
Faculty of Science

Department of Physics

Machine learning reveals new insights into
crystal nucleation in a Lennard-Jones fluid

Bachelor Thesis

Bryan Verhoef

Supervisor:

Prof. Dr. Ir. Marjolein Dijkstra
Debye Institute for Nanomaterials Science

June 12, 2020



Abstract

In this thesis we investigate the local crystalline structures on a single-particle level for
Lennard-Jones particles during the process of crystal nucleation. We simulate crystal
nucleation using Monte Carlo simulations in the NV T ensemble. During the simula-
tions, the local structures around particles are analysed with a Principal Component
Analysis and a neural network based classification algorithm. Both analyses show for-
mation of a primarily face-centered cubic and hexagonal close-packed ordered crystal.
The Principal Component Analysis suggests that crystal nucleation does not happen
via body-centered cubic ordering, although we were unable to properly quantify the
degree of body-centered cubic ordering. Lastly we attempt to improve the spatial res-
olution of the detection of local crystalline structures by using a neural network based
autoencoder.

Snapshot of a configuration of particles taken at the end of a simulation. The crystalline
ordering of every particle has been classified by a neural network. Green represents face-
centered cubic ordering, red represents hexagonal close-packed, yellow represents body-centered
cubic and finally particles that are classified as fluid-like have been plotted small and blue.
In this research we use a variety of machine learning techniques to identify crystal structures
during crystal nucleation of a fluid of Lennard-Jones particles.
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1 INTRODUCTION 1

1 Introduction

We are all very familiar with liquid to crystal phase transitions from our experiences from
everyday life. But how many of us have actually seen this phase transition happening? For
most people, looking at freezing water is probably not the most exciting thing to do. Maybe
some have experienced their beverage suddenly and rapidly freezing after taking it out of the
freezer. This sudden process is known as crystal nucleation.

A commonly used theoretical model to describe crystal nucleation is Classical Nucleation
Theory. At a certain point during cooling of a liquid, the crystal phase becomes the state
with a lower free energy. However, when some liquid particles happen to come together and
form a small cluster of crystal particles, they also form an interface between the crystal and
the liquid phase. This interface is energetically unfavourable and therefore forms a barrier
to further growth of that small cluster of crystal particles, also known as a nucleus. The
liquid is now left in this metastable state until random fluctuations or external factors, like
the introduction of dust particles, manage to push a nucleus over the energy barrier. Once
a nucleus has passed this energy barrier, it can continue to grow until the entire liquid has
crystallized.

However, the question still remains what type of crystal actually forms during crystal
nucleation. Is it also possible that there is an intermediate crystal type on the road to full
crystallization?

Alexander and McTague investigated this theoretically in 1978. Using a Landau theory
they concluded that the body-centered cubic (bcc) crystal structure is favoured near the
melting line. This suggested that crystal nucleation might happen via bcc [1].
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Figure 1: The Lennard-Jones potential u(r) as a function of distance r. The axes are in
reduced units.
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In this thesis we study by simulations crystal nucleation of Lennard-Jones particles. The
Lennard-Jones potential is a very broadly studied interaction potential. As can be seen in fig-
ure 1, the Lennard-Jones potential features short-range repulsion and long-range attraction.
It is commonly used to model atomic and molecular interactions [2]. The Lennard-Jones
potential is also frequently used to test and demonstrate novel simulation techniques [3–5].

Not surprisingly, a lot of simulation work has been done on crystal nucleation of Lennard-
Jones particles. Simulations done by Ten Wolde et al. showed that a Lennard-Jones nucleus
is primarily structured as face-centered cubic (fcc) in the core whereas bcc ordering was more
prominent on the surface of the nucleus [6]. Eslami et al. used a slightly different simulation
technique from Ten Wolde et al. when they studied Lennard-Jones crystal nucleation, but
they did confirm the earlier conclusions from Ten Wolde et al. about the structure of the
Lennard-Jones nucleus [5]. While Ten Wolde et al. simulated 10 648 particles in 1996,
Ouyang et al. were able to simulate more than a million particles in 2020. Besides seeing
the same structure that Ten Wolde and Eslami found with fcc in the core of the nucleus
and bcc on the surface, Ouyang et al. also saw hexagonal close-packed (hcp) structure in
the Lennard-Jones nuclei. They also studied particles that they identified as precursors to
crystal nucleation and noted that these precursor particles were primarily bcc ordered. From
this they conclude that crystal nucleation of Lennard-Jones particles is likely to happen via
bcc [7].

A very broadly used set of tools for studying crystal structures are the bond-orientational
order parameters [8]. All three previously mentioned simulation studies on crystal nucle-
ation of Lennard-Jones fluids use variations on these bond-orientational order parameters.
What these papers also have in common, is that they choose a certain subset of two to four
bond-orientational order parameters to study crystal structures. Instead of choosing a small
subset of bond-orientational order parameters, we will use Principal Component Analysis to
construct a lower dimensional representation of a much larger set of bond-orientational order
parameters. We will also use a neural network based classification algorithm to detect crystal
structures.

The remainder of this thesis is structured as follows. In section 2 we will first discuss
the simulation techniques we used to simulate a nucleation event of a Lennard-Jones fluid.
Subsequently, we will elaborate on the bond-orientational order parameters and Principal
Component Analysis and give an overview of neural network based machine learning. Also
in section 2, we will further discuss how we used the bond-orientational order parameters,
Principal Component Analysis and neural networks to identify crystal structures in our sim-
ulation. In the subsequent sections we will present our results.
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2 Theory and Methods

2.1 Monte Carlo Simulations

In statistical physics, ensemble averages in the NV T ensemble are calculated by

〈A〉 =

∫
drNA(rN) exp

[
−βU(rN)

]∫
drN exp [−βU(rN)]

. (1)

Here, β = 1/kBT and U(rN) is the total potential energy of the system. It is not feasible to
calculate these ensemble averages by conventional numerical integration techniques, since it
is a very high dimensional integral.

Instead one might try a straightforward Monte Carlo integration scheme. In such a
scheme, one would randomly generate configurations, give them their appropriate Boltzmann
factor and calculate the desired ensemble averages along the way. However, particularly at
higher densities, there is a relatively high probability of generating a configuration with a
low Boltzmann weight. These configurations would only have a small contribution to the
ensemble average and a lot of random configurations need to be generated to get an accurate
value.

To solve this problem, Metropolis et al. proposed a new algorithm to calculate these
ensemble averages in 1953 [9]. Instead of generating random configurations, they proposed
choosing configurations with a probability of exp[−βU(rN)].

In practice this is done by starting with a certain configuration and moving a random
particle a random distance in a random direction. The total potential energy of this new
configuration is then calculated. If the new potential energy is lower than the former potential
energy, the move is accepted. If the new potential energy is higher than the previous one,
the new configuration is accepted with the probability exp[−β∆U ], where ∆U = U(n) −
U(o) denotes the potential energy difference between the old and new configuration. These
conditions for accepting a trial move can be summarized with an acceptance rule [10]:

acc(o→ n) = min(1, exp[−β∆U ]). (2)

Ensemble averages can then be calculated with

〈A〉 ≈ 1

m

m∑
i=1

A(rNi ), (3)

where m is the total number of trial moves. This ensemble average needs to be updated after
every trial move, even after a trial move has been rejected.

The Metropolis algorithm can also be used for Monte Carlo simulations in the NPT
ensemble. Besides particle displacement trial moves, the volume of the simulation box also
needs to be randomly changed. Volume and particle displacement trial moves are then
accepted with the probability given by

acc(o→ n) = min(1, exp[−β∆U − P∆V + (N + 1) ln(V [n]/V [o])]), (4)
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where V is the volume, P the pressure, ∆V = V (n) − V (o) the volume difference between
the old an new configuration and n and o refer to the new and old configurations respectively
[10]. Ensemble averages can then be calculated as in equation (3).

For the simulation box we used periodic boundary conditions to reduce surface effects.
To calculate distances between particles we used the nearest image convention. A schematic
overview of the nearest image convention can be found in figure 2.

A

B

Image of B

Figure 2: Illustration of the nearest image convention. The solid black lines represent the
limits of the simulation volume. If an image of particle B is closer to particle A than particle
B itself, the distance between particle A and B is given by the distance between A and the
image of B as indicated by the green dashed line.

The potential we used was the truncated and shifted Lennard-Jones potential given by

uLJ =

{
4ε
[(

σ
r

)12 − (σ
r

)6]− ecut, if r ≤ rcut

0, if r > rcut,
(5)

where

ecut = 4ε

[(
σ

rcut

)12

−
(
σ

rcut

)6
]
.

The ecut term is added such that there is no discontinuity in the potential energy at the
cut-off distance. In our simulations we set rcut to 3σ.

The use of a specific cut-off distance for the Lennard-Jones potential in equation (5) allows
for an optimisation using cell lists [10]. We consider a simulation consisting of N particles.
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After a trial particle displacement N − 1 Lennard-Jones pair potentials must be recalculated
to determine the energy change caused by the trial move. However, many particles will
be further than rcut away from the particle that has been moved and thus all these pair
potentials are calculated in vain. For the cell list optimisation, the simulation box is divided
into cuboidal cells with edges greater than or equal to rcut. This way particles that potentially
contribute to the energy difference due to a particle move are all within the same cell as the
displaced particle or in one of the 26 cells immediately surrounding the cell containing the
displaced particle. Any particle outside any of these cells does not need to be considered at
all. The reduction in the number of calculations needed is entirely dependent on the size of
the simulation box. If the simulation box is only large enough to fit 3× 3× 3 cells, there is
no reduction in the calculations of pair potentials possible. As soon as the simulation box
can contain more than 3 × 3 × 3 cells, not all pair potentials need to be calculated after a
trial particle displacement.

2.1.1 Simulation Details

Configurations of particles used for simulations to study crystal nucleation were initialized
as a fluid by randomly placing every particle in the simulation volume. During initializa-
tion, two particles can be placed close enough to each other to cause significant overlap and
to yield a high potential energy. Because of this the total potential energy was often very
high immediately after initialization. If we started measuring ensemble averages right after
initialization, we would get a disproportionately large contribution to the ensemble averages
from an area of phase space that is very rarely explored during normal Monte Carlo simula-
tions due to its small Boltzmann factor. Therefore it was important to first equilibrate the
configuration before starting the measurements of ensemble averages. The exact number of
equilibration Monte Carlo trial moves we executed before starting measurements depended
on the number of particles in the simulation.

The simulations for studying crystal nucleation were all run in the NPT ensemble. We
used 8000 particles in each simulation and equilibrated the system for 12 million Monte
Carlo trial moves. We ran four simulations at a pressure of pσ3/ε = 5.68 and temperatures of
kBT/ε = 0.92, 0.805, 0.69 and 0.575 corresponding to 20%, 30%, 40% and 50% supercooling
respectively. These choices for state points were based on the state points used by Ten
Wolde et al. [6]. We also used the liquid-solid coexistence line for Lennard-Jones particles
determined by Van der Hoef to determine degrees of supercooling [11]:

Pcoex = β−5/4
m exp(−0.4759β1/2

m )[16.89 + Aβm +Bβ2
m]. (6)

In this equation, βm = 1/kBTm where Tm is the desired melting temperature, Pcoex is the
corresponding coexistence pressure, A = −7.2866 and B = −2.9895.

2.2 Measuring Crystal Structure

One property of crystal phases is that there is a degree of local orientational symmetry of
the bonds connecting neighbouring particles. In 1983, Steinhardt et al. proposed a set of
bond-orientational order parameters to quantify this local orientational symmetry [8]. Sub-
sequently, we can use these bond-orientational order parameters to identify crystal structures



2 THEORY AND METHODS 6

on a per particle basis. Before we can calculate bond-orientational order parameters to quan-
tify local orientational symmetry, a local environment of each particle needs to be defined.
One way of doing that is by identifying a set of nearest neighbours for every particle. Un-
fortunately, there is no unique way of defining a nearest neighbour. Therefore, we will first
discuss some ways of defining nearest neighbours before elaborating on the bond-orientational
order parameters.

2.2.1 Nearest Neighbours

One straightforward way of defining a nearest neighbour to a particle of interest is by using
a simple cut-off radius. All particles that are within that cut-off radius to the particle of
interest are then considered nearest neighbours. Benefits of this method are that it is easy to
implement and computationally fast to calculate. However, the cut-off radius is an arbitrary
tunable parameter. One can use the first minimum in the pair correlation function to set
the cut-off radius, but that requires knowledge of the pair correlation function prior to the
simulation. In practice this means that we would need to run the simulation first do determine
the pair correlation function. The simulation then needs to be repeated to study crystalline
structures during the course of the simulation.

Figure 3: Two dimensional example of Voronoi tessellation. The blue points represent par-
ticles and the red lines represent the walls of the Voronoi cells.

Another commonly used definition of nearest neighbours is by means of Voronoi tessella-
tion. To find the nearest neighbours, a Voronoi cell is constructed around every particle. This
Voronoi cell consists of all points closer to the particle of interest than to any other particle.
The walls of the Voronoi cells are given by the points that are equidistant to the particle of
interest and all the particles closest to it. An example of such a construction can be found
in figure 3. Two particles are considered nearest neighbours if their Voronoi cells share a
wall. Unlike the cut-off radius method, the Voronoi tessellation method does not require a
tunable parameter, but it is harder to implement and computationally expensive [12]. With
the problems of tunable parameters and computational difficulty in mind, we decided to use
the solid angle based nearest neighbour definition proposed by Van Meel et al. in 2012 [12].
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θi,j

i j
ri,j

Ri
(m)

Figure 4: Definition of angle θi,j associated with neighbour j. Here ri,j is the distance between

particles i and j and R
(m)
i is the neighbour cut-off radius of particle i defined by the solid

angle nearest neighbour algorithm.

The solid angle nearest neighbour algorithm uses a geometric construction based on solid
angles to define a neighbour cut-off radius R

(m)
i for each individual particle i. For the algo-

rithm to work, all potential neighbours j of particle i need to be sorted in ascending order
in their distances ri,j from the particle of interest. The particle farthest away from particle i

that will end up still being within the cut-off radius R
(m)
i is labelled particle m. This leads

to a relation between m and R
(m)
i [12]

ri,m ≤ R
(m)
i < ri,m+1. (7)

Now an angle θi,j is associated with every potential neighbour. This angle is related to

ri,j and the yet to be determined R
(m)
i as depicted in figure 4. The solid angle algorithm

then defines the neighbourhood of particle i to consist of the closest m particles such that
the sum of the solid angles associated with the θi,j angles equals 4π [12]

4π =
m∑
j=1

(1− cos(θi,j)) =
m∑
j=1

(
1− ri,j

R
(m)
i

)
. (8)

Equations (7) and (8) then lead to

R
(m)
i =

∑m
j=1 ri,j

m− 2
< ri,m+1. (9)

Since the potential neighbours j are ordered in ascending distance from particle i, the al-
gorithm can now calculate R

(m)
i by iterating over all potential neighbours j = 1, ...,m until

equation (9) is satisfied [12].
One potential problem of the solid angle algorithm is that situations can occur where

particle A is a neighbour of particle B, but particle B is not a neighbour of particle A. This
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problem can be resolved either by removing particle A from the set of neighbours of particle
B or by adding particle B to the set of neighbours of particle A. In this thesis we resolve this
problem by removing particle A from the set of neighbours of particle B.

2.2.2 Bond-Orientational Order Parameters

Now that we have defined a local environment of each particle in terms of nearest neigh-
bours, we can use the Steinhardt bond-orientational order parameters to quantify the local
orientational symmetry [8]. The idea of the bond-orientational order parameters is to expand
the local density around a particle, defined by its nearest neighbours, in terms of spherical
harmonics. The Steinhardt bond-orientational order parameters are given by

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij), (10)

where Ylm are the spherical harmonics with l and m ∈ [−l, l] both integers, rij the distance
vector from particle i to particle j and Nb(i) the set of nearest neighbours of particle i. These
qlm(i) are not rotationally invariant, so it matters from what angle a system of particles is
considered. However, one can construct a rotationally invariant bond order parameter from
qlm:

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2. (11)

Based on the Steinhardt bond-orientational order parameter, Lechner and Dellago intro-
duced an averaged bond order parameter in 2008 [13]. The aim of this averaged bond order
parameter was to improve the accuracy of the crystal structure identification by considering
more of the local environment of a particle. The averaged bond order parameters are defined
as

q̄lm(i) =
1

Nb(i)

Nb(i)∑
j=0

qlm(j). (12)

Here j = 0 corresponds to particle i itself. A rotationally invariant averaged bond order
parameter q̄l can then be constructed from q̄lm in the same way as in equation (11).

Whereas the non-averaged bond order parameters ql only consider the first shell of par-
ticles around a particle of interest, the averaged bond order parameters q̄l consider the first
two particle shells around the particle of interest. In this way, some spatial resolution is
sacrificed in favour of an improved accuracy of crystal structure determination. With ql and
q̄l we can now actually analyse the local crystalline environment around particles.
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2.3 Analysing Local Crystal Structure

First of all, it would be useful to be able to detect whether a particle is more solid-like
regardless of the possible crystal structure or looks more like a part of a fluid. Knowledge
about this is useful for tracking the crystal nucleation process during the simulation and can
be a useful aid in interpreting configurations of particles. Secondly we want to be able to
actually determine what type of crystal forms during crystal nucleation. To do that, we apply
a Principal Component Analysis and neural network based machine learning algorithms.

2.3.1 Detecting Solid-Like Particles

In 1996, Ten Wolde et al. proposed a method to distinguish solid-like particles from fluid-like
particles by measuring the correlation between the structures around two particles [6]. For
this purpose, they defined a normalized 13-dimensional complex vector for each particle as

d6m(i) =
q6m(i)√∑6
m=−6 |q6m|2

. (13)

Then they defined a scalar product between two neighbouring particles i and j as

Sij =
6∑

m=−6

d6m(i) · d∗6m(j), (14)

where ∗ denotes complex conjugation. Two neighbouring particles i and j can be considered
connected if Sij exceeds a certain threshold. In this thesis we set this threshold to 0.7. The
probability that two particles are connected is quite high even in the fluid phase. Therefore
we need to set a minimum number of particles a particle of interest must be connected to
for the particle to be considered solid-like. We set this minimum number of particles to
7. Subsequently we can group solid-like particles into clusters by stating that two solid-like
particles are in the same cluster if they are connected to each other.

As an example we applied this definition of solid-like particles and this clustering to a
box containing a fluid region and an fcc region. A plot of this configuration can be found in
figure 5. All particles in this box are the same, we only plotted the fluid particles smaller
to make the solid-like particles more visible. The different colours of the solid-like particles
indicate that they belong to different clusters. Notable is the singular particle in the fluid
region that has been identified as solid-like. In the fluid there is always a probability that
the temporal environment of a particle looks more solid-like than liquid-like due to thermal
fluctuations.
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Figure 5: Example of the definition of solid-like particles applied to a configuration containing
a fluid and an fcc region. The particles not identified as solid-like are blue and have been
plotted smaller to make the solid-like particles more visible. The different colours of solid-like
particles denote that these solid-like particles are in different clusters of solid-like particles
(two clusters here visible).

2.3.2 Principal Component Analysis

Given a dataset that is described by a set of parameters, the aim of Principal Component
Analysis (PCA) is to find linear combinations of parameters that best describe the dataset.
A visual illustration of that principle can be found in figure 6. The dataset in figure 6 is
represented by two parameters. One can see that most of the variation in the dataset is along
the axis indicated by the green arrow. PCA aims to identify this green arrow as the most
important axis to describe the dataset, also called the first principal component. All principal
components should be orthogonal. In the case of figure 6 the second principal component is
indicated by the red arrow.

PCA is especially useful for datasets described by a large set of parameters. The di-
mensionality of the dataset can then be reduced by projecting the dataset on the first few
principal components, discarding the less important principal components. Even though
some principal components are discarded, all the original parameters are still represented in
the remaining principal components since principal components are linear combinations of
the original parameters.

Mathematically PCA is an eigendecomposition problem. Suppose we are studying a
system of N particles described by j parameters. The system can then be represented as an
N × j matrix X. First we can subtract the mean value for every parameter from the dataset
to center the dataset. Then we can calculate the j× j covariance matrix CX for our dataset
X:

CX =
1

N − 1
XXT .

CX contains information about the correlation between all the pairs of parameters of our
system. The diagonal elements represent variances of parameters whereas the off-diagonal
elements represent covariance between pairs of parameters. A high covariance between two
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Figure 6: Demonstration of PCA on a two dimensional dataset. Most of the variation of
the dataset is along the green axis. Therefore the green axis would be the first principal
component [14].

parameters means that the value of one parameter can predict the value of the other param-
eter. In that sense having both parameters is somewhat redundant in that case. It would be
better if we could diagonalize this covariance matrix.

To paraphrase the problem, we need to find a projection matrix P such that Y = PX
and CY = 1

N−1
Y Y T is diagonalized [15]. We can rewrite CY to

CY =
1

N − 1
P (XXT )P T .

Note that the covariance matrix is a symmetric matrix and symmetric matrices are diago-
nalized by a matrix of its eigenvectors. Therefore we must be able to write

XXT = EDE−1,

where E is the matrix with orthonormalized eigenvectors and D the diagonal matrix of
eigenvalues. Now we can choose P = ET and using the fact that the inverse of an orthogonal
matrix is just its transpose, we see that

CY =
1

N − 1
D.

From this expression we can conclude that the principal components of X are given by the
eigenvectors of XXT and that the eigenvector corresponding to the largest eigenvalue is the
first principal component, since the eigenvalue represents the variance along the correspond-
ing principal component [15].
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To determine what crystal types appear during the course of the simulations, we ran a
PCA on some known configurations. We performed four separate simulations each containing
approximately 4000 particles and we prepared the system in a fluid, fcc, bcc and lastly in
an hcp configuration. We equilibrated the four simulation volumes separately in the NPT
ensemble at kBT/ε = 1.20. The pressure for the fcc simulation was set to pσ3/ε = 11.43, for
hcp to pσ3/ε = 12.77 and for bcc to pσ3/ε = 13.83. This corresponded to 18%, 22% and
25% supercooling respectively according to equation (6). The fluid simulation was run at
pσ3/ε = 2.64 which leads to the temperature being 35% above the liquid-solid coexistence
line. After equilibration, we combined the four volumes and ran two principal component
analyses on the entire configuration. One PCA used the non-averaged bond order parameters
q0, q1, ..., q12 and the other used the averaged bond order parameters q̄0, q̄1, ..., q̄12. After each
PCA, we projected the four different configurations onto the space spanned by the resulting
first two principal components.

We used the Gaussian Mixture Model implementation from scikit-learn to fit four Gaus-
sian functions to the two-dimensional projections onto PCA space of the four configurations
[16]. This Gaussian Mixture Model enables us to determine membership of particles from
simulation results to one of the four structures.

2.3.3 Neural Networks

Neural networks are networks of computational units, called neurons, that are inspired by
biological networks of neurons. Neural networks can be used for both supervised and unsuper-
vised machine learning. Both methods have been used to identify structures in configurations
of particles [17, 18]. In this section we will focus on using neural networks for supervised
learning. In supervised learning, a labelled training dataset is required.

The goal of training a neural network with labelled data is to fit a non-linear function
to the training data. That non-linear function can then be used to predict the output for
previously unseen data. Fully-connected feed-forward neural networks, as the networks used
in this thesis, generally consist of three parts. The first part is the input layer containing one
or more input neurons. This layer feeds the features of the input data into the network. The
input layer has one neuron for each feature of the input data. In this thesis that would be one
neuron for each ql or q̄l. The neural network also has one or more hidden layers that perform
the non-linear fitting. Finally, the data is transformed into the desired output format in the
output layer. A schematic overview of such a neural network is shown in figure 7.

Consider a fully-connected feed-forward neural network consisting of L hidden layers
where layer n contains I(n) neurons. The inputs of each neuron are weighted and added
together. Then a bias is added to the sum of weighted inputs. Finally, the output a

(n)
i of

each neuron is determined by applying an activation function g(n)(x):

a
(n)
i = g(n)

I(n−1)∑
j=1

w
(n)
ij a

(n−1)
j + b

(n)
i

 . (15)

The index n indicates the layer for which the outputs are calculated, the index i refers to
each neuron in layer n and j is summed over all the neurons in the preceding layer. The
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Input layer Hidden layer Output layer

Figure 7: Example of a fully-connected feed-forward neural network with one (L = 1) hidden
layer.

weights are denoted by w and the biases by b. The non-linearity of the neural network is
achieved by using non-linear activation functions g(n)(x).

To train the network we need to determine how well the predicted output of the network
matches the labels of the training data. We can then adjust the weights and biases in the
network to improve the match. To this end we need to define a cost function C that measures
how well the predicted output matches the desired output given by the labels of the training
data. The cost function used in this thesis is the mean squared error (MSE) given by

MSE =
1

2N

N∑
i=1

||y(i)− aL(i)||2, (16)

where N is the number of training examples, aL is the vector containing the output of the
neural network and y is the desired output of the training data.

The weights and biases can be adjusted to minimize the cost function C with the gradient
descent algorithm. This algorithm updates the weights and biases as follows

w
(n)
ij → w

(n)
ij − α

∂C

∂w
(n)
ij

, (17)

b
(n)
i → b

(n)
i − α

∂C

∂b
(n)
i

, (18)

where α is the learning rate. All training examples are evaluated before the weights and
biases are updated. Repeating this procedure should further minimize the cost function.
One cycle of evaluating all training examples is commonly referred to as an epoch.
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Before training can start, the weights of the network need to be randomly initialized and
the biases need to be set to zero. However, random initialization of the weights can cause
the gradients of the cost function to become small. The updates to the weights and biases
during training will then be very small and training will happen slowly. To overcome this
problem, Glorot and Bengio proposed to initialize the weights in layer n by drawing them
from a normal distribution with variance σ2 = 2/(I(n−1) +In) [19]. This initialization scheme
is known as Xavier initialization.

To avoid overfitting of the neural network, we added a weight decay regularization term
to the cost function. The cost function is then given by

C = MSE +
ν

2

∑(
w

(n)
ij

)2
, (19)

where the sum is over all weights in the neural network and ν is the weight decay parameter.
To improve the gradient descent algorithm’s efficiency, we added a momentum term to

equation (17). The momentum takes the update to the weights in the previous gradient
descent step into account [20]. With the momentum and weight decay terms, equation (17)
becomes

w
(n)
ij → w

(n)
ij − α

∂MSE

∂w
(n)
ij

− ανw(n)
ij + η∆w

(n)
ij,prev, (20)

where η is the momentum parameter and ∆w
(n)
ij,prev the update to weight w

(n)
ij during the

previous gradient descent iteration.
To reduce the probability that the gradient descent algorithm only finds a local minimum

in the cost function, we implemented the mini-batch stochastic gradient descent algorithm.
In this version of the gradient descent algorithm, the training data is randomly divided in
batches of approximately equal size. After evaluating all the training examples in one batch,
the weights and biases are updated. At the end of an epoch all the training examples are
split into new batches.

2.3.4 Neural Networks for Analysing Local Crystalline Structures

For the classification of structures in configurations of particles we used a neural network
with one hidden layer. The input layer contained 12 neurons for q̄l with l = 1, 2, ..., 12. For
the hidden layer we used 120 neurons with a hyperbolic tangent as activation function. The
output layer consisted of four neurons, one for fluid, bcc, fcc and hcp. We want to study how
well the neighbourhood around a particle matches each of the four structure classes. To this
end we used the logistic function given by

g(z) =
1

1 + e−z

as the activation function. This will give a confidence level between 0 and 1 for each of the
four structure classes. Note that the output vector is not normalized, so these confidence
levels cannot be interpreted as a discrete probability distribution.

The network was trained with the four configurations we used for PCA. The averaged
bond order parameters were centered such that the means of all q̄l over the entire training
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Input Layer Encoder Bottleneck Decoder Output Layer

Figure 8: Example of an autoencoder neural network. The network tries to reproduce its
input at the output layer. The bottleneck forces the network to learn a lower dimensional
representation of the input dataset.

dataset equalled 0. Fluid particles were labelled as (1, 0, 0, 0), fcc particles as (0, 1, 0, 0), bcc
particles as (0, 0, 1, 0) and lastly hcp particles as (0, 0, 0, 1). The momentum η was set to 0.5,
the weight decay parameter ν to 10−4 and the learning rate was α = 5× 10−8.

To study if the non-linearity of neural networks can improve the projection of the bond
order parameters to a two dimensional space compared to the projection obtained from
PCA, we constructed an autoencoder neural network. An example of an autoencoder neural
network is shown in figure 8.

The autoencoder is an example of unsupervised machine learning. It is trained to repro-
duce the input at the output layer. Because there is a bottleneck in the architecture that
has fewer neurons than the input and output layers, the autoencoder is forced to learn a
lower dimensional representation of the input dataset. After training, the encoder part of
the autoencoder can be used to project data on this lower dimensional space.

For the autoencoder, we used the same architecture that Boattini et al. used [18]. Our
input and output layers have 12 neurons. The encoder and decoder layers both contain 120
neurons and the bottleneck layer contains 2 neurons. The encoder and decoder layers use
hyperbolic tangent activation functions while the bottleneck and output layers use linear
activation functions. The network was trained with the same dataset we used for PCA. The
averaged and non-averaged bond order parameters of the training data were again centered.
The learning rate α was set to 5× 10−7 and the momentum and weight decay settings were
the same as the settings used with the neural network for classification.
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3 Results and Discussion

In this section, we will first give an overview of the simulations we have run. Then we will
present the results obtained from the PCA space projections. Lastly, we will discuss the
results from the application of various neural network architectures on identifying crystal
structures.

3.1 Simulation Overview

We kept track of the progress of the simulations by recording the number of particles in the
largest cluster of solid-like particles in the system. Plots of this parameter during the four
simulations can be found in figure 9.
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Figure 9: The number of particles in the largest cluster of solid-like particles plotted against
the number of trial moves. The simulations at 40% and 50% supercooling crystallized spon-
taneously while the simulations at 20% and 30% supercooling did not.

Spontaneous crystallization did not occur during the simulations at 20% and 30% su-
percooling. It seems from the curves for 40% and 50% supercooling in figure 9 that the
crystallization of the systems at 40% and 50% supercooling happened via different mecha-
nisms. To get a better understanding of what was happening during these two simulations,
we plotted the configuration of particles after 600 million trial moves from both simulations
in figure 10. For the configuration from the 50% supercooling simulation in figure 10b, it is
notable that the largest cluster of solid-like particles is irregularly shaped. This suggests that
solid-like clusters started forming throughout the simulation volume as opposed to one clus-
ter forming and subsequently growing as would be expected in crystal nucleation. Possibly,
the state point at 50% supercooling corresponds to an unstable state. In an unstable state, a
system will immediately start rearranging itself towards the configuration with the lowest free
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energy. In contrast, crystal nucleation is associated with a metastable state. The state point
corresponding to 50% supercooling might not be appropriate to study crystal nucleation. The
configuration after 600 million trial moves from the simulation at 40% supercooling in figure
10a shows more spherically shaped solid-like clusters while also showing several large clusters.
During crystal nucleation we would expect to see only a single large cluster. Therefore it is
unclear whether the state corresponding to 40% supercooling is metastable or unstable.

(a) Typical configuration of a Lennard-
Jonese fluid from a simulation at 40% super-
cooling (kBT/ε = 0.69 and pσ3/ε = 5.68).

(b) Typical configuration of a Lennard-
Jonese fluid from a simulation at 50% super-
cooling (kBT/ε = 0.575 and pσ3/ε = 5.68).

Figure 10: Plots of the configuration of Lennard-Jones particles during the simulations. Both
snapshots were taken after 600 million trial moves. The particles that are not identified as
solid-like are plotted smaller to make the solid-like clusters more visible. The different colours
denote that particles belong to different clusters of solid-like particles.

It would be better if we could observe crystallization at 20% or 30% supercooling. How-
ever, even after 21 days of running these simulations no crystallization occurred. In future
simulations we could study crystal nucleation in a Lennard-Jones fluid by implementing a bi-
asing scheme. This way energetically unfavourable areas of phase space can be explored and
the system can be forced to form and subsequently grow a crystal nucleus. For the remainder
of this thesis, we will focus on the results from the simulation at 40% supercooling.
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3.2 PCA Projections

The first method for identification of local crystal structures we consider is Principal Com-
ponent Analysis.

(a) ql of four different configurations pro-
jected onto two-dimensional PCA space.
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(b) Absolute values of the coefficients of the
first and second principal components.

Figure 11: Results of the Principal Component Analysis using the non-averaged bond order
parameters. The four different configurations are not well separated.

The results for the PCA using the non-averaged bond order parameters are displayed in
figure 11. Notable is that the four different configurations projected onto this PCA space are
not well separated. Therefore this analysis is not appropriate for identifying crystal structures
in the crystal nucleation simulations. In figure 11b, we plot the coefficients of the first and
second principal components and find, from the first principal component, that q6 and q12
are important as expected, but q5 and q7 are also important.

(a) q̄l of four different configurations pro-
jected onto two-dimensional PCA space.
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(b) Absolute values of the coefficients of the
first and second principal components.

Figure 12: Results of the Principal Component Analysis using the averaged bond order
parameters. The four different configurations are reasonably well separated.
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As can be seen in figure 12, when the averaged bond order parameters are used for the
PCA, the four configurations are well separated on the resulting PCA space. Therefore, this
PCA plane is more suitable for identifying crystal structures during crystal nucleation than
the PCA plane obtained with the non-averaged bond order parameters. Figure 12b shows
that q̄6 and q̄12 are important. In contrast to the principal components obtained from the
non-averaged bond order parameters, none of the odd averaged bond order parameters are
important. To gain more insight into the principal components, we calculated the probability
distributions for the first four principal components. These are shown in figure 13.
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(a) Probability distribution functions of the
first principal component.
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(b) Probability distribution functions of the
second principal component.
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(c) Probability distribution functions of the
third principal component.
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Figure 13: Probability distributions of the first four principal components from the Principal
Component Analysis of the averaged bond order parameters q̄0, q̄1, ..., q̄12. A configuration
containing fcc, bcc, hcp and fluid regions was analysed.

From the probability distribution for the first principal component in figure 13a we can
see that the first principal component is useful in distinguishing the fluid from the crystal
phases while figure 13b shows that the second component can be used to distinguish bcc
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structures from fcc and hcp structures. Figure 13c shows that the third component may be
useful for distinguishing fcc from hcp structures. In figure 13d we can see that the fourth
component is not able to distinguish any of the structures. These probability distributions
suggest that a two-dimensional space spanned by the second and third principal components
may be useful for distinguishing the three crystal structures. This PCA space is shown in
figure 14.

(a) q̄l of four different configurations pro-
jected onto two-dimensional PCA space.
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Figure 14: Results of the Principal Component Analysis using the averaged bond order
parameters. The three crystal regions are well separated from each other. The fluid region
has overlap with the fcc and hcp regions.

The projection of the four different configurations onto the two-dimensional space spanned
by the second and third principal components in figure 14a shows that the three crystal
regions in this space are well separated. However, the fcc and fluid regions overlap as well
as the hcp and fluid regions. Therefore, this space is less suitable for studying configurations
containing fluid-like particles. Since we are simulating crystal nucleation of a Lennard-Jones
fluid, we will project simulation results onto the PCA space spanned by the first and second
principal components.

Over the course of the simulation at 40% supercooling, we took 840 snapshots of the
configuration of Lennard-Jones particles at intervals of 2 million trial moves. Using the
averaged bond-orientational order parameters, we projected every snapshot onto the two-
dimensional PCA space in figure 12a.

In figure 15 we plotted the projections of three snapshots onto the PCA space. From
these projections it seems that the crystals formed at the end of the simulation consist of
hcp and fcc ordered particles. The presence of hcp crystal structures could be caused by
the system being unstable at 40% supercooling. The main difference between hcp and fcc
crystal structures is the stacking of crystal planes. In hcp crystals, the crystal planes follow
an ABAB stacking pattern, while fcc crystal planes are ABCABC stacked. In an unstable
system, crystal structures form independently throughout the system. When initially sepa-
rate structures meet, they might not match up to form a contiguous fcc structure and locally
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(a) Snapshot after 20× 106 trial moves. (b) Snapshot after 900× 106 trial moves.

(c) Snapshot after 1680× 106 trial moves

Figure 15: Projections of averaged bond order parameters from the simulation at 40% su-
percooling onto a two-dimensional PCA space. The PCA space was obtained by running a
Principal Component Analysis on a configuration containing fluid, fcc, bcc and hcp particles.

form an hcp structure or vice versa. However, Ouyang et al. also reported hcp structures
in their crystal nuclei while their molecular dynamics simulations were run at a state point
corresponding to 20% supercooling [7]. Therefore, it is still possible that our simulation was
run at a metastable state point.

From figure 15 it also seems that most particles do not pass through the bcc region of
the PCA space. To further quantify this, we applied a Gaussian Mixture Model to fit two-
dimensional Gaussian functions to the four regions of the PCA space. Then we use the
Gaussian Mixture Model to classify each particle in a snapshot as fluid, bcc, hcp or fcc.

The results of this classification process for one snapshot are shown in figure 16. The
Gaussian Mixture Model classifies every particle as bcc with probabilities close to 1 at least
at some point during the simulation. However, this does not necessarily mean that crystal
nucleation of Lennard-Jones particles happens via bcc since the Gaussian Mixture Model
determines the discrete membership probability distributions for each particle over the course
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Figure 16: Classification of the particles from the snapshot after 900 × 106 trial moves by
the Gaussian Mixture Model. The red lines indicate the 2σ ellipses of the Gaussians fitted
to the four regions in the PCA space. Gaussian Mixture component 0 corresponds to hcp, 1
to fluid, 2 to bcc and 3 to fcc.

of the simulation. If, for example, the probabilities of a particle belonging to either the fluid,
hcp or fcc clusters is near zero, the probability of the particle to be associated with the
bcc cluster must be near one. Because of this normalization, even particles that are far
away from the bcc cluster can still have a high probability of being associated to the bcc
cluster. Therefore, this method is not appropriate to determine whether crystal nucleation
of Lennard-Jones particles happens via bcc.

One way to still use the Gaussian Mixture Model to quantify whether crystal nucleation
happens via bcc is to evaluate the Gaussian function belonging to the bcc cluster for every
particle. This value can then serve as a measure of how similar to bcc the particle is.
Interpretation of this measure is not straightforward and requires further consideration.
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3.3 Neural Network Classification

Unlike the results of the Gaussian Mixture Model, the output layer of the neural network we
use for classification is not normalized to represent a probability distribution. Possibly, this
will allow us to determine to what extent the structure around a particle corresponds to one
of the three crystal structures or to a fluid.
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Figure 17: Plot of the Mean Squared Error of the neural network for classification over the
course of training the network.

The MSE of the neural network during training is shown in figure 17. It seems that the
minimum of the MSE has not been reached. We might be able to improve classification
accuracy of the neural network by training it longer.

To visualize the results of the classification by the neural network in a plot of a con-
figuration, we assign to each class a different base colour. Particles that have the highest
confidence of being part of an fcc structure are green. Red represents hcp and yellow repre-
sents bcc. For clarity, all particles that are classified as fluid-like particles are omitted from
these configuration plots. The level of confidence is subsequently linearly represented by the
saturation of the colour. If the confidence is high, the colour will appear more saturated
whereas the colour will appear more white if the confidence is low.

Figure 18 shows the results of classification of particles from three snapshots taken during
the simulation at 40% supercooling. Notable is that the centres of the nuclei are classified
with the highest confidence. These plots also suggest that the centres of the nuclei are mostly
fcc ordered. This is in agreement with Ten Wolde, Eslami and Ouyang [5–7]. The surfaces
of the crystal nuclei are classified as bcc ordered, although with lower confidence.

The classification by the neural network is plotted on the same PCA space as the clas-
sification by the Gaussian Mixture Model in figure 19 to make comparison between the two
easier.
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(a) Snapshot at 6 × 106 trial
moves.

(b) Snapshot at 900×106 trial
moves.

(c) Snapshot at 1680 × 106

trial moves.

Figure 18: Classification by neural network with logistic activation function at the output
layer. Green denotes fcc, red denotes hcp and yellow denotes bcc. Particles classified as
fluid-like are omitted. The saturation of the colours linearly corresponds to the confidence
of classification, where low saturation indicates low confidence. Snapshots are taken during
simulation at 40% supercooling.

The classification by the neural network shows some notable differences to the classifica-
tion by the Gaussian Mixture Model in figure 16. First of all, the area where particles are
classified as bcc-like by the neural network is shifted closer to the Gaussians associated to
the fcc and hcp regions of the PCA space compared to the classification by the Gaussian
Mixture Model. Secondly, the neural network classifies fewer particles as hcp compared to
the Gaussian Mixture Model.

We summarize classification by the neural network with the associated confidence levels
in the histograms in figure 20. These histograms show the signatures of the four outputs
of the neural network during classification of the snapshots from the simulation at 40%
supercooling. All simulation snapshots were analysed. For all particles the entire output of
the neural network was tracked over the course of the simulation. When a particle is classified
into one of the four categories, the highest confidence for that category was stored together
with the confidence values for the other three categories. All particles were then divided into
bins resulting in the signatures in figure 20.

From the way we labelled our training examples we know, for example, that the best
possible match for fcc would have a signature where the confidence for fcc equals one and
the confidence for the three other structures would equal zero. The only signature from our
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Figure 19: Classification by the neural network plotted on the same PCA space as the
classification by the Gaussian Mixture Model. Particles labelled as 0 correspond to hcp, 1 to
fluid, 2 to bcc and 3 to fcc. Confidence levels are not represented.

simulation data that somewhat matches that pattern is the signature for fluid-like ordering.
The signature for fcc contains a confidence close to one for fcc, but confidence for hcp is
also around 0.5. In the hcp signature, the fcc confidence is only slightly lower than the hcp
confidence. It seems that our neural network is not able to distinguish hcp over fcc well.
This agrees with the results from figure 19.

The signatures in figure 20 reveal several flaws with the use of confidence values to quantify
how similar the environment around a particle is to a known reference structure. Firstly, the
confidence value with respect to one of the structures does not take the confidence values of
the other possible structures into account. For example, from figure 20c it seems that we
might not be justified in classifying a particle as hcp-like since the confidence value for fcc
structure is similar to the confidence value for hcp structure. Furthermore, the interpretation
of confidence values is unclear. The confidence cannot simply be interpreted as a probability
and it is therefore uncertain what the minimum confidence should be below which a particle
does not belong to that category. Lastly, the behaviour of a neural network in areas where
there was no labelled training data available is unpredictable. Without further understanding
of the behaviour of the neural network and the interpretation of confidence values, the neural
network for classification is not suitable to quantify if crystal nucleation of Lennard-Jones
particles happens via bcc.
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(b) bcc signature
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(c) hcp signature
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Figure 20: Confidence signatures of classification by neural network of the snapshots gener-
ated by the simulation at 40% supercooling.

3.4 Autoencoder Projections

Lastly we compare the two-dimensional spaces found by the autoencoder to the two-dimensional
PCA spaces from section 3.2.

The two-dimensional space found by the autoencoder when using q̄1, q̄2, ... , q̄12 is shown
in figure 21. We can see that the autoencoder is effective in finding a space where the
four structure regions are distinguishable from each other. However, the space found by
the autoencoder looks similar to the space found by PCA in figure 12. It seems that the
non-linearity of the autoencoder does not offer an advantage over PCA.

Use of the non-averaged bond order parameters increases the spatial resolution which
might make the non-averaged bond order parameters more appropriate to study possible
crystal structures in the interface between the crystal nuclei and the fluid. In section 3.2
we saw that non-averaged bond order parameters are not accurate enough to study crystal
structures with PCA. Therefore, we also trained the autoencoder using ql with l = 1, 2, ...,12
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(a) Projections by the encoder.
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Figure 21: Results from the autoencoder using q̄l. The four known configurations are pro-
jected onto the two-dimensional space found by the autoencoder.

to investigate whether the non-linearity of the autoencoder produces a better projection onto
two-dimensional space compared to PCA. The projections of ql onto the two-dimensional
space found by the autoencoder are shown in figure 22.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Y1

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Y 2

fcc
hcp
bcc
fluid

(a) Projections by the encoder.
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Figure 22: Results from the autoencoder using ql. The four known configurations are pro-
jected onto the two-dimensional space found by the autoencoder.

The two-dimensional space found by the autoencoder using ql again looks similar to the
PCA space in figure 11. The autoencoder is not able to separate the four structure types
either. From the plot of the MSE in figure 22b it seems that we did train the autoencoder
long enough. The non-linearity of the autoencoder we used does not offer an advantage over
PCA.
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4 Conclusion

Understanding the crystallization process of Lennard-Jones particles is important because
the Lennard-Jones potential is commonly used to model atomic and molecular interactions.
Based on literature, we expected to find that the Lennard-Jones particles crystallize into an
fcc crystal. Previous literature also stated that crystal nucleation of Lennard-Jones particles
happens via predominantly bcc ordered structures.

We first performed a Principal Component Analysis to distinguish bcc, hcp and fcc or-
dered structures. The results of the Principal Component Analysis confirmed the formation
of an fcc ordered crystal, but we also saw hcp ordered structures. These results also suggested
that crystal nucleation does not happen via primarily bcc ordered structures.

Quantifying whether crystal nucleation happens via bcc or not proved to be challenging.
The Gaussian Mixture Model clustering method we used was unable to properly quantify
how similar to bcc ordered particles were during crystal nucleation. The neural network
based classification method we employed also confirmed that Lennard-Jones particles form
a primarily fcc ordered crystal, but was not suitable to quantify the degree of bcc ordering
during crystal nucleation.

Evaluation of the Gaussian function fitted to the bcc area of the two-dimensional space
found by Principal Component Analysis may be useful in quantifying the degree of bcc
ordering during crystal nucleation. More investigation needs to be done to assess the validity
of using this metric for quantifying bcc ordering. More simulations should also be run at
lower supercooling to be more certain that the system is in a metastable state. This can be
achieved by biasing the simulation towards crystal nucleus growth.

The difficulties we encountered during our analyses underline the challenge in identifying
crystal structures outside the bulk of a crystal. Care must be taken when attempting to
identify local crystal structures on a single-particle level.
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