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Summary

In 1931, Kurt Gödel proved his revolutionary incompleteness theorems, which
demonstrate that formal mathematical systems are fundamentally limited in
regards to what they can prove.1 While they are strictly mathematical re-
sults, they are sometimes argued to imply that a computational model cannot
exactly model the human mind. Such arguments, often called Gödelian ar-
guments against mechanism, attempt to show that the human mind is not
limited in the way formal systems are as demonstrated by the incompleteness
theorems.

This thesis examines two influential Gödelian arguments which are both
shown to be unsuccessful. The first is by J. R. Lucas,2 an argument ap-
pealing to intuition, yet it makes a severe mistake of unjustifiably assuming
consistency of the mind. Lucas argues that we as human beings can “grasp”
that the Gödel sentence is true; however, there is serious reason to doubt
this claim. The second Gödelian argument considered is by Storrs McCall.3

This is a more sophisticated argument based on the claim that while the
truth value of the Gödel sentence is unknown to us, we can see that it di-
verges from its provability. Understanding this divergence, McCall argues, is
a demonstration of a uniquely human ability. McCall makes several mistakes
in his argumentation as well, which causes him to fail in refuting mechanism.

Finally, I cautiously present an argument for why mechanism may never
be disproven by an argument from the incompleteness theorems. Since a
Gödelian argument must contain a claim of the mind being able to prove or
understand something a machine cannot, it must make precise claims about
how the mind deduces and reasons. Our knowledge of the human mind, I
argue, is extremely unlikely to ever be precise enough and the anti-mechanist
may be wise to look beyond Gödel’s work for an argument in support of his
claim.

1Kurt Gödel, “On formally undecidable propositions of Principia Mathematica and re-
lated systems I,” in Collected Works I, ed. Solomun Feferman (Oxford: Oxford University
Press, 1986), 144-196.

2J. R. Lucas, “Minds, Machines, and Gödel,” Philosophy 36 (1961), 112-127.
3Storrs McCall, “Can a Turing Machine Know that the Gödel Sentence is True?” The

Journal of Philosophy 96 (1999), 525-532.
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Introduction

Kurt Gödel published in 1931 a revolutionary paper. His “On formally un-
decidable propositions of Principia Mathematica and related systems I” set-
tled some of the most pressing questions of the debate on the foundations
of mathematics (often called “Grundslagenstreit”) that occurred in the be-
ginning of the twentieth century. Furthermore, it is almost surely safe to
say that no other mathematical result has aroused as much interest among
non-mathematicians then Gödel’s two incompleteness theorems.

The theorems are results about formal mathematical systems and show
how these are fundamentally limited in regards to what they can prove. Some
have argued that they have serious implications for the philosophy of mind.
They argue by so called ‘Gödelian arguments’ that the theorems are evidence
that human intellect cannot be reduced to a computational model. The idea
is simple. If we can know that the human mind does is not limited in the
way that formal systems are, it cannot be modeled by a formal system or
a machine. These arguments, if correct, would have severe implications to
cognitive sciences. Specifically, they would imply that the program of strong
Artificial Intelligence is not viable.

The purpose of this thesis is to evaluate these claims. Do Gödel’s in-
completeness theorems show that a mechanist view of human mathematical
intellect is unwarranted? An answer to this question requires an examina-
tion of Gödelian arguments against mechanism and identification of their
strengths and weaknesses. I examine two of the most referenced Gödelian
arguments in particular. The first is proposed by J. R. Lucas; the second
by Storrs McCall. Their arguments will be carefully reconstructed and criti-
cized in order to expose their philosophical assumptions. Only when we have
a proper understanding of the premises and actual consequences of Gödel’s
incompleteness theorems are we able to do this. Thus, an answer to this
question also requires an overview of the theorems themselves.

The thesis is divided into three chapters. The purpose of the first chapter
is to provide the tools necessary to fairly assess the arguments. In this
chapter, I will define the mechanist position, as well as stating the results of
Gödel’s incompleteness theorems together with some important steps in their
proof. Then, in chapters two and three I will examine the anti-mechanist
arguments by Lucas and McCall respectively.

Although Lucas’ argument is easily brushed aside by philosophers, there
are several reasons for why I think an analysis of his argument is relevant
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to the philosophical debate surrounding the implications of Gödel’s incom-
pleteness theorems for the philosophy of mind. The debate is usually consid-
ered to have started with the Lucas argument, presented in his 1961 paper
“Minds, Machines, and Gödel.” Not only did it inspire many of the more
recent Gödelian arguments against mechanism, a number of them depend
on precisely the same philosophical assumptions. Thus an analysis of Lucas’
argument reveals strengths and weaknesses of other anti-mechanist perspec-
tives. Most importantly, however, I think his argument captures a prevailing
intuition of the consequences of the incompleteness theorems. Even among
mathematicians it is not uncommon to find interpretations of Gödel’s first
theorem stating that the Gödel sentence of Peano Arithmetic is true despite
it being unprovable in its system. Nonetheless, such an interpretation is
based on a fundamental misunderstanding of the results of Gödel’s theorems
and, as I will argue, is unwarranted.

Many Gödelian arguments against mechanism resemble Lucas’ original
argument. Storrs McCall is one of the few to have presented a radically
different approach to disproving mechanism while still basing his arguments
on the results of the incompleteness theorems. McCall, acknowledging the
problems of the Lucas argument, provides a much more convincing argument.
He claims that Gödel’s first theorem reveals a sharp dividing line between
human and machine thinking. Although his attempt is more sophisticated
than earlier Gödelian anti-mechanist arguments, it cannot be saved from
certain critiques.

The failure of the aforementioned Gödelian arguments does not settle
the matter definitely. However, in the concluding chapter I will reflect on a
common weakness to the arguments which, as I will argue, suggests that the
mechanist position cannot be refuted by an argument based on the incom-
pleteness theorems.
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1 Setting the Stage

Before we delve into Gödelian arguments against mechanism, we must clarify
some terminology. In the first section of this chapter, I will provide a defi-
nition of mechanism that is relevant to our discussion. In the second I will
provide an overview of Gödel’s theorem. Finally, I will briefly argue how the
theorems are relevant to discussions on mechanical models.

Defining mechanism

Mechanism can generally be understood as the view that the human mind is,
or can be accurately simulated by, a computational system like a Turing ma-
chine. This thesis is broad and, depending on the debate, can be interpreted
in different ways. Relevant to our discussion is the question whether human
mathematical intellect surpasses the abilities of Turing machines. Thus, I
will take mechanism as the claim that for all human beings there is a Tur-
ing machine that proves the exact same set of arithmetical sentences as that
person proves.

A Turing machine is an idealization of a computer; it is formal model
of a computational system that is not limited by things like time or mem-
ory. The debate surrounding mechanism is therefore interesting only when
we idealize on the human intellect as well. Consequently, the mechanist and
anti-mechanist are not concerned with what sentences are provable by a par-
ticular mathematician; they are interested in statements that are in principle
knowable to an ideal mathematician.

Gödel’s incompleteness theorems

Gödel’s incompleteness theorems are mathematical results about formal sys-
tems of arithmetic, though we will get into the reason why the theorems are
related to Turing machines later. For now, let us consider formal systems.
We call T a formal system if it is a set of sentences, called axioms, together
with inference rules, that satisfies the following property. It must be decid-
able by a finite machine whether a sentence is among the axioms of T and
whether it can be inferred from the axioms of T by the specified rules of
proof. In mathematics, a proof is a finite sequence of sentences, all of which
are either axioms or are inferred from previous sentences according to the
specified rules of proof. Consequently, provability is a property relative to a
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system.
Gödel’s theorems concern formal systems of arithmetic, that have axioms

for the multiplication and addition of natural numbers. His original proof
was formulated for a system similar to what we now call Peano Arithmetic
(PA), though his theorems hold for any formal system that includes PA.

Gödel ingeniously thought of a way to express certain metamathemati-
cal notions about formal systems like consistency and provability within the
language of arithmetic itself. In other words, Gödel showed how metamath-
ematical statements can be discussed inside mathematics. He constructed
a method to assign each formula ϕ of the language of T a unique natural
number. This number is detonated by pϕq and called the Gödel number of
ϕ. Then, since proofs are finite sequences of sentences, proofs too can be
assigned a unique code number. Gödel furthermore showed that the Proof-
in-T relation, “x is the Gödel number of a proof in T of a sentence with
Gödel number y”, is expressible in the language of arithmetic: PrfT (x, y).
Then the same holds for the provability predicate BewT (x), named after the
German Beweis, which expresses that “there is a proof in T of the sentence
with Gödel number x”. Using the diagonal method on the provability pred-
icate, one can construct a sentence GT , called the Gödel sentence, such that
PA proves the following:

GT ↔ ¬BewT (pGTq).

From this, Gödel proved his first incompleteness theorem: Let T be a formal
system of arithmetic, then T satisfies the following:

1. If T is consistent, then T 0 GT .

2. If T is ω-consistent,4 then T 0 ¬GT .

Using the provability predicate, one can construct a predicate for the
consistency of T , Con(T ), which denotes the absence of a proof for a contra-
diction in T . Clearly Con(T ) is expressible in the language of arithmetic as

4A system T is ω-consistent if and only if there is no formula ϕ such that T can
prove ϕ(n) for each natural number n, yet also prove ∃x¬ϕ(x). This condition implies
consistency. The distinction need not worry us though, as Barkley Rosser proved in 1936
that mere consistency is sufficient for incompleteness. His proof makes use of a sentence
different from the Gödel sentence. See Rosser, “Extensions of Some Theorems of Gödel
and Church,” 87-91; or Craig Smoryński, “The Incompleteness Theorems,” 840-841.
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well. From the fact that the formalization of the first incompleteness theo-
rem, Con(T )↔ GT , can be proven in PA follows the second incompleteness
theorem: If T is consistent, then T 0 Con(T ).

Formal systems or machines?

One final detail must be clarified. Why do philosophers and mathematicians
connect the incompleteness theorems to machines? After all, they are results
explicitely about formal systems - not machines. But equating a formal
system to a Turing machine is legitimate as Gödel points out in a postscript
added to the reprinting of one of his 1934 lectures:

Turing’s work gives an analysis of the concept of ‘mechanical
procedure’ ... A formal system can simply be defined to be any
mechanical procedure for producing formulas, called provably for-
mulas. For any formal system in this sense there exists one ... that
has the same provable formulas.5

5Kurt Gödel, “On undecidable propositions of formal mathematical systems,” in Col-
lected Works I, ed. Solomun Feferman (Oxford: Oxford University Press, 1986), 369-370
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2 The Lucas Argument

An early - and perhaps the best known - argument for mechanism resting on
the first incompleteness theorem was given by philosopher John Randolph
Lucas. In his 1961 article “Minds, Machines and Gödel”, Lucas argues that
the theorem enables him to prove an arithmetical sentences that cannot be
proved by any formal system. Hence, his mind cannot be exactly modeled
by any formal system.

In the first section of this chapter I present Lucas’ argument against
mechanism. By a reconstruction the crucial assumption of consistency of the
human mind will be exposed. This assumption is controversial as I will then
argue. Any possible way of establishing consistency compromises Lucas’
argument. I argue that Lucas fails in refuting mechanism and, moreover,
that any argument for the incompatibility of the incompleteness theorems
and mechanism necessarily fails when it depends on the claim that human
intellect is consistent or sound.

Reconstructing Lucas’ argument

Lucas’ argument may be put as follows. Suppose, for reductio, that mecha-
nism holds. Then there is a consistent formal system, T , that proves exactly
the same arithmetical sentences that Lucas is able to prove. It is known that
T can formally prove Con(T )→ GT ; Lucas, by assumption, can prove the
same. By the first incompleteness theorem, T cannot formally prove GT .
Since Lucas’ mind is consistent, T is consistent, and Lucas can apply modus
ponens to Con(T )→ GT which allows Lucas to prove a sentence, GT , that
T is unable to prove. It follows that T cannot be an exact model of Lucas’
mind and as this argument can be applied to any arbitrary formal system,
mechanism is refuted.6

A frequently raised objection to Lucas’ argument and similar anti-mechanist
Gödelian arguments concerns assuming that the mind is consistent to begin
with. Hilary Putnam was among those raising the objection, doing so in
as early as 1960.7 It may well be possible that the mind is inconsistent.
Moreover, as a contradiction in first-order logic implies any sentence, an in-

6This is a paraphrase of the argumentation in Lucas, “Minds, Machines, and Gödel,”
112-116.

7Hilary Putnam, “Minds and Machines,” in Dimensions of Minds, ed. Sidney Hook
(New York: New York University Press, 1960), 138-164.
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consistent mind would be able to derive all sentences. Its set of derivable
sentences would be trivially equal to those of an inconsistent formal system.
It is clear that the success of Lucas’ argument rests on the assumption that
the mind is consistent, which requires further justification.

This problem did not go unnoticed by Lucas. In his initial paper he
provided an argument for the consistency of the mind by making an appeal
to empirical evidence. According to Lucas, our reasoning behavior indicates
that we are not like inconsistent formal systems. Though we assert contradic-
tory statements on occasion, these are quite obviously the results of mistakes
that we would prefer to correct. He argues that “If we really were incon-
sistent machines, we should remain content with our inconsistencies, and
would happily affirm both halves of a contradiction. Moreover, we would be
prepared to say absolutely anything - which we are not.”8

Establishing Con(T )

The Lucas argument is appealing as it certainly agrees with our intuition.
However, even if we ignore for the time being whether or not we find Lucas’
evidence for the consistency of the mind convincing, there are fundamental
problems with his argument. I will argue in this section that these problems
cannot be solved and that his argument is unsuccessful in refuting mecha-
nism.

Crucial to the argument is applying modus ponens to Con(T ) and Con(T )→
GT to infer GT . However, Lucas is mistaken when he equates the metamath-
ematical claim of the consistency of the mind to the arithmetical sentence
Con(T ). The latter is mathematically constructed as the absence of T -proofs
of contradicting sentences in T , a precisely defined sentence that is required
to establish T ’s Gödel sentence. Lucas has merely provided evidence of the
metamathematical claim. Perhaps it is possible to establish Con(T ) so that
Lucas’ argument might still succeed. In what follows I will critically examine
the two possible strategies according to which Con(T ) might be established:
formally and informally.

First, let us consider the possibility that Lucas formally establishes Con(T )
where T is a formal system supposedly modeling his mind. His argument then
rests on the following three assumptions.

(1) For reductio, mechanism holds;

8Lucas, “Minds, Machines, and Gödel,” 121.

9



(2) The formal system T modeling his mind is consistent;

(3) Lucas can formally prove Con(T ).

These assumptions allow him to infer GT that contradicts the assumption
that our mind is exactly modeled by system T . Lucas’ position is that we are
forced to reject assumption (1), though I will demonstrate that this position
is problematic.

Lucas may be compelled to reject (1), but as he has not actually provided
a formal proof of Con(T ), which is needed to reach the desired contradiction,
accepting premise (3) simply begs the question. Therefore, the mechanist is
entirely justified in rejecting the third premise. Another legitimate possibility
that remains is for the mechanist who trivially accepts premise (1), to accept
premise (3) while rejecting (2). She might content that Lucas can formally
prove Con(T ) and, by mechanism, that T ` Con(T ). Indeed, Gödel’s second
incompleteness shows that T is an inconsistent formal system, contradicting
assumption (2). However, Lucas’ argument does not prevent the mechanist
in rejecting (2).

All Lucas has shown is that premises (1) through (3) are jointly con-
tradicting: human beings cannot be exactly modeled by a formal system T
while being both consistent and having the ability to formally prove Con(T ).
Lucas’ argument does not disprove mechanism in view of the fact that the
mechanist may simply reject the assumption that she can be modeled by an
inconsistent formal system.

Equating formal and informal proofs

We have seen that the validity of Lucas’ argument rests on his ability to
establish Con(T ). This is an unfortunate position considering the consistency
of his own mathematical reasoning is easily jeopardized by the results of
Gödel’s second incompleteness theorem. We consider the second manner in
which Con(T ) can be established: informally. At first glance this seems to
solve the issues discussed so far as the second incompleteness theorem does
not preclude a formal system from giving an informal proof of its consistency.
Furthermore, Lucas’ reasoning seems to favor this claim. After all, he has
given empirical evidence in support of his claim that his mind is consistent.
So let us assume for now that Lucas can informally establish Con(T ) so that
he may apply modus ponens to Con(T )→ GT .
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It appears that this change allows the Lucas argument to succeed, but as
pointed out by Paul Benacerraf in his article “God, the Devil, and Gödel”, it
gives rise to new and severe problems. Benacerraf stresses that Lucas falsely
equivocates two different senses of ‘proving’. The equivocation is made ex-
plicit by our reformulation of the argument: it occurs when we infer that
Lucas can formally prove GT from the informal proof of Con(T ). Clearly,
this inference is invalid and we must acknowledge that from the assumption
that Lucas proves Con(T ) informally, it merely follows that he can prove
GT in an informal sense as well. Benacerraf reminds us that all that follows
from the first incompleteness theorem is that T , if consistent, cannot prove
its Gödel sentence from its axioms according to its inference rules. Lucas’
position is, of course, that his mathematical abilities are beyond that of a for-
mal system, but it is clear that Lucas cannot prove T ’s Gödel sentence from
T ’s axioms and inference rules either. So the claim that Lucas can mathe-
matically outperform a formal system does not follow from the theorems for
it is not at all clear that T is limited in its ability to conjure up informal
proofs. Perhaps T can carry the Lucas argument on itself and convince itself
of GT like Lucas does. Benacerraf goes on to write, “To be sure, one might
reply that no machine ... can be said to convince itself that formulas are
true. But of course, if that’s why [it] can’t, then we hardly need Gödel’s the-
orems to establish it.”9 In any case, his point is that Lucas’ argument fails in
demonstrating that Gödel’s incompleteness theorems are irreconcilable with
mechanism.

The nature of a Turing machine’s proof

In a response to Benacerraf’s criticism, Lucas argues that there is a funda-
mental difference in the way he and formal systems are able to construct
proofs. He claims that a formal system, by virtue of being a formal system,
is necessarily incapable of giving informal proofs. Given a formal system T ,
there is a Turing machine MT that produces exactly the same set of sentences
that T proves. So a theorem of T can be seen as an output statement of some
formally computational model. The operations MT performs in order to es-
tablish a sentence is “governed by [its] programme, and would correspond to
a formal system.”10 So T ’s proofs cannot be informal in nature. Therefore,

9Paul Benacerraf, “God, the Devil, and Gödel,” The Monist 51 (1967), 20.
10J. R. Lucas, “Satan Sultified: A Rejoinder to Paul Benacerraf,” The Monist 52 (1968),

147.
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if T is consistent, it is subject to Gödel’s theorems and are shown to be
incapable of proving either Con(T ) or GT .

Lucas’ response to Benacerraf is unsatisfactory as his contention that he
has the ability to outperform a formal system remains problematic. Lucas
argues that it is impossible that a formal system convinces itself of something
it does not prove formally. This is indeed the case for systems modeled by a
deterministic Turing machine; their procedures for proving are governed by
strict rules. However, one could conceive of a system that can be modeled
by a stochastic Turing machine. Such a system could assess the probability
of sentences being true and accept or reject them accordingly. Perhaps our
intellectual abilities can be modeled by such systems. As input these models
can take the same information that Lucas takes to show we are consistent
and conclude that we are indeed probably consistent. They can perform the
Lucas argument and be convinced that their Gödel sentence is probably true
as well. Though Lucas may be convinced that he proves the consistency of
the mind with absolute certainty, it is clear that he does not do this.

Revisions of Lucas’ argument

Lucas’ conviction of the superiority of human minds to machines is based on
his claim that he can see the truth of the Gödel sentence while a machine
cannot. A reconstruction of his argument has revealed the fallacy of assuming
consistency of the mind, something that cannot be proven without sabotaging
the entire argument. We must conclude that Lucas’ argument indeed fails
in demonstrating that the incompleteness theorems are incompatible with
mechanism.

Several others have attempted to revise this type of Gödelian argument in
which the human ability to see the truth of the Gödel sentence is pivotal. One
well-known revision is made by the physicist Roger Penrose in his Shadows
of the Mind. He argues that human mathematical reasoning is ‘sound’; that
is, the mind cannot prove false mathematical sentences.11 He argues that
mathematical theorems are ‘unassailably true’, a claim that has frequently
been criticized in the mechanism debate.12 The fallacy remains: for the same
reason that Lucas cannot assert his consistency without undoing the rest of

11Roger Penrose, Shadows of the Mind: A search for the missing science of conscious-
ness, (New York: Oxford University Press, 1994).

12For examples, see David J. Chalmers, “Minds, Machines, and Mathematics,” Psyche
2 (1995), 11-13; or Drew McDermott, “Penrose is Wrong,” Psyche 2 (1995), 66-82.
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his argument, Penrose cannot assert his soundness without doing the same.
A change in terminology does not bring forth a change in logic.

Many Gödelian arguments fail in disproving mechanism for the same rea-
son. Evidently, this does not mean that mechanism is true. Perhaps Gödel’s
incompleteness demonstrate something different that is exclusive to the hu-
man intellect. In order to refute mechanism from these theorems we require
an argument that does not rests on the soundness or the consistency of the
mind. Storrs McCall provides precisely such an argument. In the next chap-
ter, I will consider his argument as well as some possible objections to it.
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3 The McCall Argument

Storrs McCall continues the search for a convincing anti-mechanist argument
based on Gödel’s incompleteness theorems. He contends that the unproven
assumption of consistency of a system is necessary to derive its Gödel sen-
tence.13 Since the truth of the Gödel sentence is beyond what we can know,
McCall attempts to find a different sentence that can be seen to be true by the
human mind while fundamentally unprovable by formal systems. Such a sen-
tence must exist, according to McCall, for Gödel’s incompleteness theorems
demonstrate that truth and provability diverge. His argumentation tacti-
cally refrains from making unwarranted assumptions about the consistency
of systems or the human mind. McCall’s argument thus has the potential to
succeed where the Lucas argument fails.

In what follows I will examine his argument carefully. First I consider the
particular sentence that is claimed to be true by Gödel’s theorems, though
unprovable to formal systems. It will become apparent that McCall mis-
understand Gödel’s proofs, which causes him to fail to provide a sentence
only human minds can see to be true. Then I will focus my attention to
McCall’s central claims: that truth and provability diverge, and that this
divergence cannot be understood by formal systems. After a careful analy-
sis of these claims, it will be demonstrated that McCall’s argument cannot
be justified. He, too, fails in showing that mechanism is irreconcilable with
Gödel’s incompleteness theorems.

Reconstructing McCall’s argument

McCall argues that “the domain of expertise of a Turing machine lies in the
area of proof and provability, not in the area of truth. Human beings, on
the other hand, are acquainted with both proof and truth, and also know of
cases where the two diverge.”14 Let us consider McCall’s motivation for this
point carefully. Let T be a formal system, then by the first incompleteness
exactly one of the following two cases must hold:

(1) T is consistent, then T 0 GT ;

(2) T is inconsistent, then T ` GT .

13McCall, “Can a Turing Machine Know that the Gödel Sentence is True?”, 526.
14Idem, 527
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Considering the Gödel sentence, by construction, satisfiesGT ↔ ¬BewT (pGTq),
it is indeed true when unprovable and false when provable. No illegitimate
assumptions are made; these conditional statements hold categorically. It is
simply a mathematical result that the truth value of the Gödel sentence is
in opposition to its provability. Thus, McCall is indeed correct to conclude
that truth and provability are not equivalent properties.

There must be some sentence that is true but unprovable. McCall then sets
out to find one. Contrary to Lucas and Penrose, he contents that the Gödel
sentence is not an appropriate candidate and he looks for his golden ticket
elsewhere. Perhaps a conditional claim following from the incompleteness
theorems, similar to statements (1) and (2), would suffice. Statements (1)
and (2) in particular are not what McCall is after, since their formalization
is a theorem of T . That is,

T ` Con(T )↔ ¬BewT (pGTq).

It is the second part of the first incompleteness theorem that, according to
McCall, belongs to the desired category:

(3) If T is consistent, then ¬GT is unprovable in T .

He argues that, firstly, (3) is a consequence of Gödel’s first theorem and,
secondly, that the formal counterpart of (3),

(3*) Con(T )→ ¬BewT (p¬GTq),

is unprovable in T . If his argument succeeds, we know of a particular sentence
that can be seen to be true by the human intellect while being out of bounds
of what a formal system can derive.

A true yet unprovable sentence

There are several problems with this argument. The first is that McCall does
not provide a conclusive proof of (3*) being unprovable in T , simply stating
that it is “unlikely” for it to be provable.15 This, I think, does not make for
a convincing argument.

Another problem is more obvious still: statement (3) is not exactly what
follows from the first incompleteness theorem. Gödel explicitly required a

15Idem, 529.
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formal system to be ω-consistent, a strictly stronger requirement than mere
consistency, to conclude that ¬GT does not belong to its theorems. Though
McCall attempts to show that the stronger requirement is unnecessary to
establish the underivability of ¬GT , Alexander George and D. J. Velleman
point out that his proof makes tacit use of the assumption.16 Paraphrasing
McCall’s proof,

Suppose, for reductio, that T is consistent and that ¬G is a theo-
rem. Then there is a T -proof of ¬GT , and, from the consistency of
T we infer that there is no T -proof of GT . At the same time, since
¬GT is equivalent to BewT (pGTq), from T ` ¬GT we derive T `
BewT (pGTq). Because the open formula BewT (x) weakly repre-
sents the property of being a T -proof, it follows that there is a
T -proof of GT , which completes the reductio.17

What McCall does not realize is that the truth of his claim, in par-
ticular the weak representability of a property, depends on ω−consistency.
To see why this is the case, consider what precisely follows from the as-
sumption of T ` ¬GT . From the construction of GT , this is equivalent to
T ` ∃xPrfT (x, pGTq). However, without assuming ω-consistency, one cannot
rule out the possibility that for all natural numbers n, T ` ¬PrfT (n, pGTq)
(see footnote 4 for a definition of ω-consistency). Thus, we may not conclude
that there is an actual T -proof of GT . Hence, the reductio is not completed.18

This fallacy makes it illegitimate to conclude that the human intellect
knows statement (3) to be true. This results in the irrelevancy of claiming
that its formal counterpart, (3*), is underivable in a formal system. Though
this mistake by itself leaves the McCall argument severely troubled, there is
another problem worth mentioning. One may wonder whether the argument
applies to the following true statement:

16Alexander George and Daniel J. Velleman, “Leveling the Playing Field between Mind
and Machine: A Reply to McCall,” The Journal of Philosophy 97 (2002), 458.

17McCall, “Can a Turing Machine Know that the Gödel Sentence is true?” 529. Nota-
tions and definitions have been altered to better suit the style of this thesis; however, the
deductions and argumentation are true to McCall’s text.

18One might wonder whether Rosser’s improvement, which showed that mere consistency
suffices to demonstrate negation-incompleteness, might save McCall’s argument. However,
the fundamentally different construction of Rosser and Gödel sentences make it so that
the argument does not work. The modified formal counterpart of (3*) where the Gödel
sentence is replaced by the Rosser sentence is derivable in T . See George and Velleman,
“Leveling the Playing Field,” 461.
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(4) If T is ω-consistent, ¬GT is unprovable in T .

As (4) is unequivocally true, perhaps its formal counterpart,

(4*) ω-Con(T )→ ¬BewT (p¬GTq),

can be shown to be unprovable in T . Then we would nonetheless have con-
crete evidence of some sentence that is knowable exclusively to the human
intellect. All things considered, McCall was too optimistic in claiming to
demonstrate a true yet unprovable sentence, as George and Velleman prove
that (4*) is in fact formally derivable in T .19

Can a Turing machine differentiate between truth and provability?

There is a more essential point to McCall’s argument that, regardless of fail-
ure to provide a particular sentence that can be seen to be true yet unprov-
able, may still be the successful to demonstrating that human mathematical
reasoning is irreducible to a machine. His arguments rests on the claim that
true but unprovable sentences exists at all, and that they form a category that
is fundamentally out of reach of any machine. Indeed, McCall is correct to
assert that the category exists as the incompleteness theorems demonstrate
that truth and provability diverge for the Gödel sentence. However, to claim
that this divergence can only be understood by the mind is problematic. Re-
call that the construction of the Gödel sentence is done in PA (or a formal
system extending it):

PA ` GT ↔ ¬BewT (pGTq).

By simple logic, the following equivalency holds as well:

PA ` (GT ∧ ¬BewT (pGTq)) ∨ (¬GT ∧ BewT (pGTq)).

The above holds for any arbitrary T , and since PA is an axiomatizable theory,
a machine can be constructed that outputs all sentences of this form. Such
a machine can recognize, similar to us, that truth and provability diverge for
some sentences.

McCall may object to the significance of the formalization above. His
original claim, if T is consistent, then GT is unprovable yet true, is an infor-
mal claim that requires a semantic notion of truth. It can be argued that for a

19George and Velleman, “Leveling the Playing Field,” 459-461.

17



formal system the mere assertion of a sentence is not equivalent to expressing
the truth of that sentence via a truth predicate. If a formal system is capable
of expressing such a predicate, it has sufficient tools to differentiate between
truth and provability. Given a formal system T , a truth predicate may be
denoted TrueT (x) and should satisfy TrueT (pϕq) ↔ ϕ for all sentences ϕ of
T ’s language. This approach is considered by McCall in his original paper.
In it, he argues that Tarski’s undefinability theorem demonstrates that this
cannot be done.20

The undefinability of ‘truth’

McCall claims, rightfully so, that all a Turing machine can know is that which
it can prove: that is, what can derive from its axioms using its well-defined
rules of proof. Truth, for a formal system, is something different entirely
according to McCall. He claims that from Tarksi’s theorem,

The notion of “truth” in PA is ... on quite a different footing
from that of “provability.” The latter concept is represented by
an open arithmetical formula; no analogous formula expresses
(much less represents) the former, thus reinforcing the hypothesis
that “truth,” though meaningful to humans is a closed book to a
[formal system].21

Tarski’s undefinability theorem is an important result in mathematical logic
which states that a formal consistent system is incapable of having a truth
predicate for its own language.22 To see why this is the case, suppose other-
wise. Let T be a formal and consistent system extending PA with language
L, satisfying

T ` TrueT (pϕq)↔ ϕ

for every ϕ ∈ L. As T extends PA, the diagonalization trick applies to the
negation of the truth predicate, so there is a sentence ψ such that T proves

ψ ↔ ¬TrueT (pψq).

20McCall, “Can a Turing Machine Know that the Gödel Sentence is True?” 530.
21Idem, 530.
22Alfred Tarski, “The Concept of Truth in Formalized Languages,” in Logic, Semantics,

and Metamathematics, ed. J. Corcoran (Oxford: the Claredon Press, 1983), 260.
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However, by assumption T proves

ψ ↔ TrueT (pψq).

Contradicting the consistency of the system, we must concede that such a
truth predicate cannot exist. Since a formal system cannot define truth for its
own language, McCall concludes that it cannot know of the category true but
unprovable altogether. This is the essence of the McCall argument: human
intellect fundamentally differs from what a formal system can derive due to
its ability to understand that truth and provability do not always coincide.

McCall is correct when he states that Tarski’s theorem prevents a formal
(consistent) system of being able to express “truth” for its own language and
therefore that knowledge of sentences being true but unprovable is limited.
However, it is important that we are careful with interpreting the conse-
quences of Tarski’s theorem. A truth predicate cannot exist for a systems
own language, yet it is well known that the theorem does not prohibit truth
predicates for languages that are less rich. Let us illustrate this idea for a
formal system T in language L. Then there might be a language L∗ included
in L for which we can find a truth predicate, True(x), such that for all L∗

formulas ϕ, True(pϕq)↔ ϕ is derivable in T . As long as the possibility exists
that a formal system can define a partial truth predicate McCall’s argument
is in serious trouble. It cannot be said definitively that formal systems are
incapable of recognizing that truth and provability in some cases diverge. As
McCall fails to consider this possibility, his argument is unconvincing and
mechanism may still be a legitimate theory of the mind.

A truth predicate for the Gödel sentence

A similar and more specific objection is raised by Panu Raatikainen in his
critique of McCall’s argument. Not only is the hypothetical existence of a
partial truth predicate in the language of arithmetic a problem for McCall’s
argument, Raatikainen points out that Gödel sentences belong to a specific
class of sentences for which a partial truth predicate has been defined.23 The
class of Π1-sentences24 consists of universal arithmetical sentences to which
Gödel sentences belong. As proven by Smoryński, formal systems extending

23Panu Raatikainen, “McCall’s Gödelian argument is invalid,” Facta Philosophica 4
(2002), 168.

24To be more precise: Π1-sentences are of the form ∀xϕ(x) or ¬∃xϕ(x) where ϕ(x) is a
bounded arithmetical formula.
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PA can express a truth predicate for Π1-sentences without violating Tarski’s
undefinability theorem.25 Let us denote such a predicate by Tr1(x). Then
for any formal system T extending PA, PA can prove that GT ↔ Tr1(pGTq).
Hence, PA can prove

(Tr1(pGTq) ∧ ¬BewT (pGTq)) ∨ (¬Tr1(pGTq) ∧ BewT (pGTq))

for any arbitrary formalized T . Again, a Turing machine can be constructed
to enumerate all such facts. As a result, it is able to differentiate truth from
provability, even when the former is taken as a substantial property.

Concluding remarks

Though McCall’s argument is indeed innovative and seems to be much stronger
than the Lucas argument at face value, it is subject to severe problems that
have not been rectified. McCall claims to have found a true sentence that is
unprovable to formal systems, but George and Velleman have demonstrated
that he is mistaken in even claiming it to be true. Moreover, the corrected
statement is provable in formal systems. McCall therefore fails to provide
an example of a sentence that is true but unprovable.

The stronger claim, that the category of true but unprobavable sentences
exists at all yet is unrecognizable to machines, was examined next. McCall
appeals to Tarski’s undefinability theorem to argue that a machine is not
equipped to understand “truth” in the same way that it can understand
“provability”. This argument is unconvincing since machine can have par-
tial truth definitions and can therefore understand, in some cases, that truth
and provability diverge. Moreover, the Gödel sentences were proof that the
category exists, but machines can easily be equipped with a truth-predicate
for Gödel sentences as well. Thus, a machine can recognize that truth and
provability diverge for Gödel sentences. McCall’s argument, therefore, fails
in demonstrating any way in which the human intellect has superior mathe-
matical abilities than machines.

25Craig Smoryński, “The Incompleteness Theorems,” in Handbook of Mathematical
Logic, ed. J. Barwise (Amsterdam: North-Holland Publishing Company, 1977), 843.
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Conclusion

The two Gödelian arguments against mechanism that have been examined
in this thesis are shown to be unsuccessful. Lucas claims the human mind
is superior to a machine since it can see that the Gödel sentence is true.
This claim, however, has been shown to be based on an illusion. In order
to establish the Gödel sentence, we must be able to establish the antecedent
of Con(T )→ GT , something that, as I have argued, is impossible in a way
that does not compromise the argument altogether. Many Gödelian anti-
mechanist arguments are based on the same illusion and fail for the same
reasons. McCall’s approach differs considerably: it is not the Gödel sen-
tence that is true yet unprovable, but rather the more complicated if T is
consistent, then ¬GT is unprovable in T . However, it has been shown that
this argument is false as well. McCall furthermore appeals to the fact that
truth and provability diverge by the incompleteness theorems, though his
conclusion that this is knowable only to human beings has also been refuted.

While an analysis of Lucas’ and McCall’s arguments shed light only on
a part of the mechanism debate, I think there is something more general to
be said about Gödelian anti-mechanist arguments. The arguments we have
considered, including that of Penrose, all share a noteworthy feature. They
claim that human minds are superior to machines since they are able to
prove, contrary to formal systems, some particular arithmetical sentence. It
seems that it is safe to say that any Gödelian argument must take this form
as Gödel’s theorems demonstrate nothing more than that (consistent) formal
systems are limited in this way. However, a claim to our abilities to prove
some particular sentence will probably be far too inexact to be of value.

What type of sentence would we be able to prove that by Gödel’s theorems
is unprovable in a formal system? For Lucas and Penrose this statement was
the Gödel sentence, GT ; for McCall is was a sentence constructed with GT

and Con(T ). Moreover, I don’t see how an anti-mechanist can use Gödel’s
theorems to argue for the human provability of some sentence that does not
depend on GT or Con(T ). It is crucial, therefore, to be conscious of how these
sentences are to be understood. Both Con(T ) and GT are mathematically
defined using the provability predicate of system T . In non-mathematical lit-
erature they are often written as meaningful sentences. For example, Con(T )
may be defined as “there is no sentence such that there is an T -proof of this
sentence and an T -proof of its negation”. While not incorrect, this definition
is incomplete without a clarification of what constitutes an T -proof. Sure,
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we know that a provability predicate for formal system T can be effectively
constructed as Gödel provided a method to do so, but to actually construct
a provability predicate for a system T requires knowing the axioms and rules
of proof of the system. In other words: T must be given.

This is a considerable problem for the Gödelian anti-mechanist. We may
know how to construct the provability predicate for, say, Peano Arithmetic,
but the Gödelian does not claim that we are superior to formal systems
because we can prove GPA: certainly formal system PA + GPA can prove
the same. The Gödelian claims that we are superior because we can prove
some particular sentence depending on GT or Con(T ) for any arbitrary formal
system T . Ignoring all other problems such an argument may face, this claim
is justified only if we can explicitly or effectively define a provability predicate
for T . When T may be any arbitrary formal system, this is an unattainable
task. Benacerraf makes a similar point in his criticism of Lucas’ argument:

If given a black box and told not to peek inside, then what rea-
son is there to suppose that Lucas or I can determine its program
by watching its output? But I must be able to determine its
program (if that makes sense) if I am to carry out Gödel’s argu-
ment in connection with it. . . If the machine is not designated in
such a way that there is an effective procedure for recovering the
machine’s program from the designation, one may well know that
one is presented with a machine but yet be unable to do anything
about finding the Gödel’s sentence for it.26

Benacerraf’s point is that precise definitions are required for the notions of
provability within a system. Any argument appealing to the capabilities of
a mechanical model is unconvincing without knowledge of its program. It
would simply be too hypothetical to yield any concrete results. Ignoring all
other problems a Gödelian argument against mechanism may have, it must
at the very least be precise in its claims about how any particular relevant
model of a formal system can derive sentences. Granted, this is not an easy
task. Benacerraf goes on to write, “In a relevant sense, if I am a Turing
machine, then perhaps I cannot ascertain which one.”27

Proving that the incompleteness theorems are incompatible with mech-
anism requires that the notion of provability is defined. Therefore, until

26Benacerraf, “God, the Devil, and Gödel,” 28.
27Idem, 29.
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such time that we understand the intricate workings of the human mind (or
the formal system that allegedly models us exactly) well enough to give an
explicit provability predicate for it, it is unlikely that mechanism can be re-
futed by the results of Gödel’s theorems. The anti-mechanist may need to
look beyond Gödel’s work in order to support his claim.
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Lucas, J. R. “Minds, Machines, and Gödel.” Philosophy 36 (1961), 112-127.

McCall, Storrs. “Can a Turing Machine Know that the Gödel Sentence is True?”
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of Symbolic Logic 1 (1936), 87-91.
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