ∈ F∗p as different solutions, but we
are interested in the number of projective solutions. If we have a solution (x, y, z)
then the triple (ax, ay, az) is a solution for every a ∈ F∗p. Therefore the number of
projective solutions of x3 + y3 + z3 = 0 where x, y, z are all non-zero is equal to

27[RRR]

3m
=

9[RRR]

m
. (3.1.14)

Now, we want to calculate the number of projective solutions to x3 + y3 + z3 = 0
where at least one of x, y, z is zero. Note that in that case we have that exactly one
of x, y, z is zero. Because if two of them are zero it follows that the third must also
be zero, and the triple (0, 0, 0) is not a projective solution. Suppose z = 0. Then the
equation becomes y3 = −x3. As we have seen before, for every x ∈ F∗p this equation
has exactly 3 solutions for y. Therefore the total number of solutions (x, y, 0) is
3(p − 1). Again, we are only interested in projective solutions, and (ax, ay, 0) is a
solution for every solution (x, y, 0) and a ∈ F∗p. So dividing by p− 1 we find that the
number of projective solutions of x3 +y3 = 0 is 3. We can do exactly the same for the
cases y = 0 and x = 0, so in total there are 9 projective solutions of x3 + y3 + z3 = 0
where one of x, y, z is 0.

Taking this all together we find that

Mp =
9[RRR]

m
+ 9 = 9

(
[RRR]

m
+ 1

)
. (3.1.15)
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Now using the first and fourth properties in (3.1.8) and the fact that Fp = {0} tR t
S t T , we find

[RR{0}] + [RRR] + [RRS] + [RRT ] = [RRFp] = m2. (3.1.16)

Let s ∈ S and t ∈ T . Remember that S and T were the other two cosets of R in
F∗p, and F∗p/R ∼= Z/3Z. We have R = 1R = 12R = R2, so R is the identity element
of F∗p/R. From F∗p/R ∼= Z/3Z it follows that S and T have order 3, so S2 = T and
T 2 = S. Note that 1 ∈ R, so sR = S and s2R = (sR)(sR) = S2 = T . Similarly
we find tR = T and t2R = S. Now, using the second property in (3.1.8), we get
[RRS] = [sR, sR, sS] = [SST ] and [RRT ] = [tR, tR, tT ] = [TTS]. Filling this in into
Equation (3.1.16) we obtain

[RR{0}] + [RRR] + [SST ] + [TTS] = m2. (3.1.17)

Similar to (3.1.16) we find

[{0}TS] + [RTS] + [STS] + [TTS] = [FpTS] = m2. (3.1.18)

The term [{0}TS] is the number of solutions to t3 + s3 = 0 for t ∈ T and s ∈ S.
But this is 0, because S = −S and S ∩ T = ∅. Also [RR{0}] = m because R = −R.
Subtracting Equation (3.1.18) from (3.1.17) we obtain

m+ [RRR] = [RTS]. (3.1.19)

Now filling this in in Equation (3.1.15) we get indeed

Mp = 9
[RTS]

m
. (3.1.20)

In the rest of this section we will stick to the notation R, T and S for the set
of cubic residues in F∗p and its cosets respectively. Now Lemma 3.1.2 tells us that
in order to find Mp, we have to compute [RTS]. To do this we will introduce some
complex numbers called cubic Gauss sums. But before we do that, we first have know
what the pth roots of unity are.

We define the complex number ζ = e2πi/p. Then the pth roots of unity are
ζ0, ζ1, . . . , ζp−1. Note that if a, b ∈ Z, then ζa+b = ζaζb. Further, we have that ζa = ζb

if and only if a ≡ b (mod p)). So we see that the map from Fp to {ζ0, . . . , ζp−1} given
by

[a] 7→ ζa (3.1.21)

is a group isomorphism, sending addition in Fp to multiplication in {ζ0, . . . , ζp−1}.
Note that (ζa)p = 1, hence the name pth roots of unity.

Now we define three complex numbers α1, α2, α3 as follows:

α1 =
∑
r∈R

ζr, α2 =
∑
s∈S

ζs, α3 =
∑
t∈T

ζt. (3.1.22)

These α1, α2, α3 are called cubic Gauss sums. For x ∈ Fp we denote the number
of pairs (s, t) with s ∈ S and t ∈ T such that s + t = x by Nx. So we have
Nx = [ST{−x}]. Note that for r ∈ R we have rR = R and therefore rS = S and
rT = T . Using this we find

Nx = [ST{−x}] = [rS, rT, {−rx}] = [ST{−rx}] = Nrx. (3.1.23)
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So Nx = Ny for all y ∈ xR. Thus Nx only depends on the coset of R in which x is
contained, R,S or T . Note that we used here that the right and left cosets xR and
Rx are the same for all x ∈ Fp because Fp is abelian. We obtain

mNx = [S, T, xR] =


[STR] if x ∈ R,
[STS] if x ∈ S,
[STT ] if x ∈ T .

(3.1.24)

Because Nx ∈ N we can define a, b, c ∈ N by

[STR] = ma, [STS] = mb, [STT ] = mc. (3.1.25)

Or equivalently

Nx =


a if x ∈ R,
b if x ∈ S,
c if x ∈ T .

(3.1.26)

Lastly we also define the integer

k = 3a−m. (3.1.27)

The following lemma gives some useful relations between the complex numbers α1, α2

and α3 and integers a, b, c and k.

Lemma 3.1.3. The following relations hold:

α2α3 = aα1 + bα2 + cα3,

α1α3 = aα2 + bα3 + cα1,

α1α2 = aα3 + bα1 + cα2,

(3.1.28)

α1α2 + α1α3 + α2α3 = −m, (3.1.29)

α2
1 + α2

2 + α2
3 = 1 + 2m, (3.1.30)

α1α2α3 =
a+ km

3
. (3.1.31)

Proof. We will prove the relations in the order they are given.

Using the above definition of Nx, we find

α2α3 =
∑
s∈S

∑
t∈T

ζsζt =
∑
x∈Fp

Nxζ
x. (3.1.32)

Now using our definitions of a, b and c we find indeed the first relation:

α2α3 = a
∑
x∈R

ζx + b
∑
x∈S

ζx + c
∑
x∈T

ζx

= aα1 + bα2 + cα3.

(3.1.33)

Similarly, for α1 and α3 we find

α1α3 =
∑
x∈Fp

N ′xζ
x, (3.1.34)
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where N ′x is the number of pairs (r, t) with r ∈ R and t ∈ T , such that r + t = x.
Again, N ′x only depends on the coset R,S or T in which x lies, so

mN ′x = [R, T, xR] =


[RTR] if x ∈ R,
[RTS] if x ∈ S,
[RTT ] if x ∈ T .

(3.1.35)

Now if we let t ∈ T we have T = tR and S = t2R, as we have seen before. Then we
find

[RTR] = [TRR] = [tT, tR, tR] = [STT ] = mc,

[RTS] = [STR] = ma,

[RTT ] = [TRT ] = [tT, tR, tT ] = [STS] = mb.

(3.1.36)

So similarly to equation (3.1.33) we obtain

α1α3 = aα2 + bα3 + cα1. (3.1.37)

For α1 and α2, a similar calculation gives

α1α2 = aα3 + bα1 + cα2. (3.1.38)

Adding up equations (3.1.33), (3.1.37) and (3.1.38) we get

α1α2 + α1α3 + α2α3 = (a+ b+ c)(α1 + α2 + α3). (3.1.39)

Now using Fp = {0} tR t S t T and [ST{0}] = 0, we have

m(a+ b+ c) = [STR] + [STS] + [STT ] = [STFp]− [ST{0}] = m2. (3.1.40)

Therefore (a+ b+ c) = m. Note that

0 = ζp − 1 = (ζ − 1)(ζp−1 + ζp−2 + . . .+ ζ + 1). (3.1.41)

Since ζ 6= 1, we find that ζp−1 + ζp−2 . . .+ ζ + 1 = 0. Hence

α1 + α2 + α3 =
∑
x∈F∗p

ζx = −1. (3.1.42)

Therefore we find indeed

α1α2 + α1α3 + α2α3 = −m. (3.1.43)

Now, because we know the sum of the alpha’s and the sum of their pairwise
products, computing the sum of their squares is relatively easy:

α2
1 + α2

2 + α2
3 = (α1 + α2 + α3)

2 − 2(α1α2 + α1α3 + α2α3) = 1 + 2m. (3.1.44)

Lastly, we want to know α1α2α3. we have

α1α2α3 =


α1(α2α3) = α1(aα1 + bα2 + cα3),

α2(α1α3) = α2(aα2 + bα3 + cα1),

α3(α1α2) = α3(aα3 + bα1 + cα2).

(3.1.45)
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Adding the three equations on the right and using equations (3.1.43) and (3.1.44),
we see that

3α1α2α3 = a(α2
1 + α2

2 + α2
3) + (b+ c)(α1α2 + α1α3 + α2α3),

= a(1 + 2m)−m(b+ c),

= a+ (2a− b− c)m,
= a+ (3a−m)m.

(3.1.46)

Using our definition k = 3a−m we find that indeed

α1α2α3 =
a+ km

3
. (3.1.47)

Using the relations from Lemma 3.1.3, we prove the following lemma:

Lemma 3.1.4. Let A = 3k − 2 and B = b− c. Then A and B are integers, and we
have

Mp = p+ 1 +A, (3.1.48)

and
4p = A2 + 27B2. (3.1.49)

Proof. We let A = 3k − 2 and B = b − c. Now, because k, b and c are integers, it
follows that A and B are both integers. From Lemma 3.1.2 we know

Mp = 9
[RTS]

m
. (3.1.50)

We also defined the integer a by am = [STR] = [RTS]. Therefore we find Mp = 9a.
We can write a in terms of k as 3a = k +m. Hence Mp = 9a = 3k + 3m. Now, if we
let A = 3k − 2, we obtain indeed

Mp = A+ 2 + 3m = p+ 1 +A. (3.1.51)

We define the polynomial F (t) with roots α1, α2, α3 as

F (t) := (t− α1)(t− α2)(t− α3)

= t3 + t2(−α1 − α2 − α3) + t(α1α2 + α1α3 + α2α3)− α1α2α3

= t3 + t2 −mt− a+ km

3
,

(3.1.52)

where we used the relations from Lemma 3.1.3. We write DF for the discriminant of
F . See Appendix A if you are not familiar with discriminants. Using the definition of
the discriminant given in Equation (A.2.3) and Lemma 3.1.3, we find that the square
root of DF is equal to

±
√
DF = (α1 − α2)(α1 − α3)(α2 − α3)

= α2
1(α2 − α3)− α2

2(α1 − α3) + α2
3(α1 − α2)

= α2α3(α2 − α3) + α1α3(α3 − α1) + α1α2(α1 − α2)

= (aα1 + bα2 + cα3)(α2 − α3) + (aα2 + bα3 + cα1)(α3 − α1)

+ (aα3 + bα1 + cα2)(α1 − α2)

= a(α1(α2 − α3) + α2(α3 − α1) + α3(α1 − α2))

+ b(α2(α2 − α3) + α3(α3 − α1) + α1(α1 − α2))

+ c(α3(α2 − α3) + α1(α3 − α1) + α2(α1 − α2))

= a(0) + (b− c)(α2
1 + α2

2 + α2
3 − α1α2 − α1α3 − α2α3)

= (b− c)(1 + 3m)

= Bp.

(3.1.53)
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So we have DF = B2p2.
Now we define

βi := 1 + 3αi, (3.1.54)

where i = 1, 2, 3. Then

β1 + β2 + β3 = 3 + 3(−1) = 0, (3.1.55)

and

β1β2 + β1β3 + β2β3 = 3 + 6(α1 + α2 + α3) + 9(α1α2 + α1α3 + α2α3)

= −3− 9m

= 3p,

(3.1.56)

and

β1β2β3 = 1 + 3(α1 + α2 + α3) + 9(α1α2 + α1α3 + α2α3) + 27α1α2α3

= −2− 9m+ 9(a+ km)

= −2− 6m+ 3k + 9km

= (3k − 2)(3m+ 1)

= Ap.

(3.1.57)

We define the polynomial G(t) with roots β1, β2, β3 as

G(t) := (t− β1)(t− β2)(t− β3)
= t3 + t2(−β1 − β2 − β3) + t(β1β2 + β1β3 + β2β3)− β1β2β3
= t3 − 3pt−Ap.

(3.1.58)

Let DG be the discriminant of G. From Equation (A.2.8) it follows that

DG = −4(−3p)3 − 27(Ap)2 = 4 · 27p3 − 27A2p2. (3.1.59)

But, using the definition of the discriminant A.2.3 and the fact that βi− βj = 3(αi−
αj), we obtain DG = 272DF . Hence

DG = 272B2p2. (3.1.60)

So combining (3.1.59) and (3.1.60) we get

4 · 27p3 − 27A2p2 = 272B2p2. (3.1.61)

Now, dividing by 27p2, we find indeed

4p = A2 + 27B2. (3.1.62)

With Lemma 3.1.4 we have found integers A and B satisfying almost all the
conditions from Theorem 3.1.1(b). The only thing left to show is that these A and
B we found are in fact unique as a solution for Equation (3.1.4) up to changing their
signs. This uniqueness is ensured by the following lemma.

Lemma 3.1.5. Suppose we have two integers A,B such that

4p = A2 + 27B2. (3.1.63)

Then the pair (A,B) is uniquely determined up to sign changes of A and B.
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Proof. Let A,B be two integers such that

4p = A2 + 27B2. (3.1.64)

Suppose we have another pair (A1, B1) such that

4p = A2
1 + 27B2

1 . (3.1.65)

Then we have

4p(B2
1 −B2) = (A2 + 27B2)B2

1 − (A2
1 + 27B2

1)B2

= (AB1 +A1B)(AB1 −A1B).
(3.1.66)

Since p divides the left-hand side, at least one of the factors on the right-hand side is
divisible by p.

First suppose p | (AB1 − A1B). Multiplying Equations (3.1.64) and (3.1.65) we
get

16p2 = A2A2
1 + 27B2A2

1 + 27B2
1A

2 + 272B2B2
1 . (3.1.67)

We can rewrite this to

16p2 − (AA1 + 27BB1)
2 = 27(AB1 −A1B)2. (3.1.68)

Using that p | (AB1 − A1B) we find that p | (AA1 + 27BB1). Dividing by p2 we
obtain

16−
(
AA1 + 27BB1

p

)2

= 27

(
AB1 −A1B

p

)2

. (3.1.69)

Notice that the left hand side is not greater than 16, but the right hand side is 27
times the square of an integer. This implies that both sides must be equal to 0.
Therefore, we have AB1 = A1B. Let

λ =
A1

A
=
B1

B
. (3.1.70)

Then A1 = λA and B1 = λB, so we get

4p = A2
1 + 27B2

1 = λ2(A2 + 27B2) = λ24p, (3.1.71)

which implies λ = ±1. So the pair A1, B1 is equal to A,B, up to sign changes.
Now suppose p | (AB1 +A1B). This time, we rewrite Equation (3.1.67) to

16p2 − (AA1 − 27BB1)
2 = 27(AB1 +A1B)2. (3.1.72)

Using that p | (AB1 + A1B), we find p | (AA1 − 27BB1). Now, with the same
reasoning as before, we get AB1 = −A1B. If we let

λ′ =
A1

A
= −B1

B
, (3.1.73)

then A1 = λ′A and B1 = −λ′B. However, doing the same as in (3.1.71) we find
4p = (λ′)24p. Therefore we have λ′ = ±1. Hence the pair (A1, B1) is equal to (A,B)
up to sign changes.

We conclude that (A,B) is indeed unique as as a solution pair of Equation (3.1.64)
up to changing the signs of A and B.

Now the proof of part (b) of Theorem 3.1.1 only consists of invoking the last two
lemmas.
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Proof of Theorem 3.1.1(b). From Lemma 3.1.4 we know that if we let A = 3k − 2
and B = b− c, then they satisfy

4p = A2 + 27B2. (3.1.74)

From Lemma 3.1.5 it follows that the pair (A,B) is the unique solution to (3.1.74)
up to changing the signs of A and B. By letting A = 3k − 2 we have fixed the sign
of A, and we fixed it such that A ≡ 1 (mod 3). From Lemma 3.1.4 we know that in
this case

Mp = p+ 1 +A, (3.1.75)

which completes the proof of the theorem.

3.2 The Group of Points on a Curve in P2(F19)

In this section we will consider the elliptic curve

C(F19) : X3 + Y 3 + Z3 = 0 (3.2.1)

in the projective plane P2(F19). It can be shown that C(F19) is smooth, and we have
[1,−1, 0] ∈ C(F19). Hence, the curve C(F19) is indeed an elliptic curve. This curve
is not in Weierstrass normal form, but from the previous chapter we know that it is
possible to transform C(F19) to a curve in Weierstrass normal form, which we will
denote by C1(F19). Recall that this transformation is a one-to-one correspondence
between the points on C(F19) and C1(F19). First we will determine how many points
there are on C(F19), and then we will use this to find the group structure of the points
on C1(F19).

Just like before, we denote the number of points on C(F19) by M19. We know that
19 ≡ 1 (mod 3). Therefore, using the theorem we proved in the previous section, we
know that there exist integers A,B such that

4 · 19 = A2 + 27B2, (3.2.2)

and A and B are unique up to changing their signs. Further, we can fix the sign of
A such that A ≡ 1 (mod 3), and then we have

M19 = 20 +A. (3.2.3)

For large primes p, it can be quite hard to actually find the integers A and B such
that

4p = A2 + 27B2. (3.2.4)

However, in our case that p = 19, one quickly finds the solution

A = 7, B = 1. (3.2.5)

Then we find M19 = 27. So the curve C(F19) consists of 27 points, and therefore also
|C1(F19)| = 27. Now, we want to determine the group structure of C1(F19). We know
that the group will be abelian, so it must be isomorphic to a product of cyclic groups
[6]. For a group with 27 elements, we get three options

Z/27Z, Z/9Z× Z/3Z, Z/3Z× Z/3Z× Z/3Z. (3.2.6)

We write F19 for the algebraic closure of F19, and we denote by C1(F19)[n] for some
n ∈ N the subset of C1(F19) consisting of the points x such that nx = x+ · · ·+x = O.
To see which one of the groups above is isomorphic to C1(F19), we will use the
following theorem for elliptic curves.
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Theorem 3.2.1. Let E(Fp) be an elliptic curve in P2(Fp) for some prime p, and let
n ∈ N be an integer such that gcd(n, p) = 1. Then we have

E(Fp)[n] ∼= Z/nZ× Z/nZ, (3.2.7)

where E(Fp) is the elliptic curve in P2(Fp) given by the same equation as E(Fp).

Proof. For the proof of this theorem, see Corollary III.6.4 in Silverman [3].

Now, because |C1(F19)| = 27, we know that every for every point x ∈ C1(F19) we
have 27x = O. In other words, we have C1(F19)[27] = C1(F19). On the other hand,
we know that C1(F19)[27] ≤ C1(F19)[27], because F19 ⊂ F19. Hence, using the above
theorem, we find

C1(F19) ≤ Z/27Z× Z/27Z. (3.2.8)

Now, note that the group on the right-hand side of the above equation has exactly
nine elements of order three (also including (0, 0)). So therefore C1(F19) can have
at most 9 points of order three. However, the group Z/3Z × Z/3Z × Z/3Z has 27
points of order three, if we also count (0, 0, 0). Hence, we see that C1(F19) cannot be
isomorphic to Z/3Z× Z/3Z× Z/3Z.

Now there are two options left for the group structure of C1(F19), namely Z/27Z
and Z/9Z× Z/3Z. Note that

|(Z/27Z)[3]| = 3, whereas |(Z/9Z× Z/3Z)[3]| = 9. (3.2.9)

We will show that C1(F19) has a subgroup isomorphic to Z/3Z×Z/3Z, which implies

|C1(F19)[3]| ≥ 9. (3.2.10)

So then it follows that C1(F19) ∼= Z/9Z× Z/3Z.
In the previous section we saw that if p ≡ 1 (mod 3), then every non-zero cube

has exactly three different roots in Fp. We have 13 = 1 and (−1)3 = (−1), so both 1
and −1 must have two more cubic roots in Fp. In F19, we have

13 = 73 = 113 = 1, and (−1)3 = (−7)3 = (−11)3 = −1. (3.2.11)

From Equation (3.2.1), it follows that if we take one of the variables X,Y and Z to
be zero and the other two to be cubic roots of 1 and −1, then [X,Y, Z] ∈ C(F19).
Now, for such a point [X,Y, Z], there are three options where you can place 0. After
choosing which variable is 0, there are two places left. In one of them we must place
a cubic root of 1, and in the other a cubic root of −1. Because we are working with
homogeneous coordinates, we can always multiply the coordinates with a constant
such that the first non-zero coordinate will be a 1. Then the other coordinate must
be a cubic root of −1, for which there are three options. So in total we find 9 different
points on the curve of this form, given by

[1,−1, 0] [1, 0,−1] [0, 1,−1]

[1, 8, 0] [1, 0, 8] [0, 1, 8] (3.2.12)

[1, 12, 0] [1, 0, 12] [0, 1, 12].

Here we used that −7 = 12 and −11 = 8 in F19.

Proposition 3.2.2. The nine points in C1(F19) corresponding to the nine points on
C(F19) given in Equation (3.2.12) form a subgroup of C1(F19) isomorphic to Z/3Z×
Z/3Z.
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Proof. We will prove this proposition using the explicit formulas for the group law
we gave in the previous chapter. To do this, we first have to transform C(F19) into
Weierstrass normal form, so that we have an explicit formula for C1(F19). We can do
this by taking

X1 = 7Z, Y1 = −2(X − Y ), Z1 = X + Y. (3.2.13)

We can rewrite the equation X3 + Y 3 + Z3 = 0 as

4(X3 + Y 3 −XY 2 − Y X2) = Z3 + 5(X3 + Y 3 + 3XY 2 + 3Y X2). (3.2.14)

Remember that we are working modulo 19, so 15 ≡ −4 (mod 19). Now, using Equa-
tion (3.2.13), we see that the above equation is equivalent to

Y 2
1 Z1 = X3

1 + 5Z3
1 . (3.2.15)

Therefore, using the coordinate transformation in Equation (3.2.13), we have trans-
formed the curve C(F19) into the curve

C1(F19) : Y 2
1 Z1 = X3

1 + 5Z3
1 (3.2.16)

which is in Weierstrass normal form. One can check that the transformations in
Equation (3.2.13) indeed give a one-to-one correspondence between the points on
C(F19) and C1(F19). Using Equation (3.2.13), we can determine the points on C1(F19)
that correspond to the points in Equation (3.2.12). Keeping the same order as in
Equation (3.2.12), we get the following points in C1(F19):

O [−7,−2, 1] [−7, 2, 1]

[0,−5, 9] [−1,−2, 1] [−1, 2, 1] (3.2.17)

[0, 3,−6] [8,−2, 1] [8, 2, 1].

Here we write O = [0, 1, 0] just like in the previous chapter. As we saw before, the
point O will be the identity element of C1(F19). Now, in order to use our explicit
formulas for the addition of two points, we have to dehomogenize the curve C1(F19)
with respect to Z1. Then we get that the affine part of C1(F19) is given by

C ′1(F19) : y2 = x3 + 5, (3.2.18)

and the nine points above become

O (−7,−2) (−7, 2)

(0, 10) (−1,−2) (−1, 2) (3.2.19)

(0, 9) (8,−2) (8, 2).

Now, remember that if we have two points on the affine part of a curve in Weierstrass
normal form with the same x-coordinate but different y-coordinates, then these points
are inverses of each other. So we see that apart from O, we have four pairs of points
that are each others inverse. Using Equations (2.4.9) and (2.4.15), it is easily verified
that if we take one of these points p, then 2p = −p. So all of these points have order
three. We conclude that these points form indeed a subgroup of C1(F19) isomorphic
to Z/3Z× Z/3Z.

Corollary 3.2.3. We have

C1(F19) ∼= Z/9Z× Z/3Z. (3.2.20)
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In this section we determined the group structure only for the curve C1(F19) in
Weierstrass normal form. It turns out that in fact it is possible to also define a
group structure on the curve C(F19) itself, similar to how we defined it for curves in
Weierstrass normal form. Then we have to make a choice for the identity element of
this group. Suppose we fix the point [1,−1, 0] ∈ C(F19) as the identity element. Then
it turns out that there exists a group isomorphism between C(F19) and C1(F19). This
isomorphism then has to send [1,−1, 0] to O. To explain this in detail would lead too
far, but it is important to realize that for every elliptic curve we can define a group
structure on its set of points, not just for curves in Weierstrass normal form [3].



Chapter 4

Elliptic Functions

In this chapter we will consider elliptic functions. First we will give some background
in complex analysis, and then we will give the definition of an elliptic function and
consider the Weierstrass ℘-function as an example. In Section 4.4 we will show the
connection between elliptic curves and elliptic functions. Lastly, in Section 4.5 we
introduce the Jacobi elliptic functions which we will use in Chapter 6, and we explain
where the name ‘elliptic’ comes from.

4.1 Basic Results From Complex Analysis

In this part of the thesis we will look at complex-valued functions. We do not want to
dive to deep into complex analysis, but we will give some (simplified) basic definitions
and results. For a more detailed introduction to complex analysis one could for
example look at the first chapters of Lang [8].

Definition 4.1.1. A function f : C → C is called holomorphic on an open subset
U ⊂ C if it has a complex derivative at every point z0 ∈ U .

Note that is not immediately clear what it means for a function to have a complex
derivative at a point, but here we will skip over that. If a function f(z) : C → C
is holomorphic, then we can calculate f ′(z) completely similar to how we calculate
the derivative of a real-valued function. For instance the sum rule, product rule and
chain rule all still hold.

Definition 4.1.2. Let f : C→ C be a complex-valued function, and let U ⊂ C be an
open subset of C. Suppose that for every point z0 ∈ U there exists a power series

∞∑
n=0

an(z − z0)n (4.1.1)

and some r > 0 such that the series converges absolutely to f(z) for |z − z0| < r.
Then the function f is called analytic on U

Now a very important result in complex analysis is that it actually means the
same for a function to be holomorphic or analytic.

Theorem 4.1.3. Let f(z) : C → C be a function. Then f is analytic on an open
subset U ⊂ C if and only if it is holomorphic on U .

Proof. We will not give the entire proof of this theorem, but we will show that every
analytic function is holomorphic. The converse is shown in Theorem III.7.2 of Lang
[8].

35
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Suppose f is analytic in a point z0 in U . Then in a neighborhood of z0, we
can write f as a power series. A power series is differentiable, because we can just
differentiate term by term. Therefore f is also holomorphic at z0. So if f is analytic
on U , then f is holomorphic on U .

A function that is holomorphic on all of C is called entire. We have the following
theorem for bounded entire functions.

Theorem 4.1.4 (Liouville’s Theorem). A bounded entire function is constant.

Proof. For the proof of this theorem, see Theorem III.7.5 in Lang [8].

Now, suppose that we have a function that is holomorphic on an open subset
U ⊂ C, except for one point z0 ∈ U where f is not defined. We call such a point
z0 a singular point . For example this happens with the function 1/z if U is a disk
centered at 0 and z0 = 0.

Definition 4.1.5. Suppose that we have a function f that has a singular point z0,
such that in a neighborhood of z0 we can write

f(z) =
a−m

(z − z0)m
+ · · ·+ a0 + a1(z − z0) + · · · . (4.1.2)

So we can write f as a power series with a finite amount of terms with a negative
exponent, in this case m. Then we say that f has a pole of order m at the point z0.
The coefficient a−1 is called the residue of the pole. A pole of order 1 is also called
a simple pole.

We denote the order and residue of a pole of a function f at the point z0 by
Ordz0 f and Resz0 f , respectively. Note that from the above definition it immediately
follows that a simple pole has non-zero residue.

Next, we define what is means for a function to be meromorphic.

Definition 4.1.6. Let f be a function defined on an open subset U ⊂ C, except for
a discrete set of points S ⊂ U that are poles of f . Suppose that f is holomorphic on
U \ S. Then the function f is called meromorphic on U .

We finish this section with a theorem that ensures the uniqueness of an analytic
continuation.

Theorem 4.1.7. Let D ⊂ C be a subset of the complex numbers, and let M ⊂ D be
a subset of D that is not discrete. Let f : M → C be a function. Then if there exists
an analytic function f̃ : D → C such that f̃(z) = f(z) for z ∈ M , then f̃ is unique
with this property. We call f̃ the analytic continuation of f .

Proof. For the proof of this theorem, see the beginning of Section III.2 in Freitag and
Busam [9].

4.2 Doubly Periodic Functions

Now we will start looking at elliptic functions. This part of the chapter, up to and
including Section 4.4, is mainly based on Chapter VI of Silverman [3], Chapter V
up to Section V.4 of Freitag and Busam [9], Sections I.3 to I.6 of Koblitz [10] and
Sections 9.1 and 9.2 of Washington [11]. The material covered in these sources is very
similar, but different enough to complement each other.

Let ω1 and ω2 be two non-zero complex numbers. We say that ω1 and ω2 are
linearly independent over R if there exists no real number r ∈ R such that ω1 = rω2.
Note that this is equivalent to saying that ω1 and ω2 are both non-zero and their
quotient ω1/ω2 is not a real number.
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ω1

ω2

Figure 4.1: The lattice L generated by ω1 and ω2 in the complex plane.

Definition 4.2.1. Let ω1, ω2 ∈ C be two complex numbers that are linearly indepen-
dent over R. Then the set

L = Zω1 + Zω2 = {n1ω1 + n2ω2 | n1, n2 ∈ Z} (4.2.1)

is called a lattice. We say that ω1 and ω2 generate L. See Figure 4.1.

Note that a lattice only consists of the intersection points of the lines in Figure 4.1.
We see that a lattice divides the complex plane into parallelograms. The parallelo-
gram that has both ω1 and ω2 in its boundary is called the fundamental parallelogram
for the lattice L, denoted by F . So we have

F = {a1ω1 + a2ω2 | a1, a2 ∈ R, 0 ≤ a1, a2 < 1} . (4.2.2)

Note that we defined F with two closed edges and two open edges. We denote the
closure of F in C by F .

We can take the quotient of the complex plane with a lattice L, denoted by C/L.
This space is obtained by quotienting out the following equivalence relation on C:

z1 ∼ z2 if and only if z1 − z2 ∈ L. (4.2.3)

This essentially means that we identify all the parallelograms with each other in their
original orientation. Therefore the space C/L can be obtained from the (closure of
the) fundamental parallelogram F for the lattice L by identifying (or “gluing”) the
opposite sides of F . Hence we see that the space C/L is topologically equivalent to a
torus. Also note that for every element [z] ∈ C/L there is a unique point z0 ∈ F such
that [z0] = [z]. Here we denote by [z] the equivalence class in C/L of a point z ∈ C.
Conversely, for every point z0 ∈ F there exists a unique equivalence class [z] ∈ C/L
such that [z0] = [z]. Therefore we see that F is isomorphic to C/L.

Definition 4.2.2. Let ω1, ω2 ∈ C be two linearly independent complex numbers, and
let L ⊂ C be their corresponding lattice. An elliptic function for the lattice L is a
meromorphic function f : C→ C with the property

f(z + ω) = f(z) for ω ∈ L and z ∈ C. (4.2.4)
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Note that in order to have f(z + ω) = f(z) for all ω ∈ L, it is enough to check
that

f(z + ω1) = f(z + ω2) = f(z). (4.2.5)

So an elliptic function f has two linearly independent periods ω1 and ω2. Therefore
elliptic functions are also called doubly periodic. This also implies that in each paral-
lelogram in Figure 4.1 the elliptic function f with periods ω1 and ω2 attains exactly
the same values. So when studying an elliptic fuction, we only have to look at how
it behaves on its corresponding fundamental parallelogram. Using this, we can prove
the following theorem for elliptic functions.

Theorem 4.2.3. Any elliptic function without poles is constant. Similarly, any el-
liptic function without zeros is constant.

Proof. Suppose that we have an elliptic function with periods ω1, ω2 ∈ C that has no
poles, i.e. f is an entire function. We write L for the lattice generated by ω1 and ω2,
and F for its fundamental parallelogram. As we noted before, for every value a ∈ C
the function f can take there is a point z0 ∈ F such that f(z0) = a. The closure
of the fundamental parallelogram is a closed and bounded subset of C, and therefore
compact. Hence, the function f attains a maximum on F , so f is bounded on F .
But we also have F ⊂ F . Therefore we see that f is a bounded entire function. Then
it follows from Theorem 4.1.4 that f is constant.

The proof for the case that f is an elliptic function without zeros goes exactly the
same, by noting that in that case 1/f is an entire elliptic function.

Theorem 4.2.4. An elliptic function has only finitely many poles in its corresponding
fundamental parallelogram, and the sum of the residues of these poles vanishes:∑

zi

Reszi f = 0. (4.2.6)

Here we write {zi} for the finite set of poles of f in its fundamental parallelogram.

Proof. We will only prove the first part of this theorem. The rest of the proof uses
more complex analysis and can be found in for example the proof of Theorem V.1.4
in Freitag and Busam [9] or Theorem VI.2.2 in Silverman [3].

Per definition, the set of poles S of an elliptic function is discrete. The closure
of the fundamental parallelogram F is compact, so therefore the intersection F ∩ S
contains only finitely many elements. Hence F itself also contains only finitely many
poles.

This last theorem has an important consequence, but for that we first need the
following definition.

Definition 4.2.5. We define the order of an elliptic function f , denoted by
Ord f , as the sum of the orders of its poles in its fundamental parallelogram. In
formula:

Ord f =
∑
zi

Ordzi f. (4.2.7)

Here we write again {zi} for the finite set of poles of f in its fundamental parallelo-
gram. If f has no poles, then we say Ord f = 0.

Then we can restate Theorem 4.2.3 as

Ord f = 0 if and only if f is constant. (4.2.8)

Further, Theorem 4.2.4 implies that the order of an elliptic function can never be 1,
because a simple pole has non-zero residue. This is an important result, so we state:
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Proposition 4.2.6. There exist no elliptic functions of order 1.

This implies in particular that a non-constant elliptic function must have order at
least 2. In the next section we will look for the simplest example of such a function.

4.3 The Weierstrass ℘-Function

In this section we want to find the simplest example of an elliptic curve with given
periods ω1, ω2 ∈ C. In the previous section we showed that the order of a non-constant
elliptic function must be at least 2. For a function of order 2, we have two options:
a function with two simple poles in its fundamental parallelogram F , or a function
with one pole of order 2 with residue zero in F . We choose to look for the latter.
Further, we want our elliptic function to have its pole at the point 0. Then because of
the periodicity of an elliptic function, it will have poles precisely at the points in the
lattice generated by ω1 and ω2. It turns out that the so-called Weierstrass ℘-function
satisfies these requirements.

Definition 4.3.1. Let ω1, ω2 ∈ C be two linearly independent complex numbers, and
let L be the lattice they generate. Then we define the Weierstrass ℘-function
℘ : C \ L→ C as

℘(z) = ℘(z;L) =
1

z2
+
∑
ω∈L
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
. (4.3.1)

For this definition to be of any value, we need the following theorem.

Theorem 4.3.2. Let L be the lattice generated by ω1, ω2 ∈ C. The series

∑
ω∈L
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
(4.3.2)

converges absolutely and uniformly on compact subsets of C \ L, and there it defines
a holomorphic function.

Proof. The proof of this theorem can be found in for example the proof of Lemma
V.2.3 in Freitag and Busam [9] or Theorem VI.3.1(b) in Silverman [3]. Note that
after having proved the absolute uniform convergence of the series, it is clear that
it defines a holomorphic function on C \ L, because every term is holomorphic on
C \ L.

From its definition, we can immediately see that the function ℘ has poles of order
2 with residue zero at every point in L. Therefore, using the above theorem, we find
that ℘ is a meromorphic function on C with a pole of order 2 with residue zero at
each point of L. The following theorem then ensures that ℘ is indeed the elliptic
function we were looking for.

Theorem 4.3.3. The Weierstrass ℘-function is an even elliptic function.

Proof. To see that ℘ is an even function, we look at ℘(−z). Note that for every ω ∈ L
we have that −ω ∈ L, so we can replace ω by −ω in Equation (4.3.1). Then, filling
in −z and −ω we see that ℘(−z) = ℘(z), so ℘ is indeed even.
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The only thing left to show to prove that ℘ is an elliptic function, is that it
is doubly periodic. For this, we look at its derivative ℘′(z). Because the series in
Equation (4.3.1) converges uniformly, we can differentiate ℘ term by term. We find

℘′(z) = −2
∑
ω∈L

1

(z − ω)3
. (4.3.3)

We see that
℘′(z + ω) = ℘′(z) for all ω ∈ L. (4.3.4)

We can integrate this equality to find

℘(z + ω) = ℘(z) + c(ω), (4.3.5)

where c(ω) does not depend on z. We will show that c(ωi) = 0, for i ∈ {1, 2}.
Then because ω1 and ω2 generate L we get that c(ω) = 0 for all ω ∈ L. Note that
−ωi/2 /∈ L, so we can fill in z = −ωi/2 in the above equation. Then we get

℘
(
−ωi

2
+ ωi

)
= ℘

(
−ωi

2

)
+ c(ωi). (4.3.6)

This implies that

℘
(ωi

2

)
− ℘

(
−ωi

2

)
= c(ωi), (4.3.7)

and then from the fact that ℘ is even it follows that c(ωi) = 0. Hence, we see that
℘ is periodic with ω1 and ω2 as periods. We already knew that ℘ is a meromorphic
function on C with a pole of order 2 with residue zero at each point in L, so we
conclude that ℘ is indeed an elliptic function of order 2.

In the proof of the above theorem, we used the derivative of ℘ to say something
about ℘. However, it turns out the the derivative ℘′(z) is very interesting on its own.

Theorem 4.3.4. The derivative of the Weierstrass ℘-function ℘′(z) is an odd elliptic
function of order 3.

Proof. Recall from Equation (4.3.4) that

℘′(z + ω) = ℘′(z) for all ω ∈ L. (4.3.8)

It is also clear from Equation (4.3.3) that ℘′(z) is meromorphic on C, because it is
holomorphic on C \ L and it has a pole of order three in each latticepoint. Hence,
℘′(z) is indeed an elliptic function of order 3.

We will denote by C(L) the set of all elliptic functions with period lattice L. For
every elliptic function f ∈ C(L), we can write f as the sum of an even and an odd
elliptic function as follows:

f(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2
. (4.3.9)

It turns out that we can write every even elliptic function in terms of the Weierstrass
℘-function.

Theorem 4.3.5. Let f ∈ C(L) be an even elliptic function, and let ℘ be the Weier-
strass ℘-function for the lattice L. Then we can write f as

f(z) =
an℘(z)n + · · ·+ a1℘(z) + a0
bm℘(z)m + · · ·+ b1℘(z) + b0

ai, bj ∈ C. (4.3.10)

In other words, every even elliptic function can be written as a rational function of
the Weierstrass ℘-function.
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Proof. For the proof of this theorem see Propositions V.3.1 and V.3.2 in Freitag and
Busam [9], or Theorem 3.2 in Silverman [3].

Now suppose that we have an odd elliptic function f ∈ C(L). We already know
one odd elliptic function, namely ℘′(z) ∈ C(L). The quotient of two elliptic functions,
where the denominator is not constant 0, is again an elliptic function [9]. Therefore,
we get that g(z) = f(z)/℘′(z) is an elliptic function. Because g(z) is the quotient of
two odd functions, it follows that g(z) is even. Therefore, by the theorem above, we
can write g(z) as a rational function of ℘(z). Then we find f(z) = ℘′(z)g(z). This
leads to the following theorem.

Theorem 4.3.6. Let f ∈ C(L) be an elliptic function. Then there exist rational
functions R and S with complex coefficients, such that

f = R(℘) + ℘′S(℘). (4.3.11)

Proof. Let f ∈ C(L) be an elliptic function. Then, using Equation (4.3.9), we can
write f as the sum of an even function f1 and an odd function f2

f = f1 + f2. (4.3.12)

Now, as we saw before, we can write any odd function as the product of ℘′ and an
even function g. So we find

f2 = ℘′g. (4.3.13)

Then we use Theorem 4.3.5 to write the even functions f1 and g as rational functions
of ℘. We write f1 = R(℘) and g = S(℘). Filling this in into Equation (4.3.12) finishes
the proof of the theorem.

4.4 From Elliptic Functions to Elliptic Curves

In this section we will explore the link between elliptic functions and elliptic curves.
We start by showing that the Weierstrass ℘-function satisfies a certain differential
equation.

Definition 4.4.1. Let L be a lattice. We define the Eisenstein series of weight 2k
for the lattice L as

G2k(L) =
∑
ω∈L
ω 6=0

ω−2k. (4.4.1)

It turns out that for every lattice L, the Eisenstein series G2k(L) is absolutely
convergent for every k > 1. For a proof of this statement, see Theorem VI.3.1(a) in
Silverman [3].

Theorem 4.4.2. In a neighborhood of the point z = 0, we can write the Weierstrass
℘-function as

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2z
2k. (4.4.2)

This expression is the so-called Laurent expansion of ℘(z) at the point z = 0.

Proof. For the proof of this theorem, see Theorem VI.3.5(a) in Silverman [3].
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Following standard notation, we define for a given lattice L the constants g2(L)
and g3(L) as

g2 = g2(L) = 60G4(L) and g3 = g3(L) = 140G6(L). (4.4.3)

Now, the following theorem is an important result for the Weierstrass ℘-function, and
is the key to understanding the link between elliptic functions and elliptic curves.

Theorem 4.4.3. The Weierstrass ℘-function satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3. (4.4.4)

Proof. From Theorem 4.4.2 we know that in a neighborhood of the point z = 0 we
can write

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2z
2k. (4.4.5)

We have that the function ℘ is analytic on C \L, and so is the right-hand side of the
above equation. Also, a neighborhood of a point is not discrete. Therefore, it follows
from Theorem 4.1.7 that ℘(z) is equal to its Laurent expansion at the point 0 for
every point z ∈ C \ L. So for every point z ∈ C \ L we have

℘(z) = z−2 + 3G4z
2 + 5G6z

4 + · · · . (4.4.6)

Here, and in the following equations, the dots at the end stand for higher order terms.
We can differentiate the above expression to find

℘′(z) = −2z−3 + 6G4z + 20G6z
3 + · · · . (4.4.7)

Then taking the square gives

℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + · · · . (4.4.8)

Similarly, we compute

℘(z)2 = z−4 + 6G4 + 10G6z
2 + · · · , (4.4.9)

℘(z)3 = z−6 + 9G4z
−2 + 15G6 + · · · . (4.4.10)

Then we see that

℘′(z)2 − 4℘(z)3 = −60G4z
−2 − 140G6, (4.4.11)

and therefore

℘′(z)2 − 4℘(z)3 + 60G4℘(z) = −140G6 + · · · . (4.4.12)

Now on the left-hand side we have an elliptic function, but on the right-hand side we
have a power series in z without any terms with negative power. So this elliptic func-
tion has no poles. Then by Theorem 4.2.3 the function must be constant. Therefore
the higher order terms in the dots on the right-hand side are all zero. Then, using
our definitions of g2 and g3, we obtain indeed

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3. (4.4.13)
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Now, what does this theorem have to do with elliptic curves? Remember that
if we have an elliptic curve in Weierstrass normal form and we dehomogenized with
respect to Z, then the affine part of the curve is given by an equation of the form

y2 = f(x) = x3 + ax2 + bx+ c, (4.4.14)

where the discriminant of f(x) is non-zero, i.e. f is smooth. Further, for elliptic
curves in C we can even transform every elliptic curve into an elliptic curve of the
form

y2 = f(x) = 4x3 − bx− c, (4.4.15)

where f(x) is again smooth. This form is called Weierstrass normal form as well.
If we compare this to Equation (4.4.4), it is clear where this name comes from. On
the right-hand side of Equation (4.4.4) we have a polynomial in ℘(z) of degree three.
However, we do not know yet whether this polynomial is smooth. It turns out that
this is the case.

Theorem 4.4.4. The discriminant of the polynomial

f(x) = 4x3 − g2x− g3 (4.4.16)

is non-zero, i.e. f(x) is smooth.

Proof. For the proof, see proposition VI.3.6(a) of Silverman [3].

Corollary 4.4.5. The curve

C ′ : y2 = 4x3 − g2x− g3 (4.4.17)

is the affine part of an elliptic curve E ⊂ P2(C) in Weierstrass normal form when
dehomogenized with respect to Z. Its point at infinity is then [0, 1, 0].

In the above corollary we call the elliptic curve E instead of C, because we will
look at this specific elliptic curve in the rest of this section.

Now, from Theorem 4.4.3 it follows that for every z ∈ C \ L we have that
[℘(z), ℘′(z), 1] ∈ E. Then there is one point on E that we certainly do not reach,
namely the point O = [0, 1, 0]. As we saw before, an elliptic function takes all its
values in its fundamental parallelogram. The Weierstras ℘-function has one point in
its fundamental parallelogram F where it is not defined, namely the point z = 0. We
define the function φ : F → E as

φ(z) =

{
[℘(z), ℘′(z), 1] if z 6= 0

[0, 1, 0] if z = 0
. (4.4.18)

As we noted before, the fundamental parallelogram F is isomorphic to the space C/L
(which was a torus). Therefore, we can also view φ as a function from C/L to E. The
complex numbers C form a group under addition, and taking the quotient with L is a
group homomorphism with respect to this addition. We can see this by viewing C/L
as F . Then if we take two numbers z1, z2 ∈ F we can just add them in C, and then
we say [z1] + [z2] = [z1 + z2]. So C/L has a group structure. In Chapter 2 we defined
a group structure on the set of points of an elliptic curve in Weierstrass normal form.
So the function φ is a map between groups.

Theorem 4.4.6. The map φ : F → E defined in Equation (4.4.18) is a group
isomorphism.
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Proof. For the proof of this theorem, see Theorem VI.3.6(b) of Silverman [3].

The above theorem implies that the affine part of the elliptic curve E can be
parameterised by taking x = ℘(z) and y = ℘′(z). Up to this moment, we have only
proven that this works for the specific elliptic curve E from Corollary 4.4.5. This
curve depends on the choice of the lattice L, but it is not immediately clear that by
varying L we can parameterise every elliptic curve in Weierstrass normal form using
the Weierstrass elliptic function. It turns out that in fact we can, which is also the
reason that elliptic curves are called elliptic curves.

Theorem 4.4.7. Let C ⊂ P2(C) be an elliptic curve in Weierstrass normal form.
Then there exists a lattice L ⊂ C such that the function φ : F → C defined in
Equation (4.4.18) is a group isomorphism.

For the proof of this theorem, remember that for elliptic curves in P2(C) we
have the more strict definition of Weierstrass normal form (2.1.3) with a = 0. Let
C ⊂ P2(C) be an elliptic curve in Weierstrass normal form. Then, if we dehomogenize
with respect to Z, the affine part C ′ of C is of the form

C ′ : y2 = f(x) = x3 + bx+ c, (4.4.19)

where the polynomial f(x) is smooth. Then we can parameterise C using the map φ
if we can find a lattice L ⊂ C such that b = −g2(L) and c = −g3(L). Therefore, in
order to prove Theorem 4.4.7, is enough to prove the following proposition.

Proposition 4.4.8. Let b, c ∈ C be two complex numbers such that the polynomial

f(x) = 4x3 − bx− c (4.4.20)

is smooth. Then there exists a unique lattice L ⊂ C such that

g2(L) = b and g3(L) = c. (4.4.21)

Proof. This is Theorem VI.5.1 in Silverman [3]. For the proof, he refers to for example
VII Proposition 5 in Serre [12]

4.5 Elliptic Integrals and Jacobi Elliptic Functions

In this section we will look at elliptic integrals, which come up when calculating the arc
length of an ellipse. These elliptic integrals are closely related to elliptic functions,
which is also the reason that elliptic functions are called elliptic. Further, using
elliptic integrals we will introduce some special examples of elliptic functions, namely
the Jacobi elliptic functions. In the last chapter we will use these functions to write
down a solution of the Yang-Baxter equation. Lastly, I will give a short summary as
to why elliptic curves are called elliptic. The Subsection 4.5.1 is based on Exercise
1.16 in Silverman and Tate [1] and the section “From ellipses to elliptic integrals”
in Rice and Brown [13]. In Subsection 4.5.2 we follow Section 2.8 of Prasolov and
Solovyev [14].

4.5.1 The Arc Length of an Ellipse

Suppose that we have an ellipse centered at the origin. Then this ellipse is a curve C
given by

C :
x2

a2
+
y2

b2
= 1, (4.5.1)
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a

 b  s

Figure 4.2: A picture of an ellipse centered at the origin. The arc whose length we
compute in Equation (4.5.5) is indicated with a thicker line.

for some constants 0 < a, b. Then the width of the ellipse is 2a and its height is 2b.
We assume b ≤ a. See Figure 4.2 for a picture of the ellipse. In the positive quadrant
of the plane, we have that the curve C is given by

y =
b

a

√
a2 − x2. (4.5.2)

Then y is a function of x, so we can calculate its derivative

dy

dx
= − b

a

x√
a2 − x2

. (4.5.3)

Recall that we can calculate the arc length of a function f between x1 and x2 with
the integral ∫

x2

x1

√
1 +

(
df

dx

)2

dx. (4.5.4)

Therefore, we can calculate the arc length of the ellipse in the positive quadrant
between x = 0 and x = s < a as∫

s

0

√
1 +

(
− b
a

x√
a2 − x2

)2

dx. (4.5.5)

See also Figure 4.2. We can simplify this integral a bit by substituting x = a sin θ.
Then we find dθ = 1/(a cos θ) dx, and a2−x2 = a2 cos2 θ. Using this we get that the
above integral becomes∫

arcsin s/a

0

a

√
1−

(
1− b2

a2

)
sin2 θ dθ. (4.5.6)

Here the function arcsin : [−1, 1]→ [−π/2, π/2] is the inverse function of the restric-
tion of the sine function sin : [−π/2, π/2]→ [−1, 1]. Note that s < a, so we can take
the inverse sine of s/a. For s ranging between 0 and a, the value of arcsin s/a will
range from 0 to π/2. Now, we assumed 0 < b ≤ a, so 1− b2/a2 ≥ 0. Therefore we can
define k as k =

√
1− a2/b2. We also write t = arcsin s/a. Then we get the integral

a

∫ t

0

√
1− k2 sin2 θ dθ, (4.5.7)
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which is a function of t. The arc length L of the total ellipse is four times its arc
length in the positive quadrant, so we find

L = 4a

∫ π/2

0

√
1− k2 sin2 θ dθ. (4.5.8)

The integral in Equation (4.5.7) is an example of a so-called elliptic integral ,
named for the fact that it appears when calculating the arc length of an ellipse. Even
though this integral looks fairly simple, it turns out that it cannot be expressed in
elementary functions. Here with elementary functions we mean rational functions,
trigonometric functions, exponentials and logarithms. Therefore we have to see the
elliptic integrals as “new” functions.

4.5.2 The Jacobi Elliptic Functions

Another example of an elliptic integral would be

F (s) =

∫ s

0

1√
(1− x2)(1− kx2)

dx =

∫ t

0

1√
1− k2 sin2 θ

dθ, (4.5.9)

where x = sin θ, and t = arcsin s. If we set k = 0, which in the previous subsection
would correspond to the case where the ellipse is a circle, we obtain the integral

F (s) =

∫ s

0

1√
1− x2

dx =

∫ t

0
dθ = t. (4.5.10)

So in that case we find F (s) = arcsin s. It is often easier to work with sin than
with arcsin. This motivates us to consider the inverse function of F (s) for arbitrary
k. However, instead of F (s), we will from now on take the integral on the right
hand side of Equation (4.5.9) as the definition of F (t), where t = arcsin s, and look
at the inverse of F (t). Note that we expect this inverse function to exist, because
for 0 ≤ k < 1 the integral on the right-hand side of Equation (4.5.9) is a strictly
increasing continuous function of t defined on the interval [0, π/2], and therefore a
bijection onto its image. We will write u(t) = F (t), because that is the notation
Jacobi used, and it is still used in most of the literature [14]. Then we call the inverse
function t(u) of u(t) the amplitude of u, denoted by t(u) = amu. Note that if k = 0,
then u(t) = t so amu = u.

Definition 4.5.1. For u = F as given in Equation (4.5.9), we define the Jacobi
elliptic functions snu, cnu and dnu as

snu = sin(amu), cnu = cos(amu), dnu =
√

1− k2 sn2 u. (4.5.11)

These functions depend on the number k in Equation (4.5.9), which is called the
modulus [15]. The functions sn and cn are also called the Jacobi sine function
and Jacobi cosine function, respectively.

Note that because in Equation (4.5.9) we have t = arcsin s, it follows from the
above definition that snu = s. So the Jacobi sine function is the inverse function of
the elliptic integral on the left-hand side of Equation (4.5.9).

Theorem 4.5.2. The function sn is an even elliptic function, and the functions cn
and dn are odd elliptic functions.

Proof. For the proof, see Section 2.8 of Prasolov and Solovyev [14].
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Rember that if the modulus k is zero, then we have amu = u. Therefore, for
k = 0, we find

snu = sinu, cnu = cosu, dnu = 0. (4.5.12)

So the Jacobi elliptic functions are in fact doubly periodic generalizations of the usual
sine and cosine functions. Their similarity is also obvious from the following results
we have for the Jacobi elliptic functions.

Theorem 4.5.3. The following identities hold for any value of the modulus 0 ≤ k <
1:

sn2 + cn2 = 1, dn2 +k2 sn2 = 1. (4.5.13)

Proof. These identities are a direct result of Definition 4.5.1 and the fact that
sin2 + cos2 = 1.

Also in the point u = 0 the Jacobi elliptic functions behave as you would expect.

Theorem 4.5.4. The following identities hold

sn 0 = 0, cn 0 = dn 0 = 1. (4.5.14)

Proof. From the way we defined the amplitude amu, it follows that am 0 = 0. Hence,
from Definition 4.5.1 we see that indeed sn 0 = 0 and cn 0 = 1, which also implies
dn 0 = 1.

Then there are two more results that we need in the last chapter

Theorem 4.5.5. We have the following results for the derivatives of the Jacobi el-
liptic functions

d

du
snu = cnu dnu,

d

du
cnu = − snudnu,

d

du
dnu = −k2 snu cnu.

(4.5.15)

Proof. For the proof, see page 493 of Whittaker and Watson [15].

Theorem 4.5.6 (Addition formulas). We have the following addition formulas for
the Jacobi elliptic functions

sn(u+ v) =
snu cn v dn v + sn v cnudnu

1− k2 sn2 u sn2 v
,

cn(u+ v) =
cnu cn v − snu sn v dnudn v

1− k2 sn2 u sn2 v
,

dn(u+ v) =
dnu dn v − k2 snu sn v cnu cn v

1− k2 sn2 u sn2 v
.

(4.5.16)

Proof. For the proof of this theorem, see Section 2.8 of Prasolov and Solovyev [14].



48 CHAPTER 4. ELLIPTIC FUNCTIONS

4.5.3 Why Elliptic Curves Are Called Elliptic

In this subsection I give a short explanation why elliptic curves are called elliptic,
following Rice and Brown [13]. See their article for more information on the history
of elliptic curves.

Up to this moment, we have seen three objects that are called ‘elliptic’: elliptic
curves, elliptic functions and elliptic integrals. We introduced them in this order, but
this order might be confusing when trying to understand where their names come
from. From a historical perspective, the order should be: elliptic integrals, elliptic
functions, elliptic curves [13].

Elliptic integrals are called elliptic because they are encountered when trying to
calculate the arc length of an ellipse, as we saw in Subsection 4.5.1. However, it
turned out that it was more convenient to study the inverse functions of elliptic
integrals [13]. Because of their relation with elliptic integrals, these inverse functions
were called elliptic functions. Lastly, it turned out that these elliptic functions could
be used to parameterise certain cubic curves, and therefore these curves are named
elliptic curves.



Chapter 5

The Yang-Baxter Equation

In this chapter and the next, we will look at an application of elliptic functions in
physics. In principle, the reader should be able to understand these chapters without
having read the rest of this thesis, except for Subsection 4.5.2 on the Jacobi elliptic
functions. In this chapter we will introduce the Yang-Baxter equation, and in the next
chapter we will derive a solution for this equation using the Jacobi elliptic functions
we saw in the previous chapter. The Yang-Baxter equation comes up when studying
the scattering of particles in a one dimensional integrable system, so that is where we
will start.

5.1 General Formalism

In this section we will set up a scattering problem from which we will derive the
Yang-Baxter equation. We follow Sections 1.1 and 5.1 of Šamaj and Bajnok [16] and
Sections 5.1.2 and 5.1.3 from Giamarchi [17].

Suppose that we have a one-dimensional system of N identical particles with mass
m and no internal degrees of freedom. Suppose that the particles interact pairwisely
by a symmetric potential v(xi, xj) that only depends on the distance between the
particles and approaches zero for large distances. We set ~ = 2m = 1. Then we get
the following Hamiltonian:

H = −
N∑
j=1

∂2

∂x2j
+

N∑
j<k=1

v(xj , xk). (5.1.1)

The time-independent Schrödinger equation then reads

Hψ(x1, . . . , xN ) = Eψ(x1, . . . , xN ). (5.1.2)

In the case N = 1 we get the plane wave solution

ψ(x) = A exp (ikx), (5.1.3)

where k is the wavenumber and A a normalization constant. If we calculate the ex-
pectation value of the momentum for this wave function, we find that the momentum
is equal to k. Therefore we also call the wavenumber k the momentum of a particle.
We set ~ = 2m = 1, so the corresponding energy is E = k2.

Now if N > 1 we have particles that can interact with each other. The potential v
is such that the interaction only takes place at short distances. We call this interaction
of particles scattering . Also, if we have multiple particles in one dimension then they
must have a certain order. We will make this explicit by introducing ordering sectors.

49
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5.1.1 Ordering Sectors

Say we haveN particles. Our system is only one-dimensional, so there is a well-defined
ordering on our particles. A possible way to order the particles we call an ordering
sector . Let SN be the symmetric group of degree N which consists of permutations
of (1, 2, . . . , N). Then there is a one-to-one relation between the ordering sectors
and elements of SN . For q ∈ SN we get the ordering sector Q = (Q1, . . . , QN) =
q(1, . . . , N). Then in the sector Q we have xQ1 < . . . < xQN . The fundamental
ordering sector I is the one identified with the identity element of SN , and therefore
gives us the ordering x1 < . . . < xN . For a wavefunction in ordering sector Q we write
ψQ(x1, . . . , xN ). The particles in our system are identical so the wavefunction should
be either symmetric or antisymmetric for bosons or fermions respectively. Therefore,
for bosons we get

ψQ(x1, . . . , xN ) = ψI(xQ1, . . . , xQN ) (5.1.4)

and for fermions we find

ψQ(x1, . . . , xN ) = sign(Q)ψI(xQ1, . . . , xQN ), (5.1.5)

where sign(Q) equals 1 if Q consists of an even number of transpositions, and −1 if
Q consists of an odd number of transpositions.

5.1.2 Scattering and the Bethe-Ansatz

We want to find the wavefunction for a system with multiple particles. Then we have
to understand what actually happens if particles scatter off of each other. Basically,
the scattering of two particles can be described as follows:

We have two particles moving towards each other. At first, the distance between
the particles is large and therefore they do not interact. At close distances however,
the particles interact (for example via a delta potential). Then afterwards they move
away from each other. During the interaction it is possible for the particles to change
momenta and other internal degrees of freedom.

So Let us make this more precise in our case. We have two particles with wavenum-
bers k1 and k2. At t = t0 the particles are far away from each other but move towards
each other. When they get close enough they interact in some way and afterwards
they move away from each other. At time t = t1 the particles are far away from each
other and move in opposite directions with wavenumbers k′1 and k′2.

We assume the scattering to be elastic, so between the times t0 and t1 the total
momentum and total energy should be conserved. Therefore we have k1 + k2 =
k′1 + k′2 and k21 + k22 = k′21 + k′22 . Together this leaves only two solutions: (k1, k2) =
(k′1, k

′
2) or (k1, k2) = (k′2, k

′
1). Therefore, for large distances between the particles, the

wavefunction of the particles (in the fundamental ordering sector) has to be of the
form [17]

ψI(x1, x2) = Aei(k1x1+k2x2) +Bei(k1x2+k2x1) (5.1.6)

The Bethe ansatz for two particles is the assumption that this wavefunction holds for
any distance between the particles.

Now, for an arbitrary amount of particles N we can do something similar. We have
N initial momenta k1, . . . , kN and N post-interaction momenta k′1, . . . , k

′
N . Again the

total momentum and energy should be conserved. However, in the case of three or
more particles the conservation of momentum and energy is in general not enough to
state that (k1, . . . , kN ) = q((k′1, . . . , k

′
N )) for some q ∈ SN . We could have a so-called

diffractive scattering , where this is not the case. Therefore we look at integrable
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models. In integrable models we have the following conservation laws [16]:

N∑
j=1

(kj)
m =

N∑
j=1

(
k′j
)m

, m ∈ N. (5.1.7)

The cases m = 1 and m = 2 correspond to momentum and energy conservation
respectively. Note that integrable models have infinitely many conservation laws.
Together, these constraints imply that the scattering of multiple particles is never
diffractive in integrable models. So we get (k1, . . . , kN ) = q((k′1, . . . , k

′
N )) for some

q ∈ SN . Then, just as for N = 2, we get that the wavefunction for large distances
between the particles must be of the form [17]

ψI(x1, . . . , xN ) =
∑
P∈SN

A(kP1 , . . . , kPN ) exp

i N∑
j=1

kPjxj

. (5.1.8)

Now the Bethe-ansatz is again the assumption that the above wavefunction holds
for all positions of the particles. We will use it.

Of course it could happen that particles do have internal degrees of freedom
σ = 1, . . . , l, which we call colors. For an electron we have two colors (l = 2): spin
up and spin down. In the case of colored particles each particle is described by its
position and color. We can implement this in our wavefunction to find the general
wavefunction

ψI(σ1, x1, . . . , σN , xN ) =
∑
P∈SN

Aσ1,...,σN (kP1 , . . . , kPN ) exp

i N∑
j=1

kPjxj

. (5.1.9)

If we want the wavefunction in another ordering sector Q we can just use equations
(4) and (5). Then for bosons we find

ψQ(σ1, x1, . . . , σN , xN ) =
∑
P∈SN

AσQ1
,...,σQN

(kP1 , . . . , kPN ) exp

i N∑
j=1

kPjxQj

,
(5.1.10)

and for fermions we get

ψQ(σ1, x1, . . . , σN , xN ) =
∑
P∈SN

sign(Q)AσQ1
,...,σQN

(kP1 , . . . , kPN ) exp

i N∑
j=1

kPjxQj

.
(5.1.11)

5.2 The Scattering Matrix

In this section we will introduce the scattering matrix that describes the scattering
of two particles. However, before we do that, in the next subsection we will introduce
a new notation for the elements of a matrix in a product space. There we will also
introduce the Einstein summation convention, which we will use in the rest of this
thesis.

5.2.1 Matrix Notation and the Einstein Summation Convention

Suppose that we have a square matrix A of dimension n (almost every matrix in this
thesis will be square). Then, as you have probably seen before, we can denote its set
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of elements by {aij}1≤i,j≤n. Here the i index says in which row the element is, and
the j index represents the column. For both i and j we have n options, so there are
n2 elements in total. Now, in this thesis, we will use a slightly different notation.
Instead of aij , we write aij . So the row is represented by the upper index, and the
column by the lower index. Let B be another square matrix of dimension n with
elements bij , and AB = C with elements cij . Then we can relate the elements of C to
those of A and B by

cij =
n∑
k=1

aikb
k
j . (5.2.1)

Now this is not yet very different from the notation we had. The advantage of this
new notation becomes clear if we consider operators that act on the product space of
multiple vector spaces.

Suppose we have two vector spaces, Va of dimension na and Vb of dimension nb,
and a linear operator T acting on W = Va ⊗ Vb. If we choose bases {eai}1≤i≤na and
{ebj}1≤j≤nb for Va and Vb respectively, we get the basis {eai ⊗ ebj} where 1 ≤ i ≤ na
and 1 ≤ j ≤ nb for W . The product space W has finite dimension m = nanb, so we
can represent T by an m-dimensional square matrix. In principle we could denote
the set of elements of T by {T ij}1≤i,j≤m, where we label each row or column by a
single index between 1 and m. However, each row of T corresponds to a basisvector
of W , and the same for each column. If we look at our basis for W , we see that
we have precisely one basisvector for every ordered pair (i, j) with 1 ≤ i ≤ na and
1 ≤ j ≤ nb. Therefore it makes more sense two use two indices to indicate the row of
T , and also two two to indicate the column. So we denote the elements of T by T iji′j′ ,
where 1 ≤ i, i′ ≤ na and 1 ≤ j, j′ ≤ nb.

It should be clear how we can generalize this notation to operators acting on the
product space of more than two vector spaces. For example if the linear operator T
acts on the space V1 ⊗ · · · ⊗ Vk, then we denote the elements of its matrix by

T i1...ik
i′1...i

′
k
. (5.2.2)

This looks much more compact than if we would indicate both the row and column
by lower indices. Further, we can immediately see which row and column indices
correspond to the same vector space, as they are positioned directly above each other.

In the rest of this thesis, we will encounter many equations where we take the
product of operators. As we saw in Equation (5.2.1), we can write down matrix
multiplication element-wise with a summation. However, if we multiply multiple
matrices, the notation can become quite tedious. Therefore we will use the Einstein
summation convention, or just summation convention. Essentially, this means that
we will not write down the summation signs anymore. The idea is that it should be
clear from the indices whether we take the sum over them. The rule of the summation
convention is: if we multiply two terms with the same index, then we sum over this
index.

For example, suppose that we take the matrix T from Equation (5.2.2) and multi-
ply it with itself. Then with summation signs we can write this product element-wise
as

[TT ]i1...ik
i′1...i

′
k

=
∑
i′′1 ...i

′′
k

T i1...ik
i′′1 ...i

′′
k
T
i′′1 ...i

′′
k

i′1...i
′
k
. (5.2.3)

We see that on the right-hand side inside the sum we have the product of two terms
that share the indices i′′1, . . . , i

′′
k. These are exactly the indices that we sum over.

Therefore we see that if we use the summation convention, the above equation is
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σ1 

σ2 

 σ ′2  

 σ ′1  

Figure 5.1: The scattering of two particles.

equivalent to the one we get if we just remove the summation sign:

[TT ]i1...ik
i′1...i

′
k

= T i1...ik
i′′1 ...i

′′
k
T
i′′1 ...i

′′
k

i′1...i
′
k
. (5.2.4)

In the next sections, there will be many equations where we sum over indices. It
can be hard to get used to the summation convention, so I will sometimes (but not
always!) mention where we use it.

5.2.2 The Scattering Matrix

Now we are ready to introduce the scattering matrix. We follow the second half of
Section 5.1 of Šamaj and Bajnok [16].

In both the boson and fermion cases (5.1.10) and (5.1.11), we can describe the
relation between the A-amplitudes for different permutations (P,Q) via the so-called
scattering matrix . ForN = 2 particles, we define the scattering matrix S element-wise
by

Aσjσi(kv, ku) = S
σiσj
σ′iσ
′
j
(ku, kv)Aσ′iσ′j (ku, kv), (5.2.5)

where (i, j), (u, v) ∈ {(12), (21)}. Note that we use the summation convention, so
we sum over the indices σ′i and σ′j . We assume the scattering of two particles to be
elastic, so there is no energy loss in the scattering process. As we have seen before
this implies that the individual momenta of the particles are conserved. However, the
particles can change their color σi in the scattering process. We can think of our one
dimensional system with N particles as a chain of N sites. Then every site is occupied
by exactly one particle, and the sites correspond to positions in the ordering sector.
This way we discretise our system. Then the scattering of two particles should be
understood as two adjacent particles that switch sites, possibly changing their colors
in the process. From now on we will refer to our system as the chain of N sites. See
Figure 5.1 for a visualization of the scattering of two particles, which is described by
the scattering matrix.

The scattering matrix S given in Equation (5.2.5) acts on the product space
of two vector spaces Vi ⊗ Vj . Here Vi and Vj are l-dimensional vectorspaces, each
corresponding to one of the two particles involved in the scattering described by S.
Each dimension in the vectorspace Vi corresponds to a color its corresponding particle
may have, i.e. a value of σi. Similarly, each dimension in Vj corresponds to a value
of σj . Therefore we use the two indices σi and σj to indicate the row of S, and two
other indices σ′i and σ′j to indicate the column. Note that the scattering matrix S for

two particles has dimensions l2, because both σ1 and σ2 can take l values.

We define the permutation operator P of dimension l2 as

Pσ1σ2
σ′1σ
′
2

= δσ1
σ′2
δσ2
σ′1
. (5.2.6)
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Here we write δij for the Kronecker delta. So we have

δij =

{
1 if i = j

0 if i 6= j
. (5.2.7)

This notation can be motivated by the fact that we can view the Kronecker delta as
elements of the identity matrix. We have δij = Iij , where I is in this case the identity
matrix of dimension l. This is not to be confused with the fundamental ordering
sector I. To see why P is called the permutation operator, we look at what happens
if we multiply it with another matrix, say the scattering matrix S. We get

[PS]σ1σ2
σ′1σ
′
2

= δσ1
σ′′2
δσ2
σ′′1
S
σ′′1 σ

′′
2

σ′1σ
′
2

= Sσ2σ1
σ′1σ
′
2
. (5.2.8)

Note that here we use the summation convention. Similarly we find [SP]σ1σ2
σ′1σ2

= Sσ1σ2
σ′2σ
′
1
.

So the permutation operator permutes the indices of S, by switching two of them.
Clearly, we have P2 = I.

Looking at Equation (5.2.5), we can derive the following properties of the S ma-
trix:

• Normalization: If we let ku = kv = k, then we have

S(k, k) = P. (5.2.9)

• Unitarity: we have
S(ku, kv)S(kv, ku) = I. (5.2.10)

This can be seen by applying Equation (5.2.5) to itself. Then we get

Aσjσi(kv, ku) = S
σiσj
σ′iσ
′
j
(ku, kv)S

σ′iσ
′
j

σ′′i σ
′′
j
(kv, ku)Aσ′′j σ′′i (kv, ku),

= [S(ku, kv)S(kv, ku)]
σiσj
σ′′i σ

′′
j
Aσ′′j σ′′i (kv, ku).

(5.2.11)

This implies that

[S(ku, kv)S(kv, ku)]
σiσj
σ′′i σ

′′
j

= δσi
σ′′i
δ
σj
σ′′j

= δ
σiσj
σ′′i σ

′′
j
. (5.2.12)

Therefore we see that indeed S(ku, kv)S(kv, ku) = I.

In addition to these properties, we also make the following assumption:

• Symmetries: We assume

S
σiσj
σ′iσ
′
j
(ku, kv) = S

σ′iσ
′
j

σiσj (ku, kv) = S
σjσi
σ′jσ
′
i
(ku, kv). (5.2.13)

Now, we claimed before that we can describe the relation between theA-amplitudes
for different permutations (P,Q) via the scattering matrix. For the general case of N
scattering particles, this comes from the fact that in integral models we can decom-
pose the scattering into two-particle scatterings. This is the fundamental property
of integrable systems [16]. Indeed, suppose we have two permutation sectors (P,Q)
and (P̃ , Q̃), that differ from each other only by a transposition of two nearest neigh-
bours. So for some index 1 ≤ j < N we have Qi = Q̃i for i 6= j, j+1, and Qj = Q̃j+1,

Qj+1 = Q̃j . Similarly, for some index 1 ≤ u < N we have the same for P and P̃ . Then
the scattering process that corresponds to going from permutation sector (P,Q) to
(P̃ , Q̃) is just a two-particle scattering process. Therefore we can use the two-particle
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scattering matrix to relate the corresponding A-amplitudes. Writing j + 1 = k and
u+ 1 = v, we get:

A...σQkσQj ...(. . . , kPv , kPu , . . .) = S
σQjσQk
σ′Qj

σ′Qk
(kPu , kPv)A...σ′Qjσ

′
Qk
...(. . . , kPu , kPv , . . .).

(5.2.14)
Now, note that every permutation Q ∈ SN can be written as a sequence of next-
neighbour transpositions, see Theorem 6.2(b) in Armstrong [6]. Therefore, if we have
any amplitude AσQ1

...σQN
(kP1 . . . kPN ) in ordering sector (P,Q), we can convert it to

an amplitude in the sector (P ′, I) by applying (5.2.14) successively. Note that P ′ is
in general not equal to either P or I.

5.3 The Yang-Baxter Equation

In this section we will derive the Yang-Baxter equation, following section 5.2 of Šamaj
and Bajnok [16].

The fact that in integrable systems the scattering of N particles can be decom-
posed into two-particle scatterings, gives a restriction on the possible forms of the
scattering matrix. This can already be seen from the case N = 3.

Suppose that we have three particles with positions x1, x2, x3 and momenta k1, k2, k3.
We start in the ordering sector Q = (3, 2, 1), so we have x3 ≤ x2 ≤ x1. Then they
undergo a scattering after which we end up in the ordering sector Q′ = I = (1, 2, 3).
If we decompose this scattering into two-particle scatterings, we see that there are
two possible decompositions:

(a) (3, 2, 1)→ (3, 1, 2)→ (1, 3, 2)→ (1, 2, 3),

(b) (3, 2, 1)→ (2, 3, 1)→ (2, 1, 3)→ (1, 2, 3).

Using Equation (5.2.14), decomposition (a) gives us

Aσ3σ2σ1(k3, k2, k1) = Sσ1σ2
σ′1σ
′
2
(k1, k2)Aσ3σ′1σ′2(k3, k1, k2),

= Sσ1σ2
σ′1σ
′
2
(k1, k2)S

σ′1σ3
σ′′1 σ

′
3
(k1, k3)Aσ′′1 σ′3σ′2(k1, k3, k2),

= Sσ1σ2
σ′1σ
′
2
(k1, k2)S

σ′1σ3
σ′′1 σ

′
3
(k1, k3)S

σ′2σ
′
3

σ′′2 σ
′′
3
(k2, k3)Aσ′′1 σ′′2 σ′′3 (k1, k2, k3).

(5.3.1)

Remember that we use the summation convention, so in the last expression on the
right-hand side we sum over six indices, namely σ′1, σ

′
2, σ
′
3, σ
′′
1 , σ

′′
2 and σ′′3 .

Doing the same thing for decomposition (b) we get

Aσ3σ2σ1(k3, k2, k1) = Sσ2σ3
σ′2σ
′
3
(k2, k3)Aσ′2σ′3σ1(k2, k3, k1),

= Sσ2σ3
σ′2σ
′
3
(k2, k3)S

σ1σ′3
σ′1σ
′′
3
(k1, k3)Aσ′2σ′1σ′′3 (k2, k1, k3),

= Sσ2σ3
σ′2σ
′
3
(k2, k3)S

σ1σ′3
σ′1σ
′′
3
(k1, k3)S

σ′1σ
′
2

σ′′1 σ
′′
2
(k1, k2)Aσ′′1 σ′′2 σ′′3 (k1, k2, k3).

(5.3.2)

Of course, if we claim that the scattering of three particles can be decomposed into
two-particle scatterings, we need the result to be independent of the decomposition we
choose. Therefore in Equations (5.3.1) and (5.3.2) we must get the same amplitude.
This implies that

Sσ1σ2
σ′1σ
′
2
(k1, k2)S

σ′1σ3
σ′′1 σ

′
3
(k1, k3)S

σ′2σ
′
3

σ′′2 σ
′′
3
(k2, k3)Aσ′′1 σ′′2 σ′′3 (k1, k2, k3)

= Sσ2σ3
σ′2σ
′
3
(k2, k3)S

σ1σ′3
σ′1σ
′′
3
(k1, k3)S

σ′1σ
′
2

σ′′1 σ
′′
2
(k1, k2)Aσ′′1 σ′′2 σ′′3 (k1, k2, k3).

(5.3.3)
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=
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 σ ′′3 σ ′′2

σ3

 σ ′′1   σ ′1 
 σ ′2 σ ′3

 σ1 
 σ ′′3
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σ ′2σ ′3 

Figure 5.2: A visualisation of the Yang-Baxter equation.

Now, remember that the A-amplitudes were just some constants in our wavefunction,
see Equations (5.1.10) and (5.1.11). In principle, for different permutations (ijk) ∈
S3, we can choose the amplitudes Aσ′′i σ′′j σ′′k in any way we want, and Equation (5.3.3)

has to hold for any choice of these amplitudes. This means in particular that we
can choose all the amplitudes to be 0 except Aσ′′i σ′′j σ′′k for one specific permutation

(ijk) ∈ S3. But we can do this for every permutation (ijk), and therefore equation
(5.3.3) implies the following relation:

Sσ1σ2
σ′1σ
′
2
(k1, k2)S

σ′1σ3
σ′′1 σ

′
3
(k1, k3)S

σ′2σ
′
3

σ′′2 σ
′′
3
(k2, k3) = Sσ2σ3

σ′2σ
′
3
(k2, k3)S

σ1σ′3
σ′1σ
′′
3
(k1, k3)S

σ′1σ
′
2

σ′′1 σ
′′
2
(k1, k2),

(5.3.4)
for every choice of σ1, σ2, σ3, σ

′′
1 , σ

′′
2 and σ′′3 (we sum over σ′1, σ

′
2, σ
′
3). This set of

l6 equations is known as the Yang-Baxter equation (YBE). Conversely, if the YBE
is satisfied, then Equation (5.3.3) holds. Therefore the condition that three-particle
scatterings can be decomposed into two-particle scatterings independently of the or-
der of the two-particle scatterings, is equivalent to saying that the elements of the
scattering matrix have to satisfy the YBE. In fact, if for any N we have two different
decompositions of an N -particle scattering into two-particle scatterings, then they
are equivalent if and only if the elements of the scattering matrix satisfy the YBE.
This is because we can turn the different decompisitions into each other by succe-
sively applying the YBE for three particles. Therefore the YBE is also called the
integrability condition. Similar to Figure 5.1, the YBE can be visualised as shown in
Figure 5.2

The scattering matrix has dimension l2, and therefore l4 elements. The YBE
gives l6 equations for these elements. Therefore it would in fact be quite surprising
if we can find a solution to the YBE, because we have l6 equations for l4 variables.
However, in the next chapter we will show that in fact there exists a solution using
the Jacobi elliptic functions.

Up to this point, we always wrote the scattering matrix S(ku, kv) as a function
of the wavenumbers of the two particles corresponding to that scattering matrix.
However, it turns out that we can always paramaterize the wavenumbers ku, kv in
terms of so-called spectral parameters λu, λv, ku = ku(λu) and kv = kv(λv), such
that the scattering matrix only depends on the difference λu − λv. Then we have
S(ku, kv) = S(λu − λv). In terms of these spectral parameters, we can rewrite the
normalization (5.2.9) and unitarity (5.2.10) properties of the scattering matrix as

S(0) = P and S(λ)S(−λ) = I. (5.3.5)

We want to rewrite the YBE in Equation (5.3.4) in terms of spectral parameters.
Therefore we parameterize the wavenumbers as k1 = k1(λ1), k2 = k2(λ2) and k3 =
k3(λ3). Then, if we define λ = λ1 − λ3 and µ = λ2 − λ3, we can write the YBE as

Sσ1σ2
σ′1σ
′
2
(λ− µ)S

σ′1σ3
σ′′1 σ

′
3
(λ)S

σ′2σ
′
3

σ′′2 σ
′′
3
(µ) = Sσ2σ3

σ′2σ
′
3
(µ)S

σ1σ′3
σ′1σ
′′
3
(λ)S

σ′1σ
′
2

σ′′1 σ
′′
2
(λ− µ). (5.3.6)
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Note that the only difference between two scattering matrices S(ν1) and S(ν2), is the
difference between ν1 and ν2.

It would also be nice if we could write the YBE in Equation (5.3.6) as a matrix
equation, instead of having to write all these indices all the time. As we said before,
the scattering matrix is the matrix representation of an operator acting on the tensor
product of two l-dimensional vector spaces, V1, V2, one for each particle. For the vector
spaces V1 and V2 we have the bases {eσ1 | σ1 = 1, . . . , l} and {eσ2 | σ2 = 1, . . . , l},
respectively. Then we obtain the basis

{(eσ1 ⊗ eσ2) | 1 ≤ σ1, σ2 ≤ l} (5.3.7)

of V1 ⊗ V2. From usual matrix multiplication we find

S(ν) (eσ1 ⊗ eσ2) = Sσ1σ2
σ′1σ
′
2
(ν)
(
eσ′1 ⊗ eσ′2

)
. (5.3.8)

Remember that we use the summation convention. So in the equation above we sum
over σ′1 and σ′2.

Now, suppose that we have three particles labeled 1, 2 and 3, with corresponding
vector spaces V1, V2 and V3. The scattering of these three particles can be decom-
posed into three two-particle scatterings, and we get corresponding scattering ma-
trices. These scattering matrices are essentially all the same two-particle scattering
matrix S, but acting on different vector spaces. For instance, the scattering matrix
corresponding to the scattering of particles 1 and 2 acts on V1 ⊗ V2, but the matrix
corresponding to the scattering of particles 1 and 3 acts on V1 ⊗ V3. To be able to
write a product of the scattering matrices, we want to view the scattering matrices
as operators on V1⊗ V2⊗ V3. For the scattering matrix S(ν) for particles i and j, we
define the operator Sij acting on V1 ⊗ V2 ⊗ V3 as the operator that acts on Vi and
Vj as the scattering matrix S, and on the remaining vector space Vk it acts as the
identity. So we have

S12(ν1) = S(ν1)⊗ I and S23(ν2) = I ⊗ S(ν2). (5.3.9)

However, we see that for S13 we have a problem, because we can not write it as
the tensor product of a scattering matrix and an identity operator. We will fix this
problem later by introducing the R-matrix. For the moment, it turns out that it does
not really matter if we just want to rewrite the YBE (5.3.6) in terms of S12, S13 and
S23. Similar to Equation (5.3.8), we have

S12(ν1)(eσ1 ⊗ eσ2 ⊗ eσ3) = Sσ1σ2
σ′1σ
′
2
(ν1)(eσ′1 ⊗ eσ′2 ⊗ eσ3),

S13(ν2)(eσ1 ⊗ eσ2 ⊗ eσ3) = Sσ1σ3
σ′1σ
′
3
(ν2)(eσ′1 ⊗ eσ2 ⊗ eσ′3),

S23(ν3)(eσ1 ⊗ eσ2 ⊗ eσ3) = Sσ2σ3
σ′2σ
′
3
(ν3)(eσ1 ⊗ eσ′2 ⊗ eσ′3).

(5.3.10)

Now, using this, we will show that the YBE (5.3.6) is equivalent to

S12(λ− µ)S13(λ)S23(µ) = S23(µ)S13(λ)S12(λ− µ). (5.3.11)

To see this, we first take the left-hand side of Equation (5.3.11), and we let it act on
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the basisvector eσ1 ⊗ eσ2 ⊗ eσ3 . Then we get

S12(λ− µ)S13(λ)S23(µ) (eσ1 ⊗ eσ2 ⊗ eσ3)

= S12(λ− µ)S13(λ)
[
Sσ2σ3
σ′2σ
′
3
(µ)(eσ1 ⊗ eσ′2 ⊗ eσ′3)

]
= S12(λ− µ)

[
Sσ2σ3
σ′2σ
′
3
(µ)S13(λ)(eσ1 ⊗ eσ′2 ⊗ eσ′3)

]
= S12(λ− µ)

[
Sσ2σ3
σ′2σ
′
3
(µ)S

σ1σ′3
σ′1σ
′′
3
(λ)(eσ′1 ⊗ eσ′2 ⊗ eσ′′3 )

]
= Sσ2σ3

σ′2σ
′
3
(µ)S

σ1σ′3
σ′1σ
′′
3
(λ)S12(λ− µ)(eσ′1 ⊗ eσ′2 ⊗ eσ′′3 )

= Sσ2σ3
σ′2σ
′
3
(µ)S

σ1σ′3
σ′1σ
′′
3
(λ)S

σ′1σ
′
2

σ′′1 σ
′′
2
(λ− µ)(eσ′′1 ⊗ eσ′′2 ⊗ eσ′′3 ).

(5.3.12)

Doing the same thing for the right-hand side of Equation (5.3.11), we find

S23(µ)S13(λ)S12(λ− µ) (eσ1 ⊗ eσ2 ⊗ eσ3)

= Sσ1σ2
σ′1σ
′
2
(λ− µ)S

σ′1σ3
σ′′1 σ

′
3
(λ)S

σ′2σ
′
3

σ′′2 σ
′′
3
(µ)(eσ′′1 ⊗ eσ′′2 ⊗ eσ′′3 ).

(5.3.13)

Therefore Equation (5.3.11) implies that for any σ1, σ2, σ3 we have

Sσ2σ3
σ′2σ
′
3
(µ)S

σ1σ′3
σ′1σ
′′
3
(λ)S

σ′1σ
′
2

σ′′1 σ
′′
2
(λ− µ)(eσ′′1 ⊗ eσ′′2 ⊗ eσ′′3 )

= Sσ1σ2
σ′1σ
′
2
(λ− µ)S

σ′1σ3
σ′′1 σ

′
3
(λ)S

σ′2σ
′
3

σ′′2 σ
′′
3
(µ)(eσ′′1 ⊗ eσ′′2 ⊗ eσ′′3 )

(5.3.14)

Now, note that on both sides of this equation we sum over σ′′1 , σ
′′
2 and σ′′3 , but the

summand consists of a number times the basisvector eσ′′1 ⊗ eσ′′2 ⊗ eσ′′3 . These basisvec-
tors are linearly independent, so therefore we see that for every choice of σ′′1 , σ

′′
2 and

σ′′3 we must have

Sσ2σ3
σ′2σ
′
3
(µ)S

σ1σ′3
σ′1σ
′′
3
(λ)S

σ′1σ
′
2

σ′′1 σ
′′
2
(λ− µ) = Sσ1σ2

σ′1σ
′
2
(λ− µ)S

σ′1σ3
σ′′1 σ

′
3
(λ)S

σ′2σ
′
3

σ′′2 σ
′′
3
(µ). (5.3.15)

This is precisely the YBE as in Equation (5.3.6). This way Equation (5.3.11) implies
the YBE. To see that they are in fact equivalent, we note that by reversing the steps
we just did, it follows from Equation (5.3.15) that

S12(λ− µ)S13(λ)S23(µ) (eσ1 ⊗ eσ2 ⊗ eσ3) = S23(µ)S13(λ)S12(λ− µ) (eσ1 ⊗ eσ2 ⊗ eσ3) ,
(5.3.16)

for any choice of σ1, σ2 and σ3. Because an operator acting on a vector space is
completely determined by how it acts on the basisvectors of that space, we find
indeed that the above equation implies Equation (5.3.11). Therefore we can view
(5.3.11) as the YBE written in matrix form.

From our normalization condition S(0) = P (also called initial condition), it
follows that if we fill in λ = µ = 0 in the YBE (5.3.11), we get

P12P13P23 = P23P13P12. (5.3.17)

Here Pij is an operator on V1 ⊗ V2 ⊗ V3 defined in the same way as Sij . The above
identity is always true, as both sides are equal to P13. Therefore, for λ = µ = 0, the
YBE is always satisfied.

We finish this section with introducing the R-matrix. Remember that we had a
“problem” for the operator S13, because we could not write it as the tensor product
of a scattering matrix and an identity operator. Writing the operators in terms of
the R-matrix will remove this problem. We define the R-matrix as

R(ν) = PS(ν). (5.3.18)
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Then the initial condition S(0) = P becomes

R(0) = I. (5.3.19)

Similar to Equation (5.3.8), we find for the permutation matrix that

P(eσ1 ⊗ eσ2) =
∑
σ′1σ
′
2

δσ1
σ′2
δσ2
σ′1

(eσ′1 ⊗ eσ′2)

= (eσ2 ⊗ eσ1)

(5.3.20)

Now we can do the same thing for the R-matrix to find

R(ν) (eσ1 ⊗ eσ2) = P [S(ν) (eσ1 ⊗ eσ2)]

= P
[
Sσ1σ2
σ′1σ
′
2
(ν)
(
eσ′1 ⊗ eσ′2

)]
= Sσ1σ2

σ′1σ
′
2
(ν)P

(
eσ′1 ⊗ eσ′2

)
= Sσ1σ2

σ′1σ
′
2
(ν)
(
eσ′2 ⊗ eσ′1

) (5.3.21)

If we compare this to Equation (5.3.8), we see that Rσ1σ2
σ′1σ
′
2

= Sσ1σ2
σ′2σ
′
1
. However, in

Equation (5.2.8) we found that

Rσ1σ2
σ′1σ
′
2

= Sσ2σ1
σ′1σ
′
2
. (5.3.22)

These statements are indeed equivalent, because we assumed the symmetry Sσ1σ2
σ′1σ
′
2

=

Sσ2σ1
σ′2σ
′
1

for S.

Now, we can write the YBE (5.3.11) in terms of the R-matrix as

[I ⊗R(λ− µ)] [R(λ)⊗ I] [I ⊗R(µ)] = [R(µ)⊗ I] [I ⊗R(λ)] [R(λ− µ)⊗ I] .
(5.3.23)

To see that this is true, we compare the left-hand side of the above Equation to that
of Equation (5.3.11). We can split the R-matrix in a permutation operator and a
scattering matrix. Therefore we can write the left-hand side of Equation (5.3.23) as

[I ⊗P] [I ⊗ S(λ− µ)] [P ⊗ I] [S(λ)⊗ I] [I ⊗P] [I ⊗ S(µ)] (5.3.24)

This expression is an operator on the space V1⊗V2⊗V3. We see that we first act with
the operator [I ⊗ S(µ)], which is exactly S23(µ) as in the left-hand side of Equation
(5.3.11). But then we act with [I ⊗P]. From Equation (5.3.20) it follows that the
operator [I ⊗P] “switches” the spaces V2 and V3. So then the next operator, in this
case [S(λ)⊗ I], acts on the space V1⊗V3⊗V2. Therefore we see that it acts as S13(λ)
as in Equation (5.3.11)! After that, the operator [P ⊗ I] switches V1 and V3 such
that [I ⊗S(λ−µ)] acts on V3⊗ V1⊗ V2, exactly like S12(λ−µ) in Equation (5.3.11).
The last term [I ⊗P] then switches V1 and V2 to get the space V3 ⊗ V2 ⊗ V1. So the
left-hand sides of Equations (5.3.11) and (5.3.23) are operators that act in exactly
the same way, except that in Equation (5.3.23) we change the space V1⊗V2⊗V3 into
V3 ⊗ V2 ⊗ V1.

Now for the right-hand sides we can do the same thing. Then we find that in
Equations (5.3.11) and (5.3.23) we have essentially the same operator, but that in
Equation (5.3.23) changes the space V1⊗V2⊗V3 into V3⊗V2⊗V1. So that is just like
the left-hand side. Therefore we find that Equations (5.3.11) and (5.3.23) are indeed
equivalent in a sort of trivial way, because they say exactly the same thing. So now
we have written the YBE as a matrix equation in terms of matrices we understand
(unlike S13).
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5.4 Lax Operators and Transfer Matrices

In this section we will use the scattering matrix to define larger operators that act on
the entire chain of N sites at once. Then we will derive relations for these operators
from the Yang-Baxter equation. We follow Section 5.3 of Šamaj and Bajnok [16].

Remember that the system we are studying is a chain of N sites. In each site
we have exactly one particle. We say that the state of a site is the color of the
particle on that site, for which there are l possibilities. So the n’th site has state
index σn = 1, . . . , l, where σn represents the color of the n’th particle, just as before.
Now, we add two auxiliary sites ξ and η to the chain, with state indices γξ and γη
that also have have the possible values 1, . . . , l. These auxiliary sites have no physical
meaning, but we will treat them just like the other sites on the chain. The point of
these extra sites is that they make the notation more convenient, nothing more.

We define the Lax operators Lξn for n = 1, 2, . . . , N as follows:

Lξn(λ)
γξσ1...σN
γ′ξσ
′
1...σ

′
N

= Sξn(λ)
γξσn
γ′ξσ
′
n
δσ1
σ′1
· · · δσn−1

σ′n−1
δ
σn+1

σ′n+1
· · · δσN

σ′N
. (5.4.1)

Each Lax operator acts on the entire chain of N sites and one auxiliary site ξ, so it
has dimension lN+1. We see that Lξn acts trivially on the chain of N sites, except
for the n’th site. Similarly we define Lηn. To lighten the notation we write

δσ1
σ′1
· · · δσn−1

σ′n−1
δ
σn+1

σ′n+1
· · · δσN

σ′N
= ∆′ ,

δ
σ′1
σ′′1
· · · δσ

′
n−1

σ′′n−1
δ
σ′n+1

σ′′n+1
· · · δσ

′
N

σ′′N
= ∆

′
′′ .

(5.4.2)

Note that ∆′ and ∆
′
′′ depend on n. Also ∆′∆

′
′′ = ∆′′ (we use the summation conven-

tion), where ∆′′ is defined similarly to (5.4.2).
We can write the YBE (5.3.6) in terms of Lax operators as

Sξη(λ− µ)Lξn(λ)Lηn(µ) = Lηn(µ)Lξn(λ)Sξη. (5.4.3)

This can be seen by writing it out in coördinates. The following derivation consists
of five equations, but they are too wide to be displayed on one line. Each equation
follows from the one before it.

[Sξη(λ− µ)Lξn(λ)Lηn(µ)]
γξγησ1...σN
γ′′ξ γ
′′
η σ
′′
1 ...σ

′′
N

= [Lηn(µ)Lξn(λ)Sξη]
γξγησ1...σN
γ′′ξ γ
′′
η σ
′′
1 ...σ

′′
N

Sξη(λ− µ)
γξγη
γ′ξγ
′
η
Lξn(λ)

γ′ξσ1...σN

γ′′ξ σ
′
1...σ

′
N
Lηn(µ)

γ′ησ
′
1...σ

′
N

γ′′η σ
′′
1 ...σ

′′
N

= Lηn(µ)
γησ1...σN
γ′ησ
′
1...σ

′
N
Lξn(λ)

γξσ
′
1...σ

′
N

γ′ξσ
′′
1 ...σ

′′
N
Sξη(λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η

Sξη(λ− µ)
γξγη
γ′ξγ
′
η
Sξn(λ)

γ′ξσn

γ′′ξ σ
′
n
∆′Sηn(µ)

γ′ησ
′
n

γ′′η σ
′′
n
∆
′
′′

= Sηn(µ)
γησn
γ′ησ
′
n
∆′Sξn(λ)

γξσ
′
n

γ′ξσ
′′
n
∆
′
′′Sξη(λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η

Sξη(λ− µ)
γξγη
γ′ξγ
′
η
Sξn(λ)

γ′ξσn

γ′′ξ σ
′
n
Sηn(µ)

γ′ησ
′
n

γ′′η σ
′′
n
∆′′

= Sηn(µ)
γησn
γ′ησ
′
n
Sξn(λ)

γξσ
′
n

γ′ξσ
′′
n
Sξη(λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η
∆′′

Sξη(λ− µ)
γξγη
γ′ξγ
′
η
Sξn(λ)

γ′ξσn

γ′′ξ σ
′
n
Sηn(µ)

γ′ησ
′
n

γ′′η σ
′′
n

= Sηn(µ)
γησn
γ′ησ
′
n
Sξn(λ)

γξσ
′
n

γ′ξσ
′′
n
Sξη(λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η
.

(5.4.4)
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Here we used that in this case the ∆’s commute with the scattering matrices, as they
act on different sites. In the second to last equation we have a ∆′′ on both sides. This
∆′′ acts on all sites except for the n’th one and the auxiliary sites. The scattering
matrices, however, act only on these three sites. So in the last step we just choose
coordinates σi = σ′i for i 6= n, such that ∆′′ = 1. Then we obtain indeed the YBE
as in Equation (5.3.6). To show that (5.4.3) follows from (5.3.6) we just reverse the
order in (5.4.4).

To make sense of equation (5.4.3), we want to view the Lax operators as operators
on their corresponding auxiliary space. So Lξn acts on ξ-space. Then their dimension
will be just l, but their elements will be operators of dimension lN acting on the chain
of N sites: [

Lξn(λ)
γξ
γ′ξ

]σ1...σN
σ′1...σ

′
N

= Lξn(λ)
γξσ1...σN
γ′ξσ
′
1...σ

′
N

= Sξn(λ)
γξσn
γ′ξσ
′
n
∆′ . (5.4.5)

Writing out equation (5.4.3) in coordinates in (ξ, η)-space, we obtain:

Sξη(λ− µ)
γξγη
γ′ξγ
′
η
Lξn(λ)

γ′ξ
γ′′ξ
Lηn(µ)

γ′η
γ′′η

= Lηn(µ)
γη
γ′η
Lξn(λ)

γξ
γ′ξ
Sξη(λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η
. (5.4.6)

To get the YBE in terms of the R matrix, we act with Pξη from the left to find:

P
γξγη
γ′′′ξ γ

′′′
η
Sξη(λ− µ)

γ′′′ξ γ
′′′
η

γ′ξγ
′
η
Lξn(λ)

γ′ξ
γ′′ξ
Lηn(µ)

γ′η
γ′′η

= P
γξγη
γ′′′ξ γ

′′′
η
Lηn(µ)

γ′′′η
γ′η
Lξn(λ)

γ′′′ξ
γ′ξ
Sξη(λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η

Rξη(λ− µ)
γξγη
γ′ξγ
′
η
Lξn(λ)

γ′ξ
γ′′ξ
Lηn(µ)

γ′η
γ′′η

= δ
γξ
γ′′′η
δ
γη
γ′′′ξ
Lηn(µ)

γ′′′η
γ′η
Lξn(λ)

γ′′′ξ
γ′ξ
Rξη(λ− µ)

γ′ηγ
′
ξ

γ′′ξ γ
′′
η

Rξη(λ− µ)
γξγη
γ′ξγ
′
η
Lξn(λ)

γ′ξ
γ′′ξ
Lηn(µ)

γ′η
γ′′η

= Lηn(µ)
γξ
γ′η
Lξn(λ)

γη
γ′ξ
Rξη(λ− µ)

γ′ηγ
′
ξ

γ′′ξ γ
′′
η
.

(5.4.7)

Here we used that Sξη(λ− µ)
γ′ξγ
′
η

γ′′ξ γ
′′
η

= Sξη(λ− µ)
γ′ηγ
′
ξ

γ′′η γ
′′
ξ

= Rξη(λ− µ)
γ′ηγ
′
ξ

γ′′ξ γ
′′
η
. Note that γη

and γξ are both just indices with possible values 1, . . . , l. Therefore Lηn(µ)
γξ
γ′η

does

make sense.
We define the monodromy matrix Tξ as follows:

Tξ(λ)
γξσ1...σN
γ′ξσ
′
1...σ

′
N

= S
σ1γξ
σ′1γ2

(λ)Sσ2γ2
σ′2γ3

(λ) · · ·SσNγN
σ′Nγ

′
ξ
. (5.4.8)

We can write the monodromy matrix as a product of Lax operators in the following
way:

Tξ(λ) = Lξ1(λ)Lξ2(λ) · · ·LξN (λ). (5.4.9)

We can see this by writing it out in coördinates:

[Lξ1(λ)Lξ2(λ) · · ·LξN (λ)]
γξσ1...σN
γ′ξσ
′
1...σ

′
N

=
[(
S
γξσ1
γ2(σ1)2

(λ)δσ2(σ2)2 · · · δ
σN
(σN )2

)
(
S
γ2(σ2)2
γ3(σ2)3

(λ)δ
(σ1)2
(σ1)3

δ
(σ3)2
(σ3)3

· · · δ(σN )2
(σN )3

)
· · ·
(
S
γN (σN )N
γ′ξσ
′
N

(λ)δ
(σ1)N
σ′1

· · · δ(σN−1)N
σ′N−1

)]
= S

γξσ1
γ2σ′1

(λ)Sγ2σ2
γ3σ′2

(λ) · · ·SγNσN
γ′ξσ
′
N

= Tξ(λ)
γξσ1...σN
γ′ξσ
′
1...σ

′
N
.

(5.4.10)

In the last step we used that Saba′b′ = Sbab′a′ . Now, analogous to (5.4.3) for the Lax
operators, we have the following relation for the monodromy matrix:

Sξη(λ− µ)Tξ(λ)Tη(µ) = Tη(µ)Tξ(λ)Sξη(λ− µ). (5.4.11)
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To show this, we note that Lξn and Lηm commute for n 6= m, because they act
non-trivially only on different sites. Using this fact and equation (5.4.9) we find

Tξ(λ)Tη(µ) = Lξ1(λ)Lη1(µ) · · ·LξN (λ)LηN (µ). (5.4.12)

Now, multiplying from the left with Sξη(λ − µ) and using equation (5.4.3) N times,
we see that indeed

Sξη(λ− µ)Tξ(λ)Tη(µ) = Sξη(λ− µ)Lξ1(λ)Lη1(µ) · · ·LξN (λ)LηN (µ)

= Lη1(µ)Lξ1(λ) · · ·LηN (µ)LξN (λ)Sξη(λ− µ)

= Tη(µ)Tξ(λ)Sξη(λ− µ).

(5.4.13)

As for equation (5.4.3), we want to look at equation (5.4.11) coördinate-wise in
just (ξ, η)-space. So we see Tξ and Tη as an l-dimensional operators in ξ or η space
respectively. Their elements will be lN -dimensional operators acting on the chain of
N sites: [

Tξ(λ)
γξ
γ′ξ

]σ1...σN
σ′1...σ

′
N

=
[
Lξ1(λ)

γξ
γ2Lξ2(λ)γ2γ3 · · ·LξN (λ)γN

γ′ξ

]σ1...σN
σ′1...σ

′
N

. (5.4.14)

Then equation (5.4.11) becomes

Sξη(λ− µ)
γξγη
γ′ξγ
′
η
Tξ(λ)

γ′ξ
γ′′ξ

Tη(µ)
γ′η
γ′′η

= Tη(µ)
γη
γ′η

Tξ(λ)
γξ
γ′ξ
Sξη(λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η
. (5.4.15)

Completely analogous to (5.4.7), we can act with the permutation matrix from the
left to get the relation in terms of the R matrix:

Rξη(λ− µ)
γξγη
γ′ξγ
′
η
Tξ(λ)

γ′ξ
γ′′ξ

Tη(µ)
γ′η
γ′′η

= Tη(µ)
γξ
γ′η

Tξ(λ)
γη
γ′ξ
Rξη(λ− µ)

γ′ηγ
′
ξ

γ′′ξ γ
′′
η
. (5.4.16)

We define the transfer matrix T of dimension lN as

T (λ)σ1...σN
σ′1...σ

′
N

= Sσ1γ1
σ′1γ2

(λ)Sσ2γ2
σ′2γ3

(λ) · · ·SσNγN
σ′Nγ1

(λ) (5.4.17)

If we let Trξ · · · =
∑

γξ,γ
′
ξ
δ
γξ
γ′ξ
· · · the trace in ξ-space, then we have

T (λ) = Trξ Tξ(λ). (5.4.18)

The transfer matrix is interesting mainly because of the following result:

[T (λ), T (µ)] = 0 for any λ, µ ∈ C. (5.4.19)

Here [A,B] = AB − BA is the commutator of A and B. So the statement above is
equivalent to saying that transfer matrices depending on arbitrary spectral parameters
commute with each other. The important consequence of this, is that those transfer
matrices are therefore simultaneously diagonalizable, see Exercise 8.21 in Roman [18].
This means that there exists a single invertible matrix P , such that P−1T (λ)P is
a diagonal matrix for any λ. In the next chapter we will construct a Hamiltonian
from the Transfer matrix, and then because of the fact that the transfer matrices
are simultaneously diagonalizable we can find the whole energy spectrum of this
Hamiltonian. For now, we will just show that (5.4.19) is true. In order to see this
we consider Equation (5.4.16). Note that the matrix Rξη(λ− µ) is invertible, and its
inverse is given by

R−1ξη (λ− µ) = Rξη(µ− λ). (5.4.20)
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This can be seen from the fact that R = PS = SP. Then we find

Rξη(λ− µ)Rξη(µ− λ) = Sξη(λ− µ)PPSξη(µ− λ)

= Sξη(λ− µ)Sξη(µ− λ)

= I.

(5.4.21)

For elements of the inverse of the R-matrix we have then

Rξη(λ− µ)
γξγη
γ′ξγ
′
η
R−1ξη (λ− µ)

γ′ξγ
′
η

γ′′ξ γ
′′
η

= δ
γξ
γ′′ξ
δ
γη
γ′′η
. (5.4.22)

Now, we act on Equation (5.4.16) from the right with the inverse of the R-matrix.
Then we get

Rξη(λ− µ)
γξγη
γ′ξγ
′
η
Tξ(λ)

γ′ξ
γ′′ξ

Tη(µ)
γ′η
γ′′η
R−1ξη (λ− µ)

γ′′ξ γ
′′
η

γ′′′ξ γ
′′′
η

= Tη(µ)
γξ
γ′η

Tξ(λ)
γη
γ′ξ
Rξη(λ− µ)

γ′ηγ
′
ξ

γ′′ξ γ
′′
η
R−1ξη (λ− µ)

γ′′ξ γ
′′
η

γ′′′ξ γ
′′′
η
. (5.4.23)

Remember that we use the summation convention. We can now take the traces
Trξ · · · =

∑
γξγ
′′′
ξ
δ
γξ
γ′′′ξ
· · · and Trη · · · =

∑
γηγ′′′η

δ
γη
γ′′′η
· · · on both sides of the equation

to get

Rξη(λ− µ)
γξγη
γ′ξγ
′
η
Tξ(λ)

γ′ξ
γ′′ξ

Tη(µ)
γ′η
γ′′η
R−1ξη (λ− µ)

γ′′ξ γ
′′
η

γξγη

= Tη(µ)
γξ
γ′η

Tξ(λ)
γη
γ′ξ
Rξη(λ− µ)

γ′ηγ
′
ξ

γ′′ξ γ
′′
η
R−1ξη (λ− µ)

γ′′ξ γ
′′
η

γξγη (5.4.24)

Now, in these equations, the elements of the R-matrices are just numbers. So they
commute with everything. Therefore we can rewrite the left-hand side of the above
equation to

R−1ξη (λ− µ)
γ′′ξ γ
′′
η

γξγη Rξη(λ− µ)
γξγη
γ′ξγ
′
η
Tξ(λ)

γ′ξ
γ′′ξ

Tη(µ)
γ′η
γ′′η

= δ
γ′′ξ
γ′ξ
δ
γ′′η
γ′η

Tξ(λ)
γ′ξ
γ′′ξ

Tη(µ)
γ′η
γ′′η

= Tξ(λ)
γ′′ξ
γ′′ξ

Tη(µ)
γ′′η
γ′′η

= T (λ)T (µ).

(5.4.25)

For the right-hand side of Equation (5.4.24), we find that it is equal to

Tη(µ)
γξ
γ′η

Tξ(λ)
γη
γ′ξ
δ
γ′η
γξ δ

γ′ξ
γη = Tη(µ)

γξ
γξTξ(λ)

γη
γη

= T (µ)T (λ).
(5.4.26)

Therefore we find that T (λ)T (µ) = T (µ)(Tλ) for all λ, µ ∈ C, which proves Equation
(5.4.19).



Chapter 6

The Quantum Inverse-Scattering
Method

In this chapter we will derive a solution for the Yang-Baxter Equation. Then, using
this solution, we will construct a Hamiltonian from the transfer matrix via the so-
called quantum inverse-scattering method. From the commutation property of the
transfer matrices it then follows that we obtain infinitely many operators that com-
mute with this Hamiltonian. The physical interpretation of this is that we find a
system with infinitely many quantities that are conserved in time. The Hamiltonian
we find will be that of the one-dimensional XYZ Heisenberg model.

6.1 A Solution to the Yang-Baxter Equation

In this section we will derive a solution for the Yang-Baxter equation in the simplest
non-trivial case, which is when particles can take 2 colors. So we have l = 2. Re-
member that we assumed that in every site on our chain we have exactly one particle,
so then every site has two possible states. This is for example the case when the
particles on our chain are electrons. Electrons have the internal variable spin, which
can be either up or down. We begin the derivation following Section 5.4 of Šamaj and
Bajnok [16]. However, from Equation (6.1.10) until the end of the section we follow
Section 10.4 of Baxter [19].

The solution of the Yang-Baxter equation will be a scattering matrix. We will
look for a solution of the form

S(λ) =

3∑
j=0

wj(λ) σj ⊗ σj . (6.1.1)

Here σ0 = I, and the matrices σ1 = σx, σ2 = σy and σ3 = σz are the Pauli matrices.
Our use of the Pauli matrices comes from the fact that together with σ0 = I the
Pauli matrices form a basis for 2 × 2 hermitian matrices. The coefficients wj(λ) are
for now unknown functions. By calculating the tensor products of the Pauli matrices
with themselves, we can write Equation (6.1.1) as

S(λ) =


a(λ) 0 0 d(λ)

0 b(λ) c(λ) 0
0 c(λ) b(λ) 0

d(λ) 0 0 a(λ)

 , (6.1.2)
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where

a(λ) = w0(λ) + w3(λ)

b(λ) = w0(λ)− w3(λ)

c(λ) = w1(λ) + w2(λ)

d(λ) = w1(λ)− w2(λ).

(6.1.3)

The 4× 4 permutation operator P is given by

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (6.1.4)

Therefore we find that the R-matrix R(λ) = PS(λ) is given by

R(λ) =


a(λ) 0 0 d(λ)

0 c(λ) b(λ) 0
0 b(λ) c(λ) 0

d(λ) 0 0 a(λ)

 (6.1.5)

From Equation (6.1.1) and the definition of the Lax operator, we find that the Lax
operator Lξn is given by

Lξn =

3∑
j=0

wj(λ) σj ⊗ σjn. (6.1.6)

Here we write σjn for the operator acting on the chain of N particles, that acts on the
n’th site as σj and as the identity operator on the rest of the chain. So in the above
equation, the σj on the left-hand side of the ⊗ symbol acts on the auxiliary space ξ.
We can write Lξn as a matrix in ξ-space by writing out this σj as a matrix. We get

Lξn =

(
w0(λ)σ0

n + w3(λ)σzn w1(λ)σxn − iw2(λ)σyn
w1(λ)σxn + iw2(λ)σyn w0(λ)σ0

n − w3(λ)σzn

)
. (6.1.7)

For the Lax operator Lηn we can of course do exactly the same thing. Now, with
these explicit expressions for the R-matrix and the Lax operators, we can fill them
in into the YBE (5.4.7) and start looking for a solution. In the end we want to find
expressions for the functions a(λ), b(λ), c(λ) and d(λ), such that the scattering matrix
in Equation (6.1.2) is a solution to the YBE.

When we fill in the above expressions for R, Lξn and Lηn into the YBE (5.4.7),
then it can be shown that the YBE is satisfied if the equation

wmw
′
lw
′′
j − wlw′mw′′k + wkw

′
jw
′′
l − wjw′kw′′m = 0 (6.1.8)

holds for any permutation (j, k, l,m) of (0, 1, 2, 3) [16]. Here we write

wj = wj(λ), w′j = wj(µ), w′′j = wj(λ− µ). (6.1.9)

There are 24 possible permutations of (0, 1, 2, 3), so Equation (6.1.8) consists of 24
equations. However, suppose that we have one of those equations for a certain per-
mutation (j, k, l,m) of (0, 1, 2, 3). Then it is not hard to see that for the permutations
(k, j,m, l), (l,m, j, k) and (m, l, k, j) we get the exact same equation. Therefore we
see that Equation (6.1.8) consists of at most 6 independent equations. Now, similar
to Equation (6.1.9) we write

a = a(λ), a′ = a(µ), a′′ = a(λ− µ) (6.1.10)
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and similarly for b, c and d. Then it turns out that the 6 independent equations from
(6.1.8) are equivalent to [19]

ac′a′′ + da′d′′ − bc′b′′ − ca′c′′ = 0

ab′c′′ + dd′b′′ − ba′c′′ − cc′b′′ = 0

cb′a′′ + bd′d′′ − ca′b′′ − bc′c′′ = 0

ad′b′′ + db′c′′ − bd′a′′ − cb′d′′ = 0

aa′d′′ + dc′a′′ − bb′d′′ − cd′a′′ = 0

da′a′′ + ac′d′′ − db′b′′ − ad′c′′ = 0.

(6.1.11)

These equations are linear homogeneous equations in a′′, b′′, c′′ and d′′. Therefore, if
we take four of these equations, we can write them as one matrix equation Av = 0,
where v = (a′′, b′′, c′′, d′′)T . Then in order to get a non-trivial solution (v 6= 0), we
must have detA = 0. If we take the first, third, fourth and sixth equations from
(6.1.11), then the determinant of the corresponding matrix is given by [19]

(cda′b′ − abc′d′)
(
(a2 − b2)(c′2 − d′2) + (c2 − d2)(a′2 − b′2)

)
. (6.1.12)

This determinant is the product of two factors, so it is zero if and only if at least
one of the two factors is zero. Our aim is to find one solution of the YBE, and not
necessarily all the solutions. Therefore we can just require that the first factor in the
above determinant must be 0. Then we get

cd

ab
=
c′d′

a′b′
. (6.1.13)

Using this relation, we can solve the system of the first, third, fourth and sixth
equation for a′′, b′′, c′′ and d′′. The solutions we obtain are [19]

a′′ = a(cc′ − dd′)(b2c′2 − c2a′2)/c
b′′ = b(dc′ − cd′)(a2c′2 − d2a′2)/d
c′′ = c(bb′ − aa′)(a2c′2 − d2a′2)/a
d′′ = d(ab′ − ba′)(b2c′2 − c2a′2)/b.

(6.1.14)

Now, we obtained these solutions using the information from the first, third, fourth
and sixth equations from (6.1.11). If we fill them in into the second or fifth equation,
one can derive the relation [19]

a2 + b2 − c2 − d2

ab
=
a′2 + b′2 − c′2 − d′2

a′b′
. (6.1.15)

Now, we define

∆ =
a2 + b2 − c2 − d2

2(ab+ cd)

Γ =
ab− cd
ab+ cd

,

(6.1.16)

and similarly we define ∆′ and Γ′ by replacing a, b, c, d by a′, b′, c′, d′. Then the
relations (6.1.13) and (6.1.15) are equivalent to

Γ = Γ′, ∆ = ∆′. (6.1.17)

Indeed, if we let

γ =
1− Γ

1 + Γ
=
cd

ab
, (6.1.18)
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then we see that Γ = Γ′ implies (6.1.13). Conversely, we see that

γ + 1 =
2

1 + Γ
, (6.1.19)

and therefore

Γ =
2

γ + 1
− 1 =

2
ac
bc + 1

− 1. (6.1.20)

Hence (6.1.13) implies Γ = Γ′, so these statements are equivalent. For ∆ we find

1 + ∆ =
a2 + b2 − c2 − d2 + 2ab+ 2cd

2(ab+ cd)

=
a2+b2−c2−d2

ab + 2 + 2 cdab
2 + cd

ab

(6.1.21)

So the relations (6.1.13) and (6.1.15) together imply that indeed ∆ = ∆′. If we
assume Γ = Γ′, then we know that (6.1.13) holds. Thus, in that case it follows from
Equation (6.1.21) that also (6.1.15) must hold. Therefore we see that indeed the
relations (6.1.13) and (6.1.15) together are equivalent to Equation (6.1.17).

So what we have found up till now is that if we can find a, b, c, d and a′, b′, c′, d′ such
that Equation (6.1.17) holds, then we have found a solution to the YBE. Remember
from Equation (6.1.10) that a, b, c, d are all functions of a spectral parameter, and the
difference between a, a′ and a′′ is just the value of their spectral parameter. So if we
can find four functions a(λ), b(λ), c(λ), d(λ) such that the corresponding ∆ and Γ are
independent of λ, then the scattering matrix S(λ) in Equation (6.1.2) is a solution
to the YBE. We will do this by parameterising a, b, c and d using the Jacobi elliptic
functions.

We can combine the two equations in (6.1.16) to get an equation without the
variable d as follows

2∆(1 + γ)ab = 2∆

(
ab

ab
+
cd

ab

)
ab

= 2∆(ab+ cd)

= a2 + b2 − c2 − d2

= a2 + b2 − c2 − a2b2γ2c−2.

(6.1.22)

If we divide this equation by c2, we obtain

2∆(1 + γ)
b

c

a

c
=
a2

c2
+
b2

c2
− 1− γ2 b

2

c2
a2

c2
(6.1.23)

This equation is a quadratic equation in a/c and in b/c. Suppose that b/c is given,
then we can write it as a quadratic equation in a/c in the standard form(

1− γ2 b
2

c2

)
a2

c2
− 2∆(1 + γ)

b

c

a

c
+
b2

c2
− 1 = 0. (6.1.24)

In order to find a solution for a/c, we calculate the discriminant of the above equation.
This discriminant is given by

4∆2(1 + γ)2
b2

c2
− 4

(
1− γ2 b

2

c2

)(
b2

c2
− 1

)
. (6.1.25)

The above expression can be rewritten as [19]

4

(
1− y2 b

2

c2

)(
1− k2y2 b

2

c2

)
, (6.1.26)
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where we introduced the variables k, y that are uniquely defined by [19]

k2y4 = γ2

(1 + k2)y2 = 1 + γ2 −∆2(1 + γ)2.
(6.1.27)

Now, we can parameterise b/c as a function of a new variable u, so that the discrim-
inant in Equation (6.1.26) takes a simpler form. We say

b

c
= y−1 snu, (6.1.28)

where we take sn to be the Jacobi elliptic sine function with modulus k. Remember
from Theorem 4.5.3 that

sn2 u+ cn2 u = 1, k2 sn2 u+ dn2 u = 1. (6.1.29)

Using this, we find that the discriminant in Equation (6.1.26) becomes

4 cn2 udn2 u (6.1.30)

Now, we can use this discriminant and Equation (6.1.28) to write down a solution of
Equation (6.1.24) in terms of elliptic functions. We get

a

c
=

2∆(1 + γ)y−1 snu+ 2 cnudnu

2 (1− γ2y−2 sn2 u)

=
∆(1 + γ)y snu+ y2 cnudnu

y2 − γ2 sn2 u

(6.1.31)

In order to simplify this expression we define η by

k sn η = −γ
y
. (6.1.32)

Note that η only depends on k, γ and y, which in turn only depend on ∆ and Γ. Now,
if you work out the algebra using equations (6.1.18) and (6.1.27), one can show that
[19]

y = sn η, γ = −k sn2 η (6.1.33)

and [19]

Γ =
1 + k sn2 η

1− k sn2 η

∆ = − cn η dn η

1− k sn2 η
.

(6.1.34)

So we see that indeed ∆ and Γ are independent of the variable u. Therefore, if we
can write a, b, c, d as functions of u, we are done.

Using the addition formula for sn we gave in Theorem 4.5.6, we can rewrite Equa-
tion (6.1.31) as

a

c
=

sn(η − u)

sn η
. (6.1.35)

Then using equations (6.1.28), (6.1.33) and (6.1.35), we can rewrite Equation (6.1.18)
as

−k sn2 η =
cd

ab
=
c

b

c

a

d

c

=
sn η

snu

sn η

sn(η − u)

d

c
.

(6.1.36)
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Hence, we find
d

c
= −k snu sn(η − u). (6.1.37)

Then finally, from equations (6.1.28), (6.1.33), (6.1.35) and (6.1.37) we can derive a
parameterisation for a, b, c and d in terms of u, up to a common factor. Because we
parameterise them up to a common factor, we can fix c(u) = sn η (so c is independent
of u). Then multiplying those equations by c gives us the elliptic parameterisation

a(u) = sn(η − u)

b(u) = snu

c(u) = sn η

d(u) = −k sn η snu sn(η − u),

(6.1.38)

up to a common factor. Normalizing the scattering matrix will determine this com-
mon factor, but in many problems the normalization is not really important so we
can just work with the parameterisations above. So now we have found a solution to
the Yang-Baxter equation.

It is important to note that the elliptic solution in Equation (6.1.38) is not the
simplest solution of the Yang-Baxter equation. If we let the modulus k for the elliptic
functions in (6.1.38) tend to 0, then remember from Equation (4.5.12) that we get

sn→ sin,

cn→ cos, for k → 0.

dn→ 1,

(6.1.39)

That way, if we let k → 0 we obtain from Equation (6.1.38) the trigonometric param-
eterisation

a(u) = sin(η − u), b(u) = sinu, c(u) = sin η, d(u) = 0. (6.1.40)

We see that this solution to the YBE is a special case of the elliptic solution. We
can even go further by rescaling the spectral parameter u as u→ ηu. Then, if we let
η become very small, the above trigonometric parameterisation becomes the rational
parameterisation

a(u) = η − ηu, b(u) = ηu, c(u) = η, d(u) = 0. (6.1.41)

Here we used that sinx → x if x → 0. All these parameterisations are up to a
common factor, so we can simplify Equation (6.1.41) a bit more by dividing through
η. We obtain

a(u) = 1− u, b(u) = u, c(u) = 1, d(u) = 0. (6.1.42)

6.2 The Quantum Inverse-Scattering Method

In this section we will use the elliptic solution to the YBE we found in the previous
section to construct the Hamiltonian of a system with infinitely many conserved
quantities. This way of constructing a system with infinitely many conservation laws
from a solution of the Yang-Baxter equation is called the quantum inverse-scattering
method . The Hamiltonian we find will be that of the one-dimensional XYZ Heisenberg
model. In Subsection 6.2.1 we follow Section 6.2 of Šamaj and Bajnok [16], with
the help of handwritten notes on the quantum inverse-scattering method from Dirk
Schuricht [20].
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6.2.1 Constructing a Hamiltonian from the Transfer Matrix

The elliptic solution for the Yang-Baxter equation we found in the previous section
was given by

a(u) = sn(η−u), b(u) = snu, c(u) = sn η, d(u) = −k sn η snu sn(η−u). (6.2.1)

Here sn is the Jacobi sine function with modulus k. We leave out the common
normalization constant because it turns out to be not important [16]. We can find
the scattering matrix S(u) corresponding to these elements using Equation (6.1.2).
We have sn 0 = 0, because sn is an even function. Therefore, we see that S(u = 0) is
given by

S(0) = sn η


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = sn ηP. (6.2.2)

So in coordinates we have
Sσ1σ2
σ′1σ
′
2
(0) = sn η δσ1

σ′2
δσ2
σ′1
. (6.2.3)

Now, we consider the transfer matrix. In the previous chapter we defined the transfer
matrix T (u) as

T (u)σ1...σN
σ′1...σ

′
N

= Sσ1γ1
σ′1γ2

(u)Sσ2γ2
σ′2γ3

(u) · · ·SσNγN
σ′Nγ1

(u). (6.2.4)

Remember that we use the summation convention, so here we sum over all the γi for
1 ≤ i ≤ N . Using Equation (6.2.3), we see that

T (0)σ1...σN
σ′1...σN

= (sn η)Nδσ1γ2 δ
γ1
σ′1
δσ2γ3 δ

γ2
σ′2
· · · δσNγ1 δ

γN
σ′N

= (sn η)Nδσ1
σ′2
δσ2
σ′3
· · · δσN

σ′1
.

(6.2.5)

If we ignore the constant (sn η)N , then we see that T (0) acts in some sense like a cyclic
permutation. If we let T (0) act on a vector with N coordinates that correspond
to sites on the chain, then what T (0) does is shift all the sites one place in the
positive direction (and scale with the constant (sn η)N ). The N ’th site is send to the
first, which corresponds to the term δσN

σ′1
, so we have periodic boundary conditions.

Therefore, as long as sn η 6= 0, the operator T (0) clearly has an inverse operator,
which just shifts the sites back. This inverse is then given by

T−1(0)σ1...σN
σ′1...σ

′
N

= (sn η)−Nδσ1
σ′N
δσ2
σ′1
· · · δσN

σ′N−1
. (6.2.6)

We can calculate the derivative of the transfer matrix evaluated at u = 0 as follows[
d

du
T (u)

]σ1...σN
σ′1...σ

′
N

∣∣∣∣∣
u=0

=
N∑
n=1

Sσ1γ1
σ′1γ2

(0) · · ·Sσn−1γn−1

σ′n−1γn
(0)

d

du
Sσnγnσ′nγn+1

(u)

∣∣∣∣
u=0

S
σn+1γn+1

σ′n+1γn+2
(0) · · ·SσNγN

σ′Nγ1

= (sn η)N−1
N∑
n=1

δσ1γ2 δ
γ1
σ′1
· · · δσn−1

γn δ
γn−1

σ′n−1

d

du
Sσnγnσ′nγn+1

(u)

∣∣∣∣
u=0

δσn+1
γn+2

δ
γn+1

σ′n+1
· · · δσNγ1 δ

γN
σ′N

= (sn η)N−1
N∑
n=1

δσ1
σ′2
· · · δσn−2

σ′n−1

d

du
S
σnσn−1

σ′nσ
′
n+1

(u)

∣∣∣∣
u=0

δσ
n+1

σ′n+2
· · · δσN

σ′1
.

(6.2.7)
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Here we use the periodic boundary condition N + 1 = 1. Note that we have to
write the summation sign explicitly in the above equations, because otherwise from
the rules of the summation convention it would not be clear that we sum over n.
However, in the upper two equations on the right-hand side we also sum over the γi
of course, using the summation convention.

Now, consider the product of T (0) and d
duT (u)

∣∣
u=0

. Remember that T (0) acts like
a cyclic permutation on the chain of N sites, while also multiplying with a constant.
The direction of this cyclic permutation depends on whether you act with T (0) from
the left or from the right. Now, because the chain is completely translationally
invariant (using periodic boundary conditions), it follows that it does not matter
whether you act with T (0) on d

duT (u)
∣∣
u=0

from the left or from the right. Hence,
these operators commute.

Now suppose that we have a function f of the form

f(x) =
∞∑
n=0

anx
n, (6.2.8)

and a matrix A(u) such that A(0) and d
duA(u)

∣∣
u=0

commute with each other. We
have

f ′(x) =
∞∑
n=1

nanx
n−1, (6.2.9)

so using that A(0) and d
duA(u)

∣∣
u=0

commute we find

d

du
f(A(u))

∣∣∣∣
u=0

=

( ∞∑
n=1

nanA
n−1(0)

)
d

du
A(u)

∣∣∣∣
u=0

= f ′(A(0))
d

du
A(u)

∣∣∣∣
u=0

(6.2.10)

Here in the first step we were able to take the term d
duA(u)

∣∣
u=0

out of the sum because
this term commutes with A(0). Otherwise this would not be possible. Note that we
could just as well have taken the term out of the sum on the left-hand side.

We know that the natural logarithm can be written as

lnx =
∞∑
n=1

(−1)n−1(x− 1)n

n
, (6.2.11)

and d
dx lnx = x−1. So, because T (0) and d

duT (u)
∣∣
u=0

commute, we find

d

du
lnT (u)

∣∣∣∣
u=0

= T−1(0)
d

du
T (u)

∣∣∣∣
u=0

. (6.2.12)

Then, using equations (6.2.6) and (6.2.7) we find[
d

du
lnT (u)

]σ1...σN
σ′1...σ

′
N

∣∣∣∣∣
u=0

=
1

sn η
δσ1
σ′′N
δσ2
σ′′1
· · · δσN

σ′′N−1

N∑
n=1

δ
σ′′1
σ′2
· · · δσ

′′
n−2

σ′n−1

d

du
S
σ′′nσ

′′
n−1

σ′nσ
′
n+1

(u)

∣∣∣∣
u=0

δ
σ′′n+1

σ′n+2
· · · δσ

′′
N

σ′1

=
1

sn η

N∑
n=1

δσ1
σ′1
· · · δσn−1

σ′n−1

d

du
S
σn+1σn
σ′nσ

′
n+1

(u)

∣∣∣∣
u=0

δ
σn+2

σ′n+2
· · · δσN

σ′N
.

(6.2.13)
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Now, the ansatz form of the scattering matrix we assumed in Equation (6.1.1) is
equivalent to

Sσ1σ2
σ′1σ
′
2
(u) =

3∑
j=0

pj(u)(σj)σ1
σ′2

(σj)σ2
σ′1
, (6.2.14)

where

p0 =
1

2
(w0 + w1 + w2 + w3) =

1

2
(a+ c)

p1 =
1

2
(w0 + w1 − w2 − w3) =

1

2
(b+ d)

p2 =
1

2
(w0 − w1 + w2 − w3) =

1

2
(b− d)

p3 =
1

2
(w0 − w1 − w2 + w3) =

1

2
(a− c).

(6.2.15)

This can be seen by just writing it out. For example, using the above equations we
find

S11
11(u) = p0(u) + p3(u) = a(u), (6.2.16)

which is exactly what we wanted according to Equation (6.1.2). Using Equation
(6.2.14) we can rewrite (6.2.13) to

[
d

du
lnT (u)

]σ1...σN
σ′1...σ

′
N

∣∣∣∣∣
u=0

=
1

sn η

N∑
n=1

δσ1
σ′1
· · · δσn−1

σ′n−1

 3∑
j=0

∂pj
∂u

∣∣∣∣
u=0

(σj)σnσ′n
(σj)

σn+1

σ′n+1


δ
σn+2

σ′n+2
· · · δσN

σ′N
.

(6.2.17)

Now, remember that in Equation (6.1.6) we wrote σjn for the operator on the chain
of N particles that acts on the n’th site as σj , and trivially on the rest of the chain.
We can write down σjn explicitly as(

σjn
)σ1...σn...σN
σ′1...σ

′
n...σ

′
N

= δσ1
σ′1
· · · (σj)σnσ′n · · · δ

σN
σ′N
. (6.2.18)

Therefore, recalling that σ0 = I, σ1 = σx, σ2 = σy and σ3 = σz, we see that Equation
(6.2.17) can be rewritten as

sn η

[
d

du
lnT (u)

]σ1...σN
σ′1...σ

′
N

∣∣∣∣∣
u=0

=
1

2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
+
N

2
J0I,

(6.2.19)
where

Jx =
∂p1
∂u

∣∣∣∣
u=0

, Jy =
∂p2
∂u

∣∣∣∣
u=0

, Jz =
∂p3
∂u

∣∣∣∣
u=0

, J0 =
∂p0
∂u

∣∣∣∣
u=0

. (6.2.20)

We also distinguish between the identity operators I and I, where the first acts on
one site of the chain and the second on the whole chain. Using the parameterisation
in Equation (6.2.1) and Theorems 4.5.4 and 4.5.5 for the Jacobi elliptic functions, we
find

Jx =
∂

∂u
(snu− k sn η snu sn(η − u))

∣∣∣∣
u=0

= cnu dnu(1− k sn2 η)
∣∣
u=0

= 1− k sn2 η.

(6.2.21)
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Similarly, we obtain

Jy = 1 + k sn2 η and Jz = J0 = − cn η dn η. (6.2.22)

The right-hand side of Equation (6.2.19) is the Hamiltonian of the so-called one-
dimensional XYZ Heisenberg model . The Pauli matrices must be thought of as the
components of the spin operator. Therefore we call this Hamiltonian a spin Hamilto-
nian. So Equation (6.2.19) tells us how we can construct this Hamiltonian from the
transfer matrix corresponding to the elliptic solution of the Yang-Baxter equation.

6.2.2 The One-Dimensional XYZ Heisenberg Model

The one-dimensional XYZ Heisenberg model describes a system of N identical parti-
cles with spin on a one-dimensional lattice. It is called the XYZ model because the
spin of each particle has three components x, y and z. The particles have a nearest-
neighbor interaction with the periodic boundary condition N + 1 ≡ 1. The XYZ
Heisenberg model is a relatively simple Hamiltonian that can be used to describe the
magnetism of solids, because magnetism partially originates from the relative spin
alignment of the particles in a solid [6].

To get a feeling for this model, we consider the case that the particles on the chain
are spin-12 particles. Remember from quantum mechanics that the Hilbert space of
a single spin-12 particle is C2. Therefore the Hilbert space of the chain is the tensor
product of N copies of C2:

C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
N times

. (6.2.23)

The spin operator σjn acts on this Hilbert space as follows: it acts as σj on the n’th
copy of C2, corresponding to the n’th particle in the chain, and it acts trivially on
the rest of the chain.

From Equations (6.2.19) and (6.2.22) we know that the Hamiltonian of the one-
dimensional XYZ Heisenberg model is given by

H =
1

2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
+
N

2
JzI. (6.2.24)

The constants Jx, Jy and Jz are called the coupling constants. Suppose that Jy and
Jz are both zero. Note that with our elliptic parameterisations in Equations (6.2.21)
and (6.2.22) this is actually not possible, because 0 ≤ k < 1 and therefore Jy ≥ 1.
However, considering impossible cases like this will help us to understand how the
model works. Then the Hamiltonian takes the form

Hx =
1

2

N∑
n=1

Jxσ
x
nσ

x
n+1. (6.2.25)

The Pauli matrix σx has two eigenvalues, +1 and −1. The corresponding eigenvectors
are

ψ+ =
1√
2

(
1
1

)
, ψ− =

1√
2

(
−1
1

)
(6.2.26)

The states ψ+ and ψ− are also called spin up and spin down in the x-direction,
respectively. We see that if the particles on the sites n and n+1 are both in the same
eigenstate of σx, then the term σxnσ

x
n+1 gives a 1 when we act with H1 on this state

of the chain. Conversely, if the particles are both in an eigenstate of σx but their
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Figure 6.1: Ferromagnetic align-
ment of spins.

Figure 6.2: Antiferromagnetic
alignment of spins.

states are not the same, the the term σxnσ
x
n+1 gives −1. Therefore, if Jx is negative,

there are two ground states of Hx with energy NJx/2, given by

ψ+ ⊗ · · · ⊗ ψ+︸ ︷︷ ︸
N times

and ψ− ⊗ · · · ⊗ ψ−︸ ︷︷ ︸
N times

. (6.2.27)

In these states, the spins of the particles are all aligned in the same direction. This is
called parallel alignment or ferromagnetic ordering of the spins, see Figure 6.1. On
the other hand, if Jx is positive, the two ground states of Hx are

ψ+ ⊗ ψ− ⊗ ψ+ ⊗ · · · ⊗ ψ±︸ ︷︷ ︸
N times

and ψ− ⊗ ψ+ ⊗ ψ− ⊗ · · · ⊗ ψ∓︸ ︷︷ ︸
N times

, (6.2.28)

with energy −NJx/2. In these states, the spins of two neighboring particles point
in the opposite direction. This is called antiparallel alignment or antiferromagnetic
ordering of the spins, see also Figure 6.2.

Now, suppose that instead of Jy = Jz = 0 we have Jx = Jy = 0. Then we get the
Hamiltonian

Hz =
1

2

N∑
n=1

Jzσ
z
nσ

z
n+1. (6.2.29)

The Pauli matrix σz also has the two eigenvalues +1 and −1, but the eigenvectors
are different from those of σx. They are given by

φ+ =

(
1
0

)
, φ− =

(
0
1

)
. (6.2.30)

Then, completely analogous to Equations (6.2.27) and (6.2.28), we find that if Jz < 0
then the ground states of Hz are given by

φ+ ⊗ · · · ⊗ φ+︸ ︷︷ ︸
N times

and φ− ⊗ · · · ⊗ φ−︸ ︷︷ ︸
N times

, (6.2.31)

and if J > 0 they are given by

φ+ ⊗ φ− ⊗ φ+ ⊗ · · · ⊗ φ±︸ ︷︷ ︸
N times

and φ− ⊗ φ+ ⊗ φ− ⊗ · · · ⊗ φ∓︸ ︷︷ ︸
N times

. (6.2.32)

In both cases, the energy of the ground states is −N |Jz|/2.

So in both of the cases we considered above where two of the coupling constants
are 0, it is easy to determine the ground state energy of the system. However, if we
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let two or even three of the coupling constants to be non-zero, then this becomes
much harder. For example, suppose that only Jy = 0. Then we get the Hamiltonian

Hxz =
1

2

N∑
n=1

Jxσ
x
nσ

x
n+1 + Jzσ

z
nσ

z
n+1. (6.2.33)

Determining the ground state energy for this Hamiltonian is much more complicated
than in the previous cases, because the Jx and the Jz term cannot be minimized
independently. This is because the x- and z-components of the spin cannot be changed
independently from each other. It turns out that the ground state of Hxz is not one
of the states we found where either the Jx term or the Jz term is minimized, but
something in between. We will show this by approximating the ground state energy
up to first order using degenerate perturbation theory. We follow section 7.2.1 of
Griffiths and Schroeter [21].

We write

Hxz = H0 +H ′, (6.2.34)

where H0 = Hx and H ′ = Hz. We denote the ground state energy of Hxz by E0.
The first order approximation of E0 is given by

E0
0 + E1

0 , (6.2.35)

where E0
0 is the ground state energy of H0 and E1

0 is the first order correction to the
energy. We have H0 = Hx, so E0

0 = NJx/2. We write χ+ and χ− for the ground
states of H0 given in Equation (6.2.27). Then the first order correction to the ground
state energy of Hxz is given by [21]

E1
0 =

1

2

(
W++ +W−− −

√
(W++ −W−−)2 + 4|W+−|2

)
, (6.2.36)

where

Wij = 〈χi | H ′ | χj〉, for i, j ∈ {+,−}. (6.2.37)

Now, using the fact that

〈ψ+ | σz | ψ+〉 = 〈ψ− | σz | ψ−〉 = 0, (6.2.38)

we see that

W++ = W−− = 0. (6.2.39)

Then Equation (6.2.36) simplifies to

E1
0 = −|W+−|. (6.2.40)

A short calculation gives

〈ψ+ | σz | ψ−〉 = −1. (6.2.41)

Therefore, we get

W+− =
NJz

2
. (6.2.42)

Hence, using the fact that Jz < 0, we find that the ground state energy of Hxz up to
first order is given by

E0
0 + E1

0 =
NJx

2
+
NJz

2
=
N

2
(Jx + Jz). (6.2.43)
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So we see that the ground state energy of Hxz is not equal to NJx/2 or NJz/2.
Therefore, we find indeed that the ground state of Hxz is not equal to one of the
ground states of Hx or Hz.

The main message from the previous calculations is that deriving properties of
the one-dimensional XYZ Heisenberg model is a complicated task. However, we can
derive a lot of information about the XYZ model from the fact that we obtained it
via the Quantum Inverse Scattering Method. From Equation (6.2.19) we see that the
Hamiltonian is equal to the derivative of the logarithm of the transfer matrix T (u),
evaluated at u = 0. Now, in the previous chapter we showed that transfer matrices
for different values of the spectral parameter all commute with each other. Using
that fact, it can be shown that we obtain also infinitely operators that commute with[

d
du lnT (u)

]σ1...σN
σ′1...σ

′
N

∣∣∣
u=0

[16]. So from Equation (6.2.19) we see that we actually have

infinitely many operators that commute with the Hamiltonian of the one-dimensional
XYZ Heisenberg model. These linear operators correspond to measurable quantities
of the system, and the fact that they commute with the Hamiltonian implies that
they are conserved in time. Hence, we obtain infinitely many conservation laws for
the one-dimensional XY Z Heisenberg model.

Further, we also mentioned that this commuting set of transfer matrices can be
simultaneously diagonalized. Using this, we can find the eigenvectors and -values
of the transfer matrix, from which we then can derive the eigenvalues of the XYZ
Hamiltonian [16]. Therefore, we can calculate the entire energy spectrum of the one-
dimensional XYZ Heisenberg model. If we know all the energy levels of a system,
we can calculate its partition function. As you probably remember from statisti-
cal physics, once you know the partition function of a system, you basically know
everything. For example we can use it to calculate the free energy of the system.



Conclusion

Finally, let us recapitulate what we have done in this thesis. After the introduction
to projective geometry in the first chapter, we defined elliptic curves as a special
kind of projective curves. Subsequently, we defined a group structure on the set of
points of an elliptic curve in Weierstrass normal form. In the third chapter we proved
a number theoretical result due to Gauss, and we saw that we can use this result
to determine the group structure of a specific elliptic curve in P2(F19). Then, in
Chapter 4 we looked at elliptic functions. Specifically, we introduced the Weierstrass
℘-function, and we saw how we can use this function to parameterise elliptic curves
in Weierstrass normal form. Furthermore, we introduced elliptic integrals and the
Jacobi elliptic functions, and we discussed the relation between elliptic curves, elliptic
functions, elliptic integrals and ellipses. In Chapter 5 we derived the Yang-Baxter
equation as the integrability condition. Then we constructed the transfer matrix
from the scattering matrix, and we showed that the Yang-Baxter equation implies
that transfer matrices for different values of the spectral parameter commute with
each other. This way, we obtained an infinite set of commuting transfer matrices. In
the last chapter we derived a solution for the Yang-Baxter equation using the Jacobi
elliptic functions. Lastly, by means of the quantum inverse-scattering method we used
this solution to construct the Hamiltonian of the one-dimensional XYZ Heisenberg
model from the transfer matrix. From the commutation property of the transfer
matrices it then followed that this model has infinitely conservation laws.

Outlook

The theory of elliptic functions is vast, and there are many topics one could dive into
after having read this thesis. For example, one could look at Lenstra’s elliptic curve
factorisation algorithm. This algorithm makes use of elliptic curves to determine the
prime factorization of integers. See for example Section IV.4 in Silverman and Tate
[1]. Another interesting topic is the group structure of an elliptic curve. In this
thesis we showed that the points on an elliptic curve form a group, but we only know
what this group looks like for the specific example we gave in Section 3.2. One could
for instance look at Mordell’s Theorem, which states that the group of points on an
elliptic curve is in general finitely generated. This implies that we only need a finite
amount of points on the curve, and then we can construct all the other points by
adding points to each other.

Also for the cases of the Yang-Baxter equation and the quantum inverse-scattering
method, we by no means covered everything there is to be said about them in this
thesis. In Section 6.1 we derived a solution for the Yang-Baxter equation, but this
was only for the very specific case that the particles can have two possible colors.
As a follow-up, one could for example consider the case l = 3. Then the solution
to the Yang-Baxter equation would be a 9 × 9 scattering matrix instead of 4 × 4.
Also, in the last chapter we mentioned that the fact that the transfer matrices are
simultaneously diagonalizable can be used to determine the complete energy spectrum
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of the one-dimensional XYZ Heisenberg model, but we did not see how this works
exactly. Readers interested in the details could for example look at Sections 6.3 and
16.1 in Šamaj and Bajnok [16].



Appendix A

The Discriminant

In this appendix we will define the determinant of a polynomial, following Section
IV.6 of Lang [4]. We start by looking at symmetric polynomials.

A.1 Symmetric Polynomials

Let P (x1, . . . , xn) be a polynomial in n variables with coefficients in some commu-
tative ring R, i.e. P (x1, . . . , xn) ∈ R[x1, . . . , x2]. We say that P is symmetric if for
every permutation g ∈ Sn we have

P (x1, . . . , xn) = P (xg(1), . . . , xg(n)). (A.1.1)

So for example the polynomial ax1 + bx2 is symmetric if and only if a = b, because
then switching x1 and x2 does not change the polynomial.

Now, consider the polynomial P (y, x1, . . . , xn) ∈ R[y, x1, . . . , xn] given by

P (y, x1, . . . , xn) = (y − x1) · · · (y − xn). (A.1.2)

Then we can write

P (y, x1, . . . , xn) = yn − s1yn−1 + . . .+ (−1)nsn, (A.1.3)

where each si is an element of R[x1, . . . , xn], so they are polynomials in the variables
x1, . . . , xn. For example we have that s1 = x1 + . . . + xn and sn = x1 · · ·xn. The
polynomials si we call the elementary symmetric polynomials of x1, . . . , xn. By look-
ing at Equation (A.1.2), we see that P stays the same if we permute the x1, . . . , xn.
Hence the polynomials si are indeed symmetric, as their name suggests. The follow-
ing theorem is an important result for symmetric polynomials, and the reason why
we call the si the elementary symmetric polynomials.

Theorem A.1.1. Let P (x1, . . . , xn) ∈ R[x1, . . . , xn] be a symmetric polynomial.
Then there exists a unique polynomial Q(t1, . . . , tn) ∈ R[t1, . . . , tn] such that

P (x1, . . . , xn) = Q(s1, . . . , sn), (A.1.4)

where the si are the elementary symmetric polynomials of x1, . . . , xn.

Proof. For a proof of this theorem, see for example the proof of Theorem 6.1 in
Chapter IV of Lang [4]. Note that the uniqueness of Q is not proven there, but this
follows immediately from the fact that the elementary symmetric polynomials are
algebraically independent, which is shown directly after Theorem 6.1.
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As an example look at P (x1, x2) = x21+x22 ∈ C[x1, x2]. If we take Equation (A.1.2)
for n = 2 and rewrite it as Equation (A.1.3), we see that there are two elementary
symmetric polynomials of x1, x2, given by s1 = x1 + x2 and s2 = x1x2. Now, we see
that we can write the polynomial P (x1, x2) as

P (x1, x2) = x21 + x22 = (x1 + x2)
2 − 2x1x2 = s1(x1, x2)

2 − 2s2(x1, x2). (A.1.5)

So if we let Q(t1, t2) = t21 − 2t2 ∈ R[t1, t2], then we find indeed that

P (x1, x2) = Q(s1(x1, x2), s2(x1, x2)). (A.1.6)

A.2 The Discriminant

Now, let us consider polynomials P (x) ∈ R[x] in one variable of the form

P (x) = (x− r1) · · · (x− rn), (A.2.1)

where r1, . . . , rn ∈ R. We define δ ∈ R as

δ =
∏
i<j

(ri − rj). (A.2.2)

Then δ is just an element of R, but we can view δ as a polynomial with variables
r1, . . . , rn. From the above definition it is clear that permuting r1, . . . , rn will only
change the sign of δ. Therefore δ2 is a symmetric polynomial. We call δ2 the dis-
criminant of P , denoted by DP . Because DP (r1, . . . , rn) is symmetric, we know from
Theorem (A.1.1) that there exists a unique polynomial D(t1, . . . , tn) ∈ R[t1, . . . , tn]
such that DP (r1, . . . , rn) = D(s1, . . . , sn). Here the si are the elementary polynomi-
als of r1, . . . , rn. So, for the discriminant DP of a polynomial P given by Equation
(A.2.1) and letting s1, . . . , sn be the elementary symmetric polynomials of r1, . . . , rn,
we have

DP = D(s1, . . . , sn) =
∏
i<j

(ri − rj)2. (A.2.3)

Note that the discriminant of a polynomial P is non-zero if and only if the roots of
P are all distinct.

Suppose that we have a polynomial P (x) of degree d in one variable with complex
coëfficients, so P (x) ∈ C[x]. We write P (x) = adx

d + . . . + a0. We assume P (x) to
be monic, so ad = 1. Then by the Fundamental Theorem of Algebra we know that
there exist complex numbers r1, . . . , rd such that

P (x) = (x− r1) . . . (x− rd), (A.2.4)

see also Corollary 3.1.5 in [7]. Then the discriminant of P (x) is equal to

DP = D(s1, . . . , sd) =
∏
i<j

(ri − rj)2, (A.2.5)

where the si are the elementary symmetric polynomials of r1, . . . , rd.
For example in the case d = 2, we have

P (x) = x2 + bx+ c = (x− r1)(x− r2). (A.2.6)

Then we find b = −(r1+r2) = −s1(r1, r2) and c = r1r2 = s2(r1, r2). The discriminant
of P is then given by

DP = (r1 − r2)2 = (r1 + r2)
2 − 4r1r2 = b2 − 4c, (A.2.7)
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which is the expression we would expect from what we learned in high school.
In the case d = 3, we write P (x) = x3 + ax2 + bx + c. Then it can be checked

that [1]
DP = −4a3c+ a2b2 + 18abc− 4b3 − 27c2. (A.2.8)
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