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Corné Wiggers

Natuur- en Sterrenkunde

Supervisors:

Dr. Joost de Graaf Supervisor
Institute for Theoretical Physics

Meike Bos Daily Supervisor
Institute for Theoretical Physics

June 11, 2020



Abstract

Bacterial colonies play an important role in the global ecosystem, but the mechanical interactions between
bacteria are not always well understood. In this thesis, we investigated the role of the aspect ratio (e.g.
disk- and rod shaped bacteria) and the ratio between diffusion and duplication rate on the size and shape
of a bacterial colony. We simulated growing bacterial colonies of particles with different aspect ratios
in 2D using Brownian dynamics. The simulated colonies are analysed by looking at their mean radius,
shape and the nematic order parameter. We find that for all the simulations the mean radius grows
exponentially in time. For the rod-shaped bacterial colonies we find that the system starts in an elliptical
nematic state that converges in time slowly to a circular isotropic state, due to outward radial pressure
and the creation of disorder. The disk-shaped bacterial colonies with a fixed duplication direction start
as well with an elliptical shape that converges to a circular shape. For a growing disk-shaped bacterial
colony with a random duplication direction, we always find a circular shape. Moreover, we find that a
higher diffusion rate leads to a higher mean radius of a bacterial colony on a short timescale but on a
longer timescale the diffusion rate does not affect the mean radius due to the dominancy of the duplication
rate. In future research it would be interesting to look at polydisperse colonies consisting of bacteria with
different aspect ratios.
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1 Introduction

In the world many systems are composed of active matter [1]. Active matter consists of particles
that can consume energy to create motion or perform other kinds of work (such as division).
A popular example of an active matter system is a flock of birds [2]. Birds can add energy to
the system by subtracting energy out of the food they eat and use this energy to accelerate in
some specific direction. Due to this the system will never reach an equilibrium. Furthermore,
birds will tend to align themselves with their nearest neighbours. A growing colony consisting
of nonmotile bacteria is also active matter. Nonmotile means that the bacteria are incapable of
self-propelled movement and that all the movements inside the colony are created by collisions
with other particles and by thermal fluctuations. Just like birds these bacteria consume food
and convert this into motion. However, the way they create this motion is different, because
unlike nonmotile bacteria, birds move by a self-propelled motion. Nonmotile bacteria create
motion by interactions with other bacteria. At a low density the bacteria communicate mainly
through chemical signals [3]. However, at a high density mechanical interactions between the
bacteria dominate the dynamics of the system [4]. As the bacteria keep growing, they push
their neighbouring bacteria away and therefore a motion is produced. Furthermore, bacteria
will tend to orientate themselves in the same direction as their neighbours. However, due to
local energy input misalignments are actively created. Understanding the mechanics behind a
growing bacterial colony has advantages in practical fields such as food safety [5].

In this thesis, we investigated the role of the aspect ratio and the ratio between diffusion and
duplication rate on the size and shape of a bacterial colony. Moreover, we looked how the align-
ment of the bacteria affects the growth process. Therefore we simulated a bacterial colony of
rod-shaped particles. However, to get a good understanding of the effect of aligned particles in
a colony, we first studied the properties of a colony without nematic structures. Therefore we
used disk-shaped bacteria. Afterwards we compared the two different bacterial colonies to find
the effect of the formation of alignments on the growth process.

We simulated the physical processes of a growing bacterial colony using Brownian dynamics.
We used Brownian dynamics, because for bacteria viscous forces dominate and therefore inertial
effects can be ignored. This is due to the small sizes of bacteria (a diameter in the order of a few
micrometers). The simulations are done for both the disk- and rod-shaped bacteria. Three dif-
ferent methods are used to analyse the growing colonies. These are the mean radius, the shape
of the colony and the orientation of the bacteria. The latter is only used for rods as disks do not
have orientational order. Moreover, simulations are compared for different diffusion duplication
ratios, a different duplication direction for the disk-shaped bacteria and different aspect ratios
for the rod-shaped bacteria. This is explained in more detail in the next chapter.

We found for disk-shaped particles that for a random duplication direction they grow exponen-
tially and that the shape of the colony is circular. On a longer timescale we found the same
results for a fixed duplication direction, however on a short timescale this system will have a
slightly higher growth rate and an elliptical shape. For rod-shaped bacteria, the results are
similar to that of disk-shaped bacteria with a fixed duplication direction. Thus on the short
timescale an exponential growth rate, an elliptical shape and moreover the rods will be aligned
in a nematic structure. On a longer timescale the shape of the system enters an isotropic circular
state. This is a result of the misalignment that is created, due to thermal fluctuations. Although
the global state is now isotropic, we still found many small local nematic regions in the colony.
Furthermore, we concluded that increasing the diffusion rate increases the mean radius of the
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colony on a short time scale, however on a longer time scale the mean radius of the system looks
the same as that of systems with different diffusion rates, due to the increasing dominancy of
the duplication rate over time. In further research we suggest to look to the growth process of
a colony consisting of different shaped particles.

This thesis is organized as follows. In chapter 2, the implementation of the Brownian Dynamics
simulation is explained. Followed by the implementation of disk- and rod-shaped bacteria and
a short description of the used analysis methods. In chapter 3, our model is validated by
comparing it with Monte Carlo simulations. Chapter 4 gives specification of the parameters
that are used. In chapter 5, the simulations of the different bacterial colonies are presented and
discussed. In chapter 6, a discussion is given of the model, the results and the assumptions that
were made in this thesis. Chapter 7 concludes and gives some suggestions for further research.
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2 Methodology

In this chapter, we explain the simulation methods that have been used in this thesis. A lot of
bacteria have approximately the shape of a disk or that of a rod. For example, the Neisseria
bacteria are disk-shaped and can be found in the mucosal surfaces of many animals [6]. And an
example of rod-shaped bacteria is the Escherichia coli, that can be found in your intestines [7]. In
this thesis we used Brownian dynamics simulations of interacting disk- and rod-shaped particles
to simulate the behaviour of bacterial colonies.
Firstly, this chapter gives an explanation of Brownian dynamics. Secondly, we explain the two
different interaction potentials that are used in this thesis. These are the Hertzian potential
and the spring potential. Thirdly, we describe how the disk- and rod-shaped bacteria have
been implemented. This includes how the bacteria are defined, how they interact and how they
duplicate themselves. Finally, this chapter gives a discussion of the different analysing methods
that have been used to study the bacterial colonies.

2.1 Brownian Dynamics

For a bacterial system in a liquid the Reynolds number, which is given by Re = inertial forces
drag forces ,

is much smaller than one. This is due to the small sizes of the bacterial cells, they have a
diameter in the order of a few micrometers. This is known as Stokes regime, where viscous
forces dominate and therefore inertial effects can be ignored. This is called an overdamped
system. In this overdamped system the motion can be described by Brownian dynamics. In this
model the particles move by forces that are derived every time step and are then integrated. In
our model we consider three forces, namely the drag force, the thermal force and the interaction
force. The drag force Fdrag tries to slow down the motion of the particles. This drag force is
due to Stokes’ friction, that is the friction that a spherical object with a small Reynolds number
experiences in a viscous fluid. Stokes’ friction is given by Fdrag = −γẋ, where γ is the friction
coefficient and ẋ is the velocity vector of the particle. Secondly, a thermal force Fthermal is
included that acts like a random force due to collisions with solvent molecules in the system.
The average kinetic energy of these solvent molecules does depend on the temperature of the
system. The formula of this force is given by Fthermal =

√
2γkbTR. Here kb is the Boltzmann

constant and T is the temperature of the system and is kept fixed during the whole simulation.
R is a vector with a random length drawn from a Gaussian distribution with mean equal to
zero and a standard deviation equal to one. Finally, there is an interaction force Fint due to the
interaction between the particles. The interaction forces between the particles can be calculated
by taking the derivative of the potential energy, Fint = −dUdr . Considering these three forces
and ignoring inertia effects the overdamped Brownian dynamics equation of motion reads

γẋ =
√

2γkbTR + Fint. (2.1)

Unfortunately, we cannot solve this integral exactly due to the random variable R. We solve
this by switching to expectation values. Using Euler’s method in the discretized form for a
stochastic variable, this will lead to the following formula for the new positions of the particles

xt+∆t = xt +

√
2kbT

γ
(∆t)R +

Fint

γ
∆t. (2.2)

Here xt is the position of the particle at time step t and the term
√

∆t follows from the width
of the Gaussian distribution of these positions due to the random variable.
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2.1.1 Cell Lists

With the methods described above we can simulate a bacterial colony. However, to get accurate
and realistic results the simulations are often done with a total particle number N of more
than thousand. To calculate all the pair-wise interaction forces this means that we have to loop
over N2 particles, which is computationally expensive. To speed up the simulation we will use
cell lists. The reason for using cell lists is that the interaction force between particles is only
non-zero as long as the distance between particles i and j rij < σ, where σ is a small number
compared to the total system size. So instead of checking the interaction forces with all the
other particles it is actually only needed to check the interaction force with the neighbouring
particles that are on a distance smaller than σ. We have implemented the cell lists by dividing
the simulation box into square- shaped cells with sizes slightly larger than σ. For disk-shaped
particles this is visualised in figure 1.

Figure 1: A visualisation of the use of cell lists for the interaction forces on particle one. Instead
of checking for all the particles, we just check the particles that are placed in the grey cells.

In the simulations we now keep track in which cell these particles are located and we only loop
over all the particles in the neighbouring cells to calculate the interaction force instead of looping
over all the particles in the system. For example, if we look at particle one in figure 1 the centre
of mass of the particle is placed in row three and column three. This means that we just have to
loop over the particles that are placed in the cells that have a grey color. We only find particle
two and so we only calculate the force due to this particle. Particles three and four are placed
outside the grey cells and are not taken into account. This method reduces the simulation time
significantly.

2.2 Potentials

Bacteria deform under pressure. To take this into account, two different soft potentials are used
in the simulations. These are the Hertzian potential and the spring potential. The Hertzian
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potential is used to validate the implementation of the Browninan dynamics simulation. The
spring potential is used for the simulations of the bacterial colonies.

2.2.1 Hertzian potential

The Hertzian potential is implemented in a similar way as in Fomin et al.[8]. This potential has
the following form

U ijh =

ε
(

1− rij

D

) 5
2

if rij ≤ D

0, otherwise

where D is the diameter, which is used as a length scale of the system. ε is the energy scale and
rij the distance between particle i and j. This means that the potential energy is only nonzero
when particles start to overlap. The potential has a maximum value of ε and the potential
decreases with a power of 5/2 to zero.

2.2.2 Spring potential

For the spring potential we implemented the same potential as is used in Nordemann et al.[9].
This potential follows from Hooke’s law and is given by

U ijs =

{
−ks

(
Lrest

s − rij
)2

rij ≤ Lrest
s

0, otherwise,

where ks is the spring constant and Lrest
s is the rest length of the spring. This potential increases

quadratically with the overlapping distance and is zero if the particles do not overlap.

2.3 Implementation of the Bacteria

In this thesis, we studied disk- and rod-shaped bacterial colonies that grow in time. Here we
discuss how we have defined the bacteria in our model. Furthermore, we clarify how they interact
and duplicate in time.

2.3.1 Disk- and rod-shaped particles

In this thesis a disk-shaped particle is implemented just as a disk with a diameter D. A schematic
picture of such a disk can be seen in figure 2. The position of such a bacteria is given by the
point in the middle of the disk.
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Figure 2: Schematic of a disk-shaped bacteria (top) and rod-shaped bacteria (bottom).

This thesis used the definition of rod-shaped particles as is introduced in [10] and in more detail
is described in [9]. In the latter one a rod particle is formed by connecting two disks with an
internal spring that has an equilibrium length Lrest. This can be seen in the bottom sketch of
figure 2. This spring is in equilibrium when L = Lrest, where L the length of the vector L. Here
L is a vector that points from the centre of mass of one of the two disks in the rod to the centre
of mass to the other disk and is given by

L = rj − ri. (2.3)

When the spring is not in equilibrium an internal force inside the rod is applied on the disks
that is proportional to the difference between L and Lrest. This force is applied in such a way
that L is pushed to Lrest. The internal spring force is given by

Fint = −kint
L

L
(Lrest − L), (2.4)

where kint is the spring constant. By controlling the variable kint, we can make sure that the
distance between the disks will not deviate too much from the rest length of the spring. The
ratio between D and L is called the aspect ratio, AR. In this paper AR is defined as

AR =
L

D
. (2.5)

So in the case that AR is zero the rod-shaped particles and the disk-shaped particles are the
same. In this thesis rods with different values for AR are examined.

2.3.2 Interaction

In the previous chapter, we discussed that the potential is nonzero when the particles start to
overlap. However we have not discussed how we define an overlap. For disks an overlap means
that the distance between the centre of masses of the two particles is smaller than the diameter
of the disk, D. For rods however, the definition of an overlap needs more explanation. As
described earlier, a rod is made up of two disks that are connected with each other by a spring
force. Although the rods are made up of two connected disks, they need to interact with other
rods as stadium-shaped particles (two-dimensional representation of a spherocylinder). Two
overlapping rod-shaped particles are visualised in figure 3. Therefore, a function is used that
computes the shortest distance from a line-segment of the first particle to the line-segment of
the second particle, as is described in Ericson[11] (this was implemented by the daily supervisor
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of this thesis, Meike Bos). This function returns the size, position and direction of the overlap
vector d of this particle. d replaces then rij in the equations of the potentials above.

Figure 3: Two rod- shaped particles overlap each other.

2.3.3 Duplication

For the disks we used a growing mass technique. The simulation starts with one single disk,
which is given some initial mass (initial mass = 0.5 in this thesis). The mass will then grow each
time step by a fixed amount, while the size of the disk remains the same. If the mass comes
above a critical value, ccritical, (ccritical = 1.0 in the simulations, so that the mass is always a
value between 0.5 and 1.0) then the disk starts to duplicate itself in such a way that the two
new disks have the same size but have half the mass of their mother disk.
In this simulation we used two different methods for the direction of the duplication. What we
mean with the direction of the duplication, is that in the first step of the duplication procedure
a new daughter disk has to appear. The mother disk is placed at the original position of the
disk before the duplication starts, the daughter disk is placed a small distance away from this
disk. The duplication direction is the direction the daughter disk is placed with respect to the
mother disk. The mother and daughter disk only interact with each other with a strong internal
spring force. This original direction is important because this dominant force will then push
these disks away from each other along the direction of the vector connecting these two disks.
The spring force for two different disks is given by

Fspr(r) =

−k
r

r
(r −D) if r ≤ D

0, otherwise

where D is the diameter of the disks. When the two disks are not overlapping anymore, the
spring force will disappear and the two disks will interact with each other as two independent
disks.
In this thesis we investigated two different duplication direction techniques. In the first method,
the duplication takes place in a random direction. This means that the new emerging disk has
a deviation from its original disk in a random direction. In the second method, the duplication
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takes place in the y-direction. To avoid that all disks duplicate at exactly the same time we
introduce a small random fluctuation in the duplication time for each particle.

Figure 4: The mother rod particle duplicates itself by creating two new disks. The two new
disks combine themselves with one of the already existing disks to form a new rod particle. This
picture is inspired by [9].

For rod- shaped particles we can increase the length of the rod by just increasing Lrest. Here we
increased Lrest by a fixed amount every time step. The rod particle will grow until it exceed a
maximum length Lmax. When this happens the rod particle will split into two equal parts that
have both half the length of the original rod particle. This duplication is done by creating two
new daughter disks between the two original parent disks. This situation is visualised in figure
4. As can be seen in the sketch, both of the mother disks are connected with a spring potential
with the nearest daughter disk and form together a new rod particle, as is described in [9]. The
equilibrium length of the springs of these two new rods is equal to Lrest

New Rod = (Lrest
int − D)/2.

These new rod shaped particles will grow as independent particles until they reach the division
length and divide as well.

2.4 Analysis

To analyse the simulations of the growing bacterial colonies the mean radius and the shape
of the colonies have been analysed. Moreover, for the rod-shaped bacteria we also examined
the nematic order parameter. These different analysis techniques are explained in more detail
below.

2.4.1 Mean Radius

The mean radius has been calculated by summing up all the absolute values of the radius vectors
relative to the centre of mass of the system and dividing this by the total number of particles.
This is given by

R =
1

N

N∑
i=1

Ri, (2.6)

where Ri = |ri − rcm| is the radius of a particle with respect to the centre of mass, rcm =
1

mtotal

∑N
i=1 rimi is the position of the centre of mass of the system and mtotal =

∑N
i mi is the

total mass of the system. All these values have been calculated each time step.
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2.4.2 Axial Ratio

To analyse the shape of the bacterial colony, we calculated the two eigenvalues and eigenvectors
of the radius of gyration tensor of the colony in 2D. The 2 × 2 radius-of-gyration tensor is
calculated relative to the centre of mass of the system for every time step. Its elements are
given by

Ikl =

N∑
i=1

(||r||2δkl − xkxl). (2.7)

Here k and l are equal to 1 and 2 respectively for the x and y coordinate. The two eigenvalues
and eigenvectors are derived. The eigenvectors emax and emin give information about the di-
rection of the longest and shortest axis of the system. The eigenvalues λmax and λmin give the
corresponding lengths of these axis. The situation is visualised in figure 5, where the colony has
an elliptical shape.

Figure 5: Vector emax points into the direction of the longest axis. The size of this axis is given
by λmax. emin is the vector standing perpendicular on emax and the corresponding axis has a
length λmin.

The axial ratio AxR is given by dividing the length of the longer axis by the length of the shorter
axis. This corresponds to dividing the larger eigenvalue by the smaller one: AxR = λmax

λmin
. If

AxR = 1, we can conclude that the colony has a circular shape, whereas for AxR� 1 the shape
is elliptical.

2.4.3 Nematic Order Parameter

The nematic order parameter is given by

S =
1

2
〈3 cos(θi)

2 − 1〉, (2.8)

where θi is the angle that the direction of rod i makes with the unit vector n that is named the
director. This is clarified in figure 6.
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Figure 6: A sketch of two rods and the director vector. Rods 1 and 2 make an angle of θ1 and
θ2 with the director vector respectively.

The director is equal to the average bacterial orientation. If all the rods are aligned in the same
direction, then S will be equal to one, which means that the colony is in a perfect nematic state.
However, if the order parameter is zero then the colony of rod-shaped bacteria does not have
a preferred direction, this is called the isotropic state. The orientation of the unit vector n is
derived by calculating the orientation of the eigenvector corresponding to the largest eigenvalue
of the nematic order tensor, Q [12]. The values of the 2x2 matrix Q are given by

Skl =
1

N

N∑
i=1

3(uki u
l
i − Ikl)
2

, (2.9)

where uki is the k’th component of the orientation vector of rod i and I is the 2 × 2 identity
matrix.
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3 Validation

Monte Carlo simulations give similar results as Brownian dynamics in equilibrium systems. So
to check if the algorithm of the Brownian dynamics simulation is implemented correctly, we first
built a Monte Carlo simulation consisting of disks that interact with each other with an Hertzian
potential. For this system the expected phases are known [8] and have been used for validation
of our Monte Carlo model. Afterwards, we used our Monte Carlo Simulation to validate the
Brownian dynamics simulation.

3.1 Monte Carlo Simulation

The Monte Carlo Simulation is implemented for a system of fixed particle number N, volume V
and a temperature T. For such an NVT ensemble the partition function is given by

Q = c

∫
dpNdrN exp[−H(rN ,pN )/kBT ]. (3.1)

Here rN are the two dimensional coordinates of the system, pN are the corresponding momenta,
H(rN ,pN ) is the Hamiltonian of the system and c is a normalisation [13]. The probability of
visiting a particular point, rN , is then equal to the Boltzmann factor, exp [−βU(rN )], where
U(rN ) is the total potential energy of the system and β = 1/kBT . In Monte Carlo simulations
we are interested in the equilibrium state of the NVT ensemble. Therefore we can adjust the
system a little bit in such a way that the system is more likely to enter a lower energy state
than entering a higher energy state. This is done using the algorithm as described by Frenkel
et al.[13]. Starting from a configuration state the Monte Carlo Method uses the following three
steps. First, we select a particle at random and we measure its energy. Then we give the
particle a random displacement. Finally, we accept this new position with a probability equal
to min(1, exp (−β[Unew − Uold])). This is achieved by drawing a random number between 0 and
1 and if it is smaller than this probability then the displacement is accepted.

3.2 Model

To give the Monte Carlo simulation enough time to reach the minimum energy state, we ran
the simulation for 10.000 Monte Carlo steps. Moreover, periodic boundary conditions are used.
So if a particle leaves the box on the left side then it will enter the box on the right side. All
the simulations are done in two dimensions. The particle diameter D is used as a length scale.
Furthermore, βε = 1000 and a total particle number N = 289. To compare the Brownian
dynamics simulation with the Monte Carlo simulations we ran the simulations for different
densities ρ and analysed if the shape of the crystals is the same for both simulations and are
also in agreement with the findings of Fomin et al.[8]. The analysis is done by visualising the
equilibrium configuration state for each simulation.

3.3 Results

The equilibrium configurations for both the Brownian dynamics simulations and the Monte
Carlo simulations for D2ρ/m = 2.8 and D2ρ/m = 3.4 are given in figure 7. We see for both
the simulations similar results: for D2ρ/m = 2.8 a square crystal, see figures 7a and 7b for the
Brownian dynamics and the Monte Carlo respectively. And for D2ρ/m = 3.4 a dodecagonal
crystal, see figures 7c and 7d. These crystal shapes are in agreement with the results of [8].
Therefore, we conclude that the Brownian dynamic algorithm is implemented correctly and
that we can trust the outcome of the simulations.
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(a) (b)

(c) (d)

Figure 7: (a) Brownian dynamics simulation at D2ρ/m = 2.8 and βε = 1000 , (b) Monte Carlo
simulation at D2ρ/m = 2.8 and βε = 1000 , (c) Brownian dynamics simulation at D2ρ/m = 3.4
and βε = 1000 and (d) Monte Carlo simulation at D2ρ/m = 3.4 and βε = 1000.
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4 Bacteria

The system is simulated in two dimensions. The box-sizes are set large enough so that particles
never reach the end of a box. Hence, periodic boundary conditions have not to be taken into
account. For every simulation 12 duplication periods are simulated. Starting with one particle
at t = 0 , this corresponds to 4096 particles at the end of the simulation. The time step that
is used for disk- shaped bacteria is ∆t = 0.01 and a bacterial growth Gdisks = 0.0005 mass
unit per ∆t. Therefore, a bacteria duplicates itself in approximately 1000 steps. Furthermore,
the simulation is run for 12.500 time steps, friction coefficient γ = 3π and βε = 1000. For the
simulations with the rods the time step and friction coefficient are the same: ∆t = 0.01 and
γ = 3π. Furthermore, the bacterial Length growth Grods = 0.0001D per ∆t, so that a bacteria
grows with one D in 10.000 time steps. Further, βkov = 1000. The simulation is run for three
different aspect ratios, namely AR = 2.0, AR = 3.5 and AR = 5.0. The corresponding total
time steps to create 12 duplication periods are respectively 200.000, 300.000 and 400.000.

4.1 Diffusion duplication ratio

The diffusion coefficient, Ddiff, in Brownian dynamics for a two dimensional system is given by

Ddiff =
1

γβ
. (4.1)

The units of the diffusion coefficient are [length2]
[time] . To get a time scale tdiff for our system we

can divide a certain squared length by the diffusion coefficient. For this length we used the
length that a system consisting of one particle grows in one duplication. We give this length
the symbol, Lduplication. Then we get the following formula for tdiff

tdiff =
L2

duplication

Ddiff
. (4.2)

So tdiff is the time that one particle needs to diffuse a duplication length. To study the difference
between systems that are diffusion dominated or growth dominated we introduce the diffusion
duplication ratio DDR. Therefore, we divide the diffusion time with the duplication time of the
system. Then this dimensionless ratio DDR is given by

DDR =
tdiff

tgrowth
. (4.3)

If DDR > 1 then the duplication dominates the dynamics of a system consisting of one particle.
While for DDR < 1 the diffusion rate dominates. For disks we used a duplication length
Lduplication = D. This is because after one duplication a new disk is produced with a diameter
of one D. This takes 1000 simulation steps and therefore tgrowth for disks is 1000∆t. If a rod-
shaped particle duplicates it has an initial length of L−D

2 , where L is equal to one of the three
different aspect ratios. To grow to the new duplication period, it has to grow to L, see figure
4. Therefore, we used the difference between these two values as the duplication length for the
rod-shaped particles, so Lduplication = L+D

2 . For AR = 2.0, AR = 3.5 and AR = 5.0 we used
tgrowth = 15.000∆t, tgrowth = 22.500∆t and tgrowth = 30.000∆t respectively. These numbers are
derived from the duplication length Lduplication and by taking into account that a rod grows one
D in 10.000 time steps.
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4.2 Standard errors

To get accurate results and to find an expression for the error bars, all the simulations in this
thesis have been run n = 10 times. In this way all the important quantities, Y can be derived
by taking an average over all the runs

Y =
1

n

n∑
i=1

Yi. (4.4)

The standard errors are then given by

σY =

√√√√ 1

n− 1

n∑
i=1

(Y − Yi)2. (4.5)

For some variables Y , we plotted the logarithm function of this quantity, log(Y ). In this case
the error bars are derived by using the first order Taylor expansion of this function. This means
that the standard deviation is given by

σlog(Y ) =
σY
Y
. (4.6)

In this thesis different systems have be compared with each other. For the disk-shaped bacteria,
systems with different duplication directions (random or fixed) and different diffusion duplication
ratios are studied. For the rod-shaped bacteria different aspect ratios and different diffusion
duplication ratios are analysed.
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5 Results

In this chapter the results of the simulation are presented and discussed. This chapter starts with
the analysis of the disk-shaped bacteria. Afterwards, the rod-shaped bacteria are investigated.
Throughout this chapter different snapshots and figures are presented.

5.1 Disks

We start by analysing the results of the simulations consisting of disk-shaped particles. First,
some snapshots are presented of a growing bacterial colony. Secondly, we look how the growth
process depends on the duplication direction. Finally, different values of the diffusion duplication
ratio are investigated.

5.1.1 Snapshots

In figure 8 different snapshots are presented of two different growing bacterial colonies consisting
of disk-shaped particles. On the left side it is shown for a random duplication direction and on
the right side for a fixed duplication direction. If we compare the two systems (figure 8a and 8b)
after 5 duplication periods we see that the system with the fixed duplication direction (8b) has
a more elliptical shape while the system with the random duplication direction has a circular
shape. As the colony grows, we see that the shape of the system with the random duplication
direction stays circular, see figures 8c and 8f, while the simulation with the fixed duplication
direction goes from an elliptical shape to a more circular shape in figure 8d and to an almost
perfectly circular shape in figure 8e. When we compare the two snapshots at the bottom we see
that after 11 duplication periods the systems look very similar.

5.1.2 Colony growth as a function of the duplication direction

For the disk-shaped bacteria, the logarithm of the mean radius is plotted as a function of the
duplication periods for both the systems with the random duplication direction as the systems
with the fixed duplication direction with DDR = 9.4, as is shown in figure 9. Because log(R)
grows approximately linear in time, we can conclude that the mean radius grows exponentially
in time. We see that for the first few duplications the mean radius increases stepwise, but
for larger duplications, around a duplication period of 8, the growth rate of the mean radius
becomes more continuous. This is true for both the simulations where the growth rate is in a
random direction and for the simulations where the growth rate is in a fixed direction. This can
be explained by the large value of DDR, which tells us that the growth of the colony is mainly
caused by the duplication rate. This means that most part of the colonial growth is created
during a duplication period. However, around a duplication period of 8 this stepwise growth
vanishes. This can be explained by the time it takes the system to adjust to the new state. This
time increases for a larger colony size as it takes more time for the bacteria that are created at
the centre to push all the other bacteria radially outward. Another explanation is the random
restriction that was introduced in the duplication period of a particle.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Snapshots of two different disk-shaped growing bacterial colonies for random (left)
and fixed (right) duplication direction. For 5 (top row), 8 (middle row) and 11 (bottom row)
duplication periods.
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Further, it can be noticed that log(R) of the bacterial colony that grows in a fixed direction
grows faster in the first few duplication periods, but after 6 duplications they start to give
similar results as the colony with the random duplication direction. On longer timescales we
can conclude that the mean radius of the colony does not depend on the duplication direction,
as also observed in the snapshots of the system (figure 8).

Figure 9: The logarithm of the mean radius is plotted as a function of the duplication period
for disk-like bacteria with duplications in a fixed direction (black) and random direction (red).

In addition to the mean radius we also investigated the shape of the bacterial colony. In figure
10 the logarithm of the ratios of the two eigenvalues of the radius of gyration tensor, named
log(AxR), are plotted as a function of the duplication periods. This has been done for both the
simulations with a random duplication direction and for the simulations with a fixed duplication
direction. On the logarithmic scale a value of 0 indicates a circular shape, whereas log(AxR) > 0
indicates a stretched shape. For the random duplication direction we see that the logarithm of
the axial ratio starts around a value of 1 and hence the shape of the colony is stretched. The
reason for this is that it takes the colony some time to generate enough particles to create a circle
shape. You can not create a smooth circle with a handful of disks, as can be seen in figure 8a.
On a longer timescale the colony converges to a more spherical shape and after 8 duplications
the colony is almost completely circular. For the fixed duplication direction the colony is far
more stretched. This is due to the fact that the bacteria only duplicates itself in one direction
so that a bias in a certain direction is created. After some time the pressure pushes the bacteria
into the second dimension and the colony gets a more circular shape. The pressure increases
even more as the colony evolves and more bacteria pop-up. Around 12 duplication periods the
pressure dominates the duplication direction completely and the shape becomes circular as is
the case for the system with the random duplication direction.
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Figure 10: Plot of the logarithm of the axial ratio as a function of the duplication period for
disk-like bacteria with duplications in a fixed direction (black) and random direction (red).

5.1.3 Diffusion duplication ratio

The behaviour of bacterial colonies at different diffusion duplication ratios was also studied.
We used the bacterial colony with the random duplication direction. In figure 11 the logarithm
of the mean radius is plotted as a function of the duplication period for different values of
DDR. It shows that the mean radius increases for an decreasing DDR. However we see that
for DDR = 9.4 ∗ 10−1 and DDR = 9.4 ∗ 10−2 the simulations give similar results but for
DDR = 9.4∗10−3 and especially for DDR = 9.4∗10−4 the simulations generate a much greater
mean radius. Further, the figure shows that for DDR = 9.4 ∗ 10−4 and DDR = 9.4 ∗ 10−3

the standard errors are larger. This can be explained by the low number of the DDR, which
means that the dynamics of the system is largely governed by the diffusion rate. Then the
random thermal force that create the diffusion causes the large fluctuations. On the long term
however, the simulations for all the different DDR values converge to each other. The reason
behind this is that the duplication rate grows exponentially fast. For the derivation of the DDR,
we just took one particle into account: how much time does one particle need to diffuse one
duplication length. However, as the number of particles in the system increases, the duplication
rate increases as well. The simulation with DDR = 9.4 ∗ 10−2 converge around 7 duplication
periods and the simulation with DDR = 9.4∗10−3 around 10 duplication periods. Furthermore,
we see that the simulation corresponding to DDR = 9.4 ∗ 10−4 also comes close to the other
three simulations at around 12 duplication periods. We find the reason why the duplication
rate dominates the diffusion rate on a long timescale if we assume that the shape of the colony
is circular (which is always the case on a long time scale as we saw in figure 9). After each
duplication the total surface of this circle increases with a factor of two. This means that the
radius of the circle increases with a factor of

√
2 ≈ 1.41. This factor is larger than one and

therefore the radius is growing with an exponential rate. This explains why the duplication rate
catches up with the diffusion rate.
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Figure 11: Disk-shaped particles with a random duplication direction. The logarithm of the
mean radius is plotted as a function of the duplication period for four different diffusion dupli-
cation ratios. These are DDR = 9.4 ∗ 10−4 (black), DDR = 9.4 ∗ 10−3 (red), DDR = 9.4 ∗ 10−2

(green) and DDR = 9.4 ∗ 10−1 (blue).

5.2 Rods

Here we discuss the results of the simulations with the rod-shaped bacteria. First we present
some snapshots of a growing bacterial colony, then we show how the growing colony depends on
the aspect ratio. Finally, we look how different values of the diffusion duplication ratio affects
the growth rate of the colony.

5.2.1 Snapshots

Snapshots of a rod-shaped bacterial colony with AR = 5.0 are shown in figure 12. These
snapshots show that the colony grows in a similar way as the disked-shaped bacteria with a
duplication in a fixed direction. In figure 12a we see that the colony is growing mostly in one
dimension. Then after some time due to an increasing pressure, the colony starts to expand in
the second dimension, as can be seen in figure 12b. In figure 12c the colony has already a much
more circular shape, though it is still a little bit stretched. In the last figure 12d the colony is
almost perfectly circular.
Another characteristic of this growing colony system is how the different rods align themselves
with each other. In figure 12a the rods are well aligned and thus in a nematic state. This
explains why the colony starts to grow in one direction as is the case for the disked-shaped
bacteria with a fixed duplication direction. In the second figure 12b, some rods starts to get a
slightly different orientation. This is due to the random thermal fluctuations and interactions
of different particles. In the third figure 12c we see that the colony overall is isotropic, but on a
smaller scale there are a lot of nematic subregions. The colony is now expanding in all directions
and this creates the circular shape in figure 12d.
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(a) (b)

(c) (d)

Figure 12: Four different snapshots of a rod-shaped growing bacterial colony with AR = 5.0. The
snapshots are shown for 4, 7, 10 and 12 duplication periods for (a), (b), (c) and (d) respectively.

5.2.2 Colony growth as a function of the aspect ratio

In figure 13 the logarithm of the mean radius is plotted as a function of the duplication periods
for three different aspect ratios. These are AR = 2.0, AR = 3.5 and AR = 5.0. Again
an exponential growth rate can be observed for all three rod-sized particles as log(R) grows
linearly in time. At around 2 duplication periods we see a peak for AR = 3.5 and AR = 5.0.
The reason for this is that the mean radius is calculated by averaging over all the positions of
the disks in the system relative to the centre of mass. If the two rods duplicate to four rods, then
four new disks are created that are positioned relatively close the centre of mass. Therefore,
the two disks that are positioned farthest away from the centre of mass receive a smaller weight
and the mean radius declines. Furthermore, the figure shows that a higher aspect ratio leads
to a larger colony size. This is due to the fact that rods with a higher aspect ratio have also a
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larger surface area.

Figure 13: The logarithm of the mean radius is plotted a function of the duplication period
for three different aspect ratios. These are particles with AR = 2.0, AR = 3.5 and AR = 5.0
corresponding to the black, red and blue dots respectively.

Figure 14: The logarithm of the axial ratio is plotted as a function of the duplication period
for three different aspect ratios. These are particles with AR = 2.0, AR = 3.5 and AR = 5.0
corresponding to the black, red and blue dots respectively.

From the snapshots of figure 12 we noticed that in the first time steps the colony has an elliptical
shape and that this shape transformed to a circular shape later in time. This is in agreement
with figure 14 where the axial ratio on a logarithmic scale is plotted against the duplication
periods for the three different aspect ratios. log(AxR) = 0 indicates again a circular shape and
log(AxR) > 0 a stretched shape. The figure shows that the ratio converges from a stretched
start state to a circular end state for all the three aspect ratios. Moreover, bacteria with a
higher aspect ratio converge significantly slower than bacteria with a smaller aspect ratio. This
indicates that the rods with a higher aspect ratio are more aligned than the rods with a lower
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aspect ratio, since rods only grow in the direction of their orientation. To further explore this
behaviour, we will now look to the results of the nematic order parameter.

Figure 15: The order parameter is plotted as a function of the duplication period for three
different aspect ratios. These are AR = 2.0, AR = 3.5 and AR = 5.0 corresponding to the
black, red and blue dots respectively.

The nematic order parameter is plotted as a function of the duplication direction in figure 15.
In agreement with the previous results, the bacterial colonies with the higher aspect ratio tends
to be more aligned than the bacteria with a smaller aspect ratio, as is shown in figure 15. The
reason for this is that it is harder for particles with a large aspect ratio than for particles with
a small aspect ratio to push another particle away. Therefore it is more efficient for a bacteria
to align itself besides its neighbour and when it gets on that position, it gets locked up by
its neighbours so that it is difficult for the particle to move away. Figure 15 confirms this by
showing that the simulations with a small aspect ratio (AR = 2.0) converges much faster to
zero than the larger sized rods. Although the larger particles with an aspect ratio of 5.0 tend to
align better, at larger timescales the overall orientation disappears. The colony as a whole falls
into a large number of sub nematic regions that are all orientated in another direction so that
the colony as a whole behaves in a more isotropic way, as can be seen by the snapshots of 12.
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Figure 16: The mean radius is plotted as a function of the duplication period for four different
temperatures. These are β = 0.1, β = 1, β = 10 and β = 100 corresponding to the black, red,
green and blue dots respectively.

5.2.3 Diffusion duplication ratio

We analyse the effect of the diffusion duplication ratio for rod-shaped particles with an aspect
ratio of 3.5. This is done by plotting the logarithm of the mean radius as a function of the
duplication periods for four different values of DDR. These are DDR = 4.2 ∗ 10−5, DDR =
4.2 ∗ 10−4, DDR = 4.2 ∗ 10−3 and DDR = 4.2 ∗ 10−2. The results are presented in figure
16. We see that the sizes of the colony for the different values of DDR start at 0 and that
on a long time scale they all converge. However, in between these two limits we see that the
simulations with a lower value of DDR have a larger size than the colonies with a higher value
of DDR. This is a result of the diffusion of the particles caused by the thermal motion. A lower
value of DDR means a higher diffusion rate. For DDR = 4.2 ∗ 10−5, DDR = 4.2 ∗ 10−4 and
DDR = 4.2 ∗ 10−3 this diffusion is the main driving force for the first few duplication periods.
However, as can be seen in figure 13 the colony is growing exponentially. So after some time
the exponential growth rate of the system catches up the movements of the diffusion and the
colony becomes a liquid crystal with nematic subregions. This process is shown in more detail
by the snapshots in figure 17 with DDR = 4.2 ∗ 10−4. In the first two snapshots, see figures
17a and 17b, the diffusion dominates the dynamics of the system. This means that a particle
on average has enough time to diffuse away before it get pushed by the other particles in the
colony. As the bacteria keep duplicating themselves the particles will have less free space and
starts to interact with neighbouring particles, see figure 17c. In figure 17d the diffusion rate is
not large enough and the dynamics of the particles is mostly caused by the growing colony that
pushes all the other particles radially outward.
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(a) (b)

(c) (d)

Figure 17: Four different snapshots of a rod-shaped growing bacterial colony with AR = 3.5
and DDR = 4.2 ∗ 10−4. The snapshots are shown for 4, 6, 9 and 11 duplication periods for (a),
(b), (c) and (d) respectively.
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6 Discussion

In this thesis we modeled nonmotile bacterial colonies for different aspect ratios and different
diffusion rates. The behaviour of the bacteria are simulated using Brownian dynamics. We
ignored inertial effects in this model because the system has a low Reynolds number. The
Reynolds number is much smaller than one for bacteria in a viscous fluid, due to the small sizes
of the bacteria cells, they have a diameter in the order of a few micrometers. This is known
as an overdamped system. We implemented our rod-shaped bacteria in the same way as was
done by Nordemann et al.[9]. Rod-shaped bacteria are modeled as spherocylinders formed by
connecting two disks with a spring force. Furthermore, the particles are made soft so that an
overlap results in a repulsive force. This seems reasonable because bacteria deform under pres-
sure. In the paper they also used an overdamped system and therefore we would expect similar
results.

In this thesis, we found that a rod-shaped bacterial colony converge over time to a circular state
with nematic subregions. This is in agreement with Nordemann et al.[9], where they also found
that over time a bacterium system becomes round with distinct regions of aligned particles.
Just as in the paper we also analysed the nematic order parameter S as a function of the aspect
ratio. We found similar results. Over time S goes to 0, so that on average the bacteria have not
a preferred orientation and S goes faster to zero for a lower aspect ratio. Therefore we concluded
that our model is implemented correctly.

In this thesis, we also added new contributions to this model. We compared the disk- and
rod-shaped simulations with each other and we concluded that the disk-shaped particles with
a fixed duplication direction have similar characteristics as the rod-shaped particles: they start
with an elliptical shape and end in a circular shape. For the disk-shaped particles the transfor-
mation from an elliptical to a circular shape is only caused due to the outward radial pressure.
Therefore, we concluded that the transformation to a circular shape of rod-shaped bacterial
colonies is not solely a result of the nematic alignments of the bacteria, but more a consequence
of the radially outward pressure. However the creation of disorder, that switches the nematic
orientation of the system to an isotropic orientation, is speeding up this process. For a nematic
orientation the rods all grow in a fixed direction (like the disks with a fixed duplication direc-
tion), whereas for an isotropic orientation the rods grow into all directions (like the disks with a
random duplication direction). As we have seen for the disk-shaped particles, a random dupli-
cation direction creates a circular shape on all timescales. So the sooner a rod-shaped bacterial
colony becomes isotropic, the sooner it starts to behave like a disk-shaped bacterial colony with
a random duplication direction and a circular shape. So what we conclude is that on a long
timescale all the studied bacterial colonies becomes circular due to inner pressure and that the
formation of disorder can speed up this process for a rod-shaped bacterial colony. Furthermore,
we analysed how the diffusion duplication ratio DDR affects the growth of the colony. If we look
for lower DDR values then we concluded that on a short time scale the diffusion rate dominates
the dynamics of the system. This is indicated by a higher value of the mean radius of the colony.
However, on a longer timescale the mean radius of the colony converges to the mean radius of
a colony with a higher value of DDR. The reason for this is that as the colony grows in time,
the exponentially growing duplication rate will eventually become larger than the diffusion rate
and all the particles will be caught up by the expanding colony.

In this thesis we made the assumption that the particles grow a fixed amount per time step.
Disks grow with a fixed mass unit, while rods grow a fixed length unit per time step. This is of
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course not really realistic as bacteria only grow when there is food in the system. As the colony
grows, a high density region at the center is created. So especially in this region food will be
scarce and it is unlikely that these bacteria grow at the same rate as the bacteria on the outer
regions of the colony. In further research it is a good idea to take this into account. Furthermore,
we saw the creation of nematic subregions that have not been given much attention in this thesis.
Therefore it would be interesting to study the structure in the colony on a local scale. In the
simulations we also looked to an isolated system, consisting of just one bacteria at t = 0. In real
life situations it is however likely that there are more colonies growing and colliding with each
other. These colonies could consist of bacteria with different shapes. Therefore it is an idea to
run the current simulations for a polydisperse system. So instead of starting with one particle
in the initial state, we could start with multiple particles of different aspect ratios. In this way
we could analyse the interaction of different shaped bacterial colonies with one another.
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7 Conclusion

In this thesis we simulated and investigated two different growing bacterial colonies. One con-
sisting of disk-shaped particles and one consisting of rod-shaped particles. The dynamics of the
system are implemented using Brownian dynamics with a spring potential. We analysed the
systems by using three different measurements. We looked at the mean radius, the shape of the
colony and the nematic order parameter, where the latter one is just used for the rod-shaped
particles. The analysis were done with a high value of the diffusion duplication ratio DDR so
that the duplication rate dominated the dynamics of the system. Therefore we used DDR = 9.4
for disks and DDR = 4.2 ∗ 10−1 for rods. For the disk-shaped particles we investigated how
the duplication direction (random or fixed) affects the colony and for the rod-shaped particles
we analysed how the aspect ratio (AR = 2.0, AR = 3.5 and AR = 5.0) influences the prop-
erties of the system. Moreover, we studied how the colony size depends on higher diffusion
rates by comparing simulations with lower values of DDR. For disks we compared systems with
DDR = 9.4 ∗ 10−1, DDR = 9.4 ∗ 10−2, DDR = 9.4 ∗ 10−3 and DDR = 9.4 ∗ 10−4. For rods we
analysed DDR = 4.2 ∗ 10−2, DDR = 4.2 ∗ 10−3, DDR = 4.2 ∗ 10−4 and DDR = 4.2 ∗ 10−5.

For the disk-shaped simulations, this thesis concludes that a growing bacterial colony has a
growth rate that increases exponentially in time. On a short timescale this growth rate is larger
for the disks with a fixed duplication direction and the shape of the colony is stretched in the
average duplication direction. This includes an elliptical shape for the fixed duplication di-
rection and a circular shape for the random direction. On a longer timescale the duplication
direction does not affect the shape nor the growth rate of the system and the shape becomes
circular expanding in all directions at the same speed. For rod-shaped particles we found an
exponentially growth rate. Furthermore, on a short timescale the system is in a nematic state
where all the particles have a similar orientation. Because rods grow in the direction of their
orientation, this produces an elliptical shape. However, on the long run disorder is created due
to inner pressure and thermal motion. This results to a circular isotropic global state consisting
of nematic subregions. Moreover, this thesis showed that the number of duplication periods in
which the colony reaches the isotropic state increases for a higher aspect ratio. This means that
disorder is more easily formed for particles with a lower aspect ratio than for particles with
a higher aspect ratio. Furthermore, we analysed how an increasing diffusion rate affects the
growth process of disk- and rod-shaped bacterial colonies. We found on a short timescale that a
higher diffusion rate creates a disordered state with a higher mean radius, whereas on a longer
timescale the duplication rate dominates the dynamics of the system so that the systems with
different diffusion rates look the same.

This thesis made the assumption that bacteria always grow a fixed amount per time step.
However, bacteria only grow if they have enough food. Food will be scarce at the center of
the colony and therefore the assumption that all the bacteria grow with the same amount is
not realistic. In future work, it is therefore an idea to relax on this restriction. Furthermore
a polydisperse system, consisting of both rod-and disk shaped bacteria, can also be investigated.
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