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Abstract

On top of longshore-parallel bars, which often occur in sandy beach systems, 3D structures often form.
Knowledge about the dynamics of barred sandy beach systems can be used for the preservation of coast
and decrease the number of incidents in the nearshore area due to currents. Different model studies have
investigated the response to different constant wave forcing (change in angle of incidence, wave height
and wave period) as well as the stability of a double-barred beach system. A study on the influence of
time-varying wave angles on a double-barred beach system is still missing. This study aims to find the
response of a double-barred beach system to sinusoidally time-varying wave angles at the offshore bound-
ary, for a mean wave angle normal to the coast and for non-zero mean wave angles. The non-linear model
Morfo55, which solves the coupling between currents, wave, sediment transport and bottom evolution, is
used to study the morphological evolution of the double-barred system. The angle of incidence at the
offshore boundary is sinusoidally varied for different periods and amplitudes, including a reference case
in which the period was set to 0 days (constant wave forcing). Simulations were done for both the case
with a mean normal wave angle and a non-zero mean wave angle, leading to a better understanding of a
double-barred system.
The reference cases, with constant wave conditions, show bar growth on the inner and outer bar for a
mean normal angle. For the case with an oblique mean angle, there was no bar growth on the outer
bar, only on the inner bar. Both reference cases have a larger mean bar growth in the inner domain
than for time-varying wave angles. In the outer domain, the bar growth is approximately the same for
time-varying angles and for constant angles, provided that bars form.
The root-mean square bar height, ||h|| showed oscillating behaviour with a response period, T||h||, and a
standard deviation with respect to the mean bar height, σ||h||. An increase in period of the time-varying
waves resulted in an increase of the response period T||h|| as T||h|| = 1

2
Tθ for cases with a normal mean

angle in both the inner and outer domain. The standard deviation increase for increasing Tθ with a peak
for Tθ = 15 days. For the cases with an oblique mean angle, two dominant response periods were found in
the inner domain, T||h|| = 1

2
Tθ,Tθ, and one in the outer domain, T||h|| = Tθ. In these cases σ||h|| increases

for an increase in Tθ.
An increase in the amplitude of the angles, Aθ, resulted in a decrease in the mean bar growth and an
increase in the response time, t||h|| of the outer bars. The response time of the inner bars did not change.
Both results were enhanced by an oblique mean wave angle instead of a normal mean wave angle.

Front page: Double wave breaking in the nearshore area of a sandy beach in the Gold Coast, Australia
(https://www.mynrma.com.au). The breaking of waves a few tens of meters from the coastline shows an
interrupted pattern in the longshore direction.
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1 INTRODUCTION 1

1 Introduction

1.1 General setting and relevance

Beaches and water play a key role in life on earth. They are a source of life and food and have ecological and
economical value. Water acts as a natural barrier used for protection against nature and humans, but also as
a means to transport people and cargo over large distances. Especially in our current economic system, water
also plays a large role in providing energy. Most of the Earth’s water, 96.5%, is contained in seas and oceans
(Gleick 1993). Therefore, it is no wonder that half of the population lives in close proximity, less than 100
km, to the coast (Davis Jr. and Fitzgerald 2004). Even though only 0.05% of the landmass surface consists
of coastal zone, the 440,000 km of coastline is a considerable amount. These 440,000 km comprise a wide
variety of different coastal forms. Some examples are swamp deltas, estuaries, coral reefs, rocky coasts, fjords
and sand beaches (Marshak 1955). Recent observational studies have shown that, with the exception of icy
coast, 31% of the total coastline consists of sandy beaches (Luijendijk et al. 2018). It are these beaches that
will be considered in this thesis. Sandy beaches are a natural barrier between storm waves and the populated
coastal area. They also have the ability to adapt to changes in the sea level. Due to many forms of erosion,
sandy beaches are constantly changing. These coastal areas can be dangerous places and pose a danger for
swimmers and sailors. Research has shown that the deaths by very strong currents in the coastal area cause
more deaths on a yearly basis, 21 fatalities, than bush fires, floods, and cyclones together (Brander et al.
2013). The reported fatalities in the USA lie at 35 on average each year (Gensini and Ashley 2010).As such,
it is necessary to obtain a deeper understanding of sandy beaches and their respective dangers in order to
accurately inform both visitors and residents of the coastal area.

The coastal area can be divided in different zones, based on either morphological features or wave conditions
(see Figure 1). Based on morphology, the backshore is the landward boundary of the coastal zone. It consists
of only sediment and sometimes some vegetation. Sea water never reaches this part under normal conditions.
The second zone is called the foreshore zone or intertidal zone. This is the part of the beach between the
coastline at low and high tide. The nearshore zone, also called littoral zone, is the area starting at the fore-
shore zone and ending at the point where bottom sediment transport ceases. The offshore zone starts where
the nearshore zone ends. At this point, the bottom of the sea is no longer influenced by waves (Marshak
1955). This depth can vary between the 10 and 30 meters depending on the wave conditions (A. Short and
Woodroffe 2009).

NearshoreBackshore Offshore

Swash
zone Surf zone Shoaling

zone

Sealevel
at rest

Foreshore

shoreline
low tide

shoreline
high tide

Figure 1: A sketch of a beach profile with the different zones. The bottom is indicated with the solid thick
black line. The division of different zones is indicated with vertical dashed lines. Based on Haslett 2000
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Different wave conditions give the possibility to subdivide the nearshore region in a swash zone, a surfer zone
or breaker zone and the shoaling zone. When waves move in the direction of a coast, their height, wavelength
and angle of direction change due to variations in depth. The influence of the depth becomes substantial
when the water depth is approximately 0.5 of the wavelength of the waves, called the wave base (Groen and
Dorrestein 1976, Marshak 1955). At a lower depth, the wave movement of the water parcels is less than 4%
of that of the water at the surface. At the point where the wave base touches the bottom of the sea, the
shoaling zone begins. The zone where waves start to break is called the breaker zone or surf zone. After
breaking, a surge of water is sent onto the beach in the swash zone. This thesis focusses on the littoral zone,
in particular the surf zone.

Observations have shown that a recurring morphological phenomenon in the surf zone of sandy beach areas
are sand bars in the near-shore region. These sandbars can be divided into two categories based on the
beaches where they are formed. Beaches with tidal ranges are referred to as ridge and runnel beaches and
non-tidal beaches are called barred beaches (King and Williams 2020). The latter is of interest in this thesis.
When we know how sandbars work, we might be able to prevent or reduce erosion more effectively, as has
been done by the Dutch government in cooperation with scientist, in the form of shore face nourishment by
a sand engine (Stive et al. 2013).

Barred beaches display two distinct bar patterns (Wright and A. D. Short 1984). The first are shore-parallel,
uniform, straight sandbars as presented in the upper panel of Figure 4, from now on referred to as uniform
bars. These uniform, parallel bars can form with more than one at a time, but rarely exceed four. The sec-
ond bar patterns are called crescentic bars, presented in Figure 2 and the lower panel of Figure 4, hereafter
referred to as bars. Crescentic bars show a periodically alternating deeper part, bays or troughs formed by
rip channels and shallow parts, the horns or shoals. An example of a crescentic bar be seen in Figure 2, where
the darker colours indicate the deeper parts. The distance between the horns and bays is often regular in the
longshore direction (Price et al. 2014). However, this does not have to be the case. The horns and bays can
change position and by doing so, a bay/horn can disappear and two horns/bays can become one, this process
is called merging. This process can also occur in reverse, one horn/bay can split in two smaller horns/bays,

Figure 2: A crescentic sandbar with an undulating pattern of deeper bays and shallow horns, based on data
from Almar et al. (2010), figure made by Price et al. (2014). The darker the colour, the deeper the area. The
light blue area are the shallow parts and the yellow part represents the sandy beach.
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this process is called splitting of bars. The main interest of this study is the response of a double-barred
system to different wave conditions.

When waves arrive at the coast, they push the water up onto the beach, causing the water level to rise. A net
sediment transport in the direction of the coast is part of this process. When the component perpendicular
to the coast can not proceed any further up the beach, it flows back to the sea in a flow perpendicular to the
coast, undertow, during storm conditions or it flows side ways under normal conditions. When two currents
parallel to the coast collide, they form one current that flows back to the sea. The retreating water will take
the path of least effort. When there are small differences in the depth, a longshore pressure gradient exists
from shallow areas to deeper parts. The seaward transport of water happens in currents in these deeper
areas. These are called rip currents and cause rip channels (i.e. the bays in the crescentic bars) to form.
The sediment transported by the rip currents is deposited in seaward direction at so called rip heads. The
beach system of the crescentic bars is often referred to as rip channel systems (Ribas et al. 2015). These rip
currents can pose a danger to swimmers (Marshak 1955).

The transport of sediment and the characteristics of of currents in a barred beach system depend on the
wave conditions (wave height, angle of incidence, period) and morphological conditions (bar heights, position
of bars). For higher waves, the wavebase reaches larger depths and can thus cause more sediment to be
transported. The angle of incidence has an influence on the strength of the different currents that develop.
When bars lie deeper, the influence of wave breaking over these bars is smaller and sediment transport is less
than for higher bars. So the wave height and depth of the bars have a similar effect on the system.

When the waves enter the coastal area, their wavevectors do not have to be normal to the coast. The wavevec-
tord often have an angle with respect to a line normal to the coast. This angle decreases due to a process
called refraction. The part of the wavcecrest closest to the coast starts to feel the influence of the bottom
first and this part of the wave slows down. The part of the wave further away from the coast continues with
its initial speed until this part also starts to slow down due to an elevation of the bottom. As a result, the
wavevector becomes curved. This process does not totally diminish the angle, thus the wavevector has a
component normal to the coast and one parallel to the coast (Haslett 2000). The component of the waves
parallel to the coastline result in a current parallel to the coast, called longshore current. This current is
able to transport sediment in the longshore direction, the longshore drift. This process can be seen in Figure 3.

Figure 3: The effect of refraction is presented (the curved wavevector k). The net current in the longshore
direction is given by the arrows parallel to the coast with a velocity v (Ribas et al. 2015).
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1.2 Previous research

Different kinds of research have already been done on the subject of barred beaches system. They can be
divided in groups based on their approach of which two are discussed in this section. Some articles are based
on long-term observations of different coasts, while others focus on non-linear numerical models.

1.2.1 Observations

Observations done by Lippmann and Holman (1990) show that crescentic bar patterns vanish during storm
conditions when the wave energy is high, leaving only the shore-parallel uniform bars. When the storm
ceases, this configuration turns out to be unstable. After about two days, crescentic bar patterns start to
form again on top of the existing shore-parallel uniform bars. This takes them typically 5-16 days. These
crescentic bars are tend to become stable stable under moderate wave conditions. Figure 4 shows the two
states for high energy conditions and low energy conditions in the upper and lower panel respectively. The
red lines are plotted over the lighter areas in the figure, indicating the shallow parts of the coastal area. The
two figurations in this figure can merge from one two another, depending on the wave conditions.

The crescentic bars are constantly changing in both space and time, even when the characteristics of the
incoming waves (height, period, angle of incidence) are almost constant. Van Enckevort et al. (2004) analysed
long-term observation of single-barred beach systems at different sites. The researchers found variations in
the wavelength and amplitude of crescentic bars in both space and time. The largest spatial difference in
the wavelength between the largest and smallest crescentic bar was approximately a factor 2. The temporal

Figure 4: Time exposure of video images during 10 minutes of the coastal area (Duck, North Carolina, USA).
The breaking of waves happens above shallow areas, indicated by the white of the foam of breaking waves.
The red lines indicate the breaker lines. The two panels show the configuration of the beach system at
different moments in time. A straight longshore parallel uniform bar configuration is presented in the upper
panel of the figure. The lower panel shows a crescentic bar pattern. Figure from Garnier et al. (2013)
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differences of the bars are caused by the system to become uniform in the longshore direction by splitting of
the largest bars and merging of the smallest.

A study of a double-barred system done by Castelle et al. (2007) shows that the growth of bars in the outer
domain is strongly coupled to the significant wave height Hs at the offshore boundary. The bars in the outer
domain remained inactive for Hs < 3 m. Ruessink et al. (2007) observed the response of a double-barred
beach system in the Gold Coast (Australia). Their observations show that the three dimensional patterns on
top of the uniform shore-parallel bars vanish during storm conditions, which is similar to what was found by
Lippmann and Holman (1990). After the storm event, the inner and outer bars were uncoupled. However,
after some time, three-dimensional bars formed in the areas of both the inner bar and outer bar. These
patterns were coupled, i.e. the growth of the bars in the inner domain are influenced by the growth of the
bars in the outer domain.

A model to describe the development of different types of coupling between the inner and outer bars, based
on observations, has been proposed by Price et al. (2014). This model is based on the relative position of
the horns and bays on the inner and outer bar, the energy of the waves and the 3D structure of the inner
bar (see Figure 5. When the horns and bays on the inner and outer bar are situated at the same longshore
location, than the bars are in-phase (I). When the alongshore location of the horns (bays) on the inner bar
coincides with the location of the bays (horns) on the outer bar, than the bars are out-of-phase (O). Low
energy conditions are called downstate (d) and high energy conditions are called upstate (u). The inner
bar displayed two different configurations, one where the inner bar was a shore-attached terrace (t) and one
where rip channels occurred (r). For the low energy wave conditions (downstate), 4 different coupling types
were found, so all combination of the in-phase out-of-phase and terraced or channelled configurations were
found. For the high energy wave conditions, only one coupling was found, an out-of-phase terraced coupling.
For oblique waves the bar growth was lower and for large angles (θ > 30o) the bars straightened and no
alongshore variability in depth was found on the inner bar

1.2.2 Models

In addition to the research that focused on analysis and interpretation of observations, models have been
developed to simulate a barred beach system. Most of this research focussed on a single-barred beach system.
Single-barred beach systems tend to become stable in space and time under constant wave forcing. A stability
analysis for waves with a normal and oblique incidence was done by Garnier et al. (2006). The researchers
found that gravitational down-slope sediment transport is the driving force behind the stop in growth of the
amplitudes of the bar.

The response of a single-barred system to different significant wave height, Hs, and period, T , has been
modelled by Castelle and Ruessink (2011). They first performed simulations with different time-invariant
wave height, Hs, period, T , and wave angle at the offshore boundary, θ0 for mean wave incidence both normal
to the coast and non-normal to the coast. For larger Hs and T , the growth rate of the bar increased. In
increase in the angle θ0 resulted in an increase in the alongshore spacing between bars. Next, they considered
time-variable Hs and T and a zero mean angle of incidence, the same observations were done. For large Hs

and T , the growth rate was higher. The overall growth rate decreased with an increase of the amplitude with
which the wave height and period changed. The distance in the longshore direction between two sequential
bars are the same for different amplitudes. When they considered periodically varying angles of wave inci-
dence with a mean normal incidence, they observed crescentic pattern and splitting and merging of bars for
low amplitudes. For larger amplitudes in the variation of the angle (Aθ = 6o), crescentic bars still formed,
but no merging or splitting took place. When increasing the amplitude even further (Aθ = 8o) the bars
straightened and no crescentic patterns formed on the uniform bar.

A similar study has been done by Rutten et al. (2019) for a curved coast, in contrast to the previously men-
tioned studies. Rutten et al. (2019) considered both time invariant and time-varying angles and the influence
of the curvature of the coast on the formation of patterns on the uniform bar. The growth rate appeared



1 INTRODUCTION 6

Figure 5: A model for different coupling types, based on observations. The coupling types have been named
based on some characteristics: In-phase or out-of-phase (I or O), downstate or upstate (d or u), terraced or
with rips (t or r). The longshore direction is given on the horizontal axis and the cross-shore direction on
the vertical axis. Figure from Price et al. (2014)

to be largest for near-normal angles. An increase in the curvature of the coast can lead to an increase of
near-normal angles and will thus cause an increase in the formation of patterns on the uniform bars.

This research was complemented by Nnafie et al. (2020). They investigated the influence of periodically
time-varying wave angle incidence normal to the coast as well an oblique mean angle. For waves with varying
wave angle, θ0, and mean angle, θ00 = 0o, the mean bar height could become larger than for waves with a
constant angle θ0 = 0o, depending on the forcing period Tθ and amplitude Atheta that was imposed on the
wave angle. In the cases with an oblique mean angle, the mean bar height was smaller for time-varying wave
angles than for constant wave angles. Especially when the amplitude of the variations increased, the growth
rate decreased. In this study they also compared the mean bar height for different time-invariant wave angles.
This showed that the largest growth of the root-mean square bar height was largest for θ0 = 1.5o, 3o. When
the bars became larger than approximately 8o, no bars formed.
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Double-barred beach systems have also been studied with numerical models using different kinds of analysis.
A stability analysis has been done by Klein and Schuttelaars (2006) and Coco et al. (2020). Klein and
Schuttelaars (2006) focussed on the influence of the initial bed conditions for waves with an oblique angle
of incidence. They found that there was no equilibrium in the bar height ||h||. Coco et al. (2020) analysed
the stability of the morphodynamics of a double-barred beach system for different offshore wave heights and
depth of the bars. The outer bars did not grow for large differences in the depth of the inner and outer
uniform bar or small wave heights, only the inner bars developed. For large wave heights or small differences
between the depth of the two uniform bars, the outer bars fully developed. The activity on the outer bar
dominated. For intermediate depth differences and wave conditions, both bars fully developed.

Smit et al. (2008), showed simulations of a double-barred beach system for constant wave conditions. The
irregular patterns on the inner bar were smaller than the ones on the outer bar. Another result was that the
response of the bar system depended on the volume of the bar. An increase in the bar volume results in an
increase in response time. In most simulations, the outer bar has a larger height the inner bar and therefore
also a larger volume.

The coupling between the inner bar and the outer bar has been modelled and studied by Castelle et al.
(2010), with the use of Morphodyn, a non-linear time- and depth-averaged model, coupled with the spectral
wave model SWAN (Castelle et al. 2006). They modelled three coupling types, in-phase, out-phase and at
half of the outer-bar wavelength (see Figure 6). The first is a configuration where the horns on the inner
bar face horns on th eouter bar, as can be seen from panel a) in Figure 6. Coupling of the bars at half the
wavelength of the outer bars is presented in the middle panel, b) of this figure. The out-of-phase coupling is
presented in panel c) of Figure 6, here bays on the inner barface the horns on the outer bar. The in-phase
coupling was predominantly found for weakly developed outer bars and low energy wave. The out-of-phase
coupling was found for well-developed outer bars and high energy waves. The coupling at half the wavelength
of the outer bar was found in the more intermediate wave conditions.

Price et al. (2013) studied the coupling of the inner and outer bar as well, for constant, oblique wave of
incidence with the same model as Castelle et al. (2010). For relatively small angles (θ < 10o), a coupling took
place between the outer and inner bar. Where the outer bar had moved landwards, a horn in the undulating
pattern called a rip bay occurred in the inner bar, as shown in Figure 7. For large angles, the bars were not
coupled. In contrast to other double barred beach studies, Price et al. (2013) derived their bed profile and
wave conditions from video observations at the Gold Coast.

Figure 6: The coupling between the inner and outer bars as found by a study of Castelle et al. (2010) are
presented for a) in-phase coupling b) coupling t half the wavelength of the outer bar c) out-of-phase coupling.
Lighter areas indicate the shallow regions, darker areas indicate deep parts of the system.
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Figure 7: One of the results obtained by Price et al. (2013) showing the bathymetry of a simulation with a
constant angle of incidence θ0 = 5o. The lighter colours show shallow areas and the darker colours are deeper
parts. The black lines are areas with the same elevation.

A non-linear model based on the depth-average shallow water equations, Morfo55, was used by Thiebot et al.
(2012). The difference of this model compared to the one used by Castelle et al. (2010) and Price et al. (2013)
is a difference in wave model and the formulation of the sediment transport. Thiebot et al. (2012) studied the
effects of different constant wave angles on the formation of crescentic patterns on the inner and outer bar.
For small wave angles (0o < θ < 11o) crescentic patterns occurred. Coupling between the outer and inner
bar is another result of their study. They found that when the outer bar started to form three-dimensional
patterns first, the patterns on the inner bar would be coupled to the outer bar pattens. It did not work the
other way around. The patterns on the outer bar were not influenced by the ones on the inner bar.

So far, the influence of the wave height, the difference in depth, the volume of the bars and the angle of
incidence for a double-barred sandy beach system have been studied. This has been done by choosing differ-
ent input parameters, while keeping the wave forcing constant. But none of the research on double-barred
systems have focussed on the effects of time-varying wave angles as has already been done for single-barred
systems (Castelle and Ruessink 2011; Nnafie et al. 2020). Observations show that wave conditions constantly
change, so to get a better understanding of the real situations, the influence on time-varying wave forcing
needs to be investigated. This study focusses in particular on the double-barred beach systems and how
different, periodically varying wave conditions cause different patterns to form.

1.3 Research aims

The topic of the influence of time-varying wave conditions on a double-barred system has not been completed.
Although previous research showed the response of barred beach systems to constant wave forcing (period,
wave height and angle of incidence), the response to time-varying wave forcing has only been studied for
single-barred beach systems. The response of a double-barred system to wave angles that vary periodically
in time on the offshore boundary is missing. The main question of this study is: What is the response of a
double-barred beach system to periodically time-varying wave angles? This will be answered based on 3 sub-
questions: What is the influence of the forcing period of the angles?; What is the influence of the maximum
amplitude of the variations in the angle?; What is the influence of the mean angle?. The hypothesis was
that crescentic bar patterns would form, either on the inner uniform bar, or on the outer uniform bar, or
both, depending on the wave height and angle. When patterns form on both uniform bars, the alongshore
variability in the depth of the inner bar would likely be smaller than the ones on the outer bar. Furthermore,
the patterns of the inner bar were expected to develop before patterns on the outer bar (Smit et al. 2008).
There was also a possibility of a coupling between the patterns on both bars as in the studies by Castelle
et al. (2010), Price et al. (2013), and Price et al. (2014). The largest mean bar height was expected for small
angles (see Castelle and Ruessink (2011))
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To answer this question, a non-linear model, Morfo55 was used. This model simulates the coupling between
the wave dynamics, currents sediment transport and bed evolution. A detailed description of this model is
given in Section 2. In Section 3, the method used for this experiment and the simulations that are done is
explained. The results are presented in Section 4 and they are discussed and compared to previous research
in Section 5. A discussion about the model is also be given in this section as well as some possibilities for
further studies. Finally, the conclusions of this study are provided in Section 6.
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2 Model

The non-linear model Morfo55 was used to study the evolution of the double-barred beach system. This
model was first introduced by Caballeria et al. (2002) as Morfo50. Morfo55 is an improved version presented
by Garnier et al. (2006). It is a non-linear numerical model which solves the depth-averaged shallow water
equations and by doing so, it couples currents, waves, sediment transport and bed evolution.

2.1 Domain

Morfo55 employs a Cartesian coordinate system with the origin O at the coast, with the x-axis in the cross-
shore direction and the y-axis in the longshore direction. The domain is a rectangle, confined by the lines
x = 0, y = 0, x = Lx and y = Ly. The chosen length of the domain in the longshore direction must be large
enough, to ensure that the boundaries have no influence on the results. The z-axis is upwards, perpendicular
to the xy-plane with z = 0 the initial sea level with no waves. The angle of incidence, θ0, at the offshore
boundary, x = Lx, is the angle between the wave vector k and the negative x-axis. Thus θ0 = 0 is defined
perpendicular to the coast and a positive angle means a wave with a component in the positive y direction.
A sketch of the domain is illustrated in Figure 8 (Garnier et al. 2006).

y

x

Ly

O Lx

z

θ0

k

Figure 8: A schematic view of the domain used for Morfo55. The domain modelled in a Cartesian coordinate
frame with x the cross-shore direction, y the longshore direction and z perpendicular to y and x, pointing
upward. The domain is bounded by the boundaries x = 0, x = Lx, y = 0 and y = Ly. The dashed line is the
time and longshore averaged bed level, the current bed level is shown as the unperturbed line close to the
dashed line. Furthermore, θ0 is the angle of incidence of the waves at the offshore boundary with respect to
shore-normal.
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Figure 9: A sketch of the profile used for the simulations. The mean water level is z = 0 and zs is the actual
water level. The dotted line illustrates the smooth bed level without any bars, the dashed line indicates the
averaged profile with two bars and the slightly different full line denotes the actual bed level.

2.2 Bed-profile

The Morfo55 model was used by Garnier et al. (2006) for a beach system with a single bar. For this research,
the profile of the bed level, zb, given by Yu and Slinn (2003) was extended to a double-barred beach system.
The modified model reads,

z0b = −a0 − a1
(

1− β2
β1

)
tanh

(
β1
a1
x

)
− β2x+ c1e

−
(

x−x1
w1

)2

+ c2e
−
(

x−x2
w2

)2

. (2.1)

Here, a0 is the depth at the coastal boundary, a1 is the form of the decay in the slope, β1 is the dominating
slope of the part nearshore part of the profile and β2 the slope of the seaward part of the beach profile. The
amplitudes of uniform, shore-parallel inner and outer bars are labelled as c1 and c2 respectively. Furthermore,
w1 and w2 denote the width of the bars and the positions with respect to the y-axis is represented by x1 and x2.

The bed level, z0b , is not dependent of t and y, it is a time- and longshore averaged beach profile. A sketch of
this profile with some other variables are shown in Figure 9. In this figure, the smooth profile without any
bars is illustrated via the dotted line, the averaged profile with a double bar is illustrated via the dashed line
and the actual bottom level is illustrated as the full line. The mean sea-level for is z = 0, whereas z = zs is
the actual (wave-averaged) or dynamic water level. As mentioned before, z0b is the averaged bed level over
time and along the y-axis with respect to the mean sea level z = 0, zb is the actual bed level with respect to
z = 0. When referring to the uniform, shore parallel bars, the bottom profile of z = zb is meant. The total
mean depth is defined as D = zs − zb and is thus positive as long as zb < zs. The difference between the
actual and the averaged bed level is defined as h = zb−z0b (Garnier et al. 2006). As such, h is the perturbation
on top of the uniform bars.



2 MODEL 12

Currents

- mass conservation
- momentum balance 

Waves

- Energy balance
- Dispersion equation 

Sediment transport

- Sediment flux 
   (Soulsby 1997)

Bottom evolution

- Sediment mass conservation

Figure 10: A flow diagram of the model Morfo55 showing the coupling between the different equations.

2.3 Governing equations

The hydrodynamics of the Morfo55 model is divided into a part which describes the currents of the system
and a part involving the waves. The hydrodynamics of the system are coupled to the sediment transport
and the bottom evolution with sediment equations. The model solves this set of equations and uses previous
output as the input for a new time-step. A flow diagram of the model is provided in Figure 10.

2.3.1 Waves

The waves are incorporated in the system by the wave energy density balance equation, which reads

∂E

∂t
+

∂

∂xj
((vj + cgj)E) + S

′

ij

∂vj
∂xi

= −ε. i = (1, 2) (2.2)

This equation was incorporated in the Morfo55 model by Garnier et al. (2006) and is one of the improvements
made on the Morfo50 model. Einstein’s summation convention is used i.e. repeated indices in a term mean
a summation over all its values. For generalisation, the formulas are given with indices i = (1, 2) in this
case (x1, x2) = (x, y) and (v1, v2) are the currents in the cross-shore and longshore direction respectively.
Furthermore, v is the depth-averaged current vector (v1, v2), E(x1, x2, t) is the energy density of the waves and
is related to Hrms(x1, x2, t), the root-mean square wave height, as follows: E = ρgH2

rms/8. The components
of the group velocity of the waves are denoted by cgj , S

′

ij are the components of the stress tensor S
′
. The

wave energy density dissipation rate ε is a combination of the bottom friction and wave breaking: ε = εf +εb.
The former is been described by Horikawa (1988) and the latter one by Thornton and Guza (1983). The
wave energy can be coupled to the wavenumber k with the use of the intrinsic frequency σ i.e. the frequency
of the current waves. The wave frequency ω = σ+ vjkj = 2π/T is constant because the wave period T is set
at the offshore boundary. Because vjkj << σ it follows that σ = 2π/T = constant. From linear wave theory,
the dispersion relation for gravity waves states:

σ2 = gk tanh(kD). (2.3)

Here, D(x1, x2, t) = zs − zb, the total mean depth (see Section 2.2) and g is the gravitational acceleration
(9.8 m s−2).
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The frequency is related to the phase and group velocity by c = σ
k and cg = ∂σ

∂k , yielding

c =

√
g

k
tanh(kD),

cg =
c

2

(
1 +

2kD

sinh(2kD)

)
.

This gives a relation between both the phase velocity c and the group velocity cg and the wavenumber
(Garnier et al. 2006, Mei 1989). Snell’s law is used to relate the wavenumber to the wave angle, θ(x1, x2, t):

k sin(θ) = k0 sin(θ0), (2.4)

with θ0 and k0 the wave angle and wavenumber at the offshore boundary respectively (Garnier et al. 2008).
Finally, from linear wave theory, the instantaneous wave velocity ub at the bed can be calculated.

2.3.2 Currents

The currents are modelled with the non-linear depth- and wave averaged shallow water equations in the
Morfo55 model. This set of equations is formed by the mass conservation (2.5) and the momentum balance
(2.6) described by Mei (1989):

∂D

∂t
+

∂

∂xj
(Dvj) = 0, (2.5)

∂vi
∂t

+ vj
∂vi
∂xj

= −g ∂zs
∂xi
− τbi
ρD
− 1

ρD

∂

∂xj

(
S
′

ij − S
′′

ij

)
. i = (1, 2) (2.6)

Here, D(x1, x2, t) = zs−zb is the total mean depth, zs and zb are the actual sea level and bed level respectively,
ρ is the water density (1024 kg m−3) and g is the gravitational acceleration (9.8 m s−2). In these equations,
the coupling between the waves and the current is parametrised by components of the stress tensor S

′
and

the time-averaged bed shear stress vector τb (Mei 1989). The components S
′

ij of the wave radiation stress
tensor describe the net transport of i-momentum by wave in the j-direction (Longuet-Higgins and Stewart
1964). The components S

′′

ij of the turbulent Reynolds stress tensor give the input of turbulent part of the
momentum equation (2.6). The components of the stress tensors and the stress vector are defined as

S
′

ij = E

(
cg
c

kikj
k2

+

(
cg
c
− 1

2

)
δij

)
,

S
′′

ij = ρνtD

(
∂vi
∂xj

+
∂vj
∂xi

)
,

τb =
1

T

∫ T

0

(∫ ∞
0

ρcd|v + ub|(v + ub)P (H)dH

)
dt.

Here, cg is the modulus of the group velocity vector of the waves, c is the modulus of the phase velocity
of the waves, both given in section 2.3.1.Furthermore, k is the modulus of the wave number vector k and
δij is the Kronecker delta. The horizontal eddy viscosity coefficient, νt, is parametrized by MUL with M a
constant (set to 1), U the velocity scale and L the length scale. In this case, the parametrisation has been
done by Battjes (1975) . This links the velocity scale to the wave energy dissipation rate εb and the density

by U = (εb/ρ)
1/3

. The length scale has been parametrized with the root-mean square wave height Hrms,

leading to the expression νt = M (εb/ρ)
1/3

Hrms. Furthermore, bed shear stressτb is averaged over the wave
period T . A probability distribution P (H) is used to average over the wave amplitudes H. The bottom drag
coefficient is denoted by cd and ub is the instantaneous total flow velocity at the bed.
So now there are 6 equations (2.2-2.6) and 6 unknown variables: zs(x1, x2, t), v1(x1, x2, t), v2(x1, x2, t),
E(x1, x2, t), σ(x1, x2, t) and θ(x1, x2, t). This gives a closed set of equations which can be solved.
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2.3.3 Sediment transport

The sediment transport is parametrised with the horizontal sediment transport flux q in m3/(ms). For these
simulations, the formulation of the sediment transport by Soulsby (1997) called Soulsby-Van Rijn has been
used:

qi = α

(
vi − γubrms

∂h

∂xi

)
. (2.7)

In this equation, γ is the bed slope coefficient and h is the bed level perturbation as defined in section
2.2. The root-mean square wave orbital velocity amplitude ubrms = (σHrms)/(2 sinh(kD)) Soulsby (1997).
Furthermore, α is the stirring factor given by

α = As

[(
|v|2 +

0.018

CD
(ubrms)

2

)1/2

− ucrit

]2.4
. (2.8)

If the term in the squared brackets is positive, otherwise α = 0 (Garnier et al. 2006). The constant As =
AS +ASB comprises the suspended load and bedload and depends on the sediment characteristics (Soulsby
1997). The smaller sediment particles (silt, clay, fine sand) are uplifted by the water and do not touch the
bed level during transport. The larger and heavier particles travel over the sea bed and are therefore called
bedload. These particles can either jump from one location to another (saltation), they can slide over the
bottom or they can roll. These processes are showed in Figure 11. The velocity of the current must exceed
the critical velocity ucrit for sediment transport to take place. For an increase of the velocity, the stirring
factor increases and is a measure of the amount of sediment can be carried by the current. Furthermore, CD
is the morphodynamic, bottom drag coefficient and defined as CD = (0.40/ ln(D/z0)−1)2, with z0 the initial
bottom level.

Figure 11: The process of sediment transport either in dissolved load, suspended load, or bedload. Suspended
load are the smaller particles that can be uplifted by the water. The larger, heavier particles touch the bed
during transport and are called bedload. When particles are light enough to be uplifted for small amounts
of time, they can jump a small distance before gravity pulls them down again. Other particles glide over the
bed and some roll in the direction of the flow. Figure from https://quizlet.com.
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2.3.4 Bed evolution

The bed evolution of the system is modelled with the sediment mass conservation equation:

∂h

∂t
+

1

1− p
∂qj
∂xj

= 0. (2.9)

This equation describes the coupling between the evolution of the perturbations in the bed level h = zb − z0b
and the horizontal sediment transport flux q. The sediment porosity p depends on the composition of the
sea bed, in this case mainly sand grains (Garnier et al. 2006, Price et al. 2013).

2.4 Boundary conditions

On the edges of the domain, given in section 2.1, boundary conditions are imposed. Periodic boundary
conditions have been assumed on the lateral boundaries, y = 0 and y = Ly for D, v, Hrms, θ and h. Meaning
that these values and their derivatives are the same at (x, 0, t) and (x, Ly, t).

At the shore boundary, x = 0, the water depth is set to a0 < 0; thus, the backshore is not incorporated in
this model. The velocity components of v and the sediment transport normal to the coast are zero at the
shore boundary, so there is also no interaction between the nearshore zone and the backshore zone. Erosion
and expansion of the coast are not taken into account. Note that, Hrms(0, y, t), zb(0, y, t) and zs(0, y, t) can
vary freely within the boundaries of the governing equations.

At the offshore boundary, the root-mean square wave height Hrms the angle θ0 and the intrinsic frequency σ
are imposed. These values are input parameters of the model, Hrms and θ0 can be set periodically in time,
but only with an imposed amplitude A and period T as

H0
rms = AH sin(

2πt

TH
) +H0

rms,

θ0 = Aθ sin(
2πt

Tθ
) + θ00.

Here, H0
rms is the mean wave height and θ00 the mean angle of incidence. The actual water level zs and bed

level zb are bounded by linear interpolation, ∂2zb/dx
2 = 0. The velocities are set to decay exponentially from

the offshore boundary in the direction of the coast.

2.5 Numerical aspects

The closed set of six equations (2.2-2.6 + 2.9) and the six unknowns can be solved. The model does this by
using a rectangular staggered grid to descretise the domain in cells with size (∆x,∆y) in the cross shore and

longshore direction respectively. These grid sizes are defined as (∆x,∆y) =
(

Lx

Nx−1 ,
Ly

Ny

)
, with the number

of computational point in the domain given by (Nx, Ny).

The computational domain, together with the locations at which vectors and scalars, are calculated and
shown in Figure 12. The scalar variables are determined in the middle of these grid cells, the red dot in
Figure 12, i.e. at (xi, y1) = ((i− 1

2 )∆x, (j− 1
2 )∆y). The vectors fields are calculated at the boundaries of the

cells. The cross-shore components of the vectors are defined at (xi, yi) =
(
(i− 1)∆x, (j − 1

2 )∆y
)
, and the

longshore components are defined at (xi, yi) =
(
(i− 1

2 )∆x, (j − 1)∆y
)

denoted by the blue and green dot in
Figure 12 respectively. Here, i = 1, ...., Nx and j = 0, ...., Ny (Caballeria et al. 2002).

Time has also been discretised in small time steps ∆t with ∆t = ∆x · qtx. Here qtx is an input parameters
of the model. The total amount of time that passed, is defined as tn = n∆tMoac with n an integer between
n = 0, ..., Nt. Here, Nt is the maximum number of iterations done by the model. The Moac is a morphological
acceleration factor used to speed up the morphodynamical processes. The time integration is performed by
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a second-order Adams–Bashforth scheme (Bashforth and Adams 1883), except for the initial integration
between Nt = 0 and Nt = 1. This step is modelled with the Euler first-order scheme.
‘

Δy

Δx

Y

x
O

Ly

Lxxi-1 xi-1/2 xi

yi-1

yi-1/2

yi

Figure 12: Computational domain with a schematic overview of the staggered grid. The location where the
scalars, cross-shore components of the vectors and longshore components of vectors are calculated are given
by the red dot, the blue dot and the green dot respectively. The computational domains of the scalars and
vector components are given in matching colours.
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3 Method

3.1 Parameters

To be able to start the simulations, the input parameters need to be chosen. The domain of the model is set to
0 < x < Lx with Lx = 250 m and 0 < y < Ly with Ly = 1500 m. This domain is chosen so that both uniform
shore-parallel bars are fully inside the domain and that in the longshore direction multiple alternating horns
and bays can be simulated. This is based on the domain of Garnier et al. (2006). The bed profile has been cho-
sen such that it resembles the profile used by Price et al. (2013). A list of these parameters is given in Table 1.

The hydrodynamical and sediment parameters have been chosen to be the same as in Garnier et al. (2006).
A list of all these parameters is provided in Table 2. The wave angle θ0 at the offshore boundary does not
have a fixed value. Many experiments will have periodically time-varying angles. The numerical parameters
used for the calculations done by Morfo55, given in Section 2.5, are provided in Table 3.

Symbol description value

Domain
Lx cross-shore domain length 250 m
Ly longshore domain length 1500 m
Profile
a0 depth at coastal boundary 0.25 m
a1 form of the slope 2.97
β1 slope first part bottom 0.034
β2 slope of second part bottom 0.0245
c1 amplitude inner bar 0.8 m
c2 amplitude outer bar 2.36 m
x1 position inner bar 40.8 m
x2 position outer bar 140.8 m
w1 width inner bar 20 m
w2 width outer bar 40 m

Table 1: List of parameters used for the domain and bed profile. The left, middle and right column list
the symbols used in this report, a short description of their meanings and the value which is used in the
simulations respectively.

Symbol description value

Hydrodynamics
ρ water density 1024 kgm−3

κ velocity decay parameter 3
H0
rms wave height at offshore boundary 1.5 m

T wave period 9 s
γb wave breaker index 0.6
cd hydrodynamical drag coefficient 0.01
Sediment
γ bedslope parameter 10
z0 roughness length 0.02 m
d50 particle size 0.00025 m
p sediment porosity 0.4
s relative sediment density 2.65

Table 2: List of all physical parameters. The left, middle and right column give the symbols used in this
report, a short description of their meanings and the value which is used in the simulations respectively.
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symbol description value

Numerics
∆x cross-shore grid size 5 m
∆y longshore gridsize 20 m
∆t time step 0.05 s
qtx qtx = ∆t/∆x 0.01
Moac morphological acceleration factor 90

Table 3: List of numerical parameters. The left, middle and right column give the symbols used in this
report, a short description of their meanings and the value which is used in the simulations respectively.

3.2 Experiments

In order to find the response of a double-barred beach system to time-varying wave angles, a set of experiments
have been executed for periodically time-varying wave angles according to

θ0 = Aθ sin(
2πt

Tθ
) + θ00. (3.1)

Here, θ00 is the mean angle of incidence, Tθ the period over which the angle varies and Aθ the maximum
variations of the amplitude around θ00. The first set focusses on the influence of periodically varying wave
angles with a mean angle normal to the coast, θ00 = 0o. The second set of simulations has the same variables,
but for an oblique mean angle, θ00 = 4o. The experiments are named and described in Table 4.

3.2.1 Normal wave incidence

The experiments with normal incidence are denoted by Run1-Run4T. Run1 has constant offshore wave
conditions and normal incidence. This is the reference case of the experiment. Run2T is a series of experiments
with time-varying angles around θ00 = 0o with a maximum amplitude of Aθ = 3o for different periods, Tθ =
2.5, 5, 7.5, 10, 15, 20 and 25 days. A similar series has been performed for a maximum amplitude of Aθ = 6o,
denoted by Run3T, and for maximum amplitude of Aθ = 9o, denoted as Run4T. These sets of experiments
enable an analysis of the response of the double-barred system to different periods by comparing the different
cases within a set of experiments. They also allow for an analysis of the influence of amplitude of the angles
on the response of the system. To do this, the simulations of Run2T, Run3T and Run4T will be compared
for the same period.

3.2.2 Oblique wave incidence

Most of the time, the wave angle of incidence for straight beaches is not normal to the coast. That is why a
third subquestion was formulated, regarding the influence of sinusoidally varying angle with an oblique mean
angle. A series of simulations, for which waves at the offshore boundary have oblique mean angles, have
been done, these experiments have been named Run5-Run8T. Run5 has constant wave conditions for a mean
angle of incidence θ0 = 4o, which is the reference case. Run6T has periodically varying angles of incidence
with the same mean angle θ0 = 4o, an amplitude Aθ = 3o and periods Tθ = 2.5, 5, 7.5, 10, 15, 20 and 25
days. A similar series of experiments has been performed for amplitudes Aθ = 6o and Aθ = 9o, Run7T and
Run8T respectively. The same analysis as described in the section above for mean incidence normal to the
coast was done for these oblique waves.
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Run name Description

Run1 θ00 = θ0 = 0o

Run2T θ00 = 0o

Aθ = 3o

Tθ = 2.5, 5, 7.5, 10, 15, 20, 25 days

Run3T θ00 = 0o

Aθ = 6o

Tθ = 2.5, 5, 7.5, 10, 15, 20, 25 days

Run4T θ00 = 0o

Aθ = 9o

Tθ = 2.5, 5, 7.5, 10, 15, 20, 25 days

Run5 θ00 = θ0 = 4o

Run6T θ00 = 4o

Aθ = 3o

Tθ = 2.5, 5, 7.5, 10, 15, 20, 25 days

Run7T θ00 = 4o

Aθ = 6o

Tθ = 2.5, 5, 7.5, 10, 15, 20, 25 days

Run8T θ00 = 4o

Aθ = 9o

Tθ = 2.5, 5, 7.5, 10, 15, 20, 25 days

Table 4: List of Runs executed in this study. Here, θ0 is the angle of incidence at the offshore boundary,
θ00 is the mean angle of incidence at the offshore boundary, Aθ is the maximum amplitude with which the
angle can vary around θ00. Finally, Tθ is the forcing period with which the angle is varied. Values of all other
parameters are presented in Table 1-3.

3.3 Analysis

3.3.1 3D bottom profile

The first method to analyse the response of the double-barred beach system to different hydrodynamics was
done by plotting perturbations h(x1, x2, t) in the bed level as a function of the position. With the cross-shore
distance on the horizontal axis and the longshore distance on the vertical axis, the perturbations, h, was
plotted as an contour plot for every grid cell. This gives the actual bed profile for a one time shot, but with
multiple time frames after the other, a short animation was made. A similar analysis was done for the actual
bed level zb(x1, x2, t) instead of the perturbations. This analysis gave insight into the coupling between the
inner and outer bar, but it made it hard to compare different simulations.

3.3.2 2D time evolution of bed level at longshore sections

While the first method of analysis gives a 3D evolution of the domain, it was difficult to compare results
from different cases. The time evolution of the the bed level at longshore sections was plotted, resulting in
a 2D representation of the data at a fixed section. This way, one could consider bottom perturbations at a
fixed section of the domain, while there were still 2D patterns visible and, in contrast to 3D patterns, they
were shown as a continuous function of time. A longshore section of the domain could be taken at any given
position x = constant. The most interesting locations are section that lie over the inner or outer bar around
xlss1 = 40 m and xlss2 = 140 m. Two of these sections were output of the simulations for every time step
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and could thus be plotted as a function of time. This method of displaying the data enabled us to follow
the growth, change position end merging or splitting of the bars for every time-step in one figure. When
also plotting the periodic variation of either the wave height Hrms or the angle of incidence θ0, the coupling
between these parameters and the growth rate and change position could easily be seen.

3.3.3 1D time evolution of the root-mean square bar height

Plotting the time evolution of the root-mean square bar height ||h||(t), defined as

||h|| =

(
1

LxLy

∫ Lx

0

∫ Ly

0

h2dydx

)1/2

, (3.2)

facilitated the investigation of results. When using this method information about the 3D patterns was lost
and only a 1D representation remained. This gave an averaged perturbation of the bottom over the whole
domain at a fixed moment in time (Garnier et al. 2006). Because there are two uniform shore-parallel bars
in the domain, with different dynamics in their vicinity, it is useful to average the perturbation over two
different subdomains, so that the morphodynamics of in these two domains could be analysed separately.
This led to the expressions

||h||Inn =

(
1

xhLy

∫ xh

0

∫ Ly

0

h2dydx

)1/2

, (3.3)

||h||Out =

(
1

(Lx − xh)Ly

∫ Lx

xh

∫ Ly

0

h2dydx

)1/2

, (3.4)

with the boundary between the two domains halfway between the two shore-parallel bars at xh = 90 m (see
also Table 5). For every time step, ||h|| was determined and plotted as a function of the time. Information
about the presence of an equilibrium in the mean bar growth was investigated with this information. The
influence of different hydrodynamical conditions on the bars grow was investigated as well.

The root-mean square bar height was further analysed by calculating the period and amplitude of the vari-
ations in the function. The former was done by a discrete-time Fourier transformation as described below.
The latter was done by a calculation of the standard deviation of the mean. A fit with a cubic polynomial
through the data of ||h|| was made to determine the mean, ||h||av(t) between t = 20 and 80 days. Next the
standard deviation was calculated as

σ||h|| =

√√√√ 1

Nt

tmax∑
tmin

(||h||av(t)− ||h||(t))2. (3.5)

Here, Nt is the number of time steps defined as Nt = (tmax − tmin) /∆t.

3.3.4 Fourier analysis

A discrete Fourier transformation in space can be performed on the longshore section of the domain as
described above. This method enables us to find the dominant wavelength, λm, of the alternating pattern of
shoals and troughs at every time step. In this way, information is obtained about the temporal behaviour of
the dominant length scales of the bars. This transformation is performed as

H(kl) =

Ny∑
j=1

h(xlss, yj) exp

(
−i 2π

Ny
(j − 1)(l − 1)

)
. (3.6)

In this expression, kl = 2π(l−1)
Ly

, the wavenumber and its corresponding Fourier coefficient is H(kl), with

l = 1 : Ny, the mode of the Fourier transformation. Furthermore, Ny = Ly/∆y is the number of computa-
tional point on the vertical axis, xlss is the cross-shore position of the longshore section where the Fourier
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transformation is done, in this case either xlss1 or xlss. The position of along the horizontal axis is given by
yi = j∆y (Garnier et al. 2006). The dominant wavelength, λm, between the adjacent bars is obtained by
rewriting the expression for the dominant wavenumber, km = 2π/λm with λl = Ly/(l − 1). The expression
for the Fourier coefficient is complex, so a scaled power was used for the representation of the data. The
scaled discrete power P (λl) = |H(kl)|2/|Hmax|2 was plotted as a function of the wavelength λl = 2π/kl.

A similar analysis is performed for a discrete-time Fourier transform for the root-mean square bar height
||h||(t). This leads to a dominant period in the variations of ||h|| in the outer or inner domain. The
transformation is performed as

||H||(ωn) =

Nt∑
j=1

||h||(tj) exp

(
−i2π
Nt

(j − 1)(n− 1)

)
. (3.7)

In this expression, ωn is the frequency and its corresponding Fourier coefficient is H(wn), with n = 1 : 1
2Nt,

the mode of the Fourier transformation. Furthermore, ||h|| is either ||h||Inn or ||h||Out, Nt is the total number
of time steps taken into account and the moment in time tj = j∆t.

The Fourier coefficient is again complex, so the scaled discrete power, P (T ) = |H(ωn)|2/|Hmax|2 is plotted
as a function of the period T = 2π/ω.

symbol description value

analysis
xh the boundary between the domain of the inner and outer bar 90 m
xlss1 location of longshore section 1 (over innerbar) 40 m
xlss2 location of longshore section 2 (over outerbar) 140 m

Table 5: A table of the variables used to divide the domain or set a location for analysis.
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4 Results

4.1 Normal wave incidence

4.1.1 Reference case

The output of the reference case, Run1, is compared to that of Run2T10, the simulation with time-varying
angles with a mean angle of θ00 = 0o and a period Tθ = 10 days. Snapshots of the 3D bottom patterns at
different times are given in Figure 13. The left column of this figure shows the actual bottom level zb and
the bottom perturbation h for Run1, while the right column shows the patterns for Run2T10. The panels
b-e and g-k show approximately a full period of the variation in wave angle.

Run1 shows a very regular crescentic pattern that does not change much in time and space. The patterns
in the outer domain show an alongshore variation in depth at a wavelength twice the wavelength of the
alongshore variations in the inner domain. When there is a horn around x = 130 meters (outer domain)
there is always a bay around x = 40 meters (inner domain). They are almost connected by a bulge of the
horn toward the coast. Run2T10 shows a less regular pattern, but there is still a slight bay in the inner
domain when there is a horn in the outer domain in Figure 13 h-l. The patterns in the inner domain are
smaller than those in the outer domain.

The 2D longshore sections in Figure 14 show the bottom perturbation h at x = 40 m and x = 140 m as a
function of time for Run1 in the left column and for Run2T10 in the right column. The red colours indicate
an elevation on top of the shore parallel bars and the blue colours indicate a depression. The vertical lines
coincide with the time of the snap shots in Figure 13. The bars of Run1 show no merging or splitting and
only grow in time. In contrast, the bars of Run2T10 do show merging and splitting and show both an increase
and a decrease in bar height.

The vertical line at t = 15 days show that the bars in the outer domain are not fully developed yet, at this
point the inner bars still show a regular pattern. This pattern starts to change when the bars in the outer
domain start to develop. This corresponds with the observations as shown in Figure 13.

Figure 15 shows the time evolution of the scaled discrete power of the Fourier coefficients at x=40 m (inner
domain) and at x=140 m (outer domain) of Run1 in the left column and Run2T10 in the right column. The
sediment transport starts at t = 2.6 days, before this time, the perturbations in the domain are random,
which explains the band of colour between t = 0 and t = 2.6 days. The figure reveals that the dominant
wavelength of Run1 in the inner domain is approximately 150 meters and in the outer domain 300 meters.
Thus, there are twice as many bars in the longshore direction in the inner domain than in the outer domain.
For Run2T10, this is more complicated. There are multiple dominant wavelengths in both the inner and
outer domain.

As can be seen from Figure 16, the growth of the perturbations on the outer uniform bar is delayed by a few
days with respect to the growth in the inner domain. This delay is larger for the case with a time-varying
angle of incidence. The latter case shows oscillations in the root-mean square bar height ||h|| which the refer-
ence case does not show. The mean bar height, ||h||av(t), in the outer domain is for both cases approximately
the same and larger than those in the inner domain. The mean bar height, ||h||av(t), in the inner is largest
for the reference case with constant wave angle.

The scaled discrete temporal power spectra of the Fourier coefficient shown in the top panels of Figure 17,
reveal that the dominant period of Run2T10 T||h|| is 5 days for both the inner and outer domain. Thus, the
dominant period of the response is half of that of the forcing. The difference between the mean and the
actual ||h|| is shown in the bottom panels of Figure 17. The standard deviation σ||h|| of the mean trend is a
measure of the amplitude of the time-varying response. Between t = 20 and t = 85 days, σ||h|| = 0.01 m and
σ||h|| = 0.023 m for the inner and outer domain, respectively.
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Figure 13: The actual bottom level zb and the bottom perturbation h are plotted as a function of the position
in the domain. This is done for Run1 (constant angle with a mean angle of θ00 = 0o) in the left column (a-f)
and for Run2T10 (time-varying angle with θ00 = 0o, Aθ = 3o and Tθ = 10 days) in the right column (g-l). For
both cases, zb and h are given for different five different moments in the simulation indicated in the figures.
The longshore direction y and the cross-shore direction x are given in meters. The negative, blue, values in
the lower plot indicate a position of erosion on the uniform bar whilst the positive, red, values indicate a
position where sediment accumulates. The black lines in the upper figure, a) and g), denote the location of
the longshore sections in Figure 14.
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Figure 14: Left column: Run1 (constant wave forcing with θ00 = 0o), right column: Run2T10 (time-varying
forcing with θ00 = 0o, Aθ = 3o and Tθ = 10 days). The bottom perturbation along the longshore direction y
in km is plotted as a function of time t in days. The section are taken at x = 40 m (inner bar) and at x = 140
m (outer bar), as indicated by the black lines in Figure 13. The angle of incidence at the offshore boundary
is given below the longshore sections. The vertical lines in the longshore sections in the right column and the
plot of the angle indicate the moments for which the bottom perturbations in Figure 13 are shown.

Figure 15: Time evolution of the scaled discrete power of the Fourier coefficients of h(x, y, t) at x=40 m
(inner domain) and x=40 m (outer domain), is shown for Run1 in the left column and Run2T10 in the right
column. The vertical axis gives the dominant wavelength in meters as a function of the time t in days on
the horizontal axis. The angle of incidence at the offshore boundary as a function of time is plotted below
the panels showing the spectra. The vertical lines in the right column and the plot of the angle indicate the
moments for which the bottom perturbations in Figure 13 are shown.
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Figure 16: Root-mean square height of the bottom perturbations in meters as a function of the time in days.
This is done for both the inner domain (solid line) and the outer domain (dashed line) for two different cases.
The black line shows the results of the case with a period in wave angle of 0 days, so the wave angle is
constant in time (Run1). The green line shows the results for the case with a period of 10 days in the wave
angle and an amplitude Aθ = 3o (Run2T10).

Figure 17: Upper panels: scaled discrete temporal power spectra of the function ||h|| as shown in Figure 16
versus period (in days) for the inner domain (left) and outer domain (right), Run2T10. Lower panels: time
series of the residual root-mean square bar height with respect to its running mean ¡——h——¿.
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4.1.2 Sensitivity to different forcing periods

The simulations were also done for Tθ = 2.5, 5, 7.5, 10, 15, 20 and 25 days and Aθ = 3o, Run2T. These
cases all display a crescentic bar pattern in both the inner and outer domain similar to the Run2T10. Again,
with smaller patterns in the inner domain than the outer domain. The patterns are also less regular than for
Run1, which can also be seen in Appendix A Figure 27.

The bars alternate between moving in the positive and negative longshore direction. With increasing forcing
period of the wave angle, bars keep moving longer in the same direction. The number of bars is approximately
the same in all cases and does not show any correlation with the period of the angle. The time at which they
start to grow is also the same for al three cases shown in Figure 27. In the inner domain, growth starts after
approximately 5 days, while the bars in the outer domain start growing after 15 days. Merging and splitting
occurs in both the inner and outer domain for all periods from the moment bars start to form in the outer
domain. The colours on the outer bars are more extreme than on the inner bar, indicating a larger growth
on the outer bar.

The difference in growth-rate on the inner and outer bar is also apparent in the time series of the root-mean
square bar height ||h|| (see Appendix A, Figure 28-30). The bars in the inner domain remain smaller than
in the outer domain. The fit through ||h||(t) is always lower for time-varying waves in the inner domain. A
such, the time-varying wave angles cause the bars in the inner domain to grow slower. The smallest mean
bar height ||h||av(t) is seen for period T = 2.5 and 5 days, for period 5 < T ≤ 25 ||h||av(t) starts to become
larger again, but still lower than for Run1 (constant wave forcing). In the outer domain, this differences in
||h||av(t) are not apparent, except for the forcing periods Tθ 2.5 days and 5 days. For these two cases, the
mean bar height is significantly lower than for Run1 (constant wave forcing).

The period and standard deviation of ||h||(t) of these cases are shown in Figure 18 for the inner domain in
the left column, a) and the outer domain in the right column b). They reveal an increase in the response
period T||h|| for an increase in the forcing period for the angle Tθ with T||h|| = 1

2Tθ both in the inner and
outer domain. The only exception is in the inner domain for Tθ = 5 days where T||h|| = Tθ . For a forcing
period Tθ = 2.5 days, the variations of ||h||(t) show multiple dominant periods in both the inner and outer
domain. The standard deviation of the fit through ||h||(t) is higher in the outer domain than in the inner
domain. Furthermore, σ||h|| for Tθ ≥ 10 days is larger than σ||h|| of the smaller periods (Tθ < 10 days). A
peak in the deviation appears for Tθ = 15 days. This might indicate a resonance between forcing period and
the response. Reasons for the T||h|| = Tθ/2 peak and the occurrence of peaks in Figure 18 are given in the
Section 5, the discussion.

4.1.3 Sensitivity to different forcing amplitudes

The influence of the amplitude with which the angle varies, Aθ, is quantified by analysing the differences
between Run2T, Run3T and Run4T (Aθ = 3o, Aθ = 6o and Aθ = 9o respectively) for the same periods. The
initial activity starts in the inner domain for all three cases. The activity in the outer domain starts at t = 10
days, t = 20 days cases Run2T10 and Run3T10 respectively. For Run4T10 the activity in the outer domain
is so small that it could not be seen, neither in the 3D bottom perturbation plot, nor in the 2D longshore
sections (see Appendix A Figure 31). The initial pattern in the inner domain is very regular, until the bars
in the outer domain start to grow.

An increase in the angle causes an increase in the time it takes for the outer bars to start to grow (see Ap-
pendix A, Figure 32). When the bars in the outer domain start to grow, the mean bar height ||h||av(t) becomes
larger than in the inner domain. An increase in the angle also causes a decrease in ||h||av(t) for both domains.

The scaled discrete temporal power spectra of the Fourier coefficient of ||h|| shows that for all amplitudes,
the dominant period T||h|| = 1

2Tθ, with a less dominant period of T||h|| = 1
4Tθ. The inner bar also shows a less

dominant period at T||h|| = Tθ. The standard deviation of the fit through ||h||(t) did not significantly differ
for the 3 cases. Therefore, it appears that there is no influence of the maximum amplitude of the incident
waves on T||h|| and σ||h||.
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Figure 18: Dominant periods in the response T||h|| scaled to the forcing period Tθ and the standard deviation
σ||h|| in meters of the root-mean square bar height ||h|| on the left and right vertical axis respectively. The
different forcing periods of wave angles Tθ (Run2T) for inner and outer domain are shown on the horizontal
axis. The inner domain is shown in panel a) and the outer domain is shown in panel b). For Tθ = 2.5 days,
multiple response periods are found.

4.2 Oblique wave incidence

4.2.1 Reference case

The reference case of the simulations with a nonzero mean angle of wave incidence at the offshore bound-
ary is given by Run5 (constant wave forcing) and compared to Run6T10 (periodically varying wave angle).
Snapshots of the 3D bottom patterns are presented in Figure 19. They show no bar activity on top of the
outer longshore parallel uniform bar for the case with a constant angle of incidence, Run5 shown in the left
column. The activity is focussed in the inner domain and shows a regular pattern in space and time. This
pattern is not symmetric around an axis parallel to the cross-shore direction. It shows a slight shift of the
patterns around x = 80 m in the positive longshore direction. Again, Figure 20 shows that, in the case
of time-varying wave forcing, the bottom perturbations in the outer domain do in fact grow after 80 days.
When there is a horn on the outer uniform bar, there is a bay on the inner uniform bar. Between the horn in
the outer domain, large bays occur that are approximately twice as long as the horns. The number of bars in
the inner domain is much larger than in the outer domain, which was also seen in the case of a mean angle
normal to the coast.

In Figure 20, the evolution of bottom perturbations at two longshore sections are shown. These sections
are taken at the location of the black lines indicated in Figure 19 a) and g). Figure 20 shows a shift in bar
position in both the inner and outer domain for Run6T10 after t = 80 days in the positive longshore direction.
This is the same direction as that of the mean wave vector. The shift in position is largest for the largest
angles. It starts when the wave angle at the offshore boundary has almost reached its max and stops when it
is just over its maximum. This figure also shows that when the bars in the outer domain start to grow, the
patterns in the inner domain become less regular. The time evolution of the scaled power as a function of
wavelength of the bottom perturbation shown in Figure 21 indicates this transition around t = 80 days with
a change in dominant wavelength of the bars in the inner domain. For t < 80 days, the dominant wavelength
is very regular around λm = 200 meters while for t > 80 days, the dominant wavelength alternates in time.

The root-mean square bar height ||h|| of Run5 and Run6T10 is shown in Figure 22. The bar height in the
inner domain is larger for a constant angle than for time-varying angles. The period and standard deviation
in ||h||(t) of Run6T10 are shown in Figure 23 a) and b) for the inner and outer domain respectively. The
inner domain shows two dominant periods at T||h|| = 1

2Tθ and T||h|| = Tθ the outer domain shows only one
dominant response period at T||h|| = Tθ.
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Figure 19: The actual bottom level zb and the bottom perturbation h are plotted as a function of the position
in the domain. This is done for Run4 (constant angle with a mean angle of θ00 = 4o) in the left column (a-f)
and for Run6T10 (time-varying angle with θ00 = 4o, Aθ = 3o and Tθ = 10 days) in the right column (g-l). For
both cases, zb and h are given for different five different moments in the simulation indicated in the figures.
The longshore direction y and the cross-shore direction x are given in meters. The negative (blue) values in
the lower plot indicate a position of erosion on the uniform bar whilst the positive (red) values indicate a
position where sediment accumulates. The black lines in the upper figure, a) and g), denote the location of
the longshore sections in Figure 20.



4 RESULTS 29

Figure 20: Left column: Run5 (constant wave forcing with θ00 = 4o), right column: Run6T10 (time-varying
forcing with θ00 = 4o, Aθ = 3o and Tθ = 10 days). The bottom perturbation along the longshore direction y
in km is plotted as a function of time t in days. The section are taken at x = 40 m (inner bar) and at x = 140
m (outer bar), as indicated by the black lines in Figure 13. The angle of incidence at the offshore boundary
is given below the longshore sections. The vertical lines in the longshore sections of in the right column and
the plot of the angle indicate the moments for which the bottom perturbations in Figure 19 are shown.

Figure 21: Time evolution of the scaled discrete power of the Fourier coefficients of h(x, y, t) at x=40 m
(inner domain) and x=40 m (outer domain), is shown for Run5 (constant wave forcing with θ00 = 4o) in
the left column and Run6T10 (time-varying forcing with θ00 = 4o, Aθ = 3o and Tθ = 10 days) in the right
column. The vertical axis gives the dominant wavelength in meters as a function of the time t in days on the
horizontal axis. The angle of incidence at the offshore boundary as a function of time is plotted below the
panels showing the Fourier transformations. The vertical lines in the right column and the plot of the angle
indicate the moments for which the bottom perturbations in Figure 19 are shown.
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Figure 22: Root-mean square height of the bottom perturbation in meters as a function of the time in days.
This is done for both the inner domain (solid line) and the outer domain (dashed line) for two different cases.
The black line shows the results of the case with a period in wave angle of 0 days, so the wave angle is
constant in time, Run5 (θ00 = 4o, Tθ = 0). The green line shows the results for the case with a period of 10
days in the wave angle, an amplitude Aθ = 3o and a mean angle θ00 = 4o, Run6T10.

Figure 23: Upper panels: scaled discrete temporal power spectra of the function ||h|| as shown in Figure 16
versus period (in days) for the inner domain (left) and outer domain (right), Run6T10. Lower panels: time
series of the residual root-mean square bar height with respect to its running mean ¡——h——¿.The standard
deviation σ||h|| (m) is calculated from this residual and shown in the plot.
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4.2.2 Sensitivity to different forcing periods

In addition to the simulations evaluated above, Run6T has been done for period Tθ = 2.5, 5, 7.5, 10, 15,
20 and 25 days. These seven cases show a similar behaviour, initially bar form in the inner domain with a
regular pattern. When the bars in the outer domain start to grow, the pattern in the inner domain becomes
less regular.

This shift in regularity is seen clearly from Figure 33. After the bar in the outer domain have matured,
the bars in the inner domain start to show larger deviations in h and the spacing between alternating bars
becomes less regular (see also Figure 36). At this point, the bar pattern in the inner domain start to shift in
the positive longshore direction but not as fast as the bars in the outer domain. The number of bars in the
inner and outer domain is not influence by the period and is approximately the same in all cases.

The mean grow, ||h||av(t) is smaller for time-varying angles than for a constant angle in all cases in the inner
domain (see Appendix A Figures 35-37). In the outer domain, the bars do not grow for Run5 (constant
angle), but do grow for time-varying angles (Run6T10). When the bars in the outer domain start growing,
the become larger than the bars in the inner domain.

The periods T||h|| and standard deviation σ||h|| for Run6T as a function of the forcing period Tθ are shown
in Figure 24. For 10 ≤ Tθ ≤ 20 days, two dominant response periods were found in the inner domain. The
response period in the inner domain show two linear correlations, T||h|| = Tθ and T||h|| = 1

2Tθ. The standard
deviation of the fit through of ||h|| shows an increase for an increasing period in the angle of the offshore
waves. In the outer domain, only one dominant period was found for each Tθ namely T||h|| = Tθ. The
standard deviation shows again an increase for an increase in Tθ. In contrast to the cases with a normal
mean wave angle, σ||h|| does not show a peak around Tθ = 15 days and seams only to increase.

4.2.3 Sensitivity to different forcing amplitudes

When looking at cases Run6T10, Run7T10 and Run8T10 (Aθ = 3o, Aθ = 6o and Aθ = 9o respectively), all
with an oblique mean angle, the influence of the amplitude can be analysed. The bar height in the inner
domain decreases with an increase in the amplitude of the offshore wave angle (see Appendix A Figure 38).

Figure 24: Dominant periods in the response T||h|| scaled to the forcing period Tθ and the standard deviation
σ||h|| in meters of the root-mean square bar height ||h|| on the left and right vertical axis respectively. The
different forcing periods of wave angles Tθ (Run6T) for inner and outer domain are shown on the horizontal
axis. The inner domain is shown in panel a) and the outer domain is shown in panel b). The evolution of
Run6T5 and Run6T25 stopped to soon to get reliable information. In the inner domain, multiple dominant
response periods were found for a single forcing period.
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The bars for Run7T10 and Run8T10 show large amplitude differences and disappear almost entirely when
the angle of incidence starts to decrease. This is also the moment that they show the largest displacement of
approximately 1.5 bars in the longshore direction. When the angle of incidence increases, the bars start to
grow again. There is no bar growth visible in the outer domain for Run7T10 and Run8T10.

The mean root-mean square perturbation ||h||av(t) decreases for an increase in the amplitude Aθ for both
the inner and outer domain (see Appendix A Figure 39). However, note that this difference is very small in
the outer domain for t < 70 days.

For all three cases (Run6T10, Run7T10 and Run8T10) the period T||h|| = 10 days, the same as the imposed
period Tθ on the offshore boundary. The growth in the root-mean square bar height ||h||(t) in the inner is
in phase with the growth in the outer domain for Run7T10 and Run8T10. For Run6T10 the growth in the
inner and outer domain is out of phase.
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5 Discussion

5.1 Physical interpretation

5.1.1 Angle of incidence

The results of this thesis show a decrease in the growth of the bars for an increase in the wave angle. The
cases with a normal mean wave angle no mature bars in the outer domain for the largest amplitude, Aθ = 9o.
The cases with an oblique mean angle, the growth of the outer bars only happened for Aθ = 3o. Garnier et al.
(2013) considered the influence of wave angle of incidence on the straightening of bars and investigated the
physical mechanism behind the phenomena. An increase in the wave angle causes an increase in the longshore
current and a decrease in the shoreward current. As a result, the intensity of the rip currents becomes weaker
and less erosion takes place. On top of this, the position of the rip current is shifted downdrift, moving from
the deepest section to a more shallow part. This shift is the drive behind a shift in position of the bars, but
also prevents bars from forming or even straightening if the angles are large enough. The hydrodynamics of
three different cases is shown in Figure 25 (Garnier et al. 2013). Showing the difference in direction of the
total current, black arrows, and the cross-shore component, the grey scale. The ovals in all the panels are at
the same position, the displacement of the rip currents, white areas, is evident from these results.

Figure 25: The hydrodynamics for a single-barred beach system for three different cases, a) θ0 = 0o, b)
θ0 = 10o and c) θ0 = 20o. The vertical axis gives the cross-shore location with the coastal boundary is at
x = 0. The horizontal axis gives part of the longshore domain, depicting 1/2 wavelength of the alongshore
patterns in bar height. The solid and dotted line denote the horns and bays, respectively. The cross-shore
velocity is indicated by the grey scale, with the white area offshore currents and the darkest areas the
shoreward currents in m/s. Th total current is given by the black arrows, also in m/s. The residual current
(u, v − V ) (with V the mean of v) is given by the red arrows. Figure from Garnier et al. (2013).
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5.1.2 Coupling between inner and outer bars

Castelle et al. (2010) showed three different coupling types in their study. For low wave conditions, the bars
displayed an in-phase coupling, for high wave conditions, the bars were out-of-phase and for intermediate
conditions, the bars displayed a coupling at half the wavelength of the outer bar. The differences arise from
the different processes that take place in the outer domain for different wave conditions. For intermediate
wave conditions, the wave energy is to low for wave breaking to occur over the outer bars, only refraction
of the waves takes places. Thus the waves keep most of their energy while the angle of the wave vector
diminishes, increasing the magnitude of the cross-shore component of the wave vector. The result is a strong
onshore flow over the inner bar that causes a net sediment loss in this area, and a horn on top of the longshore
uniform outer bar facing a rip channel on the inner longshore uniform bar. This corresponds with our findings
for the reference case, Run1, which displayed the twice as many bar in the alongshore direction on the inner
bar than on the outer bar. The other cases, provided that there were matured bars in the outer domain,
displayed similar behaviour. A bar on the outer bar faced a bay on the inner bar and the alongshore patterns
were smaller in the inner domain than those in the outer domain, but not precisely twice as small.

For the cases with a larger amplitude or, the delay in growth of bars in the outer domain was largest. So the
phase in the evolution of the system without bars in the outer domain, can best be studied from these cases.
The bars in the inner domain were free to develop, independent of the outer domain. During this phase, the
root-mean square bar height, ||h||(t), of the inner bars reached a quasi-equilibrium as expected based on the
Castelle and Ruessink (2011). The moment the bars started to grow in the outer domain, they influenced the
direction and strength of the wave that reached the inner bar. The inner bar was forced to adjust to the new
wave conditions, merging and splitting occurred and ||h||(t) started to grow again. This one way coupling
was not only found by Castelle et al. (2010), but later also by Thiebot et al. (2012) and Price et al. (2014).

The initial equilibrium of ||h|| in the inner domain was disturbed by the growth of the bars in the outer
domain and neither the inner bar nor the outer bar reached a equilibrium. Klein and Schuttelaars (2006)
already investigated the stability of the non-linear behaviour of the double-barred beach system. Although
the did not made the differentiation between ||h|| in the inner and outer domain, they did find an initial
exponential growth of the bars, followed by a phase of periodic ||h|| with a growth in the mean value.

The delay in growth of the outer bar has been studied by Smit et al. (2008). They found a correlation between
the volume of the bars and the delay in growth. Due to an decrease in volume, the active volume increased,
i.e. the volume for which the breaker index γb = Hs/D > 0.3. This led to a decrease in the response time
of the bars. In the present study, the outer uniform bar is higher and wider than the inner uniform bar and
has thus a larger volume. The increase in response time of the outer bar can is thus in agreement with the
findings of Smit et al. (2008).

5.1.3 Response of ||h||, period and amplitude

The forcing of the change in angle of incidence is done sinusoidally. The change from the mean angle to its
maximum, mean an minimum value respectively takes τ = 1

4Tθ days. The time of the system to adjust to
a new angle of incidence ta is called the response time of a system. When the response time is larger than
the forcing period (ta > Tθ), inertia prevents the system to fully adjust to the new angle of incidence. As a
result, the deviations in the mean value of ||h|| will increase for an increase in the forcing period.

Nnafie et al. (2020) showed that for a single-barred beach system the maximum bar growth occurred for
angles of θ0m = 1.5o and 3o. Similar results were found during the setup of this research, the mean bar growth
reached a maximum for small angles. For time-varying wave angles, θo passes every angle between θ00 ± Aθ
twice during one forcing period Tθ. Depending on the mean wave angle, the domain for which waves have
the largest growth (−θ0m ≤ Dg ≤ θ0m), is passed once or twice. This behaviour can explain the correlation
between the forcing period Tθ and the response period T||h||.

For normal mean angles, the wave angle passes the domain of maximum growth, Dg, twice during one forcing
period, giving the system two boosts in growth. The response period T||h|| is therefore expected to be 1

2Tθ.
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Figure 26: The root-mean square bar perturbations ||h|| in meters are given as a function of the time in days.
This is done for Hrms = 1, 1.5 and 2.0 m shown by the red lines, blue lines and the green lines respectively.
Here, all wave conditions are taken constant, θ00 = 0o and wave period T = 9 s. At the point where the bar
depth is 0.1 m, the simulations keeps the bar height constant. For Hrms = 2.0 m, the bars grow very fast
and ||h|| is kept constant.

For oblique mean angles, this boost can be different, depending on the forcing amplitude of the waves Aθ. For
small amplitudes (Aθ θ

0
0), the bar height only has one large increases, θ0 remains in the domain of maximum

growth, displaying only one large boost in growth of the bar height ||h||(t). In this case, the response period
will be the same as the forcing period, T||h|| = Tθ. For larger angles, the bar height might have a large
increase in bar growth twice during one forcing period. Because the mean angle is not normal to the coast,
the time between these boosts will not be 1

2Tθ.

5.2 Choice for wave height

The wave height at the offshore boundary can be given as the root-mean square wave height, Hrms, or as
the significant wave height, Hs. The latter is defined as the mean wave height of the largest third of all the
waves. This value can be related to Hrms by Hrms = 1

2

√
2Hs (Holthuijsen 2007).

In this thesis, Hrms was constant at the offshore boundary and set to 1.5 meters. This is higher than the
Hrms used by Price et al. (2013), Hrms = 0.78 m (Hs = 1.1 m), and Garnier et al. (2008) (Hrms = 1.0 m).
Although the other parameters were mostly the same as either one of these articles, in this study, no activity
was found on the outer bar for low values of Hrms. The difference between this study and the study done by
Garnier et al. (2006) is that we examined a double-barred beach system, whereas Garnier et al. (2008) only
considered single-barred beach systems. In the present study, activity was found in the inner domain for small
wave heights, but not in the outer domain. Price et al. (2013) considered a double-barred systems, but they
used a different model which might lead to different results for the same wave heights. The cross-shore profile
was also slightly different, in the current study, the bar depth is larger. The choice made here is supported
by Thiebot et al. (2012), who also studied a double-barred beach system with the model Morfo55. They
chose Hrms = 1.5 m so that wave conditions would be energetic enough for instabilities to occur on both bars.

Figure 26 present the ||h|| for three different cases with different Hrms at the offshore boundary. In this
figure, ||h|| in the inner and outer domain is indicated by the solid lines and the dashed lines respectively.
This picture shows that the growth rate for Hrms = 2.0 m (green lines) is very high. This caused the bars to
grow above the water level within the first 10 days. When the waves grew higher than 10 cm below the actual
water level, the simulation stopped, this is the point were a constant bar height is given. For Hrms = 1.0 m
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(the red lines) the inner bar went to equilibrium, but the outer bars did not show activity. The depth of the
wave base was smaller than the depth D above the outer bar. For Hrms = 1.5 m (the blue lines) both the
inner domain and the outer domain showed activity.

5.3 Model restrictions and advantages

There are some restrictions to the model used for this study, as mentioned by Garnier et al. (2006). Morfo55
does not account for feedback between the surf zone and the the swash zone or backshore. The coastline is
modelled as a rigid boundary, thus erosion or accretion of the beach area is not taken into account. Migration
of bars in the cross-shore direction has been observed by Rutten et al. (2019), amongst others, but is also
not incorporated in this model. The bars are only allowed to grow and move in the longshore direction.
Furthermore, the model only takes 2D processes into account and does not model 3D processes. This re-
striction is in particular of influence on the modelling of the undertow. Another restriction is given by the
formulation of the wave model , which is highly simplified, only one frequency and wave direction are taken
into account. Other models, like Morphodyn, often use the wave model SWAN, which does not have the same
restrictions as the wave model incorporated in Morfo55. Morphodyn is used in some previously mentioned
studies, Castelle et al. (2006), Castelle et al. (2010), and Price et al. (2013)

Morfo55 ends runs when a bar becomes higher than the actual sea level. This is a restriction that was of
great influence on the present study. Because no equilibrium was reached in the bar root-mean square bar
height, the bars kept growing and eventually reached the sea level. Simulations were therefore often stopped
before the maximum time of 400 days they were supposed to run. A slight adjustment to the model was used
to address this problem. The bar height was kept fixed when the depth above the bars became smaller than
0.1 m. The new bar height was calculated for every time step and if wanted to grow, it was kept fixed, if
it became smaller, the fixed bar height was released. This allowed for the runs to continue longer than before.

An advantage of Morfo55 over Morphodyn, used by Castelle et al. (2010) and Price et al. (2013), is the
the length of the domain. In the present study, the cross-shore domain is much smaller, 250 m, than the
approximately 700 m used by Price et al. (2013). Their domain was chosen this large because model needed
time to adjust to the wave conditions before waves were forced over bars in the nearshore region. Morfo55
does not have this limitation, so the domain can be smaller, effectively decreasing the time it takes for a
simulation the be run.

5.4 Suggestions for further research

The results of this study give a better understanding about the coupling between the inner and outer bars as
well as the response of ||h|| to an increase in forcing period, Tθ and the amplitude of the wave angle, Aθ. But
to achieve a better understanding of the coupling between Tθ and the response period of ||h||, T||h||, a study
of the response time, t||h||, of the double-barred beach system to a change in angle would be interesting as
this would allow for a quantification of the explanation in subsection 5.1. It would also be interesting to do
a follow up study on the influence of a sinusoidally varying wave height for different constant angles with

H0
rms = AH sin(

2πt

TH
) +H0

rms,0.

The same analyses as the current study can be used to investigate the influence of the period TH and ampli-
tude AH of these variations.

One could also try to modify the model such that it can deal with bar heights that reach the sea level. This
might be done by improving the model for this specific situation, however changing the position of the inner
bar might also help. The position was taken to be at the same location as in the study of Price et al. (2013),
which corresponds to observations done on the Gold Coast in Australia. However, when the location of the
inner uniform bar is shifted in the cross-shore direction away from the coast, the depth becomes larger and
simulations might continue longer.
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6 Conclusions

In order to answer the research question of this study: What is the response of a double-barred beach system
to periodically time-varying wave angles?, a case with time-varying wave angles has been compared to a
reference case where constant wave conditions were imposed. Three subquestions have been investigated to
investigate the influence of different time-varying conditions: What is the influence of the forcing period of
the angles?; What is the influence of the maximum amplitude of the variations in the angle?; What is the
influence of the mean angle?.

In the case with constant wave forcing and a normal mean wave angle, θ00 = 0o, the inner and outer bar
showed a coupling at half the wavelength of the outer domain (as defined in Section 5.1.2). The reference case
with oblique mean angles, θ00 = 4o showed no bar growth in the outer domain, only for time-varying angles
did the bars in the outer domain grow. For time-varying wave angles, the coupling between the inner and
outer bar was less pronounced, but it resembled a coupling at half the wave length of the outer domain with a
horn on the outer bar facing a bay on the inner bar. Both references cases had a total bar growth in the inner
domain larger than for time-varying wave angles. In the outer domain, there were only matured bars for
normal mean angles. The total bar growth of this case was approximately the same as for time-varying angles.

For an increase in the forcing period of the wave angles, Tθ, the response period of the root-mean square bar
height, T||h|| increased. This response was the same in the inner and outer domain for the normal mean wave

angle, T||h|| = 1
2Tθ. For the cases with θ00 = 4o, the inner domain showed two dominant response periods,

T||h|| = 1
2Tθ and Tθ. The outer domain showed only one response period of T||h|| = Tθ. An increase in Tθ

also corresponded with an increase in the standard deviation of ||h||(t) − ||h||av(t), σ||h||. For normal mean
incidence, the increase in σ||h|| had a maximum at Tθ = 15 days. This maximum did not occur for oblique
waves, in those cases, σ||h|| kept increasing for increasing Tθ.

The amplitude of the angle of incidence was increased from 3o to 6o to 9o. The increase in the amplitude
caused a decrease in the total bar growth in both the inner and outer domain and an increase in the response
time, t||h||, of the outer bar. When bars in the outer domain started to mature, the patterns in the inner
domain started to change and became less regular. For the cases with an oblique mean angle and amplitudes
Aθ ≥ 6o, no matured bars were found in the outer domain, only in the inner domain. No correlation was
found between an increase in the amplitude of the wave angle and the response period T||h|| or the standard
deviation σ||h||. The conclusions are summarized in Table 6.

The influence of the oblique mean wave angles was mainly the same as the increase of the amplitude of the
wave angles. The response time of the bar in the outer domain increased and for some cases, no bars formed
during the 120 days of the simulations. Another effect of the oblique mean angle was the shift in longshore
position of the bars. The bars had a net downshift movement in both the inner and outer domain.

Reference case Increase Tθ Increase Aθ
Case matured bars ||h||av T||h|| σ||h|| ||h||av t||h||

NI yes ||h||rc > ||h||tv T||h|| = 1
2Tθ max for Tθ = 15 days decreases unchanged

NO yes ||h||rc ≈ ||h||tv T||h|| = 1
2Tθ max for Tθ = 15 days decreases increases

OI yes ||h||rc > ||h||tv T||h|| = 1
2Tθ, Tθ continues increase decreases unchanged

OO no ||h||rc < ||h||tv T||h|| = Tθ continues increase decreases increases

Table 6: The conclusions normal wave incidence in the inner domain (NI) and outer domain (NO), oblique
wave incidence in the inner domain (OI) and outer domain (OO). The response of the system for the reference
cases, an increase in the forcing period, Tθ, and an increase in the amplitude of the angle, Aθ, are given.
Here, ||h||av is the average bar height and ||h||rc is the mean bar height for the reference cases, ||h||tv is the
mean bar height for time-varying wave angles. Furthermore, T||h|| is the response period of ||h||(t), σ||h|| is
the standard deviation of ||h|| with respect to |h||av and t||h|| is the response time of the bars.
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A FIGURES III

A Figures

Figure 27: The longshore sections of a) Run2T2.5 (Aθ = 3o, Tθ = 2.5 days), b) Run2T10 (Aθ = 3o, Tθ = 10
days) and c) Run2T25 (Aθ = 3o, Tθ = 25 days. The longshore direction in km is given on the vertical axis
and time t in days is given on the horizontal axis. The perturbations on top of the uniform bars is given by
the colours with blue the deepened areas, so erosion takes place, and red areas that became more shallow,
so net sedimentation takes place. The angle of incidence in degrees at the offshore boundary as a function of
time is also plotted for all cases.
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Figure 28: This figure shows the root-mean square bottom perturbation ||h|| in meters as a function of the
time in days. This is done for both the inner domain (solid line) and the outer domain (dashed line) for cases
Run1, the black lines and Run2T, the coloured lines.
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Figure 29: This figure shows the root-mean square bottom perturbation ||h|| in meters as a function of the
time in days. This is done for both the inner domain for cases Run1, the black lines and Run2T, the coloured
lines.

Figure 30: This figure shows the root-mean square bottom perturbation ||h|| in meters as a function of the
time in days. This is done for both the outer domain for cases Run1, the black lines and Run2T, the coloured
lines.



A FIGURES VI

Figure 31: The longshore sections of a) Run2T10 (Aθ = 3o, Tθ = 10 days), b) Run3T10 (Aθ = 6o, Tθ = 10
days) and c) Run4T10 (Aθ = 9o, Tθ = 10 days. The longshore direction in km is given on the vertical axis
and time t in days is given on the horizontal axis. The perturbations on top of the uniform bars is given by
the colours with blue the deepened areas, so erosion takes place, and red areas that became more shallow,
so net sedimentation takes place. The angle of incidence in degrees at the offshore boundary as a function of
time is also plotted for all cases.
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Figure 32: The root-mean square bar height ||h||(t) in meters as a function of time in days is given for
Run2T10, Run3T10 and Run4T10 as the red line, the blue line and the green line respectively. With the inner
domain indicated by the solid line and the outer domain with the dashed line. This shows the influence of the
amplitude of the of the wave angle at the offshore boundary at the mean growth rate ate the two domains.
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Figure 33: The longshore sections of a) Run6T2.5 (θ00 = 4o, Aθ = 3o and Tθ = 2.5 days), b) Run6T10 (θ00 = 4o,
Aθ = 3o and Tθ = 10 days) and c) Run6T25 (θ00 = 4o, Aθ = 3o, Tθ = 25 days. The longshore direction in
km is given on the vertical axis and time t in days is given on the horizontal axis. The perturbations on
top of the uniform bars is given by the colours with blue the deepened areas, so erosion takes place, and red
areas that became more shallow, so net sedimentation takes place. The angle of incidence in degrees at the
offshore boundary as a function of time is also plotted for all cases.
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Figure 34: Time evolution of the scaled discrete power of the Fourier coefficients of h(x, y, t) at x=40 m
(inner domain) and x=40 m (outer domain), is shown for a) Run5T2.5 b) Run5T10 c) Run5T25. The vertical
axis gives the dominant wavelength in meters as a function of the time t in days on the horizontal axis
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Figure 35: This figure shows the root-mean square bottom perturbation ||h|| in meters as a function of the
time in days. This is done for both the inner domain (solid line) and the outer domain (dashed line) for cases
Run5, the black lines and Run6T, the coloured lines.
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Figure 36: This figure shows the root-mean square bottom perturbation ||h|| in meters as a function of the
time in days. This is done for both the inner domain for cases Run5, the black lines and Run6T, the coloured
lines.

Figure 37: This figure shows the root-mean square bottom perturbation ||h|| in meters as a function of the
time in days. This is done for both the outer domain for cases Run5, the black lines and Run6T, the coloured
lines.
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Figure 38: The longshore sections of a) Run6T10 (Aθ = 3o), b) Run7T10 (Aθ = 6o) c) Run8T10 (Aθ = 9o).
The longshore direction in km is given on the vertical axis and time t in days is given on the horizontal
axis. The perturbations on top of the uniform bars is given by the colours with blue the deepened areas, so
erosion takes place, and red areas that became more shallow, so net sedimentation takes place. The angle of
incidence in degrees at the offshore boundary as a function of time is also plotted for all cases.
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Figure 39: The root-mean square bar height ||h||(t) in meters as a function of time in days is given for
Run6T10, Run7T10 and Run8T10 as the red line, the blue line and the green line respectively. With the inner
domain indicated by the solid line and the outer domain with the dashed line. This shows the influence of the
amplitude of the of the wave angle at the offshore boundary at the mean growth rate ate the two domains.
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