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Introduction

Markov decision processes are important stochastic processes, since it is divers in its applications
and Markov decision processes are very useful for studying optimization problems. Even in discip-
lines outside mathematics, such as economics, computer sciences and many more, Markov decision
processes are used. In this thesis, we will apply Markov decision processes in the medical sciences.
We will show that it has its applications for modeling the spread of infectious disease and for the
treatment of ischemic heart disease.

In this thesis, we will discuss the theory behind Markov decision processes, more specifically
discrete-time Markov decision processes. This will be done in steps, starting with chapter 1 which
discusses the sequential decision model. This chapter is based on chapter 1 of Puterman ([6]),
with the exception of the examples. The purpose of this chapter is to learn about the basics
behind a decision process. In chapter 2 we will explain the theory of Markov chains, since Markov
decision processes are built upon Markov chains. Chapter 2 is based on chapter 4 of Ross ([7])
and Appendix A of Puterman ([6]), with the exception of the examples and proofs of propositions
(2.3.1) and (2.3.2) and corollary (2.2.2). Proposition (2.3.2) is based on pages 96-97 of Kulkarni
([5]). Chapter 3 gives an outline of Markov decision processes, here we will discuss the formulation
of the model, finite-horizon and infinite-horizon problems. This chapter is based on Chapter 2, 3,
4 and 5 of Puterman ([6]) and on Chapter 5 and 6 of Taylor ([9]). In chapter 4 we will discuss
partially observed Markov decision processes, this chapter is based on Chapter 7 of Krishnamurthy
([4]), Hauskrecht ([3]) and Cassandra ([1]), with the exception of example (4.0.1). This is roughly
the outline for the first four chapters. These four chapters will give the mathematical background
needed for chapter 5. In chapter 5, we will elaborate on the applications in medical sciences.
Chapter 5 is based on the articles of Yaesoubi and Cohen ([10]) and ([11]) and on the article of
Hauskrecht ([3]), with the exception of the example.
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Chapter 1

The Sequential Decision Model

In this chapter, we will explain the sequential decision model and we will discuss how this model
plays a part in the following chapters.
The sequential decision model is described as follows. A decision maker observes the state of a
system at a specified point in time. Based on the observed state, he chooses an action. This
chosen action produces two results, namely the decision maker receives an immediate reward
and the system evolves to a new state at a subsequent point in time according to a probability
distribution, which is determined by the choice of action. Arrived at this new point in time, the
decision maker faces a similar problem, however the system may be in a different state and it may
be possible for him to choose from a different set of actions. So the key elements of the sequential
decision model are the following:

1. A set of decision times;

2. A set of system states;

3. A set of available actions;

4. A set of state and action dependent rewards;

5. A set of state and action dependent transition probabilities.

Example 1.0.1. Assume for a moment a frog in a pond with three lilies. This frog is the decision
maker, he will decide what actions to take. The lilies in the pond will represent the different states
and the food by the lilies the reward. The jump from one lily to the other will represent the action
and the probability of this jump is the transition probability.
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The rewards are +1 in state 0, +5 in state 1 and +2 in state 2, the rewards will represent the
amount of food. Further, we assume that time runs from 0 to 10 minutes. Therefore, our set
of decision epochs is {0,1,2, ...,10}, the set of states is {0,1,2}, the set of immediate rewards is
{1,2,5}, the set of actions is {R,B,G}, with R for the red line, B for the blue line and G for the
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10 CHAPTER 1. THE SEQUENTIAL DECISION MODEL

green line. So the action is whether the frog jumps to another lily or not. And lastly, the set
of state transition probabilities are given by {Pij}, which gives us the probability that the frog
jumps from state i to state j with i, j ∈ {0,1,2} according to the diagram. If there is no arrow
between state i and state j, then the probability of that action is zero.

�

Given a sequential decision model, we would like to know how the decision maker can maximize his
outcome. So we will be interested in finding the optimal policies and decision rules. A decision
rule specifies the action to be chosen at a particular time. It may depend on the present state
alone or together with all previous states and actions. And a policy provides the decision maker
with a prescription for choosing an action in any possible future state. So a policy is actually a
sequence of decision rules.

In the following chapters, we will discuss two particular sequential decision models, namely the
Markov Decision Processes (MDPs) and Partially Observed Markov Decision Processes (POM-
DPs). In these models, the set of available actions, the set of rewards and the set of transition
probabilities depend only on the current state and action and not on the states occupied and
action chosen in the past. So in other words, the state transitions of a Markov Decision Process
and a Partially Observed Markov Decision Process all satisfy the Markov property. This means
that they satisfy the following condition: Let Xn denote the state in time period n, then

P(Xn = xn |Xn−1 = xn−1,Xn−2 = xn−2, ...,X1 = x1,X0 = x0) = P(Xn = xn |Xn−1 = xn−1)

for n ∈ N point in time.

Further, for MDPs we will make the assumption that all of the key elements of the sequential
decision model are known to the decision maker at the time of each decision. When we move on
to POMDPs this assumption will no longer hold. Thus, in a MDP the decision maker has all
the information that is available. Hence, the rewards and the states are perfectly observed. In
a POMDP, the decision maker is unsure in which state he is. He only receives an observation
and the reward. But before we start with the more advanced models, we will take a look at the
simplest Markov model, namely Markov chains.



Chapter 2

Markov Chains

In this chapter, we will discuss some basic theory of discrete-time Markov chains that is relevant
for the analysis of Markov Decision Processes (MDPs) and Partially Observed Markov Decision
Processes (POMDPs).

2.1 Introduction to Markov Chains

In this section, we will introduce Markov chains. We start with the assumption that we have a
process that takes a value in each given time period. Let Xn denote the value in time period n.
Also, suppose that we want to make a probability model for the sequence of the successive values
X0,X1, .... Now, we can make the assumption that the conditional distribution of Xn+1 given
Xn,Xn−1, ...,X0 depends only on Xn. So the future state depends only on the present state and
not on past states. Such an assumption is called memoryless and a stochastic process that satisfies
this assumption is defined as a Markov chain. We have seen this assumption before in chapter
1 as the Markov property. Therefore, the Markov chain satisfies the Markov property

P(Xn+1 = xn+1 |Xn = xn,Xn−1 = xn−1, ...,X1 = x1,X0 = x0) = P(Xn+1 = xn+1 |Xn = xn)

for n ∈ N point in time. Further, we call a Markov chain time-homogeneous if

P(Xn+1 = j |Xn = i)

does not depend on n. From now on we assume that the Markov chain is time-homogeneous.
So formally, we have a stochastic process {Xn | n = 0,1,2, ...} that takes on a finite or countable
number of possible values. We assume that whenever the stochastic process is in state i, Xn = i,
there is a probability Pij that says that the process will be in state j next, so Xn+1 = j. The
probability Pij is called the one-step transition probability. Further, we assume that this
probability is defined as

Pij := P(Xn+1 = j |Xn = i,Xn−1 = in−1, ...,X1 = i1,X0 = i0) = P(Xn+1 = j |Xn = i)

for all states i0, i1, ...in−1, i and j and for all n≥ 0, so the stochastic process is time-homogeneous.
Therefore, we can rewrite Pij as

Pij = P(Xn+1 = j |Xn = i) = P(X1 = j |X0 = i).

11



12 CHAPTER 2. MARKOV CHAINS

Because Pij is a conditional probability, we know that Pij ≥ 0 and

∞∑
j=0

Pij =
∞∑
j=0

P(X1 = j |X0 = i) = 1,

since j is running over all the possible values of X1 for i = 0,1,2, .... The transition matrix P
of an one-step transition probability is defined as:

P :=



P00 P01 P02 . . .
P10 P11 P12 . . .
...

...
... . . .

Pi0 Pi1 Pi2 . . .
...

...
... . . .


Now we have seen a one-step transition probability, we will define the k-step transition probability
as P kij . This probability states that a process in state i will be in state j after k additional
transitions. So P kij is defined as

P kij := P(Xn+k = j |Xn = i)

for k ≥ 0 and i, j ≥ 0. The transition matrix for a k-step transition probability is denoted as Pk.
To compute this k-step transition probability, one can use the Chapman-Kolmogorov equa-
tions.

Proposition 2.1.1. For all k, l ≥ 0 and i, j ≥ 0, we have

P k+l
ij =

∞∑
n=0

P kinP
l
nj .

These equations are called the Chapman-Kolmogorov equations.

The probability P kinP lnj represents that starting in state i the process will be in state n after k
steps and from state n the process will go to state j in an additional l steps. We will now prove
proposition (2.1.1).

Proof:

P k+l
ij = P(Xk+l = j |X0 = i)

Now we apply the law of total probability. So:

P(Xk+l = j |X0 = i) =
∞∑
n=0

P(Xk+l = j∩Xk = n |X0 = i)

=
∞∑
n=0

P(Xk+l = j |Xk = n,X0 = i)P(Xk = n |X0 = i)

Using the Markov property results in
∞∑
n=0

P(Xk+l = j |Xk = n,X0 = i)P(Xk = n |X0 = i) =
∞∑
n=0

P(Xk+l = j |Xk = n)P(Xk = n |X0 = i)
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Which is by definition equal to the following:
∞∑
n=0

P(Xk+l = j |Xk = n)P(Xk = n |X0 = i) =
∞∑
n=0

P lnjP
k
in =

∞∑
n=0

P kinP
l
nj

�

With the use of the Chapman-Kolmogorov equations, we can rewrite the transition matrix of Pk+l

as a matrix multiplication of Pk and Pl, so Pk+l = Pk ·Pl.

So far, we have seen some definitions that are relevant for the Markov chain. In the next section,
we will introduce some more terminology for the classification of states.

2.2 Classification of States
In this section, we will discuss the classification of states, the associated terminology and we will
discuss some examples.
We will start with some terminology. We call a state j accessible from state i if P kij > 0 for
a k ≥ 0, we denote this with i→ j. Two states i and j are said to communicate if they are
accessible to each other, this is denoted by i↔ j. The relation of communication satisfies the
following three properties:

1. State i communicates with state i for all i≥ 0.

2. If state i communicates with state j, then communicates state j with state i.

3. If state i communicates with state j and state j communicates with state k, then commu-
nicates state i with state k.

Proof of property 1:
Property 1 is satisfied per definition, since we have P 0

ii = P(X0 = i |X0 = i) = 1.

�

Proof of property 2:
Property 2 follows immediately from the definition of communication.

�

Proof of property 3:
Assume that state i communicates with state j and state j communicates with state k. Now, we
want to show that state i communicates with state k. There exists an n and m, both integers, such
that Pnij > 0 and Pmjk > 0. Because state i and state j are both accessible to each other, we have
by definition of accessibility that Pnij > 0. The same holds true for state j and k. Now, we will
apply the Chapman-Kolmogorov equations. So Pn+m

ik =
∑∞
r=0P

n
irP

m
rk ≥ PnijPmjk > 0. Therefore,

Pn+m
ik > 0. Hence, state k is accessible from state i. Similarly, we can show that state i is accessible

from state k. So state i and state k communicate.

�

Two states that belong to the same class communicate with each other. Two classes of states can
only be identical or disjoint as a consequence of the communication properties 1, 2 and 3. Further,
we call a Markov chain irreducible if there is only one class. So this means that every state
communicates with all of the other states. A state i is a absorbing state if Pii = 1. This means
that no other state is accessible from it. Lastly, we denote the probability that the process will
reenter state i by fi for any i with the assumption that the process started in state i, therefore
fi is denoted by fi = P(∃n ≥ 1 : Xn = i | X0 = i). And we call state i recurrent if fi = 1 and
transient if fi < 1.
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Assume that the process starts in state i and state i is recurrent, so fi = 1. Then, by definition of
a Markov Chain, the process will be starting over and over again when it reenters state i, hence
state i will be reentered again. This argument can be repeated over and over again, which leads
us to the following conclusion. If we start in state i and state i is recurrent, then the process will
reenter state i repeatedly, in fact it will reenter state i infinitely often. Hence, the expected value
of the number of entrances to state i is infinite.
Now, we assume that the process starts in state i and state i is transient, so fi < 1 or 1−fi > 0.
So each time the process enters state i, there is a probability of 1− fi that state i will not be
entered again. The probability of entering state i exactly n times is equal to fn−1

i (1− fi) for
n ≥ 1, which is equal to the geometric distribution with finite mean 1

1−fi . So we can summarize
these paragraphs in the following proposition (2.2.1).

Proposition 2.2.1. State i is recurrent if and only if
∑∞
n=1P

n
ii =∞ and state i is transient if

and only if
∑∞
n=1P

n
ii <∞

Proof:

Let the indicator function be defined as In =
{

1 if Xn = i

0 if Xn 6= i
.

So In is equal to one if the process at time n is in state i. Therefore, the summation of the
indicator function,

∑∞
n=1 In, represents the number of periods of time that the process spends in

state i. Hence, the conditional expectation of the number of visits to state i given the process
starts in state i, X0 = i, is given by:

E[
∞∑
n=1

In |X0 = i] =
∞∑
n=1

E[In |X0 = i] =

∞∑
n=1

(0 ·P(Xn 6= i |X0 = i) + 1 ·P(Xn = i |X0 = i)) =

∞∑
n=1

P(Xn = i |X0 = i) =
∞∑
n=1

Pnii

Since the expected value of a recurrent state is equal to infinity and the expected value of a
transient state is finite. We have that

∑∞
n=1P

n
ii =∞ for a recurrent state i and

∑∞
n=1P

n
ii <∞ if

state i is transient.

�

Proposition 2.2.2. In a finite-state Markov chain not all states can be transient. In other words,
in a finite-state Markov chain at least one state is recurrent.

Proof:
Consider a Markov chain with p+ 1 states, so S = {0,1,2, ...,p}. Assume that all states are
transient. We will show that this assumption leads to a contradiction. If the process starts in
state 0, then it might revisit state 0 several times, but after a finite amount of time T0, state 0 will
not be visited again. Same holds true if we start in state 1. Then the chain might revisit state
1 multiple times, but after a finite amount of time T1, state 1 will not be revisited. We can give
this argument for all the states S = {0,1,2, ...,p}, hence after a finite time T = max{T0,T1, ...,Tp}
no states will be visited again. But the chain must be in some state after a finite amount of time
T , hence a contradiction. So in a finite-state Markov chain, at least one state must be recurrent.

�
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Corollary 2.2.1. If state i is recurrent and state i communicates with state j, then state j is
also recurrent. In other words, if state i is recurrent and state i and state j are in the same class,
then state j is also recurrent.

Proof:
State i communicates with state j. Hence, state i is accessible from state j, P lji > 0 for some l ∈N,
and state j is accessible from state i, P kij > 0 for some k ∈ N. For any m ∈ N, we have

P k+l+m
jj ≥ P ljiPmii P kij (2.1)

This is an application of the Chapman-Kolmogorov equations, which said P y+z
ab =

∑∞
n=0P

y
anP znb.

The right-hand side of (2.1) is the probability that we go from state j to state j in k+ l+m steps
via a path that goes from state j to state i in l steps, then from state i to state i in m steps and
lastly from state i to state j in k steps. And the left-hand side of (2.1) is the probability that we
go from state j to state j in k+ l+m steps.
Now, we take the summation over m. So

∞∑
m=0

P k+l+m
jj ≥

∞∑
m=0

P ljiP
m
ii P

k
ij = P ljiP

k
ij

∞∑
m=0

Pmii

We know that P lji> 0 and P kij > 0, so P ljiP kij > 0. And
∑∞
m=0P

m
ii =∞, because state i is recurrent.

Hence,
∞∑
m=0

P k+l+m
jj =∞.

So state j is recurrent.

�

Corollary 2.2.2. If state i is transient and state i communicates with state j, then state j is also
transient. In other words, if state i is transient and state i and state j are in the same class, then
state j is also transient.

Proof:
State i communicates with state j. Hence, state i is accessible from state j, P lji > 0 for some l ∈N,
and state j is accessible from state i, P kij > 0 for some k ∈ N. For any m ∈ N, we have

P k+l+m
ii ≥ P kijPmjj P lji (2.2)

This is an application of the Chapman-Kolmogorov equations, which said P y+z
ab =

∑∞
n=0P

y
anP znb.

The right-hand side of (2.2) is the probability that we go from state i to state i in k+ l+m steps
via a path that goes from state i to state j in k steps, then from state j to state j in m steps and
lastly from state j to state i in l steps. And the left-hand side of (2.2) is the probability that we
go from state i to state i in k+ l+m steps.
Now, we take the summation over m. So

∞∑
m=0

P k+l+m
ii ≥

∞∑
m=0

P kijP
m
jj P

l
ji = P kijP

l
ji

∞∑
m=0

Pmjj .

We know that P kij > 0 and P lji > 0, so P kijP lji > 0. Now, we divide both sides by 1
Pk
ij
P l
ji

. Thus,

1
P kijP

l
ji

∞∑
m=0

P k+l+m
ii ≥

∞∑
m=0

Pmjj .
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Hence,
∞∑
m=0

Pmjj ≤
1

P kijP
l
ji

∞∑
m=0

P k+l+m
ii .

State i is transient, so
∑∞
m=0P

k+l+m
ii <∞. Therefore,

∞∑
m=0

Pmjj ≤
1

P kijP
l
ji

∞∑
m=0

P k+l+m
ii <∞.

So state j is transient.

�

Hence, if states belong to the same class, then they are all recurrent or all transient.

The terminology, which is just discuss, will be applied in the following simple examples.

Example 2.2.1. Consider the Markov chain consisting of three states 0, 1, 2 and having transition
matrix P

P =

P00 P01 P02
P10 P11 P12
P20 P21 P22

=

1
3

2
3 0

1
3

1
3

1
3

0 1
2

1
2


This Markov chain is irreducible, which means that the Markov chain consist of only one class.
And two states belong to the same class if they communicate with each other. So we will show
that this holds true.
For example, it is possible to go from state 0 to state 2, since 0→ 1→ 2.
State 1 is accessible from state 0 with P01 = 2

3 .
State 2 is accessible from state 1 with P12 = 1

3 .
It is also possible to go the other way around, since 2→ 1→ 0.
State 1 is accessible from state 2 with P21 = 1

2 .
State 0 is accessible from state 1 with P10 = 1

3 .
So state 1 communicates with state 0 and state 1 communicates with state 2, so by property 3 of
the communication relations we have that state 2 communicates with state 0. So they belong all
to the same class. Hence, there is only one class. So the Markov chain is irreducible.

�

Example 2.2.2. Consider the Markov chain consisting of four states 0, 1, 2, 3 and having trans-
ition matrix P

P =


P00 P01 P02 P03
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33

=


1
3

2
3 0 0

2
3

1
3 0 0

0 0 1 0
1
2

1
4

1
8

1
8


This Markov chain consists of the following three classes {0,1}, {2} and {3}. We will explain how
we concluded this.
0→ 0 with probability P00 = 1

3 , 0→ 1 with probability P01 = 2
3 , 0→ 2 with probability P02 = 0

and 0→ 3 with probability P03 = 0.
1→ 0 with probability P10 = 2

3 , 1→ 1 with probability P11 = 1
3 , 1→ 2 with probability P12 = 0

and 1→ 3 with probability P13 = 0.
So state 1 is accessible from state 0 and state 0 is accessible from state 1, hence state 0 and state
1 communicate. So state 0 and state 1 are in the same class, {0,1}.
2→ 0 with probability P20 = 0, 2→ 1 with probability P21 = 0, 2→ 2 with probability P22 = 1
and 2→ 3 with probability P23 = 0.
So state 2 is an absorbing state, no other state is accessible from it.
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Hence, state 2 has its own class, {2}.
3→ 0 with probability P30 = 1

2 , 3→ 1 with probability P31 = 1
4 , 3→ 2 with probability P32 = 1

8
and 3→ 3 with probability P33 = 1

8 .
So every state is accessible from state 3, but the reverse is not true, hence {3}.
Therefore, the classes of the Markov chain are {0,1}, {2} and {3}.

�

Example 2.2.3. This example is a sequel of example 2.2.1. So we have a Markov chain consisting
of three states 0, 1, 2, with transition matrix P

P =

1
3

2
3 0

1
3

1
3

1
3

0 1
2

1
2


We have seen that this Markov chain is irreducible, hence it consist of just one class. So all the
states communicate with each other. And since it is a finite chain, all states must be recurrent.

�

2.3 Limiting Probabilities
In this section, we will consider additional properties of the states of a Markov chain.
Again, we will start with some terminology. A state i is said to have period d if P kii = 0, whenever
k can not be divided by d. Where d is the largest integer with this property. This means, for
example, that if the process can enter state i only at the times 3, 6, 9, ... then state i has period
3. We call a state i aperiodic if state i has period 1.

Proposition 2.3.1. If state i has period d and state i communicates with state j, then state j
has also period d. In other words, if state i has period d and state i and state j are in the same
class, then state j has also period d.

Proof:
Define di as the period of state i and dj as the period of state j. State i communicates with state
j. Hence, state i is accessible from state j, P lji > 0 for some l ∈ N, and state j is accessible from
state i, P kij > 0 for some k ∈ N. Then, we have

P k+l
ii =

∞∑
n=0

P kinP
l
ni

This is an application of the Chapman-Kolmogorov equations, which said P y+z
ab =

∑∞
n=0P

y
anP znb.

So,

P k+l
ii =

∞∑
n=0

P kinP
l
ni ≥ P kijP lji > 0.

Therefore, di, the period of state i, divides k+ l. For some m ∈ N, we have

P k+l+m
ii ≥ P kijPmjj P lji

Which is again an application of the Chapman-Kolmogorov equations.
Now, we have that di, the period of state i, divides k+ l+m.
So, di divides k+ l and di divides k+ l+m.
Hence, there exist a x and a y both an integer, such that xdi = k+ l and ydi = k+ l+m.
Therefore, m= (y−x)di. Which implies that di divides m, with m such that Pmjj > 0.
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So dj is the largest divisor of m, by definition of period.
Therefore, di ≤ dj .
Hence, by symmetry we have dj ≤ di.
Thus di = dj . And therefore state j has the same period as state i.

�

State i is said to be positive recurrent if the process starts in state i, state i is recurrent and the
expected time until the process returns to state i is finite. This is denoted by E[τii |X0 = i]<∞,
with τii := min{∃n≥ 1 :Xn = i |X0 = i}. It can be shown that in a finite-state Markov chain all
recurrent states are positive recurrent. States that are positive recurrent and aperiodic are called
ergodic. We will state the next theorem without a proof.

Theorem 2.3.1. If a state is ergodic, then

lim
r→∞

∑r
m=0P

m
ii

r+ 1
:= 1

E[τii |X0 = i] with E[τii |X0 = i]> 0.

In other words, state i is said to be positive recurrent if

lim
r→∞

∑r
m=0P

m
ii

r+ 1 > 0 and lim
r→∞

∑r
m=0P

m
ii

r+ 1 <∞

in case both limits exists.

Proposition 2.3.2. If state i is positive recurrent and state i communicates with state j, then
state j is also positive recurrent. In other words, if state i is positive recurrent and state i and
state j are in the same class, then state j is also positive recurrent.

Proof:
State i communicates with state j. Hence, state i is accessible from state j, P lji > 0 for some l ∈N,
and state j is accessible from state i, P kij > 0 for some k ∈ N. For any m ∈ N, we have

P k+l+m
jj ≥ P ljiPmii P kij

This is an application of the Chapman-Kolmogorov equations, which said P y+z
ab =

∑∞
n=0P

y
anP znb.

Now, we take the summation over m. So
∞∑
m=0

P k+l+m
jj ≥

∞∑
m=0

P ljiP
m
ii P

k
ij = P ljiP

k
ij

∞∑
m=0

Pmii .

Further,

lim
t→∞

∑t
m=0P

k+l+m
jj

t+ 1 ≥ P ljiP kij lim
r→∞

∑r
m=0P

m
ii

r+ 1

We know that P lji > 0 and P kij > 0, so P ljiP kij > 0. And limr→∞

∑r

m=0P
m
ii

r+1 > 0, because state i is
positive recurrent. Hence,

lim
t→∞

∑t
m=0P

k+l+m
jj

t+ 1 > 0.

So state j is positive recurrent.

�
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The probability distribution π = (π0,π1,π2, ...) is called a stationary or limiting distribution if we
have

πP = π. (2.3)

By multiplying both sides of equation (2.3) by P, we obtain the following:

πP2 = πP.

Hence,
πP2 = πP = π,

by equation (2.3). Therefore, by induction we have

πPn = π,

with π the initial distribution.

We will state the next theorem without a proof. The proof of this theorem can be found on page
111-113 of ([5]).

Theorem 2.3.2. For an irreducible ergodic Markov chain limk→∞P
k
ij exists and is independent

of i. Furthermore, letting πj = limk→∞P
k
ij with j ≥ 0 be the limiting probabilities, then πj is the

unique nonnegative solution of πj =
∑∞
i=0πiPij with j ≥ 0 and

∑∞
j=0πj = 1.

Now, we will discuss the following example.

Example 2.3.1. Assume we have the following transition matrix P

P =
(

0.3 0.7
0.6 0.4

)
Then the limiting probabilities πi satisfy

π0 = 0.3π0 + 0.6π1

π1 = 0.7π0 + 0.4π1

π0 +π1 = 1

Hence, π0 = 6
13 and π1 = 7

13 .

�

We have seen many different terminology for the states of a Markov chain and we will discuss
these different types of Markov chains in the following examples.

Example 2.3.2. Periodic: Consider the Markov chain consisting of two states 0 and 1.

0 1

1

1

This Markov chain has period d= 2. If we start in state 0, then we are back at state 0 in two time
steps. The same holds true for state 1. Thus, starting from state 0, we only return to state 0 at
times n= 2,4,6, ....
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�

Example 2.3.3. Aperiodic: Consider the Markov chain consisting of two states 0 and 1.

0 1

1
1
2

1
2

This Markov chain is aperiodic, since P11 = 1
2 . Hence, we can go to state 0 in two steps or in more

steps, because state 1 has the opportunity to revisit state 1 immediately.

�

Example 2.3.4. Recurrent and Positive recurrent: Consider the Markov chain consisting
of three states 0, 1 and 2.

0 1 21
1

1

All states in this Markov chain are recurrent and it is a finite-state Markov chain, hence all states
are positive recurrent.

�

Example 2.3.5. Ergodic: Consider the Markov chain consisting of two states 0 and 1.

0 1

1
1
2

1
2

We have seen that this Markov chain is aperiodic in an example above. Further, the states in
this chain are recurrent and it is a finite-state Markov chain. Therefore, the states are positive
recurrent. Hence, this chain is ergodic.

�

Since we have discussed Markov chains thoroughly, we can move on to a more advanced topic,
namely Markov decision processes. This will be discussed it the next chapter.



Chapter 3

Markov Decision Processes

In this chapter, we will discuss the theory behind discrete-time Markov decision processes. This
will be done in three sections, namely the model formulation, finite-horizon and infinite-horizon.

3.1 Model Formulation
In this section, we will introduce the basic components of a discrete-time Markov decision process.
We will discuss the formulation of the Markov decision process model in detail. As we have seen in
chapter one, a Markov decision process consists of five elements: decision epochs or times, states,
actions, rewards, and transition probabilities. Besides the decision epochs, states, actions, rewards
and transition probabilities, we have a decision maker that observes the process and may select
actions at each decision epoch to influence the system and gain rewards. Mathematically, we can
formulate a Markov decision process by the collection of the five elements

{T,S,As,pt(· | s,a), rt(s,a) | t ∈ T,s ∈ S,a ∈As}.

The five elements and its notation will be explained below. After that, we will discuss the decision
rules and policies, which we already saw in chapter one as well. We will end this section with an
example of a Markov decision process. We will now start with the explanation of the components
of a discrete-time Markov decision process.

Decision epochs or decision times are given points in time, where decisions are made by
the decision maker. We denote T as the set of decision times and we assume that the set T
is discrete. We make this assumption, because we are only interested in discrete-time Markov
decision processes. The set of decision times T can either be finite or infinite. When the set of
decision times is finite, we denote T = {1,2, ...,N} with N <∞. In the case that T is infinite, we
have T = {1,2, ...}. Further, we denote the elements of the set T as t, which we refer to as time
t. Also, we call the decision problem a finite-horizon problem, if N is finite. And a decision
problem is an infinite-horizon problem, if N is infinite. These problems will be discussed in
section two and section three of this chapter. We assumed that our set of decision times T is
discrete, and therefore the decisions will be made at all decision times. Further, time will be
divided into periods or stages. Our model will be formulated such that each decision epoch
corresponds to the beginning of a period. So the last decision will be made at period N − 1 if
our set of decision times T = {1,2, ...,N}. Therefore, we we will call the problem an N −1 period
problem. In the following example, we will explain the N −1 period problem graphically.

21
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Example 3.1.1. In this example, we have the set of decision times T defined as T = {1,2,3,4,5}.
So at each time t with t an element of T , the decision maker makes a decision. Further, we defined
that a period or stage will start at the beginning of each decision time T , hence we have 4 stages.
Thus, this is a 4-period problem.

T = 1 T = 2 T = 3 T = 4 T = 5

Period 1

Period 2

Period 3

Period 4

�

Secondly, we will explain the state and actions set. The process occupies a state at each decision
time, we denote the set of all possible states by S. The elements of S will be denoted by s. When
the decision maker observes the system in state s ∈ S at a given decision time t, then he may
choose an action a ∈As, where As is the set of possible actions in that specific state s. Further,
we denote the set of all possible actions by A =

⋃
s∈SAs. Also, actions may be chosen either

deterministically or randomly. If actions are chosen at random, then the collection of probability
distributions is denoted by P(As). This means that the decision maker may select an action a∈As
with probability q(a), where q(·) ∈ P(As). This will be further explained when we will discuss
decision rules.

Lastly, we will discuss the rewards and the transition probabilities. Choosing an action a ∈As in
state s ∈ S at decision time t leads to the following two results, namely:

1. The decision maker receives a reward rt(s,a)

2. The system evolves to the next state according to the probability distribution pt(s,a)

Therefore, the reward function rt(s,a) denotes the value of the reward received at time t ∈ T for
s ∈ S and a ∈ A. This value can be positive as well as negative. If the reward depends on the
state j, with state j the state of the next decision time, then we denote the value of the reward
received at time t ∈ T for s ∈ S and a ∈ A by rt(s,a,j). So our reward function rt(s,a) may be
computed in the following way, where we assume that

∑
j∈S pt(j | s,a) = 1:

rt(s,a) =
∑
j∈S

rt(s,a,j)pt(j | s,a) (3.1)

The transition probability function pt(j | s,a) denotes the probability that the system will be
in state j at the next decision epoch t+ 1, when the decision maker chooses an action a ∈ As in
state s ∈ S at decision time t.

We have discussed the components of a discrete-time Markov decision process model. So we can
conclude that the Markov decision process can be formulated by the collection of the five elements,
hence

{T,S,As,pt(· | s,a), rt(s,a) | t ∈ T,s ∈ S,a ∈As}.
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Now, we will explain decision rules and policies. A decision rule prescribes a procedure for
choosing an action in each state at a given decision epoch. We can identify four classes of decision
rules, namely

1. Markovian and deterministic, denoted by MD

2. History dependent and deterministic, denoted by HD

3. Markovian and randomized, denoted by MR

4. History dependent and randomized, denoted by HR

These distinctions are made depending on how the decision rules incorporated past information
and how the actions are selected. We will explain each class individually, started with the first
class. Markovian and deterministic decision rules are functions dt : S → As, which specifies the
choice of action when the process occupies state s ∈ S at decision time t, hence for each s ∈ S,
dt(s) ∈As. Decision rules, that are specified by this function, are said to be Markovian, because
it depends only on the current state and not on the past states, so it is memoryless. And these
decision rules are called deterministic, because it chooses an action with certainty. So the
states are not chosen at random, but the course of the states are predetermined. A deterministic
decision rule is said to be history dependent if it depends on the past states and actions, so it
is not memoryless. Therefore, dt is a function of the history ht = (s1,a1, ...,st−1,at−1,st), with
si and ai the state and action at decision time t = i. Further, the history ht follows a recursion
ht = (ht−1,at−1,st). In general, if we use a decision rule that is history dependent the the decision
maker observes ht and chooses actions from the set Ast . The set of all histories ht is denoted by
Ht. Because ht follows a recursion ht = (ht−1,at−1,st), we have that

H1 = S,

H2 =H1×A×S = S×A×S,

H3 =H2×A×S = S×A×S×A×S,

and so on. Hence, Ht =Ht−1×A×S. Note that this is a product of sets. Thus, history dependent
and deterministic decision rules are functions dt :Ht→A, with the restriction that
dt(ht) ∈ Ast . Markovian and randomized decision rules are functions dt : S→P(A), where P(A)
denotes the collection of probability distributions as we have seen before. A decision rule dt that
is randomized specifies a probability distribution qdt(·) on the set of actions. In the case of a
Markovian and randomized decision rule, we have qdt(st)(·) ∈ P(Ast). A history dependent and
randomized decision rule is a function dt : Ht → P(A), with qdt(ht)(·) ∈ P(Ast) for all ht ∈ Ht.
Note that a deterministic decision rule is a specific case of a randomized decision rule, because we
can take qdt(st)(a) = 1 or qdt(ht)(a) = 1 for some a ∈As. This means that with absolute certainty
the next states are determined. Because the actions are chosen non-randomly. We have seen the
different classes of decision rules. The set of decision rules at time t is denoted by DKt , with
K ∈ {MD,HD,MR,HR}. All this information is summarized at table (3.1).

Table 3.1: Classes of Decision Rules

Action Choice
History Dependence Deterministic Randomized
Markovian dt(st) ∈Ast , DMD

t qdt(st)(·) ∈ P(Ast), DMR
t

History Dependent dt(ht) ∈Ast , DHDt qdt(ht)(·) ∈ P(Ast), DHRt

Under the four classes of decision rules, the rewards and transition probability become functions
on S or Ht depending on the class. For a Markovian and deterministic decision rule dt ∈DMD

t ,
the reward equals rt(s,dt(s)) and the transition probability equals pt(j | s,dt(s)). For a history
dependent and deterministic decision rule dt ∈DHDt , we have that the reward equals rt(s,dt(ht))
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and the transition probability pt(j | s,dt(ht)), whenever ht = (ht−1,at−1,st).
For the randomized decision rules it becomes a bit different. If the decision rule is Markovian and
randomized dt ∈DMR

t , then the expected reward satisfies

rt(s,dt(s)) =
∑
a∈As

rt(s,a)qdt(st)(a) (3.2)

and the transition probability satisfies

pt(j | s,dt(s)) =
∑
a∈As

pt(j | s,a)qdt(st)(a). (3.3)

For a decision rule that is history dependent and randomized dt ∈DHRt , we have that the expected
reward satisfies

rt(s,dt(ht)) =
∑
a∈As

rt(s,a)qdt(ht)(a) (3.4)

and the transition probability satisfies

pt(j | s,dt(ht)) =
∑
a∈As

pt(j | s,a)qdt(ht)(a). (3.5)

Lastly, we will discuss policies. A policy π provides the decision maker with a prescription of
how to choose actions under any possible future state or history. So a policy π is a sequence of
decision rules, π= (d1,d2, ...,dN−1) where dt ∈DKt for t= 1,2, ...,N−1. The set of all policies of a
class K ∈ {MD,HD,MR,HR} is denoted by

∏K , with
∏K =DK1 ×DK2 × ...×DKN−1. Further, a

policy is said to be stationary if dt = d for all t ∈ T . Hence, a stationary policy has the following
form π = (d,d, ...), which we will denote by d∞. We will come back to the stationary policies,
when we discuss the infinite-horizon Markov decision processes. In the following example, we will
discuss a two state Markov decision process.

Example 3.1.2. A Two State Markov Decision Process
Consider the following representation of the two state Markov decision process.

S1 S2

a11, 1
2

a11, 1
2

a12, 1

a21, 1

In this example, we assume that the rewards and transition probabilities are the same at each
epoch. There are two states S = {S1,S2}. In state S1, the decision maker chooses either action
a11 or action a12. In state S2 the only choice the decision maker has is action a21. Choosing
action a11 in state S1 leads to an immediate reward of five units, and the system will evolve to
state S1 with a probability of 1

2 and to state S2 with a probability of 1
2 as well. If the decision

maker chooses action a12 in state S1, then he will receive an immediate reward of ten units and
the system evolves to state S2 with a probability of 1. In state S2, the decision maker has no
other choice than to choose action a21, by doing so he will receive an immediate reward of minus
one unit and the system stays in state S2 with probability 1.
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So formally, our model is formulated in the following way:

• Decision epochs: T = {1,2, ...,N}, N <∞

• States: S = {S1,S2}

• Actions: As1 = {a11,a12} and As2 = {a21}

• Rewards:
rt(s1,a11) = 5, rt(s1,a12) = 10, rt(s2,a21) =−1 for t ∈ {1,2, ...N −1}
rN (s1) = 0 and rN (s2) = 0 for t=N

• Transition probabilities:
pt(s1 | s1,a11) = 1

2 , pt(s1 | s1,a12) = 0, pt(s1 | s2,a21) = 0,
pt(s2 | s1,a11) = 1

2 , pt(s2 | s1,a12) = 1, pt(s2 | s2,a21) = 1.

Suppose for a moment that the rewards corresponding to action a11 depend upon the state at the
next epoch. Let rt(s1,a11,s1) = 2 and rt(s1,a11,s2) = 8. Then the expected reward rt(s,a) will
be equal to 5, because of equation (3.1). Since

rt(s1,a11) =
∑
j∈S

rt(s,a,j)pt(j | s,a) =

rt(s1,a11,s1)pt(s1 | s1,a11) + rt(s1,a11,s2)pt(s2 | s1,a11) =

2× 1
2 + 8× 1

2 = 5.

Now, we will continue our example by providing some of the policies which were discussed in
the section above. We will only elaborate on the Markovian policies and we assume that N = 3,
which implies that the decisions are only made at decision times 1 and 2. Therefore, our policies
are represented as πK = (dK1 ,dK2 ) with K = {MD,MR}. The first policy we will discuss is the
Markovian and deterministic policy πMD.

• Decision epoch 1: dMD
1 (s1) = a11 and dMD

1 (s2) = a21

• Decision epoch 2: dMD
2 (s1) = a12 and dMD

2 (s2) = a21

This means that the decision maker chooses in the first decision epoch action a11 if he is in state
S1 and action a21 if he is in state S2. In the second decision epoch he chooses action a12 in state
S1 and again action a21 if he is in state S2.

The other policy we will discuss is the Markovian and randomized policy πMR. We assume that
the probability of choosing action a11 is equal to 4

5 in the first decision epoch and equal to 2
5 in

the second decision epoch. Further, we assume that the probability of choosing action that the
decision maker chooses a12 is equal to 1

5 in the first decision epoch and equal to 3
5 in the second

one. And lastly, the decision maker chooses with probability of 1 action a21 in both decision times.
So our policy will look like

• Decision epoch 1: qdMR
1 (s1)(a11) = 4

5 , qdMR
1 (s1)(a12) = 1

5 and qdMR
1 (s2)(a21) = 1

• Decision epoch 2: qdMR
2 (s1)(a11) = 2

5 , qdMR
2 (s1)(a12) = 3

5 and qdMR
2 (s2)(a21) = 1

�

Before starting the next section, we will provide some additional notation for a Markov decision
process, which is needed for the understanding of finite- and infinite-horizon Markov decision
processes. Throughout this discussion, we will assume that the set of states S and the set of
actions A are both discrete and the set of decision times is given by T = {1,2, ...,N} with N ≤∞.
In general, a probability space consists of three components, namely a sample space Ω, a σ-algebra
F of subsets of Ω and a probability measure P. Thus the triple (Ω,F ,P) is called a probability
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space. We assume in this model that the probability space consists of a sample space Ω, a σ-
algebra of Borel measurable subsets of Ω, B(Ω) and a probability measure P on B(Ω). We will not
further elaborate on these concepts, we will just use the notation.
In a finite-horizon Markov decision process, which will be explained in dept in section two of this
chapter, we choose the sample space Ω as

Ω = S×A×S× ...×A×S = (S×A)N−1×S

and an element of Ω is denoted by ω. So for ω ∈Ω, we have ω = (s1,a1,s2,a2, ...aN−1,sN ), which
we refer to as a sample path. In an infinite-horizon Markov decision process, which we will
elaborate on in section three of this chapter, we choose the sample space Ω as Ω = (S×A)∞ and
for ω ∈ Ω, we have ω = (s1,a1,s2,a2, ...).
Further, we define the random variable Xt as the state at time t ∈ T , the random variable Yt is
defined as the action at time t for t ∈ T and the random variable Zt is the history process at time
t ∈ T , when the observed sequence of states and actions is ω. Therefore, we have Xt(ω) = st,
Yt(ω) = at, Z1(ω) = s1 and Zt(ω) = (s1,a1, ...,st).
We denote the initial distribution of the state by the probability distribution P1(·), most times
we will assume that P1(s1) = 1 for some s1 ∈ S. If we have a history dependent and randomized
policy π= (d1,d2, ...,dN−1), then the probability Pπ on our measurable space (Ω,B(Ω)) is induced
through the following probabilities for t ∈ T

Pπ({X1 = s}) = P1(s), (3.6)

Pπ({Yt = a | Zt = ht}) = qdt(ht)(a), (3.7)

Pπ({Xt = s | Zt = (ht−1,at−1,st),Yt = at}) = pt(s | st,at), (3.8)

such that the probability of a sample path ω = (s1,a1,s2,a2, ...aN−1,sN ) is given by

Pπ(ω) = Pπ(s1,a1,s2,a2, ...aN−1,sN ) =

P1(s)qd1(s1)(a1)p1(s2 | s1,a1)qd2(h2)(a2) . . . qdN−1(hN−1)(aN−1)pN−1(sN | sN−1,aN−1). (3.9)

The last equation (3.9) can be simplified if the policy π is deterministic, so it can either be history
dependent and deterministic or Markovian and deterministic. In this case the expression will be

Pπ(ω) = Pπ(s1,a1,s2,a2, ...aN−1,sN ) = P1(s)p1(s2 | s1,a1) . . .pN−1(sN | sN−1,aN−1), (3.10)

because qd1(s1)(a1) = 1 and qdt(ht)(a) = 1 for all a∈As and t∈ T . Further, for a non-deterministic
policy, we have the following expression for t ∈ T

Pπ(s1,a1,s2,a2, ...at−1,st) =

P1(s)qd1(s1)(a1)p1(s2 | s1,a1)qd2(h2)(a2) . . . qdt−1(ht−1)(at−1)pt−1(st | st−1,at−1) (3.11)

Therefore, we can calculate for the non-deterministic policy the conditional probability

Pπ(at,st+1,at+1, ...aN−1,sN | s1,a1, ...at−1,st)

by division of equation (3.9) and equation (3.11), hence

Pπ(at,st+1,at+1, ...aN−1,sN | s1,a1, ...at−1,st) = Pπ(s1,a1,s2,a2, ...aN−1,sN )
Pπ(s1,a1,s2,a2, ...at−1,st)

(3.12)
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The expression (3.12) simplifies to

Pπ(at,st+1,at+1, ...aN−1,sN | s1,a1, ...at−1,st) =

qdt(ht)(at)pt(st+1 | st,at)qdt+1(ht+1)(at+1) . . . qdN−1(hN−1)(aN−1)pN−1(sN | sN−1,aN−1) (3.13)

In a similar way, we have that the conditional probability

Pπ(at,st+1,at+1, ...aN−1,sN | s1,a1, ...at−1,st)

for a Markovian policy is given by

Pπ(at,st+1,at+1, ...aN−1,sN | s1,a1, ...at−1,st) = Pπ(at,st+1,at+1, ...aN−1,sN | st), (3.14)

because dt depends only on the current state of the process and not on the past states since it
satisfies the Markov property. Lastly, the Markov reward process is defined as a stochastic
process {(Xt, rt(Xt,Yt)) | t ∈ T}, when the policy π is Markovian. The first component of the
reward process, Xt, represents the state of the process at time t. The second component, rt(Xt,Yt),
represents the reward received in state Xt at time t, when action Yt is used.

In the next section, we will discuss finite-horizon Markov decision processes.

3.2 Finite-Horizon Markov Decision Processes
In this section, we will explain discrete-time finite-horizon Markov decision processes. We will
introduce the following concepts; optimality criteria, optimal policies and optimality equations.
We will start with the optimality criteria. As we have seen before, the decision maker receives
rewards in each decision epoch T = {1,2, ...,N}, N <∞. Since the rewards are unknown prior to
choosing a policy, the decision maker must observe the sequence of rewards as random, which we
denote as R= (R1,R2, ...,RN ). The set of all possible reward sequences is denoted by R. Further,
once a policy is selected it induces a probability distribution PπR(·) on R, which is defined as

PπR(ρ1,ρ2, ...,ρN ) := Pπ({(s1,a1, ...aN−1,sN ) | (r1(s1,a1), ..., rN (sN )) = (ρ1,ρ2, ...,ρN )})

So the goal is to choose a policy that corresponds to a sequence of rewards that is most rewarding
for the decision maker. Thus we need to compare the different policies based on the decision
makers preferences for the different sequences of rewards and the probability in which these rewards
sequences occur. Hence, we need to develop methods to compare sequences of rewards with each
other. The first way to compare reward sequences is using a utility function Ψ : RN → R.
The utility function has the property that Ψ(u)≥Ψ(v), whenever the decision maker prefers the
sequence of rewards u = (u1,u2, ...,uN ) over the sequence of rewards v = (v1,v2, ...,vN ). If the
decision maker does not prefer the sequence of rewards u = (u1,u2, ...,uN ) over the sequence of
rewards v = (v1,v2, ...,vN ), then Ψ(u) ≤ Ψ(v). If he does not favour one over the other, then we
have that Ψ(u) = Ψ(v). Another way, is to use the expected utility of policy π, which is defined
as

Eπ[Ψ(R)] :=
∑

(ρ1,...,ρN )∈R
Ψ(ρ1, ...,ρN )PπR(ρ1, ...,ρN ), (3.15)

and we will assume that Ψ(ρ1, ...,ρN ) =
∑N
i=1 ρi. In that case, if the decision maker favours policy

π over policy ν, then the expected utility criterion is given by Eπ[Ψ(R)] ≥ Eν [Ψ(R)] for the
reward sequence R = (R1,R2, ...,RN ). If the policies are equivalent and the decision maker does
not favour any policy over the other, then we have Eπ[Ψ(R)] = Eν [Ψ(R)]. Another method of
comparing is the expected total reward criterion. This criterion states that the decision
maker should favour the policy π with the highest expected total reward, which is denoted by
υπN . The expected total reward for a history dependent and randomized policy π with state s as
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initial state is defined as

υπN (s) := Eπs [
N−1∑
t=1

rt(Xt,Yt) + rN (XN )]. (3.16)

If we have a history dependent and deterministic policy π, then we can express the expected total
reward as

υπN (s) := Eπs [
N−1∑
t=1

rt(Xt,dt(ht)) + rN (XN )], (3.17)

since we have Yt = dt(ht) for each decision epoch. This criterion assumes that a unit reward is
received in each of the N decision periods is equal or less valuable than a sequence of rewards
in which all N units of rewards are received in the first or last decision period. In other words,
the timing of rewards is insignificant for the decision maker. However, if the timing of receiving
rewards becomes significant for the decision maker, because the value of reward depends on when
it is received, then we can use a discount factor. The discount factor is a scalar λ, 0 ≤ λ < 1,
which determines the value at time t of a one unit reward received at time t+ 1. For a history
dependent and randomized policy π, the expected total discounted reward is defined by

υπN,λ(s) := Eπs [
N−1∑
t=1

λt−1rt(Xt,Yt) +λN−1rN (XN )]. (3.18)

When we start with the infinite-horizon Markov decision processes, then discounting will play a
major part. This will be explained further in section three of this chapter. Now, we will discuss
optimal history dependent and randomized policies more specifically. So in a Markov decision
process, we are interested in finding a policy π∗ which has the largest expected total reward and
determining the value of that expected total reward. Hence, we want to find a policy π∗ for which

υπ
∗
N (s)≥ υπN (s) for s ∈ S and π ∈ΠHR.

Such a policy is called a optimal policy. If this optimal policy π∗ does not exist, then we want
to find an ε−optimal policy. An ε-optimal policy π∗ε is a policy with the following property

υ
π∗ε
N (s) + ε > υπN (s) for ε > 0, s ∈ S and π ∈ΠHR.

Further, for an optimal policy π∗, the value of the Markov decision problem υ∗N is defined as

υ∗N (s) := sup
π∈ΠHR

υπN (s) for s ∈ S. (3.19)

If we do not have a optimal policy, but only an ε-optimal policy π∗ε , then the value is given by

υ
π∗ε
N (s) + ε > υ∗N (s) for ε > 0 and s ∈ S. (3.20)

For an an optimal policy π∗, the expected total reward is given by

υπ
∗
N (s) = υ∗N (s) for s ∈ S. (3.21)

Lastly, we will discuss optimality equations, which are also known as the Bellman equations. For a
history dependent and randomized policy π we define the optimal value functions u∗t :Ht→R
by

u∗t := sup
π∈ΠHR

uπt (ht)



3.2. FINITE-HORIZON MARKOV DECISION PROCESSES 29

with uπt (ht) the expected total reward. The optimality equations or Bellman equations are
then given by

ut(ht) = sup
a∈Ast

{rt(st,a)+
∑
j∈S

pt(j | st,a)ut+1(ht,a,j)} for t= 1, ...,N−1 and ht = (ht−1,at−1,st)∈Ht.

(3.22)
For t=N , we have

uN (hN ) = rN (sN ) for hN = (hN−1,aN−1,sN ) ∈HN , (3.23)

which we refer to as the boundary condition. The importance of the Bellman equations is that
they are used to verify that a given policy is optimal. Now, we will state a simple lemma, which
will later be used in an important theorem.

Lemma 3.2.1. Let w be a real-valued function on an arbitrary discrete set W and suppose that
q(·) is a probability distribution on that arbitrary discrete set W . Then

sup
u∈W

w(u)≥
∑
u∈W

q(u)w(u).

Proof:
Define w∗ = supu∈W w(u). Then,

w∗ =
∑
u∈W

q(u)w∗ ≥
∑
u∈W

q(u)w(u).

�

Theorem 3.2.1. Suppose ut, ut :Ht→R, is a solution of the Bellman equations stated in (3.22)
for t= 1, ...N −1 and suppose that uN satisfies the boundary condition (3.23). Then

a. ut(ht) = u∗t (ht) ∀ht ∈Ht and t= 1, ...,N

b. u1(s1) = υ∗N (s1) ∀s1 ∈ S

Part (a) implies that the solutions of the Bellman equations are the optimal value functions from
time t onward and part (b) implies that the solution obtain at time t= 1 is the value of the Markov
decision problem.

Proof:
We start with proving part (a), which will be done by proving the following two claims.

Claim 1: ut(ht)≥ u∗t (ht) ∀ht ∈Ht and t= 1, ...,N

Claim 2: ∀ε > 0 ∃π′′ ∈ΠHD (π′′ is a history dependent and deterministic policy) for which

uπ
′′
t (ht) + (N − t)ε≥ ut(ht) ∀ht ∈Ht and t= 1, ...,N

We will now proof both claims by backwards induction on t.
Proof of claim 1:
For the induction start, we observe that for t = N the result holds true, because there are no
decisions made in period N , hence we have the boundary condition

uN (hN ) = rN (sN ) = uπN (hN ) for hN = (hN−1,aN−1,sN ) ∈HN and π ∈ΠHR.

Therefore,
uN (hN ) = u∗N (hN ) ∀hN ∈HN .
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For the induction hypothesis, we assume that the result holds true for t = n+ 1, ...,N , hence we
assume ut(ht)≥ u∗t (ht) ∀ht ∈Ht and t= n+ 1, ...,N .
For the induction step, we will prove that the result holds true for t = n. Suppose that π′ =
(d′1,d′2, ...,d′N−1) is an arbitrary policy in ΠHR. Then, the Bellman equation for t= n is given by

un(hn) = sup
a∈Asn

{rn(sn,a) +
∑
j∈S

pn(j | sn,a)un+1(hn,a,j)}.

Hence, by applying the induction hypothesis and lemma (3.2.1), we obtain the following:

un(hn) = sup
a∈Asn

{rn(sn,a) +
∑
j∈S

pn(j | sn,a)un+1(hn,a,j)}

≥ sup
a∈Asn

{rn(sn,a) +
∑
j∈S

pn(j | sn,a)u∗n+1(hn,a,j)}

≥ sup
a∈Asn

{rn(sn,a) +
∑
j∈S

pn(j | sn,a)uπ
′
n+1(hn,a,j)}

≥
∑

a∈Asn

qd′n(hn)(a)(rn(sn,a) +
∑
j∈S

pn(j | sn,a)uπ
′
n+1(hn,a,j))

= uπ
′
n (hn)

Since the policy π′ = (d′1,d′2, ...,d′N−1) is an arbitrary policy in ΠHR, we have

un(hn)≥ sup
π∈ΠHR

uπn(hn) = u∗n(hn).

The last equality is by definition of the optimal value functions. So we have proven claim 1.

�

Proof of claim 2:
Let π′′ = (d′′1 ,d′′2 , ...,d′′N−1) be a policy that is constructed by choosing d′′t (ht) = a for a ∈Ast , such
that

rt(st,d′′t (ht)) +
∑
j∈S

pt(j | st,d′′t (ht))uπ
′′
t+1(ht,d′′t (ht), j) + ε≥ ut(ht).

This is possible, if we assume that ut(ht) satisfies the Bellman equations.
This claim will also be proven by induction.
For the induction start, we observe that the result holds true for t=N , since uπ′′N (hN ) = uN (hN ).
For the induction hypothesis, we assume that the result holds true for t = n+ 1, ...,N , hence we
assume uπ′′t (ht) + (N − t)ε≥ ut(ht) for t= n+ 1, ...,N .
For the induction step, we will prove that the result holds true for t= n. So

uπ
′′
n (hn) = rn(sn,d′′n(hn)) +

∑
j∈S

pn(j | sn,d′′n(hn))uπ
′′
n+1(hn,d′′n(hn), j)

≥ rn(sn,d′′n(hn)) +
∑
j∈S

pn(j | sn,d′′n(hn))un+1(hn,d′′n(hn), j)− (N −n−1)ε

≥ un(hn)− (N −n)ε.

Hence,
uπ
′′
n (hn) + (N −n)ε≥ un(hn).
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So we have proven claim 2.

�

Claims 1 and 2 together show that for any ε > 0, there exists a policy π ∈ΠHR such that

u∗t (ht) + (N − t)ε≥ uπt (ht) + (N − t)ε≥ uπt (ht)≥ u∗t (ht)

for t= 1, ...,N and ht ∈Ht. Since N is a fixed number, we let ε approach zero, hence

ut(ht) = u∗t (ht).

Part (b) follows from the fact that u1(s1) = u∗1(s1) = υ∗N (s1).

�

In the following section, we will discuss the infinite-horizon model.

3.3 Infinite-Horizon Markov Decision Processes
In this section, we will explain discrete-time infinite-horizon Markov decision processes, hence
T = {1,2, ...}. We will introduce different criteria, such as the expected total reward criterion,
the expected total discounted reward criterion and optimality criteria. Throughout this dis-
cussion we will assume that our data is time-homogeneous, which means that we assume that
the rewards rt(s,a), the transition probabilities pt(j | s,a) and the set of decision rules DKt
(K ∈ {MD,HD,MR,HR}) do not change over time. Hence, for all t ∈ T , rt(s,a) = r(s,a),
pt(j | s,a) = p(j | s,a) and π = d∞ = (d,d, ...). The latter means that in every decision epoch we
have the same decision rule. Before, we start discussing the criteria, we will discuss the value of
a policy. Given a discrete time-homogeneous infinite-horizon Markov decision processes. Each
policy π = (d1,d2, ...) induces a reward process, denoted by {(Xt, rt(Xt,Yt)) | t ∈ T} as we have
seen in section one of chapter three. The first component of the reward process, Xt, represents the
state of the process at time t. The second component, rt(Xt,Yt), represents the reward received
in state Xt at time t, when action Yt is used. The action Yt is determined by the decision rule dt
in the following way:

• For dt ∈DMD, a Markovian and deterministic decision set, we have

Yt = dt(Xt).

• For dt ∈DHD, a history-dependent and deterministic decision set, we have

Yt = dt(Zt).

The random variable Zt denotes the history up to time t as we have seen before.

• For dt ∈DMR, a Markovian and randomized decision set, we have

P({Yt = a}) = qdt(Xt)(a).

• For dt ∈DHR, a history-dependent and randomized decision set, we have

P({Yt = a}) = qdt(Zt)(a).

We will now discuss how to assign a value to a policy π ∈ΠHR, which we also did for the discrete-
time finite-horizon Markov decision process. The expected total reward for a history dependent
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and randomized policy π with state s as initial state is defined as

υπ(s) := lim
N→∞

Eπs [
N∑
t=1

rt(Xt,Yt)] = lim
N→∞

υπN+1(s). (3.24)

Note that this limit does not need to exist and may be ±∞. If the limit exist and we may
interchange limit and expectation, then we may write

υπ(s) = Eπs [
∞∑
t=1

rt(Xt,Yt)]. (3.25)

For a history dependent and randomized policy π, the expected total discounted reward is
defined by

υπλ(s) := lim
N→∞

Eπs [
N∑
t=1

λt−1rt(Xt,Yt)] (3.26)

for 0≤ λ < 1 the discount factor.
Note that this limit only exists when sups∈S supa∈AS |r(s,a)| ≤∞.
If the limit exists and we may interchange limit and expectation, then we may write

υπλ(s) = Eπs [
∞∑
t=1

λt−1rt(Xt,Yt)]. (3.27)

Lastly, the average reward of a history dependent and randomized policy π is defined by

gπ(s) := lim
N→∞

1
N

Eπs [
N∑
t=1

rt(Xt,Yt)] = lim
N→∞

1
N
υπN+1(s). (3.28)

We will now consider the following example.

Example 3.3.1. This is a sequel of example (3.1.2). Again, consider the following representation
of the two state Markov decision process.

S1 S2

a11, 1
2

a11, 1
2

a12, 1

a21, 1

In this example, we assume that the rewards and transition probabilities are the same at each
epoch. There are two states S = {S1,S2}. In state S1, the decision maker chooses either action
a11 or action a12. In state S2 the only choice the decision maker has is action a21. Choosing
action a11 in state S1 leads to an immediate reward of five units, and the system will evolve to
state S1 with a probability of 1

2 and to state S2 with a probability of 1
2 as well. If the decision

maker chooses action a12 in state S1, then he will receive an immediate reward of ten units and
the system evolves to state S2 with a probability of 1. In state S2, the decision maker has no
other choice than to choose action a21, by doing so he will receive an immediate reward of minus
one unit and the system stays in state S2 with probability 1.
There are two deterministic Markovian decision rules, namely d1 and d2.
For state S1, we have dMD

1 (s1) = a11 and dMD
2 (s1) = a12.

And for state S2, we have dMD
1 (s2) = a21 and dMD

2 (s2) = a21.
The rewards for N ≥ 1 are given by υ

d∞1
N (s1) = 5− 0.5 · (N − 1), υd

∞
2
N (s1) = 10− 1 · (N − 1) and

υ
d∞1
N (s2) = υ

d∞2
N (s2) =−1−1 · (N −1) =−N .
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Hence, the expected total reward is equal to

lim
N→∞

υ
d∞1
N (s1) = lim

N→∞
υ
d∞2
N (s1) = lim

N→∞
υ
d∞1
N (s2) = lim

N→∞
υ
d∞2
N (s2) =−∞.

For the expected total discounted reward, it can be shown that

υ
d∞1
λ (s1) = 5−5.5λ

(1−0.5λ)(1−λ) , υ
d∞1
λ (s2) =− 1

1−λ

υ
d∞2
λ (s1) = 10− λ

1−λ, υ
d∞2
λ (s2) =− 1

1−λ.

We will collaborate on υd
∞
2
λ (s2) = − 1

1−λ . We know that
∑N
t=1λ

t−1 = λN−1
λ−1 . We also know that

υ
d∞2
N (s2) =−N . Therefore,

lim
N→∞

N∑
t=1

λt−1 ·−N = lim
N→∞

λN −1
λ−1 ·−N = 1

λ−1 =− 1
1−λ.

The average reward of both deterministic Markovian policies, d1 and d2, is equal to -1, since we
have an absorption in state S2, hence gd

∞
1 (s1) = gd

∞
2 (s1) = gd

∞
1 (s2) = gd

∞
2 (s2) =−1.

�

We will now start with the expected total reward criterion. The goal is to find a policy π
with the largest value of

υπ(s) = lim
N→∞

υπN (s). (3.29)

The only problem is that this limit does not need to exist, as we have seen before. We will solve this
problem by providing certain conditions for rewards r(s,a) and transition probabilities p(j | s,a),
such that they ensure the existence of the limit (3.29). We will define the following quantities:

υπ+(s) := Eπs [
∞∑
t=1

r+(Xt,Yt)] (3.30)

and

υπ−(s) := Eπs [
∞∑
t=1

r−(Xt,Yt)], (3.31)

with r+(s,a) := max{+r(s,a),0} and r−(s,a) := max{−r(s,a),0}.
The values of r+(s,a) as well as r−(s,a) are non-negative, hence both quantities υπ+(s) and υπ−(s)
are guaranteed to exists, but could be equal to infinity. To rule out the possibility that both
quantities υπ+(s) and υπ−(s) are infinite, we need to make the following assumption. For all history
dependent and randomized policies π and for all s ∈ S, at least one of the quantities υπ+(s) and
υπ−(s) is finite. Under this assumption, we have that the limit (3.29) exists and that the expected
total reward is equal to υπ(s) = υπ+(s)−υπ−(s).
We will now formulate a definition, in which we categorize the several classes of models that
satisfies the given assumption.
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Definition 3.3.1. Suppose we have a discrete time-homogeneous infinite-horizon Markov decision
process. Then we can categorize the following classes of models:

• A process belongs to the class of positive bounded models if for each s ∈ S, there exists
an a ∈AS , such that r(s,a)≥ 0 and υπ+(s) is finite for all history dependent and randomized
policies π

• A process belongs to the class of negative models if for each s ∈ S and for all a ∈AS , the
reward r(s,a)≤ 0 and υπ(s)>−∞ for some history dependent and randomized policy π

• A process belongs to the class of convergent models if for each s ∈ S, the quantities of
υπ+(s) as well as υπ−(s) are finite for all history dependent and randomized policies π

The limit (3.29) exists for a process that belongs to one of these classes. A positive bounded model
has the property that there exists a stationary policy with a non-negative expected total reward,
so as a consequence the optimal value function will be non-negative. For a negative model we
have that υπ+(s) = 0 for all history dependent and randomized policy π. So for a negative model,
our goal is to find a policy π that minimizes υπ−(s). And for a convergent model, we require that
both quantities υπ+(s) and υπ−(s) are finite. Which means that

υπ(s) = Eπs [
∞∑
t=1
|r(Xt,Yt)|] = υπ+(s)−υπ−(s)<∞

holds for all history dependent and randomized policies π and states s ∈ S.
We will now discuss the expected total discounted reward criterion. The discount factor
λ ∈ [0,1) is a measure for the present value of one unit with respect to the future value of that
unit. So if we have 10 units in the present state and our discount factor is λ= 0.5, then in the next
state we have 0.5 ·10 = 5 units. The value υπλ(s) denoted the expected total discounted reward as
we have seen before. We will now define another value in which we make use of the horizon length
µ, that follows a geometric distribution with parameter λ ∈ [0,1) and is independent of the policy
π. This geometric distribution is given by P(µ= n) = (1−λ)λn−1 for n= 1,2, ....
Let υπµ(s) denote the expected total reward that is obtained by using policy π when the horizon
length µ is random and independent of the chosen actions. Then υπµ(s) is defined by:

υπµ(s) := Eπs [Eµ[
µ∑
t=1

r(Xt,Yt)]]. (3.32)

Proposition 3.3.1. Suppose that the limit of υπλ(s) (3.26) exists and suppose that µ has a
geometric distribution with parameter λ. Then

υπλ(s) = υπµ(s) for all s ∈ S.

Proof:
We know that υπλ(s) =Eπs [

∑∞
t=1λ

t−1rt(Xt,Yt)] (3.27) if we may interchange limit and expectation.
Further, υπµ(s) := Eπs [Eµ[

∑µ
t=1 r(Xt,Yt)]] (3.32).

We will rewrite υπµ(s) as follows:

υπµ(s) := Eπs [Eµ[
µ∑
t=1

r(Xt,Yt)]] =

Eπs [
∞∑
n=1

(1−λ)λn−1
n∑
t=1

r(Xt,Yt)] =
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Eπs [
∞∑
t=1

r(Xt,Yt)
∞∑
n=t

(1−λ)λn−1] =

Eπs [
∞∑
t=1

r(Xt,Yt) · (1−λ)
∞∑
n=t

λn−1] =

Note that
∑∞
n=1λ

n−1 = 1
1−λ , hence

∑∞
n=tλ

n−1 = λt−1

1−λ .
So

υπµ(s) = Eπs [
∞∑
t=1

r(Xt,Yt) · (1−λ)
∞∑
n=t

λn−1] =

Eπs [
∞∑
t=1

r(Xt,Yt) · (1−λ) · λ
t−1

1−λ ] =

Eπs [
∞∑
t=1

λt−1r(Xt,Yt)] = υπλ(s)

�

The last subject we will discuss in this section is optimality criteria. As we have seen before, a
policy is called a optimal policy if the value function of that policy is the largest. We will discuss
those optimality criteria in the following definition.

Definition 3.3.2. Suppose we have a discrete time-homogeneous infinite-horizon Markov decision
process. We assume that π∗ is an history-dependent and randomized policy.

• The value of the Markov decision process is defined as

υ∗(s) := sup
π∈ΠHR

υπ(s) for s ∈ S

if the limit of expected total reward υπ(s) exist, see (3.19) and (3.25). We call a policy π∗
a total reward optimal policy if

υπ
∗
(s)≥ υπ(s) for all s ∈ S and π ∈ΠHR.

• The discounted value of the Markov decision process is defined as

υ∗λ(s) := sup
π∈ΠHR

υπλ(s) for s ∈ S

if the limit of expected total discounted reward υπλ(s) exist, see (3.26). We call a policy π∗
a discount optimal policy if

υπ
∗
λ (s)≥ υπλ(s) for all s ∈ S and π ∈ΠHR.

• The optimal gain of the Markov decision process is defined as

g∗(s) := sup
π∈ΠHR

υπ(s) for s ∈ S

if the limit of the gain gπ(s) exist, see (3.28). We call a policy π∗ a gain optimal policy if

gπ
∗
(s)≥ gπ(s) for all s ∈ S and π ∈ΠHR.
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In the next chapter, we will discuss partially observed Markov decision processes.



Chapter 4

Partially Observed Markov
Decision Processes

In this chapter, we will introduce the basic components of a discrete-time partially observed
Markov decision process. A partially observed Markov decision process differs from a Markov
decision process in the way that not all information is available to the decision maker. The
decision maker is unsure in which state he is, he only receives an observation and a reward. The
decision maker bases his decisions on observations and past actions.

A partially observed Markov decision process consists of seven elements: decision epochs or times,
states, actions, rewards, transition probabilities, observations and observation probabilities. The
first five components we have seen in the model formulation of Markov decision processes in section
one of chapter three. Besides the decision epochs, states, actions, rewards, transition probabilities,
observations and observation probabilities we have a decision maker that observes the process and
may select actions at each decision epoch to influence the system and gain rewards. The only
differences here is that not all information is available as we said before. So mathematically, we
can formulate a partially observed Markov decision process by the collection of the seven elements

{T,S,As,O,pt(· | s,a),po(· | s), rt(s,a) | t ∈ T,s ∈ S,a ∈As,o ∈O}.

The seven elements and its notation will be explained below, the first five components will be
discussed briefly since we have seen it before. After that we will discuss an example of the
difference between a Markov decision process and a partially observed Markov decision process.
We will now start with the explanation of the components of a discrete-time partially observed
Markov decision process.

As we have seen before, Decision epochs or decision times are given points in time, where
decisions are made by the decision maker. We denote T as the set of decision times and we assume
that the set T is discrete. We make this assumption, because we are only interested in discrete-
time partially observed Markov decision processes. Further, we denote the elements of the set T
as t, which we refer to as time t. Secondly, we will explain the state, the observation and actions
set. The process occupies a state at each decision time, we denote the set of all possible states by
S. The elements of S will be denoted by s.The difference between a Markov decision process and
a partially observed Markov decision process is that the states will not be observed, the decision
maker does not know in which state he is. So instead of a state, the decision maker receives an
observation at each decision epoch, we denote the set of all observations by O. The elements of
the set of observations will be denoted by o. The probability that the decision make observes a
certain observation is given by the conditional observation probability pO(o | s,a). When the

37
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decision maker observes the system at a certain observation o ∈O at a given decision time t, then
he may choose an action a ∈As, where As is the set of possible actions in state s even though he
did not observed that state. Lastly, we will discuss the rewards and the transition probabilities.
The reward function rt(s,a) denotes the value of the reward received at time t ∈ T for s ∈ S
and a ∈ A. The transition probability function pt(j | s,a) denotes the probability that the
system will be in state j at the next decision epoch t+ 1, when the decision maker chooses an
action a ∈As in state s ∈ S at decision time t.
We have discussed the components of a discrete-time partially observed Markov decision process
model. So we can conclude that the partially observed Markov decision process can be formulated
by the collection of the seven elements, hence

{T,S,As,O,pt(· | s,a),po(· | s,a), rt(s,a) | t ∈ T,s ∈ S,a ∈As,o ∈O}.

We will now discuss a really simplistic example that elaborates the difference between a Markov
decision process and a partially observed Markov decision process.

Example 4.0.1. In this example, we will give a simple representation of a Markov decision process
and a partially observed Markov decision process. Each figure consists of two states S1 and S2
and one action A1 and one reward R1.
We will start with Markov decision process.

S1 A1 S2

R1

In this figure, we see that the decision maker observes state S1 and chooses action A1, which gives
him a reward R1 and the system will evolve to the next state S2.
Now, we will give a representation of a partially observed Markov decision process. Please note
that within the dashed box is not observed by the decision maker.

S1 S2

O1 A1 R1

O2

In this figure, we see that the decision maker receives observation O1 and chooses action A1, which
gives him a reward R1 and the system will evolve to the next state S2. The decision maker does
not observe state S2, but again he receives an observation, O2.
So the difference between the two is that in the second case the states are not observed.

�

In the next chapter, we will discuss the applications of Markov decision processes in the medical
sciences.



Chapter 5

Applications in Medical Sciences

In this chapter, we will discuss the applications of Markov decision processes in the medical
sciences. We will discuss two different cases, namely infectious diseases and ischemic heart disease.

5.1 Infectious Diseases
In this section, we will discuss the SIR-model and Markov decision process for an influenza epi-
demic. We will start with introducing some terminology. In order to control the spread of an
emerging infectious disease, such as influenza, we need health policies. A health policy makes
real-time recommendations, in order to respond to changing disease characteristics, population
characteristics and resource constraints. One could think of infectivity and resistance to antibiot-
ics as disease characteristics. For population characteristics one could imagine disease prevalence
and the proportion of individuals that are immune for the disease. Lastly, vaccines, antibiotics,
budget and health care staff are examples of resource constraints. These health policies allow
the decision maker to use the current data from the epidemic and the resource availability to
make decisions or interventions at any point in time. The goal is to determine the optimal health
policy for controlling the spread of infectious disease during an epidemic. There are several things
that may be involved by the control of an influenza epidemic, namely reducing susceptibility of
uninfected individuals, reducing contact rates in the population and reducing the infectiousness
of infected individuals. This may be done through vaccination, isolation and treatment. Further,
the control of an emerging influenza epidemic is bounded by the availability of vaccines and the
availability of money and resources for vaccine procurement, diagnosis and treatment of new cases.
With those resource constraints in our minds, we define the optimality of a health policy as the
efficient use of available resources to maximize the overall health of the population.

We start with describing the influenza epidemic by using a SIR model, this model will be refor-
mulated as a Markov decision process further on in this section. A SIR model or a Susceptible-
Invective-Recovered model assumes that individuals who are recovered from the infection are now
permanent immune to that specific infection. The SIR model consists of the five components,
namely states, decision sets, actions, rewards and transition probabilities. After we have discuss
these five components, we will discuss decision rules, health policies and optimally.

Again, we will start with some terminology. Decision times are given points in time, where
decisions are made by the decision maker. We denote T as the set of decision times and we
assume that the set T is discrete. The set of decision epochs T can either be finite of infinite,
hence T = {1,2, ....,M} or T = {1,2, ....,} respectively. In the first case, we have a finite horizon
and in the second case an infinite horizon. We have seen this before in chapter three section one.
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We denote XS(t) as the number of susceptibles at time t, XI(t) as the number of infectives at
time t and XR(t) as the number of recovered individuals at time t. Further, we will make the
assumption that the population size does not change during the epidemic. In this case, we denote
the population size by N .

Now, we will discuss disease states and actions. The disease state or the state of the disease
spread is denoted by st = (XS(t),XI(t)) for any given time t. The set of all states or state space
is denoted by S, which is defined as S := {(xS ,xI) ∈ N2 | xS +xI ≤ N}. There are two possible
interventions or actions to control the spread of the infectious disease, namely vaccination and
transmission-reducing intervention. We can implement vaccination in our model as follows. The
decision maker has the opportunity to select a number of susceptibles to vaccinate at any decision
time conditional on the availability and the price of the vaccine. The decision to immunize is
denoted by zt ∈ AI , with AI = [0,N ] the set of all possible numbers of susceptibles to vaccinate.
We assume that vaccination at decision time t result in immunization at decision time t+ 1. So
the number of susceptibles at decision time t is XS(t) and at the next decision epoch the number
reduces to XS(t+1) =XS(t)−zt. Further, the implementation of transmission-reducing interven-
tions can be done as follows. Transmission-reducing interventions may include social distancing,
hygienic interventions and treatment or isolation. The set of transmission-reducing interventions
is denoted by AT = {0,1, ....,M}, where AT = 0 implies no interventions at all. The decision to em-
ploy transmission-reducing interventions is denoted as at ∈AT at decision time t. As we have seen
before, the number of susceptibles XS(t) at decision time t reduces to XS(t+ 1) = XS(t)− zt at
decision time t+1 when the decision maker chooses to employ vaccination at time t, t= {0,1,2, ...}.
We have now discussed states and actions. In the next paragraph, we will elaborate on rewards
and transition probabilities.

When the decision maker chooses to employ vaccination at time t, he receives a reward rt(st,zt),
rt(st,zt) =−pzt, where p is the unit price of a vaccine and zt the number of susceptibles that are
immunized at time t. If the decision maker chooses to employ transmission-reducing interventions,
at ∈ AT , at decision time t, then the disease spread at decision time t+ 1 is determined by the
transition probability pt(· | st,at). In this case, the decision maker receives a reward rt(st,at).
To define this reward, we need to define some additional parameters, since the control of an epi-
demic may be bounded by the availability of medical and monetary resources. These additional
parameters are:

• λ: The willingness to pay for health. This is a constant.

• c: The cost incurred for each infection. This is a constant.

• cT (at): The cost for implementation of transmission-reducing interventions at ∈ AT at de-
cision time t. We assume that cT (0) = 0, hence if the decision maker does not intervene then
there are no cost.

• u(st,at): The expected cost incurred during period t if the disease spread at time t is at
state st and the decision maker chooses to implement the transmission-reducing interventions
at ∈AT at decision epoch t.

• w: The loss in health due to infections. This is also a constant.

• l(st,at): The expected loss in health of the population during period t if the disease spread
at time t is at state st, and the decision maker chooses to implement transmission-reducing
interventions at ∈AT at decision epoch t. So l(st,at) =wE[I(t) | st,at] with I(t) the number
of new infections during period t.

We can now define the reward rt(st,at) received by the decision maker as
rt(st,at) = λl(st,at)−u(st,at). Now we have discussed the five components of the SIR-model, we
will continue with decision rules, health policies and optimality.
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As we have seen in chapter three section one, a decision rule prescribes an action for each state
for a given decision time. We will now describe the decision rules. For decision time t = 0, the
decision rule is defined as a function d0 :S→AI . This function specifies the number of susceptibles
z0 ∈ AI to vaccinate given the initial disease state s0 = (XS(0),XI(0)) ∈ S. For decision time
t = {1,2, ...}, the decision rule is defined as a function dt : S → AT ×AI . This function specifies
for each disease state a transmission-reducing intervention at ∈ AT and a number of susceptibles
zt ∈AI to vaccinate. This decision rule is Markovian, since it depends only on the current state of
disease spread. Throughout this discussion we will assume that the decision rules are Markovian.

Now, we will discuss health policies. A health policy π is a sequence of decision rules, so
π = (d0,d1, ...). We denote Π as the set of all health policies. Further, a health policy is called
stationary if dt = d for all t ∈ T . This means that a health policy prescribes the same decision d
at every decision time t regardless of the state st. Throughout this discussion we assume that all
health policies are stationary.

If we assume that the influenza spread is at state s1 at decision epoch t= 1, then the expected
total discounted reward is defined as

υπγ (s1) := Eπs1 [
∞∑
t=1

γt−1rt(st,dt(st)) | s1] with γ ∈ [0,1] the discount factor.

We have seen something similar, when we discussed infinite-horizon Markov decision processes in
section three of chapter three, (3.26). If we now assume that the influenza spread is at state s0 at
decision epoch t= 0, then the expected total reward is defined as

Υπ(s0) := rt(s0,d0(s0)) +γυπ(s1) with γ ∈ [0,1] the discount factor.

Again, we saw something similar before in section three of chapter three, (3.24).
A health policy π is said to be an optimal health policy π∗ if

Υπ∗(s0)≥Υπ(s0) for all s0 ∈ S and π ∈Π.

The model we just described is called a SIR-model, with some modifications we can use a Markov
decision process to find the optimal health policy π∗. If we can use a discrete-time Markov
chain to model the disease dynamics and if the states are observable throughout the epidemic,
then we can obtain the optimal health policy π∗ by using a Markov decision process. To be
able to use a Markov decision process for describing an influenza epidemic, we need to make
some simplifying assumptions. First, we assume that the population size does not change during
the epidemic. Secondly, we assume that individuals only become infected through contact with
other infected individuals. Thirdly, we assume that contacts occur according to a homogeneous
Poisson distribution with rate µ∆t for t ∈ T during the time interval [t, t+∆t]. Lastly, we assume
that a susceptible individual who is infected during time interval [t−∆t, t] becomes infectious
and symptomatic at time t. This individual will come in contact with other individuals during
time interval [t, t+ ∆t]. The probability that a susceptible individual becomes infected when the
individual comes in contact with an infected individual is denoted by α(t). Further, we denote
the probability that the next interaction of a random susceptible individual is with an infected
individual by β(t). In the case no social distancing has occurred, β(t) is equal to the number of
the infected individuals XI(t) divided by the total population N , hence β(t) = XI(t)

N . We can
alter the variables α(t) and β(t) by introducing transmission-reducing interventions. The overall
probability that a susceptible individual becomes infected is denoted by ϕ(t), with

ϕ(t) = 1−e−µ∆tα(t)β(t). (5.1)
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Now, we will explain how we obtained this expression (5.1). We assume that a susceptible indi-
vidual will come in contact with n individuals during time interval [t, t+ ∆t]. This contact will
occur according to a homogeneous Poisson distribution with rate µ∆t for t ∈ T as we have seen
before. Further, we will assume that among those n individuals, j individuals will be infected.
Lastly, the probability that the susceptible individual becomes infected is one minus the prob-
ability that none of the interactions with the j infected individuals results in infection, hence
1− (1−α(t))j . Thus, we have a binomial distribution (n,β(t)). Therefore, ϕ(t) is a composition
of a Poisson distribution and a binomial distribution. So

ϕ(t) =
∞∑
n=0

(µ∆t)n

n! ·e−µ∆t

 n∑
j=0

(
n

j

)
(β(t))j(1−β(t))n−j(1− (1−α(t))j)

 (5.2)

Equation (5.2) can be rewritten as

ϕ(t) = 1−
∞∑
n=0

(µ∆t)n

n! ·e−µ∆t

 n∑
j=0

(
n

j

)
(β(t))j(1−β(t))n−j(1−α(t))j

 (5.3)

We will now rewrite the expression
∑n
j=0

(n
j

)
(β(t))j(1− β(t))n−j(1−α(t))j using the identity

(x+ y)n =
∑n
k=0

(n
k

)
xnyn−k. In our case, we choose x as β(t)(1−α(t)) and y as (1− β(t)).

Therefore,
n∑
j=0

(
n

j

)
(β(t))j(1−β(t))n−j(1−α(t))j =

(β(t)(1−α(t)) + (1−β(t)))n =

(β(t)−α(t)β(t) + 1−β(t))n =

(1−α(t)β(t))n .

Now, we substitute this in our expression (5.3). Hence,

ϕ(t) = 1−
( ∞∑
n=0

(µ∆t)n

n! ·e−µ∆t

)
(1−α(t)β(t))n (5.4)

Lastly, we rewrite the expression
∑∞
n=0

(µ∆t)n
n! ·e−µ∆t · (1−α(t)β(t))n.

∞∑
n=0

(µ∆t)n

n! ·e−µ∆t · (1−α(t)β(t))n =

e−µ∆t ·
∞∑
n=0

(µ∆t)n(1−α(t)β(t))n

n! =

e−µ∆t ·
∞∑
n=0

(µ∆t(1−α(t)β(t)))n

n! =

e−µ∆t ·e(µ∆t(1−α(t)β(t)) =

e−µ∆t+µ∆t−µ∆tα(t)β(t) =

e−µ∆tα(t)β(t).

Again, we will substitute this in our expression (5.4). Hence,

ϕ(t) = 1−e−µ∆tα(t)β(t), (5.5)
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as required.

Given the disease state st = (XS(t),XI(t)), the number of new infections I(t) =XS(t)−XS(t+∆t)
during time interval [t, t+ ∆t] will have a binomial distribution with XS(t) the number of trials
and ϕ(t) the probability of success. Thus,

P(I(t) = k |XS(t),XI(t)) :=


(
XS(t)
k

)
(ϕ(t))k(1−ϕ(t))XS(t)−k for 0≤ k ≤XS(t),

0 otherwise
(5.6)

We will now provide a framework to construct the transition probabilities of the Markov chain
{(XS(t),XI(t)) | t = 0,1,2, ...}. The first step of the framework is to define the dynamics state
equation. For a population of fixed size N , the dynamics state equation is defined to be
XS(t) +XI(t) +XR(t) = N , therefore two classes XS(t) and XI(t) are sufficient to construct a
Markov model. The second step is to find the probability distribution of the driving events. We
have two driving events in this Markov model, namely the number of new infections I(t) during
time interval [t, t+∆t] and the number of recovered individuals R(t) during time interval [t, t+∆t].
The probability distribution of the driving event I(t) is given by equation (5.6). For the driving
event R(t), we assume that a susceptible individual who is infected during time interval [t−∆t, t]
becomes infectious and symptomatic at time t and will come in contact with other individuals
during time interval [t, t+∆t]. At time t+∆t this individual will be recovered and removed from
the population. Hence, the probability distribution of the driving event R(t) is defined as

P(R(t) = r |XS(t),XI(t)) :=
{

1 for r =XI(t),
0 otherwise

(5.7)

The third step is to form the dynamics driving and feasibility constraints. The dynamics driving
constraints will be defined as

I(t) =XS(t)−XS(t+ ∆t), t ∈ T (5.8)

R(t) =XI(t)−XI(t+ ∆t) +XS(t)−XS(t+ ∆t), t ∈ T. (5.9)

Further, the feasibility constraints are defined as follows

0≤XS(t)−XS(t+ ∆t)≤XS(t), t ∈ T (5.10)

0≤XI(t)−XI(t+ ∆t) +XS(t)−XS(t+ ∆t)≤XI(t), t ∈ T. (5.11)

The joint probability distribution of (I(t),R(t)), P(R(t), I(t) |XS(t),XI(t)) is nonzero if and only
if R(t) =XI(t). Since,

P
(
R(t), I(t) |XS(t),XI(t)

)
=

P(R(t), I(t) |XS(t),XI(t),R(t) =XI(t)) ·P(R(t) =XI(t) |XS(t),XI(t))+

P(R(t), I(t) |XS(t),XI(t),R(t) 6=XI(t)) ·P(R(t) 6=XI(t) |XS(t),XI(t)).

By equation (5.7) we know that

P(R(t) =XI(t) |XS(t),XI(t)) = 1 and

P(R(t) 6=XI(t) |XS(t),XI(t) = 0.

Hence,
P
(
R(t), I(t) |XS(t),XI(t)

)
= P(I(t) |XS(t),XI(t)).
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Therefore, the dynamics driving and feasibility constraints can be simplified. This can be done as
follows

R(t) =XI(t) and R(t) =XI(t)−XI(t+ ∆t) +XS(t)−XS(t+ ∆t)

So
XI(t) =XI(t)−XI(t+ ∆t) +XS(t)−XS(t+ ∆t)⇒

−XI(t+ ∆t) +XS(t)−XS(t+ ∆t) = 0⇒

XI(t+ ∆t) =XS(t)−XS(t+ ∆t).

Hence,
I(t) =XS(t)−XS(t+ ∆t) =XI(t+ ∆t), t ∈ T (5.12)

0≤XS(t)−XS(t+ ∆t)≤XS(t), t ∈ T. (5.13)

The transition probability of the Markov chain is now obtained by using the constraints, the state
space

S(XS(t),XI(t)) = {(xS ,xI) ∈ N2 | 0≤ xS ≤XS(t),0≤ xI ≤XS(t),xS +xI =XS(t)}

and the fact that I(t) = XI(t+ ∆t) (5.12). Therefore, the transition probabilities of the Markov
chain are

P(R(t), I(t) |XS(t),XI(t))

:=
{
P(I(t) = xI |XS(t),XI(t)) for 0≤ xS ≤XS(t),0≤ xI ≤XS(t),xS +xI =XS(t),
0 otherwise

(5.14)

which we deduced earlier.

Again, we will consider the two possible interventions or actions to control the spread of the
infectious disease. Those interventions were vaccination and transmission-reducing interventions.
For the purpose of illustration, we will assume that no vaccines are available during the epidemic,
so the stationary health policy π only specifies the optimal transmission-reducing intervention
a∗t ∈ AT , t ∈ T . Further, we also assume that there is only one kind of transmission-reducing
intervention available, thus AT = {0,1}. The probability that the epidemic will be in state j at
decision epoch t+ ∆t given that the epidemic is in state s at decision epoch t and the decision
maker chooses action a ∈ 0,1 at decision epoch t is denoted by p(j | s,a). The optimal health
policy during the epidemic is now obtained by solving the following set of recursive equations or
optimality equations

υ∗(s) = max
a∈0,1

{rt(s,a) +γ
∑
j∈S

p(j | s,a)υ∗(j)} for s ∈ S. (5.15)

It can be shown that the solution of the set of equations is given by

a∗(s) = argmax
a∈0,1

{rt(s,a) +γ
∑
j∈S

p(j | s,a)υ∗(j)}. (5.16)

In the following section, we will discuss the application of partially observable Markov decision
processes in the medical sciences, specifically for the treatment of ischemic heart disease.
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5.2 Ischemic Heart Disease
In this section, we will discuss the application of partially observable Markov decision process
for the treatment of ischemic heart disease. First, we will give an explanation of ischemic heart
disease. Secondly, we will formulate the partially observable Markov decision process for this
specific problem. Ischemic heart disease or coronary artery disease means that the heart is not
getting enough oxygen and is often caused by narrowing of the coronary arteries. Ischemic heart
disease is a progressive disease and tends to worsen over time. The decision maker or in this
case the physician has different options to intervene (actions), namely do nothing, treatment with
medication, surgery or perform more test in order to get more information about the status of
the disease. These interventions differ in cost, where the cost stands for economic cost, quality
of life and invasiveness of procedures. The goal is to develop a strategy that would minimize the
expected cost of the treatment. As we have seen in chapter four, a partially observable Markov
decision process consists of seven elements: decision times, states, actions, rewards, transition
probabilities, observations and observation probabilities. We will now discuss those elements.
Decision times are given points in time, where decisions are made by the decision maker or in
this case a physician. We denote T as the set of decision times and we assume that the set T
is discrete. We make this assumption, because we are only interested in discrete-time partially
observed Markov decision processes. Further, we denote the elements of the set T as t, which we
refer to as time t. Secondly, a state is defined as the state of a patient at any point in time. The
set of all possible states is denoted by S. An element of the set is denoted by s. The different
states for ischemic heart disease are:

• Coronary artery disease: normal, mild-moderate, severe

• Ischemia level: no ischemia, mild-moderate, severe

• Acute myocardial infarction (heart attack): true, false

• Decreased ventricular function: true, false

• Chest pain: no pain, mild, severe

• EKG ischemia: true, false

• Stress test: not available, negative, positive

These states are only valid for a patient that is alive. This structure is a bit different then we
have seen, since it is hierarchically structured. The state variables are capable to provide more
detailed description of the patient state only when the patient is still alive. Further, the states
described above represent also the observations, since the states are not necessary observable.
For example, a patient with severe chest pain has not per definition ischemic heart disease. So
severe chest pain is perfectly observable, whether ischemic heart disease is not. We denote the set
of all observations by O. The elements of the set of observations will be denoted by o. In the case
of ischemic heart disease, an action is defined as a treatment or investigative procedure. The set
of all possible actions is denoted by As. The different actions are:

• No action

• Medication treatment

• Angioplasty; procedure to widen narrowed arteries

• Coronary artery bypass graft surgery

• Stress test (investigative procedure)

• Coronary angiogram (investigative procedure)

Further, the reward or cost refer to the economic cost and the physical cost, such as the discom-
fort of a patient. The reward obtained in state j given state s ∈ S and action a ∈ As is denoted
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by rt(j,a,s) = rt(j) + rt(a), where rt(j) stands for the costs associated only with the state of a
patient and rt(a) stands for the costs associated with action a ∈As. Lastly, we will discuss trans-
ition and observation probabilities. The transition probability function pt(j | s,a) denotes the
probability that the process will be in state j at the next decision epoch t+ 1, when the decision
maker/physician chooses an action a ∈As in state s ∈ S at decision time t. In medical terms, the
transition probability denotes the state of a patient after a specific treatment. The same is true
for the observation probability. An observation probability pO(o | s,a) denotes the probability
that the decision maker/physician observes a certain observation. Now, we will discuss a simple
example.

Example 5.2.1. Suppose a physician sees a patient at time t. The physician observes the patient’s
status: alive or dead. Assume that the patient is alive and has severe chest pain due to an
underlying condition. The physician can observe the chest pain, but the underlying condition,
coronary artery disease, is hidden. This is shown in the figure, the purple circles stands for
observable states and the white circles stands for hidden states. When the patient is alive there
are multiple states and observations possible, this is shown inside the dashed box. After observing
the chest pain, the physician decides to employ investigative procedures or actions. These actions
are a stress test and a coronary angiogram. After doing a stress test and a coronary angiogram,
the process evolves to decision time t+ 1. The physician sees the patient again at decision time
t+1. He now observes chest pain and coronary artery disease due to the investigative procedures
he employed at time t.

Patient
status at
time t

Stress test; Coronary
angiogram

Patient
status at
time t+ 1

Dead Alive

Coronary
artery
disease

Chest
pain

Dead Alive

Coronary
artery
disease

Chest
pain

�
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We have now formulated the partially observable Markov decision process for the treatment of
ischemic heart disease and discussed an example. Once a partially observable Markov decision
process is defined it could be converted into a belief state Markov decision process. We have
not discussed belief state Markov decision processes before, since it is a bit beyond the scope of
this thesis. However, we will give a short motivation on belief state Markov decision process such
that we can apply it later in our model for the treatment of ischemic heart disease.

A belief state b assigns a probability to all states s ∈ S. The probability that the process is in
state s is denoted by b(s), with

∑
s∈S b(s) = 1. The probability of observing a certain observation

o ∈O given action a ∈As and belief state b is given by

p(o | b,a) =
∑
j∈S

po(o | j,a)
∑
i∈S

pt(j | i,a)b(i), (5.17)

where i ∈ S is the current state, j ∈ S the next state and b(i) the probability that the process
is in state i. We can now update our belief, this means that we can formulate the next state
belief, which is acquired after observing a certain observation o ∈ O and choosing action a ∈ As.
Therefore, the updated belief b′ is defined as

b′(i) =
po(o | i,a)

∑
j∈S pt(i | j,a)b(j)

p(o | b,a) and p(o | b,a)> 0, (5.18)

where i ∈ S is the current state, j ∈ S the next state and b(j) the probability that the process is in
state j. Without any proof, we will state the Bellman equations for a belief state Markov decision
process. The optimality equations or Bellman equations are given by

υ∗(b) = max
a∈As

{rt(b,a) +γ
∑
o∈O

p(o | b,a)υ∗(b′)},

where b is a belief state, b′ updated belief state, rt(b,a) the expected reward and γ ∈ [0,1] the
discount factor.

If we apply this theory to our model for the treatment of ischemic heart disease, then this will lead
to two improvements. The first improvement is that not all information is needed, so we can work
with less information and still manage to solve the problem. This comes from the fact that not all
state variables at a given time are necessary to define the belief state. It is enough to use a belief
state that is defined only over the state variables that are directly used in the transition from
one decision epoch to the other. So in example (5.2.1), it suffices to use only the state variables
patient status, coronary artery disease and chest pain in stead of all possible states in order to
define the belief state. Those variables are called information state variables and are denoted
by d. The second improvement is using a so-called hybrid information state. A hybrid information
state {od, bd} consists of two components, namely a vector of observable information states od and
a vector of belief information states bd. This is a improvement, since the decision maker can work
with the actual value of a state when it is perfectly observed rather than the beliefs. So in case
that some variables are perfectly observable and others are hidden, we would like to work with
hybrid information states. Hence, a belief state Markov decision process has some improvements
over a partially observable Markov decision process. The next chapter will contain the conclusion
of this thesis.
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Conclusion

In this thesis, we explained Markov decision processes and partially observed Markov decision
processes. We started with the explanation of a sequential decision process and after that we
elaborated on Markov chains. In our elaboration on Markov chains, we discussed the Markov
property, the Chapman-Kolmogorov equations and various properties associated with the clas-
sification of states. Further, in our explanation of Markov decision processes, we discussed the
five components, decision times, states, actions, transition probabilities and rewards, decision
rules and policies. Also, we explained the finite-horizon and the infinite-horizon Markov decision
processes. In our elaboration on partially observed Markov decision processes, we discussed the
seven elements, which were decision times, states, actions, observations, transition probabilities,
observation probabilities and rewards. We have seen that Markov decision processes and partially
observed Markov decision processes differ in observability. A Markov decision process is perfect
observed, so the decision maker has all information available at all times. However, a partially
observed Markov decision process is not perfect observed. In this case, the decision maker has not
all the information, so he has to make his decision based on observations and previous actions.
Lastly, we showed some applications of Markov decision processes and partially observed Markov
decision processes to medical sciences, in particular the spread of infectious disease and the treat-
ment of ischemic heart disease. We needed to make some simplifying assumptions in order to
apply Markov decision processes in medical sciences.
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