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Abstract

With the construction of third generation gravitational wave detectors, gravitational
wave physics will be taken to the next level. The Einstein Telescope is one of these
third generation detectors, which could be operating in Europe by the mid 2030s. In
this thesis we will analyse to what extent ET improves on current second generation
detectors, using the Fisher matrix, regarding: (i) testing the strong-field regime of
general relativity and (ii) constraining the neutron star equation of state.
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1 INTRODUCTION 1

1 INTRODUCTION

Second generation (2G) detectors, Advanced LIGO (AdLIGO) and Advanced VIRGO (Ad-
VIRGO), have explored the Universe with gravitational waves (GWs) and produced extraor-
dinary results in the last five years. Especially the first detections of GWs, originating from
a binary black hole (BBH) [GW150914] [1] and a binary neutron star (BNS) [GW170817]
[2], can be deemed historical and have resulted in a significant contribution to our knowledge
concerning astrophysics, fundamental physics and cosmology [3]. In the upcoming decade
the construction of the Einstein Telescope (ET), a third generation (3G) detector, will begin,
which will have an order of magnitude increase in sensitivity and wider frequency bandwidth
relative to its predecessors. This will allow us to take the exploration of the Universe with
GWs to the next level.
In this thesis we explore how these improvements are made and their resulting implications
related to two key issues concerning fundamental physics. We analyse to what extent the 3G
detector ET improves on current 2G detectors, regarding the following subjects: (i) testing
the strong-field regime of general relativity (GR) and (ii) constraining the NS equation of
state (EOS).
We do this by executing an analysis based on the Fisher matrix that allows us to, roughly,
estimate bounds on parameter estimation for current and future detectors. This is a rough
but useful analysis technique when looking ahead at 3G detectors, since other possible, more
accurate and data based techniques can not process ET signals, due to their long lasting
presence (as long as 5 days) in the detection band [4]. The Fisher matrix does not use sim-
ulated or real data but is a Bayesian statistical analysis.

This thesis is divided into the following chapters.
In chapter 2 we derive the restricted PN waveform used in our analysis. Chapter 3 focuses on
the main sources of noise that have been reduced for 3G detectors relative to 2G detectors,
how this has been achieved and the noise power spectral density (PSD) (i.e. a measure for
the sensitivity of a detector). In chapter 4 the Fisher formalism, which we use for estimating
bounds on parameter estimation, is discussed, in combination with its limitations. Chapter
5 generalises the Fisher formalism to a network of detectors, to make it applicable to ET. In
chapter 6 and 7 all previous chapters are combined and applied to two problems relating to
fundamental physics.
In chapter 6 we analyse to what extent deviations from GR are measurable with future 3G
detectors. We execute this analysis by first comparing extensive analyses by [5, 6], done
with real data from AdLIGO/AdVIRGO, to our own Fisher analysis based on AdLIGO, to
acquire knowledge of the offsets and biases associated with our Fisher formalism, which have
to be taken into account. Thereafter we execute our analysis based on ET, with the acquired
knowledge of the errors associated with our Fisher formalism in the back of our minds, to
subsequently compare these ET results to the results obtained by the 2G extensive analyses.
By this comparison we acquire knowledge of the improved accuracy that can be expected
from ET, concerning the measurability of deviations from GR.
In chapter 7 we generally follow the same structure. We analyse to what extent knowledge of
the EOS coefficients, related to the NS EOS, can be acquired with future 3G detectors. We
first compare our Fisher analysis to an extensive analysis by [7], done with implemented sim-
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ulated data resembling AdLIGO/AdVIRGO, to acquire knowledge of the offsets and biases
associated with our Fisher formalism, which have to be taken into account. Thereafter we
execute our analysis based on ET, again with the errors associated with the Fisher formalism
in the back of our minds, to subsequently compare this with the results obtained by the
extensive analysis. By comparing these two we acquire knowledge of the improved accuracy
that can be expected from ET, concerning the measurement of EOS coefficients. We end
with a summary of our conclusions, a discussion and an outlook for the future.
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2 GRAVITATIONAL WAVES FROM COALESCING

COMPACT BINARIES

2.1 The quadrupole formula

After deriving wavelike solutions to GR in his paper ‘Näherungsweise Integration der Feld-
gleichungen der Gravitation’ (1916), which would travel with the speed of light and ‘stretch
and squeeze’ spacetime, Einstein derived the following quadrupole formula for gravitational
radiation from the general solution to linear GR [8]. This equation tells us that the second
time derivative of the quadrupole moment of the GW source is proportional to the amplitude
of the GW hij [8]:

hTTij (t) =
2G

rc4
M̈TT

ij (tret), (1)

with r being the distance to the source, G the gravitation constant, c the speed of light and
Mij the quadrupole moment of the source in the non-relativistic limit and TT gauge:

MTT
ij (tret) =

1

c2

∫
V

ρ(tret,x)xixjdV0, (2)

with ρ the density of matter in a volume dV0, xi and xj the coordinates of the components
of the binary and tret = t− r

c
. This result is derived under the assumption that the distance

to the source r is a lot larger than the characteristic size of the source R: r � R.

2.2 Signal from inspiralling compact binary

By looking at Eq. (1), we can comprehend that GWs will originate from anything with
a non-zero third time derivative of the quadrupole moment. Ordinary binary star systems
seem to meet this requirement, but because of GWs being very hard to detect because of
their “weak coupling to matter” [9], we will be looking at binary systems a lot more compact
and disruptive to spacetime than ordinary binaries, such as BBHs and binary neutron stars
BNSs.
To lowest order, an inspiralling compact binary system can be described as two point parti-
cles orbiting each other and losing energy due to the GWs they emit. Since this calculation
has appeared in various papers, we will be brief and refer to [10–12] for a detailed calculation.
The motion of two point particles, orbiting each other at a large distance R and with orbiting
frequency ωorb, can be described by a one-body model with the total mass M at the origin
and the reduced mass µ orbiting the total mass.
By computing Eq. (1) for the above described one-body problem, while using energy con-
servation, Kepler’s third law and the fact that the GW amplitude in the TT gauge is a
combination of a cross (h×) and plus (h+), we are able to compute two equations for h×(t)
and h+(t):

h+(t) =
4

r

(
GMc

c2

)5/3(
πfgw (tret)

c

)2/3
1 + cos2(ι)

2
cos (Φ (tret)) , (3)
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h×(t) =
4

r

(
GMc

c2

)5/3(
πfgw (tret)

c

)2/3

cos2(ι) sin (Φ (tret)) , (4)

withMc = (M1M2)3/5

(M1+M2)1/5
, ι the inclination angle, Φ(t) =

∫ t
dt′ωgw (t′) the phase of the waveform

and fgw = ωorb/π = 2forb [11]. 1

The two polarisation equations described in Eqs. (3) and (4) induce a measured strain
h(t) in a GW detector, following [13]:

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (5)

with the following antenna pattern functions for the two polarisations:

F+(θ, φ, ψ) =
1

2

(
1 + cos2 θ

)
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (6)

and

F×(θ, φ, ψ) =
1

2

(
1 + cos2 θ

)
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ, (7)

where θ, φ and ψ, together with the earlier defined ι, describe the orientation of the binary.
For a visualisation of these angles, see figure 1.

Figure 1: The relative orientation of the detector and sky frame [13].

We end up with an equation for the strain that describes, to lowest order, the detected
waveform produced by inspiralling compact binaries [10]:

h(t) = A(t)

√
F 2

+ (1 + cos2(ι))2 + F 2
×4 cos2(ι) cos (Φ(t) + ϕ0) , (8)

with:

A(t) =
4

r

(
GMc

c2

)5/3(
πfgw (tret)

c

)2/3

. (9)

1Because of the quadrupolar property of GWs.
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2.3 The stationary phase approximation

Because of later convenience and necessity concerning the Fisher matrix, we will be moving
our waveform from the time-domain to the frequency domain with the help of a Fourier
transform. Doing this analytically will necessitate an approximation called: the stationary
phase approximation (SPA). We will be following earlier work [10], where the SPA was first
introduced. This approximation considers only the stationary part of Φ(t) as this contributes
the leading term to the integral and neglects the oscillating term, which is sub-leading. The
Fourier transform of Eq. (8) can, according to the SPA, be written as:∫

dtA(t) cos (Φ(t) + ϕ0) e2πift =
1

2

∫
dtA(t)

(
ei(Φ(t)+ϕ0) + e−i(Φ(t)+ϕ0)

)
e2πift

' 1

2
e−iϕ0

∫
dtA(t)ei(2πft−Φ(t)).

(10)

In Eq. (10) we have used Euler’s formula to write cos (Φ(t) + ϕ0) in powers of e and we have
neglected the oscillating term. The leading term in the integral comes from the stationary
point: t = ts where 2πf = Φ̇ (ts). We have not included the orientation of the binary, as it
is not affected by the Fourier transform. After doing a Taylor expansion on the exponent
around t = ts we arrive at a frequency dependent phase:

Ψ(f) = 2πft(f)− Φ(t(f))− π

4
. (11)

An equation for f(t) can be found by realising that there is a balance between the change
in emitted energy through the emission of GWs and the change in orbital energy (dEGW

dt
=

−dEorb

dt
). This insight, combined with the knowledge of Eorb through Kepler’s third law

and EGW through the stress-energy tensor [13], will give us an equation for the frequency
evolution. This can be rewritten as [11]:

t(f) = tcoal −
5

256

(
GMc

c3

)−5/3

(πf)−8/3, (12)

with tcoal the time at which collision takes place: R → 0. When Eq. (12) is subsequently
substituted in the definition of Φ(t) from section 2.2, this results in:

Φ(t) = −2

(
5GMc

c3

)−5/8

τ 5/8(t) + Φc, (13)

with τ(t) = tcoal − t and Φc = Φ(tcoal).

Having all of the components of the frequency dependent phase, we are now able to for-
mulate the frequency dependent strain, to lowest order, for inspiralling compact binaries:

h̃(f) =
√
F 2

+ (1 + cos2(ι) + F 2
×4 cos2(ι))

√
5π

96

1

(πf)7/6

c

r

(
GMc

c3

)5/6

exp

[
i

(
2πftcoal − Φcoal −

π

4
+

3

4

(
8πGMcf

c3

)−5/3
)]

.

(14)
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As the waveform formulated in Eq. (14) only describes the circular inspiral of a compact
binary, there must be a finite frequency at which the equation becomes invalid. This happens
at the end of ‘quasi-circular inspiral’, where ‘late inspiral’ starts, which is, as can be seen in
figure 2, followed by ‘plunge and merger’ and subsequently by ‘ringdown’ in the case of a BBH
and ‘post-merger’ in the case of a BNS. This transition takes place near the location of the
innermost stable circular orbit, which is approximately, in the case of our earlier described
system, at rISCO = 6GM

c2
and at fISCO = c3

63/2πMG
[14].

The coalescence of two black holes

Figure 2: h(t) evolution for inspiral, merger and ring down (IMR) [in red] in the case of a
binary black hole [15].

2.4 The post-Newtonian formalism

Eq. (14) does a fine job in describing a system for the first stages of inspiral. But as the
two objects in the binary lose orbital energy in the form of gravitational radiation, their
separation will decrease, with an increase in orbital frequency as a consequence. With the
binary being in the relativistic regime of GR for this part of inspiral, we will have to include
higher-order terms that make Eq. (14) applicable to this relativistic regime [11].
Because we can consider the inspiral of a compact binary as adiabatic: ω2 � ω̇, we are
allowed to expand our Eq. (14) with a power series in v/c, 2 called the post-Newtonian (PN)
formalism [16], with v being the orbital velocity inside the system. This formalism is widely
used to accurately describe the GWs created by inspiralling compact binaries, visualised in
figure 2, up till the last stable circular orbit.

As in [16], we will be using the restricted PN waveform, which includes PN corrections
to the phase up to 3.5PN order3, but does not include any higher order corrections to the
amplitude. This results in the following waveform, which is of similar shape as Eq. (14):

h̃(f) = Af−7/6eiΨ(f), (15)

with A being equal to the amplitude to 0PN, as derived in section 2.3, and the phase Ψ(f)
being of the following form, due to the expansion up to 3.5PN order (we will be putting

2As we assume that the orbital velocity v will always be a lot smaller than the speed of light c
3Up to 3.5PN order means up till (v/c)7. Generally applies: (v/c)n corresponds to n/2PN order.
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c = G = 1 from now on, to create more organised equations):

Ψ(f) = 2πftcoal − φcoal −
π

4
+

3

128ηv5(
α0 + vα1 + v2α2 + v3α3 + v4α4 + v5α5 + v5 log

(
v

vISCO

)
αl5 + v6α6 + v6 log(v)αl6 + v7α7

)
,

(16)

with v = (πMf)1/3, η = m1m2

M2 , vISCO = (πMfISCO)1/3 and the α coefficients, where αl5 and
αl6 denote coefficients dependent on the logarithm of v:

α0 = 1, (17)

α1 = 0, (18)

α2 =
20

9

(
743

336
+

11

4
η

)
, (19)

α3 = −16π, (20)

α4 = 10

(
3058673

1016064
+

5429

1008
η +

617

144
η2

)
, (21)

α5 = π(
38645

756
− 65

9
η), (22)

α15 = π(
38645

252
− 65

3
η), (23)

α6 =

(
11583231236531

4694215680
− 640π2

3
− 6848γ

21

)
+η

(
−15335597827

3048192
+

2255π2

12
+

47324

63
− 7948

9

)
(24)

+
76055

1728
η2 − 127825

1296
η3 − 6848

21
log(4), (25)

αl6 = −6848

21
, (26)

α7 = π

(
77096675

254016
+

378515

1512
η − 74045

756
η2

)
, (27)

(28)

with γ ≈ 0.57721, being the Euler-Mascheroni constant.
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3 GRAVITATIONAL WAVE DETECTORS

GWs ‘stretch and squeeze’ spacetime maximally by 1 part in 1021 [13]. The development of
detectors capable of measuring changes this small, has been strived for for decades by various
GW organisations. This long-awaited sensitivity has eventually been achieved with the use
of interferometric detectors similar to the Michelson interferometer, which was used in the
historic Michelson-Morley-experiment. In the following chapter we will discuss: (i) the ba-
sic functioning of interferometric detectors, (ii) the main sources of noise an interferometric
detector has to endure, (iii) second generation detectors, (iv) third generation detectors and
(v) a comparison between these latter two.

3.1 Interferometric detectors

In an interferometer, the interaction between a laser beam and a GW is monitored by mea-
suring changes in length using two perpendicular arms.

Figure 3: A schematic representation of an interferometer used in the detection of GWs.
A beam of light with constant wavelength leaves the laser and is split by the beam splitter
into two beams moving along the two perpendicular arms. The laser beam moves through
the partially reflecting mirror located at the first test mass and is reflected from the mirror
located at the second test mass. The beam will move back and forth between the two test
masses multiple times (Fabry-Perot cavities) to eventually be recombined with the beam in
the perpendicular arm at the beam splitter. The interference pattern of the beams will be
detected by the photon detector [17].

When a GW hits earth, it ‘stretches and squeezes’ spacetime that will, subsequently, result
in varying lengths of the two detector arms. The presence of such radiation can be detected
using the interference characteristics of light. When gravitational radiation is absent, the
beams in the two arms will not experience a phase shift relative to each other and will inter-
fere constructively. But, when there is gravitational radiation present, one arm will stretch
relative to the other and the enlarged distance the light travels in the stretched arm will
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result in a relative phase shift and destructive interference consequently [9].4

Imagine now an interferometer with 4 km long arms, responding to a GW with an am-
plitude of around 10−21. According to h ∼ ∆L

L
, this will result in ∆L ∼ 4 × 10−18 m. To

increase the change in measured distance ∆L, the path length L is increased by trapping the
beam in the light storage arms, see figure 3, for example for 10 trips, resulting in an effective
path length Leff of 40 km [13]. This increases ∆L to approximately 4 × 10−17 m, which is
still only one part in 1011 of a wavelength of light, in the case of light with a wavelength of
10−6 m, as used in modern-day interferometers [19].
Ground-based GW detectors have, in principle, the potential of sufficient sensitivity in the
frequency domain: [1, 104] Hz [13]. Below this domain they are fundamentally limited by
noise sources inextricably linked to earth, such as seismic noise and gravity gradient noise
that are too substantial at frequencies below 1 Hz. This results in the detectability of com-
pact binaries with total masses up to ≈ 4 × 103M� for ground-based detectors, when only
considering early-inspiral and according to the in section 2.3 defined Eq. for fISCO.
Above this domain GW detectors are limited by the effective path length the light travels in
the detector arms. For an interferometer to be sensitive to the passing by of GWs, spacetime
should not change significantly while a beam of light is moving through an arm of the inter-
ferometer. I.e. the wavelength of the GW needs to be larger than the effective path length
of the detector (λGW > Leff ), otherwise the stretching and squeezing of spacetime will take
place multiple times and the effect of the GW will average out. This results in a maximal
detectable GW frequency of 7500 Hz, in the case of an effective path length of 40 km.5 There
are however no detectable GW sources known that produce fGW > 5000 Hz, so this limit to
the sensitivity band does not limit the detections possible with modern day interferometers.
Only when the effective path length is made incredibly long, as is planned for future space
based detectors, higher frequency sources will cease to be detectable [12].

3.2 Understanding the noise

Measuring distances, in the order of 10−17 m with 10−6 m wavelength of light, is, under-
standably, an incredibly hard task. Particularly in the light of the multiple sources of noise
that are part of living on earth. Controlling and identifying these various sources of noise is
key to the measurement of GWs. This section will be dedicated to the main sources of noise
present in interferometers. We will be following earlier work [13].

3.2.1 Seismic noise

Seismic noise is mostly caused by sources such as earthquakes, wind, micro seismic events
and various kinds of anthropogenic noise. Below 50 Hz they form one of the main limiting
factors to the sensitivity of an interferometer and below 1 Hz they are deemed too substantial
for ground-based detectors, to detect GWs below this threshold [20]. The amount of seismic

4In reality, GW detectors often reverse this procedure: when there is no gravitational radiation present,
the beams will cancel each other out and when there is gravitational radiation present, the beams will
constructively interfere [18].

5According to λGW = c/fGW .
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noise in the system gets enlarged with every reflection of the beam of light with a slightly
vibrating mirror. To counter this, interferometers make use of the filtering properties of
pendulums for frequencies above their natural frequency, which is at a few Hertz in the case
of a 0.5 m pendulum. As a consequence mirrors are hung on pendulums that filter the seismic
noise subsequently [13].

3.2.2 Thermal noise

Thermal noise is a form of random fluctuations driven by thermal energy. These random
fluctuations can cause vibrations in the, in section 3.2.1 described, pendulums and the wires
connecting the pendulums to the mirrors. As with seismic noise, the total amount of thermal
noise in the system gets enlarged with every reflection of the beam of light. The amplitude
of the vibrations is largest at the resonant frequencies of the components of the suspensions:
the pendulums (at a few Hz) and the wires connecting the pendulums with the mirrors (at
≈ 1 kHz).6 These unwanted vibrations are called suspension thermal noise [13]. By using
materials with high Q-factors, the thermal vibrations in the suspensions are confined to a
small bandwidth around the resonant frequency, because of the relation: Q = fr

∆f
[21], with fr

the resonant frequency and ∆f a measure of the bandwidth around the resonant frequency.7

The suspension thermal noise can be reduced by the usage of high Q-factored materials,
avoiding the resonant frequencies during measurements and lowering the temperature [22].

Thermal noise can also cause random fluctuations in the index of refraction. When the
light beam gets partly transmitted by a beam splitter or partly reflecting mirror, a small
amount of energy is absorbed by the mirror, which causes the mirror to rise in temperature
and change its index of refraction. As these thermal fluctuations vary over time, the index
of refraction changes accordingly. This type of noise is called test mass thermal noise. These
changes in optical properties can be reduced by using less laser power, as this produces less
heating, lowering the temperature or usage of high Q-factor materials [13].

3.2.3 Quantum shot noise

Due to quantisation, light leaves the laser in discrete chunks: photons. This causes random
fluctuations in the light intensity (i.e. amplitude) measured by the detector. The error
in these fluctuations goes like: ∆lshot ∼ 1√

N
with N the amount of photons. By shooting

more photons (the laser power in modern-day interferometers builds up to ≈ 1 MW in the
cavities) [23], the uncertainty in the fluctuations becomes smaller. This makes it less likely
that a random fluctuation in the light intensity is recognised as a GW [13].

3.2.4 Quantum radiation pressure noise

Because of the quantum nature of shot noise and the Heisenberg uncertainly principle, the
reduction of shot noise by the increase of laser power, goes hand in hand with the increase in
quantum radiation pressure noise. The high-power laser beam transfers a slightly fluctuating

6These are also called violin-modes.
7This is called the full width at half maximum FWHM.
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momentum onto the suspended test masses that are free to move under radiation pressure.
This quantum radiation pressure varies due to the uncertainty principle imposed by quantum
mechanics and creates a varying disturbance accordingly, which creates a phase shift that
can mask a GW [13].
But, as we are not trying to measure the phase and the amplitude at once, it is possible to try
and ‘squeeze’ all the quantum uncertainty into the variable that is not measured, to ‘relieve’
the measured variable from its uncertainty. This is done with the help of ‘squeezed light’
that has a phase with a reduced quantum uncertainty relative to its coherent amplitude, or
the other way round. When ‘squeezed light’ is made frequency dependent, quantum shot
noise and quantum radiation pressure noise can be reduced simultaneously. How this works
in detail does not fall within the scope of this paper. Extensive research on ‘squeezed light’
will be done by Dutch organisations: Nikhef and Maastricht University, with help of the
prototype: ET Pathfinder, which is currently being build. For more information on squeezed
light or the ET Pathfinder, see [24–26].

3.2.5 Gravity gradient noise

Another form of seismic noise, which is different from the earlier described seismic noise, is
called: gravity gradient noise. With the passing of seismic waves near a GW detector, there
are perturbations created in the density of the earth that subsequently create a fluctuating
gravitational pull on the test masses inside the arms of the interferometer [13, 27]. Time
dependent density fluctuations in the atmosphere can excite a similar force on the test masses.
These fluctuations are particularly noticeable at lower frequencies but fall of at a few Hz.
Gravity gradient noise is very hard to reduce. Sufficient sensitivity for the detection of GWs
below 1 Hz would necessitate a sky-based interferometer, but the fabrication of detectors
in quiet underground locations (e.g. ET) could already help significantly in the [1, 10] Hz
regime, as this reduces the initial seismic excitation [28].

3.2.6 Gas noise

The presence of gas molecules causes another kind of noise that will have to be dealt with:
gas noise in the form of displacement noise and sensing noise. The former originates from the
movement of molecules due to thermal energy and the subsequent exchange of momentum
with the test masses, which results in a shift in phase of the light beam. The latter originates
from the present gas molecules interacting with the photons of the light beam, which also
results in an optical phase shift of the light beam. Creating vacuum arms helps to overcome
this problem [29].

3.3 Second generation detectors: AdLIGO, AdVIRGO

The two Advanced LIGO detectors and the Advanced VIRGO detector are, till this day, the
only detectors that have detected GWs. All three are variants of the, in section 3.1 described,
interferometers (Fabry-Perot Michelson interferometer) with arm-lengths of 4 km in the case
of AdLIGO and 3 km in the case of AdVIRGO. With help of section 3.2, we can analyse
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figures 4 and 5.

Figure 4: Noise budget AdVIRGO [30].
Figure 5: Noise budget AdLIGO [31].

Figure 6: The noise budgets of AdVIRGO and the two AdLIGO detectors at design sensi-
tivity, with on the horizontal axis: the frequency [Hz] and on the vertical axis the spectral
amplitude: h̃(f)/

√
Hz [1/

√
Hz], which is a measure for the sensitivity of the detector. The

principle noise curves are plotted that reduce the detector sensitivity. To convert to the RMS
strain in a domain, you multiply the spectral amplitude by the square root of the bandwidth.
At 200 Hz with a bandwidth of 100 Hz, AdLIGO has a spectral amplitude of approximately
3× 10−24[1/

√
Hz] and a resulting RMS detector sensitivity of approximately 3× 10−23.

Both AdLIGO and AdVIRGO experience their peak sensitivity at frequencies in the band-
width [100, 300] Hz. At frequencies above this domain the sensitivity of both detectors is
limited by quantum shot noise. The other source of quantum noise: radiation pressure noise,
limits both detectors in the [10, 100] Hz regime. Reducing the high frequency shot noise is
possible by increasing the laser power, but at the expense of increasing the radiation pressure
noise. Together they form the quantum limit, see sections 3.2.3 and 3.2.4.
Gravity gradient noise creates a hard limit on sensitivity at 10 Hz for above ground, ground-
based detectors, as discussed in section 3.2.5, which results in 10 Hz being the lower cutoff
frequency.
There are many ways in which thermal noise is present, but not all limit the sensitivity of
the detector. A peak in suspension thermal noise in the [10, 20] Hz domain does limit the
sensitivity and originates from the resonant frequency of the suspension pendulums. Mul-
tiple other peaks are visible in figure 4 at frequencies around 1000 Hz that originate from
the suspension wires, but as these peaks span only a narrow frequency band, they are easily
removed from the data. Coating Brownian noise, coating thermo-optic noise and substrate
Brownian noise are all forms of test mass thermal noise. Only coating Brownian noise has
any significance, which arises from “mechanical dissipation in the coatings of the mirrors”
[32]. The other terms are no limiting factors yet.8

8For more information about test mass thermal noise, visit [29].
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Because of the use of isolating systems reducing seismic noise, seismic noise can be neglected
below frequencies of 10 Hz.
As the arms of the detectors are vacuumed, there is little gas remaining that can interact
with the measurement. There are, however, still some gas molecules present that cause the
excess gas noise. AdLIGO and AdVIRGO have not yet arrived at sensitivities where this
becomes a problem.

3.4 Third generation detector: ET

3G detectors will be needed to improve detector sensitivity even further. Einstein telescope
(ET) is one of those 3G detectors planned for the future that will be a factor 10 more sensi-
tive than the 2G detectors, reviewed in section 3.3, and will open up the [1, 10] Hz frequency
domain. This will make the observation of BBHs up to ≈ 4 × 103M� possible, see section
3.1, and will make the observation time of stellar mass binaries, according to Eq. (12), sig-
nificantly longer. A BNS consisting of two neutron stars with equal mass: 1.4M�, would be
in the AdLIGO observation band for approximately 15 minutes. They would be in the ET
observation band (in the most optimistic case of fcutoff = 1 Hz), for more than 5 days [33].

Figure 7: A schematic view of the planned Einstein Telescope. A total of 6 interferometers
would cooperate to produce one GW detector [33].

ET is planned to be a combination of three Fabry-Perot Michelson interferometers, as de-
scribed in section 3.2, but with V-shaped arms with 60◦ angles, arranged in a triangle, see
figure 7. All arms will be 10 kilometers in length with in each V-shape two interferometers,
one sensitive to lower frequencies and one sensitive to higher frequencies. ET will be build
underground to reduce all sources of seismic noise.
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Figure 8: The noise budgets for the low and high frequency interferometers in ET at design
sensitivity, with on the horizontal axis: the frequency [Hz] and on the vertical axis the spectral
amplitude: h̃(f)/

√
Hz [1/

√
Hz], which is a measure of the sensitivity of the detector. The

principle noise curves are plotted that reduce the detectors sensitivity. The two spectral
amplitudes can be added in a way that the lowest spectral amplitude represents the sensitivity
of the detector. To convert to the RMS strain in a domain, you multiply the spectral
amplitude by the square root of the bandwidth. For example, at 200 Hz with a bandwidth of
100 Hz, ET-high has a spectral amplitude of approximately 2×10−25[1/

√
Hz] and a resulting

RMS detector sensitivity of approximately 2× 10−24 [28].

From figure 8, we can conclude that, when design sensitivity is reached, ET will have its in-
tended sensitivity. The spectral amplitude visualised in figure 8 is, over its whole bandwidth,
a 10 factor improvement relative to the 2G detectors and the spectral amplitude of ET stays
below 10−22 for frequencies > 1 Hz.

Due to the combination of high-frequency interferometers (HFI) and low-frequency (LFI)
interferometers, ET is able to lower both its quantum shot noise and its quantum radiation
pressure noise by increasing the build up laser power in the HFI and reducing the build up
laser power in the LFI, see sections 3.2.3 and 3.2.4. The power in the HFI cavities builds up to
3 MW, while the laser power in the LFI builds up to a modest 18 kW. Frequency-dependent
squeezing of light helps to reduce all quantum noise sources even further, see section 3.2.4
[33]. Even though all these adjustments have been made, quantum noise still limits the HFI
at f > 500 Hz and the LFI at f > 7 Hz.
The reduction of laser power in the LFI also reduces test mass thermal noise.9 By operating
the mirrors of the LFI at cryogenic temperatures (at T ≈ 10 K) and by using silicon or
sapphire because of their high Q-factors at low temperature, all thermal noise factors present
in the LFI are reduced, see section 3.2.2 [34]. Test mass thermal noise is limiting the overall
sensitivity of the HFI in the [40, 200] Hz frequency domain.
Suspension thermal noise is thus reduced by cryogenic temperatures and high Q-factor ma-
terials in the LFI. However, suspension thermal noise does limit the sensitivity of the HFI

9This is called: total mirror thermal noise in figure 8.
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in the [4, 70] Hz domain because of HFI operating at room temperature. This is, however,
irrelevant because of the LFI being more sensitive in this domain.
The sensitivity of the LFI below 7 Hz, is limited by seismic, gravity gradient, quantum ra-
diation and suspension thermal noise by comparable amounts. The significant reduction of
seismic and gravity gradient noise in this regime, relative to 2G detectors is due to the un-
derground placement of this whole system of interferometers at a location with little seismic
activity [34].
In ET there will be some excess gas present. This excess gas will, just like in adLIGO and
AdVIRGO, produce no limiting factors to its sensitivity.

3.5 Overview detectors

Figure 9: The sensitivities of first (initial LIGO and initial VIRGO [16]), second (AdVIRGO
and AdLIGO [35]) and third (ET) [36] generation detectors. With on the horizontal axis: the
frequency [Hz] and on the vertical axis: the square root of the noise power spectral density
(PSD) (i.e. the spectral amplitude). The sensitivity plotted for ET describes a combination
of one LFI and one HFI.

In figure 9, is clearly visible how every next generation detector has reduced in spectral am-
plitude by a factor of 10. The lower cutoff frequency has also been significantly reduced from
40 Hz for Initial LIGO to [1, 5] Hz for ET.

One thing possible with help of the square of the spectral amplitude Sh(f) (i.e. the noise
power spectral density (PSD)), is determining the signal-to-noise ratio (SNR). Determining
this ratio is done by combining the frequency dependent strain h̃(f), derived in section 2.4,
with the PSD in the following manner [16]:

SNR2 = 4<
∫ fISCO

fs

|h̃(f)|2

Sh(f)
df, (29)
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with fs the lower cutoff frequency of the detector and fISCO defined as in section 2.3. We can
clearly see that: a strong signal (i.e. a large amplitude A of h̃(f)) and a sensitive detector
(i.e. a small PSD) result in a high SNR. The phase is irrelevant to the SNR, because of the
absolute square present in the integral.

By looking at the amplitude of the waveform in Eq. (14), one can see that the strain falls
of as r−1 that, subsequently, results in the SNR being proportional to r−1, according to Eq.
(29). If we assume now that GW sources are roughly evenly distributed through space, this
results in N ∝ V ∝ r3 ∝ SNR−3. Now we can determine an SNR probability distribution.
In the local universe the amount of binaries within luminosity distance r∗ is N(r < r∗) ∝ r3

∗,
or, when transcribed into SNRs: N(SNR > SNR∗) ∝ SNR−3

∗ . And subsequently an SNR

probability distribution that scales like: dN(SNR>SNR∗)
dSNR∗

∝ SNR−4
∗ [37]. A variety of SNR

probability distributions is plotted in figure 11.

Figure 10: SNR probability distributions modelled for the detection of BNSs, NS-BHs and
BBHs for different detectors: 03 is observation run 3 of AdLIGO, AdLIGO is AdLIGO at
design sensitivity, A+ and A++ are potential future configurations for AdLIGO and the
potential future generation detectors: Voyager, CE and ET-B, which was an early estimation
of ET at design sensitivity. Rdet is the amount of estimated detections per year for each given
detector. Most of the binaries with very large SNRs are in the local universe, which results
in them scaling like: 1/SNR4 [37].

Figure 11 tells us two things: (i) future 3G detectors will observe GW sources with sig-
nificantly higher SNRs. ET will probably detect BNSs with SNR > 100 every year, while
AdLIGO struggles even to detect one BNS with SNR > 10 every year. And (ii), because the
surface below the graph indicates the amount of estimated detections per detector per year,
the construction of 3G detectors will result in a more than significant increase in detections.
ET will probably detect a factor 103 more BNSs, NSBHs and BBHs than AdLIGO.10

10For an overview of minimum and maximum detection rates per detector, see [37].
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4 MEASURING THE PARAMETERS OF THE SOURCE

As, in this thesis, we are trying to determine to what degree the properties of GW sources
are measurable using different detectors, we will in this chapter describe the derivation of a
probability distribution for parameters that we can execute for current and future detectors.
We will be following earlier work [11] combined with [12], for the coming sections 4.1 and
4.2.

4.1 The posterior density function

Imagine an experiment, in which data d is collected to determine the parameters θ, which
describe the properties of the source. Now imagine, we would have a hypothesis H that
describes the probability of getting d for given θ and general background information I.11

Let us call this probability distribution the ‘likelihood’: p(d|θ,H, I). Where p(A|B) describes
the probability of A, given B is true.
We are however, as stated above, trying to determine the probability of getting parameters θ
given data d, called the ‘posterior probability density’ or ‘posterior density function’ (PDF).
This can be achieved with help of Bayes’ theorem:

p(θ|d,H, I) =
p(d|θ,H, I)p(θ|H, I)

p(d|H, I)
, (30)

where we also introduce: the ‘prior probability density’ p(θ|H, I) that describes our knowledge
of the parameters θ before the experiment, and the ‘evidence’ p(d|H, I), which is not relevant
for our purpose as it is not dependent on θ and can be seen as a normalisation constant.
This results in the following possible formulation of Bayes’ theorem:

p(θ|d,H, I) ∝ p(d|θ,H, I)p(θ|H, I). (31)

We can conclude from Eq. (35) that, when possessing prior knowledge of θ and a model H
that describes the probability of getting d given θ, we are able to derive the PDF, which sub-
sequently leads to an indication of to what extent the parameters of a source are measurable.

4.2 Derivation Fisher matrix

Let us first state that in the case of our GW analysis, the hypothesis H used, consists of
a ‘family of possible waveforms’ that describe inspiral up to 3.5PN order, described as in
section 2.4 and parameterised by source parameters θ and frequency f .
We consider a situation in which a GW is present in the data, so that the data d(t) (i.e.
the output of the detector) consists of a combination of intrinsic noise n(t) and a GW signal

h(t; ~θ), with ~θ = (θ1, ..., θk) being the unknown parameters of the source:

d(t) = n(t) + h(t; ~θ). (32)

11As we are considering a ‘joint probability distribution’ this method is called a ‘generative model’.
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Next we assume that the noise n(t) is a zero-mean, stationary12 and Gaussian random process
that has the following probability distribution for some noise realisation n:

p(n) ∝ e−
1
2

(n|n), (33)

where (|) denotes the noise weighted inner product, defined as: (g|h) = 4<
∫∞

0
df ḡ

∗(f)h̄(f)
Sh(f)

,

with h̄ the Fourier transform of h and ḡ∗ the complex conjugate of ḡ. Sh(f) should come
across as familiar regarding chapter 3, as a measure of the sensitivity of a detector (i.e. the
PSD). An intuitive insight can be obtained from the way Sh(f) is present in Eq. (33) regard-

ing the general definition of a Gaussian distribution: g(x) ∝ e−
1
2(x−µσ )

2

, with variance σ2 and
expected value µ. Comparing the general definition with Eq. (33) leads to the conclusion
that Sh(f) is a measure of the variance in the noise distribution at some frequency f and
therefore a measure of the sensitivity of the detector at that frequency. The greater the
spread in the noise distribution (and thus the greater Sh) at a particular frequency, the more
random noise will be present and the less sensitive a detector will be.

Now, focusing again on determining the PDF, we can use Eq. (32) to determine the, in

section 4.1 described likelihood. After rewriting Eq. (32) as: n(t) = d(t) − h(t; ~θ) and
substituting this into Eq. (33) we end up with the likelihood:

p(d|~θ,H, I) ∝ e−
1
2

(d−h(~θ)|d−h(~θ)). (34)

If we assume now the prior p(~θ|H) to be flat, i.e. uniformly distributed, we arrive at an
expression proportional to the PDF:

p(~θ|d,H, I) ∝ e−
1
2

(d−h(~θ)|d−h(~θ)). (35)

In Eq. (38), given data d, various combinations of particular noise realisations and particular
waveforms are possible. The most likely waveform will result from the most likely noise
realisation.
In general, the PDF gives us the probability of ~θ, which describes the probability of getting
certain parameter values. This probability distribution is peaked at a certain maximum
likelihood ~θml, which is often not equal to the true parameters of the source due to some
realisation of the noise. However, since we are not trying to determine the true parameter
values, but only the width of their distribution when a source with parameter values equal
to ~θml is detected, we still assume that:

~θ = ~θML + δ~θ, (36)

with δ~θ a small deviation.
Because of the irrelevance of defining a probability distribution for a stationary point, we
now solely derive the probability distribution for δ~θ. We begin with writing out the inner
product:13

p(δ~θ) ∝ e−
1
2

(d−h(~θ)|d−h(~θ)) ∝ e−
1
2

(d|d)+(d|h(~θ))− 1
2

(h(~θ)|h(~θ)). (37)

12I.e. not time dependent.
13From now on, we will stop mentioning the prior knowledge.
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After taking the logarithm, we end up with an equation we can work with:

log(p(δ~θ)) = (d|h(~θ))− 1

2
(h(~θ)|h(~θ)) + C, (38)

where C is an added constant comprised of the (d|d) term and due to the shift from propor-
tionality to equality.
We need two other equations to form Eq. (38) into something usable. Our first equation

comes from the fact that we can Taylor expand h(~θ) around ~θML in the following way:14

h(~θ) = h(~θML) +
∂h(~θML)

∂θi
δθi +

1

2

∂2h( ~θML)

∂θi∂θj
δθiδθj. (39)

In addition we state that the derivative of Eq. (38) with respect to θi is zero at the point of
maximum likelihood. This gives us the following equation:

∂ log(p(δ~θ))

∂θi

∣∣∣∣∣
ML

=

(
d|∂h(~θML)

∂θi

)
−

(
h(θML)|∂h(~θML)

∂θi

)
= 0. (40)

If we now substitute Eq. (39) into Eq. (38), we can rewrite Eq. (38) in the following manner
(the constant C will be dropped as we will switch back to proportionality):

log(p(δ~θ)) ∝ (d|h(~θ))− 1

2
(h(~θ)|h(~θ))

=

(
d|h(~θML)

)
+

(
d|∂h(~θML)

∂θi

)
δθi +

1

2

(
d|∂

2h(~θML)

∂θi∂θj

)
δθiδθj − 1

2

(
h(~θML)|h(~θML)

)

−

(
h(~θML)|∂h(~θML)

∂θi

)
δθi− 1

2

(
h(~θML)|∂

2h(~θML)

∂θi∂θj

)
δθiδθj− 1

2

(
∂h(~θML)

∂θi
|∂h(~θML)

∂θj

)
δθiδθj.

(41)

By making use of Eq. (40) and by neglecting all inner products that are independent of δθ,
we can simplify Eq. (41) even further:

log(p(δ~θ)) ∝ (d|h(~θ))− 1

2
(h(~θ)|h(~θ))

=
1

2

(
d|∂

2h(~θML)

∂θi∂θj

)
δθiδθj− 1

2

(
h(~θML)|∂

2h(~θML)

∂θi∂θj

)
δθiδθj− 1

2

(
∂h(~θML)

∂θi
|∂h(~θML)

∂θj

)
δθiδθj.

(42)

By combining the first and second inner product present in Eq. (42), with help of Eq. (32),
we arrive at an expression for the PDF:

log(p(δ~θ)) ∝ 1

2

(
n|∂

2h(~θML)

∂θi∂θj

)
δθiδθj − 1

2

(
∂h(~θML)

∂θi
|∂h(~θML)

∂θj

)
δθiδθj. (43)

14Einstein summation convention has been used.
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The PDF does still consist of two components that do not contribute in a similar manner to
the PDF. We need to have a look at the SNR, described in Eq. (29), to see which term is
more relevant.
When substituting the derived equation for the waveform up to 3.5PN order, described in
Eq. (15), into Eq. (29), we see that the SNR is independent of Ψ because of the absolute
square that is taken, and the amplitude squared A2 can be placed outside of the integral,
because of it not being dependent on f . This results in the SNR being proportional to A
(i.e. SNR ∝ A).
If we now focus again on Eq. (43), we can use this proportionality to state that the first term
is proportional to A and thus to SNR, while the second term is proportional to A2 and thus
to SNR2. Based on the GW detections done by AdVIRGO and AdLIGO [5], a minimal SNR
of 8 seems to be necessary for the detection of GWs. This leads us to conclude that in the
case of high SNR, the second term will overshadow the first term and the following linearised-
signal approximation LSA can be made (we will elaborate further on this approximation in
the next section):

log(p(δ~θ)) ∝ −1

2

(
∂h(~θML)

∂θi
|∂h(~θML)

∂θj

)
δθiδθj. (44)

This in turn leads to the following useful expression:

p(δ~θ) ∝ e−
1
2

Γijδθiδθj , (45)

with Γij being the so-called Fisher matrix, defined as the matrix of the noise weighted inner
products: (

∂h(~θML)

∂θi
|∂h(~θML)

∂θj

)
. (46)

We can clearly see that the PDF described in Eq. (45) follows a Gaussian distribution,
which is described earlier in this section, only in more than one dimension. This enables us
to determine the spread of the multivariate distribution. When we set i = j, according to
the definition of a Gaussian distribution, we can state that the spread for a single parameter
can be derived from the Fisher matrix: σi =

√
(Γii)−1. Generalising this and defining the

inverse of the Fisher matrix as the variance-covariance matrix Σij, gives us a matrix with
on the diagonal the variance of each parameter [i.e. a measure for the uncertainties in the
estimation of the parameters of the source] and on the off-diagonal elements the covariance
between parameters. The diagonal elements, in which we are solely interested, are defined
as follows:

σi =
√

Σii ≡
√

(Γii)−1 (47)

Because of the earlier described proportionality of Γij to SNR2, σi (i.e. the RMS deviation
of parameter θi from θiML) falls of as SNR−1. This is why a higher SNR will result in more
accurate measurements.

Achieving more accurate measurements can also be done by combining several PDFs with
the same, or approximately the same, expectation value and spread:

p(δθi) =
N∏
n=1

p(δθin) ∝ e
− 1

2

δθi1
2

σi1
2

e
− 1

2

δθi2
2

σi2
2

...e
− 1

2

δθiN
2

σi
N

2 ∝ e
− 1

2
Nδθi

2

σi
2 ∝ e

− 1
2

δθi
2

(σi/
√
N)2 (48)
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This results, as can be seen in Eq. (48), in a decrease in spread by a factor
√
N .

A lot of approximations have been made in this section. Because of these approximations, the
Fisher matrix breaks down in certain situations that will be highlighted in the next section.

4.3 The Fisher matrix: caveats

Let us first of all state that the Fisher matrix is a formalism with some limitations. The esti-
mation of the spread in the maximum-likelihood parameter ~θML is dependent on the validity
of the assumptions. We have assumed (i) Gaussian stationary noise, (ii) the LSA (i.e. the
presence of high ρ) to be valid, (iii) ‘flat priors’ and (iv) Γij being correctly invertible to Σij.

4.3.1 Gaussian noise

Assuming that the noise has a Gaussian shape, is a reasonably good approximation at this
point. All the previously described noise sources are inherently connected to randomness.
The combined effect of all these tends to produce nearly Gaussian shaped noise. It is however,
possible to add non Gaussian terms to describe the noise, which can help to recognise weaker
signals present in the data. This will however lack relevance to our analysis as we will only
be looking at strong signals as we are limited by the LSA to high SNRs [38, 39].

4.3.2 Signal-to-noise ratio

The main assumption that has to be addressed is the validity of the LSA. This linearisation
is, as described in section 4.2, an approximation valid in the presence of high SNR. GWs are
detected at SNRs of 8 and larger, but the validity of the Fisher matrix at these SNRs is very
uncertain. This is because σi falls of as SNR−1, but the real uncertainties do not need to follow
this behaviour. The simulations made in [40], clearly indicate this by comparing the Fisher
formalism to the, more extensive, Monte Carlo method. Although they only used a waveform
up to 1PN order, it is still indicative to know that the Fisher formalism underestimated the
uncertainties in the estimation by over a factor of 2 at an SNR of 10. At an SNR of 25 this
mismatch disappeared. A more extensive analysis of the SNR-domain in which the Fisher
matrix is a decent approximation is done in [41]. Where a quantisation of the mismatch
between the waveform in the LSA and the waveform without loss of higher-order terms is
derived. This is defined as:

| log r(~θ)| =

(
∂h(~θML)

∂θi
δθi −∆h(~θ)|∂h(~θML)

∂θj
δθj −∆h(~θ)

)
/2, (49)

where ∆h(~θ) = h(~θ)−h(~θML), h(~θ) = h(~θML)+ ∂h(~θML)
∂θi

δθi+..., | log r(~θ, ρ)| the quantisation of

mismatch and |.| the norm associated with an inner product. The derivative term ∂h(~θML)
∂θi

δθi

is the deviation from h(~θML) used to derive the Fisher matrix and ∆h(~θ) the deviation from

h(~θML) in a Taylor expansion in which higher-order terms are not neglected.
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Subsequently, a cumulative distribution function for the mismatch | log r| is calculated on the
1σ curface of the multivariate Gaussian given by the Fisher matrix.

Figure 11: Cumulative distribution for | log r| on a surface as described above for the 4,
5 and 6 parameter case and for multiple ρ-values. Evaluated in the case of m1 = m2 =
10M�, a restricted waveform up to 2PN and a Fisher matrix calculation for the parameters:
(tcoal,Φcoal,Mc, η), with the 3PN spin parameter added to the calculation in the 5 parameter
case and the 3PN and 4PN spin parameters added in the 6 parameter case. Flat priors were
imposed and the strived for c.d.f. is one where 90%[i.e. 0.9 above] of the distribution has a
mismatch of maximum 0.1 [i.e. 90% of the points on the surface, calculated in accordance
with the Fisher matrix, have a mismatch smaller than the value 0.1] [41].

In contrast with [41], we do not include spin parameters, use a restricted waveform up to
2PN or only add parameters at 3PN or 4PN. This model does however correspond to our
model in a general way, which justifies our adoption of its global conclusions.
The first thing we can derive is that in the case of extremely large SNR, the described mis-
match stays below 0.1, which means that the LSA ‘creates’ a self-consistent Fisher matrix.
The second thing we can derive is that when more parameters are determined, the SNR needs
to enlarge by at least a factor of 10 to validate the use of the LSA.
In the case of the model used in [41], the Fisher matrix becomes self-consistent for SNR∈
[10, 20] in the 4 parameter case, for SNR∈ [100, 200] in the 5 parameter case and for
SNR∈ [4000, 10000] in the 6 parameter case. As we will mostly be looking at the 5 pa-
rameter case, we will strive for SNRs of at least 100 and take into account that the Fisher
matrix certainly underestimates the uncertainties in the estimation below this SNR, as anal-
ysed by [40].

4.3.3 Flat priors

As stated in section 4.2, we assume flat priors (i.e. uniformly distributed parameter probabil-
ity distributions that describe our knowledge of the parameters). This assumption is usually
applied in Bayesian Analysis when one wants the priors to have as little influence as possible,
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since flat priors result in the likelihood being proportional to the PDF. Hence, choosing flat
priors, which have the least amount of impact, can be seen as the safest choice.

4.3.4 Inverse

Determining the inverse of Γij is the last step in determining the RMS deviations of the
parameters. One obvious situation in which problems arise is when a Fisher matrix is singular
and thus by definition does not have an inverse. In the case of numerical simulations it can
occur that the Fisher matrix is perceived as singular by the computer due to such large
differences between the diagonal elements that the ratio between them approaches floating-
precision [42]. This can be solved partly by reducing the differences between the diagonal
elements by equating the Fisher matrix for the logarithm of the parameters. So instead of
Mc and η we will be using elogMc and elog η as parameters of our waveform. Still there are
situations in which this is not sufficient and Singular Value Decomposition must be applied
to calculate a ‘pseudo-inverse’. We have chosen not to quote results obtained in this way,
thus for further information regarding SVD, we refer to [42].
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5 A NETWORK OF DETECTORS

To describe ET using the Fisher formalism, we need a Fisher formalism valid for a network of
V-shaped detectors. Let us first have a look at the necessary modifications to the waveform.

5.1 Wavefrom

According to [33], the antenna pattern functions, described in Eqs. (6) and (7) for an L-
shaped interferometer (90◦ angle between its arms) are a factor

√
3/2 smaller for a V-shaped

interferometer (60◦ angle between its arms):15

F V
+ (θ, φ, ψ) =

√
3

2
FL

+(θ, φ, ψ), (50)

F V
× (θ, φ, ψ) =

√
3

2
FL
×(θ, φ, ψ). (51)

This describes the antenna pattern function of one V-shape. The other two V-shaped inter-
ferometers present in ET are described by the transformation φ→ φ± 2π/3. This results in
the following antenna pattern functions for interferometers 2 and 3:

F 2
+,×(θ, φ, ψ) = F 1

+,×(θ, φ+ 2π/3, ψ), (52)

F 3
+,×(θ, φ, ψ) = F 1

+,×(θ, φ− 2π/3, ψ). (53)

where F 1
+,× is equal to F V

+,× from Eqs. (50) and (51).

5.2 Signal-to-noise ratio

We now have all the tools we need to calculate the SNR for each interferometer present in
ET: the modified waveforms and the PSD as described in section 3.5. To combine the SNRs,
the following equation can be used [33]:

SNRtot =

√
SNR2

1 + SNR2
2 + SNR2

3, (54)

where SNRn, with n = 1, 2, 3, denotes the SNR of interferometer 1, 2, 3 and SNRtot denotes
the SNR of ET. The

√
3

2
term that is added to the antenna pattern functions in section 4.1,

decreases the SNR of one detector, according to Eq. (34), with an equal factor of
√

3
2

. How-
ever, because of Eq. (54), this results, in the case of three identical detectors and an equal
sky location and orientation of the binary for all three detectors {θ, φ, ψ, ι} = 0, in an overall
increase of a factor of 3

2
in SNR for three V-shaped detectors with arm lengths X compared

to one L-shaped detector with equal arm lengths X [33]. Following the same argument, three
identical L-shaped detectors would have an overall increase in SNR of maximally a factor√

3, relative to one L-shaped detector.

15From now on, we view the two interferometers present in one V-shape as one interferometer. The
combined sensitivity of the LFI and HFI of ET is visualised in figure 9.
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5.3 Fisher matrix

After the modification, discussed in section 5.1, to the waveform, the Fisher matrix can be
calculated for all three V-shaped detectors separately. To combine the three matrices, we
need to have a look at Eq. (45). We can combine the probability distributions of the three
detectors by multiplying them [43]:

p(δ~θ) ∝ p1(δ~θ)p2(δ~θ)p3(δ~θ) ∝ e−
1
2

(Γij1 +Γij2 +Γij3 )δθiδθj ∝ e−
1
2

(Γijtot)δθ
iδθj . (55)

This leads us to conclude that, to combine the three interferometers, we need to add the
separately calculated Fisher matrices:

Γijtot = Γij1 + Γij2 + Γij3 , (56)

where Γijtot indicates the Fisher matrix of ET and Γijn with n = 1, 2, 3 the Fisher matrices of
the separate interferometers.
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6 TESTS OF GENERAL RELATIVITY

As coalescences of BBHs and BNSs are ideal subjects for tests of the strong-field regime of
GR, multiple tests have been devised and executed for the recently detected GW signals. One
of these checks for possible deviations in the PN coefficients by studying the phase evolution
related to the inspiral of a binary system.16 In this chapter we will (i) briefly summarise how
this test is done in practice, (ii) present our results related to the Fisher matrix, (iii) analyse
the results derived by [5, 6], (iv) compare our Fisher matrix formalism to these tests and (v)
evaluate to what extent these tests can be enhanced by use of ET.

6.1 Parameterised tests of the PN formalism

As there are, at this time, no high-accuracy predictions for IMR waveforms in alternative
theories of gravity, there is no possibility in testing GR by comparing its predictions of the
waveforms arising from binary coalescence to other theories. What is possible though, is
investigating to what degree the given GW data is described by waveforms that have been
derived from GR, by constraining deviations from Einstein’s theory [5].
In the case of [5, 6] this has been done with the waveform model IMRPhenomPv2 in the
former case and PhenomPNRT in the latter case, which describe the whole IMR regime
for BBHs and only the inspiral regime for BNSs respectively. The phase of these waveform
models is described by a number of coefficients {pn}: (i) during early-inspiral by the, from
section 2.4, familiar PN coefficients {α0, ..., α7} and {α5l, α6l} and (ii) in the case of BBHs by
a set of other coefficients during late-inspiral, merger and ringdown.17 By now introducing
the following parameterised deformations to these coefficients:

pn → (1 + δp̂n) pn, (57)

the waveform is given the freedom to deviate from the by GR defined values of these co-
efficients, with δp̂n being the relative deviation testing parameter. When this waveform,
which includes the testing parameters, is matched to GW data, all the parameters (masses,
spins, sky position, orientation, distance, coalescence time, coalescence phase and testing
parameters) are estimated and, in the case of GR being confirmed for that detection, all
testing parameters should have the value δp̂n = 0 supported by their PDFs. In the case
that deviations from zero are present, these do not necessarily reflect the coefficient values
of the correct theory. Determining coefficients for ‘the correct theory’ would have to be done
through the construction of a new IMR model for that particular theory [6]. So this is no
method for determining a new theory of gravity. This does however reflect to what extent
the IMR waveform, derived from GR, is applicable to that specific GW detection. Note that
the testing parameters do not receive the freedom to deviate all at a time. One parameter is
allowed to vary freely, while the others are fixed to zero. This allows us to answer the more
specific question: “does one or more of the testing parameters vary from zero?” in stead of
the more general question: “do all testing parameters vary from zero?”, and it helps to reduce
statistical errors, as these will be smaller for the estimation of less parameters [44, 45].18

16The GW amplitude is not analysed, [1] explains why.
17We refer to [5, 6] for exact details on these coefficients as we confine ourselves to early-inspiral.
18Just like in the Fisher matrix case, see section 4.3.2.
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Note that not all coefficients have a measurable testing parameter because of their degener-
acy with another parameter. α5 for example, is completely degenerate with the coalescence
phase. Note too, that δα̂1 represents an absolute instead of a relative deviation, due to α1 = 0
[6].
The accuracy to which the PDFs are determined is, of course, dependent on the SNR. The
higher the SNR, the stronger the signal and the more accurately a waveform can be matched
to a signal. However, strong signals in GW detectors are often caused by BBHs with a total
mass larger than 50M� [5], that would, after a similar calculation as in section 3.4 and
considering the BHs to be of equal mass, be in the observation band of the current AdLIGO
detector with fcutoff = 20 Hz, for a bit more than a second and would have an fISCO ≈ 87
Hz.19 While BBHs with a total mass of 20M� would have a lower SNR but be detectable,
after a similar calculation and considering again that the components are of equal mass, for
four times as long and would have fISCO ≈ 219 Hz. As ground based GW detectors expe-
rience their peak sensitivity at frequencies in the bandwidth [100, 300] Hz (see section 3.3),
the signal of a smaller mass BBH can still be more informative and thus be favourable, even
though it has a smaller SNR. An ideal situation is of course the detection of a source that
has a high SNR and which is in the detection band for a long period of time.
As analyses of separate events are dominated by statistical uncertainties due to the pres-
ence of detector noise, combining events to reduce these statistical errors can be useful in
determining the testing parameters [5]. Combining events with our Fisher analysis will be
executed in Chapter 7 and will be discussed in the outlook.

6.2 Results

By implementing the testing parameters into the Fisher formalism using Mathematica [46]
we are able to estimate a measure the measurability of these testing parameters for future
3G detectors. The Fisher formalism is obviously not a suitable method for determining the
expectation value of parameters, as is clarified in chapter 4. It is however useful to determine
an indication of the measurability of parameters. Therefore, we will only look at the spread
in the PDFs related to the testing parameters. Because of the uncertainties associated with
the Fisher formalism, we will be focusing at orders of magnitude. A more in-depth analysis
is needed to achieve more accurate results.
We execute the analysis for AdLIGO at a downgraded sensitivity and ET at design sensitivity,
with help of the PSD curves from section 3.5. All BBHs analysed in [5] and the BNS
analysed in [6] have been subjected to a Fisher analysis. Our analysis consists of adding the
testing parameters, as described in section 6.1, to our early-inspiral waveform model. By
now evaluating the Fisher matrix for each testing parameter in turn, in combination with the
parameters {tcoal,Φcoal, logMc, log η}, we are able to derive the spread in the PDFs related
to the testing parameters. This makes it applicable to the 5 parameter case, described in
section 4.3.2, which requires a high SNR (somewhere in the range SNR∈ [100, 200] the Fisher
matrix becomes self-consistent). At a lower SNR we can expect an underestimation of the
spread in the parameters. Let us now talk about the relevant decisions we have made during
this analysis.

19In the case of BBH mergers, the IMRPhenomPv2 would be able to analyse the signal up to higher
frequencies, but this does equally apply to smaller mass BBHs.
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• Our waveform model does not describe anything other than early-inspiral. This makes
it computational and understandable, but will inevitably result in a loss of information.
Especially in the case of BBHs, with a limited number of inspiral wave cyles inside the
detection band, uncertainties will be larger for our model due to loss of information.
To counter this loss of information we evaluate binaries of smaller mass, as these are
favourable due to their longer inspiral, as described in section 6.1. That is why we
will discuss a lower mass BBH [GW151226] and the BNS [GW170817] below. The
other analyses of the BBHs are presented in the appendix. Our waveform model does
also neglect tidal effects and spins. We expect these simplifications to be negligible
compared to the inherent errors associated with the Fisher formalism. In chapter 7 we
will analyse the detectability of the tidal effects for various detectors.

• To reasonably compare our Fisher formalism for a single detector at AdLIGO design
sensitivity to the more extensive analysis done by [5, 6], which is based on real data
collected by the AdLIGO and AdVIRGO detectors not being at design sensitivity,
we normalise our SNR to equal the SNR associated with the actual detections. This
normalisation includes (i) a downgrade in sensitivity, as we are using the PSD for
AdLIGO at design sensitivity, (ii) an upgrade in sensitivity, as we are evaluating the
detection of a GW with only one detector in contrast with the network of detectors
used in the extensive analysis and (iii) a factor that re-scales the impact of the non-
perfect location of the binary on the SNR. One could try to model a combination
of AdLIGO and AdVIRGO at the exact sensitivity at which they were at the time of
measurement, including sky locations etc.. But because of the inherent errors associated
with the Fisher formalism, we expect such models to be unnecessarily complex and our
approximation to be sufficient.

• As GW sources are not likely to be perfectly located and oriented in the case of detec-
tion, we average over the sky position and orientation by multiplying our SNR with a
factor of 2

5
in the case of ET [12]. In the case of AdLIGO the non-perfect location is

incorporated in the re-scaling of the SNR.

• The masses used are source frame masses (i.e. the actual masses of the binary) as the
measured masses have been divided by a factor of (1 + z), with z being the redshift
[47].

• Because of the usage of 90% upper bounds by [5, 6], we do the same and convert our
1σ (i.e. 68%) bounds to 90% upper bounds.

• As we are dealing with relative deviations, a value of |∆δα̂n| = 1 resembles a 90%
spread of the PDF as large as the associated value of αn. From this point up, the 90%
upper bounds become relatively uninformative, as only unlikely large deviations of the
testing parameters from 0 can be deemed measurable. But, because of ET having
values |∆δα̂n| < 1 for all PN orders, for completeness, we will include the probably
uninformative values of |∆δα̂n| for Fisher-AdLIGO and the extensive analysis since
one could argue that uninformative values are equally instructive as informative values.
They namely tell us that a deviation is probably unmeasurable for that specific detector,
which can also be deemed to be a useful result when one is comparing detectors.
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• Due to problems related to inverting the Fisher matrix to derive the uncertainties in
the testing parameters, we choose not to visualise the uncertainties related to the PDFs
of the testing parameters obtained by SVD, see section 4.3.4, as they are derived with
help of pseudo-inverses. This is the reason for the regular absence of values at 2PN
and 3PN(l). But even in the cases in which 2PN and 3PN(l) have been determined, we
do not fully understand their behaviour, especially as described by Fisher-AdLIGO.
However, as the actual measurements estimate |∆δα̂n| > 1 at n = 4, 6l (i.e. bounds on
the testing parameters are probably uninformative), we will not give to much attention
to these PN orders.

Let us now visualise the discussed data.
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Figure 12: 90% upper bounds |δα̂n| on the absolute magnitude of the testing parameters
for GW170817 (m1 = 1.5M�,m2 = 1.3M�, d = 40 Mpc) [2] determined by: (i) the Fisher
matrix adjusted to resemble ET at design sensitivity, (ii) the Fisher matrix based on the
AdLIGO design sensitivity, but re-scaled to resemble the (iii) analysis based on the actual
AdLIGO/AdVIRGO detection, as described in [6], using the PhenomPNRT waveform. Note
that these are relative deviations (except for the 0.5PN term).
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Figure 13: 90% upper bounds |δα̂n| on the absolute magnitude of the testing parameters for
GW151226 (m1 = 13.7M�,m2 = 7.7M�, d = 450 Mpc) [48] determined by: (i) the Fisher
matrix adjusted to resemble ET at design sensitivity, (ii) the Fisher matrix based on the
AdLIGO design sensitivity, but re-scaled to resemble the (iii) analysis based on the actual
AdLIGO/AdVIRGO detection, as described in [5], using the IMRPhenomPv2 waveform.
Note that these are relative deviations (except for the 0.5PN term).

6.3 Existing measurements

We will now first evaluate the data as derived from the extensive analyses done by [5, 6] (i.e.
the black data). The values of |δα̂n| (i.e. the spread in the testing parameters) are lower
at lower PN-orders (0-1.5PN) relative to higher PN-orders (2-3.5PN) in all cases (figures 12
and 13 and the figures in the appendix). This indicates that the deviations from GR are
best measurable at low PN-orders. At higher PN-orders the values |δα̂n| are almost always
larger than one, which indicates that these can be deemed to be uninformative, unless of
course GR, all of a sudden, happens to be off by miles. What we, obviously, do not expect.
If we compare the figures 12 and 13 to the figures in the appendix, we can also derive that
the tightest constrains on GR are, as expected and explained in section 5.1, at high SNRs
and for sources that spend the longest amount of time in the detection band (i.e. lower mass
sources).

6.4 Fisher-AdLIGO versus existing measurements

We will now compare the spread in the PDFs for the testing parameters derived from (i) our
Fisher matrix in the case of AdLIGO (i.e. the blue data) to (ii) the extensive analyses made
by [5, 6] (i.e. the black data). Our goal is to determine to what extent the Fisher formalism
is capable of reproducing these data-based results for low SNRs and to determine what limits
our formalism in deriving the same results as [5, 6].
To summarise: the maximum-likelihood values derived in the measurements are used in the
Fisher matrices and SNRs are matched to, first, modify the AdLIGO PSD at design sensitiv-
ity to be of similar shape as the AdLIGO PSD at time of measurement, second, equalise the
influence of the location and orientation of the source on the SNRs and third, compensate
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the difference in the amount of detectors used. The waveform used in [6] in the BNS case
is PhenomPNRT. Because of the fact that this model does not describe the waveform in the
merger and post-merger regimes, we are helped in comparing our simplified analysis to a
more extensive one. The wavefrom used in [5], in the BBH case is IMRPhenomPv2, which
does describe the waveform during inspiral, merger and ringdown. A lot less information is
lost with the use of IMR waveforms that will inevitably lead to smaller uncertainties in the
estimation of the testing parameters in the case of [5] relative to our own Fisher calculations.
There is however, when using the Fisher matrix at low SNRs, an underestimation in uncer-
tainties to be expected.

6.4.1 Binary neutron star

If we now have a look at figure 12, we are able to see that the Fisher formalism expects,
just like the actual measurement, a better measurability of the testing parameters at lower
PN-orders and a clear similar trend is visible in the data. The Fisher matrix does however
approximate the values of |δα̂n| to be smaller by an approximately constant factor of 10 rel-
ative to the actual measurement. Because of this underestimation, the fisher matrix expects
all PN-orders to be reasonably informative [i.e. |∆δα̂n| < 1]. This is however not the case
in reality, according to the analysis made by [6]. Because of the use of similar waveforms,
our application of the source parameters as derived by these same actual measurements, our
levelling of the SNRs, and the prior knowledge that the Fisher matrix underestimates the
uncertainties at low SNRs, we deem ourselves justified in stating that the major part of the
underestimation is due to the Fisher formalism itself.

6.4.2 Binary black hole

Now lets have a look at figure 13 and the figures visualised in the appendix. Again we
are able to see that the Fisher formalism estimates that the testing parameters are better
measurable at lower PN-orders, just like the actual measurement, and we are able to see
a similar trend. This trend is however not as ‘spot on’ as in the BNS case, since we are
dealing with over- and under-estimations in this case, opposite to just underestimation in
the BNS case. This can be explained by the loss of information due to our waveform, which
only describes early-inspiral. The absence of a description for the waveform in the merger
and post-merger/ringdown regimes in the case of our Fisher formalism inevitably leads to an
increase in |δα̂n|. Such an increase apparently, that it outdoes the decrease in uncertainty
associated with the Fisher matrix at low SNRs. In the case of BBH estimations using the
Fisher matrix and an early-inspiral waveform at SNRs this low, a balance between (i) the
absence of a description of merger and ringdown increasing the uncertainty and (ii) the
Fisher-matrix underestimating the uncertainty, seems to be induced. When looking at the
appendix we see that the Fisher estimated values of |∆δα̂n| fit worse to the extensive analysis
in the case of (i) even heavier mass binaries and lower SNRs. This is to be expected due
to the even greater loss of information in the case of even shorter inspiral periods related
to larger masses and the even greater underestimations made by the Fisher matrix for even
lower SNRs. These two sources of error seem to keep each other in balance as they do not
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create massive deviations in the error bounds on the testing parameters in the case of Fisher,
relative to the actual measurement. The deviations are, as in the BNS case, no larger than
an order of magnitude. They do however destroy the trend set by the extensive analysis, as
is best seen in figure 21 (GW170104).

6.4.3 Conclusions

First, we can conclude that our Fisher formalism is primarily limited in reproducing the ac-
tual measurements by (i) low SNRs in BNS and BBH cases and by (ii) our used waveform in
the case of BBHs. Longer inspirals and higher SNRs are circumstances in which our Fisher
formalism will reproduce the actual measurements with higher accuracy and thus be more
reliable. These limiting factors leads to an error of approximately one order of magnitude in
the AdLIGO case as discussed above, which is not great but as expected from Fisher matrix
analyses at low SNRs. The Fisher formalism at low SNRs and for sources of short duration
should be seen as an indication of the measurability of parameters. No hard limits on the
measurability by a detector can be defined, but it does give us an indication.

Second, we can conclude from figure 13 and the other analyses visualised in the figures
in the appendix that: in the case of BBHs, using only an early-inspiral waveform and with
use of detectors at current SNRs, no useful bounds on the testing parameters can be de-
termined that would help us actually test GR, according to the Fisher matrix. And as the
Fisher matrix has a tendency to underestimate uncertainties, we expect it to be very unlikely
that any relevant bounds can be determined by modern day detectors using an early-inspiral
waveform. With use of an IMR waveform, meaningful bounds can be derived up to 1.5PN,
as discussed in section 6.3.
We will now be evaluating to what extent ET will be capable of measuring deviations from
GR.

6.5 Fisher-ET versus existing measurements

We will now compare the spread in the PDFs for the testing parameters derived from (i) our
Fisher matrix in the case of ET (i.e. the orange data) to (ii) the extensive analyses done
by [5, 6] (i.e. the black data), with the behavioural characteristics of the Fisher matrix, as
derived in section 6.4, in the back of our minds. Our goal is to determine to what extent the
measurability of the testing parameters will be enhanced by ET. An increase in measurability
(i.e. decrease in the parameters |∆δα̂n|) is of course expected for ET. This is generally due
to (i) the SNR being larger than 200, that results according to section 4.2 in a decrease in
the spread, and (ii) the lower value of fcutoff that will result in signals being detectable for
longer periods of time and an increase in information accordingly, see section 6.1. We assume
an fcutoff = 3 Hz, which is still a reasonably conservative estimation. Note that the lower
value of fcutoff will specifically increase the detectability of the earliest parts of inspiral. As
low PN coefficients are more important than high PN coefficients for the earliest parts of
inspiral, we expect these to benefit the most from this decrease in fcutoff , i.e. we expect
|∆δα̂n| to decrease more at low PN values than at higher PN values in the case of ET.
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For ET, a Fisher model is constructed in the same manner as was done for AdLIGO in section
6.4, with modifications according to chapter 5. I.e. we use the same maximum-likelihood
values and same early-inspiral waveform, but use the PSD for ET at design sensitivity and
generalise our Fisher model to resemble a combination of three detectors. As described in
section 6.2 we average over sky position.
We expect a Fisher formalism based on ET to be a better representation of actual measure-
ments than a Fisher formalism based on AdLIGO. This is partly due to the higher SNRs
that are expected for ET, which make the Fisher formalism self consistent for the 5 param-
eter case, as discussed in section 4.3.2, and this is partly due to the lower value of fcutoff .
This improvement from fcutoff = 20 Hz to fcutoff = 3 Hz compensates, to some extent, the
experienced deviation of our Fisher formalism in the BBH case due to neglecting the merger
and ringdown in our waveform, as discussed in section 6.4. With a lower value of fcutoff ,
less information will be lost in the inspiral frequency domain, as there are more cycles of
inspiral during which the parameters can be determined. This will compensate the absence
of information on the merger and ringdown in our Fisher model, to some extent. Because
of ET not being build yet, we can not directly compare our results to actual measurements,
but according to the above argument we expect results that are at least as accurate as the
results achieved by our Fisher model for AdLIGO.

6.5.1 Binary neutron star

If we now have a look at figure 12, we see that in the case of ET a similar trend is visible
as in the actual measurement, only now all values of |∆δα̂n| are a factor [102, 104] smaller.
Especially the testing parameters at lower PN-orders benefit from the use of ET, as explained
above. ET is capable of defining bounds smaller than 1, on all the testing parameters.

6.5.2 Binary black hole

Let us now have a look at figure 13 and the figures visualised in the appendix. ET follows,
again, a similar trend as the actual measurement, but does not do this as accurately in
the BBH cases as in the BNS case. The values of |∆δα̂n| decrease, in the case of small
mass BBHs, with a factor of [101, 103] (GW170608, GW151226) and in the case of larger
mass BBHs (GW150914, GW170814, GW170104) with a factor of [101, 102]. The testing
parameters at lower PN-orders benefit, just like in the BNS case, the most. No values for
|∆δα̂n| are larger than 1, which means that Fisher is capable of defining informative spreads
for all PSDs of the testing parameters.

6.5.3 Conclusions

We can conclude from this analysis that ET will inevitably lead to significantly tighter bounds
on the testing parameters when compared to 2G detectors, especially for lower PN orders.
2G detectors are able to define bounds on the testing parameters, in the range of [10,100]%
for lower PN orders and [100,→〉% for higher PN orders, when detecting long inspiralling,
high SNR binaries, and, in the case of short signal, low SNR binaries, bounds in the range
of[10,→〉% for lower PN orders and [100,→〉% for higher PN orders. While ET probably, if
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we make conservative estimations, will lead to bounds in the range of [0.1,1]% for lower PN
orders and [1,10]% for higher PN orders, when detecting long inspiralling, high SNR binaries,
and, in the case of short signal, low SNR binaries, to bounds in the range of [0.1,10]% for
lower PN orders and [1,100]% for higher PN orders.
Because of the significantly increased detection rates expected for ET, see section 3.5, even
tighter bounds will be derived from the combination of multiple detections.
Note too that, when using IMR waveforms, the bounds on the testing parameters are proba-
bly even tighter than the ones we determined as the inspiral-waveform inevitably experiences
a loss of information by not describing the full waveform. We can conclude that Einstein’s
theory will be properly put to the test by ET.
The certainty of these claims stands or falls with the Fisher matrix. As we expect our
Fisher formalism to have smaller deviations from actual measurements at higher SNRs and
for sources that are detectable for longer timescales, we expect these bounds on |∆δα̂n| to
be correct within an order of magnitude.



7 TESTS OF NEUTRON STAR EQUATION OF STATE 35

7 TESTS OF NEUTRON STAR EQUATION OF STATE

Besides testing the strong-field regime of GR, the detection of coalescing BNSs with GW
detectors can be used to gain knowledge of the neutron star equation of state EOS, about
which we know very little still.20 In this chapter we will (i) summarise how the EOS enters
our waveform model, (ii) discuss an extensive analysis: [7], on which our analysis is based,
(iii) discuss our own analysis, (iv) compare our results in the case of AdLIGO with the results
of the extensive analysis and (v) discuss our results in the case of ET.

7.1 EOS in our waveform model

The EOS enters a GW signal in the following three ways: (i) tidal deformations, (ii) early ter-
mination of the waveform due to contact between the NSs and (iii) the quadrupole-monopole
effect. This last effect is irrelevant to our analysis as it is dependent on spin, which is not
included in this paper. An allowed simplification, according to [49], since spins are expected
to be small for BNSs.21 We will now discuss (i) and (ii) as we do implement those into our
Fisher analysis. We will be following earlier work: [7].

7.1.1 Tidal deformations

The primary way the EOS enters the GW signal is through tidal deformations. During the
last stages of inspiral (f > 400 Hz) a tidal field Eij in one NS induces a quadrupole moment
Qij in the other. The strength of this quadrupole moment is dependent on the EOS through
the tidal deformability λ(EOS;m) of the NS in which a quadrupole moment is induced.
This happens according to the following expression in the, in section 2.4 described, adiabatic
approximation:

Q
(2)
ij = −λ(2)(EOS;m)E (1)

ij , (58)

with the numbers denoting that the induced quadrupole moment in a NS is determined by
its own tidal deformability and the tidal field of the other NS, with λ(EOS;m) denoting that
the tidal deformability is dependent on the mass through the EOS, according to the following
equation:

λ(m) =
2

3
k2(m)R5(m), (59)

with k2 being the second Love number and R(m) the neutron star radius.
The induced quadrupole moments in the two NSs deform them and effect their orbital motions
and the GWs they produce. The EOS can in turn be derived from the detected GWs.
The EOSs we review are plotted in figure (14).

20NSBH coalescence can also be evaluated, but in this paper we will focus on the BNS case. The formalism
we use can be applied as it is to NSBHs as well. We leave this to future research.

21For more information on the quadrupole-monopole effect, see [7].
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Figure 14: The various EOSs used in this paper, with on the horizontal axis the mass of a
NS in solar masses and on the vertical axis the tidal deformability λ, with MS1 being the
stiffest and SQM3 the softest EOS [4].

Note that a stiff EOS has the largest tidal deformability and a soft EOS the smallest tidal
deformability.
These tidal effects enter the GW phase at 5PN order and are determined up to 7.5PN order
by [50]. They can be added linearly to the existing phase up to 3.5PN order, as presented in
section 2.4, like: (ΨNS(f) = Ψ(f) + Ψtidal(f)), with Ψtidal(f) being, according to [50]:

Ψtidal (f) =
3

128η
v−5

2∑
A=1

λA
M5XA

[
−24 (12− 11XA) v10 +

5

28

(
3179− 919XA − 2286X2

A + 260X3
A

)
v12

+ 24π (12− 11XA) v13 − 24

(
39927845

508032
− 480043345

9144576
XA +

9860575

127008
X2
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− 421821905

2286144
X3
A +

4359700

35721
X4
A −

10578445

285768
X5
A

)
v14

+
π

28

(
27719− 22127XA + 7022X2

A − 10232X3
A

)
v15
]
,

(60)
with v = (πMf)1/3 as in section 2.4, XA = mA/M , λA = λ(mA) and A = 1, 2. Note that
higher-order multipoles have been neglected as they are expected to give negligibly small
corrections to Ψtidal(f) and that a couple of functions at 7PN order have been neglected
because of the same reason [7, 50]. Although tidal effects enter the phase at 5PN, they can
still be deemed measurable by 2G detectors because of the large prefactor λ/M5 ∝ (R/M)5 ∼
102 − 105.22

As we did not include higher-order contributions to the amplitude in deriving Eq. (15), we
will also not add higher-order contributions to the amplitude here. This is in line with [7].

22In the case of NSs in the approximate ranges: R ∈ [7.5, 15] km and m ∈ [1, 2]M�
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7.1.2 Early termination of the waveform at contact

Up until now we have used fISCO as the upper cutoff frequency at which the early-inspiral
waveform is no longer a decent approximation, as described in section 2.3. In the case of
BNSs there is however the possibility that they already ‘touch’ at frequencies lower than
fISCO at which the waveform would already breakdown. This fcontact is determined with help
of Kepler’s third law and is given by:

fcontact =
1

π

(
M

(R(m1) +R(m2))3

)1/2

. (61)

In order to compute the radii R(m1) and R(m2) necessary to derive fcontact, we can use an
equation for the compactness C [7]:

C = 0.371− 3.91× 10−2 ln
λ

m5
+ 1.056× 10−3

(
ln

λ

m5

)2

, (62)

which is an equation not only valid for NSs, but universally valid and derived through a
numerical fit.
After deriving C for a particular λ, we can make use of the fact that the radius R, compactness
C and mass m are related through: R = m/C to arrive at the required radii and fcontact.
Following [7], we impose that the lower frequency of the two corresponds to fcutoff :

fupper = min{fISCO, fcontact}. (63)

Especially for low mass NSs and stiff EOSs, fcontact can be significantly smaller than fISCO.
For an overview on the dependence of fcontact on masses and EOSs and on when it becomes
smaller than fISCO, see figure 3 in [7].

7.2 Extensive analysis

We will now first compare our results derived using the Fisher matrix for AdLIGO to a more
extensive analysis, done by [7] for AdLIGO/AdVIRGO, to, thereafter, analyse to what extent
ET improves on the results obtained with these 2G detectors.
[7] carried out two analyses based on Bayesian methods, from which we took one and applied
it to our Fisher formalism. We will only discuss the copied Bayesian analysis method: ‘pa-
rameter estimation’. We will now first summarise the parts of their work that are relevant
to us.

This ‘parameter estimation’ analysis is not based on real BNS GW detections. Instead
BNS signals based on different possible EOSs are ‘injected’ into simulated detector noise,
which is stationary, Gaussian and resembles AdLIGO/AdVIRGO at design sensitivity, to
then compare millions of waveforms with the simulated data to analyse to what extent EOSs
can be distinguished. By combining several of these ‘detections’, 200 for each EOS to be
precise, stronger bounds on the measurability of various EOSs can be derived. But, since the
EOS parameter λ(m) varies from source to source because of its dependency on the source
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its mass, the PDFs for λ(m) can not be combined to arrive at stronger bounds. Other pa-
rameters need to be identified that do not vary from source to source. Therefore a Taylor
expansion of λ(m) is evaluated:

λ(m) ' c0 + c1

(
m−m0

M�

)
+

1

2
c2

(
m−m0

M�

)2

, (64)

with m0 = 1.4M� and c0, c1 and c2 being the EOS coefficients, which will be the same for
all sources. PDFs estimated for these coefficients can be combined by multiplying them in a
similar manner as done in Eq. (48).
The ‘injected’ and ‘compared’ BNS signals in [7] are based on a waveform model similar to
our waveform model as derived in chapter 2 and include the same EOS dependent additions
to the phase up till 7.5PN order as discussed in section 7.1. On top of this, they include
neutron star spins and the spin-dependent quadrupole-monopole effect. They however also
do an analysis in which they set all spins to zero. We will focus on this analysis as it resembles
our analysis the most.
Note that this analysis is not a method by which the true EOS coefficients can be determined,
since these are self-implemented, but only a method by which the spread in the PDFs of the
EOS coefficients for various EOSs can be determined, to subsequently determine if various
possible EOSs are distinguishable with AdLIGO/AdVIRGO.
Note too that no real sources are used in [7], since at the time of writing no GW sources
were detected, let alone BNS GW sources. Till this day AdLIGO/AdVIRGO have detected
only two of these [GW170817,GW190425] [51]. As the above described analysis method tries
to combine 200 sources, it is currently still a relevant analysis concerning predictions of the
future measurability of EOS parameters.

7.2.1 Results

As discussed in the previous section, [7] tries to determine to what extent various EOSs are
distinguishable by AdLIGO/AdVIRGO by inserting various simulated BNS sources, which
are subjected to three different EOSs, into simulated detector noise to subsequently ‘dig’
these GW sources out and determine to what extent the EOS coefficients are measurable and
distinguishable for the three different EOSs. The EOSs inserted are: a stiff (MS1), moderate
(GNH3) and soft (SQM3) EOS, which are visualised in figure 14 and approximated by a
Taylor expansion, according to Eq. (64). The PSD for the AdLIGO/AdVIRGO network at
design sensitivity is used, with fs = 40 Hz being the lower cutoff frequency. The inserted
sources are drawn from a uniform volume in the distance range D ∈ [100, 250] Mpc, from a
uniform mass distribution on [1, 2]M� and spins are set to zero. Sky location and orientation
are distributed uniformly on the sphere and φc is also drawn uniformly from [0, 2π). All
sources drawn from these distributions have SNRs greater than 8 and smaller than 30. 23

The priors are, just like the inserted sources, assumed to be flat.24

For all injected sources, the EOS parameters are determined with their corresponding 95%
bounds. Then, as more injected sources are detected and analysed, PDFs are combined to

23These were deemed realistic values for the detection of NSs. Two years later a BNS was detected with
an SNR of 32.4.

24For exact information on these, see [7].
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derive stronger bounds on the EOS coefficients. c1 and c2 are deemed unmeasurable even
after the combination of 100 sources. Only the leading order coefficient c0 can be measured
with some accuracy, as can be seen in figure 15.

Figure 15: Evolution of the estimated values of c0 and the 95% bounds in measur-
ing c0 for injected sources drawn from distributions as described above and detected by
AdLIGO/AdVIRGO, for the cases where the injected EOS is: SQM3, H4 or MS1 [7].

In figure 15 can be seen how the PDFs are clearly separated and distinguishable after com-
bining ≈ 50 sources and relative uncertainties of ≈ 10% are reached after ≈ 100 sources have
been ‘detected’ and combined.
Let us now discuss our analysis of the distinguishability of various EOSs using the Fisher
matrix.

7.3 Fisher analysis

We will first describe the details of our Fisher analysis in general, to thereafter present our
derived results. Our EOS analysis is very similar to our GR test we elaborated on in chapter
6 as it uses the same Fisher formalism for one detector resembling AdLIGO, as described in
chapter 4, and the same generalisation to a network of detectors resembling ET, as described
in chapter 5.

By implementing the, in section 7.1 discussed, EOS effects into our waveform and by, sub-
sequently, evaluating the Fisher matrix for the parameters {tcoal,Φcoal, logMc, log η} and, in
turn, one of the EOS coefficients, we are able to determine the PDFs for the various EOS
coefficients.
With our analysis, we first test to what extent our Fisher analysis is comparable to the ex-
tensive analysis done by [7]. We do this to acquire knowledge of the biases of our analysis,
to subsequently test how much better ET will be in putting bounds on the EOS coefficients.
To make a decent comparison between our analysis and the one discussed in section 7.2 and
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to reasonably resemble the future sensitivity of ET, we made some relevant decisions that
we will mention now.

• To compare our Fisher analysis to the extensive analysis, we use the PDF of AdLIGO at
design sensitivity with fcutoff = 40 Hz being the lower cutoff frequency. To reasonably
resemble the future sensitivity of ET, we use the PDF of ET at design sensitivity with
fcutoff = 3 Hz being the lower frequency cutoff.

• We will, similarly to [7], only be looking at the spread of the PDFs of the EOS coeffi-
cients and the extent of which EOSs are distinguishable, since parameter estimation is
not possible with the Fisher matrix as we implement the values of c0, c1 en c2 ourselves.

• As the analysis executed by [7] draws sources from uniform distributions, we will try
to arrive at comparable results by applying our analysis to ‘the average source’ for the
extensive analysis. I.e. we apply our Fisher formalism to: (i) an equal mass case with
m1 = 1.5M� and m2 = 1.5M� as [7] draws from a uniform mass distribution [1, 2]M�
and (ii) sources at a distance D = 202.6 Mpc as this splits the volume, from which [7]
draws its sources, in two. Note that, since all our sources are the same, their PDFs are
perfectly combinable, which will lead to a decrease in the evaluated bounds on the EOS
parameters by a factor

√
N , see Eq. (48). The PDFs of sources evaluated in [7] are

not perfectly combinable due to their different expectation values and spreads. This
will lead to a smaller decrease in the evaluated bounds on the EOS parameters after
combining multiple sources.

• The PDFs for c0, c1 and c2 are determined, one by one, to make our Fisher formalism
applicable to the 5 parameter case, which however requires a high SNR of at least 100.
We arrive at an SNR of approximately 18 in the case of AdLIGO, which is a value
for which the Fisher matrix will undoubtedly underestimate the spread of the PDFs,
see section 4.3.2. This SNR is, however, almost exactly in the middle of the SNR
domain of the extensive analysis: SNR∈ [8, 30] Mpc. For ET we arrive at an SNR of
approximately 165, which should result in the Fisher matrix being self-consistent.

• When comparing our Fisher formalism to the extensive analysis we only evaluate one
detector (AdLIGO) as opposed to the network of detectors (AdLIGO/AdVIRGO). This
will lead maximally to an SNR that is smaller by a factor of

√
3, as evaluated in section

5.2.

• We average over sky position and orientation by multiplying the SNR with a factor
2
5

[12] in the case of ET. This averaging is not executed for AdLIGO, first, because
the multiplication of the SNR with a factor 2

5
would lead to a value smaller than

8 and an SNR outside of the realistic domain, as described in [7]. Second, because
an SNR this low would also yield even larger Fisher underestimations and third, we
already ‘downgrade’ our SNR, relative to the extensive analysis, by evaluating only one
detector as opposed to three. Since we try to resemble a network of three detectors
with our analysis of one detector, the neglect of the factor 2

5
, could be seen as a partial

compensation for this evaluation of only one detector, which results in a factor 1√
3
.
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• We assume flat priors just like the extensive analysis.

• We execute our analysis for the five EOSs visualised in figure 14. Three of these (SQM3,
H4 and MS1) have also been reviewed in [7]. The other two (GNH3 and MPA1) have
been added to review the possibility of distinguishing between similar, not only between
hard, moderate and soft EOSs.

• Because of [7] using 95% bounds, we do the same and convert our 1σ [i.e. 68%] bounds
to 95% bounds.

• Following the same arguments as applied in section 4.3.4, we will use elog cn in stead of
cn, to increase the quality of the inverse.

This analysis, of course, does not perfectly resemble the extensive analysis or reality. In the
light of the inherent errors associated with the Fisher formalism, we do however assume these
assumptions to be sufficient when focusing solely on orders of magnitude, the distinguisha-
bility of the various EOSs and when reviewing hundreds of GW sources, resulting in our
‘average source approximation’ to be more reasonable.

7.4 Fisher-AdLIGO versus extensive analysis

In the case of our Fisher analysis applied to AdLIGO, c1 and c2 are deemed unmeasurable,
which is in correspondence with the results obtained by [7]. This is visualised in figure 24 and
figure 26 in the appendix, in which can be seen how the various values of c1 and c2 associated
with various EOSs are indistinguishable in the case of AdLIGO. Let us now visualise the c0

case in which various EOSs are deemed distinguishable according to our Fisher formalism.
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Figure 16: Evolution of the 95% bounds in determining c0 by using the Fisher formalism
applied to AdLIGO. For the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or
SQM3. With on the horizontal axis the amount of measurements combined and on the
vertical axis the value of c0 with its associated spread.
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In figure 16 can be seen how the EOSs, which are also present in the extensive analysis,
are clearly separated and distinguishable after combining ≈ 30 sources and relative bounds
of ≈ 10% are reached after ≈ 50 sources have been ‘detected’ and combined. Our analysis
seems to be reasonably optimistic with these approximations when compared to figure 15.
This can be explained by (i) the Fisher matrix underestimating the bounds at low SNRs and
(ii) our PDFs being perfectly combinable. Both these two factors decrease the spread in the
PDFs, in a non truthful way.
The two EOSs we added to our analysis (MPA1, GNH3), are clearly not distinguishable
from the EOSs: SQM3 and H4. This can be understood by realising that c0 = λ(m0), with
m0 = 1.4M�. In figure 14 is clearly visible how the values of λ(m0) for H4 and GNH3 and for
SQM3 and GNH3 are very similar. Since our analysis seems to be optimistic in comparison
with [7], we do not expect similar EOSs to be measurable with an extensive analysis either.
Something that also has to be taken into account is the fact that the predicted amount of
BNSs detected per year, in the case of AdLIGO at design sensitivity, lies in the domain
[0.27 − 8.6] [37]. In the light of this, combining 200 sources seems to be a little optimistic.
The, by [7] predicted, ≈ 50 sources necessary to distinguish between a stiff, moderate and
soft equation of state, seems to be reachable when the AdLIGO/AdVIRGO detectors are
operational for a period of several years.

7.4.1 Conclusions

Although our Fisher formalism does not arrive at exactly the same results as the extensive
analysis, the following similar conclusions can be drawn for determining the EOS, regarding
AdLIGO at design sensitivity.

• c1 and c2 are deemed unmeasurable.

• By determining c0 for several dozen NSs, a stiff, moderate and soft EOS can be distin-
guished. This requires an AdLIGO/AdVIRGO network at design sensitivity to be up
and running for several years. Differences between similar EOSs are deemed unmea-
surable.

According to these similar conclusions, we deem ourselves justified to regard our Fisher anal-
ysis as a rough indication in determining the distinguishability of several EOSs. Particularly
with the prospect of ET being less biased when applied to our Fisher formalism, due to
its higher SNRs, we expect the results presented in the next section to be an even better
resemblance of reality.

7.5 Fisher-ET

In the case of our Fisher analysis applied to ET, c0 and c1 are deemed clearly measurable
and c2 to some extent, which would mean a significant increase in our knowledge of the EOS.
The evolution of the EOS coefficients is visualised in figures 17, 18 and 19.
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Figure 17: Evolution of the 95% bounds in determining c0 by using the Fisher formalism
applied to ET, for the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or SQM3.
With on the horizontal axis the amount of measurements combined and on the vertical axis
the value of c0 with its associated spread. The vertical axis has been re-scaled relative to
figures 15 and 16, to visualise the gap between the similar EOSs. For a similar axis scale as
in figures 15 and 16, see figure 26 in the appendix.

In figure 17 can be seen how all inserted EOSs are clearly separated and distinguishable
after just one detection. This early distinguishability happens because all inserted EOSs
have relative bounds smaller than ≈ 2% after just one detection. This results in accurate
knowledge of the EOS for some reference mass m0 = 1.4M�.
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Figure 18: Evolution of the 95% bounds in determining c1 by using the Fisher formalism
applied to ET, for the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or SQM3.
With on the horizontal axis the amount of measurements combined and on the vertical axis
the value of c1 with its associated spread.

In figure 18 can be seen how all inserted EOSs are clearly separated and distinguishable after
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≈ 20 detections and how, after ≈ 50 detections, relative bounds of ≈ 5% can be determined.
This results in accurate knowledge of the average slope of λ(m).
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Figure 19: Evolution of the 95% bounds in determining c2 by using the Fisher formalism
applied to ET, for the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or SQM3.
With on the horizontal axis the amount of measurements combined and on the vertical axis
the value of c2 with its associated spread.

In figure 27 in the appendix is visualised how the evolution of c2 takes place up to 200 sources.
But, due to the fact that the predicted amount of BNSs detected per year, in the case of ET
at design sensitivity, lies in the domain [1.1× 103, 2.7× 104] [37], we have expended figure 19
to visualise the combination of 103 measurements.
In figure 19 can be seen how all inserted EOSs are clearly separated and distinguishable after
≈ 500 detections, and how, after ≈ 1000 detections, relative bounds smaller than 15% can
be determined. This results in some knowledge of the change in slope of λ(m).

7.5.1 Conclusions

We can conclude from this analysis that ET will inevitably result in a significant increase in
the distinguishability of several EOSs due to the greater sensitivity, larger frequency band-
width and significant increase in detection rates, relative to 2G detectors. The c0 and c1 are
expected to be determinable to great accuracy with only information of the early-inspiral
of a few BNSs. Determining c2 to some extent, with only information of the early-inspiral,
would necessitate hundreds of BNS detections, which is not unreasonable for ET.
The certainty of these claims, again, stands or falls with the Fisher matrix. But, since our
AdLIGO case derived similar results as a more extensive analysis, we predict our ET case to
be reasonably reliable in indicating the distinguishability of several EOSs and the accuracy
to which the EOS coefficients are determinable.
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8 Conclusions

In this thesis we analysed to what extent ET will improve on 2G detectors, , because of its
greater sensitivity and larger frequency bandwidth, regarding (i) measuring deviations from
GR and (ii) measuring the EOS coefficients that describe the NS EOS. To analyse these
problems, we first gained knowledge on GWs, its detectors and an analysis method called
the Fisher matrix, as described in chapters 2, 3, 4 and 5.
In chapter 2 we derived a restricted PN waveform up to 3.5PN, which describes the early-
inspiral up to the ISCO frequency.
In chapter 3 we discussed the functioning of interferometric GW detectors, the sources of
noise they have to endure, the resulting sensitivity of various 1G, 2G and 3G detectors, in
the form of the PSD, and their corresponding (predicted) detection rates.
In chapter 4 we discussed the derivation of the Fisher matrix, which gives us an indication of
the spread in measured parameter values that can be expected when a GW signal is detected.
We also gain knowledge on when the Fisher matrix is a good and a biased approximation.
In chapter 5 we generalise this Fisher formalism to make it applicable to a network of detec-
tors, such as ET.
With the combined knowledge on these subjects we were able to execute our two analyses.
In chapter 6 we analysed to what extent possible deviations from GR are expected to be
measurable by ET at design sensitivity, relative to current detectors AdLIGO/AdVIRGO,
evaluating only the early-inspiral. We concluded that the construction of ET will inevitably
lead to significantly tighter bounds on the testing parameters, by which deviations from GR
are measured. With use of the Fisher matrix we expect these bounds to be in the range of
[0.1,1] % for lower PN orders and [1,10] % for higher PN orders, when evaluating high SNR,
long inspiral binaries. Real measurements by the AdLIGO AdVIRGO network have derived
these bounds to be in the range of [10,100] % for lower PN orders and [100,→〉 % for higher
PN orders, when evaluating high SNR, long inspiral binaries. We conclude that a resulting
increase in measurability of the testing parameters by a factor [10,100] can be expected when
ET reaches its design sensitivity.
In chapter 7 we analysed to what extent the EOS coefficients, which describe the NS EOS,
are expected to be measurable by ET at design sensitivity, relative to current detectors
AdLIGO/AdVIRGO. We conclude that the construction of ET will inevitably lead to a sig-
nificant increase in the distinguishability of several possible EOSs. The coefficients c0 and c1

are expected to be determinable to great accuracy, with information of the early-inspiral of a
few BNSs. The coefficient c2 is expected to be determinable to some extent, with information
of the early-inspiral of hundreds of BNSs. Due to the expected increased detection rates for
ET, this is not unreasonable.
Note that all these results have been derived using the Fisher matrix that underestimates
bounds for low SNRs. Therefore we have confined ourselves to orders of magnitude.
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9 Discussion and Outlook

Our Fisher formalism can ofcourse still be improved. We will now give some suggestions for
future research with the Fisher matrix.

• One could expand the waveform model to include spin parameters. This will also result
in the inclusion of dipole-monopole tidal effects, as described in section 7.1.

• One could include a -1PN testing parameter, in the case of testing GR. This would
enable one to constrain the presence of dipole radiation during inspiral [6].

• One could try to model a combination of AdLIGO and AdVIRGO, including sky lo-
cations and orientations of actual measurements. This would enable one to compare a
Fisher analysis to an actual measurement as correctly as possible.

• One could include non-flat prior distributions, to analyse the effect of these on the
subsequently derived PDFs.

• One could analyse NSBH binaries, as we neglected these during this thesis.

• One could combine several GR tests based on multiple detections, as done in [5, 6]. We
have only combined analyses in the case of our NS EOS analysis.

However, even when one would include all these modifications, the Fisher matrix will always
be a rough analysis method. To accurately analyse the future capabilities of ET, better
analysis methods will have to be developed that are capable of processing ET resembling
signals that continue for days. Until then, Fisher will remain a rough but useful method for
analysing the capabilities of future detectors.
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A APPENDIX

A.1 Tests of general relativity
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Figure 20: 90% upper bounds |δα̂n| on the absolute magnitude of the testing parameters for
GW151226 (m1 = 35.6M�,m2 = 30.6M�, d = 440 Mpc) [48] determined by: (i) the Fisher
matrix adjusted to resemble ET at design sensitivity, (ii) the Fisher matrix based on the
AdLIGO design sensitivity, but re-scaled to resemble the (iii) analysis based on the actual
AdLIGO/AdVIRGO detection, as described in [5], using the IMRPhenomPv2 waveform.
Note that these are relative deviations (except for the 0.5PN term).
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Figure 21: 90% upper bounds |δα̂n| on the absolute magnitude of the testing parameters for
GW150914 (m1 = 30.8M�,m2 = 20.0M�, d = 990 Mpc) [48] determined by: (i) the Fisher
matrix adjusted to resemble ET at design sensitivity, (ii) the Fisher matrix based on the
AdLIGO design sensitivity, but re-scaled to resemble the (iii) analysis based on the actual
AdLIGO/AdVIRGO detection, as described in [5], using the IMRPhenomPv2 waveform.
Note that these are relative deviations (except for the 0.5PN term).



A APPENDIX 52

Out[4800]=
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Figure 22: 90% upper bounds |δα̂n| on the absolute magnitude of the testing parameters for
GW170608 (m1 = 11.0M�,m2 = 7.6M�, d = 320 Mpc) [48] determined by: (i) the Fisher
matrix adjusted to resemble ET at design sensitivity, (ii) the Fisher matrix based on the
AdLIGO design sensitivity, but re-scaled to resemble the (iii) analysis based on the actual
AdLIGO/AdVIRGO detection, as described in [5], using the IMRPhenomPv2 waveform.
Note that these are relative deviations (except for the 0.5PN term).
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Figure 23: 90% upper bounds |δα̂n| on the absolute magnitude of the testing parameters for
GW170814 (m1 = 30.6M�,m2 = 25.2M�, d = 600 Mpc) [48] determined by: (i) the Fisher
matrix adjusted to resemble ET at design sensitivity, (ii) the Fisher matrix based on the
AdLIGO design sensitivity, but re-scaled to resemble the (iii) analysis based on the actual
AdLIGO/AdVIRGO detection, as described in [5], using the IMRPhenomPv2 waveform.
Note that these are relative deviations (except for the 0.5PN term).
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A.2 Tests of neutron star equation of state
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Figure 24: Evolution of the 95% bounds in determining c1 by using the Fisher formalism
applied to AdLIGO, for the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or
SQM3. With on the horizontal axis the amount of measurements combined and on the
vertical axis the value of c1 with its associated spread.
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Figure 25: Evolution of the 95% bounds in determining c2 by using the Fisher formalism
applied to AdLIGO, for the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or
SQM3. With on the horizontal axis the amount of measurements combined and on the
vertical axis the value of c2 with its associated spread.
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Figure 26: Evolution of the 95% bounds in determining c0 by using the Fisher formalism
applied to ET, for the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or SQM3.
With on the horizontal axis the amount of measurements combined and on the vertical axis
the value of c0 with its associated spread.
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Figure 27: Evolution of the 95% bounds in determining c2 by using the Fisher formalism
applied to ET, for the cases where the injected EOS is: MS1, H4, MPA1, GNH3 or SQM3.
With on the horizontal axis the amount of measurements combined and on the vertical axis
the value of c2 with its associated spread.


	INTRODUCTION
	GRAVITATIONAL WAVES FROM COALESCING COMPACT BINARIES
	The quadrupole formula
	Signal from inspiralling compact binary
	The stationary phase approximation
	The post-Newtonian formalism

	GRAVITATIONAL WAVE DETECTORS
	Interferometric detectors
	Understanding the noise
	Seismic noise
	Thermal noise
	Quantum shot noise
	Quantum radiation pressure noise
	Gravity gradient noise
	Gas noise

	Second generation detectors: AdLIGO, AdVIRGO
	Third generation detector: ET
	Overview detectors

	MEASURING THE PARAMETERS OF THE SOURCE
	The posterior density function
	Derivation Fisher matrix
	The Fisher matrix: caveats
	Gaussian noise
	Signal-to-noise ratio
	Flat priors
	Inverse


	A NETWORK OF DETECTORS
	Wavefrom
	Signal-to-noise ratio
	Fisher matrix

	TESTS OF GENERAL RELATIVITY
	Parameterised tests of the PN formalism
	Results
	Existing measurements
	Fisher-AdLIGO versus existing measurements
	Binary neutron star
	Binary black hole
	Conclusions

	Fisher-ET versus existing measurements
	Binary neutron star
	Binary black hole
	Conclusions


	TESTS OF NEUTRON STAR EQUATION OF STATE
	EOS in our waveform model
	Tidal deformations
	Early termination of the waveform at contact

	Extensive analysis
	Results

	Fisher analysis
	Fisher-AdLIGO versus extensive analysis
	Conclusions

	Fisher-ET
	Conclusions


	Conclusions
	Discussion and Outlook
	ACKNOWLEDGEMENTS
	APPENDIX
	Tests of general relativity
	Tests of neutron star equation of state


