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Introduction  
 

In meta-analysis, it is often the case that a lot of between study variance is present, but the 

exact sources remain unexplored. An exploratory moderator analysis investigates the study 

heterogeneity by including study characteristics as covariates. However, when performing such an 

analysis, a lot of characteristics, or “moderators”, are measured and it may be unclear which are 

relevant and which are not. This, together with the fact that in meta-analysis the number of included 

studies can be fairly low, causes some trouble when trying to correctly perform a meta-analysis. This 

trouble has to do with the interpretability and the predictive power of the model that gets fitted by the 

meta-analysis. Earlier efforts to solve the problem of moderators within a meta-analytic setting proved 

to perform really well under these circumstances. The tree-based meta-analytic tool proved to have 

sufficient power at a low amount of studies included when the moderators were continuous (Van 

Lissa, 2017). However, in a situation where moderators are binary, there is still much to be gained. 

We intend to solve this problem by making use of penalized regression. But before it seems 

reasonable to clarify some core principles about meta-analysis and its importance in research in 

general.  

In recent years, the need for making conflicting and complicated results across studies more 

accessible and usable has increased. A good way to do this is by undertaking a systematic review of 

the existing literature of that topic (Bambra, 2011). Primary to new research, usually a literature 

review is performed of the existing literature on the same topic. A systematic review is more or less 

the same as an ordinary literature review, but it tries to do it in a thorough and fair way (Kitchenham, 

2004).  The thoroughness is reflected in that a systematic review does not only provide a simple 

overview of the literature, but it tries to identify, select, synthesize and value all research evidence 

relevant to a certain topic (Neely et al., 2010). Often an integral part of systematic reviewing is the 

review quantitative data of the individual studies. The most common and effective way to do this is 

with meta-analysis. 

Meta-analysis is a statistical method which utilizes several tools to synthesize the data of 

multiple studies on the same topic, with the purpose of finding a result that is more trustworthy. What 

meta-analysis does is simply weighting all the observed effect sizes of the individual studies and 

averaging them to one summary effect. Although this explanation is a bit too simplistic, in essence 

this is what meta-analysis is about. Meta-analysis assigns weights to each individual study based on 

different assumptions which are set in advance. These weights determine to what extent an individual 

study takes part in the eventual summary effect.  
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Classic meta-analytic approaches 
 

The two classic approaches of meta-analysis refer to fundamental different assumptions made 

about the underlying data. These assumptions define the weights and will also determine which 

methods are used for the weighting of individual studies and for the creation a summary effect. 

The first approach is referred to as the as the fixed-effect model. This model assumes that 

each observed effect size, obtained from each individual study, is an estimate of an underlying true 

effect size (Hedges & Vevea, 1998). The true effect sizes are treated as, unknown, constants. The only 

source that causes the deviation of the observed effect from the, unknown, true effects is sampling 

error. Thus, for a collection of k studies, the observed effects size yi of each individual study i (for i = 

1,2, . . . k) is given by: 

𝑦𝑦𝑖𝑖 = 𝜃𝜃 + 𝜖𝜖𝑖𝑖       (1) 

Where 𝜃𝜃 is the true effect size of each individual study i and 𝜖𝜖i follows the distribution of N(0,vi) with 

vi being the sampling error or within-study variance, which is treated as a known factor. 

The second model is the random-effects model. This approach makes an additional 

assumption, namely about the true effect sizes. Where the fixed-effect model treats the true effects as 

constants, the random-effect model assumes that the true effects are random and follow a distribution 

of their own (Hedges & Vevea, 1998). This means that variation in the observed effects (yi) in the 

random model incorporates not only the sampling error but also the variation of the true effect sizes 

(𝜏𝜏2) between the studies. In the case of the random effect model the observed effect size of yi is, given 

by: 

 

𝑦𝑦𝑖𝑖 =  𝜃𝜃𝑖𝑖 + 𝜖𝜖𝑖𝑖       (2) 

With 𝜖𝜖i ~ N(0,vi) but, in this case 𝜃𝜃i on itself is given by: 

𝜃𝜃𝑖𝑖 = 𝜇𝜇 + 𝜁𝜁𝑖𝑖       (3) 

With 𝜇𝜇 being the mean of the distribution of the true effect sizes and 𝜁𝜁i following the distribution 

N(0,𝜏𝜏2) with 𝜏𝜏2 being the variance of the population of true effect sizes. It could also be explained as 

the variance between the individual studies.  

In both models we are interested in the summary effect of all the individual studies. In the 

case of the fixed-effect model it is natural to estimate this summary effect by pooling from all the 

individual observed effects. However, individual studies with a low sampling error possess the ability 

to estimate the underlying true effect more accurately, thus it could be argued that the studies with a 

lower sampling error should weight more in the eventual summary effect. This means that a lower 

error variance should lead to a higher weight. The individual weights (Wi) in the fixed-effect model 

are given by: 
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𝑊𝑊𝑖𝑖 = 1
𝑣𝑣𝑖𝑖
       (4) 

The assumptions that sampling error is the only source of variation, makes it in this case the 

only factor which is important for the process of assessing weights to each study. The assumptions 

that sampling error is the only source of variation, makes it in this case the only factor which is 

important for the process of assessing weights to each study. However, in the case of random-effects, 

the true effects also follow a distribution, so therefore the between study variance is also taken into 

account when composing the weights for the individual studies. The individual weights for the 

random-effect model are given by: 

𝑊𝑊𝑖𝑖 = 1
𝑣𝑣𝑖𝑖+𝜏𝜏�2

      (5) 

In the case of the random-effect model, the within-study- and between-study variance is necessary for 

the calculation of the weights. It is important to note that in the calculation of the individual weights, 

an estimation of study heterogeneity is used (�̂�𝜏2). While the sampling error is known for each 

individual study, the true effect heterogeneity (𝜏𝜏2) remains unknown. Therefore, an estimation of the 

heterogeneity value needs to be made to effectively calculate the weights. This estimation of the 

between-study variance is thus represented by �̂�𝜏2. 

 

Meta-regression  

 

 While these two models are presented here as two possible approaches to meta-analysis, it 

seems that the assumption of a fixed-effect seems to rarely hold in social sciences. The pursuit of 

capturing human behaviour in research remains very complex (Earp & Trafimow, 2015). It has been 

shown that conducting a perfect replication of a study of social sciences is just about impossible. The 

main reason for this, is that similar research questions are studied in different laboratories, using 

different methods, instruments and samples (Van Lissa, 2017). This may cause substantial between-

study heterogeneity and this does influences how interpretable the conclusions of the meta-analysis 

are (Higgins & Thompson, 2002). However, simply recognizing heterogeneity is not enough. The 

meaning and source of the heterogeneity should be explored (Baker et al., 2009; Higgins, Thompson 

& Spiegelhalter, 2009). The characteristics on which studies of the same topic may differ, better 

known as “moderators”, could explain some of the heterogeneity in the effect sizes and should 

therefore be investigated. The process of examining the relationship between study characteristics and 

the effect sizes is most often done by a meta-regression (Viechtbauer & López-López, 2015). Meta-

regression aims to relate the size of the effect to one or more characteristics of the studies involved. 

As multiple regression is used to assess the relationship between subject-level covariates and an 

outcome, meta-regression in meta-analysis is used to assess the relationship between study-level 

covariates and the effect size. In the case of fixed- and random-effect meta-analysis, the observed 
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effects are treated as estimations of the underlying true effect. In meta-regression the observed effects 

are estimated by the including the moderators. In other words, the true effect is now replaced by the 

moderator effects. This is expressed with the following equation, where 𝜃𝜃𝑖𝑖 represents the underlying 

true effect, x the moderators, the coefficients, with p being the number of moderators: 

𝜃𝜃𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜁𝜁𝑖𝑖     (6) 

When this is substituted in the original equation it will result in: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜁𝜁𝑖𝑖 + 𝜖𝜖𝑖𝑖   (7) 

The error term 𝜁𝜁i captures the residual heterogeneity after accounting for the moderators. This term is 

still included because it is often the case that there still remains heterogeneity unexplained after 

accounting for the moderators (Thompson & Sharp, 1999). In this model the moderator effects are 

treated as fixed and the residual heterogeneity as random. Therefore, it is referred to as a mixed-effect 

meta-regression analysis model, in short, ME-MRA (Viechtbauer & López-López, 2015). To solve 

this ME-MRA model, both the residual heterogeneity and the moderator coefficients need to be 

estimated. An accurate estimation of the residual heterogeneity contributes to a better interpretation of 

the effect of the moderators (Panityakul, Bumrungsup & Knapp, 2013). 

   

Estimating residual heterogeneity 

 

The topic of estimating the residual heterogeneity is a highly discussed one (Veroniki et al., 

2016; Viechtbauer & López-López, 2015; Panityakul et al., 2013). Numerous methods have been 

proposed to accurately estimate the residual heterogeneity, including the Hedges (HE), DerSimonian–

Laird/Method of Moments (DL), Sidik and Jonkman (SJ), Maximum Likelihood (ML), Restricted 

Maximum Likelihood (REML), and Empirical Bayes (EB) method. These methods are mostly divided 

into two groups: closed-form or non-iterative methods and iterative methods. The main difference 

between these groups is that the closed form group uses a predetermined number of steps to provide 

an estimation for the residual heterogeneity, whereas the iterative methods run multiple iteration, as 

the name suggests, to converge to a solution when a specific criterion is met. It is important to note 

that some iterative methods do not produce a solution when they fail to converge after a 

predetermined amount of iteration.  

The ability of the estimators to predict the residual heterogeneity is influenced by different 

factors, such as the number of studies (Guolo & Varin, 2017; Panityakul et al., 2013; Hardy & 

Thompson, 1996) included and the sample size of the individual studies (Panityakul et al., 2013). In 

our scenario we are especially interested in an estimator which performs well under the condition of a 

relative low number of studies. The Restricted Maximum Likelihood (REML) seems to produce the 

lowest bias under this condition and is therefore preferred (Panityakul et al., 2013; Hardy & 
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Thompson, 1996). The REML will be used in this study for the estimation of the residual 

heterogeneity.  

As said before, the REML is an iterative method. This iterative method needs a starting 

estimation of 𝜏𝜏2 to start, usually it gets estimated by one of the non-iterative methods (Viechtbauer & 

López-López, 2015). Besides the starting value of 𝜏𝜏2, it needs in every iteration an estimation of the 

regression coefficients of the moderators. These are typically estimated by using the Weighted Least 

Squares (WLS) method. This is a variation of the Ordinary Least Squares (OLS), but in the case of 

meta-analysis it is necessary to assess weights to the coefficients. In systematic reviews large 

variation in standard errors is often observed, which will result in large heteroscedasticity in the 

estimation of the effects (Stanley & Doucouliagos, 2017). The addition of weights is a way to adjust 

for this heteroscedasticity. The weights are formulated as presented in equation (5).  

The usage of a WLS method to estimate the regression coefficient may be problematic in the 

situation where a lot of moderators are measured without their specific effects, when the amount of 

studies is low and when moderators are dichotomous. The use of a least squares method will cause 

problems with the prediction accuracy and the model interpretability (James, Witten, Hastie, & 

Tibshirani, 2013). In the situation where a lot of moderators are measured and blindly included in the 

model, it may as well be the case that variables are included that are in fact not associated with the 

response. Including irrelevant variables in the model lowers the interpretability of the model (James et 

al., 2013). An approach is necessary that automatically excludes the variables that are irrelevant i.e. 

performs variable selection. As explained before, in meta-analysis it is often the case that the number 

of moderators closely approaches or even exceeds the number of studies included in the analysis. A 

least squares method will display a lot variability in the fit when the number of variables is not much 

smaller than the number of studies (James et al., 2013). This means that the least squares method over 

fits the data and loses its power to be generalizable to future observations. When the number of 

variables exceeds the number of studies, the least squares method fails to produce one unique estimate 

and the method should not be used at all.  

However, a least squares method could still be somewhat valuable in some situations. It is 

extremely suitable to estimate a linear relationship. In the case of dichotomous moderators, the 

relationship is always perfectly linear. A powerful non-linear estimation tool is in the situation of 

dichotomous moderators unnecessary and would not perform better at all. Whenever a non-linear 

relation gets fitted on data with an underlying linear relation, it will cause problems when this fit gets 

used for the prediction of future data. Given the various arguments, this paper provides an approach to 

tackle this problem of the least squares methods whilst still making use of a linear method. The 

weighted least squares are replaced with the so-called LASSO (least absolute shrinkage and selection 

operator) regression for the estimation of the regression coefficients. This algorithm shrinks or 

penalizes the regression coefficients and performs variable selection (James et al., 2013; Hesterberg, 

Choi, Meier, & Fraley, 2008).  
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The Lasso  

 

The lasso is a technique that regularizes or constrains the coefficient estimates, better known 

as shrinking (James et al., 2013). It possesses the ability to reduce the regression coefficient even to a 

value of zero. By doing this it automatically performs variable selection. It does not seem to be 

immediately clear why shrinking the coefficients should be an improvement to the model. However, 

by shrinking the parameters, it lowers the variance of the model by increasing the bias only a little bit. 

In other words, the model sacrifices some of its ability to fit the current data, to greatly increase the 

ability to predict future data with the same fit (James et al., 2013). This is better known as the 

bias/variance tradeoff (Briscoe & Feldman, 2011).  

The Lasso shrinkage method is not the only shrinkage method, there do exist some others. 

Nevertheless, the lasso is in the case the best option. It possesses, as opposed to other methods, the 

ability to shrink the parameter not towards zero, but to be exactly zero (James et al., 2013; Hesterberg, 

Choi, Meier, & Fraley, 2008). This means that the lasso can perform variable selection, something 

that is specifically aimed for in this study.  

In line with other shrinkage methods the lasso makes use of a shrinkage penalty. This penalty 

is added in the process of the OLS calculation of the regression coefficients. The OLS method 

estimates the coefficients by minimizing the Residual Sum of Squares (RSS). The following equation 

shows how the calculation of the RSS together with the shrinkage penalty:  

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗)2 + 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1

𝑝𝑝
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1    (8) 

This equation shows that the shrinkage penalty consists of two variables, the tuning parameter 

lambda (𝜆𝜆) and the regression coefficients (𝛽𝛽). This means that, while the OLS tries to find the 

coefficients which explain as much variance as possible, due to the minimization of the RSS, the 

shrinkage penalty punishes this. Therefore, the coefficients are forced to shrink a certain amount, 

depending on the parameter lambda. If the lambda increases, it grows the impact of the shrinkage 

penalty on the RSS, with 𝜆𝜆 → ∞ shrinking all the coefficient to be zero, producing the null model. 

But, if the lambda is zero, the shrinkage penalty has no impact at all and it will produce the OLS 

estimates. 

 

Algorithms 

 
The goal of the present study was to test whether a ME-MRA model with the lasso algorithm 

is able to outperform the ME-MRA with least squares regression. More specifically, if the lasso is 

able to outperform the least squares when in situation where the amount studies included in the 
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analysis is fairly low. To test this, two different algorithms are used; one called the rma, which makes 

use of the WLS regression, and the lma, which makes use of a penalized lasso regression. 

The rma algorithm is part of the software-package metafor in R, which is developed by 

Wolfgang Viechtbauer (2010, 2019). This algorithm is specifically developed to perform a meta-

analysis or met-regression. It allows to include different models, such as the fixed-, random- and 

mixed-effect model. It is also possible to account for moderators (Viechtbauer, 2010). The mixed-

effect model, which is used is this study, requires a two-step approach to fit a meta-analytic model. 

First the residual heterogeneity is estimated. The package developed by Viechtbauer does provide 

multiple methods for the estimation of the residual heterogeneity. In this study the Restricted 

Maximum-likelihood is used, but this has already been discussed earlier. The second step is 

estimating the moderator coefficients, which is done by using the Weighted Least Squares (WLS) 

method. The weights are described in equation (5). The lma is a variation of the rma algorithm which 

is created by Caspar van Lissa. As explained before, the REML is an iterative procedure for the 

estimation of the residual heterogeneity. In every step of the process, instead of estimating the 

coefficients of the moderators by using a WLS, a weighted lasso regression is performed. Then again, 

the residual heterogeneity gets estimated with the rma algorithm by using the new values of the 

coefficients. With these new values of 𝜏𝜏2, a new weighted lasso is performed for the estimations of the 

coefficients. This process continuous, until the residual heterogeneity converges to a certain value. 

The algorithms are evaluated on three different performance criteria: The algorithms’ predictive 

performance, their ability to estimate the residual heterogeneity and their ability to detect and select 

the right moderators. 

 

Performance criteria 
 

The predictive performance of the algorithms is defined by how well the algorithm is able to 

predict future data. The algorithms have to estimate a model on a “training” dataset and then use this 

model to see how well it fits on a second “testing” dataset. This is operationalized as the cross-

validated 𝑅𝑅𝑐𝑐𝑣𝑣2  (Van Lissa, 2017). The 𝑅𝑅𝑐𝑐𝑣𝑣2  is calculated using the fraction of variance explained by the 

model on the testing dataset, relative to faction of variance explained by the mean of the testing 

dataset. The mean of the testing dataset is the best prediction for the testing data when there is no 

model present (van Lissa, 2017). The calculation of 𝑅𝑅𝑐𝑐𝑣𝑣2  is expressed by the following equation: 

𝑅𝑅𝑐𝑐𝑣𝑣2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

     (9) 

With n being the number of studies in the testing dataset, 𝑦𝑦�𝑖𝑖 being the estimation for study i, and 𝑦𝑦� 

being the mean of the training dataset.  

 The ability of the algorithms to estimate the residual heterogeneity is by simply taking the 

value of 𝜏𝜏2 which to algorithm produces. The true value of the residual heterogeneity is subtracted of 
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the estimated value, solely to make the values more interpretable. This means that a correct estimation 

of the residual heterogeneity will be expressed by a value which exactly or close to zero. The residual 

heterogeneity is used as a performance criterion because it is suspected that the lma model might not 

always be able to predict residual heterogeneity correctly.  

 The ability of the algorithms to detect and select the right moderators is defined by looking at 

the fractions of true- positives and negatives. This is further operationalized by taking the product of 

those relative to the sum of fractions of true- positives and negatives1. This is done because evaluation 

the fraction of the negatives and positives individually will not provide a good inside. A badly fitted 

model can still have a perfect score on the number of true negatives it detects, while having detected 

none of the true positives. This operationalization punishes a poorly performed detection of either the 

positives or the negatives heavily, so that bad models will have a low value on this criterion. The 

calculation of this performance criteria, further referred to as FPS (Fraction of the Product relative to 

the Sum), is expressed in the following equation: 

𝐹𝐹𝐹𝐹𝑅𝑅 =  (𝑃𝑃𝑖𝑖∗𝑁𝑁𝑖𝑖)
(𝑃𝑃𝑖𝑖+𝑁𝑁𝑖𝑖)

∗ 2     (10) 

With 𝐹𝐹𝑖𝑖 being the fraction of positives for study i and 𝑁𝑁𝑖𝑖 being the fraction of negatives for study i.  

  

To test the lma and rma algorithms on the performance criteria, a simulation study is 

performed. A simulation of the data is preferred over the use of real data. Simulated data can be 

shaped to such an extent that it will have the all desired characteristics to test the performance of the 

algorithm. Besides that, if simulated correctly, it will not have any systematic errors or noise due to 

underlying models and it is more cost efficient.  

In the simulation study, meta analytic datasets will be simulated. These datasets consist of two 

separate sub-datasets, a training- and a testing dataset. Both sub-datasets will have the same 

characteristics with the exception of the number of studies included. Certain characteristics of the sub-

datasets will be manipulated to test how well the algorithms perform under certain conditions. For 

each combination of characteristics, or design factors, 100 datasets will be simulated. The design 

factors that will be manipulated are the number of studies in the training data 𝑘𝑘 (22, 40 and 80), the 

average within-study sample size 𝑛𝑛� (40, 100 and 200), the population effect size 𝛽𝛽 (.2, .5 and .8) and 

the residual heterogeneity 𝜏𝜏2 (.01, .04 and .1). All the datasets will contain 20 moderators of which 10 

are relevant and 10 are irrelevant. The moderators are binary and are randomly drawn form a 

Bernoulli distribution with probability 𝑝𝑝 = .5, which corresponds to an equal chance of being either 

one or zero. The dependent variable 𝑦𝑦𝑖𝑖 represented by a Hedges’ g. This is an estimator which takes 

the standardized mean difference between a treatment and control group and is commonly used in 

meta-analysis (Van Lissa, 2017). The true effect size 𝜃𝜃𝑖𝑖 is sampled out of a normal distribution. The 

                                                
1 I was not able to find a source which validates this operationalization. However, this does not imply that I was the first to 
come up with this operationalization. 
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mean is computed by the assessing the values of the coefficients 𝛽𝛽, with the values of the moderators 

and with the residual heterogeneity 𝜏𝜏2 (Van Lissa, 2017).  This is in line with the calculation of 𝜃𝜃𝑖𝑖 

represented in equation (6). The sampling error 𝑣𝑣𝑖𝑖 is formed by varying the sizes of the samples of 

each study. The sample sizes 𝑛𝑛𝑖𝑖 are drawn from a normal distribution with mean 𝑛𝑛� and standard 

deviation 𝑛𝑛� 3⁄  (Van Lissa, 2017).  

 

Design factors & simulation 

 

These design factors are chosen on purpose, because they are hypothesized to have an 

influence on the predictive performance of the algorithms. The effect of the design factors ought to be 

either positive or negative on the data. This means that some factor should, by increasing, make the 

data easier to be analyzed, or make it more difficult to analyze. The amount of studies included in the 

training data 𝑘𝑘 has a positive influence on the variance explained by the different algorithms. This is 

due to the fact that there are simply more data points available to fit a model on. The lma algorithm 

should be superior on the low value of 𝑘𝑘 over the rma algorithm. The effect size 𝛽𝛽 has a positive 

impact on the ability of the algorithms to explain variance. It can be hypothesized that the lma 

performs better at lower values of 𝛽𝛽 because it is better equipped to detect and select variables when 

even when the amount of signal is low. The residual heterogeneity 𝜏𝜏2 should have a negative 

influence on the interpretability of the data. Differences between the two algorithms could be present, 

but it remains unclear which would perform better. The lma might perform better when the amount of 

signal in the data is low or the noise is high, but it is also suspected to overestimate the amount of 

heterogeneity and this could worsen if the 𝜏𝜏2 increases. The 𝑛𝑛� greatly influences the quality of the 

data. Higher values of within-study sample sizes reduce the sampling error. This will lead to a better 

prediction by the algorithms. In conclusion: higher values of 𝑘𝑘, 𝛽𝛽 and 𝑛𝑛� will increase the quality of 

the data, where higher values of  𝜏𝜏2 decrease the quality of the data. The lma is suspected to perform 

significantly better when the quality of the data is low, especially when the amount of studies in the 

sample is low, with the exception of the performance of the lma on the estimation of the residual 

heterogeneity. 

 

Data 
 

Before performing the analyses, the values the algorithms produce on the performance 

criteria, or the dependent variables in this case, were checked. Summary- or descriptive statistics and 

density plots of all the dependent variables were looked at to see if there were any abnormalities (See 

table 1 and figure 1 & 2). Sadly, the density plots of the 𝑅𝑅𝑐𝑐𝑣𝑣2  failed to be interpretable at all, due to the 

huge negative value produced by the rma algorithm (table 1).  The statistics and the plots of the other 



 10 

criteria did provide a good insight in the distribution of the data. Table 1 shows that there is a quite a 

big difference in the mean of the algorithms on 𝛥𝛥𝜏𝜏2 (.975 for lma opposed to .0303 for the rma). In 

figure 2 can be seen that 𝛥𝛥𝜏𝜏2 shows a very flat distribution for the lma algorithm, whereas the rma 

form around 0. 

The large negative values for 𝑅𝑅𝑐𝑐𝑣𝑣2  in the rma algorithm are a bit problematic. These value so 

extremely high that they will influence the interpretability of any analysis. The high values cause the 

mean and standard deviation to be really absurd. A mean of -9.08 means that the rma algorithm, on 

average, explains nine times less variance than the null model. A real outlier analysis was not 

performed, because especially outliers provide a lot of insight in the performance of the algorithms. 

These values do need to be handled in some sort of way and therefore the possible causes of the 

extremes were explored. The first step in doing this is by creating a range. Any value outside this 

range will be marked as an extreme value. The range was based on the 1.5 times the value that marked 

the lowest 10% of 𝑅𝑅𝑐𝑐𝑣𝑣2  in the rma. This resulted in a value of -7.426. Subsequently a subset was 

created of the data, which only contained the cases with extreme values. All of the cases with extreme 

values where produced by the rma algorithm. Table 2 show the distribution of the extreme values over 

the other design factors. The outlier cases are more or less equally distributed over all the subgroups 

of the factor, with the exception of design factor 𝑘𝑘. All of the extreme values are in the subgroup 𝑘𝑘 =

22, which provide evidence to suspect that the low value of 𝑘𝑘 caused the extreme values of 𝑅𝑅𝑐𝑐𝑣𝑣2  in the 

rma. Any analyses of the effects of other design factor on 𝑅𝑅𝑐𝑐𝑣𝑣2  will be suppressed by the huge impact 

of 𝑘𝑘. For this reason, the subgroup 𝑘𝑘 = 22 is removed and further analyses on 𝑅𝑅𝑐𝑐𝑣𝑣2  will be done with 

the subset only including 𝑘𝑘 = 40 & 80. Table 3 shows the descriptive statistics of both subgroups and 

figure 3 shows the distribution of subgroup 𝑘𝑘 = 40 & 80. This table shows that, when the subgroup is 

removed, the means of both algorithms are almost equal.  There does exist more variance around the 

mean for the rma however. This is also displayed in the density plot (figure 3). The rma still has a tail 

that goes below a 𝑅𝑅𝑐𝑐𝑣𝑣2  value of 0. The lma forms a second peak around the 0 and has very few values 

below 0.  

 

Analyses 

 

For the evaluation of the effects on the dependent variables, ANOVAs where performed. In 

ANOVAs the main effect of the algorithms, the design factors and the interaction between those 

where assessed. However, due to the large sample size (16200 in total), the effects where almost 

always significant under a 95% confidence interval. This mean that small, rather trivial, effects will be 

detected as significant. Thus, it was set stricter, to a confidence interval of 99.9% interval. The 

intention was that a post-hoc test would be performed to look at differences between the individual 

groups of the design factor and the algorithms, but the Tukey's honest significance test detected very 
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small differences as significant, even with a confidence interval of 99,9%. Therefore, the decision was 

made to not include this statistical test, but to assess the means and standard deviation of each 

subgroup and interaction plots in a non-statistical manner. The main reason for this is to provide a 

more sound and broader explanation of the performance of the algorithms under certain 

circumstances, instead of only showing the effects and the significant levels. The evaluation of the 

effects will be done as follows: if the ANOVA show no significant result, either on the main effects or 

the interaction, then the effect will not be further discussed. If some are significant, which is most 

cases, the means will be compared in a subjective way. If this provides evidence for a strong effect or 

interaction, the interaction plot will be used to further visualize the effect.   

 

Results 

 
The section that follows contains the results of the analysis. Table 4 tells whether or not 

certain effect where significant or not. Table 5 provides the means on the dependent variables for the 

subgroups of the design factors for each algorithm. Figures 4 to 9 contain the interaction plots which 

where used to visualize the interaction effects that were significant. 

The predictive performance of the algorithms was measured by the 𝑅𝑅𝑐𝑐𝑣𝑣2 . As explained before 

all the analyses and the interpretation of those will be done on a subset which does not contain cases 

with 𝑘𝑘 = 22. Table 3 shows that both algorithms do not differ that much in the mean, which could 

mean that they show the same predictive performance on this subset. Table 4 provides more evidence 

for this, because the algorithms never have a main effect in the column of 𝑅𝑅𝑐𝑐𝑣𝑣2 , which means that there 

is no significant difference between those groups. All the design factor seems to have an effect on the 

predictive performance of the algorithms. The effects of 𝑘𝑘 and 𝛽𝛽 seems to be different for the 

algorithms, due to the significance of the interaction effect. Higher levels of 𝑘𝑘 seem to have a 

significant positive effect on the predictive performance of algorithms. The means of 𝑅𝑅𝑐𝑐𝑣𝑣2  increase 

from .527 and .492 in 𝑘𝑘 = 40 to .632 and .662 in 𝑘𝑘 = 80, respectively for the lma and rma algorithm. 

Figure 4 shows this increase in the form of an interaction plot. Here the interaction is better visualized 

and it can be seen quite clear that, where the lma outperforms the rma in 𝑘𝑘 = 40, the rma performs 

better at 𝑘𝑘 = 80. The effect sizes or 𝛽𝛽 also have a positive influence on the predictive performance. 

The means of 𝑅𝑅𝑐𝑐𝑣𝑣2  increase from, respectively for the lma and rma algorithm, .271 and .227 when 𝛽𝛽 =

.2 to .684 and .701 in 𝛽𝛽 = .5 and from this to .784 and .804. The effect of 𝛽𝛽 seem t flatten out on the 

between the highest and the middle value of 𝛽𝛽. Also, the predictive performance of the lma seems to 

be, relative to the rma, higher in the lowest value of 𝛽𝛽 whereas the rma takes over 𝛽𝛽 =  .5 & .8 (figure 

5). The 𝜏𝜏2 and 𝑛𝑛� only show a main effect and no interaction. The 𝑅𝑅𝑐𝑐𝑣𝑣2  decreases for higher values of 

𝜏𝜏2 and increases for higher values of 𝑛𝑛�. However, it is important to keep in mind that the 𝑘𝑘 = 22 

group is not included in all the analyses. If that was the case, more differences would have been 
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observed between the main effects and there might have been differences in the main effects of the 

design factors and the main effects of the interaction effects between the design factors and the 

algorithms. 

The estimation of the residual heterogeneity was measured by the dependent variable 𝛥𝛥𝜏𝜏2. 

There is always a main effect of the algorithms of the main effects, which means that there is a 

significant difference between the algorithm. Table 1 and 5 show that the lma always seem to over 

estimate the residual heterogeneity, whereas the rma seems to produce values relatively close to zero, 

which suggests a correct prediction of the residual heterogeneity. The design factors 𝑘𝑘 and 𝛽𝛽 show to 

have significant main effect (table 4). Table 4 also suggest that there is an interaction effect between 

the algorithms and the design factors 𝛽𝛽 and 𝑛𝑛�. The value of heterogeneity in the dataset does not seem 

to have an impact on the estimation of it. The main effect of 𝑘𝑘 seem to have a slight negative effect on 

the values of 𝛥𝛥𝜏𝜏2 which suggest a positive effect on the estimation of the residual heterogeneity (table 

5). However, the differences of the algorithms still seem substantial across the values of 𝛥𝛥𝜏𝜏2 with 

values of .978 to .967 for the lma and values of .081 to .002 for the rma. Surprisingly, increasing 

effect sizes of the coefficients seem to have a negative effect on the estimation of the residual 

heterogeneity. The values of 𝛥𝛥𝜏𝜏2 increase for higher values of 𝛽𝛽, especially for the lma (table 5 & 

figure 6). The values of 𝛥𝛥𝜏𝜏2 seem to be relatively close for 𝛽𝛽 = 0.2 compared to difference between 

the algorithms at 𝛽𝛽 = 0.8. Such an increase or decrease in the values of 𝛥𝛥𝜏𝜏2 is not observed for any of 

the other design factors. However, the effect of 𝑛𝑛� is quite remarkable. The main effect of the within-

study sample size gets suppressed by the interaction effect. The interaction effect shows that the effect 

𝑛𝑛� is in opposite direction for the lma and the rma (figure 7). The values for the lma increase from .954 

at 𝑛𝑛� = 40 to .989 at 𝑛𝑛� = 200, whereas the values of the rma decrease form .063 𝑛𝑛� = 40 to .006 at 

𝑛𝑛� = 200.  

The ability of the algorithms to detect and select variables was expressed by the dependent 

variable 𝐹𝐹𝐹𝐹𝑅𝑅. The ANOVAs suggest that there is a significant difference between the algorithms 

(table 4). The lma algorithm seem to almost always better detection of amount of relevant an 

irrelevant moderator. Every design factor shows to have a significant impact on this as well. The 𝑘𝑘, 𝛽𝛽 

and 𝑛𝑛� have a significant positive effect on 𝐹𝐹𝐹𝐹𝑅𝑅 and the 𝜏𝜏2 has a significant negative effect. For the 

design factor 𝑘𝑘 and 𝛽𝛽 also show to have an interaction effect with the algorithms. The effect of 𝑘𝑘 

show to increase to be higher for the rma algorithm. The mean of 𝐹𝐹𝐹𝐹𝑅𝑅 increases from .509 in 𝑘𝑘 = 22 

to .736 in 𝑘𝑘 = 40 and to .865 𝑘𝑘 = 80. For the rma this increase goes from .264 in 𝑘𝑘 = 22 to .761 in 

𝑘𝑘 = 40 and to .915 in 𝑘𝑘 = 80. Where the lma outperforms the rma on 𝑘𝑘 = 22, the rma has a higher 

mean of 𝐹𝐹𝐹𝐹𝑅𝑅 at 𝑘𝑘 = 40 and 𝑘𝑘 = 80. This is visualized in the interaction plot (figure 8). The effect 

size factor displays a higher increase of 𝐹𝐹𝐹𝐹𝑅𝑅 for the lma on higher values of 𝛽𝛽. Figure 9 shows that 

the values for the lma are at every value of 𝛽𝛽 higher, but that this the difference increases at higher 

values of 𝛽𝛽. The difference increases from . 503 −  .481 =  .022 to . 821 −  .755 =  .066. However, 
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between 𝛽𝛽 = .5 and 𝛽𝛽 = .8 this difference does decrease again. For 𝜏𝜏2 and 𝑛𝑛� there is no interaction. 

The main effects seem to be same across the groups. The lma outperforms the rma in all the situation 

there. 

 

Discussion  
 

Overall, not taken the effects of other factor into account, the lma has a better predictive 

performance and is more equipped to perform variable selection. However, when estimating the 

residual heterogeneity, the lma is inferior to the rma. The rma does start to outperform the lma 

algorithm when there are sufficient studies included. The design factors all influence the performance 

of the algorithms, with some exceptions.  

 The predictive performance of the rma model is heavily influenced by the number of studies. 

To such an extend where the rma does not produce any results when the amount of studies is too low. 

The claim can be made the lma is superior over the rma when a relative low number of studies in 

included in the analysis. However, this does not immediately mean that the lma algorithm performs 

good under these circumstances. The lma model almost never produces model that have less variance 

than the null model, but this is because the lma produces a null model when it shrinks all the 

coefficients to zero. In situations where there is not much data to work with, in this a low amount of 

studies, the amount of variance that the rma model produces is quite large, which leads to severe 

overfitting in future data. The lma increases its bias to tackle this. But if this result in models which 

are close to the null model, does that imply that produces better result. Unarguable, the lma model is 

less often “wrong” than the rma model when there is not much data to work with, but this does not 

mean that the results it does produce are all undeniably “good”.  

The effect of the population effect size heavily influences how the lma estimated the amount 

residual heterogeneity. Higher effect sizes make it more difficult for the lma to correctly predict the 

amount of heterogeneity which result in a severe overestimation. This could be explained by how the 

lma is created, namely by the integration of a lasso algorithm in the rma algorithm, which uses REML 

to predict the 𝜏𝜏2. The REML normally works with WLS values to estimate the amount of 

heterogeneity that is left after accounting for all the moderators. The Lasso is a more conservative 

method compared to the WLS and will produce lower coefficient estimates. This will make the 

REML “think” that there is more heterogeneity left after it accounts for the lasso coefficients. The 

systematic underestimation of the coefficients of the lasso algorithm can also lead to an early 

convergence of the REML iterative process, which could also explain for the systematic 

overestimation of 𝜏𝜏2 of the lam compared to the rma. The increase in the overestimation for higher 

effect sizes, could be explained that higher effect sizes are affected more by the lasso. Equation (8) 

shows the equation for the lasso. The first term, which contains the amount of error is not affected by 
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an increasing population effect size, whereas the second term, the penalty term, is affected by this. 

This causes the lasso to react more on higher effect sizes, which causes in larger shrinkage of the 

coefficients. The question remains, whether or not it is a problem that the lma algorithm is not able to 

correctly predict the residual heterogeneity. If one is especially interested in the amount which is 

present, yes in that situation it is a problem. Still, it could be argued that the estimation of the residual 

heterogeneity is just used as a tool for creating a better estimation of the model. The other 

performance criteria do not seem to be so affected by this overestimation, because the lma stills 

performs relatively good on these criteria. But maybe the lma could perform even better when 

residual heterogeneity is predicted correctly. 

In the process of the operationalization of the variables and the implementation of the 

analyses, were decisions made which should not remain undiscussed. For the performance criterion, 

the ability of the algorithm to perform variable selection or detection, the fraction of true positive and 

true negatives, which the algorithms produce, have been operationalized to the dependent variable 

𝐹𝐹𝐹𝐹𝑅𝑅. This variable combines both the true positives and true negatives to one value. By 

operationalizing the variable this way prevents the assessment true positives and negatives 

individually. Any differences in the between the algorithms over the true positives and -negatives are 

not looked at by this operationalization. These possible differences between could still provide some 

information of how the algorithms work. For example, a higher true negative suggest that the model 

produced by the algorithms is sparser, and does not include every variable. It is expected that the lma 

algorithm would create a more conservative model and would more often include less variables due to 

the shrinkage of the coefficient.  

All the analyses performed where ANOVAs. The core assumptions of the ANOVAs are, that 

the dependent variables follow a normal distribution and that their residuals are distributed equally 

around the means. Both of these assumptions are in every situation violated. This does not 

immediately mean that the ANOVAs do not provide any valuable information, but it is something 

which should be assessed. In most situation where the assumptions are severely violated, a non-

parametric method is advised. However, non-parametric methods do not lend themselves for the 

evaluation of possible interaction effects.  

The in assessment of the predictive performance the decision was made to use a subset. By 

doing this all the effect of the of the design factor are influenced and should therefore be interpreted 

differently. The rma shows to perform not so well on 𝑘𝑘 = 22. All the analyses on the other design 

factor do not include this group and will all hold higher values for the rma model. Also, the 

performance of the lma model is not evaluated on the 𝑘𝑘 = 22, while this being a point of interest in 

this study. The decision for the value 𝑘𝑘 = 22, could also be seen as not a really good one. A 𝑘𝑘 with a 

slightly higher value could have produced better result of the rma model. Result which did not contain 

any extreme values and which where suitable for analysis.  
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Conclusion 
 

To conclude this paper, some suggestions are made for further development of the algorithm 

and future research. To start, the use of lasso algorithm in meta-analysis should be further 

investigated, especially in the situation where there is a low amount of studies included. The ability of 

the algorithms to select variables was evaluated, however this could be done more thoroughly. For 

example, more information could be provided how the algorithms in the under- and over selection of 

variables. Doing this creates a better picture of what could be further developed in the lma model. 

Also, the estimation of residual heterogeneity remains problem of the lam algorithms which should be 

improved. Although, the implication of the overestimation of the residual heterogeneity on the 

predictive performance of the algorithm remain unclear.  
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Table 2: Number rma cases in the with extreme values for 𝑅𝑅𝑐𝑐𝑣𝑣2  
for each design factor (per design factor: N = 610) 

Design factors Values of the 
design factor 

Number of cases in 
each group 

𝑘𝑘 22 610 
 40 0 
 80 0 

𝛽𝛽 0.2 359 
 0.5 135 
 0.8 116 

𝜏𝜏2 0.01 176 
 0.04 192 
 0.1 242 

𝑛𝑛� 40 261 
 100 196 
 200 153 

 

 

 

 

 

 

 

  

Table 1: Descriptive statistics of the variables for the lma and rma  
(N = 8100) 
  Minimum Maximum M S.D. 

𝑅𝑅𝑐𝑐𝑣𝑣2  lma -4.38 .963 .478 .334 
 rma -37751. .964 -9.08 422. 
      

𝛥𝛥𝜏𝜏2 lma -.0625 5.03 .975 .849 
 rma -.1 6.80 .0303 .228 
      

𝐹𝐹𝐹𝐹𝑅𝑅 lma 0 1 .703 .313 
 rma 0 1 .647 .356 

Table 3: Descriptive statistics of 𝑅𝑅𝑐𝑐𝑣𝑣2 for the lma and rma, for  
𝑘𝑘 = 22 (N = 2700) and 𝑘𝑘 = 40 & 80 (N = 5400)  
  Minimum Maximum M S.D. 
 𝑅𝑅𝑐𝑐𝑣𝑣2  (22) lma -4.38 .938 .275 .335 
 rma -37751. .913 -28.4 731. 
      
 𝑅𝑅𝑐𝑐𝑣𝑣2  (40&80) lma -.150 .963 .579 .284 
 rma -2.69 .964 .577 .344 
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Figure 1: Density plot of 𝛥𝛥𝜏𝜏2for the two algorithms 
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Figure 2: Density plot of 𝐹𝐹𝐹𝐹𝑅𝑅 for the two algorithms  
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Figure 3 : Density plot of 𝑅𝑅𝑐𝑐𝑣𝑣2  for the two algorithms on the subset 𝑘𝑘 = 40 & 80 
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Table 4: Significance of the algorithm-, main- and 
interaction effects for the ANOVAs  
  𝑅𝑅𝑐𝑐𝑣𝑣2  𝛥𝛥𝜏𝜏2 𝐹𝐹𝐹𝐹𝑅𝑅 

𝑘𝑘 ALG  X X 

 MAIN X X X 
 INTERACT X  X 
     

𝛽𝛽 ALG  X X 

 MAIN X X X 
 INTERACT X X X 
     

𝜏𝜏2 ALG  X X 

 MAIN X  X 

 INTERACT    
     

𝑛𝑛� ALG  X X 

 MAIN X  X 
 INTERACT  X  
Effects are significant when p < .001, ALG = Algorithm effect, MAIN = main 
effect of the design factor, INTERACT = interaction effect between the design 
factor and the algorithm 

 

 

 

  

Table 5: Means of the dependent variables on the subgroup of the design factors for each 
algorithm 

  𝑅𝑅𝑐𝑐𝑣𝑣2  𝛥𝛥𝜏𝜏2 𝐹𝐹𝐹𝐹𝑅𝑅 
  lma rma lma rma lma rma 

𝑘𝑘 22 - - .976 .081 .509 .264 
40 .527 .492 .974 .007 .736 .761 
80 .632 .662 .964 .002 .865 .915 

𝛽𝛽 .2 .271 .227 .125 .012 .503 .481 
.5 .684 .701 .792 .030 .786 .704 
.8 .784 .804 2.01 .048 .821 .755 

𝜏𝜏2 .01 .651 .658 .978 .034 .754 .675 
.04 .591 .594 .978 .032 .712 .653 
.1 .496 .480 .967 .025 .644 .611 

𝑛𝑛� 40 .420 .430 .954 .063 .619 .560 
100 .611 .613 .981 .022 .725 .659 
200 .698 .699 .989 .006 .766 .721 

All means are based on 2700 observation with the exception of the 𝛽𝛽, 𝜏𝜏2 & 𝑛𝑛� under the 𝑅𝑅𝑐𝑐𝑣𝑣2  column (1800 observation) 
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  Figure 4: Interaction plot of the number of studies and the algorithms on 𝑅𝑅𝑐𝑐𝑣𝑣2  
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Figure 5: Interaction plot of the effect sizes and the algorithms on 𝑅𝑅𝑐𝑐𝑣𝑣2  

 

 This plot shows the means on the subset of the data 
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Figure 6: Interaction plot of the effect sizes and the algorithms on 𝛥𝛥𝜏𝜏2 
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Figure 7: Interaction plot of the 𝑛𝑛� and the algorithms on 𝛥𝛥𝜏𝜏2 
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Figure 8: Interaction plot of the number of studies and the algorithms on 𝐹𝐹𝐹𝐹𝑅𝑅 
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Figure 9: Interaction plot of the effect size and the algorithms on 𝐹𝐹𝐹𝐹𝑅𝑅 
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