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Abstract

Gravitational wave observations provide new possibilities to explore the Universe. A promising area
for gravitational wave physics is compact binary systems consisting of black holes or neutron stars. Both
are generally expected to be electrically neutral to good approximation, however general relativity does
not prohibit either to possess a net electric charge. Should there be a significant electric charge present
in a binary system, this would influence the orbital motion and consequently be noticeable through
gravitational wave analysis.

In this thesis, we lay down the groundwork for gravitational waves from binary systems and motivate
how electric charges can be accreted by black holes. We derive the additional energy and radiated power
terms induced by the charges and determine how these influence the gravitational waveform. We find
that there is a −1 post-Newtonian term that includes a relative electric charge difference and can only
take on non-positive values. Furthermore, using data from five binary black hole events, we produce
probability distributions of the −1 post-Newtonian term. None of the events show signs of a significant
relative charge difference. We estimate 90% upper bounds on the dimensionless relative charge difference
of the binaries which are all in the order of 10−1. From here, we move on to the double pulsar PSR J0737-
3039. Through radio observations, we again estimate an upper bound on the dimensionless relative charge
difference, which turns out to be in the order of 10−3. Finally, we adopt the Fisher matrix formalism to
derive future bounds on black hole binaries that can potentially be reached once the Einstein Telescope
becomes active.
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Prologue

When Edwin A. Abbott wrote his renowned novel Flatland in 1884, he described the encounter between
the two-dimensional world of a square and the three-dimensional world of a sphere. One day, the sphere visited
the square in its two-dimensional world and the square could naturally only see a circle. Then, the sphere
pursued by flaunting his three-dimensional properties, levitating up and down through the two-dimensional
world. This allowed the square to see an expanding and contracting circle. When the square asked if there
were even more dimensions, the sphere got angry as it would surely be in the highest dimensional world.

At first, this story was not a successful one. However, after Einstein published his paper on general
relativity in 1915, physicists saw this story as a way to explain the extra fourth dimension Einstein introduced.
From his theory, the prediction of gravitational waves arose. Their detection opened up a new era in physics.
In a way, we stepped into a new dimension where we can open our ears and listen to the Universe.

Introduction

A little over a 100 years ago, Albert Einstein put his last hand to the theory of general relativity (GR).
He described how mass and spacetime are in a tight relationship where mass distorts spacetime and in turn
spacetime dictates mass how to move. GR has shaped our entire view of the Universe and it has proven
to be one of the most substantial theories in physics. Time and time again, physicists have tested, argued
and discussed GR and time and time again it has persevered. On the 14th of September 2015 yet another
confirmation emerged: the first direct observation of gravitational waves [2]. Previously, indirect observations
were already made in 1974 by Hulse and Taylor [3], whose measurements on the changes in orbital motion of
a binary pulsar were extremely consistent with the emission of gravitational waves. However, the implications
of the existence of gravitational waves extend further than just confirming Einstein’s predictions. It provides
(astro)physicists with a new, independent way of measuring known phenomena in the Universe and may even
lead to the discovery of yet unknown phenomena.

In this thesis, we are going to investigate the intriguing possibility of black holes and neutron stars pos-
sessing some net electric charge. In general, both are treated as electrically neutral, but GR does not prohibit
either to have a net electric charge. When such objects are part of a binary system, the effects of a significant
net electric charge should come forward. Specifically, the way the two objects spiral towards each other will
be determined not just by the gravitational wave radiation, but also by electromagnetic dipole radiation. As
there is currently no observational evidence for a significant net electric charge in compact binary systems,
we do assume the effects of electric charges to be small. In particular, throughout this thesis we will only
consider the contribution of electric charge up to leading order. Recently discovered gravitational wave events
will allow us to put constraints on a certain parameter linked with dipolar emission. We will assume that
this dipolar emission originates from the presence of electric charges and therefore our research question will
be:

Can we estimate upper bounds on the electric charge of binary black holes and binary neutron stars through
gravitational wave observations?

We will start off at Chapter 1 with a short introduction on gravitational waves in general, after which we
will focus our discussion onto binaries in Chapter 2. Next, we will look into possible mechanisms that allow
black holes to acquire electric charges in Chapter 3. Then, in Chapter 4, we will look at the effect of these
charges on the gravitational waveform and afterwards use gravitational wave observations to set bounds on
the electric charge of binary black hole events in Chapter 5. Thereafter, in Chapter 6, we will consider a
similar procedure, but then applied to a binary neutron star, specifically the double pulsar. In Chapter 7, we
will use the Fisher matrix formalism to estimate future bounds that can be set once the Einstein Telescope
will become active and finally, in Chapter 8, we will end with some concluding remarks.
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1 Gravitational waves and their detection

In this chapter, we will give a brief introduction on gravitational waves (GWs) and the way they are
detected. This should in no way be regarded as a full description of GWs, as some important steps and
derivations are left out in order to keep an overview. Nevertheless, the relevant terminology, equations and
concepts that are needed to follow this thesis, will be addressed. If the reader has never dealt with GWs
before, it might be useful to exploit the corresponding references in this chapter.

We will first discuss linearised gravity in Section 1.1, then we will shortly address the energy GWs carry
in Section 1.2. Next, in Section 1.3, we will write down the quadrupole formula and finally, in Section 1.4,
we will outline how GWs are detected.

1.1 Linearised gravity

The Einstein field equations (EFE), which were first written down in the theory of general relativity [4],
are hard to solve exactly due to their highly non-linear nature. Fortunately, we can study the properties of
GWs in the so-called weak-field approximation. In this approximation, we assume that far from gravitating
matter, the gravitational field is weak and we can do a linear expansion of the EFE around the flat Minkowski
space metric. Therefore we can write the metric tensor as:

gµν = ηµν + hµν , (1.1)

where ηµν is the Minkowski metric and hµν � 1 is a small metric perturbation.
The linearised EFE are gauge-invariant and this gauge freedom can be used to simplify the form of the

field equations. Through a process which we will not derive here (see e.g. [5]), the linearised field equations
in the Lorentz gauge reduce to:

�h̄µν = −16πG

c4
Tµν , (1.2)

where h̄µν = hµν − (1/2)ηµνh
α
α, � represents the d’Alembertian operator, G is the Newtonian gravitational

constant, c is the speed of light and Tµν is the stress-energy tensor. In vacuum, i.e. Tµν = 0, the linearised
field equations reduce to:

�h̄µν = 0. (1.3)

Writing out the d’Alembertian operator in full, shows that this is the classic wave equation with propagation
velocity c :

∂2h̄µν
∂t2

= c2
(
∂2h̄µν
∂x2

+
∂2h̄µν
∂y2

+
∂2h̄µν
∂z2

)
. (1.4)

As there is still some gauge freedom left in Eq. (1.2), we are going to impose another gauge condition.
Most commonly used is the transverse-traceless (TT) gauge, which ensures that the metric perturbation is
perpendicular to the direction of propagation and also traceless [5]. The TT gauge is very convenient, as
it fully fixes all the local gauge freedom. The metric perturbation that we are then left with, only contains
physical, non-gauge information about the GW radiation. When we consider a plane wave propagating in
the z-direction, the metric perturbation can be written as 1:

hTTij =

h+ h× 0
h+ −h× 0
0 0 0

 cos (ω(t− z/c)), (1.5)

where h+ and h× are the plus and cross polarization. They represent the two possible degrees of freedom a
GW has.

1Since the metric perturbation is traceless, there is no distinction anymore between h̄TT
ij and hTT

ij , moreover note that in the
TT gauge the metric perturbation only has spatial components.



1 Gravitational waves and their detection 3

1.2 Energy in gravitational waves

The question whether GWs carry energy has been up for debate in the past. It is a tricky subject, as
GWs themselves are curvatures in spacetime, yet if they carry energy they should also cause an additional
spacetime curvature. To derive what this extra curvature looks like, we would have to go beyond linear order
(at least quadratic order in hµν). As locally we can always choose a coordinate system for one point in which
the metric is just the Minkowski metric (hµν = 0) and also the first derivative of hµν is 0, we can already
say, without carrying out the explicit calculation, that there should be a an average involved [6].

The EFE can be split up in a low and high frequency part, where the high frequency part describes the
GWs and the low frequency part describes the background. We are interested in the effect on the background
and we will write the low-frequency EFE as follows [7]:

R̄µν −
1

2
ḡµνR̄ =

8πG

c4
(
T̄µν + tµν

)
, (1.6)

where the bars indicate the low-frequency part, Rµν represents the Ricci tensor, R the Ricci scalar and tµν
is an additional stress-energy tensor given by:

tµν = − c4

8πG

〈
R(2)
µν −

1

2
ḡµνR

(2)

〉
, (1.7)

where the (2) denotes the quadratic order in hµν .
This additional stress-energy tensor is the result of the additional spacetime curvature caused by the

GWs. Writing out the components of the Ricci tensor and the Ricci scalar in Eq. (1.7), this will reduce to [7]:

tµν =
c4

32πG

〈
∂µhαβ∂νh

αβ
〉
. (1.8)

Finally, this can be transformed into a more convenient expression for the GW energy passing through some
sphere S per unit time [7]:

dEGW

dt
=

c3r2

16πG

∫
S
dΩ
〈
ḣ2

+ + ḣ2
×

〉
. (1.9)

1.3 The quadrupole formula

In Eq. (1.4), we saw that the linearised field equations had wave solutions in vacuum, however, we now
want to obtain a general solution to the linearised field equations given by Eq. (1.2). By using the proper
Green’s function, the general solution outside the source in the TT gauge is given as follows [8]:

hTTij (t, ~x) =
4G

c2
Λij,kl(~̂n)

∫
V
d3~x′

1

|~x− ~x′|
Tkl(t−

|~x− ~x′|
c

, ~x′), (1.10)

where the integral is taken over a volume V containing the source, Λij,kl is the projection operator onto the

TT gauge, ~̂n is the unit vector perpendicular to the wavefront and |~x− ~x′| is the distance from the source to
the observer. For non-relativistic sources, this can be further reduced to an equation for the mass quadrupole
radiation formula, which is given by:

[hTTij (t, ~x)]quad =
2G

c2r
Λij,kl(~̂n)M̈k`(t− r/c), (1.11)

where r has taken the place of |~x− ~x′| as we are interested in hTTij at large distances from the source (where

our detectors are located) and Mk` is the mass quadrupole moment given by:

Mk` =
1

c2

∫
d3~x T 00(t, ~x)xkx`. (1.12)
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The mass quadrupole moment is the leading order term for the radiation of GWs, as there is no mono- or
dipole GW radiation in GR due to the conservation of the stress-energy tensor [8].

Without loss of generality, we can set the propagation direction to the z-direction and deduce from
Eq. (1.5) and Eq. (1.11) what the two different polarization states, h+ and h×, are in terms of the mass
quadrupole moment:

h+ =
1

r

G

c4
(M̈11 − M̈22), (1.13)

h× =
2

r

G

c4
M̈12. (1.14)

1.4 Detections of gravitational waves

The first direct observations of GWs were made with the Advanced LIGO detectors [2]. These detectors
consist of two large interferometers, one located in Livingston (Louisiana) and the other one located in Han-
ford (Washington). Due to their geographical distance, an incoherent glitch caused by seismic disturbances
at one site can be better distinguished from a coherent signal of a GW passing through both detectors. The
interferometers consist of two arms of 4 km long, perpendicular to each other. A schematic overview of the
set-up is given in Fig. 1. When an incoming laser beam passes through a beam splitter, the beam will be split
up and sent down both arms of the interferometer. At the end of those arms, there is a mirror suspended as a
pendulum which reflects the beam. The Advanced LIGO detectors (the Advanced Virgo detector located in
Italy works in the same way) are tuned in such a way that the two laser beams will rejoin in total destructive
interference. A GW passing through the detector will lengthen one arm and shorten the other, depending
on the strength of the different polarisation states and the angle of incidence on the detector. The changed
length of the arms means the laser beam will have to travel slightly longer or shorter. This changes the
interference pattern when the beams rejoin and that is what a photodiode will measure. There is a whole
range of subtleties involved in the real set-up [9], but this is the simplified overview.

Using this technique, GWs from two events, GW150914 and GW151226, were discovered in the first run
of the Advanced LIGO detectors (September 2015 - January 2016). Previous attempts to measure GWs
using laser interferometry started already in 2002 [10], but many improvements had to be made before the
detectors were sensitive enough. That is because the amount of distance that the arms are stretched, is
incredibly tiny (the strain is of the order 10−21). It is also the reason why we have only detected GWs from
sources with a very strong spacetime curvature thus far. Cosmic events that meet such requirements are
binary systems, which we will discuss in the next chapter.

Figure 1: Schematic overview of a GW detector using laser interferometry. Taken from Pitkin et al. [9]
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2 Gravitational waves from binary systems

As of today, all GW detections are from compact binary systems [11]. These systems consist of orbiting
pairs of massive and dense objects such as black holes and neutron stars. They revolve around each other
for millions of years and emit GWs while doing so. This stage in the existence of a binary is called the
inspiral. As the GWs carry away orbital energy from the binary, the orbit decays into a closer orbit with a
more rapidly changing quadrupole moment. Therefore stronger GWs are emitted and the orbit will decay
even more. This cascade of events ends with the two objects coalescing, the so-called merger. Afterwards,
there is one final stage called the ringdown. In this stage, the newly formed single black hole or neutron star
undergoes some damped oscillations as a result from the merger.

The GWs that are detected thus far are from the late stages of inspiral, the merger and the ringdown.
In these final phases of the binary’s existence, the frequency and amplitude of the GWs are high enough to
be detected by the interferometers [12]. Despite that, the signal only lasts for a short amount of time in
the sensitive bandwidth of the detector, which is why signal-processing techniques like matched filtering (see
e.g. [8]) are used to enhance the detectability of the signal.

In this chapter, we will first put the binary system in a mathematical framework in Section 2.1, then we
will discuss the stationary phase approximation in Section 2.2 and finally we will consider a formalism that
can help us model the dynamics of a binary in Section 2.3.

2.1 Signal from an inspiralling binary

In this thesis, we are going to investigate GW emission from binaries that are in the inspiral stage. To
make the equations describing these GWs explicit, we will first define all the constituents of the binary.

Consider two point particles with masses, m1 and m2. The distance between both particles is defined as
R and the distance from the binary to the observer is defined as r. The angle between the normal to the
plane of the binary and the direction of the observer is defined as ι. Furthermore, we will assume that the
masses are in a quasi-circular orbit around their common centre of mass with an orbital frequency ω. This
assumption of quasi-circular orbits finds its validity in the equation for the time derivative of the eccentricity
in binaries [13]. Due to a (1−e2)−5/2 term, the eccentricity decreases quickly over time through the emission
of GWs, especially for highly eccentric orbits. In other words, the orbit circularizes fast and will be quasi-
circular by the time the signal can be picked up by the detectors.

We place a Cartesian coordinate system in such a way that the centre of mass of the binary is at the
origin, the observer is along the z-axis and the orbital plane crosses the x-axis. A schematic overview of this
situation is made by Li [14] and depicted in Fig. 2.

Figure 2: Schematic overview of a binary with masses m1 and m2 separated by a distance R. The center of
mass is at the origin and the orbits are quasi-circular. The observer is along the z-axis and ω is the orbital
frequency. The angle between the normal to the orbital plane and the observer is ι. Taken from Li [14].
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In the situation just described, which is essentially a classic two-body problem, the position vector of both
particles is given by [15]:

~x1(t) =
m2

m1 +m2
R~̂e(t) =

µ

m1
R~̂e(t),

~x2(t) = − m1

m1 +m2
R~̂e(t) = − µ

m2
R~̂e(t),

(2.1)

where the reduced mass µ = m1m2/(m1 + m2) and the orientation vector ~̂e(t) is given by the following
expression:

~̂e(t) = (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)). (2.2)

To determine the GW signal of the presumed binary, we have to look back at the mass quadrupole moment
given by Eq. (1.12):

Mk`(t) =
1

c2

∫
d3~x T 00(t, ~x)xkx` =

∫
d3~xρ(t, ~x)xkx`, (2.3)

where we used T 00 = ρc2. The density, ρ, in the case of two point particles is defined as:

ρ(t, ~x) = m1δ
3(~x− µ

m1
R~̂e(t)) +m2δ

3(~x+
µ

m2
R~̂e(t)). (2.4)

Substituting Eq. (2.4) in Eq. (2.3), we can determine the mass quadrupole moment for the binary:

Mk`(t) =

[
m1

µ2

m2
1

R2 +m2
µ2

m2
2

R2

]
êkê` = µR2êkê`. (2.5)

Now we can make the expressions for h+, Eq. (1.13), and h×, Eq. (1.14), explicit, including some arbitrary
phase factor:

h+ =
4

r

GµR2ω2

c4
1 + cos2(ι)

2
cos (2ωtret + 2φ) , (2.6)

h× =
4

r

GµR2ω2

c4
cos ι sin (2ωtret + 2φ), (2.7)

where we assumed that the orbital frequency and the distance between the two objects does not change much
over a single orbit (adiabatic approximation), i.e. ω̇ = 0 and Ṙ = 0. Moreover, tret = t − r/c is defined as
the retarded time and comes from the dependence of M̈k` on this quantity (see Eq. (1.11)). We can clearly
see from the two polarisation states that the binary radiates GWs at twice the orbital frequency.

Assuming that the two objects are far apart, we can set the centripetal and gravitational force equal and
obtain:

m1 ((µ/m1)R)
2
ω2

(µ/m1)R
=
Gm1m2

R2
, (2.8)

ω2 = GM/R3, (2.9)

which is in fact Kepler’s third law [15]. We can use Eq. (2.9) to rewrite the expressions for the polarisation
states in a more convenient form:

h+ =
4

r

GM5/3
c ω2/3

c4
1 + cos2 ι

2
cos (2ωtret + 2φ), (2.10)

h× =
4

r

GM5/3
c ω2/3

c4
cos ι sin (2ωtret + 2φ), (2.11)

where we use the definition of the chirp mass:

Mc =
(m1m2)3/5

(m1 +m2)1/5
. (2.12)
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Now that we have written down the two polarisation states for the presumed binary, the question remains
what the detector’s response to the incoming GW looks like. For ground-based detectors, such as Advanced
LIGO, often the so-called long-wavelength approximation is used to describe this response. In this approx-
imation, it is assumed that the size of the detector is much smaller than the wavelength of the incoming
GW and therefore the size of detector can be neglected. In reality, the phase of the GW changes slightly
during the light-travel time of the laser beam in the detector [16]. In the long-wavelength approximation,
the detector’s response is just a projection of the strain in the GW-frame onto the detector [17] and can be
written as [18]:

h(t) = F+(θ, φ, ψ) h+(t) + F×(θ, φ, ψ) h×(t), (2.13)

where F+ and F× are written in terms of the spherical coordinates θ and φ and the polarization angle ψ.
Collecting all the prefactors from Eq. (2.10) and Eq. (2.11) into a general time dependent amplitude A(t),
we can write the gravitational time domain waveform from a binary as:

h(t) = A(t)

√
F 2

+ (1 + cos2(ι))
2

+ F 2
×4 cos2(ι) cos (Φ(t) + ϕ0) , (2.14)

where we have rewritten 2ωtret + φ as Φ(t) and ϕ0 is defined as:

ϕ0 = arctan

(
−F×2 cos(ι)

F+ (1 + cos2(ι))

)
. (2.15)

2.2 The stationary phase approximation

For the purpose of data analysis, it will be more convenient to work with a frequency domain waveform,
h̃(f), than with a time domain waveform, h(t). This requires us to perform a Fourier transform on the time
domain waveform found by the detector from Eq. (2.14). This calculation however, is computationally not
feasible and difficult to perform analytically in its full form. That is why we will use an approximation,
namely the stationary phase approximation.

Consider the lowest order waveform (Section 2.3 will explain about the different orders) from Eq. (2.14)
in the time domain:

h(t) = QA(t) cos (Φ(t) + φ0), (2.16)

where we define Q = Q(ι, θ, φ, ψ) as the square root from Eq. (2.14). To find the Fourier transform of
Eq. (2.16), we need to perform the following integral:

h̃(f) = Q

∫ ∞
−∞

dt A(t) cos (Φ(t) + φ0)e2πift

=
1

2
Q

∫ ∞
−∞

dt A(t)
(
ei[2πft+(Φ(t)+φ0)] + ei[2πft−(Φ(t)+φ0)]

)
.

(2.17)

The idea of the stationary phase approximation is to only evaluate the integral at the point of largest
contribution t = ts. When we look at the first term between the brackets, we can see ei[2πft+(Φ(t)+φ0)] as a
unit vector in the complex plane where 2πft+ (Φ(t) + φ0) is the angle with respect to the real axis. Due to
the fact that the phase increases with time, this angle only grows. As a matter of fact, it grows quickly and
what we have, is essentially a rapidly rotating vector whose integral effectively averages to zero. That means
we can approximate Eq. (2.17) by:

h̃(f) ' 1

2
Q

∫ ∞
−∞

dt A(t)ei(2πft−(Φ(t)+φ0)). (2.18)

The exponent we are left with does not have this effect, as there is now a minus term involved. In this case,
the angle first grows and then becomes smaller, which indicates the existence of a stationary point where the
contribution is the biggest. This observation yields us the following condition:

d

dt
[2πft− (Φ(t) + φ0)]

∣∣∣∣
t=ts

= 0, (2.19)

2πf = Φ̇(ts). (2.20)
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Next, we can expand the exponent of Eq. (2.18) around the stationary point:

2πft− (Φ(t) + φ0) = 2πfts − Φ(ts)− φ0 + 2πf(t− ts)− Φ̇(ts)(t− ts)−
1

2
Φ̈(ts)(t− ts)2 + . . . (2.21)

Because of the relation from Eq. (2.20), the fourth and fifth term on the right hand side of Eq. (2.21) cancel
out and we are able to rewrite Eq. (2.18) as follows:

h̃(f) ' 1

2
Q

∫ ∞
−∞

dt A(t)ei[2πfts−Φ(ts)−φ0− 1
2 Φ̈(ts)(t−ts)2]. (2.22)

To further help us solve this integral, we use another approximation, namely that the amplitude varies slowly
around ts, which allows us to take it outside of the integral. Moreover, we define a new variable

x =
√

Φ̈(ts)/2 (t− ts). This yields:

h̃(f) ≈ 1

2
QA(ts)e

−iφ0ei(2πfts−Φ(ts))

∫ ∞
−∞

dt e−
i
2 Φ̈(ts)(t−ts)2

≈ 1

2
QA(ts)e

−iφ0ei(2πfts−Φ(ts))

√
2

Φ̈(ts)

∫ ∞
−∞

dx e−ix
2

.

(2.23)

The integral that we are now left with, is a Gaussian integral with a standard solution:∫ ∞
−∞

dx e−ix
2

=
√
πe−iπ/4. (2.24)

Using this Gaussian, we can write down the final result of the frequency domain waveform:

h̃(f) =

√
π

2
QA(t(f))e−iφ0

√
2

Φ̈(t(f))
eiΨ(f), (2.25)

where we used that at the stationary point t = t(f) and where the phase is given by:

Ψ(f) = 2πft(f)− Φ(t(f))− π

4
. (2.26)

One may wonder how accurate the stationary phase approximation exactly is. Studies on this [19, 20] have
shown that especially for low-mass systems the approximation is very precise.

2.3 The post-Newtonian formalism

As already stated in Section 1.1, excluding some special cases, the EFE cannot be solved exactly. For
that reason, approximation techniques are needed to gain full insight of the EFE. One such a approximation
is described in Section 1.1. The post-Newtonian (PN) formalism describes an approximation which still has
the Minkowski background spacetime with a small perturbation added to it, yet there is now an additional
small parameter which is the characteristic orbital velocity v divided by the speed of light c [21]. When the
inspiral of a binary is adiabatic, that is the time scale of the inspiral is much larger than the time scale of
the orbit, the general relativistic equations of motion can be expanded in this small parameter v/c, where v
is given by Kepler’s third law:

v = (πGMfgw)1/3, (2.27)

where fgw is the GW frequency (which is twice the orbital frequency, see Eq. (2.6)). In this expansion,
Newtonian dynamics are recovered in the lowest order and general relativistic effects arise as higher order
perturbations. The post-Newtonian formalism has been successful at describing the dynamics of a binary
even at late stages of the inspiral [22]. Contrary to what might be expected at first sight, every additional
power of v/c in the expansion corresponds to half a PN order extra, i.e. (v/c)3 corresponds to 1.5PN.
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As executed in Section 2.2, the stationary phase approximation can be used to Fourier transform the time
domain waveform, which allowed us in the end to extract the phase as a function of the frequency. Starting
with a higher order time domain waveform (3.5PN is the highest order to date [23]), the stationary phase
approximation can also be applied, which is carried out in [24, 25]. This results in a Fourier transformed
frequency domain waveform given by:

h̃(f) = Af−7/6eiΨ(f), (2.28)

where the amplitude A ∝M5/6
c Q(angles)/r, and Ψ(f) is the phase up to 3.5PN given by:

Ψ(f) = 2πftc − φc −
π

4
+

3

128η
(
v
c

)5 7∑
k=0

φk

(v
c

)k
, (2.29)

where η = m1m2/(m1 +m2)2 is the dimensionless mass ratio, tc and φc are respectively the time and phase
of coalescence and the coefficients φk in the Fourier phase are given in [22]. In principle, this expansion has
infinite terms, but this is how many coefficients have been calculated currently.

In this thesis, we will be using the GW phase in the PN approximation. The presence of electric charges
in a binary will influence this phase and allow us to extract an additional PN order in Section 4.3. In the
upcoming chapter, we will first discuss whether the presence of electric charges is a realistic possibility for
black holes.
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3 Black holes and electric charge

According to the no-hair theorem, it is possible to completely characterize any black hole (BH) by three
and only three classical, externally observable parameters: its mass (M), its angular momentum (J) and its
electric charge (Q) [26]. All other information about a BH is hidden inside its event horizon, unreachable for
outside observers. A lot of time and research is spent on figuring out the mass and angular momentum of
a BH, however the third parameter, electric charge, is often neglected and therefore poorly constrained [27].
Usually the motivation behind this is the assumption that if a BH has any net electric charge, it will quickly
discharge because of the presence of a plasma around the BH. In this chapter, we will first discuss the different
metric possibilities for a BH (Section 3.1). Second, we will motivate how a BH may possess a net electric
charge and how it could acquire a steady flow of electric charges (Section 3.2). Finally, we will discuss the
consequences of a charged BH (Section 3.3).

3.1 Different metrics

There are four different metrics that correspond to BH solutions in GR [28]. The different solutions are
named after the physicist(s) that discovered them. The first and most straightforward one is the Schwarzschild
BH, where the Schwarzschild metric is a solution to GR of a point particle without angular momentum nor
electric charge. A second solution is the Kerr metric, which is the spinning version of the Schwarzschild
metric. The two solutions that include electric charge are the Reissner-Nordström metric and the Kerr-
Newman metric. The former is a BH which has no angular momentum, but does have electric charge, whilst
the latter is a generalization of the Reissner-Nordström metric with both angular momentum as well as
electric charge.

Most BHs are expected to follow the Kerr metric, as electric charge is neglected and most stars have
angular momentum which they cannot get rid off during their collapse into a BH due to conservation of
angular momentum. For an extremal BH [29], there is a so-called extremal charge, which is the maximum
amount of charge a BH can possess. This relation is given by [27]:

Qextremal = 2M
√
πε0G (1− ã2), (3.1)

where M is the mass of the BH and ã is the dimensionless spin. For the non-rotating Reissner-Nordström
metric, ã = 0, this results in an extremal charge of

Qextremal = 2
√
πε0GM = 1.7× 1020

(
M

M�

)
C, (3.2)

where M� is the mass of the sun. As we will be dealing with a dimensionless charge-to-mass ratio later on,
it is convenient to rewrite Eq. (3.2) as:

1√
ε0G

Qextremal

M
= 2
√
π ≈ 3.54491. (3.3)

This is of course only a theoretical limit, but it does provide us with a first upper bound and an insight on
the values that can possibly be obtained. In the next section, we will discuss some realistic mechanisms that
can provide a BH with electric charge.

3.2 How can black holes acquire charge?

Although in most research electric charge is considered negligible, during the last couple of years this
assumption has been revisited due to the anticipated discovery of a BH-neutron star binary through GW
observations [30–32].

A first mechanism that provides BHs with electric charge was derived by Bally and Harrison in 1978 [33]
who generalised a principle discovered by Eddington in 1926 [34]. He explained how stars should have a
small positive charge to prohibit protons and electrons in the stellar atmosphere from further separation, as
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protons are gravitationally stronger bound to a star due to a mass difference by a factor of almost 2000. Bally
and Harrison showed that any macroscopic body in the Universe is positively charged with a charge-to-mass
ratio of about 100 Coulomb per solar mass. As an example, this mechanism would constrain the charge of
the super massive BH in the center of our galaxy, Sgr A∗ (M = 4 × 106M� [35]), at ∼ 108C. For those
shocked on their beliefs of a electrically neutral universe: that is still true. The net positive charges of these
macroscopic bodies is compensated by a negatively charged, freely expanding intergalactic medium [36].

Another, perhaps more interesting mechanism that could provide a BH with a steady flow of charged
particles is the Wald charge derived by Wald in 1974 [37]. He showed that a rotating BH immersed in a
uniform magnetic field induces electric charges. Essentialy, it can be seen as a form of Faraday induction
on a huge scale, where the rotation of the BH in the magnetic field gives rise to an electric potential and
therefore an electric field. The electric potential is set between infinity and the BH horizon and it causes
the selective accretion of charged particles from the plasma around the BH (only positive or only negative
depending on the alignment of the rotation axis of the BH). The potential difference looks as follows (in
geometric units) [27]:

∆φ = φH − φ∞ =
Q− 2aMB0

2M
, (3.4)

where a = (Jc)/(GM) is the spin parameter (a = J/M in geometric units) and B0 is the external magnetic
field. We can clearly see that the accretion of charged particles continues until some equilibrium value:

Qw = 2aMB0, (3.5)

where Qw is the induced electric charge through the Wald mechanism. Using the fact that for a Kerr BH
J = Ma ≤M2 [37], the charge-to-mass ratio of a BH due to the Wald charge has an upper bound:

Qw
M

= 2B0

(
J

M

)
≤ 2B0M, (3.6)

1√
ε0G

Qw
M
≤ 2.4× 10−5

(
B0

1015G

)(
M

M�

)
, (3.7)

where in the second expression, the geometric units are converted back to units of Gauss and solar mass
and we introduced a factor 1/

√
ε0G to create a dimensionless charge-to-mass ratio. Furthermore, we can use

the conditions for a Kerr BH as the induced charge will be small enough not to distort the Kerr spacetime
metric [27, 38, 39].

The question that we must ask ourselves is whether the assumption of BHs immersed in a magnetic field
is reasonable and whether the magnetic field is big enough to have any real impact on the charge-to-mass
ratio. There are a couple of possible ways in which a magnetic field could be present. Perhaps the most
straightforward way is when a strongly magnetised neutron star is in the vicinity of a BH. This has been
investigated by e.g. [31, 32]. In the absence of a neutron star, there is research on how accretion disks could be
magnetised [40, 41], additionally numerical simulations have shown that accretion disks can support magnetic
fields up to 1015G [42]. Moreover, something we can directly observe is the Blandford-Znajek mechanism [43].
In this process, the magnetic field lines around a BH are dragged along with its rotation. These rotating field
lines induce an electromagnetic force that accelerates charged particles at relativistic speeds along the axis
of rotation which is called a relativistic jet. In essence, this is a form of magnetic braking where rotational
energy from the BH is extracted and therefore the BH rotation slows down. The characteristic time scales
we observe with the Blandford-Znajek process [42] show us that there should be magnetic fields present of
up to 1015 G.

This magnetic field condition alongside the fact that any BH is generally rotating, show that a stable
non-zero charge of a BH is credible. The BH will favour accreting charges energetically until the equilibrium
value is reached, instead of immediately discharge. In the next section, we will discuss the consequences that
this brings along.
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3.3 Consequences of a charged black hole

As mentioned, the electric charge of a BH will probably not be large enough to distort the spacetime
metric of a Kerr BH. That does not mean electric charge is irrelevant, given that there are many processes
which will be influenced by a BH that possesses electric charge. We will cover one of them in detail in this
section.

For any massive object, there is a so-called innermost stable circular orbit (ISCO) which is the smallest
circular orbit in which a test particle can stably orbit that object. Due to a charged BH the ISCO is shifted
for neutral and charged matter. In Zajaček et al. [27], this effect has been investigated for the super massive
BH Sgr A∗. For an uncharged, non-spinning Schwarzschild metric, the ISCO is located at rISCO = 3rs,
where rs = 2GM/c2 is the Schwarzschild radius [44]. When the super massive BH is positively or negatively
charged, the ISCO for positive or negative test particles will shift as shown in Fig. 3. We see that already
for a small charge of 103C, the ISCO starts to move. At the low ends, the ISCO can shift to 1.83rs. This
can be of importance when e.g. determining the spin of a BH through the position of the ISCO, as a rISCO
of 1.83rs due to electric charge, could also be caused by a non-charged BH with a prograde spin of a = 0.64.
The presence of a magnetic field would shift the ISCO even more [45], which means these two effects together
cause uncertainty on the spin determination of a BH by looking at the ISCO.

Figure 3: The radius of the ISCO rs (in Schwarzschild radii) as function of the electric charge Q (in Coulomb)
for four different cases: positively or negatively charged test particles (electrons or protons) orbiting the
positively or negatively charged super massive BH Sgr A∗. Taken from Zajaček et al. [27].

In literature, more effects can be found that are influenced by BHs possessing some net electric charge, like
charged BHs being sources of ultra high energy cosmic rays [46] or spinning charged BHs creating their own
magnetic dipole to power a BH pulsar [30]. The importance of electric charge may even be greater in unknown
or poorly understood mechanisms in the Universe. Eq. (3.7) shows that under certain circumstances, the
charge-to-mass ratio can build up to significant values. A way to set upper bounds on electric charges is
through GW analysis. In the upcoming chapters, we will first investigate in which way electric charges will
modify the gravitational waveform and subsequently we will use data from GW events to set bounds.
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4 Effect of charges on the gravitational waveform

The compact binary systems we are going to study, will be structured as described in Section 2.1. The
only difference is that we introduce the presence of electric charge here by assuming that masses m1 and
m2 have an electric charge of respectively q1 and q2. The main effect of these charges on the orbital motion
and hence the GW signal can be calculated by solving the energy balance equation to leading order in small
quantities. The energy balance equation for compact binaries in the inspiral stage, which fall under the PN
approximation, is given in the form [23]:

dE

dt
= −P, (4.1)

where E is the total energy of the binary and P is the total power (energy per unit time) radiated by the
binary. In this energy balance equation, it is assumed that the orbits are circular and the energy is globally
conserved. Specifically, the energy radiated away is equal to loss of energy of the circular orbit [47].

In this chapter, we will first calculate the total energy of the binary (Section 4.1), then the total radiated
power (Section 4.2) and finally we will determine what the altered gravitational waveform looks like (Section
4.3).

4.1 Energy

The left-hand side of Eq. (4.1) requires us to calculate the total energy of the binary. Normally, the
energy would just be the orbital energy of the system, however the presence of electric charges means that
we also have to deal with dipole energy. We can set up the following action for a compact binary system [7],
where we include an additional term for the Coulomb interaction between the two point charges separated
by a distance R [48]:

S =

∫
dt

[
µ

R
(Ṙ2 +R2φ̇2) +

GµM

R
− 1

4πε0

q1q2

R

]
, (4.2)

where µ is the reduced mass as defined before, M = m1 + m2 is the total mass of the binary and ε0 is the
electric permittivity of the vacuum. In this action integral we can clearly both see the gravitational and
electromagnetic interaction between the two bodies. From Eq. (4.2) we can extract the Lagrangian:

L =
µ

2
(Ṙ2 +R2ω2) +

GµM

R
(1 + λ), (4.3)

where we define λ = − 1
4πε0G

q1q2
µM as our dimensionless small variable and we set the time derivative of the

phase, φ̇, equal to the orbital frequency, ω. By assuming an adiabatic approximation (which is valid in the
inspiral), we can neglect Ṙ and use the Euler-Lagrange equations [15] on Eq. (4.3) to obtain an equation of
motion:

∂L

∂R
− d

dt

∂L

Ṙ
= 0, (4.4)

µR3ω2 = GµM(1 + λ). (4.5)

We can try to solve this now for R, but let us first have a look at what the solution would be without electric
charges. In the case of two point particles orbiting in circular motion, the motion would be governed by
Kepler’s third law (see Eq. (2.9)):

R0(ω) = (GM)1/3ω−2/3. (4.6)

As we assume that the electric charges only have a small effect on the motion, i.e. dEdip/dt� dEorb/dt, we
can write Eq. (4.6) with a small perturbation added to it:

R(ω) = R0(ω)(1 + δR(ω)). (4.7)

Substituting Eq. (4.7) into Eq. (4.5) and writing out Kepler’s law from Eq. (4.6) yields:

µGMω−2(1 + δR(ω))3ω2 = GµM(1 + λ),

(1 + δR(ω))3 = 1 + λ.
(4.8)



4 Effect of charges on the gravitational waveform 14

Expanding this expression and neglecting terms of δR2 and higher, allows us to solve for δR(ω):

1 + 3 δR(ω) ≈ 1 + λ,

δR(ω) ≈ 1

3
λ.

(4.9)

This means we end up with the following perturbed Kepler’s third law in the case with electric charges:

R(ω) = (GM)1/3ω−2/3(1 +
1

3
λ). (4.10)

As our Lagrangian is explicitly independent of time, we obtain the following expression for the energy [15]:

E =

(
N∑
i=1

∂L

∂q̇i
q̇i

)
− L

=
µ

2
R2ω2 − GµM

R
(1 + λ). (4.11)

To express the energy only in terms of the orbital frequency (which will be convenient later on), we fill the
perturbed Kepler law from Eq. (4.10) into Eq. (4.11), expand in small quantities and thereafter neglect terms
of λ2 and higher. We then obtain the following term for the energy:

E(ω) ≈ µ

2
(GMω)2/3(1 +

1

3
λ)2 − µ(GMω)2/3(1 + λ)(1− 1

3
λ)

≈ −1

2
µ(GMω)2/3(1 +

2

3
λ). (4.12)

4.2 Radiated power

Now that we have found the energy of the binary system, we have to determine the power radiated by the
binary which consists of two parts. There is the gravitational radiation and the electromagnetic radiation.
For both we take the first non-zero multipole term, which means - in GR - gravitational quadrupole radiation,
PGW , and electromagnetic dipole radiation, Pem. The former is equal to the GW energy per unit time from
Eq. (1.9):

PGW =
dEGW
dt

=
c3r2

16πG

∫
S
dΩ
〈
ḣ2

+ + ḣ2
×

〉
. (4.13)

In the absence of electric charges this yields the following [7]:

dEGW
dt

=
32

5

G7/3

c5
(Mcω)10/3, (4.14)

where the definition of the chirp mass from Eq. (2.12) is used. To make this equation compatible for our case,
we have to make an adjustment. In the expressions for h+ and h× from respectively Eq (2.6) and Eq. (2.7),
we see a R2 term. Due to the perturbed Kepler law from Eq. (4.10), this introduces a (1 + 1

3λ)2 correction
to both polarisation states. In Eq. (4.13), the derivatives of h+ and h× are both squared, which means that
the correction is also squared and we get an extra factor (1 + 1

3λ)4 in our expression for PGW . Writing out
the full expressions for h+ and h× and performing the integral from Eq. (4.13) will show that this is the only
correction we need to make. We end up with the following term for the gravitational radiation:

PGW =
dEGW
dt

=
32

5

G7/3

c5
(Mcω)10/3(1 +

1

3
λ)4 ≈ 32

5

G7/3

c5
(Mcω)10/3(1 +

4

3
λ), (4.15)

where once again we neglected terms of λ2 and higher.
Next, we are going to derive what the second part of the radiated power is. To calculate the electromag-

netic dipole radiation, which is the power emitted by the electromagnetic waves, we need to compute the
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electric and magnetic field. We are going to use the far-field approximation, in which the general expressions
look as follows [49]:

~E(~r, t) ' − 1

4πε0

1

c2r

∂

∂t

∫
~j⊥dV

′, (4.16)

~B(~r, t) ' 1

4πε0

1

c3r2

∂

∂t

[∫
~j⊥dV

′
]
× ~r, (4.17)

where r is the distance from the observer to the source and we define ~j, the current distribution, in the point
particle limit as follows:

~j = ρ~v = q1δ
3(~x− ~x1)~v + q2δ

3(~x− ~x2)~v. (4.18)

Using ~j and the position vectors from Eq. (2.1), we can fill in Eq. (4.16) and deduce the electric field.

~E(~r, t) ' − 1

4πε0

1

c2r
(q1~̈x1⊥ + q2~̈x2⊥)

= − 1

4πε0

1

c2r

(
q1

µ

m1
R

ˆ̈
~e⊥(t)− q2

µ

m2
R

ˆ̈
~e⊥(t)

)

=
1

4πε0

µRω2

c2r

(
q1

m1
− q2

m2

) cos(ωt)
cos(ι) sin(ωt)

0

 . (4.19)

The calculation to obtain the magnetic field is almost analogous, the only difference is the cross product with
r in the direction perpendicular to the electric field.

~B(~r, t) ' − 1

4πε0

µRω2

c3r2

(
q1

m1
− q2

m2

) cos(ωt)
cos(ι) sin(ωt)

0

×
0

0
r


= − 1

4πε0

µRω2

c3r

(
q1

m1
− q2

m2

)cos(ι) sin(ωt)
− cos(ωt)

0

 . (4.20)

Now that we have derived the electric and the magnetic field, we can calculate the Poynting vector which
describes the energy flux density (energy per unit area, per unit time) of an electromagnetic wave [48]:

~S =
1

µ0

~E × ~B, (4.21)

where µ0 is the vacuum permeability. Filling Eq. (4.19) and Eq. (4.20) into the definition of the Poynting
vector yields:

~S = − 1

µ0

1

(4πε0)2

µ2R2ω4

c5r2

(
q1

m1
− q2

m2

)2
 0

0
− cos2(ωt)− cos2(ι) sin2(ωt)

 . (4.22)

At this point we introduce a dimensionless variable which includes a relative charge difference. It is defined
as follows:

ξ2 =
1

4πε0G

(
q1

m1
− q2

m2

)2

. (4.23)

This allows us to write the Poynting vector as:

~S =
1

µ0

1

4πε0

Gµ2R2ω4

c5r2
ξ2

 0
0

cos2(ωt) + cos2(ι) sin2(ωt)

 . (4.24)
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In order to calculate the radiated power, we need to perform two more steps. First, we integrate over any
closed surface surrounding the dipole:

P =

∫
| ~S | d~a =

∫
r2 sin(ι)dιdφ | ~S |

= 2π
c2ε0
4πε0

Gµ2R2ω4

c5
ξ2

∫ π

0

[
cos2(ωt) + cos2(ι) sin2(ωt)

]
sin(ι)dι

=
1

2

Gµ2R2ω4

c3
ξ2

[
2 cos2(ωt) +

2

3
sin2(ωt)

]
, (4.25)

where we used the relation c = 1/
√
ε0µ0. Second, we take a time average of one period over Eq. (4.25) as

that is a quantity that is independent of short-term fluctuations:

Pem = 〈P 〉 =
1

2

Gµ2R2ω4

c3
ξ2

〈
2 cos2(ωt) +

2

3
sin2(ωt)

〉
=

2

3

Gµ2R2ω4

c3
ξ2. (4.26)

Using the perturbed Kepler law from Eq. (4.10), we can expand this to leading order and rewrite it into a
more convenient expression:

Pem =
2

3

Gµ2
[
(GM)2/3ω−4/3

(
1 + 1

3λ
)2]

ω4

c3
ξ2

≈ 2

3

G5/3µM5/3
c ω8/3

c3
ξ2

(
1 +

2

3
λ

)
. (4.27)

To summarize, we have found that the total radiated power sent out by the binary is composed of two parts,
the gravitational radiation from Eq. (4.13) and the electromagnetic radiation from Eq. (4.27). Added up,
this yields:

P = PGW + Pem =
32

5

G7/3

c5
(Mcω)10/3(1 +

4

3
λ) +

2

3

G5/3µM5/3
c ω8/3

c3
ξ2(1 +

2

3
λ). (4.28)

Through a redefinition of the chirp mass, we can absorb the λ terms. By settingM5/3
c → M̃5/3

c ≡M5/3
c (1 +

(2/3)λ), both in the gravitational and electromagnetic power the λ terms are absorbed in the chirp mass.
As the reduced mass µ is an independent observable from the chirp mass, we do not have the shift µ as
well. This redefinition does mean that the observed value for the chirp mass differs from the intrisic value.
However, measuring the correct value for the chirp mass is not of our interest 2. Using this redefinition, we
can write the total radiated power as:

P = PGW + Pem =
32

5

G7/3

c5
(M̃cω)10/3 +

2

3

G5/3µM̃5/3
c ω8/3

c3
ξ2. (4.29)

As we assume that the dipolar electromagnetic radiation is small compared to the quadrupolar GW radiation,
i.e. Pem � PGW , we can write the total power from Eq. (4.29) as the GW radiation with a small correction
added to it, which will be the necessary form for the total power in Section 4.3.

P = PGW (1 + κω−2/3), (4.30)

where we define the small variable κ as follows:

κ =
5

48
G−2/3c2µM̃−5/3

c ξ2. (4.31)

2Note that neglecting charge effects leads to an overestimation of the measured chirp mass which could be taken into
consideration in other research.
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4.3 Leading order modifications of the waveform phase

In essence, we are now able to fill in Eq. (4.1) and find the GW phase by integrating over the orbital
frequency. However, the resulting integral cannot be solved analytically. To circumvent this problem, a
different angle will be taken. The derivative of the GW phase with respect of the frequency yields:

dΨ

df
= 2πt(f) + 2πft′(f)− Φ̇t′(f)

= 2πt(f) + t′(f)[2πf − Φ̇] = 2πt(f),

(4.32)

where the prime denotes the derivative to the frequency and the term between the brackets is equal to zero
because of Eq. (2.20). Differentiating again, the second derivative of the phase can be written in terms of a
first derivative of the energy and the power:

d2Ψ

df2
= 2π

dt

df
= 2π

dt

dE

dE

df
= 2π

dE/df

dE/dt
= −2π

dE/df

P
, (4.33)

where we used Eq. (4.1). As the energy and the power are written in terms of the orbital frequency, we use
the relation ω = πf to rewrite Eq. (4.33):

d2Ψ

dω2
= −2

dE/dω

P
. (4.34)

For the numerator of Eq. (4.34), we take the derivative of Eq. (4.12) with respect to ω:

dE

dω
= −1

3
µ(GM)2/3ω−1/3(1 +

2

3
λ)

= −1

3
G2/3M̃c

5/3
ω−1/3,

(4.35)

where we used the redefinition of the chirp mass. We can now take advantage of writing the power as in
Eq. (4.30), since it allows us to write Eq. (4.34) in a form which is analytically integrable. Substituting
Eq. (4.35) and Eq. (4.30) into Eq. (4.34) and expanding in small quantities yields:

d2Ψ

dω2
= −2

− 1
3G

2/3M̃c
5/3
ω−1/3

PGW (1 + κω−2/3)
≈

2
3G

2/3M̃5/3
c ω−1/3(1− κω−2/3)

32
5
G7/3

c5 (M̃cω)10/3

≈ 5

48
(GM̃c)

−5/3c5ω−11/3(1− κω−2/3) =
5

48
(GM̃c)

−5/3c5ω−11/3 − 5

48
(GM̃c)

−5/3c5κω−13/3,

(4.36)

where we used Eq. (4.15) in the second step. Integrating this expression twice gives us the modified waveform
phase up to leading order in small quantities:

Ψ(ω) =
3

128
(GM̃c)

−5/3c5ω−5/3 − 3

224
(GM̃c)

−5/3c5κω−7/3 + C1ω + C2

=
3

128
(GM̃c)

−5/3c5ω−5/3 − 3

128

5

84
G−7/3µM̃−10/3

c c7ξ2ω−7/3 + C1ω + C2,

(4.37)

where C1 and C2 are constants of integration and we have written out κ with Eq. (4.31).
Since the waveform in the inspiral is modelled in the PN approximation, we rewrite the newly found phase

to the form of Eq. (2.29).

Ψ(ω) =
3

128
(GM̃ω)−5/3 M2

m1m2
c5 − 3

128

5

84
(GM̃ω)−7/3 M2

m1m2
c7ξ2 + C1ω + C2, (4.38)

Ψ(ω) =
3

128η
(
ṽ
c

)5 − 3

128η
(
ṽ
c

)7 5

84
ξ2 + 2ωtc − φc −

π

4
, (4.39)



4 Effect of charges on the gravitational waveform 18

where we used the dimensionless mass ratio η, the non-perturbed orbital velocity from Eq. (2.27) and the
fact that a redefinition of the chirp mass equals a redefinition of the total mass because of Mc = Mη3/5.
Furthermore, comparing with the PN approximation, we gave the constants of integration a value where
C1 = 2tc and C2 = −φc − π/4.

Using the relation ω = πf , we can compare Eq. (4.39) with Eq. (2.29) and one thing immediately stands
out: there is an additional term that goes like (v/c)−7. This is due to the electromagnetic dipolar emission
and named as the -1PN term 3. The corresponding coefficient is given by:

φ−2 = − 5

84
ξ2 = − 5

84

1

4πε0G

(
q1

m1
− q2

m2

)2

≤ 0. (4.40)

We arrive here at the important result that in the case of electric charges in a binary, the coefficient of the
-1PN term, φ−2, can only take on non-positive values.

One may wonder why we only end up with the -1PN and 0PN terms in the phase. This has to do with the
fact that we only include the quadrupole radiation and not higher multipole terms along with the fact that
we only deal with h up to leading order. In the data analysis from Chapter 5, we will reinstate the higher
PN orders. However, as we expect ξ2 to be small, we will only take into account the gravitational effects of
the higher PN orders and consider the electromagnetic effects just from leading order.

In the upcoming chapter, we will use the newly found relation from Eq. (4.40) to obtain bounds on the
relative charge difference of actual GW events.

3The sum from Eq. (2.29) is extended to start with k = −2.
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5 Application to selected GW signals from binary black holes

Using data from experimental observations of five binary BH GW events (GW150914, GW151226,
GW170104, GW170608, GW170814), Abbott et al. [50] derive 90% credible intervals on the corresponding
coefficient of the -1PN term. Their aim was to see how consistent the data from these observations are with
the predictions from GR. As described in [50], deviations from GR result in relative shifts of the waveform
coefficients, which for the inspiral parameters look like: φi → (1 + δφi)φi, where δφi is the relative shift and
i denotes the powers in v/c beyond leading order (where the leading order term is now (v/c)−7). Given that
-1PN term is absent in the GR phasing, the relative shift turns into an absolute deviation, i.e. δφ−2 = φ−2.
To test this parameter, they treat it as an additional, free parameter in the waveform model.

We are going to perform a statistical test that is comparable to the one carried out in [50], with one
essential difference. As derived in Section 4.3, the presence of a net electric charge in a BH binary induces a
-1PN term in the phase, δφ−2, that can only be non-positive. Therefore, when we ask ourselves whether we
can bound the charge, and thus the -1PN term, we can constrain a priori δφ−2 to non-positive values only.
This chapter will describe the consequences of using this restriction on the sign of δφ−2. We analyze the
same binary BH events as in [50] due to their good signal in the inspiral regime.

In Section 5.1, we will discuss how the data analysis for GW events exactly works, i.e. how does the
incoming data from the detector get translated into useful information about the binary BH. In Section 5.2,
we will address a computational tool that will help us with the data-analysis. Finally, in Section 5.3, we will
present the resulting bounds.

5.1 Parameter estimation

The basic goal of GW data analysis is to deduce, as accurately as possible, the real value of some
parameter, given the observed data. This is commonly called parameter estimation and for a compact binary
BH system, there is a multi-dimensional parameter called ~θ, with a total of 15 components given by [7]:

~θ =
(
m1,m2, ~S1, ~S2, α, δ, ι, ψ, dL, tc, ϕc

)
, (5.1)

where mi are the masses, ~Si the spins, α and δ are angles that determine the sky position, ι and ψ are angles
that determine the orientation of the orbital plane with respect to the line of sight, dL is the luminosity
distance and tc and ϕc are respectively the time and phase of coalescence.

Suppose we have some modelH, the hypothesis, which is a waveform picked from some family of waveforms
h(~θ, t), where the family is e.g. the PN approximation for the inspiral. We can then define the likelihood

function, p(d|H, ~θ, I), which is the probability of obtaining the data d, given some hypothesisH, the parameter

values ~θ and whatever background information I we possess. Assuming that the data contains a signal, the
so-called signal model Hs, we can split the data up in some noise contribution and some signal contribution
which allows us to write it as follows: d(t) = n(t) + h(~θ, t). Of course, we can rewrite this to obtain an

expression for the noise: n(t) = d(t) − h(~θ, t). Furthermore, we assume that the noise is stationary and
Gaussian, which allows us to write down the probability distribution for the noise realization [51, 52]:

p[n] = N e− 1
2 (n|n), (5.2)

where the square brackets denote that p[n] is a functional of n, N is a normalization factor and the inner
product in the exponent is a noise weighted inner product which is defined as follows:

(a|b) = 4R

[∫ ∞
0

df
ã∗(f) b̃(f)

Sn(f)

]
. (5.3)

Here, ã and b̃ are the Fourier transformed functions and ã∗ represents the complex conjugate. Sn(f) is the
noise spectral density which assigns the power of the noise as a function of the frequency. The form of Sn(f)
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depends on the characteristics of the detector. If we now plug into Eq. (5.2) the relation for the noise in
terms of the data and the signal, we get an expression for the likelihood:

p(d|H, ~θ, I) = N e− 1
2 (d−h(~θ)|d−h(~θ)). (5.4)

Using this likelihood function, we can compute something called the posterior density distribution (PDF),

p(~θ|d,H, I), which is the quantity we are interested in. It gives the parameter ~θ given the data, hypothesis
and background information. We can derive it through Bayes’ theorem [53]:

p(~θ|d,H, I) =
p(d|H, ~θ, I) p(~θ|H, I)

p(d|H, I)
, (5.5)

where p(~θ|H, I) is the prior distribution and p(d|H, I) is the evidence. The prior distribution describes

knowledge about the parameters ~θ within a hypothesis H before the data is analyzed. The total prior is an
multiplication of the prior for each of the parameters. Most of these are uniform distributions as there is no
reason to favour a specific parameter value. Nevertheless, some astrophysically smart choices for the intervals
can be made to speed up the calculation. Examples include the component masses, which is constrained to
[1, 100] M� as GW signals from more massive BHs are outside the range of the detector or the spins, which
are naturally limited to [0, 1]. The distance is the only non-uniform prior, since it chosen in such a way that
the prior is uniform in the volume. The evidence for some hypothesis H is a normalization constant and it
does not depend on the parameters ~θ.

In principle, we are now able to calculate the PDF using Eq. (5.5), however, due to the high dimensionality
of the parameter space and the rather complicated structure of the likelihood function, this would be a
computational nightmare [53]. The next section will explain how we solve this problem.

5.2 Nested Sampling

The nested sampling algorithm is a computational tool designed by Skilling [54] that is used to efficiently
calculate the evidence integral over a high-dimensional parameter space. As a by-product of this algorithm,
the posterior distribution is computed. Let us begin by defining the evidence integral. Rewriting Bayes’
theorem from Eq. (5.5) and integrating over ~θ, which is called marginalizing, yields the following expression:∫

dN~θ p(~θ|d,H, I)p(d|H, I) =

∫
dN~θ p(d|H, ~θ, I) p(~θ|H, I). (5.6)

As the evidence does not depend on ~θ and the posterior is normalized by definition, we obtain the following
expression for the evidence integral:

p(d|H, I) =

∫
dN~θ p(d|H, ~θ, I) p(~θ|H, I) =

∫
dN~θ L(~θ)π(~θ), (5.7)

where we define L(~θ) as the likelihood function and π(~θ) as the prior distribution. In nested sampling, the

evidence integral is computed by rewriting the above integration that depends on the set of N parameters ~θ,
in terms of a single scalar called the “prior mass” X. This scalar represents the fraction of the prior volume
with a likelihood greater than some value λ. Mathematically, we can write this down as follows:

X(λ) =

∫ ∫
...

∫
L(~θ)>λ

dX, (5.8)

where dX is an element of prior mass:
dX = π(θ)dNθ. (5.9)

So it means that the prior mass is the prior, integrated over a hypervolume in N -dimensional parameter
space, which is bounded by a hypersurface of lowest likelihood L(~θ) = λ. Using Eq. (5.8) and Eq. (5.9), we
can write the evidence integral from Eq. (5.7) in terms of the prior mass, X:

p(d|H, I) = Z =

∫ ∫
...

∫
dNθL(~θ)π(θ) =

∫
L̃(X)dX, (5.10)
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where we defined the evidence integral as Z.
The idea behind nested sampling is to construct the function L̃(X) by progressively finding locations in

parameter space with a higher likelihood and thus a smaller prior mass. The evidence, Z, from Eq. (5.10) is
approximated by:

Z '
M∑
k=1

Lk∆Xk =

M∑
k=1

Lk(Xk+1 −Xk). (5.11)

From Eq. (5.5), Eq. (5.7) and Eq. (5.11), we can deduce that in terms of the prior mass the PDF is approxi-
mated by:

p(~θ|d,H, I) ' Lk
Z

∆Xk. (5.12)

The outline of the algorithm looks as follows:

1. Sample M “live points” ~θ1, . . . , ~θM randomly from the prior π(~θ) and drop them in parameter space.

These live points have likelihoods L(~θ1), . . . , L(~θM ) and are associated with a prior mass.
We initialise with Z = 0, X0 = 1.

2. Record the live point i with lowest likelihood Li as Lk.

3. Assign a prior mass Xk to the live point i and record it as well.

4. Discard live point i and replace it with a new live point sampled from the prior with a higher likelihood
than the lowest remaining one.

5. Execute steps 2 till 4 repeatedly until some termination condition is reached.

6. When the termination condition is reached, calculate the evidence.

There are two issues in the algorithm we have not addressed yet. First of all, how do we assign a prior mass
to a live point? Nested sampling does that in a statistical way, namely the prior mass is drawn from some
distribution. Say we have just discarded the lowest likelihood point with prior mass X0 (step 4), we have
recorded the new lowest likelihood point (step 2) and we need to assign a prior mass X1 to that point (step
3). Then the probability that the surface with highest prior mass is at X = χ is the joint probability that
none of the samples have a prior mass X > χ. Since the live points are uniformly sampled from the prior
mass and therefore the prior mass is uniform in [0, 1], we can write the probability as [55]:

P (Xi < χ) =

M∏
i=1

∫ χ

0

dXi =

M∏
i=1

χ = χM . (5.13)

From this, we can deduce that the probability density that the highest prior mass of M samples has a prior
mass of χ is the derivative of the probability from Eq. (5.13), which yields:

p(χ,M) = MχM−1. (5.14)

In this way, we can assign a prior mass to a live point.
The second issue from the algorithm we have not addressed yet is the termination condition. There is not

one single consensus on this subject and we refer to Skilling’s paper [54] for a short discussion. In our analysis
we have used the termination condition ∆Z = 0.1. ∆Z is an estimate of the evidence still to be accumulated.
This quantity is determined by multiplying the highest prior mass of all current live points with the highest
likelihood present after every loop in the algorithm. Typical values for the total accumulated evidence from
good GW signals are logZ ≥ 100, which means our to-be-accumulated evidence of 0.1 is a small fraction of
the total. The choice for the specific value 0.1 is arbitrary and the ’best’ value is usually found through trial
and error.

One may wonder how fast the nested sampling algorithm works, i.e. how fast the area of largest likelihood
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is reached. To determine that, it is more convenient to work with the so-called shrinkage ratio, which is the
ratio between new and old highest prior mass, i.e. t = Xk/Xk−1. Making a similar argument as before, the
shrinkage ratio can be drawn from a distribution, leaving t with the following probability density distribution:

p(t,M) = MtM−1. (5.15)

Working with the shrinkage ratio means that we will assign a new prior mass, by drawing a shrinkage ratio
from Eq. (5.15) and multiplying by the old prior mass, i.e. Xk = tkXk−1. Starting off with X0 = 1, the live
point with the largest prior mass at the kth iteration is given by:

Xk =

k∏
j=1

tj . (5.16)

The mean and standard deviation of log(t) then go as [54]:

log(t) = (−1± 1)/M, (5.17)

which can be converted to a mean and standard deviation on Xk:

log(Xk) = (−k ±
√
k)/M. (5.18)

We see from Eq. (5.18) that the area in parameter space with highest likelihood is reached exponentially
quick and the errors decrease exponentially.

5.3 Resulting bounds on relative charge difference

By adding our constrained parameter δφ−2 as an additional 16th component to ~θ, we can use the process
of parameter estimation to obtain, with the help of nested sampling, a posterior density distribution for
δφ−2. We ran the data from the five binary BHs specified earlier and we used the codes from the LIGO
Algorithm Library [56]. The waveform model that we used is an Inspiral-Merger-Ringdown waveform model
called IMRPhenomPv2 [57–59], which is an analytical frequency domain model. The inspiral regime of that
model is the PN approximation from Section 2.3. Using LALInference, the posterior density distribution of
each of the parameters is determined. We plotted the probability distributions for δφ−2 from the 5 different
binary BHs. Moreover, we plotted a Gaussian kernel density estimation over the distribution to create a
smooth curve. The plots can be seen in Fig. 4. The red vertical lines show the 90% credible interval from
that line to 0. The values corresponding to that credible interval are listed in Table 1, where we also list the
90% upper bounds on |ξ| that are calculated using Eq. (4.40).

90% credible interval on δφ−2 90% upper bound on |ξ|
GW150914 [−0.00980516, 0] 0.405865
GW151226 [−0.00263923, 0] 0.210568
GW170104 [−0.00700976, 0] 0.343168
GW170608 [−0.00616488, 0] 0.321823
GW170814 [−0.01229191, 0] 0.454427

Table 1: 90% credible intervals on δφ−2 and 90% upper bounds on |ξ| from 5 different binary BHs. Upper
bounds on |ξ| are calculated using Eq. (4.40).
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Distribution plots on δφ−2

Figure 4: Plots of the constrained δφ−2 from the binary BH events considered. The red vertical line indicates
the 90% credible bound from that line to 0 and the green line represents the kernel density estimation. Note
that the plots from GW151226 and GW170608 already start at −0.020 for visual purposes.
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In Fig. 4, we see the probability distribution plots of all five GW events considered and their 90% credible
interval. In Bayesian statistics, a 90% credible interval means that there is a 90% probability that the
real parameter value lies within that interval, given the observed data [60]. We see that all of the events
are consistent with no relative charge difference, i.e. δφ−2 = 0. While three of the events (GW151226,
GW170104, GW170608) have their peak at zero and there seems to be no indication of a relative charge
difference, two of the events (GW150914, GW170814) do not peak at zero. At first glance, this may suggest
the presence of a relative charge difference. To further investigate this non-zero peak as well as check the
robustness of our code, we ran the data from GW150914 again, yet this time without any constraints on
δφ−2. This plot can be seen on the right of Fig. 5 alongside the distribution plot of the constrained δφ−2.

Due to the fact that there are random noise realizations, we expect the peak of the full, unconstrained
δφ−2 distribution to move back and forth. That means the non-zero peak of the full distribution does not
give us much information. If there would be a significant charge difference present in the binary, this should
come forward more clearly in the left plot of Fig. 5 as there we constrained δφ−2 to test for electric charges.
A clearly measurable charge difference would result in a distribution with no support around zero, e.g. a
distribution that peaks at −0.025 and goes to 0 at −0.010. This would imply that there is a 0% probability
that δφ−2 is 0. Comparing the left plot of Fig. 5 to the right plot, we see that the distribution for the
constrained δφ−2 closely corresponds to the negative regime of the full distribution. We can conclude that
there is no indication for any significant relative charge difference. The shifted peak we see in the constrained
δφ−2 plot is just an artefact of the noise realization that pushes the peak to negative values. The reason the
values of the left plot are higher has to do with the normalization of the area under the curve. By comparing
the full distribution plot from Fig. 5 to the distribution plot of GW150914 in [50], we can also conclude that
our code is correct. Although we did not run the data of the unconstrained δφ−2 for GW170814, we can
deduce from the plots in [50], that also for this event there is no indication for a significant charge difference.

From the 90% credible intervals, we can set bounds on the relative charge difference. Those are listed
in Table 1 and we see all bounds are from the same order of magnitude. We should keep in mind that
constraints from individual events are primarily dominated by random noise realizations [50]. In Cardoso et
al. [61], they predicted an upper bound of 0.3 on a dimensionless charge-to-mass ratio for GW150914. We see
that our upper bound from GW150914 comes close to that value. Furthermore, when we assume that only
one component of the binary is charged, we can compare our bounds with the Wald charge from Eq. (3.7)
and the extremal charge-to-mass ratio from Eq. (3.3). As the masses of these BH binaries are from the range
10 − 40M�, we see that even with an extremely strong magnetic field present, the electric charge that can
possibly be induced through the Wald mechanism does not come near the bounds found in Table 1. From
comparing with the extremal charge-to-mass ratio, we can conclude that we took the upper bound one order
of magnitude down.

Distribution plots on constrained and unconstrained δφ−2 from GW150914

Figure 5: Distribution plots for δφ−2 from GW150914. The left plot shows δφ−2 constrained to non-positive
values only and the right plot shows δφ−2 with no constraints.
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6 Bounds on charges of a binary pulsar through radio observations

Ever since their first discovery by Hulse and Taylor in 1974 [3], binary pulsars have been a subject of great
interest to physicists. They have been used to make excellent cosmic clocks and, more importantly, have
been a way to test the strong-field regime of gravitational physics. Pulsars are highly magnetised, rotating
neutron stars which emit a beam of electromagnetic radiation along the magnetic dipole axis. As there is
generally an inclination angle between the dipole axis and the rotation axis of the pulsar, the pulsar acts
as some kind of cosmic light house, emitting pulses once per period that can be detected when the beam is
directed towards the earth [62]. A particularly interesting binary pulsar is PSR J0737-3039, discovered in
2004 by Lyne et al. [63]. It is the very first and to this date only double pulsar, which is a binary with two
pulsars, that has been discovered. Due to its extremely short orbital period of 2.4 hours, this double pulsar
has been a gem for relativistic gravitational physics.

Because of the electromagnetic radiation they emit, binary pulsars can be detected through radio obser-
vations. This allows for a detection far earlier in the inspiral than binary BHs, which has consequences for
the eccentricity and the bounds as we will see later on. In Section 6.1, we will look at a formalism that can
describe the relativistic dynamics of a binary pulsar. Then, in Section 6.2, we will discuss what the effect of
electric charges are on the radiated power from a binary pulsar and finally, in Section 6.3, we will discuss the
resulting bounds of the double pulsar PSR J0737-3039.

6.1 The post-Keplerian formalism

Periodic variations in the arrival time of a pulse show that some pulsars do not just spin around their
own axis, but also orbit some common center of mass [62]. When the orbital velocity is much smaller than
the speed of light (non-relativistic system), Newtonian dynamics provide us with the correct motion of the
system. We can safely apply Kepler’s laws and characterize the orbit by five Keplerian parameters [64]: (1)
the orbital period, Pb, (2) the eccentricity, e, (3) the projected semi-major axis, ap sin ι, (4) the longitude of
periastron, ω and (5) the epoch of passage at periastron, T0.

Most binary pulsars however, experience relativistic effects due to strong gravitational fields and high
orbital velocities. Therefore relativistic corrections for those systems need to be made. These corrections can
be modelled in a theory-independent way, adopting the so-called post-Keplerian (PK) parameters. These are
purely phenomenological corrections to the non-relativistic orbit, first written down by Damour and Taylor
in 1992 [65]. The PK parameters take on the following form in GR (see e.g. [62, 66]), starting off with the
relativistic advance of the periastron:

ω̇ = 3T
2/3
�

(
Pb
2π

)−5/3
1

1− e2
(m1 +m2)2/3, (6.1)

the time dilation and gravitational redshift parameter:

γ = T
2/3
� e

(
Pb
2π

)1/3
m1(m2 + 2m1)

(m1 +m2)4/3
, (6.2)

the rate of orbital decay:

Ṗb = −192π

5
T

5/3
�

(
Pb
2π

)−5/3 (1 + 73
24e

2 + 37
96e

4
)

(1− e2)7/2

m1m2

(m1 +m2)1/3
, (6.3)

the two Shapiro delay parameters:
r = T�m2 (6.4)

and

s = T
−1/3
�

(
Pb
2π

)−1/3

x
(m1 +m2)2/3

m2
, (6.5)
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where in the above expressions m1 and m2 are the masses of the two components of the binary (in solar
masses), x = ap sin ι/c, s = sin ι and T� = GM�/c

3. The Shapiro delay parameters encompass the effect that
in GR, light is not only deflected by gravity, but also slightly delayed when passing through a gravitational
field. For a more elaborate explanation on the parameters, we refer to [62]. The beauty of this formalism
is that the PK parameters in this form only depend on precisely measurable parameters, the individual
masses of the binary and the eccentricity. As the ratio between the masses can be obtained from the Doppler
modulation [67], measuring any two PK parameters is sufficient to determine all the parameters on the right
hand side of Eqs. (6.1) to (6.5). This means that measuring three or more PK parameters will give us an
overdetermined system and the ability to test GR.

6.2 Effect of charge on orbital period

Now that we have an idea on how properties of a binary pulsar are measured, we can study what the
effect is when a binary pulsar has some net electric charge accompanied to it. From classical mechanics, we
know that there is a relation between the orbital period T and the orbital energy E, which is [15]:

T = const.× (−E)−3/2. (6.6)

In the realm of classical mechanics, there is no time derivative of the orbital period. Taking GWs into
account, this is no longer true and we can therefore differentiate Eq. (6.6) with respect to time and divide it
by Eq. (6.6) to obtain the following relation:

Ṫ

T
= −3

2

Ė

E
. (6.7)

This is the equation that was at the basis for the first indirect evidence for the existence of GWs, as the
observations on the orbital period of the Hulse-Taylor binary accurately corresponded to the orbital energy
loss, Ė, that GWs would cause.

We are going to calculate the orbital energy loss of a binary pulsar as well, however, we are not only
going to consider the gravitational radiation, but also the electromagnetic dipole radiation caused by the
imposed accelerating electric charges. We are going to neglect the energy loss from the continuous radio
pulses as they only extract orbital energy through the slight mass loss they cause (they carry away energy
and therefore mass). The situation will be similar to the binary BH system described in Section 2.1, however,
we can observe a binary pulsar already in the early stages of inspiral. This means that we have to take the
eccentricity of the orbits into account as the binary pulsar will not have had enough time to circularise their
orbits. Therefore we do not have a constant radius R as before, but a new equation for the orbit 4 [8]:

r∗(ψ) =
a(1− e2)

1 + e cosψ
, (6.8)

where a is the semimajor axis, e is the eccentricity and ψ is the true anomaly which denotes the angular
position of a body on Keplerian orbit. It is the angle measured counterclockwise from the periapsis to the
current position of the orbiting body, as seen from the focus point of the ellipse. For example, ψ = π
corresponds to the apastron.

Different from the BH binaries, we will only focus on the additional radiated power that is caused by the
electric charges. We will see later on that this is sufficient to calculate the bounds. Similar to Section 4.2, we
will calculate the electromagnetic radiated power by integrating and averaging over the Poynting vector. In
order to obtain the Poynting vector, we first need to derive the electric and magnetic field. The expressions
for those are defined as before in Eq. (4.16) and Eq. (4.17), which means we first have to set up the position

4The ∗ is added in order to prevent confusion with the r defined before.
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vectors for eccentric orbits:

~x1(ψ) =
µ

m1

a(1− e2)

1 + e cos(ψ)

 cosψ
cos ι sinψ

0

 ,

~x2(ψ) = − µ

m2

a(1− e2)

1 + e cosψ

 cosψ
cos ι sinψ

0

 .

(6.9)

To derive the electric and magnetic field, we need the second time derivative of those, which are given by:

~̈x1 = − µ

m1

GM

a2

(1 + e cosψ)2

(1− e2)2

 cosψ
cos ι sinψ

0

 ,

~̈x2 =
µ

m2

GM

a2

(1 + e cosψ)2

(1− e2)2

 cosψ
cos ι sinψ

0

 ,

(6.10)

where we used [8]:

ψ̇ =

(
GM

a3

)1/2

(1− e2)−3/2(1 + e cosψ)2. (6.11)

Analogous to Section 4.2, we can now compute the fields:

~E ' 1

4πε0

1

c2r

GMµ

a2

(
q1

m1
− q2

m2

)
(1 + e cosψ)2

(1− e2)2

 cosψ
cos ι sinψ

0

 , (6.12)

~B ' − 1

4πε0

1

c3r

GMµ

a2

(
q1

m1
− q2

m2

)
(1 + e cosψ)2

(1− e2)2

cos ι sinψ
− cosψ

0

 . (6.13)

Subsequently, the Poynting vector will be calculated according to Eq. (4.21), where we see that the dimen-
sionless variable ξ2 from Eq. (4.23) will arise again:

~S =
1

µ0

1

4πε0

1

c5r2

G3M2µ2

a4
ξ2 (1 + e cosψ)4

(1− e2)4

 0
0

cos2 ψ + cos2 ι sin2 ψ

 . (6.14)

We now integrate the absolute value of the Poynting vector over any surface surrounding the dipole (see
Eq. (4.25)), which yields:

Pdip(ψ) =
1

2

G3µ2M2(1 + e cosψ)4

c3a4(1− e2)4
ξ2(2 cos2 ψ +

2

3
sin2 ψ). (6.15)

Again, we compute the average to obtain the actual radiated power:

Pdip ≡
1

T

∫ T

0

dtP (ψ) =
ω0

2π

∫ 2π

0

dψ

ψ̇
P (ψ) = (1− e2)3/2

∫ 2π

0

dψ

2π
(1 + e cosψ)−2P (ψ), (6.16)

where we used the expression for ψ̇ from Eq. (6.11) and we used Kepler’s third law, but now for eccentric
orbits:

ω2
0 =

GM

a3
. (6.17)
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By substituting Eq. (6.15) into Eq. (6.16) and solving the integral, we obtain the following result for the
radiated power:

Pdip =
1

2

G3µ2M2

c3a4(1− e2)5/2
ξ2

∫ 2π

0

dψ

2π
(1 + e cosψ)2(2 cos2 ψ +

2

3
sin2 ψ)

=
1

2

G3µ2M2

c3a4(1− e2)5/2
ξ2

[
1

2π

π

3
(8 + 5e2)

]
=

2

3

G3µ2M2

c3a4
ξ2g(e), (6.18)

with g(e) defined as follows:

g(e) =
1

(1− e2)5/2

(
1 +

5

8
e2

)
. (6.19)

Using relation Eq. (6.17) to rewrite Eq. (6.18) yields:

Pdip =
2

3

Gµ2a2ω4
0

c3
ξ2g(e). (6.20)

From this expression, we can observe that for e = 0, g(e) becomes 1, while a turns into the radius of a circular
orbit and we get back exactly our result for the BH binary from Eq. (4.26).

To calculate to total power, we need the gravitational radiated power in the case of eccentric orbits, which
is given by (this was first derived by Peters and Mathews [13]):

PGW =
32G4µ2M3

5c5a5
f(e), (6.21)

where f(e) is defined as follows:

f(e) =
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
. (6.22)

As we assume that that the radiation due to electric charges is small compared to the GW radiation, we
write it as a small correction to the GW radiation:

Ė = PGW + Pdip =
32G4µ2M3

5c5a5
f(e) +

2

3

G3µ2M2

c3a4
ξ2g(e)

= PGW

(
1 +

10

96

ξ2(
GM
c2a

) g(e)

f(e)

)

= PGW

(
1 +

10

96
ξ2 c

2

v2

g(e)

f(e)

)
, (6.23)

where in the last step v is the characteristic orbital velocity, which is calculated using Kepler’s law in the
form of Eq. (2.27) and Eq. (6.17):

v =

√
GM

a
. (6.24)
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6.3 Resulting bound of the double pulsar PSR J0737-3039

The additional term in the total radiated power from Eq. (6.23) can be used to constrain the relative
charge difference ξ of the particular double pulsar PSR J0737-3039. To derive this bound, we parametrise
the power as in Barausse et al. [68] in their pursuit to constrain dipolar emission for alternative theories of
gravity:

ĖGW = ĖGR

[
1 +B

(
GM

r12c2

)−1
]
, (6.25)

where ĖGR is the GW power according to GR, M is the total mass of the binary, r12 is the orbital separation
and B is a theory-dependent parameter governing the strength of some dipole term. As the orbital separation
is twice the semimajor axis a, we can use Eq. (6.24) to rewrite the parameterisation as:

ĖGW = ĖGR

[
1 + 2B

c2

v2

]
. (6.26)

Comparing with Eq. (6.23) allows us to extract the component B in the case of electromagnetic dipole
radiation, as PGW = ĖGR. We obtain:

B =
5

96

g(e)

f(e)
ξ2. (6.27)

In order to pick up deviations from GR in GW data or abnormalities in general, Yunes and Pretorius
have developed the so-called Parameterized post-Einsteinian Framework [69]. This framework also allows
for measurements on how precise a GW event is purely described by GR. In further work, Yunes and
Hughes [70] have set binary pulsar constraints on the Parameterized post-Einsteinian Framework using the
accurate measurements on the PK parameters from e.g. the double pulsar [63, 64, 71]. These binary pulsar
constraints have been transformed to an upper bound on B by Barausse et al. [68]. For the double pulsar
PSR J0737-3039, this leads to an upper bound of |B| . 6× 10−8. Using Eq. (6.27), we apply this constraint
to set a bound on the relative charge difference ξ:

|ξ| = 1√
4πε0G

∣∣∣∣( q1

m1
− q2

m2

)∣∣∣∣ . 0.00108742, (6.28)

where we used the eccentricity e = 0.0877775(9) as given in Kramer et al. [64].
We see that this bound is much more stringent than the bounds we found for the BH binaries in Section 5.3.

This has to do with the detection early in the inspiral we mentioned earlier. Once detected, the binary pulsar
can be tracked over many years, which leads to very precise observations and therefore a tighter bound. To
give an idea on the scale of such a charge-to-mass ratio, we assume for simplicity that only the heaviest
pulsar of the two (m1 = 1.3381M� [64]) is charged. Rewriting Eq. (6.28) and filling in m1, ε0, G, leads to
q1 = 2.49398 × 1017C. As such large values of charge may still not be very imaginable, we ask the reader
to visualise the following situation. Suppose every human on this planet got their hands on the new Tesla
model S electric car. One day, everyone is going to drive that car from fully charged until fully discharged.
Besides the hazard of children behind the wheel and enormous traffic jams, the amount of charge that we
constrained on the double pulsar is comparable to the amount of charge that would run through all those
car batteries. 41 times.
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7 Projected bounds for the future Einstein Telescope

In anticipation of a completely operational Einstein telescope [72], we are going to estimate projected
bounds on the relative electric charge difference of BH binaries. In order to achieve those bounds, we adopt
the Fisher matrix formalism which allows for a quick estimation on the measurement uncertainty of a given
parameter. This formalism is frequently used in the field of GW analysis as a first approximation tool to test
the accuracy of parameter estimation [73].

It should be pointed out straight away that the Fisher matrix formalism has its limitations [74]. On top
of that, we will not even use it in its full potential, e.g. we will only include the inspiral waveform model (PN
approximation) instead of inspiral-merger-ringdown waveform models and we will not account for multiple
detectors with different orientations. All these shortcomings are the reason why we will only use the Fisher
matrix formalism as a rough estimate. One notorious weakness of the Fisher matrix formalism we will point
out here, is bad estimates at a low signal-to-noise ratio (SNR). This can, for example, be seen in Fig. 2 of [74]
where Vallisneri plots a so-called mismatch ratio, which is the ratio between the linearised approximation of
the Fisher matrix formalism and the real waveform model. Although we can not directly compare our case
to the plot from Vallisneri due to different masses and parameters, we can clearly see that a higher SNR
results in higher accuracy. The Einstein telescope, which classifies as a so-called third generation detector, is
expected to have a 10 times greater SNR than Advanced LIGO for the same events [75]. This gives us some
faith that the Fisher matrix formalism provides reasonably good estimates for the Einstein Telescope. We
will be testing 5 parameters, (tc, φc,Mc, η, ξ), where our parameter of interest is ξ. In Section 7.1, we will
derive the Fisher Information Matrix and afterwards, in Section 7.2, we will estimate the projected bounds
on our dimensionless charge difference parameter.

7.1 Derivation Fisher Information Matrix

The starting point of the derivation lies at the expression for the Gaussian likelihood function we derived
earlier in Eq. (5.4). When we assume an uniform prior distribution, otherwise called a ’flat prior’, i.e.

p(~θ|H, I) is constant, we can use Bayes’ theorem from Eq. (5.5) to write the following 5:

p(~θ|d,H, I) ∝ p(d|~θ,H, I) = N e− 1
2 (d−h(~θ)|d−h(~θ)). (7.1)

In general, ~θ gives us a probability distribution for each parameter that peaks at some point. We define
this point as the point of maximum likelihood and it is associated with a value θML. In the Fisher matrix
formalism, the assumption is made that this value is equal to real value of the parameter. Usually, this is
not true due to noise realizations that cause an offset. Nevertheless, we use this assumption and write ~θ as
follows:

~θ = ~θML + δ~θ, (7.2)

where δ~θ is some deviation from the maximum likelihood. Next, we are going to use this relation and
substitute it into Eq. (7.1). As there does not exist such a thing as a probability distribution for a single

point, the probability distribution will just be for δ~θ and given by (we will drop the factors behind the vertical
bar; these will be implied from now on):

p(δ~θ) = N ′e− 1
2 (d−h(~θ) | d−h(~θ)) = e−

1
2 (d | d)+(d | h(~θ))− 1

2 (h(~θ | h(~θ)), (7.3)

where N ′ is a normalization factor. Taking the logarithm on both sides yields:

log p(δ~θ) = (d | h(~θ))− 1

2
(h(~θ) | h(~θ)) + const. , (7.4)

where we added (d|d) to the constant term as it is not dependent on δ~θ. To obtain a workable expression for

p(δ~θ), we need to expand the signal, h(~θ), up to second order around the maximum likelihood values:

h(~θ) = h(~θML) +
∂h

∂θi

∣∣∣∣
ML

δθi +
1

2

∂2h

∂θi∂θj

∣∣∣∣
ML

δθiδθj , (7.5)

5Remember that the inner product in the exponent is actually the noise weighted inner product defined in Eq. (5.3).
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where we use the Einstein summation convention. When we substitute the expansion from Eq. (7.5) into

Eq. (7.4), we obtain (the dependency of h on ~θ is implied):

log p(δ~θ) = (d | h)− 1

2
(h | h) + const.

= (d | h)|ML +

(
d | ∂h

∂θi

) ∣∣∣∣∣
ML

δθi +
1

2

(
d | ∂2h

∂θi∂θj

) ∣∣∣∣∣
ML

δθiδθj − 1

2
(h | h)|ML

−
(
h | ∂h

∂θi

) ∣∣∣∣∣
ML

δθi − 1

2

(
h | ∂2h

∂θi∂θj

) ∣∣∣∣∣
ML

δθiδθj − 1

2

(
∂h

∂θi
| ∂h
∂θj

) ∣∣∣∣∣
ML

δθiδθj + const. (7.6)

To simplify this term, we add all terms independent of δ~θ to the constant term. Moreover, taking the
derivative of Eq. (7.4) with respect to θi at the point of maximum likelihood, yields the following condition:

∂

∂θi

(
log p(δ~θ)

) ∣∣∣
ML

= 0 =

(
d | ∂h

∂θi

) ∣∣∣∣∣
ML

−
(
h | ∂h

∂θi

) ∣∣∣∣∣
ML

. (7.7)

This condition helps us to simplify Eq. (7.6) further:

log p(δ~θ) = (d | h)− 1

2
(h | h) + const.

=
1

2

(
d | ∂2h

∂θi∂θj

) ∣∣∣∣∣
ML

δθiδθj − 1

2

(
h | ∂2h

∂θi∂θj

) ∣∣∣∣∣
ML

δθiδθj − 1

2

(
∂h

∂θi
| ∂h
∂θj

) ∣∣∣∣∣
ML

δθiδθj + const.

=
1

2

(
n | ∂2h

∂θi∂θj

) ∣∣∣∣∣
ML

δθiδθj − 1

2

(
∂h

∂θi
| ∂h
∂θj

) ∣∣∣∣∣
ML

δθiδθj + const. , (7.8)

where we used the relation d = n+ h(~θ).
The two terms from Eq. (7.8) that we are now left with, do not have a similar contribution to the

probability distribution. In order to prove that, we should take a look at how these two noise-weighted inner
products from Eq. (7.8) compare to the SNR. The SNR is defined as follows [22]:

SNR2 = 4

∫ ∞
0

df
|h̃(f)|2

Sh(f)
. (7.9)

Filling the term for h̃(f) from Eq. (2.28) into Eq. (7.9), we see that eiΨ falls out due to the absolute square.
Furthermore, the squared amplitude A2 can be taken outside of the integral as it is independent of f 6.
The definite integral that remains, will just produce a value which means the SNR is proportional to A, i.e.
SNR ∝ A. We can use this proportionality, to link both terms from Eq. (7.8) to the SNR. Writing out the
noise-weighted inner product for the first term, we see that, following the same argument as before, the first
term is proportional to A and thus proportional to the SNR. The second term however, is proportional to
A2 and thus to SNR2. To detect a GW, a SNR of at least 8 is required, but higher SNR are preferable.
Therefore the second term in Eq. (7.8) is dominant (especially at high SNR) and we will allow ourselves to
neglect the first term. As a result of that, we can write the probability distribution from Eq. (7.3) in the
following way:

p(δ~θ) = N ′′e− 1
2 Γijδθiδθj , (7.10)

where N ′′ is the appropriate normalization constant and we define the Fisher Information Matrix as:

Γij =

(
∂h

∂θi
| ∂h
∂θj

) ∣∣∣
ML

. (7.11)

6Recall from Sec. 2.3 that A ∝M5/6
c Q(angles)/r.
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From Eq. (7.10), we see that the deviations from maximum likelihood follow a Gaussian distribution and

we can look for the 1-sigma spread of δ~θ. When we set i = j and compare Eq. (7.10) to a normal Gaussian
distribution, it is evident that the variance is equal to the diagonal of the inverse Fisher Information Matrix,
i.e. (σi)2 = (Γii)−1. In general, the inverse of the Fisher Information Matrix is equal to the variance-
covariance matrix, i.e. Σij = (Γij)−1 [73]. As we are not interested in the covariance between parameters,
we only have to focus on the diagonal of the variance-covariance matrix. The 1-sigma error is then given by:

σi =
√

Σii. (7.12)

7.2 Projected bounds

Using the Fisher matrix formalism, we can calculate the 1-sigma error for any given parameter. We assume
that there is no relative charge difference, i.e. our variable ξ = 0, and compute the Fisher Information Matrix
using Mathematica. We do this for both Advanced LIGO and Einstein Telescope7 for comparison reasons.
The results are shown in Table 2. We rescaled the 1-sigma error (68%) to a 90% bound, so we can compare
our results with the bounds found in Section 5.3. Moreover, for the Advanced LIGO case, we corrected for
the actual SNR that was found by the Advanced LIGO detectors [11].

68% |ξ| AL 90% |ξ| AL 68% |ξ| ET 90% |ξ| ET

GW150914 0.154412 0.204368 0.00535768 0.00709105
GW151226 0.0446890 0.0591473 0.00189595 0.00250936
GW170104 0.229230 0.303392 0.0106596 0.0141083
GW170608 0.0290295 0.0384213 0.00272670 0.00360887
GW170814 0.148469 0.196503 0.00529081 0.00700254

Table 2: Table of the values found for the 1-sigma and 90% bounds for Advanced LIGO and Einstein Telescope
using the Fisher matrix formalism. The events used are the same as Section 5.3. AL = Advanced LIGO,
ET = Einstein Telescope.

Comparing the results for the 90% bound of Advanced LIGO from Table 2 with the results found in
Section 5.3, we see that the Fisher formalism produces reasonably good results. For three out of five events,
we achieve the right order of magnitude and for the other two we are one order of magnitude off. However,
as argued, we cannot attach too much weight to these results. The results for Einstein Telescope are more
trustworthy due to the expected high SNR and we see that bounds are expected to drop one or two orders of
magnitude compared to Table 1. Furthermore, the bounds reach the same order of magnitude as the bound
on the double pulsar from Eq. (6.28), which is remarkable since the double pulsar has been tracked for over
a decade.

The projected Einstein Telescope bounds have reached such a low value that we can compare the projected
bounds to the Wald charge from Section 3.2. When we assume for simplicity only one of the two components
of a binary accumulates charges, the charge-to-mass ratio due to Wald charge from e.g. GW150914 can be
calculated using Eq. (3.7). Taking into account the 1/

√
4π, assuming a magnetic field of 1015G and using the

mass of the heaviest BH of GW150914 (35.6M�), we obtain a value of (1/
√

4πε0G)Q/M ≈ 0.0000687139.
Although this is still two orders of magnitude below the projected bound for Einstein telescope, further
improvements on the telescope or more extreme cosmic events may enable us to observe Wald charge through
GW observations.

7Many thanks to Quint Lafleur and Gideon Koekoek for providing me with the sensitivity curve for respectively Advanced
LIGO and Einstein Telescope.
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8 Conclusions

In this thesis, we have presented a way to constrain the relative electric charge difference of binary BHs and
binary neutron stars through GW observations. Both BHs and neutron stars are expected to be electrically
neutral to good approximation, however, we have seen that this does not a priori has to be true for all
binaries.

We studied the dominant effect of electric charges on the gravitational waveform by deriving what the
additional energy and radiated power terms are up to leading order in small quantities. We showed that
there arises an extra term in the phase, which compared to the PN approximation, is a -1PN term. This
term includes a relative electric charge difference between the two components of the binary and can only
take on non-positive values.

Exploiting this new feature of the -1PN term, we used data from five different binary BH GW events to
set upper bounds on the relative charge difference. We added the constrained coefficient of the -1PN term
to the parameter space and used the process of parameter estimation to obtain probability distributions on
δφ−2 for the five events considered. From these distributions, we concluded that for all of the events there is
no indication for a significant relative charge difference. We placed 90% credible intervals on the probability
distributions and derived 90% upper bounds on the dimensionless relative charge difference. All of these
bounds are in the order of 10−1, which means we took the bounds one order of magnitude down from the
theoretical limit.

We proceeded by deriving once again what the influence of electric charges on the orbital motion is,
but now in the case of a binary pulsar. We calculated the additional radiated power and we saw that the
same dimensionless relative charge difference arises. Through radio observations on the double pulsar PSR
J0737-3039, we derived an upper bound on this parameter, which is in the order of 10−3. We concluded that
this bound is more stringent than the bounds on the binary BHs because the double pulsar has been tracked
and measured for over a decade.

Finally, we employed the Fisher matrix formalism to estimate projected bounds that can be obtained
once the Einstein Telescope becomes active. We saw that bounds are expected to drop one or two orders of
magnitude, which is still two orders of magnitude below realistic values of Wald charge the considered binary
BHs would induce.

Coming back to our research question, we see that it is possible to obtain an upper bound on a quantity
that describes the electric charge difference of a binary through GW observations. The relative charge
difference provides us with information on the properties of a binary. It can be used to study differences
between the two components of the binary, e.g. differences in magnetic field. However, information from a
relative charge difference is limited to the binary as a whole and we have used the assumption that only one
of the components in the binary is charged multiple times in this work. More information could be obtained
by constraining the electric charge of the individual components of the binary. We did not manage to obtain
such bounds but this may be interesting for future work. We expect that this can be realised by including the
merger and ringdown in the calculations. The ringdown GWs should contain information about the newly
formed single BH (or neutron star), which would possibly lead to an upper bound on the total charge-to-total
mass ratio. This ratio can be used in combination with the relative charge difference found in this work to
obtain an upper bound on the electric charges of the individual components of a binary.

We are only at the start of an exciting era for gravitational wave physics. Many years of theoretical
research and improvements on detectors have led us to the point that we are now able to detect these waves
and extract physics from them. Continuing this effort will allow physicists to discover many more events and
we hope that, among other things, more stringent bounds can be placed on the electric charges of binary
systems.

I bet the square inside Edwin A. Abbott’s head would never have thought how much there is lurking
inside a new dimension.
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