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Abstract

In this thesis the same Hawking temperature and Hawking-Bekenstein entropy of the
black hole and cosmological event horizon are derived as was done by Hawking in the
1970s. Mass functions for the Schwarzschild, de Sitter and Schwarzschild-de Sitter
spacetime are derived. Using the similarity between the derived laws of black hole me-
chanics with the laws of thermodynamics a temperature and entropy can be associated
with both event horizons through a Wick rotation. For both event horizons the tem-
perature is proportional to 1

2π the surface gravity and the entropy therefore is 1
4 the

area of the event horizon.

On the front page the first ever picture of a black hole taken by the Event Horizon
Telescope is displayed[1], the supermassive black hole is located in the center of the galaxy
M87. Its mass is estimated to be 6.5 billion times the Sun’s mass and it is the strongest
evidence today of the existence of black holes.
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1 Introduction

When black holes were first discovered in the early 20th century, it was hard to believe that
they could be real. They were mathematically infinitely dense infinitesimally small points
that curve spacetime so much that not even light can escape. If a ball falls in a black hole,
to an outside observer it appears as if time is slowing down asymptotically for the ball: it
never enters the black hole and freezes on the event horizon as it redshifts towards what the
human eye cannot see. The ball however, simply experiences spacetime as if it was flat and
enters the black hole without ever noticing when it can never go back. From the moment the
ball enters the event horizon, its fate is determined as it will inevitably hurdle down towards
the center of the black hole known as the singularity. In the reference frame of the observer
the ball (which carries information) is forever lost in the black hole. This violates keystone
principles of quantum mechanics and causes big problems, this is known as the information
paradox[2].
Half a century later black holes became again a very hot topic. In 1973 Bekenstein[3] ex-
plained intuitively that there has to be a connection between the area of the event horizon A
and the information lost in the black hole S. Hawking[4] showed in 1975 that this information
indeed could be stored on the event horizon of the black hole. He did this by showing that a
black hole radiates black-body radiation with a specific temperature known as the Hawking
temperature TH , this was done using particle creation in quantum field theory. In this the-
sis the same temperature is derived using a technique called Wick rotation. In comparison
with the laws of thermodynamics this then leads us to the proportionality constant between
entropy and black hole area.
Next to the discovery of black hole event horizons, cosmological event horizons may be even
more mysterious. These horizons appear in spacetimes with a positive cosmological constant
Λ, i.e. a vacuum energy density. A spacetime with a positive cosmological constant is known
as a de Sitter spacetime. The cosmological constant acts in such a way that it curves the fabric
of spacetime with constant curvature. This means that de Sitter spacetime is locally flat, but
as you look further away spacetime will be curved more and more. This curvature stretches
spacetime in such a way that it will take light coming from further destinations a longer time
to reach you. Eventually, this curvature becomes so large that not even light can escape from
its grasp. This happens at a two-sphere at constant radius known as the cosmological event
horizon. Einstein showed us of course that the curvature of spacetime is perceived by us as
gravitational acceleration. This means that as light, or other particles, approach us from
distant places in an asymptotically de Sitter Universe, spacetime is accelerating away from
us and therefore slowing the light down. This acceleration is also known as the expansion
of the Universe. This acceleration of further objects was also experimentally observed by
Hubble closely after Einstein published his theory of gravity, meaning that we most likely
live in an asymptotically de Sitter Universe.
The information paradox can be extended to also include cosmological event horizons by
considering a ball being thrown into it. Similar to the black hole horizon, the observer whose
cosmological event horizon we are considering will think time is slowing down for the ball as
it approaches the horizon. The ball however experiences spacetime locally so doesn’t notice
a thing when it passes the horizon, therefore information again seems to be lost. Seeing
the similarity between the black hole and cosmological event horizon we might be wondering
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if similar techniques can also be applied to both. In 1977 Hawking published a paper[5]
discussing the thermodynamics of the cosmological event horizons using the same approach
as used for black hole horizons. We will derive the same entropy and temperature using
similar techniques used for the black hole horizon.
In the following section we will give a short introduction to the mathematics of general
relativity. Next we will consider the Schwarzschild black hole in flat spacetime in detail. In
the fourth section the cosmological event horizon will be considered and in the final section
we will consider both horizons in one spacetime.
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2 The Einstein Equations

To study black holes it is essential that we understand the mathematics to describe curved
spacetime. The goal of this section is to give a brief understanding of the mathematics of
general relativity. This will be done by informally deriving all components of the Einstein
field equations:

Rab −
1

2
Rgab + Λgab = 8πTab. (1)

We will be denoting the metric tensor by gab with signature +2. First we consider the Einstein
field equations without a cosmological constant Λ, i.e. flat spacetime. The first two terms
on the left hand side arise from the Riemann curvature tensor:

Rc
dab = ∂aΓ

c
bd − ∂bΓcad + ΓcaeΓ

e
bd − ΓcbeΓ

e
ad, (2)

where

Γbac =
1

2
gbd(∂agcd + ∂cgda − ∂dgac), (3)

are the Christoffel symbols. Clearly there is a lot of new notation that needs to be explained.
In the following we will closely follow multiple sections of Sean Carroll’s ”Spacetime and
Geometry, An Introduction to General Relativity”[6].
A convenient way to understanding the Christoffel symbols is through the introduction of
the covariant derivative operator ∇. The covariant derivative is the curved spacetime gener-
alization of the partial derivative. The reason we need a new operator for taking derivatives
in curved spacetime is that the partial derivative is coordinate dependent. As we will see,
we will be working in different coordinate systems hence we need an operator that takes
derivates independent of the coordinates used. In the following we derive an expression for
the covariant derivative in an intuitive way. We will see that equations (2) and (3) will simply
follow from the conditions we impose.

We require the covariant derivative to obey (i) the Leibniz rule and (ii) linearity, these
are the most key algebraic identities need for differentiation. Mathematically this means
that the covariant derivative can always be written as a partial derivative plus some linear
transformation to make the result covariant. This linear transformation will be a set of
n matrices (Γa)

b
c, one matrix for every coordinate a. These matrices are known as the

connection coefficients and we will drop the parentheses from now on. We therefore have for
the covariant derivative of a vector

∇aV
b = ∂aV

b + ΓbacV
c. (4)

Similarly, the covariant derivative of a covector ∇aWb = ∂aWb + Γ̃cabWc. One can confirm
that the connection coefficients and the partial derivative do not transform as tensors, but
the covariant derivative as constructed above does.
Next we impose the conditions that the covariant derivative (iii) commutes with contractions
and (iv) reduces to the partial derivative when acting on scalars. By calculating ∇a(WcV

c)
and imposing the conditions just mentioned we conclude that Γbac = −Γ̃bac. Therefore, the
covariant derivative of a covector becomes

∇aWb = ∂aWb − ΓcabWc. (5)
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Lastly, we require (v) the connection to be torsion free, that is Γb[ac] = 0 and we require (vi)
the covariant derivative to be metric compatible. This gives us our unique expression for
the connection coefficients in equation (3), known as the Christoffel symbols. Note that this
expression is uniquely defined by the conditions we imposed. Different conditions lead to
different connections, but in this paper we will be only using the Christoffel symbols.

Figure 1: Parallel trans-
porting a vector on the sur-
face of a sphere.

To put this result to use, we need a quantity that measures
the curvature of spacetime. In flat space, a vector that is par-
allel transported1 along a closed loop will remain unchanged.
In curved space however, this is not true in general as can be
seen in Figure 1. One can imagine that how much the vec-
tor has changed after being parallel transported gives a mea-
sure of how curved spacetime is. Note that the commutator
of two covariant derivatives computes the difference between
parallel transporting a vector twice, but in different orders .
When acting on a vector, we can compute this commutator:
[∇a,∇b]V

c = Rc
dabV

d − 2Γd[ab]∇dV
c. Here the Riemann ten-

sor is defined as in equation (2). Recall that we are using the
Christoffel symbols, therefore the connection is torsion free.
We can contract the Riemann tensor to form the Ricci tensor
Rab = Rc

acb, and the trace of the Ricci tensor is the Ricci scalar
R = Rc

c.

The Riemann tensor is uniquely defined by the connection used.
We are using the Christoffel symbols and these are uniquely defined by the metric tensor.
Therefore for our purposes the Riemann tensor is uniquely defined by the metric tensor. The
first two terms in the Einstein field equations are the Ricci tensor and the Ricci scalar, which
are simply different contractions of the Riemann tensor and therefore describe the unique
curvature of spacetime.

The Tab on the right hand side of the Einstein equation is the energy-momentum tensor. It
contains information about non-gravitational force fields, i.e. the distribution of matter and
radiation. If we now look at the Einstein field equations it is still hard to notice what is going
on. Written down explicitly the equations are gcd(δeaδ

f
b − 1

2
gefgab)(∂c∂[fgd]e+∂e∂[dgf ]c) = 8πTab

from which we see that it is a set of second-order partial differential equations of the metric
tensor. Because the metric tensor is symmetric, there are 10 independent components of
the metric tensor. Therefore the Einstein field equations are a set of 10 second-order partial
differential equations of the metric tensor; matter tells spacetime curve, and curvature tells
matter to accelerate. We assume throughout this paper that Tab = 0. Thankfully for us, we
do not need to solve this differential equation because we will be using well known solutions.

If we now add the cosmological constant Λ into the mix we essentially are adding a constant
energy density throughout the Universe. This can be most easily seen by adding −Λgab to
both sides of equation (1), we can then interpret the new term as some gravitational energy-
momentum tensor given by TGab = − Λ

8π
gab. Using the properties of the energy-momentum

tensor we can then define a constant energy-density throughout the Universe: ρ = Λ
8π

.

1Parallel transporting a vector is the concept of keeping a vector constant while moving it along a path.



3 THE SCHWARZSCHILD BLACK HOLE EVENT HORIZON 5

3 The Schwarzschild Black Hole Event Horizon

We would like to understand the thermodynamic behaviour of the black hole event horizon.
It is conceptually easier to understand the event horizon of a black hole in flat space so
we will begin with only the black hole event horizon. The Schwarzschild metric describes a
nonrotating neutral black hole in flat spacetime and it was discovered by Karl Schwarzschild
in 1916. It is the most general spherically symmetric vacuum solution of the Einstein field
equations with vanishing cosmological constant. The metric line element is given by[7]

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2, (6)

here M is the mass parameter of the Schwarzschild black hole, dΩ2 = dθ2 +sin2 θdφ2 the two-
sphere line element and (t, r, θ, φ) denote the spherical coordinate system. We can identify
singularities in the metric by identifying components of the metric that blow up. In these
coordinates there are two singularities; a true singularity at the origin, and a coordinate
singularity at r = 2M known as the black hole event horizon.

Radial null geodesics (i.e. light rays) satisfy dr
dt

= ±(1 − 2M
r

), which is solved by t =
±(r + 2M log |2M

r
− 1|) = ±r∗, where r∗ is the tortoise coordinate. Note that + denotes

outgoing and − denotes ingoing geodesics. We can clearly see that t tends to infinity as
r tends to 2M , i.e. as seen by an outside observer it takes an infalling particle infinite
coordinate time to reach the event horizon.

Figure 2: Penrose dia-
gram for Schwarzschild
spacetime.

The singularity at r = 2M is only a coordinate singularity be-
cause it can be removed by choosing different coordinates. The
singularity at the origin cannot be removed and is therefore
a true singularity. The problem with our current coordinates
is that the time is measured on the observers clock. He can
never see a particle pass the horizon and therefore his time co-
ordinate goes to infinity. The particle however, can surely pass
the event horizon but this means that time has gone beyond
infinity causing for a contradiction. We can define a new time
coordinate by considering Eddington-Finkelstein coordinates.
In these coordinates, the time coordinate is measured by in-
coming or outgoing radial null geodesics, i.e. light rays. We
will consider the incoming Eddington-Finkelstein coordinates
defined as v = t+ r∗. In these coordinates the metric becomes:

ds2 = −(1− 2M

r
)dv2 + 2dvdr + r2dΩ2. (7)

Clearly there is no longer a singularity at r = 2M because no components of the metric
blow up there. In Figure 2 the Penrose diagram of this spacetime is displayed. A Penrose
diagram gives a two-dimensional display of the causal structure of the entire spacetime. We
can clearly see that the event horizon is the boundary between timelike geodesics inevitably
ending in the singularity or spatial infinity.
The event horizon is a two-sphere located at r = 2M and it has some interesting properties.
Similarly to the discussion in the previous section for the cosmological event horizon, we
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could consider the black hole event horizon. As we might guess there is also a gravitational
acceleration associated with this event horizon with respect to some observer. Using the
close connection of Killing horizons and event horizons we can calculate this acceleration as
will be done below. A Killing horizon is a null hypersurface whose normal vectors are also
Killing vectors. A null hypersurface is a surface whose normal vectors are also null, meaning
that they have vanishing norm. Killing vectors are vectors that satisfy Killing’s equation:

∇(aξb) = 0. (8)

Consider a hypersurface at constant radius S = S(x). It has normal vector n = f∂aS∂a =
fgar∂a. Here f = f(x) is a scalar function for normalization purposes. S is a null hypersurface
when its normal vector at every point is a null vector, i.e. when nan

a = f 2grr equals zero.
Clearly this becomes zero when r = 2M , therefore the event horizon of a Schwarzschild black
hole is a null hypersurface.
Next we would like to check whether the event horizon is also a Killing horizon, i.e. if ξ ∝ n
at the horizon for some Killing vector ξ. Note that from before we have n = fgar∂a =
f((1− 2M

r
)∂r + ∂v) which when evaluated at the horizon becomes n = f∂v.

The Schwarzschild metric has a timelike Killing vector, namely K = γt∂t = γt∂v. Note that
the normalization of this vector depends on γt. Clearly K ∝ n at the horizon and therefore
the event horizon of a Schwarzschild black hole is also a Killing horizon.
To define the surface gravity, we use a result often used in literature. Namely that we can
choose the function f such that na∇an

b = 0 at the horizon[8]. Because the horizon is also a
Killing horizon, we can use n ∝ K to write this as

Ka∇aK
b = κHK

b, (9)

evaluated at the event horizon. Here κH is the surface gravity of the black hole event horizon
and K a timelike Killing vector. The value of κ depends on the normalization of K and
therefore we require limr→∞KaK

a = −1 for asymptotically flat spacetimes, i.e. γt = 1.
Note that we used incoming Eddington-Finkelstein coordinates throughout this derivation.
It is important to use coordinates that are well-defined on the event horizon when evaluating
equation (9) otherwise one finds trivial results. To see why, we need to know what the surface
gravity in asymptotically flat spacetime means.

Consider for the following static observers, i.e. the four-velocity Ua is proportional to the
timelike Killing vector Ka with proportionality function V (x). The four-velocity is normal-
ized such that UaU

a = −1 and therefore the proportionality function is V =
√
−KaKa, it

ranges from zero at the horizon to one at infinity. Imagine two static observers, observer
1 is closer to the horizon than observer 2. Observer 1 emits a photon with conserved en-
ergy E = −paKa and observer 2 measures its frequency as ω = −paUa = EV −1. Similarly,
observer 1 emits a photon that will be observed by observer 2 with wavelength λ2 = V2

V1
λ1.

When observer 2 is at infinity (i.e. V2 = 1) the observed wavelength is λ2 = λ1/V1. Now it
is clear that we can interpret V as a redshift factor.
However, a static observer near a black hole will typically not be moving on a geodesic; it
needs to apply an acceleration to remain static. The four-acceleration aa = U b∇bU

a can be
expressed in terms of the redshift factor: aa = ∇a log V with normalization a =

√
aaaa =
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V −1
√
∇aV∇aV . This tends to infinity at the horizon, i.e. it takes an infinite acceleration to

stay on a static trajectory at the horizon. However, an observer at infinity will observe this
acceleration to be redshifted by a factor V . This redshifted acceleration as seen by a static
observer at infinity is known as the surface gravity; κH = V a =

√
∇aV∇aV .

So the surface gravity in asymptotically flat spacetimes is the acceleration needed to remain
static at the event horizon as measured by an observer at spatial infinity. In the original
Schwarzschild coordinates (t, r, θ, φ) the acceleration at the event horizon as seen by an
outside observer is zero because for an outside observer everything that enters the black
hole freezes before it reaches the event horizon. Therefore the observer will measure zero
acceleration at the event horizon. Coordinates that are non-singular at the horizon such
as Eddington-Finkelstein coordinates resolve this problem in an obvious way. Note that in
Eddington-Finkelstein coordinates the only nonzero component of Ka is the v component, we
then have for the left hand side in equation (9); Kv∇vK

v = KvΓvvcK
c = Γvvv = −1

2
gvr∂rgvv =

1
4M
Kv. Therefore we conclude that the surface gravity for the Schwarzschild black hole is

κH =
1

4M
. (10)

To see why the surface gravity is interesting for the thermodynamics of black holes we need to
calculate the mass function for a Schwarzschild black hole. This function relates characteristic
quantities of the spacetime with the mass parameter of the black hole.

In curved spacetime the notion of mass is not well defined, but in spacetimes with a global
timelike Killing vector we can construct a conserved2 energy current Ra

bK
b that can be

integrated over the spacelike hypersurface S, this is known as the Komar integral associated
with the timelike Killing vector K:

ES =
1

4π

∫
S

Ra
bK

bdSa. (11)

Here, 1
4π

is for normalization and dSa = ta
√
γ(3)dS where ta is a timelike unit normal vector

to S and γ(3) the determinant of the induced metric tensor on S. By using the identity3

∇b∇bξa = −Ra
bξ
b, Stokes’ theorem and Killing’s equation we can write this expression as a

surface integral:

ES = − 1

4π

∫
∂S

∇bKadAab. (12)

Here ∂S is a closed surface that encloses S and dAab = tasb
√
γ(2)dA where ta and sb unit

normal vectors to ∂S and γ(2) the determinant of the induced metric tensor on ∂S. Note that
if we have S be the entire spacetime, then ∂S becomes a closed surface at spatial infinity.
ER then represents the total energy contained in spacetime. Because a Schwarzschild black
hole is static and spherically symmetric S is spacelike, therefore the normal vectors must
have normalization tat

a = −1 and sbs
b = +1. This normalization defines the normal vectors

as ta = ((1− 2M
r

)−1/2, 0, 0, 0) and nb = (0, (1− 2M
r

)1/2, 0, 0). By noting that
√
γ(2) = r2 sin θ

one can easily verify that equation (12) simplifies to ES = M where M is the same mass

2See Appendix A.1.
3See Appendix A.2 for a proof.
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parameter as in the Schwarzschild line element (equation (6)). Thus, the energy contained in
the entire Schwarzschild spacetime is the same as the mass of the black hole, which is exactly
what we would expect since Tab = 0.
Alternatively, we could consider the spacelike region S∞ outside of the event horizon. Now
there are two boundaries, one at spatial infinity ∂S∞ and one at the event horizon ∂H.
Clearly the integral over the surface at spatial infinity gives M as shown above, but the other
term requires a little more attention. It can be interpreted as the negative of the energy
contained inside the event horizon. Negative because the normal vectors of ∂H will point
towards spatial infinity and not the center of the black hole.
As shown before, the event horizon of the Schwarzschild black hole at r = 2M is a Killing
horizon and the Killing vector that is normal to this horizon is K = ∂t. Therefore, we can
choose the normal vectors to ∂H such that ta = Ka and tas

a = −1[9]. By equation (12) we
then have for the integral over ∂B: − 1

4π

∫
∂H
Ka∇bKasb

√
γ2dA = − 1

4π
κHAH . Here AH =∫

∂H

√
γ2dA = 16πM2 is the area of the black hole event horizon. For the second equality

we used the definition of the surface gravity (equation (9)) and that the surface gravity is
constant across the event horizon, known as the zeroth law of black hole mechanics[9]. Clearly
this simplifies to −M . The energy contained in S∞ is the sum of the energy trapped between
the surfaces ∂S∞ and ∂H. Therefore, the mass contained in S∞ is trivially zero, which is
exactly what we expect because we are considering vacuum solutions.
The result that is most useful to us is that the energy contained inside H (the spacelike
region enclosed by the event horizon) can be written as

EH = M =
1

4π
κHAH . (13)

For reasons that will become clear later, we would like to calculate the differential of this
equation. By computing the variations of the Komar integrals explicitly, variation of M is
δM = (8π)−1κHδAH [9]. However, the same result can be achieved in a different way. Note
that AH = πκ−2

H , and therefore dκH = −(2π)−1κ3
HdAH . Then the differential of equation

(13) becomes:

dM =
1

8π
κHdAH , (14)

We have differentials instead of variations because we first evaluated the integrals and then
calculated the differential, whilst when calculating the variation we do it the other way
around. This equation is known as the first law of black hole mechanics. Note the similarity
with the first law of thermodynamics dE = TdS, the work terms are zero because we are
considering a static neutral black hole.
Hawking showed that a classical black hole’s area can never decrease[10], i.e.

dA

dt
≤ 0. (15)

This is known as the second law of black hole mechanics. There is a similar law to this
equation; the second law of thermodynamics. It says that the total entropy of a system never
decreases. The zeroth law of thermodynanamics can be formulated such that it says that
the temperature is constant across the surface of a body in thermal equilibrium. This is
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similar to the zeroth law of black hole dynamics[9], which states that the surface gravity is
constant across the event horizon of a black hole. The similarity between the laws of black
hole mechanics and the laws of thermodynamics imply temperature to be proportional to
surface gravity and entropy to be proportional to the are of the event horizon. This would
resolve the the information paradox in some sense; information is never lost, simply stored on
the event horizon forever. Bekenstein discussed this relation between the area and entropy
of a black hole in detail in [3].
Hawking showed[4] that black holes radiate black-body radiation with the Hawking tempera-
ture through particle creation. We will derive the same equation through a Wick rotation. A
Wick rotation connects the cyclic imaginary time-coordinate with the inverse temperature of
a thermodynamic system. This is done through a connection between statistical mechanics
and quantum mechanics. To see where this relation comes from we can consider the average
value of an observable A of a large number of harmonic oscillators with temperature T :

〈A〉 =
∑
n

Ane
−En

T , (16)

here An is the observables value in the nth state and En the energy of the nth state.
Consider now a single quantum harmonic oscillator |φ〉 =

∑
n |n〉 in a superposition of uniform

basis states |n〉. The probability amplitude that |φ〉 evolves to an arbitrary state |A〉 =∑
nAn |n〉 is

〈A| e−iHt |φ〉 =
∑
n

Ane
−iEnt. (17)

Comparing these equations shows the relation between imaginary time and inverse temper-
ature.
We will now perform this a Wick rotation on equation (6), consider the transformation
τ = −it; the metric then becomes ds2 = +(1 − 2M

r
)dτ 2 + (1 − 2M

r
)dr2. For the sake of

convenience we will neglect the two-sphere part of the metric. A Wick rotation gives a way to
relate cyclic imaginary time to the temperature of a thermodynamic system. Hence we make
our imaginary time cyclic on the interval τ ∈ [0, T−1]/ ∼, the tilde denotes that the interval is
periodic. The surface gravity is defined on the event horizon, so we will have to do the same
for the temperature. Define the new radial coordinate χ = r−2M and expand to lowest order
around the event horizon. The metric up to first order is then ds2 ≈ χ(2M)−1dτ 2+2Mχ−1dχ2.
To make the metric more familiar we define a new coordinate ρ2 = 8Mχ, the metric then
becomes ds2 ≈ ρ2 dτ2

16M2 +dρ2. This is simply a canonical metric and to avoid conic singularities
we must require τ

4M
∈ [0, 2π]/ ∼. Comparing with our previous compactification gives us

Hawking’s famous result

TH =
κH
2π

=
1

8πM
. (18)

That is, a Schwarzschild black hole radiates black-body radiation with temperature TH =
(8πM)−1. Comparing the equation(14) and the first law of thermodynamics. We conclude
that the entropy of a Schwarzschild black hole is proportional to one fourth of the black hole
event horizon area:

SH =
AH
4

= 4πM2. (19)

We will discuss this result in the final section after we have also derived a similar relation for
the cosmological event horizon.
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4 The Cosmological Event Horizon

As we saw in the last chapter, it takes quite some calculations before we get to the entropy
and temperature of a black hole. In this section, we will go through similar calculations but
for a different spacetime. The metric we are considering is the de Sitter metric:

ds2 = −(1− r2

l2
)dt2 + (1− r2

l2
)−1dr2 + r2dΩ2. (20)

where l =
√

3
Λ

. Even though there is no black hole in de Sitter spacetime, there is a

coordinate singularity at r = l, called the cosmological event horizon. Radial null geodesics
satisfy dr

dt
= ±(1 − r2

l2
), which is solved by t = ± l

2
log |r+l||r−l| = ±r∗. In these coordinates,

outgoing null geodesics as seen by an observer inside the cosmological horizon will take
infinite coordinate time to reach the cosmological horizon.

Figure 3: Penrose diagram
for de Sitter spacetime.

To see that there are no true singularities in de Sitter we have
to define new coordinates. By going to incoming Eddington-
Finkelstein coordinates v = t+ r∗ we can write the metric as

ds2 = −(1− r2

l2
)dv2 + 2dvdr + r2dΩ2. (21)

Clearly there no longer are any singularities. As before, we
will first verify that the cosmological horizon is a Killing hori-
zon and then compute the surface gravity associated with it.
The Penrose diagram for this spacetime is shown in Figure 3.
We can again clearly see that the event horizon separates two
regions of spacetime.
Consider a two-sphere of constant radius S(x) = r. A vector
normal to S(x) is n = f∂aS∂a = fgar∂a. The two-sphere is a
null hypersurface when its normal vectors have vanishing norm,
i.e. when nan

a = f 2grr equals zero. Clearly this happens at the cosmological horizon r = l
and therefore the cosmological horizon of de Sitter spacetime is a null hypersurface.
To show that the cosmological horizon is also a Killing horizon we need to show that ξ ∝ n at
the horizon for some Killing vector ξ. Note that from before we have n = f((1− r2

l2
)∂r − ∂u)

which when evaluated at the horizon becomes n = −f∂u. De Sitter has no globally defined
timelike Killing vector; the Killing vector K = γt∂t = γt∂u is timelike in the region enclosed
by the horizon, null at the horizon and spacelike beyond the horizon. As will be clear when
calculating the mass of de Sitter, we will only be looking at the spacetime region enclosed
by the cosmological horizon where K is always timelike. Clearly K ∝ n at the horizon and
therefore the cosmological event horizon of a de Sitter universe is also a Killing horizon.
We now do the same as in the previous section, we choose the normalization function f such
that na∇an

b = 0 at the horizon. Because the horizon is also a Killing horizon we can use
n ∝ K to write this as

Ka∇aK
b = κCK

b, (22)

evaluated at the cosmological horizon. Here κC is the surface gravity of the cosmological
event horizon and K a timelike Killing vector. Clearly the value of κC depends on the
normalization of K, therefore we require limr→0KaK

a = −1 for de Sitter, i.e. γt = 1.
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In Eddington-Finkelstein coordinates, the only nonzero component of the timelike Killing
vector is Kv, then the left hand side in equation 22 is Kv∇vK

v = Γvvv = −1
2
gvr∂rgvv = −1

l
Kv.

Therefore the surface gravity for the cosmological horizon of de Sitter spacetime is κC = −1
l
.

Similarly to the discussion for Schwarzschild, the surface gravity can be interpreted as the
acceleration needed to remain static at the cosmological event horizon as measured by an
observer at the origin. Because we are using incoming Eddington-Finkelstein coordinates,
our time coordinate v is the time experienced by an incoming null geodesic. The gravitational
acceleration of spacetime due to the cosmological constant is therefore negative with respect
to incoming null geodesics, so we will also get a negative result for the surface gravity.
If we would have done the same calculation with outgoing Eddington-Finkelstein coordinates
(u = t − r∗) we would have gotten the same result but positive. To keep things consistent
with the black hole case we will keep considering ingoing Eddington-Finkelstein coordinates,
however it is important to keep in mind where this sign difference comes from. This means
that the surface gravity of the cosmological event horizon in a de Sitter spacetime is

κC = −1

l
(23)

As said before, there is no globally defined timelike Killing vector in de Sitter, the Killing
vector K = ∂t is only timelike in the region enclosed by the cosmological horizon. This means
that we cannot take the Komar integral of the current Ra

bK
b over all of spacetime because

that would cause for divergence issues for regions outside of the cosmological horizon. We
therefore need another way to define the mass of de Sitter. An observer in de Sitter only
has access to the region enclosed by the cosmological horizon and can never exit this region.
Therefore it seems logical to only consider the flux of the energy current in the region that is
accessible to the observer. The energy contained in the region enclosed by the cosmological
horizon C is

EC = − 1

4π

∫
∂C

∇bKadAab, (24)

where all quantities are as defined for Schwarzschild and ∂C denotes the cosmological horizon.
The cosmological horizon is a Killing horizon for the Killing vector K = ∂t as shown above.
Therefore we can choose the normal vectors to ∂C such that ta = Ka and tas

a = −1. Then
equation (24) can be written as

EC = − 1

4π

∫
∂C

Ka∇bKasb
√
γ(2)dA,

= − 1

4π
κCAC ,

(25)

where AC =
∫
∂C

√
γ(2)dA = 4πl2 is the area of the cosmological event horizon. This simplifies

to EC = −l, so the mass of de Sitter is inversely proportional to the cosmological constant.
By using the same method as before, we can calculate the differential of equation (25). Note
that AC = 4πκ−2

C , and therefore dκC = −(8π)−1κ3
CdAC . The first law of cosmological event

horizons is therefore

dEC = −dl = − 1

8π
κCdAC (26)
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This equation is very similar to the differential formula we derived for Schwarzschild. Having
already seen the similarity between the first law of black hole mechanics and the first law
of thermodynamics we might ask ourselves if there is a similar relation for the cosmological
event horizon. Next we will calculate the temperature associated with the cosmological event
horizon by performing a Wick rotation as was done for Schwarzschild.
We will again omit the 2-sphere part of the metric and compactify the imaginary time
coordinate such that τ ∈ [0, T−1]/ ∼. The de Sitter metric then becomes an Euclidean
metric given by ds2 = +(1− r2

l2
)dτ 2 + (1− r2

l2
)−1dr2. We are interested in the behaviour near

the cosmological horizon, therefore we make the substitution l2−r2 = χ2 and expand to lowest
order in χ around r = l. The metric near the cosmological horizon is then ds2 ≈ χ2l−2dτ 2 +
dχ2. Which can be written as the canonical metric of a two-sphere ds2 = dr2 + r2dφ2 if we
identify φ = τ l−1. We require φ ∈ [0, 2π]/ ∼ such that there are no conic singularities. This
implies that τ ∈ [0, 2πl]/ ∼ and comparing this with the compactification of τ gives us the
temperature of the cosmological event horizon

TC = − κc
2π

=
1

2πl
. (27)

This result is the same as found by Hawking[5]. In combination with the first law of thermo-
dynamics dE = TdS we find that this implies that the entropy of the cosmological horizon
is

SC =
AC
4

= πl2, (28)

similar to the Schwarzschild black hole. This entropy can be interpreted as the information
that was lost by particles that went across the horizon. Although we have derived an ex-
pression for this entropy of the cosmological event horizon indirectly, a full proof in quantum
gravity has not been discovered.
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5 The Schwarzschild Black Hole in asymptotically de

Sitter spacetime

In the previous sections we discussed spacetimes with either a black hole or cosmological
event horizon. In this section we consider a spacetime with both horizons, known as the
Schwarzschild-de Sitter metric:

ds2 = −(1− 2M

r
− r2

l2
)dt2 + (1− 2M

r
− r2

l2
)−1dr2 + r2dΩ2, (29)

where M the black hole mass and l =
√

3
Λ

(which is no longer the radius of the cosmological

event horizon). For 0 < M < l
3
√

3
there are two coordinate singularities, namely the two

positive roots of (1− 2M
r
− r2

l2
). They are rather messy to write down so we will denote the

smaller root by rH and the larger root by rC , they represent respectively the black hole event
horizon and the cosmological event horizon. One interesting property of these horizons is
that if rH increases, then rC decreases and thus bringing the horizons closer together as M

increases. When M =
√

3
Λ

the two horizons coincide, this is known as the Nariai solution.

Next to the two positive roots, there is also a negative root which we will denote by r−−.
Radial null geodesics obey dr

dt
= ±(1 − 2M

r
− r2

l2
), which can be integrated by using partial

fractions and the roots given above, the solution is t = ±l2(A1 log |r − rH |+A2 log |r − rC |+
A3 log |r − r−−|) = ±r∗. Here the A’s are constants determined by M and l. This simply
shows that null geodesics that approach the black hole or cosmological horizon from the
region in between the horizons will never reach the horizons as seen by an observer with
rH < r < rC .

Figure 4: Penrose diagram for
Schwarzschild-de Sitter spacetime.

Just as we did for the individual horizons, we would
like to calculate the surface gravity of both horizons.
The incoming Eddington-Finkelstein coordinates for
Schwarzschild de Sitter are obtained by replacing the
t coordinate by v = t+ r∗, then the metric becomes

ds2 = −(1− 2M

r
− r2

l2
)dv2 + 2dvdr + r2dΩ2. (30)

This metric only has a true singularity at the origin.
The Penrose diagram for this spacetime is given in
Figure 4. This time there are two event horizons
and therefore there are multiple separated regions
as spacetime can be extended horizontally infinitely
many times.
We can quickly confirm that both event horizons are null hypersurfaces by computing their
normal vectors l2 = f 2(1− 2M

r
− r2

l2
), this is clearly zero at both horizons. Note as well that

l = fgar∂a = f((1 − 2M
r
− r2

l2
)∂r + ∂v) which when evaluated at both horizons simplifies to

l = f∂v. Since K = γt∂v is a Killing vector, both event horizons are clearly Killing horizons.
In the previous sections we were very lucky with the normalization of the timelike Killing
vector because γt = 1 in both cases. In the Schwarzschild de Sitter case we will need a
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different normalization as the ones from before do not make sense in this spacetime. In the
previous sections we unintentionally chose to normalize with respect to the place at which
an observer does not require any acceleration to stay there. In Schwarzschild and de Sitter
these locations are respectively at spatial infinity and the origin. Similarly, we would like to
find where this happens in Schwarzschild de Sitter. The radius of the two-sphere at which
the effects of the cosmological expansion and the black hole attraction balance out exactly

is rg = (Ml2)1/3. The normalization constant of K is then simply γt = (1− 2M
rg
− r2g

l2
)−1/2 =

(1− (27M2

l2
)1/3)−1/2. The timelike Killing vector for Schwarzschild de Sitter is now normalized

such that limr→rg K
2 = −1.

Following the same reasoning as in the previous sections, we can write down the defining
equation for the surface gravity of both horizons:

Ka∇aK
b = κH,CK

b, (31)

where the surface gravity is associated with the event horizon on which the equation is
evaluated. Here K is the unique timelike Killing vector normalized as discussed above.
Note that we can write the gvv component of the metric tensor as (r−rH)(r−rC)(r−r−−)

rl2
. In

Eddington-Finkelstein coordinates the left hand side of equation (31) becomes Kv∇vK
v =

γ2
t Γ

v
vv = 1

2
γ2
t g

vr∂r(−gvv). Evaluating this expression at the black hole and cosmological event
horizon gives us the surface gravity of both horizons[11]:

κH = γt
(rC − rH)(rH − r−−)

2rH l2
, κC = γt

(rH − rC)(rC − r−−)

2rC l2
. (32)

Our definition of the surface gravity is negative because we have used incoming Eddington-
Finkelstein coordinates, therefore the acceleration near the cosmological event horizon is
negative resulting in a negative surface gravity.
We now would like an expression for the mass of the Schwarzschild de Sitter spacetime. The
Killing vector K is only timelike in the region between the two horizons, therefore we will
take the Komar integral over the spacelike region S enclosed by the cosmological and black
hole event horizon. The energy contained in this region is then

ES = − 1

4π

∫
∂H

∇bKadAab −
1

4π

∫
∂C

∇bKadAab, (33)

where all quantities are as before. Note that the surface ∂H points outwards and ∂C points
inwards. Therefore the first integral is the negative of the energy contained inside the black
hole and the second integral is the energy contained inside of the cosmological horizon. We
have already evaluated both expressions in the previous sections and therefore the mass
function for Schwarzschild de Sitter is:

ES = − 1

4π
κHAH −

1

4π
κCAC = −MH +MC . (34)

Which is exactly what we would expect. As in the previous sections we can relate the
differential of the mass function to the first law of thermodynamics. This is known as the
first law of black hole mechanics with a cosmological constant

dES = − 1

8π
κHdAH −

1

8π
κCdAC . (35)
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Next we would like to compare this expression with the first law of thermodynamics. We can’t
just state our previous results because our metric has changed, and therefore the calculations
will be different. First we will perform a Wick rotation to calculate a temperature associated
with both horizons.
We will ignore the two-sphere part of the metric as usual. By going to the imaginary time
coordinate τ = −it and rewriting the metric components we can write the metric as: ds2 =
− (r−rH)(r−rC)(r−r−−)

rl2
dτ 2 − rl2

(r−rH)(r−rC)(r−r−−)
dr2. Written down like this it is directly clear

where the horizons are. First we consider the black hole event horizon. Define χ = (r − rH)
and expand up to first order around the black hole event horizon, we have: ds2 ≈ AHχdτ

2 +
1

AHχ
dχ2, here AH = (rC−rH)(rH−r−−)

rH l2
. By defining ρ2 = 4χ

AH
we can write this metric in a more

familiar form: ds2 = ρ2(AHdτ
2

)2 + dρ2. We now identify AHτ
2

as φ ∈ [0, 2π]/ ∼ such that there
are no conic singularities. Comparing with our compactification of the imaginary time we
end with the Hawking temperature of the black hole

TH =
AH
4π

=
κH

2πγt
, (36)

where κH as in equation (32). This is the temperature an observer would measure as the
temperature of the black hole event horizon. Note that the normalization constant in the
expression of the surface gravity cancels out giving us the same result as Hawking[4].
We can do exactly the same for the cosmological event horizon, but now define χ = (r− rC)
and expand up to first order around the cosmological event horizon. Similar calculations will
give

TC =
AC
4π

=
κC

2πγt
, (37)

where AC = (rH−rC)(rH−r−−)
rC l2

and κC as in equation (32). Comparing equation (35) with the
modified second law of thermodynamics −THdSH + TCdSC we find that the temperature we
found in equation (37) actually is the negative of the temperature of the thermodynamic
system we are considering. Therefore the actual measured temperature of the cosmological
event horizon will be the negative of TC , giving us the same relation as in [5]. We find the
same proportionality constant between the area of a horizon and the entropy that is stored
on it as before

SH =
AH
4
, SC =

AC
4
. (38)

We have found that the entropy is proportional to one fourth the area of the event horizon in
question. Similar results have been found in string theory in the black hole case, but for the
cosmological event horizon the result is not confirmed. This relation implies that information
must be stored on the event horizon forever resolving the information paradox. Bekenstein
showed[12] that black holes attain the maximum amount of entropy-to-energy ratio possible;
black holes contain a lot of information. However, by the no hair theorem a black hole can
only have three characteristic properties, its mass, spin and charge. This means that even if
information is stored on the event horizon, it is impossible to reverse engineer the dynamics
of the black hole to figure out what information fell into it. However, Hawking has shown[4]
that black holes radiate black-body radiation with the Hawking temperature causing them
to evaporate. This again causes information to be destroyed, however recent developments
in string theory might have resolved the information paradox once and for all.
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A Appendix

A.1 Conservation of Ra
bξ

b

In this appendix we will show that the current Ra
bξ
b is conserved. Consider the Bianchi

identity
∇[aR

e
bc]d = 0. (39)

Contracting this expression yields the contracted Bianchi identity

∇aR
a
b =

1

2
∇bR. (40)

Using the contracted Bianchi identity and Killing’s equation (equation (8)) we can now show
the conservation of the current.

∇a(R
a
bξ
b) = (∇aξ

b)Ra
b + ξb(∇aR

a
b ),

=
1

2
ξb∇bR,

= 0.

(41)

For the second equality follows from the symmetric and antisymmetric properties of respec-
tively Ra

b and ∇aξ
b. For the last equality we used that the directional derivative of the Ricci

scalar along a Killing vector vanishes. This follows from the contraction of equation (46):

∇a∇bξ
a = Rbaξ

a, (42)

with the Bianchi identity. Together with Killing’s equation one finds

ξb∇bR = 0, (43)

which confirms the last equality in equation (41).

A.2 Identity ∇b∇bξa = −Ra
bξ

b

In this appendix we will prove a crucial identity used for the Komar integral. For any vector
V we have

∇[a∇bVc] =

1

6
([∇a,∇b]Vc + [∇b,∇c]Va + [∇c,∇a]Vb),

=
1

6
(RcdabV

d +RadbcV
d +RbdcaV

d),

=
1

6
(Rcdab +Radbc +Rbdca)V

d,

= 0.

(44)

In the second equality we used [∇a,∇b]V
c = Rc

dabV
d because the torsion tensor is zero for

the Christoffel connection. In the last equality we used the first Bianchi identity Ra[bcd] = 0
which can be verified after some algebra by plugging in the definition of the Riemann tensor.
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If we now take for the vector V a Killing vector ξ we have:

∇[a∇bξc] =
1

6
(∇a∇bξc −∇a∇cξb +∇b∇cξa

−∇b∇aξc +∇c∇aξb −∇c∇bξa),

=
1

3
(∇a∇bξc +∇b∇cξa −∇c∇bξa),

=
1

3
(∇a∇bξc + [∇b,∇c]ξa).

(45)

In the second equality we used Killings equation ∇(aξb) = 0. However, as we saw in equation
44 this equals zero, therefore we have:

∇a∇bξc = −[∇b,∇c]ξa,

= −Radbcξ
d,

= Rcbadξ
d.

(46)

In the last equality we used the skew symmetry and interchange symmetry of the Riemann
tensor. Clearly we have ∇b∇cξ

a = Ra
cbdξ

d, we can now multiply by gbc to get the desired
result.

∇b∇bξa = −Rba
bdξ

d = −Ra
bξ
b, (47)

where we used the definition of the Ricci tensor.
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