
Testing Mixed-Precision for VGG, Inception and ResNet on the

Dogs vs. Cats Dataset

Ruben Steendam
Artificial Intelligence, Utrecht University

Supervisor: Dr. M. van Ommen
Department of Information and Computing Sciences, Utrecht University

Second Supervisor: Dr. J.D. Dotlačil
Utrecht Institute of Linguistics OTS, Utrecht University

Bachelor Artificial Intelligence, Utrecht University, 7.5 ECTS

June 19, 2020

Abstract

Mixed-precision floating points seem promising
in reducing computation costs for deep neural
networks. But does the technique live up to the
promise and do all network architectures ben-
efit equally from mixed-precision? Using the
Dogs vs. Cats dataset we researched the effect
of using mixed-precision on VGG, Inception
and ResNet by measuring accuracy, training
speed and inference speed. The results showed
that the accuracy of mixed-precision was com-
parable with that of single-precision. Fur-
thermore, all networks became faster, both in
training and inference. The speedup between
the different architectures varied between 32%
and 45% for training and between 10% and
40% for inference.

1 Introduction

Deep neural networks are well known for their
great performance in areas such as image

recognition with famous network architectures
like VGG, Inception and ResNet. A down-
side of the great performance is the high com-
putation costs of these deep networks. The
holy grail for neural networks is to reduce this
computation costs without reducing the per-
formance.

NVIDIA proposed the so called mixed-
precision format to reduce these computa-
tion costs. This technique changes the
precision of the calculations from single-
precision floating-point to mixed-precision
floating-point. Mixed-precision floating-point
uses a mix of single and half-precision floating-
points. Using half-precision leads to lower
computation costs. However the less precise
half-precision floating-points also reduce the
accuracy of the model. NVIDIA claims that
the mix of half- and single-precision floating
points ensures that the accuracy of the network
does not decrease, while the computation costs
are reduced.

This mixed-precision format is introduced in

1



2017 by NVIDIA. Very little research towards
this format has been conducted. NVIDIA
claims that this technique will improve the
speed of neural networks, but to maximize the
speedup a new generation of NVIDIA GPUs
is introduced. NVIDIA might therefore claim
too much and their paper written by Micike-
vicius et al. (2017) could be biased. We will
test this floating-point format to answer the
following research question: Do VGG, Incep-
tion and ResNet all benefit equally from mixed-
precision?

These networks were chosen because of their
variance in architecture and size, while all are
well-known classification networks. Further-
more, they all are available in Keras, pre-
trained on ImageNet. Thus by testing these
three networks the NVIDIA claim for mixed-
precision is put to the test.

To test the claims of accuracy and speed, we
will look into the Dogs vs. Cats dataset from
Kaggle. We will train and compare the three
networks in both single- and mixed-precision
floating-point. These six resulting models will
be compared on accuracy, training speed and
inference speed.

This paper gives in Section 2 some neces-
sary background information for a better un-
derstanding of the problem and experiments.
Section 3 explains the experimental setup for
the comparison of the different floating-point
formats. The results are split into three as-
pects: accuracy, training speed and inference
speed and are presented in Section 4, after
which they are evaluated and discussed in Sec-
tion 5. The relevant conclusions will be drawn
and given in Section 6.

2 Related work

2.1 Neural network calculations

There have been a number of publications
about optimizing neural networks. Before we

can go over these papers it is necessary to
first understand how neural networks work and
what operations they use.

Neural networks are made up of multiple lay-
ers of neurons, see Figure 1 for a schematic
drawing. The mathematical definition of a
neuron, given by Haykin et al. (2009), is as
follows:

f

(
b +

n∑
i=1

xiwi

)
Here f is the activation function, b is the

bias, xi is the input on the ith element and wi

the weight for that element. All variables are
scalars. Thus the sum is simply a vector-vector
multiplication. Figure 1b shows that a neural
network is nothing more than multiple layers
consisting of multiple neurons. Since a layer
consists of multiple neurons, all of these vector-
vector multiplications together can be seen
as matrix multiplications. The high amount
of neurons and layers leads to a neural net-
work executing many matrix multiplications.
These matrix multiplications on its own are
not that hard to perform. But the sheer size
of deep neural networks requires many millions
of multiplications, resulting in high computa-
tion costs. The relative simplicity of the in-
dividual calculations and the high number of
calculations are the reason why the parallel ca-
pabilities of a GPU work really well for neural
network calculations. To reduce the computa-
tion costs for neural networks, one can reduce
the number of calculations, known as pruning,
or reduce the complexity of each calculation,
known as quantization.

2.2 Single-precision floating-point

Computers use different formats for number
representation. As defined by Micikevicius
et al. (2017) the default representation for
neural network calculations is single-precision
floating-point, also known as float32. This is
a floating point number consisting of 32 bits.

2



(a) Nonlinear model of a neuron, labeled k

(b) Architectural graph of a multilayer perceptron
with two hidden layers.

Figure 1: Figure 1a shows the internals of a
neuron. Figure 1b shows a multi layer percep-
tron. Figures from Haykin et al. (2009)

Floating point numbers consist of the sign (s),
the fraction (f) and the exponent (e) as de-
scribed by Li and Chu (1997). See below for
the formula.

(−1)s ×
(
2e−127

)
× (1.f)

The sign is to indicate whether the number
is positive or negative, the fraction contains
the number’s digits and the exponent tells us
where the decimal point is placed. A float32
has 1 bit for the sign, 8 bits for the exponent
and 23 bits for the fraction. A float16 has 1
bit for the sign as well but 5 bits for the expo-
nent and 10 bits for the fraction. Reducing the
number of bits reduces the computation costs
of matrix multiplications and thus speeds up
the neural network. The precision of the calcu-

lations decreases however. This is a drawback
often found when optimizing performance of
neural networks. One has to balance accuracy
and speed.

2.3 Optimization techniques

As said before, broadly spoken, there are two
ways to optimize existing neural networks. An
alternative to these optimization techniques is
to build efficient networks, either by building
smaller networks or by using optimized struc-
tures. However this cannot be applied to ex-
isting networks architectures. Crowley et al.
(2018) found that smaller networks with more
training consistently outperformed pruned net-
works when looking at residual networks. Since
this technique only works for new networks,
where you design and build the network from
the ground up, it discards transfer learning
as a whole. Transfer learning is the tech-
nique where an existing trained network is used
as a feature extractor. This base network is
then adapted for your specific problem and re-
trained a little to process the new dataset.

Back to the two main techniques. Pruning
is where you remove neurons from the network
to decrease the number of calculations. And
quantization is the technique of reducing the
precision of the numbers and thus reducing the
cost of one calculation. Something to watch
out for is that neural networks are run in two
phases, training and inference. Training is the
first step for neural networks, where features
are discovered and the network is learning with
every example it processes. This learning is
done by updating the weights in the model.
Inference is when the network is trained and
the model is deployed. This model is fed new
data which the network only has to classify,
without learning, so without weight updates.
Optimization is almost always focused at in-
ference, since training is done only once, where
inference is the day-to-day appliance of your

3



program. However reducing training times can
lead to a faster development of new networks,
by allowing for quicker tests.

2.3.1 Pruning

Pruning can be split into two categories, struc-
tured and unstructured as stated by Anwar
et al. (2015). Unstructured pruning has been
studied by Turner et al. (2018), where indi-
vidual weights were pruned, to reduce net-
work size. Li et al. (2016) pruned whole con-
volutional filters, which reduced computation
costs. The key to both forms of pruning is to
select the weights or filters which contribute
the least to the network’s accuracy. There
are several ways to find the least contribut-
ing weights. The two most well-known are
that of l1 pruning, tested by Li et al. (2016),
and Fisher pruning from Theis et al. (2018).
l1 pruning is using the l1-norm, which is the
sum of the absolute weights of a filter. It se-
lects the filters with the lowest l1-norm and
removes these. Fisher pruning is a more re-
cent method and ranks filters according to the
estimated change in loss that would occur on
their removal. Crowley et al. (2018) demon-
strated that Fisher pruning gives better results
on Residual Networks, such as ResNet.

2.3.2 Quantization

Quantization studies the reduction of precision
in neural networks. Single-precision floating-
point (float32) is the default for neural net-
works, quantization reduces this to lower pre-
cision numbers such as half-precision (float16),
int8 or even lower. The reduction in preci-
sion reduces the computation costs greatly as
demonstrated by Zhou et al. (2017). An even
more extreme form is binarization, where ev-
ery weight and activation is reduced to being
either 1 or -1 as shown by Courbariaux et al.
(2014). Courbariaux et al. (2016) tried bina-

rization on the MNIST dataset and reported
an increase in performance without losing ac-
curacy. However there is no evidence that this
technique also works on bigger and more com-
plex datasets, such as ImageNet.

Another advantage of quantization is that
it becomes more feasible to run models on a
CPU. GPUs are pretty good at single-precision
calculations, but CPUs are not. As stated by
Wu et al. (2016) quantization thus is useful for
using models on embedded systems.

2.4 Mixed-precision

Micikevicius et al. (2017) introduced mixed-
precision, a technique developed by NVIDIA.
Mixed-precision is a quantization technique
which reduces computation costs as normal
quantization does, but without harming accu-
racy. This technique works by having a mix
of single- and half-precision floating-points. In
Figure 2 a schematic is given of a training
iteration on a mixed-precision network. As
can be seen the weights are saved as single-
precision, and for every iteration the weights
are converted to half-precision floating points.
Then the whole network is ran with these half-
precision weights and activations. After a pass,
the weights gradient, still in half-precision, is
used in the weight update function, which
saves the weights as single-precision.

The weights are saved as single-precision
floating points to distinguish between the very
subtle differences in weights, which is some-
thing half-precision is not capable of. How-
ever, since almost all calculations and activa-
tions now take place in half-precision, the size
and computations costs of the network are re-
duced, by nearly 50%, as activations account
for nearly 90% of the total number of saved ma-
trices, whereas weights account for only 10%.
However not all types of layer can be reduced
to lower forms of precision, batch normaliza-
tion i.e. is never reduced to lower forms of

4



Figure 2: Mixed-precision training iteration for
a layer. Figure from Micikevicius et al. (2017)

Model Layers Parameters

VGG 16 138M
Inception 159 24M
ResNet 152 60M

Table 1: The layers and parameters for VGG,
Inception and ResNet. The M in parameters
stands for million.

precision and will still use single-precision in
mixed-precision.

Apart from the basic structure of the adap-
tations, NVIDIA applied loss scaling as well.
Loss scaling is where the weight gradients are
scaled so that they all fall in the half-precision
range. Furthermore, mixed-precision requires
specific new GPUs to benefit from the speedup.
Given NVIDIA’s commercial interest in selling
these new GPUs, their view is likely to be bi-
ased, which is another reason for testing their
technique.

2.5 Models

This paper compares single- and mixed-
precision on the VGG, Inception and ResNet
architectures. ResNet and Inception are well-
known current state of the art networks with
high accuracy scores and optimized network
architectures in order to reduce computation
costs. VGG is an older network which in its
days was the best classification network avail-
able. Nowadays it is quite slow and it has
lower accuracy scores than ResNet and Incep-
tion. All of these networks are convolutional

neural networks, which are designed for image
/ video recognition.

Simonyan and Zisserman (2014) proposed
VGG. VGG is a network consisting of 16 lay-
ers, which for the time was quite a lot. It has
a total of 138M parameters and a top-1 accu-
racy of 0.713 and top-5 accuracy of 0.901 on
the ImageNet dataset.

Szegedy et al. (2016) updated the original
Inception network to V3. This network con-
sists of 159 layers, with 24M parameters. Scor-
ing a top-1 accuracy of 0.779 and a top-5 ac-
curacy of 0.937. The Inception network is well
known for its Inception modules. These Incep-
tion modules make a CNN naturally sparse.
And sparse networks run faster. Inception
modules work on the basis that it is hard to
determine what size filter you need. So 1x1,
3x3 and 5x5 convolutions are done in parallel
before moving to the next layer. To reduce the
computation costs for the larger filter sizes a
1x1 convolution is done before the larger con-
volutions, which decreases the number of pa-
rameters. These Inception modules make it
hard to make the network sparser.

He et al. (2016) proposed an update to the
ResNet networks. The ResNet152V2 consists
of 152 layers, with 60M parameters. Scoring a
top-1 accuracy of 0.780 and a top-5 accuracy
of 0.942. ResNets are designed around their
residual connections. These connections com-
bine input from the previous layer in a network
with the nth previous layer, thus essentially
creating skip connections. This ensures that
the gradient is maintained throughout the net-
work, instead of getting an infinitely small gra-
dient, which essentially becomes zero. In plain
English, the skip connections combine higher
and lower level features, to ensure that all fea-
tures are detected and networks can grow even
deeper.

5



3 Methods

The problem used for these experiments is
that of the Dogs vs. Cats dataset from Kag-
gle (https://www.kaggle.com/c/dogs-vs-cats),
where the goal is to recognize picture as either
a dog or a cat. This dataset consists of a train
and test set. The train set is labeled, but the
test set is not. For this experiment the test set
will be discarded and the train set will be split
into a train and validation set, using an 80/20
split. For the neural network building and test-
ing TensorFlow 2.2 will be used. This version
of TensorFlow supports mixed-precision when
used with the Keras API. Another benefit of
using Keras is that it has pre-trained ImageNet
models of well-known deep learning networks.
The experiments will be run on a Google Cloud
Platform Virtual Machine with an NVIDIA
V100 to ensure that mixed-precision support
is enabled. All programming will be done in
Python 3.5.3.

To ensure that the experiments vary as little
as possible, we will be initializing the pseudo-
random generators with a seed of 42. Further-
more all networks will be loaded without the
fully connected layer at the end of the model
by using include top = false. This layer is de-
signed for for ImageNet which has 1000 classes,
where we will only need 2. The models need to
be adapted to our problem. To do this three
layers will be added. First a global average
pooling 2d layer will be added, second a dense
layer with 1024 nodes and lastly a fully con-
nected dense layer with 2 nodes. This is one of
the solutions for transfer learning as proposed
by Lin et al. (2013), to ensure that the model
will be capable of recognizing new classes. All
layers except these last three will be frozen,
since we want to use the features learned on
ImageNet as a feature extractor. Only the
later added classification layers will need to be
trained for the Dogs vs. Cats problem.

All models will be trained two times. Once

with single-precision and once with mixed-
precision. After loading and adapting all mod-
els, every model is trained for up to eight
epochs. Eight epochs was found to be the
point where the models converged to their opti-
mal training accuracy. The best model, based
on training accuracy is selected and for this
model the validation accuracy and loss will be
reported. The training and inference speed
will be reported as well. Unlike the accuracy
tests where the base layers were frozen, the full
model is run for the speed tests and all lay-
ers are trained. To ensure that the results are
comparable all models get eight CPU workers
and are given a batch size of 64, this elimi-
nates the CPU as a bottleneck and makes the
results comparable. Training/inference speed
will be compared directly and reported in mil-
liseconds. For the accuracy a McNemar’s test
will be conducted.

The McNemar’s test is a statistical test,
to check whether two models are significantly
different. Every sample is evaluated by the
single- and mixed-precision model. And for ev-
ery sample it is noted whether the model cor-
rectly classified or not. Then a contingency ta-
ble with correct/correct, correct/incorrect, in-
correct/correct and incorrect/incorrect will be
made. This data will be used for the McNe-
mar’s test, to see whether or not the null hy-
pothesis, that the models are equal, can be re-
jected.

4 Results

The results for the single- and mixed-precision
runs will be analysed on the aspects of accu-
racy, training speed and inference speed.

Table 2 shows the raw results for validation
accuracy scores. Two things stand out. First,
the difference in accuracy between single- and
mixed-precision seems to be negligible and sec-
ond both Inception and ResNet outperform

6



Model Single-
precision

(%)

Mixed-
precision

(%)

VGG 91.70% 90.74%
Inception 98.46% 98.38%
ResNet 99.10% 99.12%

Table 2: The validation accuracy scores in %
for VGG, Inception and ResNet both on single-
and mixed-precision.

Model Test
Statistic

P-value

VGG 19 0.371
Inception 12 0.701
ResNet 10 0.832

Table 3: The results of the McNemar’s test
comparing the single- and mixed-precision
variants of VGG, Inception and ResNet.

VGG . The results of the McNemar’s test, as
shown in Table 3 fails to reject the null hy-
pothesis of single- and mixed-precision models
being equal. Ergo, there is no significant dif-
ference in accuracy between single- and mixed-
precision.

The single- and mixed-precision results for
training speeds can be seen in Table 4. The dif-
ference in speed varies a bit between the mod-
els. Changing the precision for ResNet from
single- to mixed-precision reduces the time per
step by 45%. While Inception only reduces by
32%.

Finally in Table 5 the speed per inference
step can be seen for all models on both single-
and mixed-precision. Here the difference in
speed is even more evident when compared to
the training results. Where Inception only dif-
fers by 10%, ResNet differs by 40%, proving
that the speedup of mixed-precision is model
dependent.

Model Single-
precision
(ms/step)

Mixed-
precision
(ms/step)

Speed
differ-

ence
(ms/step)

Speed
differ-

ence
(%)

VGG 303 196 107 35%
Inception 195 133 62 32%
ResNet 492 271 221 45%

Table 4: The training speeds for VGG, Incep-
tion and ResNet and the difference in training
speed in %. A training step is the average of
the time it takes to process one mini-batch.
The difference is calculated by dividing the
difference between single- and mixed-precision
speed by the single-precision speed.

5 Discussion

The research question was Do VGG, Incep-
tion and ResNet all benefit equally from mixed-
precision?. This was tested on the Dogs vs.
Cats dataset. The results indicate that the
accuracy does not decrease significantly, while
the network performs faster in both training
and inference. The speed difference however,
does vary across the models quite a bit. This
discussion will be split into three sections: Ac-
curacy, Training speed and Inference speed.

5.1 Accuracy

As can be seen from Table 2, the validation ac-
curacy differs by a maximum of 0.96 percent-
age point between single- and mixed-precision.
Looking at the results from the McNemar’s
Test, see Table 3, the p-value shows that the
differences in accuracy are indeed insignificant.
And the accuracy is thus confirmed compara-
ble.

Mixed-precision therefore seems like a good
alternative for single-precision. It performs on
an equal level as single-precision. This same
level of accuracy was confirmed for all three
models. This is likely due to the way mixed-

7



Model Single-
precision
(ms/step)

Mixed-
precision
(ms/step)

Speed
differ-

ence
(ms/step)

Speed
differ-

ence
(%)

VGG 138 100 38 28%
Inception 97 87 10 10%
ResNet 180 108 72 40%

Table 5: The inference speeds for VGG, Incep-
tion and ResNet and the difference in inference
speed in %. An inference step is the average of
the time it takes to process one mini-batch.
The difference is calculated by dividing the
difference between single- and mixed-precision
speed by the single-precision speed.

precision stores the weights. By allowing the
model to save weights as single-precision float-
ing points, subtle differences in weights could
be saved. Further research could be conducted
into half-precision to see whether half-precision
does indeed reduce the accuracy significantly.

Of course the Dogs vs. Cats problem we
used here is relatively simple. It is a binary
image classification problem, where all three
networks are pre-trained on ImageNet, which
is a 1000 classes image classification problem.
Further research could be conducted into more
difficult image classification problems. Or one
might even look into video recognition, speech
recognition or even language problems such as
machine translation. It could be interesting to
see whether mixed-precision performs equally
as good for these problems.

New models could be tested as well, this re-
search only focused on classification networks.
By using these three different classification
models, the current assumption is that mixed-
precision indeed works as designed on simple
problems for convolutional classification mod-
els. All models, a simple and straightforward
network like VGG and more complex networks
such as Inception and ResNet showed the same

behavior on mixed-precision with the same
level of accuracy as single-precision.

5.2 Training speed

Looking at Table 4, one can see the training
speed and difference in training speed between
single- and mixed-precision for VGG, Incep-
tion and ResNet. ResNet is the slowest model
to train, both on single- and mixed-precision,
while VGG does consist of more parameters
and no optimizations. This could be explained
by the fact that ResNet has a lot more lay-
ers than VGG, while still having a sufficient
number of parameters. This balance between
layers and parameters could be the reason that
ResNet is slower than Inception. The increase
in speed is also the biggest for ResNet, both
absolute and relative. Why ResNet receives a
bigger speedup than VGG or Inception is un-
known. It might be due to a latency limitation.
This is that the CPU could not load the data
fast enough to the GPU, so that the speedup
by mixed-precision is limited. Since VGG and
Inception are already faster than ResNet, the
CPU has to work harder to load the data in
time. Another reason could be that the impact
of mixed-precision might be layer dependent or
even depth dependent.

A depth dependent speedup however seems
unlikely. Since the speed difference for VGG
and Inception are in the same order of magni-
tude. Thus the cause of the difference might
be due to the type of layers used. However
all three networks use more or less the same
layers: convolution, pool and fully connected.
More research to the cause of this difference
needs to be conducted.

5.3 Inference speed

Lastly we measured the inference speed for
all three models on both single- and mixed-
precision. Here it follows more or less the

8



same pattern as with training speed. ResNet
is the slowest network, followed by VGG and
then Inception. ResNet also gains most from
changing to mixed-precision, followed by VGG
and then Inception. And the differences in
speedup are larger than on the training speed.
ResNet’s speed increases by 40%, where VGG
differs by 28% and Inception only received a
10% speedup.

ResNet is also quite fast for inference com-
pared to its training speed, with a general
speedup of 63.41% for inference compared to
training, compared to 54.46% for VGG and
50.26% for Inception. The cause of this dif-
ference in speedup could be found by a deeper
network architecture analysis. This could be
combined with the research to the cause of the
training speed difference.

6 Conclusion

In short mixed-precision seems a promising
and viable solution to manage the rising com-
putation costs of deep neural networks. By
testing three well-known classification models
we showed that all three models performed
equally with mixed-precision as with the de-
fault single-precision. The speed did increase
for all three networks for both training and in-
ference. Mixed-precision therefore delivers on
its promise and can very well be a viable so-
lution for deploying new networks or speeding
up older architectures. However the speed dif-
ferences between network architectures and be-
tween training and inference steps might need
some further research to fully understand if
there are limitations to mixed-precision and
what those might be.

References

Sajid Anwar, Kyuyeon Hwang, and Wonyong
Sung. Structured pruning of deep convo-

lutional neural networks. arXiv preprint
arXiv:1512.08571, 2015.

Matthieu Courbariaux, Yoshua Bengio, and
Jean-Pierre David. Training deep neural
networks with low precision multiplications.
arXiv preprint arXiv:1412.7024, 2014.

Matthieu Courbariaux, Itay Hubara, Daniel
Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep
neural networks with weights and activa-
tions constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

Elliot J Crowley, Jack Turner, Amos Storkey,
and Michael O’Boyle. Pruning neural net-
works: is it time to nip it in the bud? arXiv
preprint arXiv:1810.04622, 2018.

Simon S Haykin et al. Neural networks and
learning machines/simon haykin., 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. Identity mappings in deep
residual networks. In European confer-
ence on computer vision, pages 630–645.
Springer, 2016.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan
Samet, and Hans Peter Graf. Pruning fil-
ters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Yamin Li and Wanming Chu. Implemen-
tation of single precision floating point
square root on fpgas. In Proceedings. The
5th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines
Cat. No. 97TB100186), pages 226–232.
IEEE, 1997.

Min Lin, Qiang Chen, and Shuicheng Yan.
Network in network. arXiv preprint
arXiv:1312.4400, 2013.

9



Paulius Micikevicius, Sharan Narang, Jonah
Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston,
Oleksii Kuchaiev, Ganesh Venkatesh, et al.
Mixed precision training. arXiv preprint
arXiv:1710.03740, 2017.

Karen Simonyan and Andrew Zisserman.
Very deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for com-
puter vision. In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

Lucas Theis, Iryna Korshunova, Alykhan Te-
jani, and Ferenc Huszár. Faster gaze predic-
tion with dense networks and fisher pruning.
arXiv preprint arXiv:1801.05787, 2018.

Jack Turner, José Cano, Valentin Radu, El-
liot J Crowley, Michael O’Boyle, and Amos
Storkey. Characterising across-stack op-
timisations for deep convolutional neural
networks. In 2018 IEEE International
Symposium on Workload Characterization
(IISWC), pages 101–110. IEEE, 2018.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qing-
hao Hu, and Jian Cheng. Quantized convo-
lutional neural networks for mobile devices.
In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition,
pages 4820–4828, 2016.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin
Xu, and Yurong Chen. Incremental net-
work quantization: Towards lossless cnns
with low-precision weights. arXiv preprint
arXiv:1702.03044, 2017.

10



A Code

For the code written for these experiments see
https://github.com/RSteendam/quantization.
After setting up your machine and dataset
(using the bash scripts in script/). The
program can be run by using run.py and
selecting the type of experiment you want
to run. See the readme.MD on Github for a
further explanation.

11


