
June 26, 2020



Abstract

The human body is nearly left-right symmetric on the outside, but this is not the case on the inside.
During the development of the body, a leftward fluid movement in the node (a cavity that will turn
into the embryo) is essential for the left-right symmetry-breaking process. However, the exact role of
nodal flow and the hair-like appendages (cilia) that produce this is still debated. In this thesis we
study a minimal model of a nodal cilium with only one degree of freedom. In this model, originally
proposed by Vilfan and Jülicher, Phys. Rev. Lett. 96, 058102 (2006), a cilium is replaced by a spherical
bead moving on a fixed elliptic orbit. The model cilia interact hydrodynamically which allows for the
study of synchronization. In this thesis we compare the minimal model to an advanced model developed
concurrently in another Bachelor project by Perugachi Israels. Surprisingly, we find that the minimal
model semi-quantitatively captures the features and generates fluid dynamics comparable to the advanced
model. Consequently, the minimal model can be used to qualitatively study processes like the flow-
induced movement of small signaling molecules. Duplicating the minimal model allows us to study
synchronization between neighboring cilia. Doing so, we notice that the model cannot take into account
the change in the trajectory of a cilium due to the presence of a second cilium. This problem can be
solved by adding another degree of freedom to the minimal model, which is left for future study.

Description of the cover image: A visualization of the minimal model originally proposed by Vilfan and
Jülicher [1]. Figure on the left: Model cilium by Perugachi Israels [2]. The tip of a cilium describes a elliptic
orbit. The cilium is replaced by a spherical bead moving on this elliptic trajectory (figure on the right).
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1 Introduction

There are several aspects of the human body that display symmetry. This includes, for example, physical
appearance and the placement of the kidneys. However, this is not the case in on the inside. Some organs
are placed in an asymmetric manner, e.g. the heart is positioned on the left and liver towards the right. In
the human body, a three dimensional object, we distinguish between three axes: front-back, up-down, and
left-right [3]. Accurate positioning of the organs during embryonic development requires the left-right axis to
be correctly established. A mistake in establishing this axis can lead to random positioning (heterotaxy/situs
ambiguous) or a completely reverse positioning (situs inversus totalis) of the organs [4].

The formation of the body starts from an oocyte, which is a symmetrical round shaped egg. Subsequently,
an embryonic cavity is formed, called the node. The embryo is completely symmetric during this period.
Breaking down this symmetry is crucial in the process of developing the human body [3, 4]. The research
conducted during the last decade shows that leftward fluid movement in the node is essential in the left-right
symmetry-breaking process [3]. For instance, Okada et al. (1999) showed that defects in organ positioning
are always accompanied by abnormalities in nodal flow [5].

Nodal flow is generated by the tilted rotational motion of cilia, which are vibrating hair-like microscopic
structures attached to the surface of certain cells, including cells in the node [6, 7]. The central role cilia
play in the left-right symmetry-breaking process is shown in numerous experiments. For instance, a study
by Okada et al. (1999) demonstrates that mouse mutants with immotile nodal cilia, which leads to an absent
nodal flow, exhibited randomized positioning of the organs along the left-right axis [5]. In a different research
by Shinohara et al. (2012) embryos with only one motile cilium are studied. In these embryos left-right asym-
metry is never observed, regardless of the position of the cilium in the node [6]. A study by Nonaka et al.
(2002) demonstrates that mice with an artificially induced rightward flow show inverted organ placement [8].
These experiments greatly contribute to the consensus that nodal cilia play an important role in establishing
correct organ positioning. However, how nodal fluid flow exactly leads to asymmetric organ positioning is
still debated.

Until recently it was believed that rotation of numerous cilia was necessary to establish left-right asym-
metry. One of the reasons for this is the observation that a system of in-phase beating cilia can form a wave
in the opposite direction of their effective beat, called an antiplectic metachronal wave. This phenomenon
leads to a more efficient flow [9, 10, 11]. Experiments indicate that hydrodynamic coupling between cilia
could be the cause of the observed metachronal waves [12, 13]. This understanding has been verified in
simple systems of artificially coupled cilia with only a few degrees of freedom [1, 14]. These models have
shown that hydrodynamic interactions alone can indeed synchronize a system of two simple oscillators.

Counter to the idea that many cilia are required, a recent study by Shinohara (2012) reveales that the
leftward flow generated by a system of only two rotating cilia is sufficient to initiate left-right asymmetric
gene expression. Left-right asymmetry is already observed a few hours after a system of two cilia start their
beating pattern [6]. This has led to further debate on the nature and origin of the left-right asymmetry.

In this thesis we contribute to research on this topic by studying a minimal model of a cilium. The goal is to
discover whether a minimal model of a cilium properly captures the features and generates fluid dynamics
comparable to that of an advanced model of a cilium. Consequently, we can determine if the minimal model
is sufficiently accurate to study processes in the node like the flow-induced movement of small signaling
molecules. Studying this process, and other nodal processes may contribute to one of the hypotheses about
how nodal flow exactly leads to asymmetric gene expression.
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In order to investigate this a cilium will be modeled as a spherical bead moving on a fixed elliptic orbit. This
model is originally proposed by Vilfan and Jülicher [1]. The only degree of freedom in this minimal model
is the position of the bead along the trajectory, which allows us to study synchronization. The model takes
into account the effect of the nearby cell surface on the flow via the Blake tensor. Duplicating this minimal
model allows us to study synchronization in a system of two cilia. The influence the neighbouring cilia
have on each other will be taken into account using Faxen’s Law. In order to answer the research question
we compare the minimal model to a more advanced model analyzed by Perugachi Israels [2]. Her model
provides a detailed description of a cilium where not only one bead is modeled, but the full shape of a cilium
using multiple beads connected by springs. We compare the generated fluid velocity and traction forces (a
measure for the internal friction inside the fluid) of the minimal model to the advanced model. Surprisingly,
we find that the minimal model semi-quantitatively captures the fluid velocity and other properties of the
advanced model. Therefore, the minimal model can be used to qualitatively study nodal processes like the
flow-induced movement of small signaling molecules. Studying these nodal processes may contribute to one
of the hypotheses (see section 2) about how nodal flow exactly lead to asymmetric gen expression. Duplicat-
ing the minimal model has allowed us to study synchronization between neighboring cilia. We observe that
the minimal model is highly sensitive to changes in the trajectory of the beads. We notice that a change in
trajectory of a cilium due to the presence of a second cilium cannot be taken into account. In order to solve
this problem another degree of freedom should be added to the minimal model.

In section 2 we will continue to provide more background information on nodal cilia. Next in section 3,
we present the theoretical background needed to describe the fluid flow and traction forces in the node.
Subsequently, in section 4 we explain the minimal model in more depth and illustrate how we compare it to
the advanced model. Finally, in section 5, 6 and 7 we outline and discuss the results.
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2 Biological background information of nodal cilia

Motile cilia are found on the surface of certain cells, where they either cause fluid flow in the surrounding
fluid or in small organisms provide, propulsion [15, 16]. There are at least eight categories of cilia in the hu-
man body, which play important roles in numerous processes. For example, cilia are involved in clearing the
respiratory system, transporting of cerebrospinal fluid, reproductive processes and embryonic development
[17]. In this thesis we focus on the role cilia play in embryonic development, specifically in the right-left-
symmetry breaking process. The proposed model in this thesis is based on mice nodal cilia.

Motile cilia are active and move with a beating pattern that is generated by motor proteins [18]. In mice em-
bryo, nodal cilia emerge 7.5 days after fertilization in a triangular shaped cavity called the node. The width
of the node is approximately 100 µm [3, 17]. Mice nodal cilia are relatively short, about 5 µm, and have a di-
ameter of approximately 150 nm [17, 19]. To each cell of the node only one cilium is attached, this result in an
inter-cilia spacing of the order of several cilium lengths [20]. In total, the node contains up to 200-300 cilia [6].

A typical cilium trajectory can be divided into an effective stroke and recovery stroke. During the effective
stroke the curved cilium extends and moves rapidly away from the cell surface. Throughout the recovery
stroke the bend returns and the cilium moves slowly in a trajectory closer to the cell surface [19, 21]. The
beating pattern of nodal cilia differs from this as they exhibit a tilted rotational motion rather than an
asymmetric shaped power-and recovery stroke [20]. Mice nodal cilia are tilted 40◦ ± 10◦ with respect to
the cell surface and rotate clockwise with a frequency of 10 Hz [7]. When the cilium approaches the cell
wall closely (during the rightward recovery stroke) it interacts with the nearby boundary. Consequently,
the flow in this part of the trajectory is limited and a leftward fluid flow is generated [20, 22]. The nodal
flow is approximately 3µm s−1 and is observed ∼ 5µm above the cell surface [7]. The leftward flow pro-
ceeds to go upward along the left sidewall of the node, following the top membrane of the node called the
Reichert’s membrane. The flow eventually returns on the right side (∼ 20µm above the cell surface) as a
slower counter-flow of approximately 1µm s−1 [7, 23].

The exact role of nodal flow in the symmetry-breaking process is debated. It is believed that nodal flow
carries signaling molecules to the left edge of the node where they initiate an asymmetric gene expression
pathway [3]. However, this theory has not proven yet and there are a myriad of hypotheses. Another theory
argues that immotile cilia on the left side of the node detect the flow directly [24, 25]. To gain insight into
the symmetry-breaking process it is essential to study the strength, amount and direction of the nodal flow.
Multiple factors can influence the generated nodal flow.

When a system of multiple cilia starts beating, metachronal coordination occurs (neighbouring cilia ex-
hibit a constant phase difference). It is believed that this is a result of the hydrodynamic coupling between
the cilia [9, 10, 11]. The degree in which the cilia synchronize greatly affects their ability to transport mate-
rials inside the node. In a completely unsynchronized system no materials are transported, independent of
all other cilia activity [26].

In order to study these ciliated systems not only experimental research is conducted, but also numerous
mathematical models are developed. For example, Smith et al. (2011) developed a method to model the
effect of the Reichert’s membrane on the nodal flow [23]. The computations confirm that the presence of
this membrane induces a counter flow as observed in biological reality . Vilfan and Jülicher (2006) propose
a different model [1]. This minimal model only exhibits one degree of freedom and therefore allows them to
study hydrodynamic interaction between two cilia.
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3 Theoretical framework

Nodal (motile) cilia produce fluid flow in the embryonic node. We can describe this flow using the Navier-
Stokes equations, which we introduce in this section. For the hydrodynamic regime we are interested in
the Navier–Stokes equations reduce to their linearized form, often referred to as the Stokes equations. We
continue by stating the fundamental solutions to the Stokes equations and use these to describe the bulk
and boundary fluid flow. Using Faxén’s law we show that flow can generate the movement of a small sphere
that is placed inside the fluid. This allows us to construct a minimal model (originally proposed by Vilfan
and Jülicher) where a cilium is represented by a small sphere.

3.1 Equations of motion for a fluid

Cilia move in an incompressible aqueous fluid and consequently generate fluid flow. We describe the flow
using the Navier-Stokes equations, which govern mass and momentum transport from conservation laws. The
Navier-Stokes equations are stated below. We respectively have the incompressibility equation (equation 1),
conservation of mass (equation 2) and conservation of momentum (equation 3) [27].

∇r · u(r, t) = 0 (1)

D

Dt
ρ(r, t) = 0 (2)

ρ(r, t)
D

Dt
u(r, t) = −∇rp(r, t) + µ∆ru(r, t) + f(r, t) (3)

In these equations:

• u(r, t) is the velocity

• ρ(r, t) is the density

• f(r, t) is the external force applied on the fluid

• p(r, t) is the pressure

• µ is the viscosity

• D

Dt
=

∂

∂t
+ u(r, t) ·∇r is the material derivative

Note that we choose to ignore the energy transport equation. We are allowed to do this if there are no
significant temperature gradients. We assume this is the case in our ciliated system. This is a reasonable
assumption for two main reasons: First, there are no significant external temperature gradients in the
embryonic cavity. Therefore, the system is considered isothermal, meaning no heat is transferred in or out
of our system. Secondly, we study a system at small length scales. This means that viscous dissipation (the
heating of the fluid due to internal friction) does not lead to significant local heating. Using the above we
can justify ignoring the energy transport equation [28].
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3.2 Stress in a fluid

In order to study the influence of a beating cilium on the surrounding substrate we need a measure for the
internal forces in the fluid. These can be expressed in terms of a three-dimensional matrix called the stress
tensor. The forces that act inside the fluid result in a displacement of a volume element which we can express
in terms of a second tensor called the strain tensor [29]. We will now quantify the Stress and Strain tensor
and describe a relation between the two. We start our discussion at the momentum transport equation in a
slightly different form than previously stated in equation 3 [28]:

ρ(r, t)
D

Dt
u(r, t) = ∇r · σ(r, t) + f(r, t), (4)

Here σ(r, t) denotes the stress tensor. By specifying the stress tensor we can capture the behaviour of
numerous suspensions [28]. The stress tensor relates a force F acting on a surface element dA in a linear
fashion [29]:

Fi(dA) =

3∑
j=1

σijdAj (5)

The off-diagonal elements of the stress tensor σij (i 6= j) contain shear stresses which give information about
the deformation of a fluid element1. We will denote the shear elements of the stress tensor as τ . The diagonal
elements of the stress tensor σii (i = j) contain the normal components of the force per area on the surface
of a fluid element. The normal stresses give information about the volume change of a fluid element2. When
a fluid is subjected to hydrostatic pressure only we can relate the change in volume directly to the change
in pressure [28, 29]. We use this to rewrite the stress tensor for a fluid by isolating the shear stresses from
the normal stresses:

σ(r, t) = −p(r, t)I3 + τ (r, t), (6)

where p(r, t) is the pressure (containing the normal stresses) and τ (r, t) is the deviatoric stress tensor
(containing the shear stresses). The stress tensor can be related to the traction forces, which measure the
internal friction in the fluid. We define the outward-pointing normal vector of a fluid volume element as
n̂(r, t). The traction yields:

T (r, t) = n̂(r, t) · σ(r, t) (7)

How a control volume exactly deforms is defined by the strain-rate tensor γ̇(r, t). The dot denotes that the
variation of a control volume over time is considered. The strain rate tensor is defined as [28]:

γ̇(r, t) =
(
∇ru(r, t)

)
+
(
∇ru(r, t)

)T
, (8)

where u(r, t) is the fluid velocity field. The strain rate tensor is related to the deviatoric stress tensor (which
in our case of a fluid only contains shear stress) by the viscosity µ [28]:

τ (r, t) = µγ̇(r, t) (9)

In this thesis we will report the traction on the surface rather than the entire stress tensor. This quantity is
easier to visualize and gives more insight in the results.

1Generally the off-diagonal elements of the stress tensor contain shear stresses and other stresses. However, when studying
a incompressible Newtonian fluid the off diagonal elements of the stress tensor only contain shear stresses [28].

2When considering a fluid the normal stresses are equal [28]
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3.3 From Navier–Stokes to Stokes

We examine the the Navier–Stokes equations in more detail and note that there are nonlinear terms in the
fluid velocity u(r, t) due to the second term on the left-hand side of equation 3. The non-linear terms in
fluid velocity make the Navier–Stokes equation difficult to solve. One can estimate the importance of each
term through dimensional analysis.

We now introduce dimensionless (accent) quantities by writing: t = Tt′, r = Lr′, u = Uu′, p = µUp′/L
and f = µUf ′/L2. Where T represents the characteristic time of the system, L the length and U the
speed. We can write the momentum transport equation ( equation 3) in a non-dimensional form using our
non-dimensional parameters:

Re(St
∂

∂t′
+ u′ · ∇′)u′ = −∇′p+ ∆′u′ + f ′ (10)

Here we have introduced the Reynolds number and the Strouhal number respectively:

Re =
ρUL

µ

St =
L

UT

(11)

The Reynolds number is a measure of the importance of inertia (ρUL) relative to viscous effects (µ). The
Strouhal number is a measure of the importance of convective transport L/U to perturbations of the flow
field T [28].

In case the Reynolds number is high the inertia effects dominate over viscous dissipation. As a result
the left-hand side of equation 10, containing the time derivatives and convective transport, dominates over
the right-hand side. When the Reynolds number is low, the right-hand side of equation 10, containing the
viscous effects, dominates the left-hand side. When Re � 1 but the combination ReSt & 1, the non linear
term in the Navier–Stokes equation becomes irrelevant but the the time derivative does not. On condition
that Re � 1 and St � 1 the right hand side of equation 10 dominates over the left-hand side, i.e. the
viscous dissipation dominates over the inertia. Both the non-linear and the time-dependent terms drop out
and equation 10 can be approximated by the linear Stokes equation:

µ∆u = ∇p− f (12)

Here we have reinstated the dimension-full notation. The linearized Stokes equations describe fluid flows
that are referred to as laminar.

Reynolds number in ciliated systems
In this thesis we examine a ciliated system in an embryonic node. We work with a fluid that has the density
and viscosity of water at 36◦ [30] (the temperate of mice), hence ρ = 1.0 · 103 kg m−3 and µ = 7.0 · 10−4

Pa. Mice nodal cilia in mice are about 5 µm long [19] and rotate with a approximate frequency of 10 Hz
[7]. We use the above parameters to compute the the Reynolds and Strouhal number for our ciliated system
and find: Re ∼ 10−4 and St ∼ 10−1. Therefore the Navier–Stokes equations reduce to the Stokes equations.
We repeat the two relevant equations below.

µ∆u = ∇p− f (13)

∇ · u = 0 (14)

Note that we did not include equation 2, which tells us the density change with respect to time. This is
because we are working in a homogeneous incompressible medium rendering equation 2 irrelevant.
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3.4 Solving the Stokes equations

Solving equation 13 and 14 reveals the fluid behaviour at the hydrodynamic regime we are interested in.
First, we will examine the fluid behavior of the bulk system. We continue studying the fluid behavior near
a boundary. Finally, we will provide an expression for the pressure in the fluid near a boundary.

Fluid behavior of the bulk system
The solutions to the stationary Stokes equations are Green’s functions, which can be derived by going to
Fourier space. For a more detailed description of solving the Stokes equations see reference [31]. The solved
Stokes equations are described by the Stokeslet solution. The fluid flow velocity u(r) at an arbitrary point
r is linearly related to the point force f which is applied to the fluid at r′ by [31, 32]:

u(r) =
f

8πµ
GO(r− r′) (15)

Where GO is the Stokeslet, also commonly referred to as the Oseen tensor:

GO(r) =
1

r
I3 +

r⊗ r

r3
(16)

Here I3 is the 3 × 3 identity matrix and ⊗ denotes a dyadic product. The fluid flow velocity u(r), when a
point force f is applied to the fluid, is visualized in the figure below:

Figure 1: The flow field u(r) of the Stokeslet solution is represented by the blue streamlines. A point force
f = (1, 0, 0) is applied to the fluid, represented by the red arrow.

9



Fluid behavior near a boundary
A cilium is attached to a cell surface. Therefore we are interested in fluid behaviour near this boundary. We
know that the flow at the boundary has zero velocity relative to the boundary. This phenomena is referred
to as the no-slip boundary condition [33]. The point-force solution of the Stokes equations that satisfies the
no-slip condition is named the Blake tensor and is derived using the method of images [34, 35].

The method of images is a mathematical tool which allows us to solve differential equations by placing
a mirror image in the half-space below the plane of the original image. As a result the no-slip boundary
condition is satisfied. You may recall this method form electrostatics. Here, a mirror charge is used to
solve the Poisson equations to fit the appropriate boundary conditions. We use a similar approach with our
hydrodynamic image system. However, due to the more complicated vectorial nature of the fluid flow we
need (in addition to a mirror Stokeslet) an additional stresslet and source-dipole contributions [32, 35]:

Figure 2: Illustration of a hydrodynamic image system. A Stokeslet is placed at r′ = (x′, y′, z′). An anti-
Stokeslet is placed at r′ = (x′, y′,−z′). The additional Stokes doublet and Source doublet are also added to
satisfy the no-slip boundary condition. Image inspired by reference [35].

The solution that describes a flow field near a boundary and satisfies the no-slip conditions at z = 0 is named
the Blake tensor. We place our Stokeslet at r′ = (x′, y′, z′) and the image Stokeslet at r′ = (x′, y′,−z′). Let
us define rrel ≡ r−r′ and R ≡ r−r′ . Following the notation of Gauger et al. (2009) the Blake tensor yields:

GB(r, r′) = GO(r− r′) + Gim(r, r′), (17)

where GO(r− r′) is the Oseen tensor (as described in equation 16) and Gim(r, r′) contains all the mirror
contributions. As seen before, the image contributions consist of an image Oseen part GO(r− r′) and a part
that we call δGim(r, r′), which contains all the other image contributions (the Stokes doublet and Source
doublet). We write GB(r, r′) in the form:

GB(r, r′) = GO(r− r′)−GO(r− r′) + δGim(r, r′), (18)

where δGim(r, r′) can be divided into a source-dipole and stresslet contribution. Hence, we write:

GB(r, r′) = GO(r− r′)−GO(r− r′) + GD(r− r′) + GSD(r− r′) (19)
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The Stokes-doublet GD and and source-doublet GSD are defined as [34]:

GD(r− r′)αβ =
2z′2(1− 2βz)

µ

(
δαβ
R3
− 3RαRβ

R5

)
(20)

GSD(r− r′)αβ =
2z′(1− 2βz)

µ

(
δαβRz
R3

− δαzRβ
R3

+
δβzRα
R3

− 3RαRβRz
R5

)
(21)

The δGim(r, r′) part of the Blake tensor (containing the stokes and source doublet as visualised in figure 2)
can be subdivided in a stresslet and a rotlet contribution (visualized in figure 3 c and d) [34].

The stresslet is a flow profile described by two opposite point forces. Returning to the connection with
the image convention in electrostatics, the stresslet can be seen as the second term in the multi-pole expan-
sion which describes the far-away flow field around a force distribution [28]. Below we report the Oseen,
image Oseen, stresslet and rotlet contributions to the Blake tensor respectively.

Figure 3: The Oseen and image Oseen, stresslet and rotlet contributions to the Blake tensor are visualized in
figure A), B), C) and D) respectively. The fluid flow is represented by the blue streamlines. The red arrow
is a representation of the force f = (1, 0, 0) that is applied to the fluid.
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Supperposing the Oseen, image Oseen, stresslet and rotlet contributions (visualized in figure 3) as described
in equation 19 yields in the Blake solution. A visual representation of this is given below:

Figure 4: The flow profile of the Blake solution is visualized by the blue streamlines. A point force f = (1, 0, 0)
is applied to the fluid, indicated by the red arrow. The nearby wall is visualized in green.

Pressure field near a cell wall
We wish to describe the traction forces that act on a cell surface. Hence, we need an expression for the
pressure inside a fluid. First we will examine the pressure behavior of the bulk system. Analogous to section
3.4 we define rrel ≡ r− r′ and R ≡ r− r′. The pressure p(r) is linearly related to the point force r which is
applied to the fluid at r′ [31, 35]:

p(r) =
f

4π
H(r− r′), (22)

here H(r− r′) is given by:

H(r− r′) =
rrel
R3

. (23)

We also wish to examine the pressure behavior in a fluid that is near a boundary that satisfies the no-slip
boundary condition. Blake (1971) constructs a Greens function for the pressure. Equivalently to section 3.4
we state the Blake Pressure tensor:

HB(r, r′) = H(r− r′) + Him(r, r′), (24)

where HB(r, r′) gives us the total pressure near a wall. Again we have divided the total pressure field into
a bulk part H and a part that contains all the mirror contributions Him . We can subdevide the image
contributions in an image bulk part H(r − r′) and a part that we call δHim(r, r′), which contain all other
image contributions. We can write:

HB(r, r′) = H(r− r′)−H(r− r′) + δHim(r, r′), (25)

where H is a defined in equation 23 and reference [35] provides the expression for δHim:

δHim(r, r′)αβ =
2z′

4π

(
δαiδiβ − δαzδzβ

)(δzβ
R3
− 3R2

z

R5

)
(26)

Using equation 6 and the obtained expression for the pressure near a cell wall allows us to compute the
traction forces that work on the cell surface3.

3Note that in equation 26 we use Einstein summation convention
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3.5 How spherical particles move in a fluid

When studying low Reynolds number systems we can relate the velocity vi of particle i linearly to the
external forces F acting on it. If a point-like particle moves in close proximity to a wall it will induce a
flow field described by the Blake solution (see figure 4). However, in this thesis, beating cilia are modeled
as spherical particles with a finite size. Consequently, we do not have a point force that acts on the fluid.
The fluid moves around the spherical particle and the Blake solution is altered. The flow field created by a
moving spherical particle also influences the movement of other particles present in the system. These effects
have to be taken into account when studying a system of two cilia. We do so using Faxén’s theorem [32] as
presented in equation 27. This theorem tells us the velocity of spherical particle i, taking into account the
external force acting on the particle (the first term of equation 27), the finite size of the particle and the
flow induced by other particles present in the system (the second part of equation 27):

vi =
1

6πµa
F +

(
1 +

a2

6
∇2

ri

)
u(ri) (27)

Here F is the total force acting on particle i, a is the diameter of the sphere and u(ri) is the flow field induced
by other particles present in the system at the position of sphere i. The flow u(r) induced by another particle
at r′ = rj can be obtained by expanding GB(r, r′). Following reference [32] we obtain the flow field induced
by the presence of spherical particle j in the fluid:

u(r) ≈ 1

8πµ

[(
1 +

a2

6
∇2

r′

)
GB(r, r′)

]
r′=rj

F j , (28)

where the second term accounts for the extent through a Faxen derivative. Combining equations 27 and
28 we acquire a relation between the velocity of particle i and hydrodynamic forces acting on it due to the
presence of particle j:

vi =

[
1

6πµa
+

1

8πµ

(
1 +

a2

6
∇2

ri

)(
1 +

a2

6
∇2

r′

)
GB(r, r′)

]
F j (29)

In this thesis a system of two neighbouring cilia is studied. Considering only two beads, we write equation
29 in the shorthanded form:

vi =

2∑
j=1

G(ri, rj)Fj , (30)

where G is often referred to as the the total hydrodynamic kernel. It contains information about the radii of
the two spheres, their separation and their distance from the wall. It is convenient to split G into two parts.
The first part describes the influence of the flow field induced by particle i on itself, called the self-mobility
function µii. Note that in order to compute this we only have to take into account the image part of the
Blake tensor Gim(r, r′). The second part of G contains information about the influence of particle i on
particle j, called the a cross-mobility function µij . In order to compute this we have to take into account the

total Blake Tensor GB(r, r′). The obtained expressions for the self- and cross mobility functions are given
below:

µii(ri, ri) =
1

8πµ

[
4

3a
I3 +

(
1 +

a2

6
∇2

ri

)(
1 +

a2

6
∇2

ri

)
Gim(ri, ri)

]
(31)

µij(ri, rj) =
1

8πµ

[(
1 +

a2

6
∇2

ri

)(
1 +

a2

6
∇2

rj

)]
GB(ri, rj) (32)
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Following reference [14], we define the distance that separates two particles d =
√

(xj − xj)2 − (yj − yi)2.
We denote the height of the cilium’s beads i and j by zi and zj . We assume that the size of the bead a is
much smaller than the all the other length scales in our system. Therefore we can ignore all higher order
terms of a. The mobility functions reduce to the approximate form:

µii(ri, ri) '
1

8πµ

[
4

3a
I3 +Gim(ri, ri)

]
(33)

µij(ri, rj) '
1

8πµ
GB(ri, rj) (34)

Using the expression for GB and Gim as provided in equations 16, 20, and 21 we can write the components
of the self mobility function, for ri = rj , as:

µii(ri, ri) '
1

6πηa

1− ε 0 0
0 1− ε 0
0 0 1− 2ε

 , (35)

where ε = (9a/16z). For ri 6= rj we additionally assume that the height of both beads above the surface is
much small than the distanced that separates them: zi, zj � d. We expand equation 34 to the first order.
Doing this we can approximate the components of the cross mobility function as:

µij(ri, rj) '
3

2πη

zizj
d3

 cos2 ψ sinψ cosψ 0
sinψ cosψ sin2 ψ 0

0 0 0

 , (36)

where ψ is defined as tanψ = (yj − yi)/(xj − xi).

Let us consider the mobility functions corresponding to a system of two cilia. Using the obtained mobility
functions the total hydrodynamic kernel G now reads:

G1,2 =

(
µ11(r1, r1) µ12(r1, r2)
µ21(r2, r1) µ22(r2, r2)

)
(37)

We substitute the total hydrodynamic kernel G back in equation 30 and rewrite this in the form:

f1 = M11v1 +M12v2

f2 = M12v1 +M22v2

(38)

Here the matrices Mij are the components of the total mobility matrix M , which denotes the inverse the G.
When we consider a single cilium we can ignore the cross mobility terms. Therefore equation 38 reduces to:

f1 = M11v1 (39)

Finally, we explore the influence of a spherical particle on the surrounding substrate. When we consider a
system of a single cilium the force applied to the fluid is given by equation 39. The force is linearly related
to the fluid velocity u(r) as explained in section 3.4. When considering a spherical particle near a wall we
have to take into account the total Blake tensor. The fluid velocity yields:

u(r, t) = GB(r, t)M11(r, t)v(r, t) (40)
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4 Description of the model

In order to model a beating cilium and study the hydrodynamics effects on the surrounding substrate we
have to dispense a minimal model that captures the essential features of a ciliated system. A minimal model
is provided by Vilfan and Jülicher (2006). In this model a cilium is replaced by a small moving sphere
with radius a (see figure 5). This model can be used to study the hydrodynamic far field generated by a
beating cilium using only a few parameters that characterize the geometry of the beating pattern [1]. By
specifying these parameters the model captures the essential features like the difference between the effective
and recovery stroke. In this case there is no need for a detailed description of the actual shape of the cilium
[33]. However, the model cannot be used to study the hydrodynamic flow field near a beating cilium as that
depends on the detailed motion the cilium exhibits [1]. A visualization of the minimal model is presented
below. The data for the full beating pattern of the cilium is provided by Perugachi Israels [2]:

Figure 5: Figure a: a schematic beating pattern of a cilium with a different effective and recovery stroke.
Figure b: a cilium is replaced by a small moving sphere with radius a. The bead moves on a fixed tilted
elliptic trajectory near a surface placed at z = 0. The tilt in the trajectory reflects the asymmetry of the
beating pattern.

Note that only a tilted trajectory can generate a net flow. We can argue this intuitively by dividing the
trajectory into two parts; a part where the bead is located far away from the wall and a part where the
bead is near the wall. The movement of the bead is generated by a constant internal force. In the part
of the trajectory where the bead is closest to the wall, it experiences more friction making it move slower.
The friction far away from the wall is much smaller. As a result the cilium moves faster in this part of
the trajectory. In a low-Re system this results in a larger fluid velocity. Consequently, the motion of a
cilium in the far away part of the trajectory determines the direction of the flow. In a typical trajectory
of a cilium, as shown in figure 5, the direction of the flow points from left to right. The perpendicular
parts of the trajectory (where the bead mainly moves up and down) contribute to the flow perpendicular
to the wall. When considering a system of many cilia, the flow perpendicular to the wall averages to zero [14].

We denote the position of the bead by rb[φ(t)] which depends on the phase of the oscillation, described
by an angle φ. The elliptical trajectory, with major axis A and minor axis B is tilted around the x, y and
z axis with angles α, β and γ respectively. This rotation is denoted by rotation matrices Rx(α), Ry(β) and
Rz(γ). A parametric representation of the position of the bead follows:

rb[φ(t)] =

xy
z

+Rx(α)Ry(β)Rz(γ)

A cosφ
B sinφ

0

 (41)

Here x, y and z describe the position of the centre of the cilium’s elliptical orbit.
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4.1 The minimal model and the advanced model

By defining the parameters we impose the position of the bead at all times t. To determine these parameters
we compare the trajectory of the bead (representing the tip of the cilium) to the beating pattern of a fully
modeled cilium. Such a model is provided in a in a study done by Perugachi Israels [2]. In this study the
three individual strands of the cilium are modeled. Each strand consists of 24 beads with diameter a = 1,
connected to each other by springs. The strands are arranged in a triangular structure and are also con-
nected to each other by springs. The model is based on the beat pattern of nodal cilia in mice as described
in reference [7] and section 2.

In the advanced model by Perugachi Israels the tip of the cilium describes a elliptic-like orbit (see fig-
ure 6). Data provided by Perugachi Israels supplies us with the position of the tip of the cilium during
30 snapshots, which cover exactly one orbit. During this section we will report the reduced time t∗ of one
snapshot. We denote the position of the tip of the cilium in the advanced model by rt(t∗). Following the
model by Vilfan and Jülicher (2006) [1], we assume that our beat represents the tip of this cilium. We fit
the trajectory of our bead rb (on a fixed elliptic orbit) to the tip of the cilium rt (on a elliptic-like orbit):

Figure 6: Figure a: the trajectory of the cilium in the model by Perugachi Israels [2]. The red dots denote
the elliptic-like orbit the tip of the cilium creates, data for the figures provided by Perugachi Israels [2].
Figure b: the best elliptic fit to this model. The red spheres represent the cilium-tip trajectory of penal (a).
The blue line is the best elliptic fit. The cilium rotates clockwise (the direction of the gray arrow).

In this section we will elaborate upon how this fit is established. We first determine the (mean) centre
and major/minor axes of the elliptic-like orbit described by the tip of the cilium in the advanced model
denoted by rt. We use these parameters for the elliptic trajectory of the bead denoted by rb. We continue
by minimizing the difference that is left between rt and rb. By doing so we obtain the tilt of the ellipse.

In order to determine the position of the (mean) centre of the orbit of the cilium-tip we extract the max-
imum and minimum values of the components of rt and find: rtmax = (39.27, 20.58, 49.19) and rtmin =
(−33.88,−42.13, 8.57). Averaging this we obtain the the mean centre of the elliptic like orbit: rc =
(2.70,−10.78, 28.87). This position is used as the centre of the fixed elliptic orbit rb viz. the (x, y, z)
components of equation 43. A visualization of this procedure is given in figure 7a.

In order to determine the major and minor axes of the elliptic-like orbit rt we define d(t∗) = rt(t∗) − rc,
the distance from the tip of the cilium to the (mean) center rc during one period. From this we extract the
maximum and minimum distance: |d(t∗)|max= 37.96 and |d(t∗)|min= 35.27 and use these as the major and
minor axes A and B of the (fixed) elliptic orbit rb. A visualization of this procedure is given in figure 7b.
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Figure 7: Data for both figures provided by Perugachi Israels [2]. Figure a: the x, y and z components of
r(t∗), denoting the position of the tip of the cilium as a function of the reduced time (30 snapshots during
one period). The maximum and minimum coordinates are determined as indicated by the colored dots. The
mean values of the x, y and z components of r(t) are plotted (the horizontal lines). The mean centre of the
ellipse follows: rc = (2.70,−10.78, 28.87). Figure b: the distance from the tip of the cilium to the (mean)
center rc during one period. Here |d(t∗)|= |r(t∗)− rc|. The maximum and minimum distance are 37.96 and
35.27 respectively, denoted by the red dots.

We continue determining the tilt of the ellipse. In order to do this the remaining difference between rt and
rb[α, β, γ, φ(t)] has to be minimized with respect to α, β and γ. Using the previously obtained centre and
major and minor axes, we define a function that describes the remaining difference:

∆r[α, β, γ, φ(t)] =

3∑
i=1

max{|rbi − rtmax i|}+

3∑
i=1

min{|rbi − rtmin i|} (42)

We minimize equation 42 and obtain: α = 0.175π, β = 0.075π and γ = 0.05π. The obtained values describe
the angle that minimize the remaining difference between the elliptic trajectory of the minimal model and
the elliptic-like trajectory of the advance model by Perugachi Israels.

The trajectory of the bead in the minimal model is now completely obtained nad yields:

rb[φ(t)] =

 2.70
−10.78
28.87

+Rx(0.175π)Ry(0.075π)Rz(0.05π)

37.96 cosφ
35.27 sinφ

0

 (43)

Using the fully obtained trajectory of the bead, we define the normal to the trajectory at each time step.
The averaged normal over one period makes an angle of 35◦ with respect to the z axes. This is well within
the range of experimentally observed cilium tilt, as described in in section 2.
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Below, we present a projection of the elliptic orbit on the x,y plane. Viewed from above the bead is moving
clockwise on the fixed trajectory. The height of the bead is represented by the color map.

Figure 8: A projection of the elliptic orbit on the x, y plane. The height of the orbit is visualized; red
corresponds to the highest point and blue to the lowest point of the bead in the orbit.

Analyzing this orbit we can intuitively argue that the expected direction of the net fluid flow points from
left to right. This is based on the same argumentation as in section 4, where is explained that the effective
part of the cilium stoke determines the net flow direction. At the highest point in the orbit the bead (which
represent the cilium tip) is located around z ∼ 50. In this part of the effective stroke the cilium is in its most
extended form. Using the length of the cilium we relate 50 model units to 5µm i.e. 1 model unit of length
corresponds to 0.1µm. This is a rough estimation, as we have no actual cilium shape or associated length
in the minimal model. The converted numerical values can therefore only be used to gain insight into the
order of magnitude.

4.2 Force balance in ciliated systems

To complete the equations of motion we need to supply an expression for the internal forces that generate
ciliary motion. Again, the description of the force should capture the essential features of a ciliated system.
In particular, we have to take into account that the local drag forces are greater near the wall, and are
related to the local velocity.

Gray and Hancock [36] were the first to propose a method to describe the relation between the local drag
force and local velocity. They divide the drag forces into a tangential, normal and binormal components.
They assume the components are proportional to the respective components of the velocity, with different
proportionality constants. This model is simple to implement and therefore used in many simulations [33, 36].

We assume the active mechanism in the cilium generates a tangential force f i = fit̂i. Following Gray
and Hancock we can relate the tangential force to the tangential components of the velocity vi = vit̂i. Here
t̂ is a unit vector tangent to the trajectory of the cilium ti = dri/dφi. Because we study laminar flows, we
relate the two in a linear fashion: fi = f0 − κvi, with proportionality constant κ = f0/6πηav0. Here f0
denotes the force necessary to stop the motion of the cilium and v0 denotes the velocity of a cilium when no
external force is applied [14].
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The total force F i acting on the beat is generally not parallel to the direction of the motion. There are not
only tangent forces but also normal forces. Otherwise the sphere would not be moving on a closed ellipsoidal
track. The total force F i therefore yields:

t̂ · F i = f0 − κvi (44)

For a cilium we have the typical values: f0 ∼ 10 pN, a ∼ 10µm, v0 ∼ 100µms−1 [14, 37]. We use this to
estimate κ ∼ 1. Using this we can write equation 45 as follows:

t̂ · F i = f0(1− v−10 vi) (45)

We can write the velocity as vi = φ̇it̂i. When only considering the tangential component an expression for
internal force that generates ciliary motion follows:

t̂ · F i = f0(1− v−10 |ti|φ̇i) (46)

The force is balanced by the hydrodynamic friction as described in equations 38. When combing the two we
obtain a system of coupled differential equations:

φ̇1
(
tT1M11 + (f0/v0)|t1|

)
+ φ̇2t

T
1M12t2 = f0

φ̇1t
T
2M21t1 + φ̇2

(
tT1M22 + (f0/v0)|t2|

)
= f0

(47)

Solving equation 47 reveals the dynamics of the phases of two cilia. When considering a single cilium we do
not have to take into account the interaction terms, meaning we set Mi,j for i 6= j to zero.

To solve this system of coupled differential equations we have to describe values to f0, v0 and a. These
parameters determine the state of motion for a cilium. Once more we compare the trajectory of our bead
rb to the tip of the cilium rt. In this comparison we use the previously obtained tilt and values for the
major/minor axes. In figure 9 we visualize the components of the position vectors of both models during
one orbit. When we increase a the bead will experience more friction. Therefore, it will move slower in the
part of the trajectory near the wall. When we increase the force f0 the bead will move faster through the
orbit. By fitting the accurate ratio of the two we impose that the period of one bead cycle in the two models
is equal. Additionally, we impose that the two beads are at the highest and lowest points in the orbit at
approximately the same time.

Figure 9: The colored data represents the the x, y and z components of the position of bead during on orbit,
in blue, red and green respectively. The black dots present the x, y and z components of the position of the
bead on the elliptic-like orbit during one period, this data is provided by Perugachi Israels [2].

For a viscosity of η = 1 we obtain a = 1, f0 = 112.3 and v0 = 5.96. The modeled bead completes one orbit
in 1500 time steps, corresponding to an experimentally observed frequency of 10 Hz. Using this we relate 1
time step in the model to 6.6× 10−5s. Using the obtained size of the bead we compute the height-with ratio
and observe that it is in the same order of magnitude as experimentally observed values.
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5 Results - Studying a single ciliated system

In this section we will present the results obtained from analyzing a minimal model of a single cilium. We
will first present the dynamics of our ciliated system i.e. the position of the bead, the velocity along the
trajectory and the phase variable φ(t). We continue by examining the the influence of the moving bead
on the surrounding substrate. In order to do this we present the fluid velocity and the traction on the cell
surface. The results of of the minimal model are presented in blue during the entire section. We compare
these results to the results obtained by Perugachi Israels, which are presented in red.

5.1 Fluid velocity in a ciliated system

We examine a single ciliated system. The centre of the elliptic orbit is placed at rc = (2.70,−10.78, 28.87).
For further specification of the system see section 4. By solving differential equation 47 we obtain phase
variable φ1(t). The phase speed is denoted as φ̇1(t), the time derivative of φ1(t). Using the phase variable
and equation 43 the position of the bead r1(t) is obtained. We denote the velocity of the bead along the
trajectory as ṙ(t) = v1(t). The dynamics of a single ciliated system are presented below:

Figure 10: Figure a: the norm of the position of the bead during one orbit. Figure b: the velocity of the
bead during one orbit. Figure c: the phase variable φ during one orbit. Figure d: the phase speed during
one orbit. Here φ̇(t) denotes the time derivative of the φ(t).

We continue by investigating the effect of the bead on the surrounding substrate. Using equation 40 we
obtain the fluid velocity u(r). In order to normalize this we divide through the maximum speed of the bead.
In figure 11 we examine snapshots of the fluid velocity at two times t, half a period apart.
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Figure 11: The blue arrows visualize the flow field generated by a moving bead on a elliptic orbit. A snap
shot in time is taken at t = 0 (upper figures) and half a period later (figures on the bottom), the position of
the bead at the corresponding time is denoted by the red dot. The cross sections are taken in the plane of
the position of the bead.

Next, we examine the fluid velocity u(r, t) during one period, at a fixed point in the fluid. We consider two
points in the plane of the centre of the ellipse and one point above the centre of the ellipse, all points are
about two cilium lengths away from the center point. Again we report the normalized fluid velocity.

Figure 12: The (normalized) fluid velocity u(t) at three different points in the fluid are visualized during
one orbit. The x, y and z components of u(t) are shown in blue, red and green respectively.

The asymmetry in the graphs of figure 12 indicate the presence of a net fluid flow. We define the net fluid

flow umean = 1
T

∫ T
0

u(r, t)dt. Here, T is the time in which the bead completes one orbit. Using this, a
mean fluid velocity of 0.0069 (in model units) is observed at r(t) = (100.00,−10.78, 28.87) (the left image
of figure 12). At this point the maximum fluid velocity is 0.0014. This results in a maximum deviation
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of the mean fluid velocity of 0.0058. In all components of the fluid velocity the mean value is of the same
order as magnitude as the maximum deviation form the mean. This justifies the comparison between the
net fluid flow generated by the minimal model to the advanced model in figure 13. Here, we compute the
net fluid velocity at various regions in the fluid: along lines parallel to the x, y and z axes (the upper,
middle and bottom parts of figure 13). The lines go through the centre point of the ellipse. The x, y and
z components of the fluid velocity are presented separately (the left, middle and right parts of figure 13).
The results obtained from the minimal model are visualized in blue. We compare these quantities to the
advanced model by Perugachi Israels, whose data is presented in red. We report the normalized net fluid
velocities below:

Figure 13: In the upper row we visualize the averaged normalized fluid velocity umean along a line parallel
to the x axis, going through the centre point of the ellipse. The y and z position in the fluid are fixed at the
centre point of the ellipse. The x, y and z components of umean are presented in the left middle and right
figures respectively. The blue data corresponds to the net fluid flow generated by the model of a spherical
bead on a fixed elliptic orbit. The red data is provided by Perugachi Israels. The fluid velocity along lines
parallel to the y and z axes are visualized similarly in the middle and bottom row of this figure. The black
bar is a representation of the ellipse along the corresponding axes. The dashed boxes are visualized in more
detail in figure 14. Note that the centre of both ellipses are re-centred around zero.
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In penal a-f of figure 13 the fluid velocities generated by the minimal model and the more advanced model
are visualized at ∼ 3µm (in converted units, see section 4) above the cell surface (this is in the plane of the
centre of the elliptic orbit). When comparing the minimal model to the advanced model we notice similarly
placed and shaped peak values in the fluid velocity components perpendicular to the motion of the bead, as
can be seen in figure 13b,d. For the peak values we observe a difference in fluid velocity between the two
models of ∼ 14% and ∼ 37%, respectively. In addition to this we observe that the behavior of the decay in
both models is similar. For the other components of the fluid velocity (at ∼ 3µm above the cell surface) the
difference between the two models is slightly more pronounced; the peak values are shaped en positioned
differently. Here, the maximum observed difference between the models is roughly 50%. In figure 13 g-h we
present the difference between the minimal model and advanced model along a line normal to the surface,
going through the elliptic orbit’s center. In the region close to the centre point of the ellipse the peak values
in the two models generally differ ∼ 70%. The decay of the fluid velocity as a function of the distance also
appears to behave very differently in both models.

When examining the fluid velocity close to the ellipse, we surprisingly observe that the minimal model
captures many of the properties of the more advanced model. In the direction where most of the fluid
movement is generated (perpendicular to the direction of the motion of the bead) the two models correspond
best. However, the difference between the two models is more pronounced when examining the fluid above
the ellipse. To further investigate examine the fluid velocity profile of both models further away (>2 cilium
lengths away) from the centre point of the elliptic orbit. In order to to this the dashed boxes in figure 13
are magnified in the figure below:

Figure 14: The doted data presents the fluid velocity generated by the minimal model. We examine regions
along lines parallel to the x, y and z axes, going through the centre of the elliptic orbit (left, middle and
right figure). The x, y and z components of the averaged fluid velocity are visualized separate in blue, red
and green, respectively. The lines are a representation of the fluid velocity generated by the advanced model.
This data is provided by Perugachi Israels [2].

Studying the above figure we immediately note that the x and y components of the fluid velocity in both
models look very similar. Here, at 2 cilium lengths away from the center point at ∼ 3µm above the
surface, we observe a difference in the x and y component of the fluid velocity of ∼ 30% and ∼ 10%,
respectively. However, when examining the z component of the fluid velocity the observed differences are
∼ 75% and ∼ 95%, respectively. The observed differences between the two models stay roughly the same
when examining the fluid further away (∼ 4 cilium lengths). We compare the decay of the fluid velocity
between the two models and observe a similar (power-law) trend in each compared component. In figure 14c
we present the fluid velocities generated by both models above the cilium. We immediately notice the sizable
difference between the two models, the decay in fluid velocities do not follow the same trend. In addition
to this, the minimal model generates far less fluid motion compared to the advanced model. The maximum
difference is observed in the x component of the fluid velocity, viz. 97%.
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The inability to generate fluid motion in the region above the cilium is one of the weaknesses of the minimal
model. The origin thereof can be traced to approximation made in the minimal model, consisting of only
one bead. Therefore, the extending and bending of the cilium during the effective and recovery stroke is
not fully captured. In the advanced model the additional beads all move up and down during the bending
and stretching of the cilium. Consequently, more fluid motion is generated in the direction perpendicular to
the cell wall. However, the fluid velocity in this direction is much smaller than the fluid flow parallel to the
nearby boundary at ∼ 3µm above the cell surface.

Finally, the normalized fluid velocity generated by the minimal model is presented below.

Figure 15: The norm of the fluid velocity generated by the minimal model. We present this along lines
parallel to the x y and z axes, going through the centre of the elliptic orbit.

Studying figure 15 we immediately note that the peaks in fluid velocity occur around the edge of the elliptic
trajectory. Comparing the peak values in each figure we observe that the highest peaks are located in the
negative x and positive y direction. The peaks are both ∼ 7% bigger than the other peak value in the graph.
This observation strongly hints towards a general flow direction from left to right. This is in agreement with
the experimentally observed direction in the flow (see section 2) and with the theoretically expected flow
direction (see section 4). We compute the fluid velocity generated by the minimal model at ∼ 3µm above
the surface at two cilium lengths away from the cilium. We observe a converted fluid velocity of ∼ 1.5µms−1,
which is in the same order of magnitude as experimentally observed values.
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5.2 Stress on surface induced by a single cilium

We examine the traction forces T(r, t) that act on the cell surface using equation 7 and the expression for
pressure field near a cell wall as provided in section 3.4. We examine the traction at two times t and present
snapshots taken at t = 0 and at a quarter period later:

Figure 16: A visualization of the traction (blue arrows) acting on the cell surface. A snapshot at t = 0 is
presented in the left figure, a snap shot a quarter period later is presented in the right figure. The position
of the bead at the corresponding time is denoted by the red dot. The green arrow represents the force.

Next, we examine the traction forces during one period at a fixed point in the fluid. We consider two point
at the surface at ∼ 2 cilium lengths away from the centre point of the elliptic orbit.

Figure 17: A visualization of the traction forces that act on the surface generated by the minimal model.
The x, y and z components are presented in blue, red and green, respectively. Two fixed point on the left
and right of the elliptic trajectory are presented in this figure.
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Analogous to section 5.1 we define the net traction over one period Tmean = 1
T

∫ T
0

T(r, t)dt. We report this
at r(t) = (100.00,−10.78) (left image of figure 17) and we observe that the x component of the net traction
here yields: 1.20× 10−5. At this point the maximum traction generated by the minimal model is observed:
2.21 × 10−5. This results in a maximum deviation of the average of 1.01 × 10−5. In all components of
the generated traction the mean value is of the same order of magnitude as the maximum deviation from
the mean. Following the same argumentation as before we now compare the net traction generated by the
minimal model to the model by Perugachi Israels. Her data is presented in red.

Figure 18: The normalized traction averaged over one period is visualized. The blue data presents the
traction generated by the minimal model. The red data is provided by Perugachi Israels. Figure a: we
present the traction along a line parallel to the x axis. The y position is fixed at the centre point of the
ellipse. Figure b: similarly, the traction along a line parallel to the y axis is visualized. The black bar is
a representation of the ellipse along the corresponding axes. Note that centre of both orbits are re-centred
around zero.

We expect the traction on the surface to be largest in the part of the trajectory where the bead approaches
the wall closely. This feature is properly captured by the minimal model, as can be seen in the figure above.
We compare the traction generated by the minimal model to the advanced model. We immediately notice
that the peak values in both models occur at the edge of the elliptic trajectories. Here, the difference between
the two models varies from ∼ 5% (figure 18a, left side of the elliptic projection) to a maximum of ∼ 42%
(figure 18b, right side of the elliptic projection). Analyzing the traction further away from the cilium (∼ 4
cilium lengths) these differences increase to 40% and 80%, respectively.

The difference in generated traction is relatively big compared to the difference in fluid velocity. This
can by explained by the fact that in the advanced model more beads move closer to the surface. These
beads near the cell wall have the biggest influence on the generated traction, in contrast to the fluid velocity
where the beads far away from the cell surface are most important. However, the general trend in decay is
similar in both models. Therefore, the minimal model can be used to gain semi-quantitative insight into the
traction forces acting on the surface of the node.
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6 Results - Synchronization in a system of two cilia

In this section we will present the results obtained from analyzing a minimal model consisting of two beads
that represent two beating cilia. We will first analyze two beads moving on identical trajectories. In this
system we observe synchronization, meaning the beads obtain the same phase variable φ. We continue by
analyzing a system of two bead moving on non-identical trajectories. Here, no synchronization is observed.

6.1 Identical trajectories

We consider a system of two identical cilia with major and minor axes A = 37.69 and B = 35.27. Both cilia
are given the same tilt using the rotations: Rx(0.175π), Ry(0.075π) and Rz(0.05π). We place the centre of
cilia 1 and 2 respectively at rc1 = (3.55, 10.00, 28.83) and rc2 = (3.39, 110.00, 28.83), resulting in a distance of
separation d = 100, or roughly two cilium lengths. The cilia are given an initial phase difference of π/3. A
visual representation is given in figure 19.

Figure 19: A system of two cilia that start beating with a phase difference of π/3 The centre of both ellipses
are placed at z = 28.87 and separated by two cilium lengths.

Solving equation 47 reveals the dynamics of our coupled system of two cilia. We obtain phase variable φ1
and φ2 and consequently obtain the position of the beads: r1(t) and r2(t). We define the reduced position
vector r∗1(t) = r1(t) − rc1 and r∗2(t) = r2(t) − rc2. Finally, we define the difference between the two as:
∆r∗(t) = r∗1(t)− r∗2(t). These quantities are reported below during the first bead cycle:

Figure 20: Figure a: The reduced position vectors of bead 1 and 2 are visualised in blue and red respectively.
The two beads are given an initial phase difference of π/3. Figure b: The norm of the difference of the two
position vectors is visualized during one period.
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We continue by examining this system at various cilium separation lengths d during 4 × 106 times steps
(contain roughly 2700 bead cycles). In figure 21 we report the difference in position of the two beads:
∆r∗(t). We examine the system with inter-cilia spacing of d = 50, d = 100 and d = 150. We report the
maximum difference in red, blue and green, respectively. We observe synchronization, meaning the difference
in ∆r∗(t) approaches zero when we increase the number of bead cycles.

Figure 21: Figure a: The difference in position between two beads during ∼ 2700 bead cycles. The colored
lines indicate the maximum difference observed between two beads. The three different cilia spacing of
d = 50, d = 100 and d = 150 are presented in red, blue and green, respectively. The gaps that seem to
appear in the data are visualization affects rather than computational effects. Figure b: The maximum
difference between the two beads in the three different systems are presented.

Above, we observe that hydrodynamic coupling synchronizes a system of two moving beads fixed on identical
elliptic trajectories. The rate in which synchronization occurs depends on the inter-cilia spacing; if the spacing
is larger synchronization takes longer. We compute the decay values of the three system with various inter-
cilia spacing and observed decay values of −1.17× 10−5, −5.90× 10−7 and −1.50× 10−7, corresponding to
the red, blue and green line of figure 21, respectively. No explicit relation between inter-cilia spacing and
synchronization time is observed yet. In order to further investigate this more data should be obtained. If
the cilia spacing is of the order of 1 cilium length synchronization occurs after ∼ 0.5×106 times steps (about
half a minute in real time), containing roughly 330 bead cycles. We continue to investigate a system where
two beads move on slightly non-identical trajectories.
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6.2 Non-identical trajectories

We consider a system of two non-identical cilia. The specific features of this system are acquired by analyz-
ing data provided by Perugachi Israels, using the methodology of section 4. Thereby we acquire the elliptic
trajectory of bead 1 and 2. We obtain values for the major and minor axes of bead 1 and 2: A1 = 37.99,
B1 = 35.30, A2 = 34.23 and B1 = 32.85. The position of the centre of the trajectory of cilium 1 and 2 are
obtained: rc1 = (3.55,−12.48, 30.17) and rc2 = (3.39, 66.34, 32.26). This results in a distance of separation
d = 78.8. Both cilia are tilted similarly using the rotations: Rx(0.2π), Ry(0.0π) and Rz(0.125π). The cilia
are given an initial phase difference of π/3.

Solving equation 47 reveals the dynamics of our system of two cilia. We obtain phase variables φ1 and
φ2. Using these we obtain the position of the beads: r1(t) and r2(t). Analogous to section 6.1 we define the
reduced position vector r∗1(t) = r1(t) − rc1 and r∗2(t) = r2(t) − rc2. Finally, we define the difference between
the two as: ∆r∗(t) = r∗1(t)−r∗2(t). The norm of these quantities are reported below during the first ten bead
cycle:

Figure 22: Figure a: The (reduced) position of bead 1 and 2 are visualized in blue en red respectively.
Figure b: The difference in position between the two beads is presented. The red line denotes the maximum
difference. We examine the system during ten bead cycles.

We continue by examining the system during 4× 106 time steps, containing roughly 2700 bead cycles. The
maximum difference as reported in figure 22b does not change when examining the system at any later time.
This means the two beads in this system do not synchronize.
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7 Discussion

The minimal model provided in this thesis may help understand the role cilia play in breaking the left-
right symmetry during embryonic development. In this section we discuss the differences and similarities
between the minimal model and the advanced model. We also consider whether the minimal model is suf-
ficiently accurate to study processes in the node like the flow-induced movement of small signaling molecules.

In section 5 the minimal model and the advanced model are compared. We compared only net quanti-
ties (net fluid velocity and net traction), which is justified by the results presented in figure 12 and 17.
Based on the results presented in section 5 we conclude that only when examining the flow field ∼ 3µm
above the surface the minimal model of a cilium mimics the flow profile of advanced model rather well. In
the direction where most of the fluid movement is generated (perpendicular to the direction of the motion
of the bead) the two models correspond best. Moreover, the trend of the (power-law) decay of the fluid
velocity as a function of the distance behaves similarly in both models. Therefore, we conclude that the
minimal model can be used to obtain semi-quantitative insight into the generated flow field in the plane of
the centre of the ellipse. This is the most relevant part of the flow field as it is considerably larger than the
flow in the plane above the cilium. When comparing the generated traction forces between the two models
the difference (compared to the fluid velocity) is more pronounced. However, the general trend in decay
is similar in both models and the minimal model captures the expected features as described in section 5.
Therefore, the minimal model can also be used to gain semi-quantitative insight into the traction forces that
act on the surface of the node.

In section 6 we studied synchronization in a system of two neighbouring cilia represented by spherical beads.
As expected, we observed synchronization in a system where the beads move on identical trajectories. How-
ever, synchronization is not observed when studying a system where the two beads move on non-identical
trajectories. The origin thereof can be traced to the minimal system exhibiting only one degree of freedom.
The beads are driven by a constant force and move on a fixed trajectory. Consequently, completing synchro-
nization is not possible. This problem can be solved by adding another degree of freedom to the model: the
length of the major/minor axes and the orientation of the ellipse could be made variable.

The minimal model captures some general features that are observed in experimental research (see sec-
tion 5 and 6). However, our minimal model differs form biological systems in a number of ways. In both
the minimal and the more advanced model, the environment of the node is recreated by implementing a
nearby boundary that represents the cell wall to which cilia are attached. The boundary in the model is
flat, unlike the actual boundary in the node, which consists of many rounded shaped cells. The cells make
up the bottom of the node, which is shaped like a triangular pit. Both these shapes are not accounted for
in the model. We do expect these shapes to have a significant influence on the flow near the cell boundary.
However, we expect this to have a much less pronounced effect on the flow further above the cell wall. This
is based on the observation that the upper part of the cilium affects the flow in the node the most and
determines its general direction.

In our model we only incorporated a single boundary representing the bottom of the node. However,
the node is a cavity consisting of a bottom-, side- and top wall. In experimental research a counter flow is
observed, caused by the presence of the additional walls in the node. In a study by Smith et al. (2011) a
method is developed to model the upper membrane of the node [23]. In this mathematical model a counter
flow in the upper region in the node is observed. The methodology by Smith et al. (2011) could be used to
incorporate the upper membrane of the node in the minimal model.
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8 Conclusion and outlook

In this thesis we have investigated the influence of a minimal model of a beating cilium, as originally pro-
posed by Vilfan and Jülicher (2006) [1], on the surrounding fluid. The cilium was modeled as a spherical
bead moving on a fixed elliptic trajectory above a nearby flat boundary, which mimics the shape of the node.
The effect of the boundary on the flow is taken into account via the Blake tensor. We explored the influence
of the bead on the surrounding substrate by analyzing the net traction forces that act on the cell surface
and the net velocity of the fluid in the node. We compared these quantities to a more advanced model by
Perugachi Israels [2]. In her model the full shape of the cilium is taken into account. By comparing the
two models we were able to determine that, surprisingly, the minimal model semi-quantitatively captures
the fluid dynamics and other properties of the advanced model. To be precise, the fluid velocity generated
by the minimal model correspond best to the advanced model at ∼ 3µm above the surface. In addition,
the trend of the decay of the fluid velocity as a function of the distance behaves similarly in both models.
However, when comparing the fluid flow above the tip of the cilium we observe a sizeable difference between
the two models. Here, the decay of the generated fluid velocities in both models do not follow the same trend
and the minimal model generates far less fluid motion compared to the advanced model. Nevertheless, this
direction is less relevant to our modeling as the flow perpendicular and far above the cell surface is much
smaller compared to the flow parallel to the surface (in the plane of the cilium tip).

Next, we compared the minimal model to biological reality. The minimal model was indeed found to
generate a flow directed from left to right. The observed fluid velocity is of the same order of magnitude
as experimentally observed values. This, and our other results, gives us confidence in the minimal model.
Therefore, we conclude that it can be used to qualitatively study nodal processes like the flow-induced move-
ment of small signaling molecules. Studying these nodal processes may contribute to determining how nodal
flow exactly lead to asymmetric gen expression.

Duplicating the minimal model allowed us to study synchronization between neighbouring cilia. The effect
that neighboring cilia have on each other is taken into account using Faxén’s law. As expected, hydrody-
namic coupling resulted in synchronization between neighbouring beads in the minimal model. The rate
at which synchronization occurs depends on the inter-cilia spacing; if the spacing is larger synchronization
takes longer. However, when examining two beads on slightly non-identical trajectories no synchronization
is observed. This problem can be solved by adding another degree of freedom to the model: the length of
the major/minor axes and the orientation of the ellipse could be made variable. Altering the minimal model
is left for future study.
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