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Abstract

The zero-truncated Poisson regression model is used to estimate the total size of

populations that cannot be counted directly. In this model, covariates are used to account

for variation within the population and produce an accurate estimate of the total

population size. This study investigates the inclusion of event-related covariates in the

model. These are covariates that represent a property of the capture itself that is only

observed with the occurrence of a capture and whose value may vary over time.

Consequently, multiple values may apply to one individual. However, since this information

is mostly unobserved, including event-related covariates in the model is complicated. A

simulation study is performed to investigate how event-related covariates should be

included in the zero-truncated Poisson regression model. Three simulations are conducted

in which an event-related covariate with two categories is respectively considered invariant

and time-varying in the first two simulations, and a mixture of both in the third. Four

methods are evaluated in the simulations: no covariate, one dummy, two dummies, and two

count variables. This study shows that event-related covariates should not be included in

the model when their value is assumed to be at least partially time-varying. Including

event-related covariates regardless ensues misspecification of the model that results in

biased estimates.

Keywords: capture-recapture, population size estimation, truncated Poisson

regression, time-varying covariates
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To Be Invariant or to Be Time-Varying: The Issue of Including Event-Related Covariates

in the Zero-Truncated Poisson Regression Model

Capture-recapture methods are used to estimate the size of populations that cannot

be counted directly. The zero-truncated Poisson regression model can be used when count

data is available in a single registration file with the number of captures of the observed

population members recorded during a fixed observation period. Individuals that were

never captured have a count of zero and are therefore not on the list. Under the model, a

Poisson parameter is estimated that defines the probabilities of a population member to be

captured once, twice, and so on. Based on this Poisson parameter, the probability of a zero

count can be estimated, so the number of remaining population members can be

determined and added to the population members that were already on the list, resulting

in an estimate of the total population size.

One important assumption of the Poisson distribution is the homogeneity of the

Poisson parameter. This homogeneity means that the chances to be captured once, twice,

and so on are assumed to be the same for all population members. However, it is often

unrealistic to expect that this assumption holds ("Student", 1919). For example, men and

women may have different Poisson parameters or the Poisson parameter may change with

age (see Kromhout, Wubs, & Beenakkers, 2008; Cruyff & Van Der Heijden, 2008; Snippe &

Mennes, 2018). Violation of the homogeneity assumption can result in an underestimation

of the total population size. As such, it is essential to deal with this heterogeneity. This

can be done by specifying the Poisson parameter as a function of covariates in Poisson

regression, which prompts the estimation of multiple Poisson parameters that can vary

based on an individual’s scores on the covariates (Cameron & Trivedi, 1998). Subsequently,
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one would want to add covariates to the model that account for the heterogeneity in the

population.

There are multiple types of covariates. For instance, covariates can be classified as

continuous or categorical, intrinsic or extrinsic, invariant or time-varying, and internal or

external. Since the type of covariate often dictates how they ought to be included in the

model, it is beneficial to classify them based on their properties. In this, time-varying

covariates pose a special challenge in Poisson regression, because the event counts are

measured over the time in the observation period, but summed overall (Rostgaard, 2008).

As such, the time component is lost in the model. The inclusion of time-varying covariates

is then complicated, as their value is only observed with the occurrence of a capture. So,

while these covariates may take on different values for the same individual during the

observation, their variation over time is undetermined, and we lack the information to

accurately predict the rest (Bonner, Thomson, & Schwarz, 2009). Further specifying the

classification of time-varying covariates may provide directions as to how they can be

included in the Poisson regression model. For example, since the change over time for age

is predetermined, age can be observed once and fixed for the remaining part of the

observation period.

However, within the criminological context of population estimation, we have come

across a type of covariate that is potentially time-varying, and that stands out because of

its ambiguous nature. Apart from the difficulty of a time-varying covariate as described

above, the inclusion of this type of covariate is complicated, because it represents a

property of the event count under study. Therefore, it cannot exclusively be regarded as an
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individual characteristic when its value changes over time. As such, this could be regarded

as an event-related covariate.

We consider the police district in which the capture took place as an example. This

covariate was taken into account by Van Der Heijden et al. (2003b) in estimating the

number of drunk drivers in the Netherlands. When capture priorities differ across police

districts, their inclusion in the model is beneficial to explain a part of the population

heterogeneity as individuals could move across police districts and consequently be subject

to different amounts of tests (Hoogteijling, 2002). Then, the value of the police district is

mostly invisible, as it is only observed with the occurrence of a capture. Moreover, this

event-related covariate can no longer be considered as a property of the individual when

different capture priorities of multiple police districts apply to the same individual during

the observation period. Hence, the inclusion of event-related covariates in the Poisson

regression model is complicated.

We may look at various types of covariates that are distinguished in the literature

and attempt to classify this event-related covariate accordingly to gain insights into its

inclusion. First, Catchpole, Morgan, and Tavecchia (2008) differentiated between extrinsic

and intrinsic covariates for animal capture-recapture data. In this, extrinsic covariates

relate to all population members, while intrinsic covariates depend on individual

characteristics. Furthermore, since captures are recorded over an observation period, the

value of the covariates may change over time. Therefore, both extrinsic and intrinsic

covariates can be classified as invariant when their value is constant, or time-varying when

their value changes over time (Bonner, Morgan, & King, 2010).
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Multistate capture-recapture models distinguish between static and dynamic states as

covariates. Even though this contrast is similar to that of the previous paragraph, states

are categorical variables, while invariant and time-varying covariates can also refer to

continuous variables. For static states, the value of the covariate does not change over

time, like gender. In contrast, the value of dynamic states varies over time. This variation

over time can further be divided into a change that occurs in a deterministic or

probabilistic way. Deterministic change occurs at a constant rate over time, like age. For a

probabilistic change, the amount of variation over time is not readily defined (Kendall,

Conn, & Hines, 2006).

In survival analysis, the distinction between invariant/static and

time-varying/dynamic covariates is found as well. Kalbfleisch and Prentice (1980)

additionally defined two classes of time-varying covariates: external and internal (Austin,

Latouche, & Fine, 2020; Cortese & Andersen, 2010). When a covariate is external, it may

influence survival, but is not affected by the occurrence of failure, e.g., death, over time.

Internal covariates, however, are reciprocally related to the outcome: they affect survival

but are also affected by the survival itself. Internal covariates mostly follow a stochastic

process that is often only observed as long as the individual survives. Later, Lancaster

(1990) proposed a similar distinction, defining a covariate exogenous when the process by

which the variable comes about depends on the process generating the outcome variable,

and endogenous otherwise. In this, exogenous and endogenous covariates compare to

external and internal covariates, respectively (Vermunt, 1996).

Kalbfleisch and Prentice (1980) further divided external covariates into three
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categories: fixed, defined, and ancillary. The value of fixed external covariates is measured

before the study and held constant for its duration. Similar to deterministic dynamic

states, the change in the value of defined external covariates is predetermined for the

duration of the study. Ancillary external covariates resemble probabilistic dynamic states

because their value changes stochastically, following a process that lies outside the scope of

the study.

When applied to the police district in which the capture took place as an

event-related covariate, it becomes clear that no ready-made solution can be found, as the

classification of an event-related covariate depends on unknown information; whether its

value is time-varying. On the one hand, when its value is invariant, the police districts

function as an intrinsic covariate. That is, an individual stays in one district during the

observation period and can only be captured there. Then, the capture priority of a police

district is an individual characteristic. On the other hand, when its value is time-varying

and individuals can move across multiple districts, the police districts function as an

extrinsic covariate. In this case, the capture priority of a district can no longer be regarded

as a property of the individual. Rather, it is a property of the police district itself, equal

for all individuals residing in that district throughout a portion of the observation period.

This is in contrast to marital status, for example. Whether an individual’s marital status

changes during the observation period does not affect its classification as an intrinsic

covariate.

However, the ambiguity does not end there, as the classification of the police district

in which the capture took place under the other categories also depends on whether its
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value can change over time. For example, invariant police districts are fixed

external/exogenous, because their value is constant and cannot be affected by the capture.

Meanwhile, the variation over time for time-varying police districts is deemed probabilistic

as individuals are not assigned to a certain police district and can move across districts in a

fluctuating manner. Likewise, it is internal/endogenous, because the value of the police

district is only observed when a capture takes place.

So, as the classification of event-related covariates is contingent on its largely

unobserved variation over time, it remains unclear how we should include them in the

model. To simplify the discussion, we consider multiple approaches to the case that there

are two police districts. First, we could disregard the police district in which the capture

took place as a covariate. Second, we could use a dummy variable to mark the police

district in which most captures took place, which was the approach taken by Van Der

Heijden et al. (2003b) in estimating the number of drunk drivers in the Netherlands.

Third, we could add two dummy variables, one for each district, where a one means that

the individual was captured at least once in the district the dummy represents and a zero

that no captures have taken place in that district. Lastly, two count variables could be

included in the model, with a separate variable for each district in which one count equals

one capture in that district, two counts equal two captures, and so on.

The purpose of this study is to evaluate the performance of these four methods for

including event-related covariates in the zero-truncated Poisson regression model. This will

be done by comparing their estimates of the total population size and Poisson parameters

for accuracy in a simulation study. Three simulations will be performed. In the first two
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simulations, the police district in which the capture took place will be regarded as an

invariant and time-varying covariate, respectively. The third simulation will combine the

properties of the preceding simulations in considering a population in which the

event-related covariate manifests itself as both invariant and time-varying.

The paper is structured as follows. Section 2 discusses the zero-truncated Poisson

regression model and related matters. Hereafter, the structure of the simulation studies

and their results are described in section 3. The paper ends in section 4 with a conclusion

based on the results and a discussion of its implications, a critical evaluation of the current

study, and topics for further research.

2 The Model

In this section, the zero-truncated Poisson regression model is examined and the

Horvitz-Thompson estimator for the total population size is described. Since the

zero-truncated Poisson regression model is a modification of the Poisson regression model,

which is derived from the Poisson probability distribution, these models and their features

are also reviewed.

2.1 The Poisson Distribution and Zero-Truncation

The Poisson distribution is a theoretical probability distribution that describes the

occurrence of events within a fixed observation period that are generated by a Poisson

process, which is a series of random events occurring in time (Kingman, 1993). The

probability distribution for an event to occur a number of times by a Poisson process is
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denoted by

P (Y = y | λ) = exp(−λ)λy

y! , y = 0, 1, 2, . . . , (1)

where the random variable Y for y = 0, 1, 2, . . . represents the number of observed events

during the observation period, and λ(λ > 0) is the Poisson parameter that jointly describes

the mean and the variance of the distribution. This is always a number above zero, since it

is assumed that there is a non-zero possibility for every population member to be captured.

When measured in discrete time, the Poisson parameter is a summation of the rates

for all time units in the observation period T , given by

λ =
T∑

t=1
rt, (2)

where t denotes a discrete time unit, and rt the number of events per time unit t. Generally,

it is presumed that the rate is constant for the duration of the observation period. While

we discuss this presumption in more detail in Section 2.3, it is important to note that this

is not a requirement for the Poisson distribution to accurately describe an event count.

The number of captured drunk drivers can be described by a Poisson distribution as

well. The Poisson parameter for a drunk driver would then correspond to the sum of the

rates over the days in the observation period. The higher the value of the rate, the higher

the chance for a drunk driver to be captured on a day in the observation period.

Since the registration file of the police does not contain the drunk drivers that were

never captured, their number needs to be estimated from the observed events y > 0. This
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can be incorporated in the expression of the Poisson distribution (1) by specifying the

condition that y > 0, resulting in the zero-truncated Poisson distribution.

P (Y = y | y > 0, λ) = P (y | λ)
P (y > 0 | λ) = exp(−λ)λy

y!(1− exp(−λ)) , y = 1, 2, . . . , (3)

where P (y > 0|λ) = 1− exp(−λ).

Following Van Der Heijden et al. (2003a), who derived the Horvitz-Thompson point

estimate for the zero-truncated Poisson regression model, the estimate of the total

population size N can be calculated as

N̂ = n
1

1− P (Y = 0 | λ) (4)

where n are the population members in the registration file, and P (Y = 0 | λ) = exp(−λ)

denotes the probability of a zero count. So, the lower the Poisson parameter, the higher the

probability of a zero count, the higher the estimate of the total population size.

2.2 The Homogeneity Assumption and Poisson Regression

For an event count to be accurately described by a Poisson distribution, it has to

adhere to the assumption of homogeneity. This means that the event count follows a

Poisson distribution with the same Poisson parameters for all population members. As

mentioned in the introduction, this assumption is often violated ("Student", 1919). In that

case, the variance exceeds the mean and thus breaches the Poisson property that the
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Poisson parameter jointly describes the mean and the variance. This is called

overdispersion and ensues misspecification of the model (Hinde & Demétrio, 1998).

Van Der Heijden et al. (2003a) have demonstrated that failing to account for

heterogeneity in the model results in an underestimation of the total population size

through a special case of Jensen’s inequality. Figure 1 shows the difference in the

expectation of a zero count between a model with a dichotomous covariate and an

intercept-only model. Referring to Section 2.1, the expectation of a zero count can be

expressed as P̂ (Y = 0) as it is the estimate of P (Y = 0). Similarly, as the expectation of a

zero count is higher for the model with the covariate, its estimate of the total population

size is also higher compared to the intercept-only model. In this figure, δ indicates the

average difference between the Poisson parameters of the model with the covariate and the

intercept-only model. The higher its value, the bigger the difference between the models in

the expectation of the zero counts, and thus the estimate of the population size.

The misspecification of a zero-truncated Poisson distribution has more far-reaching

consequences than that of a Poisson distribution that is not zero-truncated. In contrast to

a fully observed distribution, the mean of a zero-truncated distribution has yet to be

determined. Therefore, the misspecification of a zero-truncated distribution can result in a

biased estimate of the mean (Cameron & Trivedi, 1998).

Violation of the homogeneity assumption can be adjusted with the use of covariates,

as these allow for the estimation of multiple different Poisson parameters. The

zero-truncated Poisson distribution (3) can account for heterogeneity with the inclusion of
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Figure 1. Illustration demonstrating that the model with a dichotomous covariate has a higher expectation

of the zero count than the model without it. Reprinted from "Estimating the Size of a Criminal Population

from Police Records Using the Truncated Poisson Regression Model", by P. G. Van Der Heijden, M. Cruyff

and H. C. Van Houwelingen, 2003, Statistica Neerlandica, 57, p. 298.

covariates, given by

P (Yi = yi | yi > 0, λi) = P (yi | λi)
P (yi > 0 | λi)

= exp(−λi)λyi
i

yi!(1− exp(−λi))
, yi = 1, 2, . . . , (5)

where the subscript i indicates that the Poisson parameter is not the same for all

population members. Instead, the Poisson parameter of an individual λi can be derived

through the exponential mean function

λi = exp(x′
iβ), (6)

where x′
i is the value of the covariate specific to each population member, and β represents

the corresponding parameter (Cameron & Trivedi, 1998). Hereby, the population is divided
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into multiple homogenous subgroups as the Poisson parameters are still assumed to be the

equal for individuals with identical scores on the covariates. With this adjustment, the

zero-truncated Poisson regression model (5) can now also account for varying capture

priorities of drunk drivers across police districts.

Heterogeneity can also be incorporated into the Horvitz-Thompson estimator of the

total population size (4), denoted by

N̂ =
n∑

i=1

1
1− P (Yi = 0 | λi)

, (7)

where P (Yi = 0 | λi) = exp(−λi).

The proportion of heterogeneity accounted for by the covariates is called observed

heterogeneity. The remaining heterogeneity that is not captured in the model is called

unobserved heterogeneity and still violates the homogeneity assumption, which may result

in the underestimation of the total population size (Yamaguchi, 1986).

2.3 Independence of Rate and Capture

Another assumption of the Poisson model is the independence of rate and capture.

This assumption implies that the rate of a population member should not change as a

result of a capture (Nelder & Wedderburn, 1972). A violation of this assumption is known

as contagion. Positive contagion takes place when the occurrence of a capture causes the

rate to increase. Negative contagion occurs when the rate decreases as a consequence of a

capture taking place.

Often, this assumption is interpreted in the sense that the rate should be constant
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during the observation period (Lovett & Flowerdew, 1989). However, by Raikov’s theorem,

when the sum of two randomly distributed variables follows a Poisson distribution, then so

do each of the separate random variables (Raikov, 1938). This theorem also holds in

reverse, see for example Upton and Cook (1996) or Johnson, Kemp, and Kotz (2005).

Then, when the random variable X1 follows a Poisson distribution with the Poisson

parameter λ1, and the random variable X2 is also a realization of the Poisson distribution

with the Poisson parameter λ2, the sum of X1 and X2 is described by a Poisson

distribution with Poisson parameter λ1 + λ2.

Consequently, a Poisson distribution that describes an event count for an observation

period may be split up in multiple subperiods, in which the event count is still

characterized by a Poisson distribution. Therefore, the rate may vary over the subperiods,

as long as a capture does not induce the change.

Applied to the example of the police districts, a capture should not cause a change in

the rate. A drunk driver should not drive around drunk more often as a result of not being

captured, which is positive contagion. Equally, negative contagion should not occur when a

drunk driver stops drinking after a capture during the observation period. However, as

long as the rate does not change because a capture has taken place, rates may also vary

between police districts. Consequently, it is permitted to sum the rates of the police

districts and calculate the Poisson parameter of an individual, employing

λi =
T∑

t=1
rijt, (8)

where rijt denotes the average number of captures r in police district j where individual i
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resides at time t.

3 Simulation Studies

We performed three simulations to evaluate the performance of four methods for

including an event-related covariate in the zero-truncated Poisson regression model.

Herein, the example of the police district in which the capture took place was continued.

For simplification, only two police districts were considered. In the first simulation, the

districts represented an invariant event-related covariate. Therefore, a group was assigned

to each police district that was assumed to stay in that district for the whole observation

period. This constraint was lifted in the second simulation where the police districts were

considered as a time-varying event-related covariate. Consequently, one group was

considered that divided its time between the two police districts. In the third simulation,

the preceding simulations were combined and we examined a population with a mixed

presence of the police districts as invariant and time-varying covariates. A group was

assigned to each district that stayed there permanently, while a third group divided its

time between the two districts.

The two police districts, characterized by the letters R and A, were incorporated as

an event-related covariate into the zero-truncated Poisson regression model with the use of

four methods, being:

1. No covariates: the police districts were not taken into account with a variable,

resulting in an intercept-only model.

2. One dummy: the police districts were included in the model with one dummy,

where a one implied that the number of captures of a population member was equal or
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greater in district A than the number of captures in district R, and a zero meant that the

number of captures was greater in district R.

3. Two dummies: the police districts were incorporated into the model with two

dummy variables, each representing a police district. A one equaled that at least one

capture of a population member took place in the district of the dummy, and a zero

indicated that no captures took place in that district.

4. Two count variables: the police districts were added to the model with two count

variables, one for each district. One count equaled one capture of a population member in

the police district the variable represented, a two equaled two captures in that district, and

so on.

In every simulation, a population of size N = 10, 000 was randomly drawn from a

Poisson distribution in accordance to the specified conditions. When necessary, additional

variables were created to resemble one of the four methods. For all conditions, the

population was generated 500 times, saving a zero-truncated sample that encompassed

roughly 20-25% of the total population. The zero-truncated Poisson regression model in

which one of the four methods was used to include the event-related covariate was fitted to

all 13, 500 samples, estimating the total population size, its accompanying 95% confidence

interval, and the Poisson parameters for the intercept-only and one dummy models.

3.1 Simulation 1

In the first simulation, the event-related covariate was considered invariant. We

varied the group sizes and district-specific rates in nine conditions, depicted in Table 1.

The two dummy method was omitted in the first simulation, because it would be a copy of
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the one dummy method as the population members could only be captured in one district.

Table 1

Conditions in Simulation 1

Condition nR nA rR rA T λR λA

1 5,000 5,000 0.0025 0.0025 100 0.25 0.25
2 2,500 7,500 0.0025 0.0025 100 0.25 0.25
3 7,500 2,500 0.0025 0.0025 100 0.25 0.25
4 5,000 5,000 0.0035 0.0015 100 0.35 0.15
5 2,500 7,500 0.0035 0.0015 100 0.35 0.15
6 7,500 2,500 0.0035 0.0015 100 0.35 0.15
7 5,000 5,000 0.0015 0.0035 100 0.15 0.35
8 2,500 7,500 0.0015 0.0035 100 0.15 0.35
9 7,500 2,500 0.0015 0.0035 100 0.15 0.35

Note. N = 10, 000.

3.1.1 Point and interval estimates of N . The boxplots in Figure 2 show the

performance of the three models through the distribution of the population size estimates

in the respective conditions. Table 2 reports the corresponding coverage probabilities.

The intercept-only model estimated the total population size accurately when the

rates were homogeneous. However, as soon as heterogeneity was introduced in condition 4,

this model underestimated the total population size. The coverage probabilities reflect this;

while the coverage probabilities were sufficient for the homogeneous rates, they dropped

below the nominal level of 95% in the presence of heterogeneity.

The estimates of the one dummy model were accurate in the first simulation.

Regardless of condition, this model produced valid estimates of the total population size.

Besides, the coverage probabilities were stable at approximately 95%.

The count model overestimated the total population size in all conditions. Its

overestimation was most extreme when the rates were homogeneous. Consequently, the
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coverage probabilities of the count model were subnominal. Lastly, for all methods, group

size did not affect the estimates of the total population size.

Table 2

95% Coverage Probabilities per Condition for All Methods in

Simulation 1

Coverage probabilities
Condition Intercept-only One dummy Count

1 0.956 0.958 0.000
2 0.946 0.950 0.000
3 0.934 0.940 0.000
4 0.178 0.948 0.000
5 0.316 0.946 0.004
6 0.502 0.966 0.000
7 0.226 0.970 0.000
8 0.558 0.956 0.000
9 0.332 0.940 0.002

3.1.2 Point estimates of λ. The boxplots in Figure 3 display the estimates of

the Poisson parameters for the intercept-only (0) and one dummy models (R and A). The

colored lines in the figures indicate the true values of the Poisson parameters, the boxplots

represent what was estimated by the zero-truncated Poisson regression model.

Similar to the estimates of the total population size, the estimates of the

intercept-only model were unbiased when the rates were homogeneous. For heterogeneous

rates, the lower the estimate of the Poisson parameter, the more the total population size

was underestimated. In contrast, the one dummy model produced unbiased estimates of

the Poisson parameters in all conditions. As the group size increased, the estimates of the

Poisson parameters were spread further apart. This can be seen on the right side of Figure
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3, where the biggest colored boxplot corresponds to the police district of which the group

size was set to be the largest.
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Figure 2. Boxplots displaying the distribution of the population size estimates for simulation 1.

Note. Dashed line depicts true total population size.
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Figure 3. Boxplots displaying the distribution of the Poisson parameter estimates for simulation 1.

Note. Dashed lines depict true Poisson parameters.
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3.2 Simulation 2

In the second simulation, the police district in which the capture took place was

simulated as a time-varying event-related covariate. The district-specific rates and

proportion of time that was spent in each district were rotated in nine conditions,

presented in Table 3.

Table 3

Conditions in Simulation 2

Condition N rR rA tR tA λR λA λR+A

1 10,000 0.0025 0.0025 50 50 0.1250 0.1250 0.250
2 10,000 0.0030 0.0020 50 50 0.1500 0.1000 0.250
3 10,000 0.0020 0.0030 50 50 0.1000 0.1500 0.250
4 10,000 0.0025 0.0025 75 25 0.1875 0.0625 0.250
5 10,000 0.0030 0.0020 75 25 0.2250 0.0500 0.275
6 10,000 0.0020 0.0030 75 25 0.1500 0.0750 0.225
7 10,000 0.0025 0.0025 25 75 0.0625 0.1875 0.250
8 10,000 0.0030 0.0020 25 75 0.0750 0.1500 0.225
9 10,000 0.0020 0.0030 25 75 0.0500 0.2250 0.275

Note. λR+A is the summed Poisson parameter of observation period T = 100. λR and λA represent

the respective Poisson parameters of subperiods tR and tA.

3.2.1 Point and interval estimates of N . The boxplots in Figure 4 show the

performance of the four methods through the distribution of the population size estimates

in the nine conditions of the second simulation. Table 4 reports the corresponding coverage

probabilities .

The intercept-only model accurately estimated the total population size in all nine

conditions, which is depicted in the first nine rows of Figure 4. While deviating from its

true size in some cases, the average of the estimates was close to the true population size.
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This accurate estimation was further confirmed by the coverage probabilities, which ranged

from 93% to 96%, but evened out around 95% overall.

The second nine rows of Figure 4 show the estimates of the one dummy model. While

the estimates of the other models were somewhat stable, those of the one dummy model

varied. Though the average of the population size estimates was too high, there were some

cases in which its estimates were close to their true size. Moreover, the coverage

probabilities of this model varied substantially, ranging from 32% in condition 7 to 93% in

condition 5. Nevertheless, the coverage probabilities did not approach the nominal

coverage probability of 95% on the whole.

The performance of the two dummy and count models is displayed in the lower half

of Figure 4. Again, these models overestimated the total population size in all conditions.

Consequently, their coverage probabilities were close to zero in all nine conditions, which is

subnominal.

Table 4

95% Coverage Probabilities per Condition for All Methods in Simulation 2

Coverage probabilities
Condition Intercept-only One dummy Two dummies Count

1 0.950 0.548 0.000 0.000
2 0.944 0.724 0.000 0.000
3 0.934 0.416 0.000 0.000
4 0.944 0.902 0.000 0.000
5 0.960 0.926 0.032 0.000
6 0.956 0.820 0.000 0.000
7 0.948 0.318 0.000 0.000
8 0.948 0.504 0.000 0.000
9 0.960 0.370 0.022 0.000
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3.2.2 Point estimates of λ. The boxplots in Figure 5 show the estimates of the

Poisson parameter for the intercept-only (0) and one dummy models (R and A). Similar to

the first simulation, the line marks the true value of the Poisson parameter, the boxplots

represent what was estimated.

As can be gathered from the figures, the estimates of the intercept-only model were

unbiased in all nine conditions. Moreover, this model produced stable estimates of the

Poisson parameter with little variation in the spread of the values across the conditions.

The results are less readily described for the one dummy model, which strayed from

the true Poisson parameter in all conditions. Remarkably, the estimates of the constant

deviated most when the proportion of time that was spent in district R was smallest

(tR = 25). Likewise, when the proportion of time that was spent in district A was smallest

(tA = 25), the estimates of the dummy strayed most from the true Poisson parameter.

Lastly, compared to the intercept-only model, the one dummy model showed more

variation in its estimates of the Poisson parameters as the boxplots are slightly bigger,

indicating that the values are spread further apart.
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Figure 4. Boxplots displaying the distribution of the population size estimates for simulation 2.

Note. Dashed line depicts true total population size.
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Figure 5. Boxplots displaying the distribution of the Poisson parameter estimates for simulation 2.

Note. Dashed line depicts true Poisson parameter.
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3.3 Simulation 3

The first and second simulations were combined in the third simulation in which the

event-related covariate was considered to be both invariant and time-varying. Table 5

shows the conditions that were considered. Since the two dummy and count models

consistently overestimated the total population size in the previous simulations, these

models were omitted from the third simulation.

Table 5

Conditions in Simulation 3

Condition rR rA tR tA T λR λA λA+R

Subpopulation 1 1 0.0025 0.0025 - - 100 0.25 0.25 -
2 0.0030 0.0020 - - 100 0.30 0.20 -
3 0.0020 0.0030 - - 100 0.20 0.30 -
4 0.0025 0.0025 - - 100 0.25 0.25 -
5 0.0030 0.0020 - - 100 0.30 0.20 -
6 0.0020 0.0030 - - 100 0.20 0.30 -
7 0.0025 0.0025 - - 100 0.25 0.25 -
8 0.0030 0.0020 - - 100 0.30 0.20 -
9 0.0020 0.0030 - - 100 0.20 0.30 -

Subpopulation 2 1 0.0025 0.0025 50 50 100 0.125 0.125 0.250
2 0.0030 0.0020 50 50 100 0.150 0.100 0.250
3 0.0020 0.0030 50 50 100 0.100 0.150 0.250
4 0.0025 0.0025 75 25 100 0.1875 0.0625 0.250
5 0.0030 0.0020 75 25 100 0.225 0.050 0.275
6 0.0020 0.0030 75 25 100 0.150 0.075 0.225
7 0.0025 0.0025 25 75 100 0.0625 0.1875 0.250
8 0.0030 0.0020 25 75 100 0.075 0.150 0.225
9 0.0020 0.0030 25 75 100 0.050 0.225 0.275

Note. Subpopulation 1 consists of two groups with n1,2 = 2, 500, and Subpopulation 2 of one

group with n3 = 5, 000; N = 10, 000. For Subpopulation 2, λR+A is the summed Poisson

parameter of observation period T . λR and λA represent the respective Poisson parameters of

subperiods tR and tA.
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3.3.1 Point and interval estimates of N . The boxplots in Figure 6 show the

performance of the two models through the distribution of the population size estimates in

the nine conditions of the third simulation. Table 6 reports the corresponding coverage

probabilities.

As can be gathered from Figure 6, the intercept-only model produced accurate

estimates of the total population size when the rates were homogeneous in conditions 1, 4,

and 7. In all other conditions, both the intercept-only and one dummy models over- or

underestimated the size of the total population. Despite this, the coverage probabilities of

both models were close to the nominal level of 95%. When the models are compared, two

things about the intercept-only model stand out. First, its estimates were closer to the true

population size. Second, its estimates were more stable.

Table 6

95% Coverage Probabilities per Condition for All

Methods in Simulation 3

Coverage probabilities
Condition Intercept-only One dummy

1 0.954 0.942
2 0.916 0.926
3 0.912 0.882
4 0.942 0.952
5 0.924 0.928
6 0.894 0.934
7 0.932 0.928
8 0.918 0.928
9 0.924 0.904

3.3.2 Point estimates of λ. The boxplots in Figure 7 show the estimates of the

Poisson parameters for the intercept-only (0) and one dummy model (R and A). Again,
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the colored lines mark the true values of the Poisson parameters, the boxplots represent

what was estimated.

The estimates of the Poisson parameter of the intercept-only model were unbiased

when the rates were homogeneous in conditions 1, 4, and 7. In all other conditions, the

estimates slightly deviated from the true Poisson parameters. Similar to the previous

simulations, the estimates were stable, with relatively little variation in their spread. In

contrast, the one dummy model produced biased estimates of the Poisson parameters in all

nine conditions. For homogeneous rates, the estimates were disparate, resulting in an

overestimation of the total population size. Comparatively, for heterogeneous rates, when

the rate of district R was higher than that of district A, the estimates were comparable.

This coincided with an underestimation of the total population size. In contrast, when the

rate of district A was higher than that of district R, the estimates varied, which

corresponded to an overestimate of the total population size by a larger margin than for

homogeneous rates.
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Figure 6. Boxplots displaying the distribution of the population size estimates for simulation 3.

Note. Dashed line depicts true total population size.
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Figure 7. Boxplots displaying the distribution of the Poisson parameter estimates for simulation 3.

Note. Dashed lines depict true Poisson parameters.
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4 Conclusion and Discussion

This study evaluated the performance of multiple methods for including an

event-related covariate in the zero-truncated Poisson regression model in three simulations.

In the first and second simulation, the event-related covariate was respectively considered

invariant and time-varying. This distinction was discarded in the third simulation, where

the event-related covariate manifested itself as both invariant and time-varying.

The count and two dummy models performed unsatisfactorily as the total population

size was overestimated for both invariant and time-varying event-related covariates. Next,

the results of the one dummy and intercept-only models varied based on whether the value

of the event-related covariate could change over time. When its value was invariant, the

one dummy model accurately estimated the Poisson parameters and population size. In

contrast, the intercept-only model only produced accurate estimates when the rates were

homogeneous. Further, when the event-related covariate was regarded as time-varying, the

estimates of the one dummy model were biased, whereas those of the intercept-only model

were accurate. Lastly, both models performed comparable in the mixture model, with the

population size estimates of the intercept-only model being closer to the true size and less

fluctuate.

Taken together, the results of this simulation study with these conditions are twofold.

On the one hand, when an event-related covariate is regarded as invariant, it should be

included with the use of a dummy. On the other hand, when an event-related covariate is

at least partially considered to vary over time, it should not be included in the model at

all. Their inclusion in any way ensues biased estimates of the Poisson parameters and the
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total population size.

To clarify these results, we retract to the properties of the zero-truncated Poisson

regression model. As described in Section 2.2, covariates divide the total population into

subgroups. For an estimate of a population to benefit from the inclusion of covariates,

these subgroups should be meaningful, i.e. the covariates should contribute significantly to

the proportion of observed heterogeneity. This is the case when the value of the

event-related covariate is invariant, because different subgroups can be distinguished based

on the individual characteristic it then represents. However, when the value of the

event-related covariate at least partially varies over time with the population members

divided over the categories in a similar manner, there are no subgroups to differentiate

between. The heterogeneity then lies outside the population, as the event-related covariate

does not represent an individual characteristic, but a property of the event count under

study. Consequently, the heterogeneous Poisson parameters may be summed to form one

homogenous Poisson parameter, as described in Section 2.3.

When the event-related covariate is included in the model regardless, this results in a

special case of Jensen’s inequality as described in Section 2.2, where the covariate specifies

subgroups that ensure a higher expectation of a zero count. However, as the subgroups are

spurious, the higher expectation of a zero count is in fact an overestimation that emanates

the subsequent overestimation of the total population size. Then, as the two dummy and

count models distinguish between even more spurious subgroups, these models

overestimate the total population size by a larger margin than the one dummy model.

Although it is difficult to aggregate these findings to population size estimation in
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general as the results of these simulations are contingent on their conditions, an

assumption should be made about the variation over time of the event-related covariate.

Based on that assumption, the method for including event-related covariates should be

determined. Within the present study, the mixed population of the third simulation

describes the most realistic situation. Considering the estimates of the intercept-only

model in this simulation were more stable, that is to say, more predictable, we would

discourage the approach taken by Van Der Heijden et al. (2003b) to include event-related

covariates with dummies. Instead, event-related covariates should not be taken into

account as covariates in the zero-truncated Poisson regression model. The population size

estimate could then function as a lower bound.

However, there are some limitations to the current research. First of all, the

simulation consisted of a limited number of conditions, ergo the generalizability of this

study is restricted. Moreover, the event-related covariate in the simulations had only two

categories. It would be interesting to investigate how the results hold up in more complex

situations, like when the number of values and categories is expanded upon. Additionally,

the effect of different group movements across categories was not studied, as this laid

outside the scope of the present paper. Instead, when the event-related covariate was

considered time-varying, the population members were assumed to divide their time

between the police districts in a similar manner. Hereby, potential subgroups could not be

distinguished based on time allocation. Future research should diversify the variation over

time within the population and see whether the results are comparable. Besides, the

present study did not consider violations of the assumptions of the Poisson model. For
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example, we assumed that every population member had a Poisson parameter, and that

within that Poisson parameter, rate and capture were independent. What is more, we

presumed that the event-related covariate was the only source of heterogeneity within the

population. Consequently, there was no unobserved heterogeneity that could cause an

underestimation of the total population size. Further research should try to approximate

these violations of the model in a simulation study and examine how this affects the results.

Despite these limitations, the present paper has contributed to the existing body of

literature on the methods for population size estimation in providing evidence that one

should be careful in taking event-related covariates into account as a source of

heterogeneity. Worse yet, when these covariates are wrongfully included, they are likely to

bias the estimates. While further research should be conducted to solidify this finding, the

current study has raised awareness of the complexity of including event-related covariates

in the zero-truncated Poisson regression model, and its implications should be

contemplated in attempts to estimate the size of elusive populations.
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