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Abstract

Skyrmions are magnetic textures, that behave like particles. They exist as excitations within two-
dimensional magnetic insulators and are promising candidates for future data storage. There has been
a strong rise in interest in skyrmions in recent years, which is encouraged by several experimental
observations of skyrmions in various magnetic thin-films. In this thesis we study the quantum me-
chanical propagation of skyrmions in thin film antiferromagnets, using the finite temperature path
integral formalism for spins. Using field theoretical tools like the Faddeev-Popov technique, we treat
the coordinate of a skyrmion as a dynamical variable and derive an effective action for the skyrmion
position. We find that the spin wave fluctuations around a skyrmion give rise to damping of the
skyrmion’s motion and also gives rise to effective mass contributions.
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Chapter 1

Introduction

From secondary school on we learned from sir Isaac Newton that matter possesses mass. One can
distinct between two different types of mass. Inertial mass gives the amount of resistance when an
object is accelerated. The amount of gravitational force that is exerted on an object is proportional
to its gravitational mass. Newton also came up with three postulates which inertially massive objects
should obey [1]. He additionally stated that two gravitationally massive bodies feel an attractive force
towards one another. The inertial and gravitational mass turn out te be equal in every experiment that
is done so this is nowadays taken as an empirical fact. Using his three postulates of motion, Newton
was able to explain a lot of open physical problems. The three laws of Kepler could for example be
explained by these postulates and the orbit of a many planets could calculated. The observed orbit of
Mercury turned out to be different then was calculated using what is now called Classical Mechanics.
The explanation came in 1915 when Albert Einstein published his theory of general relativity [2], which
gave a geometric view on gravity and generalized Newton’s law of gravitation. One of the starting
points for this theory was to assume that the correspondence between the inertial and gravitational
mass is not a coincidence and must hold. General relativity could explain the measurements done on
the perihelion of Mercury. It also states that the mass of matter increases as it’s energy rises. Using
general relativity, new physical phenomena appeared theoretically, e.g. black holes and bending of
light which is referred to as ”gravitational lensing”.

Still another question remained unanswered; what causes an object to have mass? In 1960 Higgs,
Brout and Englert predicted that there is a field (now called Higgs field) which causes matter to have
inertial mass. The quantum excitations of this field are now known as ”Higgs bosons”.

In a magnet textures can appear that behave like particles. These magnetic textures are phenomena
that move in a collective way through a magnet and may thus be described as a single object. One
could now ask themselves the question, can these objects also have a inertial mass? Some of them turn
out to have an inertial mass. Like matter obtains its mass through interaction with the Higgs field,
these textures obtain their mass through interaction with the underlying structure of the magnet. A
Bloch wall (see Fig. 1.1) is an example of such a collective phenomena that obtains an inertial mass
through interaction with the underlying structure of the magnet.

The focus of this thesis is on another particle-like magnetic texture, namely skyrmions [4]. There
has been a strong rise in interest for skyrmions in recent years, which is stimulated by several experi-
mental observations of skyrmions in various thin-film magnets [5–8]. Magnetic skyrmions are promising
candidates for storing information, due to the fact that they are topologically stable in the sense that
no continuous local deformation can destroy a skyrmion and they can be moved using relatively low
currents.

In previous work the motion and tunnelling effects of Bloch walls [3] and skyrmions [9] within
thin-film ferromagnetic insulators are studied using a quantum treatment. In this thesis we will study
the inertial mass and the motion of skyrmions within antiferromagnetic insulators, with emphasis on
the inertial mass of the skyrmions.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Bloch wall configuration in an one-dimensional magnet. A Bloch wall is a particle like
texture in an one-dimensional magnet. On one side of the magnet all the spins are point upwards and
on the other side all spins are pointing downwards. There is a finite domain where the spins flip from
one configuration to another. This domain moves collectively and may thus be described as single
object. Source: Ref. [3].

The goal of this thesis is to provide a quantum mechanical treatment of skyrmions in thin-film
antiferromagnetic insulators. We restrict ourself to spin degrees of freedom only, interactions of spins
with e.g. phonons are assumed to be negligibly small (due to low temperatures). By using methods of
quantum field theory and in particular the Fadeev-Popov technique for collective coordinates, we are
able to treat the skyrmions quantum mechanically.

The main findings of this thesis are (in the zero temperature limit β →∞):

• An antiferromagnetic skyrmion does not experience a Magnus force1, which is in agreement
with Ref. [10]. It will have a mass and for small magnetic fields, the change of mass caused by
the magnetic field will be proportional to the square of the magnetic field.

• For magnetic fields above the spin flop field we find vortex configurations (see Fig. 3.7) which
will obtain a mass correction that is proportional to the square of the magnetic field and will feel
a Magnus force which is proportional to the magnetic field.

The remainder of this thesis is organized as follows. In Chapter 2 we start with a discussion of
skyrmions in ferromagnets. In Section 2.1 we discuss a general method to calculate the ferromagnetic-
skyrmion profile. Section 2.2 will give a derivation for the Magnus force on a skyrmion. Although
this calculation is not really important for later chapters, a basic understanding of the Magnus force
is needed and it is recommended to look at Eq. (2.12). Chapter 3 will be organized as follows. In Sec-
tion 3.1 we describe the dynamics of antiferromagnets and give an action which is only dependent
on the Néel vector in Eq. (3.1). We do so by integrating out the magnetization, assuming large
wavelengths for both the Néel vector and the magnetization. In Section 3.2 we determine the anti-
ferromagnetic skyrmion and vortex profiles using methods similar to the ones used for ferromagnetic
skyrmions in Section 2.1. Using a quantum mechanical treatment, we will calculate the interaction
between skyrmions and spin waves in Chapter 4. In Section 4.1 we will expand the action describing
skyrmion dynamics in the presence of spin waves up to second order in spin wave fluctuations around
the skyrmion configuration. We distinguish three types of actions, the classical one (no spin wave in-
teraction), static interaction and dynamic interaction. In Section 4.2 we use the preceding to calculate
the effect of spin wave interactions on the dynamics of the antiferromagnetic skyrmion, we will do so
in the absence of a magnetic field and in the presence of a small magnetic field. In Appendix A we
will discuss the mathematical reason why skyrmions and Bloch-walls are stable and thus why it makes
sense to describe them as objects. We will conclude with a discussion and an outlook.

1For intuition one could for now think of the Magnus force as a Lorentz-force, though they are different. While the
Lorentz-force will act perpendicular to the velocity of a particle, the Magnus force will give rise to motion perpendicular
to the direction of the applied force (see Section 2.2).



Chapter 2

Skyrmions in ferromagnets

A ferromagnet is characterized by an exchange interaction which minimized by alignment of neigh-
boring spins (see Fig. 2.1). In this chapter we derive the profile and the classical1description of the
motion of skyrmions in thin-film ferromagnetic insulators. In Section 2.1 we will determine the profile
of skyrmions in thin-film ferromagnetic insulators. Section 2.2 will be focused on determining the dy-
namics of classical ferromagnetic skyrmions, meaning we don’t take interactions with e.g. spin waves
into account.

Figure 2.1: Graphical example of ferromagnetic ordering.

2.1 Single skyrmion profile in a ferromagnet

In this section we obtain the stationary single skyrmion profile within a ferromagnet, starting from
the Hamiltonian in Eq. (2.1). We use classical methods to determine the dependence of the skyrmion
profile on given parameters. We assume translational invariance in the ẑ-direction and use variational
principles to obtain a configuration whose winding number equals one and which locally minimizes the
energy of the system. This section is largely based on Ref. [11].

We start by writing out the energy in terms of the functional

E[Ω] =

∫ {
− J

2
Ω · ∇2Ω +

D

2

(
ŷ ·
(

Ω× ∂Ω

∂x

)
− x̂ ·

(
Ω× ∂Ω

∂y

))
(2.1)

+K(1− Ω2
z) + µ0HM(1− Ωz)− µ0MΩ ·Hd

}
dx.

1Neglecting interactions with e.g. spin waves is meant with classical.

3



CHAPTER 2. SKYRMIONS IN FERROMAGNETS 4

In the above formula Ω(x) is the direction of the magnetization at the point x ∈ R3. Furthermore H
is the external magnetic field which is pointed in the ẑ-direction, J stands for the spin stiffness and D
is the Dzyaloshinskii-Moriya interaction constant. Furthermore M is the magnetization constant s.t.
M(x) = MΩ(x) and Hd is the demagnetization field. Because we assume translational invariance in
the z-direction we get x ∈ R2.

We will be neglecting anisotropy and the demagnetization field of the system. This is because these
terms have minor contributions to our energy and we first want to understand what is happening in
the most simple case. So we end up with the following energy functional

E[Ω] =

∫ {
− J

2
Ω · ∇2Ω +

D

2

(
ŷ ·
(

Ω× ∂Ω

∂x

)
− x̂ ·

(
Ω× ∂Ω

∂y

))
(2.2)

+ µ0HM(1− Ωz)

}
dx.

Assuming we have rotational- and translational symmetry around the ẑ-axis, it is easier to write Eq. (2.2)
into cylindrical coordinates x = (ρ, φ, θ),

Ω(x) = sin[θ]cos[φ0] ρ̂+ sin[θ]sin[φ0] φ̂+ cos[θ] ẑ. (2.3)

Note that φ0 gives the orientation or twist of the skyrmion. For (φ0 = 0) we get a hedgehog skyrmion
and for (φ0 = π

2 ) we get a vortex skyrmion (see Fig. 2.2).

Figure 2.2: Picture of two skyrmions, (a) is a hedgehog skyrmion while (b) is a vortex skyrmion.
(source:wikipedia, authors: Karin Everschor-Sitte and Matthias Sitte).

The reader should also be aware that in principle φ0 could be dependent on ρ, but we take it to
be constant. The reason is that a skyrmion is defined as the lowest energy state which has winding
number one, while the winding number of a skyrmion is only depended on the way θ depends ρ. By
taking φ0 constant we don’t get additional divergences which enlarge the energy. In a nutshell, for a
skyrmion profile φ0 is constant.
Now we rewrite Eq. (2.2) in terms of cylindrical coordinates, see Appendix B.1. We assume a thin-film
ferromagnet with thickness t. Since the energy in Eq. (2.2) is rotational and translation invariant with
respect to the ẑ-axis we can integrate out φ and z. We end up with the following functional

E[θ] =2πt

∫ {
J

2

((
∂θ(ρ)

∂ρ

)2

+
sin2 θ(ρ)

ρ2

)
(2.4)

+
D

2
cosφ0

(
∂θ(ρ)

∂ρ
+

sin θ(ρ) cos θ(ρ)

ρ

)
+ µ0HM(1− cos θ(ρ))

}
ρ dρ.

We want to find functions θ and φ0 which minimizes the energy (2.4). From Eq. (2.4) we are able
to see that φ0 ∈ {0, π}. This is because of the fact that cosφ0 attains its maximum/minimum at
φ0 ∈ {0, π}. The choice of φ0 is depended on the sign of D. If D has positive sign than φ0 = 0 and if
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D has negative sign then φ0 = π. For both cases of φ0 we are looking at a hedgehog skyrmion. The
case in which the energy in Eq. (2.4) is minimized must also satisfy the following conditions

δE[θ]

δθ
= 0,

δ2E[θ]

δθ2
> 0.

(2.5)

By taking the functional derivative, we obtain

J

(
ρ
∂2θ

∂ρ2
+
∂θ

∂ρ
− sin θ cos θ

ρ

)
+D

(
cosφ0 sin2 θ

)
− µ0HMρ sin θ = 0

=⇒ J

(
∂2θ

∂ρ2
+

1

ρ

∂θ

∂ρ
− sin θ cos θ

ρ2

)
+D

(
cosφ0 sin2 θ

ρ

)
− µ0HM sin θ = 0.

(2.6)

Now we perform the substitution ρ̃ = D
J ρ and multiply Eq. (2.6) by J

D2 , thus

∂

∂ρ
→ D

J

∂

∂ρ̃
,

∂2

∂ρ2
→ D2

J2

∂2

∂ρ̃2
,

1

ρ
→ D

J

1

ρ̃
.

We get the following dimensionless Euler Lagrange equation(
∂2θ

∂ρ̃2
+

1

ρ̃

∂θ

∂ρ̃
− sin θ cos θ

ρ̃2

)
+

(
cosφ0 sin2 θ

ρ̃

)
− h

2
sin θ = 0,

with h = µ0JHM
D2 a dimensionless constant. In most physical systems h is of the order one [12]. Now

assume φ0 = 0 and D positive. We are now able to solve this equation numerically, we take the
following boundary conditions (θ(0) = π and θ(ρ → ∞) = 0). For these boundary conditions we
obtain Fig. 2.3 for different values of h. Note that a skyrmion has a typical size of 20 JD .

Figure 2.3: Skyrmion profile plotted for h ∈ {0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0}. One is able to see that the
size of a skyrmion is infinite if a magnetic field is absent. For finite magnetic fields skyrmions have
finite size of order O(J/D).

The above boundary conditions are used since a skyrmion is topologically distinct from the vacuum
state of the magnet and has winding number equal to one (see Appendix A). In polar coordinates this
winding number (A.1) reduces to

n = −(1/2) cos(θ)|ρ=∞ρ=0 .
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2.2 Dynamics of a non-interacting ferromagnetic skyrmion

In this section we derive the action of a non-interacting skyrmion w.r.t the skyrmion’s position R. We
use that the Hamiltonian is translationally invariant. One will conclude that the skyrmion feels a force
which is referred to as Magnus force. In Ref. [13] the same result is obtained but through a different
method.

In Section 2.1 we found skyrmion configurations, e.g. configurations which locally minimizes Hamil-
tonian (2.2) have a finite size and energy and winding number equal to one (see Appendix A). In this
section we denote such a configurations with Ω. From Refs. [14, 15] we find that the kinetic term or
Berry phase of a single spin can be written as

K[Ω] = −~S
(
dΩα
dt

Aα[Ω]

)
,

with Aα[Ω] a the vector potential of magnetic moment Ω s.t. ∇Ω ×A[Ω] = Ω and 〈Ŝ〉 = ~SΩ with
Ω ·Ω = 1. From Refs. [14, 15] it also follows that

∂Aβ
∂Ωα

∣∣∣∣∣
Ω

= εαβγΩγ . (2.7)

We assume the skyrmion is at position R(t) at time t. We write x = x′−R(t), with x′ ∈ R2 the global
coordinates in R2. Using the preceding we are able to give an expression for the action describing
antiferromagnetic dynamics

S(t) =

∫
dtL(t) =

∫
dt {K(t)−H(t)} (2.8)

=

∫∫
dtdx


(
−~S

(
dΩα
dt

Aα[Ω]

)
−H

) ∣∣∣∣∣
x′=(x−R(t))

 .

Notice that
∫

dxH does not depend on the position of the skyrmion. This is because
∫

dxH|t gives
the same value for every position of the skyrmion. If only a skyrmion is present we find that

∫
dxH

is constant. Since we’re looking at the dynamics of a non-interacting skyrmion in this section H does
not contribute to the dynamics of the skyrmion. So the action which describes the classical dynamics
of a skyrmion is given by

SK(t) =

∫∫
dtdx

{
−~S

(
dΩα
dt

Aα[Ω]

)}
(2.9)

=

∫∫
dtdx

{
~S
(
∂Ωα
∂xβ

Aα[Ω]

)
Ṙβ(t)

}
=−

∫∫
dtdx

{
~S

(
∂Ω̇α
∂xβ

Aα[Ω] +
∂Ωα
∂xβ

Ȧα[Ω]

)
Rβ(t)

}

= −
∫∫

dtdx

{
~S
((

∂

∂xβ

∂Ωα
∂xγ

)
Aα

∣∣∣∣
Ω

+
∂Ωα
∂xβ

∂Aα
∂Ωσ

∣∣∣∣
Ω

∂Ωσ
∂xγ

)
Rβ(t) Ṙγ(t)

}
=

∫∫
dtdx

{
~S
(
∂Ωα
∂xγ

∂Aα
∂Ωσ

∣∣∣∣
Ω

∂Ωσ
∂xβ

− ∂Ωα
∂xβ

∂Aα
∂Ωσ

∣∣∣∣
Ω

∂Ωσ
∂xγ

)
Rβ(t) Ṙγ(t)

}
.

Notice that the third step was acquired by performing partial integration (w.r.t. time t). The fifth step
is again acquired by use of partial integration, but this time we assume that all the magnetic moments
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Figure 2.4: Magnus force for ferromagnetic skyrmion with winding number one. Source: Ref. [16].

in infinity are pointing in the positive ẑ-direction. (In other words we are not really considering R2,
but instead the one-point compactification of R2 which is S2). By substituting Eq. (2.7) into Eq. (2.9)
we obtain

SK(t) =

∫∫
dtdx

{
~S
(
∂Ωα
∂xγ

εσαλΩλ
∂Ωσ
∂xβ

− ∂Ωα
∂xβ

εσαλΩλ
∂Ωσ
∂xγ

)
Rβ(t) Ṙγ(t)

}
(2.10)

=

∫∫
dtdx

{
~S
(

Ω ·
(
∂Ω

∂xβ
× ∂Ω

∂xγ

)
−Ω ·

(
∂Ω

∂xγ
× ∂Ω

∂xβ

))
Rβ(t) Ṙγ(t)

}
=

∫∫
dtdx

{
2~S

(
Ω ·
(
∂Ω

∂xβ
× ∂Ω

∂xγ

))
Rβ(t) Ṙγ(t)

}
=

∫
dt
{

8πn~S
(
εβγRβ(t) Ṙγ(t)

)}
.

In the above n is the topological index of the skyrmion, which is also referred to as winding number

defined in Eq. (A.1). The topological index or winding number is defined as n =
∫

Ω ·
(
∂Ω
∂x0
× ∂Ω

∂x1

)
dx.

In reality the space which we consider does have boundaries and the Hamiltonian could dependent on
the positions of a skyrmion, for instance due to impurities or electric currents. One can include these
effects into an effective potential Veff (R(t)) for the movement of the skyrmion. So we end up with
the following action

Sskyrmion(t) =

∫
dt
{

8πn~S
(
εβγRβ(t) Ṙγ(t)

)
− Veff (R(t))

}
. (2.11)

Writing out the equations of motion for this action we get

Ṙ1 = 1
16πn~S

∂Veff
∂R2

Ṙ2 = − 1
16πn~S

∂Veff
∂R1

}
=⇒ 16πn~SεijṘj = −∂iVeff . (2.12)

These equations of motion yield the result that skyrmions move perpendicular the divergence of the
effective potential Veff (applied force), which is referred to as Magnus force, see Fig. 2.4.



Chapter 3

Skyrmions in antiferromagnets

In a ferromagnet the exchange interaction wants to align two neighboring spins. In an antiferromagnet,
the exchange interaction forces neighboring spins to point in opposite directions (see Fig. 3.1). In
this chapter we will develop the formalism which will be used in Chapter 4 to describe the dynamics
of antiferromagnetic skyrmions. In Section 3.1 we describe the dynamics of antiferromagnets and
conclude with an action for describing antiferromagnetic motion. In Section 3.2, we use methods
similar to the ones used in Section 2.1 to obtain the profile of antiferromagnetic skyrmions.

Figure 3.1: A graphical example of antiferromagnetic ordering.

3.1 Dynamics of antiferromagnets

The aim of this section is to describe antiferromagnetic motion in the imaginary time path integral
formalism. It turns out that Haldane’s mapping is useful for describing antiferromagnet dynamics; a
discussion of this mapping will be given in Section 3.1.1. In Section 3.1.3 we work out the kinetic
term/Berry phase for our system, using Haldane’s mapping. If the applied external magnetic field is
small we expect the magnetic moments in the magnet to be small due the antiferromagnetic exchange
interaction. This allows us to make an expansion of the Hamiltonian up to second order in the canting
field (magnetic moments) m, this and taking the continuum limit will be done in Section 3.1.4. Sec-
tion 3.1.5 is dedicated to integrating out these small magnetic moments, such that we are left with an
action that is only depended on the Néel vector. This is similar to solving the equations of motion for
m and plugging it back into the action. Most methods used in this section are described in Ref. [15].

8
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3.1.1 Haldane’s Mapping

Haldane’s mapping is useful to make a distinction between short and long wavelength fluctuations. In
this thesis we will be looking at long wavelength fluctuations around a single skyrmion configuration.
We start by introducing two continuous vector fields (n,m), such that:

Ωi = ηin̂(xi)

√
1− |m(xi)|2 + m(xi) (3.1)

with ηi = eixi·~π, n̂ is called the Néel vector and m the canting field. Furthermore |n̂(xi)| = 1 and
n̂(xi) ·m(xi) = 0. One could argue that we have replaced a vector field with two degrees of freedom by
a vector-field with six degrees of freedom. Two degrees of freedom are removed by restrictions on the
length of n̂ and the inner product between m and n. Which leaves us with four degrees of freedom,
the last two degrees of freedom are fixed by constraining the number of Fourier-components in the
measure

DΩ̂ =
∏

|q|≤ΛBZ

dn̂qdmqδ(m · n̂)J [n̂,m], (3.2)

where J is the Jacobian of transformation (3.1), n̂q and mq are the Fourier transforms of n̂(x) and
m(x) respectively. The spherical Brillouin zone radius ΛBZ is chosen such that

2N = 4
∑

|q|≤ΛBZ

,

where N denotes the number of sites. Assuming a small canting field m and looking at large correlation
lengths ξ/a, we obtain a much smaller cutoff than ΛBZ which we denote with Λ (large wavelength
approximation)

ξ−1 � Λ� ΛBZ . (3.3)

From Ref. [15, p.131] it follows that the Jacobian in Eq. (3.2) is constant for leading order in m

J ≈ S−N .

Note that n̂ and m are not uniquely defined.

3.1.2 Some intuition behind Haldane’s Mapping

This section is included to give some intuition about what the vectors n̂ and m stand for. Since the
choice of neighbors is arbitrary this solution is not exactly the same as the above, but for slowly varying
and large wavelength systems they are similar.

During this section we use the phenomenological approach suggested by Ref. [17]. In an antifer-
romagnet neighbouring spins like to point in opposite direction, which we take care of by assuming
there exist two two-dimensional sub-lattices M1 and M2. We denote the classical direction of the spins
on lattice M1 with M1 and the direction of the spins on lattice M2 with M2, s.t. M1 ' −M2 and
|M1| = |M2| = Ms.

First note that in the model we use we assume that the magnetization on each lattice site has equal
magnitude. In other words |M1| = |M2| = Ms, we define

m1 = M1/Ms, m2 = M2/Ms. (3.4)

For the antiferromagnet it is useful to define the following two vectors:

l(xi) =
1

2
{m1(xi)−m2(xi)}, (3.5)

m(xi) =
1

2
{m1(xi) + m2(xi)}}. (3.6)
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Notice that the above definitions imply that l ·m = 0. It follows that

Ω1(xi) = l(xi) + m(xi), (3.7)

Ω2(xi) = −l(xi) + m(xi). (3.8)

Now we define n̂(xi) = l(xi)/|l(xi)|. From |Ω(xi)|2 = |l(xi)|2 + |m(xi)|2 = 1 it follows that l(xi) =

n̂(xi)

√
1− |m(xi)|2. So the magnetization direction is given by

Ω1(xi) = n̂(xi)

√
1− |m(xi)|2 + m(xi), (3.9)

Ω2(xi) = −n̂(xi)

√
1− |m(xi)|2 + m(xi). (3.10)

In a antiferromagnet the total magnetization is typically small because of a large exchange interaction,
thus |m(xi)| � 1 .

3.1.3 The Kinetic term / Berry phase

From Ref. [3, Appendix A] and Ref. [15, Chapter 10.1] it follows that the Berry phase of the total
system is given by the sum over all the independent Berry phases, which is given by

AB [{Ω}] = iS
∑
i

ω[Ωi] = iS
∑
i

∫ β

0

A[Ωi]∂τΩi. (3.11)

Here the sum over i means a sum over all the lattice points and A is a gauge invariant vector field
with the property that ∇Ω ·Ai = Ωi.
In this section we derive an expression for Eq. (3.11) in terms of Haldane’s mapping (3.1), in the large
wavelength approximation. Since in this approximation m is a small variable, we perform an expansion
of Eq. (3.11) up to second order in m, which is given by

AB [{Ω}] = iS
∑
i

ω[Ωi] = iS
∑
i

ω

[
ηin̂(xi)

√
1− |m(xi)|2 + m(xi)

]
(3.12)

≈ iS
∑
i

ηiω [n̂(xi) + ηim(xi)] +O(m3)

= iS
∑
i

{
ηiω [n̂(xi)] +

δω

δn̂i
m(xi)

}
= iΥ[n̂] + iS

∫
dτ
∑
i

(n̂i × ∂τ n̂i ·mi),

with
Υ[n̂] = S

∑
i

ηiω[n̂(xi)], (3.13)
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the Berry phase associated with the Néel vector. In the last line of Eq. (3.12) we used

δω =

∫ β

0

dτ δ
(
A · Ω̇

)
=

∫
dτ δA · Ω̇ + A · dτδΩ (3.14)

=

∫ β

0

dτ

{
∂Aα

∂Ωβ
δΩβΩ̇α − ∂Aα

∂Ωβ
Ω̇βδΩα + dτ (A · δΩ)

}
=

∫ β

0

dτ
∂Aα

∂Ωβ
εαβγ(Ω̇ × δΩ)γ =

∫
dτ Ω ·

(
Ω̇ × δΩ

)
=

∫ β

0

dτ δΩ · (Ω × Ω̇)

=⇒ δω

δn̂
=

∫ β

0

dτ(n̂× ∂τ n̂).

In Eq. (3.14) we used that ∇ΩA = Ω and that δΩ vanishes at τ ∈ {0, β}. Since the wavelengths are
much bigger than the lattice spacing in the large wavelength approximation, we are able to replace the
sum by an integral

AB [{Ω}] ≈ iΥ[n̂] + i
S

a2

∫
dτ

∫
dx {n̂(x)× ∂τ n̂(x) ·m(x)}. (3.15)

3.1.4 The continuum Hamiltonian

In this section we start from the following Hamiltonian:

H =
1

2

∑
〈ij〉

{
S2JijΩ̂i · Ω̂j + S2Dij

(
Ω̂i × Ω̂j

)
− S2K̃a

z Ω̂2
z,i − SH ·Ωi

}
. (3.16)

Jij > 0 is the Heisenberg exchange interaction (which is positive in the antiferromagnetic case), Dij

gives the Dzyaloshinskii-Moriya exchange interaction, Kz gives the anisotropy of the system and H
represents an external magnetic field. We assume that both Jij and Dij have the full lattice symmetry.
We use the long wavelength approximation to replace the two-dimensional sum by a two dimensional
integral. For the two-dimensional lattice we assume a lattice spacing of a. We rewrite the sum as
follows ∑

i

Fi →
1

a2

∫
d2x

∑
i

δ(x− xi)F (x). (3.17)

We will use Haldane’s Mapping to obtain a Hamiltonian which is dependent on n̂ as well as m.
Furthermore |m| � 1 because we assume a large exchange interaction. Since |m| � 1 we may expand
the Hamiltonian up to second order

H[Ω̂]→ H[n̂,m] ≈ H[n̂, 0] +

∫
dx
δH[n̂,m]

δm(x)
m(x) +

1

2

∫
dxdx′

δ2H[n̂,m]

δm(x)δm(x′)
m(x)m(x′) +O(m3).

(3.18)

Performing the expansion up to second order in m we obtain:

Ω̂i · Ω̂j ≈ ηiηjn̂i · n̂j + (ηjmin̂j + ηimjn̂i) + [mimj −
1

2
ηiηj(mi

2 + mj
2)]

= ηiηj −
1

2
ηiηj(n̂i − n̂j)

2 + (ηjmin̂j + ηimjn̂i) + [mimj −
1

2
ηiηj(mi

2 + mj
2)],

Ω̂i × Ω̂j ≈ ηiηjn̂i × n̂j + (ηin̂i ×mj − ηjn̂j ×mi) + mi ×mj −
1

2
ηiηj(mi

2 + mj
2)n̂i × n̂j,

Ω̂2
z,i ≈ n̂2

z,i + 2ηin̂z,imz,i + mz,i
2,

Ω̂i ≈ ηin̂i + mi −
1

2
ηin̂i |mi|2 .

(3.19)
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Here the difference in the Néel vector may be written as

(n̂i − n̂j) ≈ ∂ln̂(xj)xij
l + (∂l∂kn̂(xj))xij

lxij
k + h.o.,

where xij = (xi − xj). Since Jij possesses the full lattice symmetry the first order term in m of the
Heisenberg exchange interaction becomes negligible. For neighboring spins we are able to write

n̂i ≈ n̂j + ∂ln̂(xi)xij
l + (∂l∂kn̂)xij

lxij
k + h.o. (3.20)

For every lattice point there are surrounding lattice points with which it interacts. So the way to
go is to sum over all neighboring lattice sites at each site. We will now see that the zeroth order
in Eq. (3.20) plugged into Eq. (3.18) for first order in m will become zero since n̂j ·mj = 0. The first
order derivative ∂ln̂ will drop out in the cross terms, since Jij possesses the full lattice symmetry. For
J the first order in m leaves a term which is proportional to the second derivative ∂l∂kn̂ ∝ O(ΛRK)2,
which is negligible by Eq. (3.3). We have defined RK to be the characteristic range of J and D. We
thus obtain ∑

ij

Jijηijmjn̂i ≈
∑
ij

Jijηijmj

{
n̂j + ∂ln̂(xj)xij

l + (∂l∂kn̂(xj))xij
lxij

k + h.o.
}

(3.21)

≈
∑
ij

Jijηijmj

{
(∂l∂kn̂(xj))xij

lxij
k + h.o.

}
∝ O(ΛRK)2,

where the first order derivatives in Eq. (3.21) cancel because J possess the full lattice symmetry; what
is left is a second order derivative which is negligible. So the exchange interaction does not have a first
order term in m. We also note that within the long wavelength approximation the anisotropy first
order contribution in m is negligible. This could be seen by first taken the continuum limit for the
first order in m ∫

Λ

dx

a2
{η(x)n̂z(x)mz(x)} =

∫
Λ

dq

a2(2π)2
nz(q)mz(

~π

a
− q). (3.22)

We assume large wavelength in n̂ as well as m, but a/π is a small wave length beyond the introduced
cutoff, since π/a gives a momentum which is beyond the momentum cutoff we consider. While either
n̂ or m must be described by a wavelength in the order of a/π we are able to neglect this term within
the large wavelength approximation. We will now define

H̃ =
δH
δm

∣∣∣∣
m=0

, (3.23)

χ−1
x,x′ ≈

1

S2

δ2H[n̂,m]

δm(x)δm(x′)

∣∣∣∣
m=0

. (3.24)

Since the first order contributions in m of the Heisenberg exchange interaction and the anisotropy are
negligible, we obtain H̃ ≈ 1

a2H. In principle one should also include the homogeneous Dzyaloshinskii-
Moriya interaction here, since this interaction is small in practice we neglect it for now. For χ−1 we
assume it only depends on the difference in length between x and x′, since J and D posses the full
lattice symmetry

S2

∫
d2x

∫
d2x′mxχ

−1
x,x′mx′ = S2

∫
q≤ΛBZ

d2q

(2π)2
mqχ

−1
q m−q. (3.25)

So in total we now have the following approximate Hamiltonian

H ≈ Ecl0 +

∫
dx

{
ρs
2
|∇n̂|2 +

D

2

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
− S2K̃zn̂

2
z − SHn · n̂z

}
(3.26)

+

∫
dx SH̃ ·mx +

1

2

∫
dx

∫
dx′

{
mxχ

−1
x,x′mx′

}
.
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In Eq. (3.26) we defined K̃z =
Ka
z

a2 and H̃ = H
a2 . In the formula above D is the Dzyaloshinskii-Moriya

constant, Kz describes anisotropy, χ−1 is the inverse of the uniform susceptibility and ρs is the stiffness
constant

ρs = − S2

4Na2

∑
ij

Jijηiηj |xi − xj|2. (3.27)

Finally, Hn is given by

Hn(x) =
SH

a2
η(x), (3.28)

where η(x) = exp

(
ix · ~π

a

)
. This implies

∫
dx Hn(x) · n̂z(x)→ SH

2a2

∫
dq

(2π)2

[
δ

(
~π

a
+ q

)
+ δ

(
~π

a
− q

)]
n̂q. (3.29)

The momentum
π

a
is again beyond the momentum cutoff which implies Hn · n̂z can be neglected in

the large wavelength limit.

3.1.5 The partition function and Green’s functions

In this section we derive a expression of the partition or Green’s function only in terms of n̂. We do this
by integrating over the canting field m. Since we consider the total euclidean action up to quadratic
order in m, we are able to perform the integration over m⊥ by completing the square. We ignore any
overall normalization factor. From Eqs. (3.15) and (3.26) we obtain the following Euclidean action

SE = iΥ[n̂] + i
S

a2

∫
dτdx{n̂(x)× ∂τ n̂(x) ·m(x)}+

∫
dτH[n̂,m]. (3.30)

The partition function for Eq. (3.30) can be simplified by integrating out the m dependence, which is
similar to solving the equations of motion for m and plugging it back into the action. By completing
the square and ignoring any overall normalization factor, we obtain

Z =

∫
Dn̂Dm e−SE [n̂,m]

∝
∫
Dn̂ eiΥ[n̂] exp

[
−
∫

Λ

dx

{
ρs
2
|∇n̂|2 +

D

2

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
− K̃zn̂

2
z

}]
ζ[n̂],

ζ[n̂] =

∫
ΛBZ

Dm⊥ exp

[
−
∫ β

0

dτ

∫
Λ

d2q

(2π)2
SH̃−qmi

q + iS

∫ β

0

dτ

∫
Λ

d2q

(2π)2
(n̂× ∂τ n̂)−qmq

− S2

2

∫ β

0

∫
Λ

d2q

(2π)2
mqχ

−1
q m−q

]

=

∫
ΛBZ

Dmδ(n̂ ·m) exp

(
−
∫ β

0

dτ

∫
Λ

d2q

(2π)2

{
L−q ·mq +

1

2
mqχ

−1
q m−q

})
(3.31)
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In the preceding equation we defined Lq = S
{

H̃q − i(n̂× ∂τ n̂)q

}
and δ(n̂ ·m) =

∫
Dλ exp[iλ(n̂ ·m)].

Using these definitions ζ[n̂] becomes

ζ[n̂] =

∫
Dλ
∫

ΛBZ

Dm exp

(
−
∫ β

0

dτ

∫
Λ

d2q

(2π)2

{
(L−q − iλn̂−q) ·mq +

S2

2
mqχ

−1
q m−q

})

∝
∫
Dλ exp

(∫ β

0

dτ

∫
Λ

d2q

(2π)2

1

2S2
χq {(L−q − iλn̂−q) · (Lq − iλn̂q)}

)

=

∫
Dλ exp

(
−
∫ β

0

dτ

∫
Λ

d2q

(2π)2

1

2S2
χq

{
(λ+ iL−q · n̂q)

2
+ (L−q · n̂q)2 − L−qLq

})

∝ exp

[
− 1

2

∫ β

0

dτ

∫
Λ

d2q

(2π)2
χq

{
(n̂× ∂τ n̂)−q(n̂× ∂τ n̂)q

+ i
[
(n̂× ∂τ n̂)q · H̃−q + (n̂× ∂τ n̂)−q · H̃q

]
+
(
H̃−qn̂zq

)2

− H̃−qH̃q

}]
.

The variation of χq is small if we consider q to be in the domain Λ. Thus, we replace it with its zero
momentum mode

ζ[n̂] ∝ exp

[
−1

2
χ0

∫ β

0

dτ

∫
Λ

dx

{
|∂τ n̂(x)|2 + 2iH̃(n̂(x)× ∂τ n̂(x))z +

(
H̃n̂z(x)

)2

− H̃2

}]
. (3.32)

The following semi-classical partition function is thus be obtained

Z ∝
∫
Dn̂ e−iΥ[n̂] exp

[∫ β

0

dτ

∫
Λ

dx −

{
1

2
χ0|∂τ n̂(x)|2 + iχ0H̃ · (n̂(x)× ∂τ n̂(x)) +

1

2
χ0

(
H̃ · n̂(x)

)2

(3.33)

+
ρs
2
|∇n̂|2 +

D

2

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
− S2Kzn̂

2
z

}]
.

In the last line we used the identity
|n̂× ∂τ n̂|2 = |∂τ n̂|2 .

Comparing this result with Ref. [18, Chapter 3] we note that homogeneous Dzyaloshinskii-Moriya
interaction is absent. This term is neglected while doing the integration in Eq. (3.31). There should
be an extra term in

H̃ =
δH
δm

∣∣∣∣
m=0

,

which accounts for the homogeneous Dzyaloshinskii-Moriya interaction. From Eq. (3.19) we see that
the second order terms in the Dzyaloshinskii-Moriya are negligible by Eq. (3.3), since the outer prod-
ucts turn into second derivatives in the continuum approximation. In practice the homogeneous
Dzyaloshinskii-Moriya interaction will be small or one is able to add it manually by changing the
magnetic field.

If one would ignore the Dzyaloshinskii-Moriya interaction, the anisotropy and consider small mag-
netic fields, we would obtain a wave equation with the speed of sound within be given by

c =

√
ρs
χ0
, (3.34)

which we will call the asymptotic spin wave velocity.
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3.2 Skyrmion configurations in antiferromagnets

This section will be devoted to finding the skyrmion profile in antiferromagnets (see Fig. 3.2), using
similar methods as described in Section 2.1. We determine the Euler-Lagrange equations belonging
to energy (3.35) in Section 3.2.1. Section 3.2.2 will be dedicated to finding numerical solutions for
the Euler-Lagrange equations obtained in Section 3.2.1, for different values of the magnetic field and
for different interaction strengths. For large magnetic fields we are also able to find another class of
structures, which are called vortices. Vortices differ from skyrmions, because their boundary conditions
are different. We obtain numerical solutions for vortices in Section 3.2.2.

Figure 3.2: Graphical example of an antiferromagnetic skyrmion configuration. The color scale repre-
sents the magnetization direction; orange is into the plane, green is out of the plane. Source: Ref. [19].

3.2.1 Minimizing the free energy of the antiferromagnet

In this section we determine the Euler-Lagrange equations belonging energy (3.35). The antiferromag-
netic energy in the large wavelength approximation is given by Eq. (3.33),

F [n̂] = NA

∫
Λ

dx

ρs2 ∑
l=x,y

|∂ln̂|2 +
D

2

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
−Kzn̂

2
z +

χ0

2

(
H̃ · n̂(x)

)2

 .

(3.35)
Now we use the transformation

n̂ = sin[θ] cos[φ0] ρ̂+ sin[θ] sin[φ0] φ̂+ cos[θ] ẑ.

The given Hamiltonian is translationally invariant and the skyrmion configuration is a local minimum
of the Hamiltonian in Eq. (3.35). Because of this the skyrmion configuration will be rotationally
invariant. We assume θ only depends on ρ and φ0 is constant. We also choose the magnetic field to
be in the ẑ-direction. Using the preceding assumptions the Hamiltonian in Eq. (3.35) reduces to [18,
Chapter 3]

F [n̂] = 2πNA

∫
Λ

{
ρs
2

(
(∂ρθ)

2 +
sin2(θ)

ρ2

)
+
D

2
cos(φ0)

(
∂ρθ +

cos(θ) sin(θ)

ρ

)
−Kz cos2(θ)+

χ0

2
H̃2 cos2(θ)

}
ρdρ.

(3.36)
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The skyrmion configuration will be a local minimum in the energy (i.e. δF
δθ = 0) with boundary

conditions θ(0) = π and θ(∞) = 0. The Euler-Lagrange equations give(
∂2θ

∂ρ2
+

1

ρ

∂θ

∂ρ
− sin(θ) cos(θ)

ρ2

)
+
D

ρs
cos(φ0)

sin2(θ)

ρ
+

(h2 −Kz)

ρs
sin(2θ) = 0, (3.37)

where we defined h2 =
χ0

2
H̃2. By performing the substitution ρ̃ =

√
Kz

ρs
ρ in Eq. (3.37) and multiplying

the total by
ρs
Kz

, we obtain the following dimensionless Euler-Lagrange equation

(
∂2θ

∂ρ̃2
+

1

ρ̃

∂θ

∂ρ̃
− sin(θ) cos(θ)

ρ̃2

)
+

4D

πD0
cos(φ0)

sin2(θ)

ρ̃
−
(

1− h2

h2
0

)
sin(2θ) = 0. (3.38)

In the preceding equation we used D0 = (4/π)
√
ρsKz and h0 =

√
Kz.

3.2.2 Finding local skyrmion solutions

First note that there are different type of solutions for different values of
h

h0
. To see this, one must

notice that h0 is the spin flop field. When h = h0 the Néel vector flops into the basal plane and
for h > h0 the magnetic field gives rise to a magnetization (see Figs. 3.3 and 3.4). This causes weak
ferromagnet behavior. When h < h0 we get solutions with boundary conditions θ(0) = π and θ(∞) = 0.
At the moment h > h0 we also get solutions with boundary conditions θ(0) = π and θ(∞) = π/2.
From Figs. 3.5 and 3.7, we are able to give the order of magnitude of antiferromagnetic skyrmions
and vortices. Because the width of the profiles is between order O(100) and O(101), it follows via the

substitution ρ̃ =

√
Kz

ρs
ρ that the width of skyrmions and vortices is of the order O(

√
ρs/Kz) if D/D0

is of order one.

Figure 3.3: Graphical depiction of a antiferromagnetic state when the magnetic field is above the spin
flop field (h > h0).

Figure 3.4: Graphical depiction of a antiferromagnetic ordering when the magnetic field is far below
the spin flop field (h < h0).
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3.2.3 No magnetic field

In first instance we consider the case when h = 0. We see that there exist finite skyrmion configurations
even in the absence of a magnetic field, which is different from the ferromagnetic case described
in Section 2.1 where there is no stable skyrmion configuration in the absence of a magnetic field.
In Fig. 3.5 skyrmion profiles for several values of d = D/D0 are plotted. In this figure one is able
to see that the skyrmion radius is getting larger as the antisymmetric exchange interaction (DM) is
increasing.

Figure 3.5: Skyrmion configuration for D/D0 ∈ {0.2, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.35} and h = 0.
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3.2.4 Magnetic field h/h0 = 0.3

Now we consider the case in which h/h0 = 0.3. We see that the radii of the skyrmions are slightly
larger then in Fig. 3.5. We will continue to see the radius grow as we increase the magnetic field up
to h/h0 = 1, where the dimensionless radius will approximately have length 10.

Figure 3.6: Skyrmion configuration for D/D0 ∈ {0.2, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.30} with h/h0 = 0.3.

3.2.5 Magnetic field h/h0 = 1.2

If the magnetic field is larger then the spin flop field (h > h0) we obtain vortex solutions. The boundary
conditions for vortices are given by θ(0) = π and θ(∞) = π/2, which differ form the ones used for
skyrmions. We consider the case in which h/h0 = 1.2. In Fig. 3.7 vortex profiles for several values of
d = D/D0 are plotted. Like in the skyrmion case the radius of the solution is getting larger as the
antisymmetric exchange interaction (DM) is growing.

Figure 3.7: Skyrmion configuration for D/D0 ∈ {0.2, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.30} with h/h0 = 1.2.



Chapter 4

Interaction between
antiferromagnetic skyrmions and
spin waves

In this chapter we will discuss the interaction between an antiferromagnetic skyrmion and spin waves
using similar methods as used in Refs. [3, 9]. We consider the number of atomic layers in the thin
film NA to be sufficiently large s.t. the spin waves are a small perturbation on the skyrmion, but
small enough for the translational invariance in the ẑ-direction to hold. This chapter aims at deriving
an effective action which is only dependent on skyrmion position ~R, by integrating out the spin wave
fluctuations. Furthermore we assume Ṙ/c to be small.

4.1 Taking a perturbation of spin-waves around the skyrmion

In this section we describe spin wave fluctuations (see Fig. 4.1) around an antiferromagnetic skyrmion.
This will be done by performing the expansion of spin wave fluctuations around the skyrmion up to
second order. We categorize the resulting action into three parts, the classical action (no spin wave in-
teractions), the static interaction (describes the static coupling between an antiferromagnetic skyrmion
and spin waves) and dynamic interaction (describes the interaction between a moving skyrmion and
spin waves) which are denoted by Scl,Sfl and SI respectively.

Figure 4.1: Semi-classical picture of a spin wave going through a one-dimensional material, with the
spins rotating around their ground state position. Copyright: Addison-Wesley 2000.

19
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In Section 3.1.5 we found that the action describing antiferromagnetic dynamics is given by Eq. (3.33)

SE [n̂] = iNAΥ[n̂] +NA

∫ β

0

dτ

∫
Λ

dx

{
1

2
χ0|∂τ n̂(x)|2 + iχ0H̃(n̂(x)× ∂τ n̂(x))z

}
+ F [n̂], (4.1)

F [n̂] = NA

∫ β

0

dτ

∫
Λ

dx

ρs2 ∑
l=x,y

|∂ln̂|2 +
D

2

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
−Kzn̂

2
z +

1

2
χ0

(
H̃ · n̂(x)

)2

 ,

where NA is given by the number of antiferromagnetic layers along the ẑ-direction. For the rest of
this chapter we assume the magnetic field to be pointing in the ẑ-direction. The contribution of Berry
phase Υ is negligible in the long wavelength limit, see Appendix B.2.2. From now on we assume that a
skyrmion is present in n̂, thus we are looking at a configuration with winding number equal to one. We
are still working in the long wavelength approximation and consider low temperatures, such that other
effects like phonon interactions can be neglected and spin wave fluctuations will be small. Using the
preceding assumptions we are able to write the configuration of the antiferromagnet as the skyrmion
configuration plus small deviations from this ground state. Since n̂ is always a unit vector it will be
useful to describe it using polar coordinates

n̂(x, τ) = {sin[θ(x, τ)] cos[φ(x, τ)], sin[θ(x, τ)] sin[φ(x, τ)], cos[θ(x, τ)]} (4.2)

=⇒ |∂τ n̂| = [∂τθ(x, τ)]2 + sin2(θ(x, τ))[∂τφ(x, τ)]2, (4.3)

(n̂(x)× ∂τ n̂(x))z = sin2(θ(x, τ))∂τφ(x, τ). (4.4)

The skyrmion configuration will characterized by the collective dynamical coordinate R(τ)

θ(x, τ) = θ0(x−R(τ)) + ϑ(x−R(τ), τ), (4.5)

φ(x, τ) = φ0(x−R(τ)) + ϕ̃(x−R(τ), τ). (4.6)

Now define

ψ(x, τ) =

(
Π(x, τ)/ sin(θ0)
φ(x, τ) sin(θ0)

)
' ζ0 + η, ζ0(x, τ) =

(
Π0(x, τ)/ sin(θ0)
φ0(x, τ) sin(θ0)

)
, κ(x, τ) =

(
ϑ(x, τ)
ϕ̃(x, τ)

)
.

(4.7)
We would like to describe our system in canonical coordinates, which are given by {Π, φ} (where
Π = cos(θ)). Performing the path integral will be much easier while using canonical coordinates. We
start be treating a small perturbation in Π in terms of ϑ

Π→ Π0 + ν̃, Π→ Π0 − sin(θ0)ϑ− 1

2
cos(θ0)ϑ2 (4.8)

=⇒ ϑ ' − 1

sin(θ0)
ν̃ − 1

2 sin2(θ0) tan(θ0)
ν̃2. (4.9)

Now we introduce a local coordinate transformation which leaves the integration measure invariant

η̃ =

(
ν̃(x, τ)
ϕ̃(x, τ)

)
→ η =

(
ν̃(x, τ)/ sin(θ0)
ϕ̃(x, τ) sin(θ0),

)
(4.10)

=⇒ η =

(
ν(x, τ)
ϕ(x, τ)

)
. (4.11)

This implies ϑ ' −ν − 1

2 tan(θ0)
ν2.

The assumption that we have a skyrmion present, plus small deviations from the ground-state
makes it useful to do an expansion of F w.r.t η. Because we know a skyrmion is a local minimum of
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F it follows that δF
δζ = 0. Up to second order in δη, F is written as

F = E0 +

∫ β

0

dτdτ ′
∫

Λ

dxdx′ ηᵀ ·

{
δ2F
δηᵀδη

∣∣∣∣
ηᵀ=η=0

}
η +O(η3), (4.12)

E0 = F [n̂0].

Note that F is written as a single integral over a continuous function of (x, τ). It follows that
δ2F
δηᵀδη

∣∣∣
ηᵀ=η=0

is diagonal with respect to (x, τ).

Now we expand {ν, φ} up to second order for the dynamical terms in Eq. (4.1). Via Appendix C.1
the second order spin wave expansion of

∫
dτdx|∂τ n̂| becomes,∫

dτdx |∂τ n̂|2 =

∫
dτdx

{
|∂τ n̂0|2

+
[
sin(2θ0)φ̇2

0 − 2θ̈0

]
ϑ− 2

[
sin(2θ0)θ̇0φ̇0 + sin2(θ0)φ̈0

]
ϕ̃

+ ϑ
(

cos(2θ0)φ̇2
0 − d2

τ

)
ϑ− ϕ̃

[
sin(2θ0)θ̇0dτ + sin2(θ0)d2

τ

]
ϕ̃+ ϑ

[
2 sin(2θ0)φ̇0dτ

]
ϕ̃

}
=

∫
dτ M̃Ṙ2 +

∫
dτdx

{
− ηᵀ · ∂2

τη + ṘβṘγ [Jβγ · η + ηᵀ · (Γβγ + Tβ∂γ − ∂β∂γ) η]

+ Ṙβ ηᵀ · (2∂β∂τ −Tβ∂τ ) η
}
.

(4.13)

The second order expansion of (n̂(x)× ∂τ n̂(x))z is also worked out in Appendix C.1 and is given by∫
dτdx (n̂(x)× ∂τ n̂(x))z =

∫
dτdx

{
(n̂0 × ∂τ n̂0)z

+ sin2(θ0) ˙̃ϕ+ sin(2θ0)φ̇0ϑ+ sin(2θ0)ϑ ˙̃ϕ+ cos(2θ0)φ̇0ϑ
2

}
→
∫

dτdx

{
(n̂0 × ∂τ n̂0)z

+ Ṙβ
[
sin(2θ0)(∂βθ0)

ϕ

sin(θ0)
− sin(2θ0)(∂βφ0)ϑ− ϑ cos(2θ0)(∂βφ0)ϑ

]
+ ϑ sin(2θ0)dτ

(
ϕ

sin(θ0)

)}
=

∫
dτ α̃εijR

iṘj +

∫
dτdx

{
− ηᵀ · L∂τη + Ṙβ [ηᵀ · (Mβ + L∂β) η + Nβ · η]

}
,

(4.14)
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where1

Jβγ =

{
[2(∂β∂γθ0)− sin(2θ0)(∂βφ0)(∂γφ0)]

(
1
0

)
− 2 [2 cos(θ0)(∂βθ0)(∂γφ0) + sin(θ0)(∂β∂γφ0)]

(
0
1

)}
,

Γβγ =

{[
− sin2(θ0)(∂βφ0)(∂γφ0)− 1

2
cot(θ0)(∂β∂γθ0)

](
1 0
0 0

)
+ [(csc(θ0)− 1)(∂βθ0)(∂γθ0)]

(
0 0
0 1

)
+ [(2 cos(θ0) cot(θ0) + sin(θ0))(∂βφ0)(∂γθ0)− cos(θ0)(∂β∂γφ0)]

(
0 1
1 0

)
+ [cos(θ0)(∂β∂γφ0)− sin(θ0)(∂γθ0)(∂βφ0)]

(
0 1
−1 0

)}
,

Tβ =

{
2 cos(θ0)(∂βφ0)

(
0 1
−1 0

)}
,

L =

{
cos(θ0)

(
0 1
−1 0

)}
,

Mβ =

{
sin2(θ0)(∂βφ0)

(
0 0
0 1

)
− cos(2θ0) csc(θ0)(∂βθ0)

(
0 1
1 0

)
− 1

2
sin(θ0)(∂βθ0)

(
0 1
−1 0

)}
,

Nβ =

{
sin(2θ0)(∂βφ0)

(
1
0

)
+ 2 cos(θ0)(∂βθ0)

(
0
1

)}
.

(4.15)

In the preceding equations we neglected terms proportional to R̈, since we assume the dynamics of
the skyrmion to be slow. We dismissed the constant factors obtained by partial integration w.r.t. τ .
The reason is that these factors only depend on the situation at time τ = 0 and τ = β, thus they
give rise to an overall normalization factor. Because these partial integration factors do not influence
the semi-classical equations of motion, we will omit these terms in the first instance. In Eqs. (4.16)
and (4.17) we calculate the classical part of the dynamical terms in Eq. (4.1), Eq. (4.16) reduces to a
mass and Eq. (4.17) gives rise to a Magnus force, this is worked out in Appendix B∫

dτdx|∂τ n̂0|2 =

∫
dτdx

∣∣∣∂βn̂0Ṙ
β
∣∣∣2 =

∫
dτdx ∂βn̂0,α∂γ n̂

α
0 Ṙ

βṘγ

=

∫
dτM̃βγṘ

αṘγ , M̃βγ =

∫
dx ∂βn̂0,α∂γ n̂

α
0

(4.16)

∫
dτdx (n̂0 × ∂τ n̂0)z →

∫
dτṘiRj

{∫
dx 2(∂in̂0 × ∂jn̂0)z

}
=

∫
dτεijR

iṘj
{∫ 2π

0

dφ

∫ ∞
0

dρ ∂ρ(sin
2(θ0))∂φφ0

}
=

∫
dτ
{
α̃εijR

iṘj
}
,

α̃ =

{∫ 2π

0

dφ

∫ ∞
0

dρ ∂ρ(sin
2(θ0))∂φφ0

}
.

(4.17)

1 Note that Nβ is orthogonal to the zero-modes. In the {θ, φ̃} basis Ni = sin(2θ0)

(
−∂iφ0
∂iθ0

)
and the zero-modes are

given by σi =

(
∂iθ0
∂iφ0

)
. Which implies Nᵀ

i · σi = 0. A more extensive calculation shows Nᵀ
i · σj = 0, for {i 6= j}, which

is due to the factor of two in front of θ0 in the sin(2θ0).
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In Eq. (4.17) we used that the skyrmion configuration is rotationally invariant. Using this rotational
invariance it follows that the mass matrix M̃ is diagonal. By writing x in cylindrical coordinates
(x = ρ cos(θ)), y = ρ sin(θ)) we obtain (see Appendix B.1)

M̃ = M̃xx = M̃yy = 2π

∫ ∞
0

dρ

{
ρ (∂ρn̂0)

2
+

1

ρ

{
sin(θ0) sin(φ0)ρ̂− sin(θ0) cos(φ0)φ̂

}2
}
,

M̃xy = M̃yx = 0,

(4.18)

α̃ = 2π

∫ ∞
0

dρ ∂ρ(sin
2(θ0)) = 2π sin2(θ(ρ))

∣∣ρ=∞
ρ=0

. (4.19)

To make the integral in Eq. (4.18) dimensionless and to use the results of Section 3.2 we perform the
transformation ρ̃ =

√
(Kz/ρs) ρ on Eq. (4.18). By also defining M = χ0M̃ and α = χ0H̃α̃ we obtain

M = 2πχ0

∫ ∞
0

dρ̃

{
ρ̃ (∂ρ̃n̂0)

2
+

1

ρ̃

{
sin(θ0) sin(φ0)ρ̂− sin(θ0) cos(φ0)φ̂

}2
}
, (4.20)

α = 2πH̃χ0 sin2(θ(ρ))
∣∣ρ=∞
ρ=0

. (4.21)

Since the dimensionless integral in Eq. (4.20) takes on values between zero and ten for different
skyrmion configurations we obtained in Section 3.2, we see that M roughly has order of magnitude
O(χ0) if D/D0 is of order one. For skymions with winding number n ∈ Z, α in Eq. (4.19) will be
zero. So antiferromagnetic skyrmions do not feel a Magnus force, which is in agreement with Ref. [10].
For magnetic fields above the spin-flop field, vortices may arise (see Fig. 3.7). Vortices have different
boundary conditions than skyrmions for which α is non-zero, which implies that antiferromagnetic
vortices feel a Magnus force. For the boundary conditions of the vortex (θ0(0) = π and θ0(∞) = π/2),
we see that α = −2πH̃χ0.

Like in Ref. [9], we split the second order expansion of action in Eq. (4.1) into three parts, SE =
Scl + Sfl + SI . The first part describes the skyrmion’s dynamics without spin wave interactions

Scl = NA

{
1

2
MṘ2 + iαεijR

iṘj
}
, (4.22)

where M = χ0M̃ and α = Hα̃. Sfl describes the interaction between a static skyrmion and spin
waves. This static coupling is given by

Sfl = NA η
ᵀ · Gη. (4.23)

Here we introduced the compact scalar product for operators and functions,

ηᵀ · Gη =

∫ β

0

dτdτ ′
∫

Λ

dxdx′ ηᵀ(x, τ)G(x, τ,x′, τ ′)η(x′, τ ′). (4.24)

We defined the operator describing the static coupling between the skyrmion and spin waves to be,

G = −χ0

2

{
∂2
τ + 2iH̃L∂τ

}
+H, (4.25)

H =
δ2F
δηᵀδη

∣∣∣∣
ηᵀ=η=0

. (4.26)

The action associated with the interaction between a moving skyrmion and spin waves is given by

SI = NA (ηᵀ · Kη + J · η) , (4.27)
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where

J =
χ0

2

{
ṘβṘγJβγ + 2iṘβH̃Nβ

}
, (4.28)

K =
χ0

2

{
ṘβṘγ (Γβγ + Tβ∂γ − ∂β∂γ)

+ Ṙβ
[
(2∂β∂τ −Tβ∂τ ) + 2iH̃ (Mβ + L∂β)

]}
.

(4.29)

Conclusion

We expanded action (4.1) up to second order in {ν, φ} and distinguished three different types of actions
(interactions).

1. Classical action, which we denote with Scl given in Eq. (4.22). The classical action is gives
the dynamics of a skyrmion that has no interaction with spin waves. We found that a classical
antiferromagnetic skyrmion does not feel a Magnus force and has a non-zero classical mass given
by Eqs. (4.18) and (4.19). Vortices also posses a non-zero classical mass, but in addition they
feel a Magnus force, both are also described using Eqs. (4.18) and (4.19).

2. Static interaction, which is denoted by Sfl Eq. (4.23). The static interaction describes the
interaction between spin waves and a skyrmion which is standing still.

3. Dynamic interaction, which is denoted as SI Eq. (4.27). This describes the interaction between
moving skyrmions and spin waves.

We are interested in the effect that spin wave interactions have on the dynamics of a skyrmion. In this
section we already found the dynamics for a non-interacting antiferromagnetic skyrmion and calculated
the actions and operators to describe the interacting part. In the next sections we will calculate this
change of dynamics due to spin wave interactions.

4.2 Skyrmionic dynamics due to spin wave interactions

In this section we integrate out spin wave fluctuations, using the path integral formalism of quantum
field theory. This is quite similar to solving the equations of motion for spin waves and plugging it
back in. We will use the Faddeev-Popov technique to promote the skyrmion position to a dynamic
variable and derive and effective action for the dynamics of the skyrmion. Throughout this chapter
we will assume NA to be large such that spin waves form a small perturbation on the skyrmion. We
assume the temperature to be small such that we can neglect other interaction effects like spin phonon
interactions and will mainly focus on the zero temperature limit. In Section 4.1 we used that the
skyrmion’s velocity w.r.t the spin wave velocity is a small parameter Ṙ/c, in this section we continue
using this assumption. In Section 4.2.1 we derive the skyrmions dynamics if there is no magnetic field
present, while in Section 4.2.2 we consider the effect of a small magnetic field on the dynamics of
skyrmions.
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4.2.1 Skyrmion dynamics in the absence of a magnetic field

For convenience we start with the action SE = Scl +Sfl +SI and set the magnetic field equal to zero.
So in this section we use

G = −χ0

2
∂2
τ +H, (4.30)

J =
χ0

2

{
ṘβṘγJβγ

}
, (4.31)

K =
χ0

2

{
ṘβṘγ (Γβγ + Tβ∂γ − ∂β∂γ) + Ṙβ (2∂β∂τ −Tβ∂τ )

}
=
χ0

2

{
ṘβṘγPβγ + ṘβNβ∂τ

}
,

(4.32)

where S̃ = χ0

2 , Pβγ = Γβγ + Tβ∂γ − ∂β∂γ and Nβ∂τ = (2∂β −Tβ) ∂τ . Be aware that these operators
are Hermitian by construction.

A translation is either described by R or by the ”zero modes”, ν̃ ∝ ∂iΠ0 and φ̃ ∝ ∂iφ0. To
avoid double counting we impose the constraint that spin wave modes must be orthogonal to the zero
modes. This constraint must hold for i ∈ {x, y} and for all time τ , we thus have to impose the following
constraint ∫

dx ∂iΠ0(x−R, τ)ν̃(x, τ) =

∫
dx ∂iΠ0(x−R, τ) sin(θ0)ν(x, τ) = 0, (4.33)∫

dx ∂iφ0(x−R, τ)ϕ̃(x, τ) =

∫
dx ∂iφ0(x−R, τ)ϕ(x, τ)/ sin(θ0) = 0, (4.34)

=⇒
∫
dx σᵀ

i η(x, τ) = 0, (4.35)

where

σi =

(
(∂iΠ0) sin(θ0)
(∂iφ0)/ sin(θ0)

)
. (4.36)

This is equivalent to the restriction

Qi(R) =

∫
dx σᵀ

i (x−R, τ)ψ(x, τ) = 0. (4.37)

We incorporate this constraint into the path integral by means of the Faddeev-Popov technique and
promote R to a dynamic variable. This uses the following identity∫

DR δ(Q1[R])δ(Q2[R]) det

(
δQ

δR

)
= 1, (4.38)

where δQ
δR is the Jacobian. We obtain

Z[R] =

∫
DRDη δ(Q1[R])δ(Q2[R]) det

(
δQ

δR

)
e−SE [η]. (4.39)

Using the second order expansion in η and Ṙ which is determined in Section 4.1 we obtain

Z =

∫
DR e−Scl[R]F [R], (4.40)

where Scl is the action of a free antiferromagnetic skyrmion and

F [R] =

∫
Dη δ(Q1[R])δ(Q2[R]) det

(
δQ

δR

)
e−NA{η

ᵀ·[G+K]η+J ·η}. (4.41)
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Eq. (4.41) describes the interaction between an antiferromagnetic skyrmion and spin waves. Integrating
out these spin waves would give the effect of spin wave interaction on the dynamics of a skyrmion. To
integrate out spin waves it’s useful to complete the square in Eq. (4.41). Because we are working up
to order O(Ṙ2), it is sufficient to shift η by ρ = (1/2)G−1J [3]. We denote the introduced variable by
η̃ = η + ρ,

ηᵀ · [G +K] η + J · η
= {η̃ − (1/2)G−1J }ᵀ · [G +K] {η̃ − (1/2)G−1J }+ J · {η̃ − (1/2)G−1J }

= η̃ᵀ · [G +K] η̃ − 1

2
(G−1J )ᵀ · Gη̃ − 1

2
η̃ᵀ · GG−1J + J · η̃ +O(Ṙ3)

= η̃ᵀ · [G +K] η̃ +O(Ṙ3).

(4.42)

Next we want to consider the contribution of the determinant in Eq. (4.41) to the path integral. Note
that σi is antisymmetric around R and J is symmetric around R. Since G is invariant under parity
transformation, we note that

∫
dx σᵀ

i (x−R, τ)ρ(x, τ) ∝
∫
dx σᵀ

i (x−R, τ)G−1Jβγ = 0. This implies∫
dx σᵀ

i (x−R, τ)η̃(x, τ) = 0, so the newly introduced variable also must be orthogonal to the zero
modes. This means that the Gaussian over our newly introduced variable η̃ is well defined and the
fluctuations have effective size O(1/

√
NA).

In the remainder of this section we evaluate Eq. (4.41). We start with determining the effect of

det
(
δQ
δR

)
on the dynamics of the skyrmion, we find

δQi
δRj

= −
∫
dx (∂jσ

ᵀ
i (x−R, τ))ψ(x, τ)δ(t− t′). (4.43)

Using the identity det = exp tr ln and rescaling our variable η̂ =
√
NAη̃ we get

det

(
δQ

δR

)
∝ exp

{
tr ln

(
1− Y0√

NA

∫
dx(∂jσ

ᵀ
i )η̂ + Y0

∫
dx(∂jσ

ᵀ
i )ρ

)}
. (4.44)

Where
∫

(∂jσ
ᵀ
j )ζ0 = 1/Y0 and

∫
(∂xσ

ᵀ
y )ζ0 = −

∫
(∂yσ

ᵀ
x)ζ0 = 0. The constant exp(tr ln 1/Y0) is taken as

a pre-factor. The second term vanishes for the large NA and the last term gives rise to a pure mass
re-normalization, which is of order O((NA)0).

By performing the integration and neglecting irrelevant pre-factors in Eq. (4.41) becomes [20]

F [R] = e−(∆M/2)
∫
dτṘ2

∫
Dη̂ δ(Q1[R])δ(Q2[R])e−η̂

ᵀ·[G+K]η̂

= e−(∆M/2)
∫
dτṘ2 1√

det′(G +K)
.

(4.45)

The prime in the above equation denotes the omission of the zero-modes. By again using the identity
det = exp tr ln and expanding the logarithm we obtain

1√
det′(G +K)

= e−(1/2) tr′ ln(G[1+G−1K])

=
1√

det′(G)
e−(1/2) tr′[G−1K−(1/2)(G−1K)2+O(Ṙ3)].

(4.46)

The factor
1√

det′(G)
is independent of Ṙ and gives the partition function of spin waves interacting

with a static skyrmion. Since we are interested in the dynamic properties of a skyrmion, this term
can be omitted and just treated as a pre-factor. We evaluate the trace in Eq. (4.46) in the basis of
eigenfunctions of G, the eigenfunctions factories into a space- and time depended part,

G |n〉 |ω〉 = (S̃ω2 + εn) |n〉 |ω〉 , (4.47)
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where 〈x|n〉 〈τ |ω〉 = ψn(x)eiωτ/
√
β are the normalized eigenvectors of the operator G, with Matsubara

frequencies ω = 2πm/β, for m ∈ Z. In this basis of eigenvectors of G the first order term in Eq. (4.46)
is given by 2,

−1

2
tr′ G−1K = − 1

2β

∑
ω,n

′
∫
dτ
〈ψn,Kψn〉
S̃ω2 + εn

= − 1

2β

∑
ω,n

′ S̃

S̃ω2 + εn

∫
dτ
{
ṘβṘγ〈ψn,Pβγψn〉+ Ṙβω〈ψn,Nβψn〉

}
= − 1

2β

∑
ω,n

′ 1

ω2 + ε̂2n

∫
dτṘβṘγ〈ψn,Pβγψn〉 = −

∫ β

0

dτ∆M̃Ṙ2,

(4.48)

where we introduced 〈f, g〉 =
∫
dx fᵀ(x)g(x) and

∆M̃ij =
S̃

2β

∑
ω,n

′ 〈ψn,Pijψn〉
S̃ω2 + εn

=
1

2β

∑
ω,n

′ 〈ψn,Pijψn〉
ω2 + ε̂2n

, (4.49)

with ε̂2n = εn/S̃. The summations over ω can be performed using the following exact relation

Dε(τ) =
2ε

β

∑
ωn

eiωnτ

ω2
n + ε2

=
cosh(ε(|τ | − β/2))

sinh(βε/2)
, (4.50)

where ωn = 2πn/β and the right hand side of Eq. (4.50) will be periodically extended beyond |τ | ≤ β/2.
Using identity (4.50) to explicitly evaluate the sum over the Matsubara frequencies in Eq. (4.49), we
obtain

∆M̃ij =
1

2β

∑
ω,n

′ 〈ψn,Pijψn〉
ω2 + ε̂2n

=
1

4

∑
n

′ 〈ψn,Pijψn〉
ε̂n

cosh(βε̂n/2)

sinh(βε̂n/2)
. (4.51)

In the low temperature limit (β →∞) Eq. (4.51) becomes

∆M̃ij
β→∞−−−−→ 1

4

∑
n

′ 〈ψn,Pijψn〉
ε̂n

. (4.52)

We have thus obtained another pure mass renormalization ∆M of order O((NA)0). Please note that
∆M̃xx = ∆M̃yy and ∆M̃xy = −∆M̃yx = 0, since we started with a rotationally invariant system. In
the absence of a magnetic field, all the damping due to spin waves comes from the remaining terms
in Eq. (4.46). Up to second order in Ṙ we obtain

−1

4
tr′(G−1K)2 = − 1

4β2

∑
ω,n,ω′,n′

′ 〈ω| 〈n| K |n′〉 |ω′〉 〈ω′| 〈n′| K |n〉 |ω〉
(S̃ω2 + εn)(S̃ω′2 + εn′)

=
S̃2

4β2

∫ β

0

dτ

∫ β

0

dτ ′ Ṙi(τ)Ṙj(τ ′)
∑

ω,n,ω′,n′

′ωω
′〈ψn,Niψn′〉〈ψn′ ,Njψn〉

(S̃ω2 + εn)(S̃ω′2 + εn′)
ei(ω−ω

′)(τ−τ ′)

=
S̃2

4β2

∫ β

0

dτ

∫ β

0

dτ ′Ṙi(τ)Ṙj(τ ′)
∑

ω,n,ω′,n′

′ ωω
′Bn,n

′

ij ei(ω−ω
′)(τ−τ ′)

(S̃ω2 + εn)(S̃ω′2 + εn′)
.

(4.53)

In the above we defined
Bn,n

′

ij = 〈ψn,Niψn′〉〈ψn′ ,Njψn〉. (4.54)

2Note the first order term in Ṙ is zero, because ω〈ψn,Nβψn〉 ∝ ω and (S̃ω2 + εn) is symmetric in ω.
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Note that we omitted Pαβ terms, because these will give rise to terms which are of order O(Ṙ3). The
damping due to spin waves is thus be given by

−1

4
tr′(G−1K)2 =

∫ β

0

dτ

∫ β

0

dτ ′Ṙi(τ)γij(τ − τ ′)Ṙj(τ ′), (4.55)

where we defined

γij(τ) =
S̃2

4β2

∑
ω,n,ω′,n′

′ ωω′Bn,n
′

ij ei(ω−ω
′)τ

(S̃ω2 + εn)(S̃ω′2 + εn′)
. (4.56)

Using identity (4.50) we find

1

2β

∑
ω

ωeiωτ

S̃ω2 + εn
= (1/S̃)

−i∂τ
2β

∑
ω

eiωτ

ω2 + ε̂2n

=
−i∂τ
4S̃ε̂n

Dε̂n(τ) ' −i
4S̃

sinh(ε̂n(|τ | − β/2))

sinh(βε̂n/2)
,

(4.57)

where ε̂2n = εn/S̃. A formal expression for the damping kernel can now be obtained by using iden-
tity Eq. (4.57) in Eq. (4.53)

γij(τ) =
1

16

∑
n,n′

′Bn,n
′

ij

sinh(ε̂n(|τ | − β/2))

sinh(βε̂n/2)

sinh(ε̂n′(|τ | − β/2))

sinh(βε̂n′/2)
. (4.58)

In the low temperature limit β →∞ we use the following limits

sinh(x)→ ex

2
, for x→∞

sinh(−x)→ −e
−(−x)

2
, for x→∞

Thus in the low temperature limit β →∞ we get

sinh(ε̂n(|τ | − β/2))

sinh(βε̂n/2)
→ −e

−(ε̂n(|τ |−β/2))

eβε̂n/2
= −e−ε̂n|τ |. (4.59)

Using Eq. (4.59) to evaluate Eq. (4.58) in the low temperature limit (β →∞) we obtain

γij(τ) =
1

16

∑
n,n′

′Bn,n
′

ij

sinh(ε̂n(|τ | − β/2))

sinh(βε̂n/2)

sinh(ε̂n′(|τ | − β/2))

sinh(βε̂n′/2)

β→∞−−−−→ 1

16

∑
n,n′

′Bn,n
′

ij e−(ε̂n+ε̂n′ )|τ |.

(4.60)

If the dynamics of R are slow compared to the relaxation time of the damping kernel and the
temperature is sufficiently small s.t. β � ε̂−1

0 , then the damping kernel (4.60) reduces to a pure mass
normalization.

−1

4
tr′(G−1K)2 =

∫ β

0

dτ

∫ β

0

dτ ′Ṙi(τ)γij(τ − τ ′)Ṙj(τ ′)

≈
∫ β

0

dτ Ṙi(τ)
Mij

2
Ṙj(τ),

(4.61)

where
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Mij ≡
1

8

∑
n,n′

′Bn,n
′

ij

∫ ∞
−∞

dµ e−(ε̂n+ε̂n′ )|µ|

=
1

4

∑
n,n′

′ B
n,n′

ij

ε̂n + ε̂n′
' 1

8

B0,0
ij

ε̂0
.

(4.62)

Here ε̂0 represents the lowest non-zero eigenenergy of H Eqs. (4.25) and (4.100) which will be a
breathing mode3. Please note that this pure mass re-normalization is of order O((NA)0). Since
the lowest eigenenergy of G will be lower than magnon gap, a lower bound on the magnitude of
the mass correction M is given by calculating M for the magnon gap energy. From Ref. [21] we
see that magnon gap has order of magnitude O(

√
Kz/χ0) in the absence of a magnetic field. To

determine the order of magnitude of B0,0
ij = 〈ψ0,Niψ0〉〈ψ0,Njψ0〉 we assume that the low energy

eigenstates of G approximately have the same size as the skyrmion, thus ψ0 ∼ e−(
√
Kz/ρs)ρ. By

rewriting 〈ψ0,Niψ0〉〈ψ0,Njψ0〉 into cylindrical coordinates and using the substitution ρ̃ =
√
Kz/ρs

we obtain an order of magnitude given by O(ρs/Kz). The lower bound on the mass in Eq. (4.62) will
thus be given by

O(M) > O(ρs(χ
3
0/K

5
z )1/4).

Using the definition of mass described in Ref. [9, p. 5] as the zero frequency limit of the damping
kernel, we obtain that the (AFM) skyrmion mass correction is given by

Mij(β) =
1

4

∑
n,n′

′Bn,n
′

ij

εm coth(βεm/2)− εn coth(βεn/2)

ε2m − ε2n
. (4.63)

Which is valid of one considers slow dynamics of the skyrmion and asymptotically large imaginary
times τ � ε−1

0 .

Conclusion

Considering sufficiently small temperatures and taking into account only the interaction between
skyrmions and spin waves up to second order, we obtain several mass renormalizations and a damping
kernel of order O((NA)0) described in Eq. (4.60). We thus obtain the following expression for the
effective action for a skyrmion interacting with spin waves.

Seff [R] =

∫ β

0

dτ

{
Meff

2
Ṙ2

}
+

∫ β

0

dτ

∫ β

0

dτ ′
{
Ṙi(τ)γij(τ − τ ′)Ṙj(τ ′)

}
, (4.64)

where
Meff ' NAM + ∆M. (4.65)

In the above NAM will be classical mass of an antiferromagnetic skyrmion described in Eq. (4.18),
which is of order O(NAχ0). Furthermore ∆M will gives a mass renormalization due to spin wave
interactions and is given by the total of Eqs. (4.44) and (4.49) which is of order O((NA)0). Using the
magnon gap as a lower bound on the magnitude of the mass we obtain

O(∆M) > O((χ3
0/Kz)

1/4).

If we would consider the dynamics of the skyrmion to be much slower than the relaxation time of the
damping kernel and the temperature small enough such that β � ε0. Than the damping kernel will

3We are able to distinct between two types of eigenstates of G; breathing modes and scattering states. Breathing
modes locally deform the skyrmion and have an eigenenergies which are lower than the magnon gap. Scattering states
exist for energies above the magnon gap.
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reduce to a pure mass renormalization given by Eqs. (4.62) and (4.63). Thus when considering slow
dynamics and low temperatures the action in Eq. (4.64) will thus reduce to

Seff [R] =
Meff

2

∫ β

0

dτṘ2, (4.66)

where

Meff =NAM + ∆M +M. (4.67)

With the lower bound on mass O(M) given by

O(M) > O(ρs(χ
3
0/K

5
z )1/4).

4.2.2 Skyrmion dynamics for small magnetic fields

In this section we consider h
√
χ0 � 1, thus we start with a small magnetic field being present. The

action we begin with is given by SE = Scl +Sfl +SI , with the operators defined in Eqs. (4.25), (4.28)
and (4.29)

G = −χ0

2

{
∂2
τ + 2iH̃L∂τ

}
+H

J =
χ0

4

{
ṘβṘγJβγ + 2iṘβH̃Nβ

}
,

K =
χ0

2

{
ṘβṘγ (Γβγ + Tβ∂γ − ∂β∂γ)

+ Ṙβ
[
(2∂β∂τ −Tβ∂τ ) + 2iH̃ (Mβ + L∂β)

]}
.

We define h2 =
1

2
χ0H̃

2, S̃ = χ0

2 , Aβ = (Mβ + L∂β), Pβγ = Γβγ+Tβ∂γ−∂β∂γ , Nβ∂τ = (2∂β −Tβ) ∂τ

and Wβ = (Mβ + L∂β). Note that all of the above operators are hermitian by construction, for the
product we defined in Eq. (4.24). The action will be given by

Scl = NAS
2

{
1

2
MṘ2 − iαεijRiṘj

}
,

Sfl = NA η
ᵀ · Gη

SI = NA (ηᵀ · Kη + J · η) ,

(4.68)

where M and α are defined in Eqs. (4.18) and (4.19). Since we are considering magnetic fields below
the spin flop field in this section, we are dealing with skyrmions, which implies that α = 0 and thus
there is no Magnus force working on the skyrmion. Again we must not take the zero-modes into
account because translations are already described by R. We use the Faddeev-Popov technique to
promote R to a dynamic variable

Z[R] =

∫
DR e−Scl[R]F [R],

F [R] =

∫
Dη δ(Q1[R])δ(Q2[R]) det

(
δQ

δR

)
e−NA{η

ᵀ·[G+K]η+J ᵀ·η+ηᵀ·J }.

(4.69)
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Since we’re only looking up to second order in {ν, φ} and Ṙ, it is sufficient to shift η by ρ̃ = (G+K)−1J
to complete the square [9],

η̃ = η + ρ̃,

ηᵀ · [G +K] η + J ᵀ · η + ηᵀ · J = η̃ᵀ · [G +K] η̃ − J ᵀ · (G +K)−1J +O(Ṙ3).
(4.70)

With η defined in Eq. (4.70) the partition function in Eq. (4.69) reduces to

F [R] =

∫
Dη δ(Q1[R])δ(Q2[R]) det

(
δQ

δR

)
e−Ie−NA{η̃

ᵀ·[G+K]η̃}

= e−I
1

det′[NA(G +K)]
.

(4.71)

In the above the prime on the determinant denotes the omission of the zero-modes; additionally we
defined

I = −NAJ ᵀ · (G +K)−1J ≈ −NAJ ᵀ · G−1J . (4.72)

Similar to Eq. (4.44) the determinant in Eq. (4.71) gives rise to a pure mass re-normalization of order
O((NA)0) and a topological phase proportional to Ṙ and h which is also of order O((NA)0)

det

(
δQ

δR

)
∝ exp

{
tr ln

(
1− Y0√

NA

∫
(∂jσ

ᵀ
i )η̂ + Y0

∫
(∂jσ

ᵀ
i )ρ̃

)}
, (4.73)

where we used the transformation η̂ =
√
NAη̃. To evaluate the determinant in Eq. (4.71) we again

make use of the identity ln det = tr ln and expand the logarithm

1√
det′(G +K)

' 1√
det′(G)

e−(1/2) tr′[G−1K−(1/2)(G−1K)2+O(Ṙ3)]. (4.74)

Like in Section 4.2.1 we want to evaluate the trace in Eq. (4.74) in the basis of eigenfunctions of G. To
find the eigenfunctions of G we make use of first order perturbation theory with respect to L(−i∂τ )
for small κ =

√
2χ0h = χ0H̃. The zeroth order term in the eigenvalue and eigenstates are still given

by Eq. (4.47), up to first order in κ the eigenstates and eigenvalues of G in Eq. (4.25) are given by

G = G′ + κL(−i∂τ ),

ε̃n,ω = ε̃0n,ω + κε̃(1)
n,ω +O(κ2),

ψ̃n,ω = ψ̃0
n,ω + κψ̃(1)

n,ω +O(κ2),

where ε̃0n,ω and ψ̃0
n,ω are given by Eq. (4.47). It follows that Ref. [22, p.452,p.464],

ε̃(1)
n,ω = −i 〈n|L |n〉 〈ω| ∂τ |ω〉 = ω〈ψn,Lψn〉 = ωλn,n = 0, (4.75)

ψ̃(1)
n,ω =

∑
{n′,ω′}6={n,ω}

|n′〉|ω′〉−i〈n
′|L|n〉〈ω′|∂τ |ω〉
ε0n,ω − ε0n′,ω′

=
∑
n′ 6=n

|n′〉|ω〉ω〈n
′|L|n〉

ε0n − ε0n′
= ω

∑
n′ 6=n

λn′,n
ε0n − ε0n′

|n′〉

 |ω〉,
(4.76)

ε̃(2)
n,ω = ω2

∑
n′ 6=n

|〈n′|L|n〉|2

ε0n − ε0n′
= ω2

∑
n′ 6=n

|λn′,n|2

ε0n − ε0n′
. (4.77)

In the previous equations we defined λn,m = 〈ψ0
n,Lψ

0
m〉. In the case that 4.47 has degeneracies, one

must take the basis
{
ψ0
n,ω

}
such that L∂τ is diagonal in the degenerate subspace, such that Eq. (4.76)

does not blow up in that case.
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Using the first order corrections for the eigenvalues and eigenfunctions of G given by Eqs. (4.75)
and (4.76) the first order term in Eq. (4.74) is obtained up to first order in κ,4

1

2
tr′ G−1K ≈ − 1

2β

∑
ω,n

′
∫
dτ

〈ψn,Kψn〉
S̃ω2 + κ2ε̃

(2)
m + εn

=
1

2β

∫
dτ
∑
ω,n

′ 1

ω2 + ε̂2n

{
ṘβṘγ〈ψ0

n,Pβγψ0
n〉 − iṘβω〈ψ0

n,Nβψ0
n〉 − i(κ/S̃)Ṙβ〈ψ0

n,Aβψ0
n〉

+ κṘβṘγ
(
ω〈ψ(1)

n ,Pβγψ0
n〉+ c.c

)
+ iκṘβ

(
ω2〈ψ(1)

n ,Nβψ0
n〉+ c.c.

)}
+O(κ2)

≈
∫ β

0

dτ

{
∆M̃Ṙ2 + iκ

∫ β

0

dτ υβhṘβ

}
+O(κ2).

(4.78)

In Eq. (4.78) we obtained the same pure mass renormalization as we obtained in Eq. (4.52). This
pure mass renormalization is independent on the magnetic field and the order of magnitude of the
mass renormalization is O((NA)0). We also obtain a topological phase of order O((NA)0) that couples
linearly to the external magnetic field. Note that this topological phase drops if one considers periodic
boundary conditions, additionally it does not contribute to the classical equations of motion. If we
would expand Eq. (4.78) up to second order in κ, we would obtain another mass renormalization of
order O((NA)0) which couples quadratically to the magnetic field.

Since we consider a non-zero magnetic field J possesses a term which is linear in Ṙ, this implies
that I defined in Eq. (4.72) is non-vanishing which is entirely due to coupling with the magnetic field.
The contribution of I Eq. (4.72) up to second order in κ is given by

I ≈ −NAJ ᵀ · G−1J

= −κ2NA

∫ β

0

dτ

∫ β

0

dτ ′ Rβ(τ)Rγ(τ ′)

∫
dx

∫
dx′ Nᵀ

β(x)G′−1(x,x′, τ, τ ′)Nγ(x′) +O(Ṙ3, κ3)

= κ2NA
β

∫ β

0

dτ

∫ β

0

dτ ′ Ṙβ(τ)Ṙγ(τ ′)
∑
ω,n

〈Nβ , ψ
0
n〉〈ψ0

n,Nγ〉
S̃ω2 + εn

eiω(τ−τ ′)

=

∫ β

0

dτ

∫ β

0

dσ Ṙi(τ)γ0
ij(τ − σ)Ṙj(σ).

(4.79)

In the preceding equation we used G−1 = G′−1 + O(κ), where G′, given by Eq. (4.30) describes the
static interaction without the presence of a magnetic field. The sum over the Matsubara frequencies
in Eq. (4.79) can be evaluated explicitly using Eq. (4.50) to yield

γ0
ij(τ) =

1

β

∑
ω,n

Dnijeiωτ

ω2 + ε̂2n

=
∑
n

Dnij
2ε̂n

cosh(ε̂n(|τ | − β/2))

sinh(βε̂n/2)

β→∞−−−−→
∑
n

Dnij
2ε̂n

e−ε̂n|τ |.

(4.80)

Where we defined

Dnij =
κ2NA

S̃
〈Ni, ψ

0
n〉〈ψ0

n,Nj〉. (4.81)

4We omit terms which are antisymmetric in ω.
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Note that in Eqs. (4.79) and (4.80) we did not explicitly take the omission of the zero-modes into
account, since Nβ is already orthogonal to the zero modes. Thus Eq. (4.79) gives rise to a damping
kernel of order O((NA)1) which is quadratically coupled to the magnetic field. If the dynamics of R is
slow compared to the relaxation time of the damping kernel and the temperature is sufficiently small
s.t. β � ε̂−1

0 , then the damping kernel (4.60) reduces to a pure mass normalization∫ β

0

dτ

∫ β

0

dτ ′Ṙi(τ)γ0
ij(τ − τ ′)Ṙj(τ ′)

β→∞
≈

∫ β

0

dτ Ṙi(τ)
M0

2
Ṙj(τ).

(4.82)

Where we defined the mass tensor as follows

M0
ij ≡

∑
n

′D
n
ij

ε̂n

∫ ∞
−∞

dµ e−ε̂n|µ|

= 2
∑
n

′D
n
ij

ε̂2n
'

2D0
ij

ε̂20
.

(4.83)

If we would use the definition of mass described in Ref. [9, p. 5] as the zero frequency limit of the
damping kernel, we would exactly obtain the result given in Eq. (4.82).

Since the lowest eigenenergy of G is smaller than the magnon gap we are able find a lower bound on
the order of magnitude ofM0 in Eq. (4.83). To determine the order of magnitude of 〈Ni, ψ

0
n〉〈ψ0

n,Nj〉
we assume that the low energy eigenstates of G approximately have the same size as the skyrmion,

thus ψ0
0 ∼ e−(

√
Kz/ρs)ρ. By rewriting 〈Ni, ψ

0
n〉〈ψ0

n,Nj〉 into cylindrical coordinates and using the

substitution ρ̃ =
√
Kz/ρs we obtain an order of magnitude given by O(ρs/Kz). From Ref. [21] it

follows that magnon gap has order of magnitude O(
√
Kz/χ0) in the absence of a magnetic field.

Using the preceding we are able to see that

O(M0) > O(NA(ρs/Kz)h
2χ0/εgap) = O(NAH̃

2χ2
0

√
χ0ρ2

s/K
3
z ) (4.84)

gives a lower bound on the order of magnitude of the mass correction due to the magnetic field.
From Section 4.2.1 we know that the second order term in the logarithm expansion Eq. (4.74) gives

rise to a damping kernel. We will now again calculate the second order term in Eq. (4.74) up to O(Ṙ2)
for small magnetic fields; up to first order in κ we obtain

1

4
tr′(G−1K)2 =

∑
ω,n,ω′,n′

′ 〈ψn,ω|K|ψn′,ω′〉〈ψn′,ω′ |K|ψn,ω〉
(S̃ω2 + εn − κωλn,n)(S̃ω′2 + εn′ − κωλn′,n′)

+O(κ2)

=

∫ β

0

dτ

∫ β

0

dτ ′ Ṙi(τ)Ṙj(τ
′)∑

ω,n,ω′,n′

′
[

1

ω2 + ε̂2n

] [
1

ω′2 + ε̂2n′

]{
〈ψ0
n,ω + κψ(1)

n,ω, (Ni∂τ − i(κ/S̃)Wi)ψ
0
n′,ω′ + κψ

(1)
n′,ω′〉

〈ψ0
n′,ω′ + κψ

(1)
n′,ω′ , (Nj∂τ − i(κ/S̃)Wj)ψ

0
n,ω + κψ(1)

n,ω〉
}

+O(κ2).

(4.85)
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The zeroth order in κ will just give Eq. (4.60), the first order in κ will give

(κ/S̃)

∫ β

0

dτ

∫ β

0

dτ ′ Ṙi(τ)Ṙj(τ
′)

1

β2

∑
ω,n,ω′,n′

′

{
− i

(
ωRnn′ij

(ω2 + ε̂2n)(ω′2 + ε̂′2n )
ei(ω−ω

′)(τ−τ ′) + c.c.

)

− S̃

(
ω2ω′Ynn′ij

(ω2 + ε̂2n)(ω′2 + ε̂′2n )
ei(ω−ω

′)(τ−τ ′) + c.c.

)}
.

(4.86)

In the preceding equation c.c. stands for complex conjugate. We also defined the following tensors

Rnn
′

ij = 〈ψ0
n,Wiψ

0
n′〉〈ψ0

n,Njψ0
n′〉+ 〈ψ0

n,Niψ0
n′〉〈ψ0

n′ ,Wjψ
0
n〉, (4.87)

Ynn
′

ij = 〈ψ(1)
n ,Niψ0

n′〉〈ψ0
n′ ,Njψ0

n〉+ 〈ψ0
n,Niψ

(1)
n′ 〉〈ψ

0
n′ ,Njψ0

n〉

+ 〈ψ0
n,Niψ0

n′〉〈ψ
(1)
n′ ,Njψ

0
n〉+ 〈ψ0

n,Niψ0
n′〉〈ψ0

n′ ,Njψ(1)
n 〉.

(4.88)

Using Eq. (4.50) one is able to perform the sums over ω and ω′. All the terms in Eq. (4.86) give zero
as a result. Second order terms in κ will give non-vanishing contributions to the damping kernel which
are of order O((NA)0) and thus small compared to the damping kernel found in Eq. (4.80).

Conclusion

We used perturbation theory to calculate the mass correction and the damping kernel for small mag-
netic fields h. In Eq. (4.80) we found a damping term of order O((NA)1) which is proportional to
κ2. From Eq. (4.85) one is able to see that there are also other non-zero damping terms which couple
quadratically to the magnetic field. We did not explicitly calculate this contribution since it will be
of order O((NA)0) and thus small compared to the damping kernel described in Eq. (4.80). We also
found topological terms in Eq. (4.78) which are of first order for κ. If one would consider periodic
boundary conditions in time these topological terms will vanish, they will also not contribute to the
semi-classical equations of motion. In principle these topological terms may depend on the winding
number of the skyrmions, if this is the case then they are important for interference effects in tunnelling
processes where the skyrmion is in a superposition between different winding numbers and these topo-
logical terms may not be neglected. If we consider a skyrmion with a definite winding number, no
interference will occur and this topological term will just give a complex phase. The action describing
the effective dynamics of the skyrmion is given by

Seff [R] ≈
∫ β

0

dτ

{
Meff

2
Ṙ2 + iκυhṘ

}
+

∫ β

0

dτ

∫ β

0

dτ ′
{
Ṙi(τ)

[
γ′ij(τ − τ ′) + κ2γhij(τ − τ ′)

]
Ṙj(τ

′)
}
,

(4.89)

where γ′ij is given by Eqs. (4.60) and (4.85) and describes the damping due to spin waves when no

magnetic field is present where the order of magnitude of γ′ij is O((NA)0). The part of the damping

kernel that is dependent on the magnetic field is described by γhij which is approximately given by γ0
ij

in Eq. (4.80). The order of magnitude of γ0
ij is O((NA)1) and thus becomes dominant for sufficiently

large magnetic fields.
If the dynamics of the skyrmion is much slower then the relaxation time of the damping kernel and

the temperature is sufficiently low β � ε0, then the damping kernels in Eq. (4.89) will reduce to pure
mass renormalizations

Seff [R] ≈
∫ β

0

dτ

{
Meff

2
Ṙ2 + iκαṘ

}
. (4.90)
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With

Meff =NAM + ∆M +M+ (M0 + ∆M0)

β→∞
≈ (NAM + ∆M +M) +M0.

(4.91)

The first three terms are independent of the magnetic field and are thus described in Section 4.2.1. The
last two terms in Eq. (4.91) give an effective mass renormalization which depends on the square of the
magnetic field. We defined M0 in Eq. (4.83), which is of order O((NA)1) while ∆M0 has magnitude
O((NA)0). In the zero temperature limit ∆M0 will be negligibly small compared to M0. We found
that the order of magnitude of the mass M0 is bounded by Eq. (4.84),

O(M0) > O(NA(ρs/Kz)h
2χ0/εgap) = O(NAH̃

2χ2
0

√
χ0ρ2

s/K
3
z ).

In practice a periodic potential V0(R) for the skyrmions may arise. This potential may come from
different phenomena like the discrete structure of the crystal. Other effects like currents can be taken
care of by considering an effective potential Veff (R) for the skyrmion. For low temperatures and slow
dynamics of skyrmions the action for a skyrmion may thus be described by

Seff [R] ≈
∫ β

0

dτ

{
Meff

2
Ṙ2 + iκυṘ+ Veff (R)

}
. (4.92)
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4.3 Vortices in antiferromagnets

In Section 3.2 we discussed that an antiferromagnet has a spin flop field h0. If the magnetic field
is below the spin-flop field, skyrmion configurations arise. Above the spin flop field vortices arise
(see Fig. 3.7). Like skyrmions these vortices are topologically protected structures, but their boundary
conditions are different (θ0(0) = π and θ0(∞) = π/2). From Eqs. (4.17) and (4.19) in Section 4.1
we see that a vortex solution within an antiferromagnet feels a Magnus force. Thus in our model the
dynamics of an antiferromagnetic vortex is fundamentally different from the dynamics of an antiferro-
magnetic skyrmion. In Section 3.2 we found that spin flop field for our system is given by h0 =

√
Kz.

If the anisotropy Kz is small and we consider magnetic fields which are comparable to spin flop field, we
are able to describe the dynamics of these vortices using the methods we developed in Section 4.2.2. If
we consider large magnetic fields and large anisotropies, the perturbative methods used in Section 4.2.2
breaks down. In Appendix D we will discuss the dynamics of skyrmions and vortices for large magnetic
fields without explicitly performing the calculations.

4.3.1 Dynamics of vortices for small spin-flop fields

In this section we describe the effective dynamics of a vortex with spin wave interactions. We consider
a small spin-flop field (thus weak anisotropy) and consider the magnetic field to be comparable to
this spin-flop field. The operators G,J and K are described by Eqs. (4.25), (4.27) and (4.29) where
the skyrmion configuration θ0 is now replaced by the vortex configuration. The entire discussing done
in Section 4.2.2, will remain valid since we’re still considering small magnetic fields and without further
calculation we can give the action for a vortex in an antiferromagnetic insulator with a weak anisotropy.
Considering small magnetic fields we obtain

Seff [R] ≈
∫ β

0

dτ

{
Meff

2
Ṙ2 + iαεijR

iṘj + iκυhṘ

}
+

∫ β

0

dτ

∫ β

0

dτ ′
{
Ṙi(τ)

[
γ′ij(τ − τ ′) + κ2γhij(τ − τ ′)

]
Ṙj(τ

′)
}
,

(4.93)

where α = −2πNAH̃χ0 and Meff = NAMcl + ∆M ; here ∆M has order of magnitude O((NA)0).
Similar to the conclusion in Section 4.2.2 we see that γ′ is of order O((NA)0) and γh is approximately
given by γ0 in Eq. (4.80) which is of order O((NA)1) and will thus become the dominant damping for
sufficiently large magnetic fields.

If the dynamics of the vortex is slow compared to the damping kernel and the temperature is
sufficiently low β � ε−1

0 , then the damping kernels in Eq. (4.93) reduce to pure mass renormalizations.
In these limits we obtain the following effective action which describes the dynamics of the vortex

Seff [R] ≈
∫ β

0

dτ

{
Meff

2
Ṙ2 + iαεijR

iṘj + iκυhṘ

}
, (4.94)

where

Meff =NAMcl + ∆M +M+ (M0 + ∆M0)

β→∞
≈ (NAMcl + ∆M +M) +M0.

(4.95)

The first three terms are independent of the magnetic field and give the classical mass of orderO(NAχ0)
plus mass corrections of order O((NA)0) due to spin wave interactions which are independent of the
magnetic field. FurthermoreM0 gives a mass correction of order O((NA)1) which is quadratically cou-
pled to the magnetic field. We obtained a lower bound on the order of magnitude ofM0 in Eq. (4.84),

O(M0) > O(NA(ρs/Kz)h
2χ0/εgap) = O(NAH̃

2χ2
0

√
χ0ρ2

s/K
3
z ).
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In reality there might be effects that appear on the length scale of the skyrmion, e.g. spin currents,
electrical currents and impurities. We consider include these effects by considering an effective potential
for the skyrmion Veff (R), we thus obtain the following action for the dynamics of a vortex in a low
magnetic field

Seff [R] ≈
∫ β

0

dτ

{
Meff

2
Ṙ2 + iαεijR

iṘj + iκυhṘ+ Veff (R)

}
. (4.96)
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4.4 Second order expansion of the free energy

In this section we determine the second order expansion of F [n̂] in Eq. (4.1) w.r.t. η around skyrmion
and vortex configurations. Since skyrmion and vortex configurations are local minima of F [n̂], the first
order functional derivative in η equals 0. The zeroth order term will just give a energy E0, which is
not interesting for our purposes since we assume the skyrmion is already present and not thermally

created. So we are interested in calculating what H = δ2F
δη†η

∣∣∣
ηᵀ=η=0

in Eq. (4.26) is.

We start from Eq. (4.1)

F [n̂] = NA

∫ β

0

dτ

∫
Λ

dx

ρs2 ∑
l=x,y

|∂ln̂|2 +
D

2

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
−Kzn̂

2
z +

1

2
χ0

(
H̃ · n̂(x)

)2

 ,

and take H̃ to be in the ẑ-direction. From Appendix C.2 it follows that the exchange interaction
becomes,∫ β

0

dτ

∫
Λ

dx

{
− ν∇2ν − ϕ∇2ϕ+ ϕ

(
cot(θ0)

ρ
(∂ρθ0)− (∂ρθ0)2 + cot(θ0)(∂2

ρθ0)

)
ϕ

− ν 4 cos(θ0)

ρ2
(∂φϕ) + ν

cos(2θ0)

ρ2
ν

}
.

(4.97)

Where the Dzyloshinskii Moriya interaction reduces to,∫ β

0

dτ

∫
Λ

dx±
{
− ϕ (∂ρθ0)

2 sin2(θ0)
ϕ− ϕ 1

sin(θ0)ρ
(∂φν)− ν sin(2θ0)

ρ
ν − ϕcot(θ0)

2ρ
ϕ

− ν cos(2θ0)

sin(θ0)ρ
(∂φϕ)− 2ϕ cot(θ0)(∂ρϕ) + 2ϕ cot2(θ0)(∂ρθ0)ϕ

}
.

(4.98)

The anisotropy and the magnetic field terms will be given by,

−
∫ β

0

∫
Λ

dx {ν cos(2θ)ν} . (4.99)

Now F ' E0 + η† · Hη +O(η3), where

H = −(ρs/2)∇2 + U(ρ) + V (ρ)∂φ. (4.100)

The potential terms U(ρ) and V (ρ) are defined by

U(ρ) = (ρs/2)

{
cos(2θ0)

ρ2

(
1 0
0 0

)
+

(
cot(θ0)

ρ
(∂ρθ0)− (∂ρθ0)2 + cot(θ0)(∂2

ρθ0)

)(
0 0
0 1

)}
− (D/2)

{
cot(θ0)

2ρ

(
1 0
0 0

)
+

(
3(∂ρθ0)

2 sin2(θ0)
− cot(θ0)

2ρ
+ 2 cot2(θ0)(∂ρθ0)

)(
0 0
0 1

)}
+
(χ0

2
H̃2 −Kz

)(1 0
0 0

) (4.101)

and

V (ρ) =

[
−ρs

{
cos(θ0)

ρ2

}
+D/2

{
sin(θ0)

ρ

}](
0 1
−1 0

)
. (4.102)



Chapter 5

Conclusion, discussion and outlook

5.1 Conclusion

In this thesis we gave a quantum mechanical treatment for skyrmions in antiferromagnetic thin-films.
We restricted ourself to spin degrees of freedom and neglected interactions of the magnetization with
e.g. phonons. This is valid if one considers low temperatures. In Section 3.1 we assumed long
wavelengths for n̂ and m. By integrating out the magnetization in action Eq. (3.30) we were able
to derive the action given in Eq. (3.33) which is only dependent on the Néel field n̂. In Chapter 4
we used the Faddeev-Popov technique for collective phenomena, to derive the quantum dynamics of
antiferromagnetic skyrmions. In Section 4.1 we expanded spin wave fluctuations around the skyrmions
up to second order. We derived that antiferromagnetic skyrmions have a classical mass and feel no
Magnus force, which is in agreement with Ref. [10]. This result differs from ferromagnetic skyrmions,
which feel a Magnus force and have no classical mass [9]. In Section 4.2.1 we calculated the damping
on skyrmions due to interaction with spin waves without a magnetic field. We found that skyrmions
experience drag because of interaction with spin waves and also obtain some mass renormalization.
The mass renormalization is of order O((NA)0) and mainly depends on the lowest eigenenergy of G
(the static interaction between a skyrmion and spin waves), the classical mass on the other hand is of
order O((NA)1). If the dynamics of the skyrmion is slow and temperatures are low, we see that this
damping reduces to an additional mass renormalization of order O((NA)0) and the lower bound we
gave on this mass is small compared to the classical mass. In Section 4.2.2 we considered the magnetic
field as a small perturbation. We found that the mass of antiferromagnetic skyrmions obtains an
additional damping of order O((NA)1) which couples quadratically to the external magnetic field. For
slow dynamics of the skyrmion and low temperatures this damping kernel reduces to an additional
mass of order O(H̃2NA). In Section 4.3 we looked at vortices for small spin-flop fields and treated
the magnetic field as a small perturbation. In Section 4.1 we found that antiferromagnetic vortices
have a classical mass of order O(χ0NA) and feel a Magnus force of magnitude O(NAχ0H̃). We also
see that a vortex in an antiferromagnet insulator with a small anisotropy and external field obtains a
mass renormalization independent of the magnetic field of order O((NA)0). Additionally we find that
a vortex feels a drag due to spin wave interactions which can be split in two parts, a part which is
independent of the magnetic field of magnitude O((NA)0) and a part which couples quadratically to the
magnetic field of orderO((NA)1). For slow dynamics of the vortex and low temperatures these damping
kernels reduce to mass correction of order O((NA)0) and O(H̃2NA) respectively. In Appendix D we
briefly discuss the dynamics of skyrmions and vortices for large magnetic fields. Using the methods
described by Ref. [9] and the fact that Nβ in Eq. (4.15) is orthogonal to the zero-modes, we expect
slow dynamics of the skyrmions and vortices and sufficiently low temperatures that the mass correction
obtained due to interaction with spin waves is of the order O(H̃2NA). We expect this mass correction
to be larger than the classical mass of the skyrmions and vortices.

39
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5.2 Discussion and Outlook

We started with the Hamiltonian in Eq. (3.16) for thin-film antiferromagnets and rewrote this into
an effective two-dimensional model, where we assume translational invariance in the ẑ-direction. For
thin-films this turns out to be a proper approximation.

In this thesis we only took into account the spin degrees of freedom, while neglecting other effects
like spin phonon interactions and movement of electrons. These effect’s are assumed to be negligibly
small or absent for low enough temperatures.

To obtain an action which only depends on the Néel vector we used Haldane’s mapping to give the
magnetization direction at each point in terms of the Néel vector and the total magnetization. We
assumed the total magnetization to be small and expanded the euclidean action up to second order in
m Eq. (3.30), which is a valid assumption if the energy scale of the exchange interaction is much larger
than the energy scale of a spin in a magnetic field. We also used the large wavelength approximation,
which is valid in the low temperature limit.

In Section 3.1 we left out the homogeneous Dzyaloshinskii Moriya interaction, this term is negligible
or can be added by changing the magnetic field. This could possibly also change the direction of the
magnetic field and we can thus not consider it to be fully in the ẑ-direction. Future work could redo
integration (3.31) while also taking into account the first order terms of the Dzyaloshinskii-Moriya
interaction in m.

Because we work in the low temperature limit we assume the spin wave fluctuations around
skyrmions to be small. We thus expanded up to second order in {φ, ν} and assumed higher order
terms are negligible in this limit.

In Section 4.2.2 we neglected some the second order damping terms in κ of order O((NA)0), which
would appear in Eqs. (4.78) and (4.85) of we expand them up to second order in κ. The reason is that
they are small compared to Eq. (4.80) which is also of second order in κ and has order of magnitude
O((NA)1). In the low temperature limit the damping kernel in Eqs. (4.78) and (4.85) will be negligible
compared to Eq. (4.80).

A possible way to measure our predictions is through magnetic resonance Ref. [23]. The eigenfre-
quencies of a skyrmion with respect to a fluctuating magnetic field should depend on the mass of the
skyrmion. So one could measure our predictions by measuring the magnetic excitation spectrum of an
antiferromagnetic skyrmion.

In future work, it would be useful to determine the eigenvalues and eigenfunctions of H Eq. (4.100),
so one is able to explicitly calculate the mass corrections and damping kernel obtained through inter-
action with spin waves. Especially the eigenvalues of the breathing modes are important, since those
contribute most to the damping and mass renormalizations of the skyrmion. The work of Ref. [24]
already determined the eigenspectrum of H for ferromagnetic skyrmions, similar methods can be used
to determine the eigenvalues and eigenvectors for H in the antiferromagnet case. Instead of looking at
fluctuations {ν̃, φ̃}, they worked with spinors χ and χ† defined by

χ =
1

2

(
φ̃ sin(θ0) + iν̃/ sin(θ0)

φ̃ sin(θ0)− iν̃/ sin(θ0)

)
=

(
φ+ iν
φ− iν

)
. (5.1)

To use Ref. [24] it could be useful to rewrite Eq. (4.15) into spinor form.
One could use the methods described in Ref. [9] to look at the mass of a vortex (see Fig. 3.7).

Since we found that Nβ in Eq. (4.15) is orthogonal to the zero-modes we expect to find that a vortex

obtains an additional mass contribution of the order O(H̃2NA) due to interactions with spin waves.
In Appendix D we already discussed some of the implications, but did not explicitly calculate the
damping kernel.

In this thesis we assumed the magnetic field and the anisotropy to point in the same direction, in
future research one could look at the dynamics when both are not pointing in the same direction. For
instance anisotropy in the ẑ-direction and magnetic field in the x̂-direction.
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One could next start from an effective action in Chapter 4 and then consider a periodic potential
for the skyrmion position with period d, e.g.

V (R) = V0

[
1− cos

(
2πRx
d

)][
1− cos

(
2πRy
d

)]
.

After this one is able to obtain an expression for tunnelling probabilities for skyrmions and look at
interference effects due to topological terms. Calculating the transition amplitudes would for instance
be interesting, one could calculate how likely tunnelling of a skyrmion for a large potential is. One
might continue to find the dispersion relations for skyrmions in weak and strong potentials, using
methods described by Ref. [3].

In Section 4.2.2 we neglected the topological phases in the action that did arise from the coupling
with the magnetic field. Though these terms are not important for classical movement of the skyrmion
they might important for describing interference effects. If these topological phases are dependent on
the winding number of the skyrmion, interference effects may occur. One could study if interference
between skyrmions or vortices is possible.

One could also look at dynamic skyrmion skyrmion interactions in the presence of spin waves.
Two different situations may seem interesting; interactions between skyrmions with the same winding
number and interactions between skyrmions with different winding numbers, e.g. n = 1 and n = −1.



Appendix A

Topological structures within a
magnet

In this section we will be talking about topological properties of skyrmions and domain walls. We start
with a general discussion of homotopies and homotopy groups Ref.[25]. This mathematical formalism
will then be used to give a formal expression of skyrmions and domain walls. This chapter is meant
as background knowledge and will not be required for the other chapters. For more details we refer the
reader to Ref.[26].

A.1 Defining the topology of the magnet

First we assume that the the magnetic material we look at is very thin and the Hamiltonian is trans-
lational invariant in the ẑ-direction. So the space we describe is effectively 2-dimensional. We start
with the map (Ω : R2 → S2) which assigns a magnetic moment to each position in the magnet. The
purpose of this chapter is assign ”some kind of structure” to the space of all continuous functions Ω.
Now we will also assume that Ω({∞}) = (0, 0, 1), this basically means that all the spins want to point
in the same direction at {∞}. We will add the point ∞ to R2, which means that we will now be
looking at the the one point compactification of R2 which is S2.
So we describe the maps Ω : S2 → S2.

A.2 Homotopy

Let X,Y be two topological spaces and f, g : X → Y continuous maps. Now these two maps are
called homotopic if there exists a continuous function H : X × [0, 1] → Y from the product space
X × [0, 1] to Y , such that, H(X, , 0) = f(x) and H(x, 1) = g(x) for x ∈ X. From Ref.[25] it follows
that the homotopy relation defines an equivalence relation. From now one could say iff two functions
are homotopic then they are in the same homotopy class. We denote the homotopy class of a function
f by [f ].

A.2.1 Homotopy group

In this section I will shortly explain what a homotopy group is. The nth homotopy group of Y
(πn(Y )) is the group of homotopy equivalence classes of the functions f : Sn → Y (with n ≥ 1). Let
f, g : Sn → Y then the group operation will be given by

(f + g)(t1, ..., tn) =

{
f(2t1, .., tn) ti ∈ [0, 1/2]
g(2t1, .., tn) ti ∈ [1/2, 1].

42
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Now for the purpose of this thesis we are interested in two homotopy groups namely: π2(S2) and
π1(S1). One is able to find that πn(Sn) = Z. Where n ∈ Z boils down to the number of times you
wind Sn around itself. For the 2-dimensional case the winding number can be given by Ref.[, citatie
nodig]

n =
1

4π

∫
Ω ·
(
∂Ω

∂x
× ∂Ω

∂y

)
dxdy. (A.1)

A.3 Skyrmions and domain walls

In the case we discussed in the introduction we wanted to give ”a structure” to the space of all
continuous maps Ω : S2 → S2. We are now able to do this by looking at all the homotopy classes of
this space and thus calculating the homotopy group. In A.2.1 we found that π2(S2) = Z, this means
that structures with winding numbers n 6= m can not be continuously deformed into one another. One
is able to see this, because different winding numbers imply different homotopy classes.

A.3.1 Definition of a Skyrmion

Ferromagnetic Skyrmion

A single Skyrmion is defined as the lowest energy state with winding number n = 1 or -1. We assume
our system is large and lattice spacing is small compared to a skyrmion’s typical size. Classically
the spins all move continuously in time on a sphere. This means that it is not possible for a single
Skyrmion state to decay into a state with a different winding number classically. We thus call the
Skyrmion protected by topology.

There also exist higher order Skyrmion which are defined in a similar fashion. The nth order
Skyrmion is given by the lowest energy state with winding number n. In this definition the 0th order
Skyrmion would be the the vacuum and the −nth order Skyrmion will have the same static energy as
an nth order Skyrmion. Because the group-action we work with is additive, we can see that it is in
principle possible for an 2nd order Skyrmion to decay into two first order Skyrmions. In principle it
should also be possible to create a Skyrmion and a anti-Skyrmion (n = −1) in a vacuum.

Antiferromagnetic Skyrmion

As we will see in Section 3.1 in the large wavelength limit we get the equivalence relation n̂ ∼ −n̂ ∈ S2.
So a antiferromagnetic configuration in the large wavelength limit can be described by

n̂ : S2 → P2(R). (A.2)

Where P2(R) is called the projective space. From Ref.[25, Proposition 4.1] it follows that the second
homotopy group of P2(R) is given by Z, i.e. π2(P2(R)) = Z. The reason is that S2 covers P2(R) twice
and via Ref.[25, Proposition 4.1] it now follows that π2(P2(R)) ' π2(S2) = Z. Where ' is denoted as
an isomorphism, which can be given by q∗. Where q∗([f ]) = [qf ] and q is defined to be the quotient
map

q : S2 → P2(R).

Now the generator of the group π2(S2) will be mapped to a generator of π2(P2(R)) by q∗. Because q is
winding number conserving we are able to give a Skyrmion configuration in S2 and then use q to map
it to P2(R).

A.3.2 Domain walls

For domain walls we could do a similar talk. In order to have domain walls we must consider a 1-
dimensional magnet for which the magnetization can only point within a circle (S1). All the function
Ω : S2 → S2 can be characterized by the homotopy group Ω : S1 → S1. In a similar discussion as the
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skyrmionic case we would get that it would not be possible for domain walls to decay into states with
a different winding number.

A.4 Topological structures in practice

In practice the positions of the spins will not be uniform over S2, but they will be located on a lattice.
A skyrmion will be much larger than the lattice spacing, also the exchange interaction strength between
neighboring spins should be large. In this way one is able to approximate the lattice by S2. In practice
the interaction strength between neighboring spins will be finite. Thus there will be a finite energy
barrier protecting the skyrmion.

For the assumptions that we make, we use that the interaction energy between two spins quite high, in
real life there is always a finite energy associated with the creation and destruction of a skyrmion.



Appendix B

Calculations for effective action anti
ferromagnet

B.1 Cylindrical coordinates and the mass of a skyrmion

We start with the following coordinate transformation

{x, y, z} = {ρ cos(φ), ρ sin(φ), z} . (B.1)

From this we are able to derive

∂

∂x
=
∂ρ

∂x

∂

∂ρ
+
∂θ

∂x

∂

∂φ
= cos(φ)

∂

∂ρ
− 1

ρ
sin(φ)

∂

∂φ
,

∂

∂y
=
∂ρ

∂y

∂

∂ρ
+
∂φ

∂y

∂

∂φ
= sin(φ)

∂

∂ρ
+

1

ρ
cos(φ)

∂

∂φ
,

∂

∂z
=

∂

∂z

(B.2)

From Section 3.2 we know that a skyrmion configuration can be given by

n̂0 = sin[θ0] cos[φ0] ρ̂+ sin[θ0] sin[φ0] φ̂+ cos[θ0] ẑ.

While the solutions we found were of the hedgehog type, we find that φ0 ∈ {0, π} and θ0 is a function
of ρ only. Please note we are working in cylindrical coordinates, for Cartesian coordinates we get
φ0 = φ or φ+ π. From (B.2) we now find

∂n̂0

∂x
= cos(φ)

∂n̂0

∂ρ
+

1

ρ
sin(φ)

{
sin(θ0) sin(φ0)ρ̂− sin(θ0) cos(φ0)φ̂

}
∂n̂0

∂y
= sin(φ)

∂n̂0

∂ρ
− 1

ρ
cos(φ)

{
sin(θ0) sin(φ0)ρ̂− sin(θ0) cos(φ0)φ̂

} (B.3)

Because we know from chapter 3.2 that the skyrmion configuration is rotationally invariant. We
will look at the mass tensors
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From this it follows that

M̃xx = M̃yy =

∫ ∞
0

dρ

∫ 2π

0

dφ ρ (∂in̂0)
2

=∫ ∞
0

dρ

∫ 2π

0

dφ

{
cos2(φ)ρ (∂ρn̂0)

2
+

1

ρ
sin2(φ)

{
sin(θ0) sin(φ0)ρ̂− sin(θ0) cos(φ0)φ̂

}2
}

= π

∫ ∞
0

dρ

{
ρ (∂ρn̂0)

2
+

1

ρ

{
sin(θ0) sin(φ0)ρ̂− sin(θ0) cos(φ0)φ̂

}2
}

M̃xy = M̃yx = 0

(B.4)

We used the fact that ∂φ̂
∂φ = −ρ̂ and ∂ρ̂

∂φ = φ̂.

B.2 Magnus force and Berry phase term for antiferromagnetic
skyrmion

In this appendix we work out the Berry phase and the Magnus force for a antiferromagnetic skyrmion.
We use methods described by Ref. [13].

B.2.1 Magnus force

In Eq. (4.17) we obtained a Magnus which couples linearly to the magnetic field. In this section we
perform the calculation. We start from

S =

∫
dτdx (n̂0 × ∂τ n̂0)z =⇒ δS =

∫
dτdx δ(n̂0 × ∂τ n̂0)z

=

∫
dτdx δ

(
εijkn̂0,j

˙̂n0,k

)
P.I.
=

∫
dτdx εijk

(
δn̂0,j

˙̂n0,k − ˙̂n0,jδn̂0,k

)
.

(B.5)

Now we use

∂τ n̂0 = −(∂βn̂0)Ṙβ , (B.6)

δn̂0 = −(∂γn̂0)δRβ . (B.7)

It follows that

δS =

∫
dτdx ṘγδRβ {(∂βn̂0)× (∂γn̂0)− (∂γn̂0)× (∂βn̂0)}

=

∫
dτdx 2ṘγδRβ {(∂βn̂0)× (∂γn̂0)} .

(B.8)

This implies that the action must be given by

S →
∫

dτṘiRj
{∫

dx 2(∂in̂0 × ∂jn̂0)z
}

=

∫
dτεijR

iṘj
{∫ 2π

0

dφ

∫ ∞
0

dρ ∂ρ(sin
2(θ0))∂φφ0

}
=

∫
dτ
{
α̃εijR

iṘj
}
,

α̃ =

{∫ 2π

0

dφ

∫ ∞
0

dρ ∂ρ(sin
2(θ0))∂φφ0

}
.

(B.9)

Thus the above action corresponds gives a Magnus force to a collective phenomena.
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B.2.2 Berry phase

In this section we will discus why we are able to neglect the antiferromagnetic Berry phase in the large
wavelength limit. The Berry phase we consider is given by Eq. (3.13)

Υ[n̂] = S
∑
i

ηiω[n̂(xi)], (B.10)

Υ[n̂0 + δn̂] ≈ Υ[n̂0] +
δΥ[n̂]

δn̂0
δn̂. (B.11)

For Υ[n̂0] we use a similar method as used in Appendix B.2.1

δΥ[n̂0] = S
∑
i

ηi
δω[n̂(xi)]

δn̂0,i
δn̂0,i

→
∫
dτ

∫
dx δRβṘγη(x) (∂γn̂0 × ∂βn̂0) · n̂0

=⇒ Υ[n̂0] =

∫
dτRβṘγ

∫
dx η(x) (∂γn̂0 × ∂βn̂0) · n̂0.

(B.12)

Which gives rise to a negligibly small Magnus force, due to the fact that a skyrmion is much larger than
the spacing between lattice sites. The second term in Eq. (B.11) is negligible in the long wavelength
approximation, this can be seen by writing it out in momentum space.



Appendix C

Second order expansions of the
Berry phase and the Hamiltonian

C.1 Working out the kinetic term expansion

In the calculations below we used the following identity∫
dτdx ξd2

τξ =

∫
dτdx ξdτ

{
−∂βξṘβ + ∂τξ

}
≈
∫

dτdx ξ
{
ṘβṘγ∂β∂γ − 2Ṙβ∂β∂τ + ∂2

τ

}
ξ. (C.1)

We also used the following ∫
dτdx ξ̇2

0 =

∫
dτdx ∂βξ0∂γξ0Ṙ

βṘγ , (C.2)

where ξ0 is either θ0 or φ0.
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∫
dτdx |∂τ n̂|2 =

∫
dτdx

{
|∂τ n̂0|2

+
[
sin(2θ0)φ̇2

0 − 2θ̈0

]
ϑ− 2

[
sin(2θ0)θ̇0φ̇0 + sin2(θ0)φ̈0

]
ϕ̃

+ ϑ
(

cos(2θ0)φ̇2
0 − d2

τ

)
ϑ− ϕ̃

[
sin(2θ0)θ̇0dτ + sin2(θ0)d2

τ

]
ϕ̃+ ϑ

[
2 sin(2θ0)φ̇0dτ

]
ϕ̃

}
=

∫
dτdx

{
|∂τ n̂0|2

+
[
sin(2θ0)φ̇2

0 − 2θ̈0

](
−ν − 1

2 tan(θ0)
ν2

)
− 2

[
2 cos(θ0)θ̇0φ̇0 + sin(θ0)φ̈0

]
ϕ

+ ν
(

cos(2θ0)φ̇2
0 − d2

τ

)
ν − ϕ

sin(θ0)

[
sin(2θ0)θ̇0dτ + sin2(θ0)d2

τ

] ϕ

sin(θ0)

− ν
[
2 sin(2θ0)φ̇0dτ

] ϕ

sin(θ0)

}
=

∫
dτdx

{
|∂τ n̂0|2

+ ṘβṘγ
{

[sin(2θ0)(∂βφ0)(∂γφ0)0 − 2(∂β∂γθ0)]

(
−ν − 1

2 tan(θ0)
ν2

)
− 2 [2 cos(θ0)(∂βθ0)(∂γφ0) + sin(θ0)(∂β∂γφ0)]ϕ

}
+ ν

(
ṘβṘγ cos(2θ0)(∂βφ0)(∂γφ0)− ṘβṘγ∂β∂γ + 2Ṙβ∂β∂τ − ∂2

τ

)
ν

− ϕ
[
2 cot(θ0)θ̇0

(
dτ − cot(θ0)θ̇0

)
+

(
− cot(θ0)θ̇0dτ +

(
2

sin2(θ0)
− 1

)
θ̇2

0 − cot(θ0)θ̈0 + d2
τ

)]
ϕ

− ν

sin(θ0)

[
2 sin(2θ0)φ̇0

(
dτ − cot(θ0)θ̇0

)]
ϕ

}
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=

∫
dτdx

{
|∂τ n̂0|2

+ ṘβṘγ
{

[sin(2θ0)(∂βφ0)(∂γφ0)0 − 2(∂β∂γθ0)]

(
−ν − 1

2 tan(θ0)
ν2

)
− 2 [2 cos(θ0)(∂βθ0)(∂γφ0) + sin(θ0)(∂β∂γφ0)]ϕ

}
+ ν

(
ṘβṘγ cos(2θ0)(∂βφ0)(∂γφ0)− ṘβṘγ∂β∂γ + 2Ṙβ∂β∂τ − ∂2

τ

)
ν

− ϕ
[

cot(θ0)θ̇0dτ + θ̇2
0 − cot(θ0)θ̈0 + d2

τ

]
ϕ

− ν
[
4 cos(θ0)φ̇0

(
dτ − cot(θ0)θ̇0

)]
ϕ

}
=

∫
dτdx

{
|∂τ n̂0|2

+ ṘβṘγ
{

[sin(2θ0)(∂βφ0)(∂γφ0)0 − 2(∂β∂γθ0)]

(
−ν − 1

2 tan(θ0)
ν2

)
− 2 [2 cos(θ0)(∂βθ0)(∂γφ0) + sin(θ0)(∂β∂γφ0)]ϕ

}
+ ν

(
ṘβṘγ cos(2θ0)(∂βφ0)(∂γφ0)− ṘβṘγ∂β∂γ + 2Ṙβ∂β∂τ − ∂2

τ

)
ν

− ϕ
[
Ṙβ cot(θ0)(∂βθ0)

(
∂τ − Ṙγ∂γ

)
+ ṘβṘγ(∂βθ0)(∂γθ0)− ṘβṘγ cot(θ0)(∂β∂γθ0)

+
(
ṘβṘγ∂β∂γ − 2Ṙβ∂β∂τ + ∂2

τ

)]
ϕ

− ν
[
4Ṙβ cos(θ0)(∂βφ0)

(
−Ṙγ∂γ + ∂τ − Ṙγ cot(θ0)(∂γθ0)

)]
ϕ

}
=

∫
dτ M̃Ṙ2 +

∫
dτdx

{
− ηᵀ · ∂2

τη + ṘβṘγ [Jβγ · η + ηᵀ · (Γβγ + Tβ∂γ − ∂β∂γ) η]

+ Ṙβ ηᵀ · (2∂β∂τ −Tβ∂τ ) η
}
.

(C.3)
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∫
dτdx (n̂(x)× ∂τ n̂(x))z =

∫
dτdx

{
(n̂0 × ∂τ n̂0)z

+ sin2(θ0) ˙̃ϕ+ sin(2θ0)φ̇0ϑ+ sin(2θ0)ϑ ˙̃ϕ+ cos(2θ0)φ̇0ϑ
2

}
→
∫

dτdx

{
(n̂0 × ∂τ n̂0)z

Ṙβ
[
sin(2θ0)(∂βθ0)

ϕ

sin(θ0)
− sin(2θ0)(∂βφ0)ϑ− ϑ cos(2θ0)(∂βφ0)ϑ

]
+ ϑ sin(2θ0)dτ

(
ϕ

sin(θ0)

)}
=

∫
dτdx

{
(n̂0 × ∂τ n̂0)z

Ṙβ
[
2 cos(θ0)(∂βθ0)ϕ+ sin(2θ0)(∂βφ0)

(
ν +

1

2 tan(θ0)
ν2

)
− ν cos(2θ0)(∂βφ0)ν

]
− 2ν cos(θ0)

(
dτ − cot(θ0)θ̇0

)
ϕ

}
=

∫
dτdx

{
(n̂0 × ∂τ n̂0)z

Ṙβ
[
2 cos(θ0)(∂βθ0)ϕ− 2ν cos(θ0) cot(θ0)(∂βθ0)ϕ

+ sin(2θ0)(∂βφ0)ν + ν sin2(θ0)(∂βφ0)ν

]
− 2ν cos(θ0)

(
∂τ − Ṙβ∂β

)
ϕ

}
=

∫
dτ α̃εijR

iṘj +

∫
dτdx

{
− ηᵀ · L∂τη + Ṙβ [ηᵀ · (Mβ + L∂β) η + Nβ · η]

}
.

(C.4)
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C.2 Second order expansion of the free energy

In this appendix we do some of the calculations to determine the second order expansion of F [n̂]
in Eq. (4.1) w.r.t. η which is used in Section 4.4. Since a skyrmion or vortex configuration is a local
minimum of F , the first order term in η equals 0. The zero’th order term will just give a energy E0,
which is not interesting for our purposes because we assume the skyrmion is already there and not

thermally created. We will thus restrict ourselves to determining H = δ2F
δη†η

∣∣∣
ηᵀ=η=0

in Eq. (4.26)

We start from equation (4.1)

F [n̂] = NA

∫ β

0

dτ

∫
Λ

dx

ρs2 ∑
l=x,y

|∂ln̂|2 +
D

2

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
−Kzn̂

2
z +

S2

2
χ0

(
H̃ · n̂(x)

)2

 .

The exchange interaction becomes,∫ β

0

dτ

∫
Λ

dx
∑
l=x,y

|∂ln̂|2 =

∫ β

0

dτ

∫
Λ

dx
{

(∇θ)2 + sin2(θ)(∇φ)2
}
,

second order→
∫ β

0

dτ

∫
Λ

dx
{
− ϑ∇2ϑ+ sin2(θ0)(∇ϕ̃)2

+ 2ϑ sin(2θ0)(∇φ0)(∇ϕ̃) + ϑ cos(2θ0)(∇φ0)2ϑ
}

→
∫ β

0

dτ

∫
Λ

dφdρ ρ
{
− ν∇2ν − ϕ∇2ϕ+ ϕ

(
cot(θ0)

ρ
(∂ρθ0)− (∂ρθ0)2 + cot(θ0)(∂2

ρθ0)

)
ϕ

+ 2ϑ sin(2θ0)(∇φ0)(∇ϕ̃) + ϑ cos(2θ0)(∇φ0)2ϑ
}

=

∫ β

0

dτ

∫
Λ

dφdρ ρ
{
− ν∇2ν − ϕ∇2ϕ+ ϕ

(
cot(θ0)

ρ
(∂ρθ0)− (∂ρθ0)2 + cot(θ0)(∂2

ρθ0)

)
ϕ

− ν 4 cos(θ0)

ρ2
(∂φϕ) + ν

cos(2θ0)

ρ2
ν
}
.

(C.5)



APPENDIX C. SECOND ORDER EXPANSIONS OF THE BERRY PHASE AND
THE HAMILTONIAN 53

Where the Dzyloshinskii Moriya interaction reduces to,∫ β

0

dτ

∫
Λ

dx

(
ŷ ·
(

n̂× ∂n̂

∂x

)
− x̂ ·

(
n̂× ∂n̂

∂y

))
=

∫ β

0

dτ

∫
Λ

dx

{(
cos(φ)
sin(φ)

)
· (∇θ) +

1

2
sin(2θ)

(
− sin(φ)
cos(φ)

)
· (∇φ)

}
,

second order→
∫ β

0

dτ

∫
Λ

dx

{
− (1/2)ϕ̃

(
cos(φ0)
sin(φ0)

)
· (∇θ0)ϕ̃+ ϕ̃

(
− sin(φ0)
cos(φ0)

)
· (∇ϑ)

− ϑ sin(2θ0)

(
− sin(φ0)
cos(φ0)

)
· (∇φ0)ϑ− 1

4
ϕ̃ sin(2θ0)

(
− sin(φ0)
cos(φ0)

)
· (∇φ0)ϕ̃

+ ϑ cos(2θ0)

(
− sin(φ0)
cos(φ0)

)
· (∇ϕ̃)− ϕ̃ sin(2θ0)

(
cos(φ0)
sin(φ0)

)
· (∇ϕ̃)

}
→
∫ β

0

dτ

∫
Λ

dx±
{
− (1/2)ϕ̃(∂ρθ0)ϕ̃+

1

ρ
ϕ̃(∂φϑ)− ϑ sin(2θ0)

ρ
ϑ− 1

4
ϕ̃

sin(2θ0)

ρ
ϕ̃

+ ϑ
cos(2θ0)

ρ
(∂φϕ̃)− ϕ̃ sin(2θ0)(∂ρϕ̃)

}
→
∫ β

0

dτ

∫
Λ

dx±
{
− ϕ (∂ρθ0)

2 sin2(θ0)
ϕ− ϕ 1

sin(θ0)ρ
(∂φν)− ν sin(2θ0)

ρ
ν − ϕcot(θ0)

2ρ
ϕ

− ν cos(2θ0)

sin(θ0)ρ
(∂φϕ)− 2ϕ cot(θ0)(∂ρϕ) + 2ϕ cot2(θ0)(∂ρθ0)ϕ

}
.

(C.6)



Appendix D

Dynamics of skyrmions and vortices
for large spin flop fields

Due to lack of time we will not perform all the calculations to obtain closed analytic expressions for
the mass renormalizations and damping kernels.

In this section we will consider vortex configurations for large magnetic fields. By neglecting the
parts that are independent of the magnetic field, the operators in Eqs. (4.25), (4.28) and (4.29) reduce
to

G = −χ0

2

{
2iH̃L∂τ

}
+H

J =
χ0

4

{
2iṘβH̃Nβ

}
,

K =
χ0

2

{
2iH̃Ṙβ (Mβ + L∂β)

}
.

We see that we cannot split the eigenstates of G in a time-dependent and a space-dependent part. So
it will be a bit harder to perform sums over the Matsubara frequencies. For now we assume

cos(θ0(ρ)) '
{
−1 ρ <

√
ρs/Kz

0 ρ >
√
ρs/Kz

,

for vortices. For skyrmions we make the following approximation

cos(θ0(ρ)) '
{
−1 ρ <

√
ρs/Kz

1 ρ >
√
ρs/Kz

.

We can still perform the shift in Eq. (4.70) to complete the square

Z[R] =

∫
DR e−Scl[R]F [R],

F [R] =

∫
Dη δ(Q1[R])δ(Q2[R]) det

(
δQ

δR

)
e−Ie−NA{η̃

ᵀ·[G+K]η̃}

= e−I
1

det′[NA(G +K)]
.

Where the prime denotes the omission of the zero-modes and I is defined by

I = −NAJ ᵀ · (G +K)−1J ≈ −NAJ ᵀ · G−1J . (D.1)
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For large magnetic fields Eq. (D.1) will most probably give a damping kernel of order O((NA)1). For
slow dynamics of the vortex and low temperatures β � ε−1

0 we obtain we define the mass correction
by the zero frequency limit of the preceding damping kernel Ref.[9]. This mass correction will most
probably be quadratic in H̃ and will be of order O((NA)1).

The terms coming from
1

det′[NA(G +K)]

will be of order O((NA)0) and will be negligible in the zero-temperature limit.



Appendix E

The effective action for domain
walls

In this chapter we work through some of the calculations done in Ref.[3].

E.1 The model used in the paper

The model that is used is the Heisenberg spin model with some added spin anisotropies. We will thus
write our Hamiltonian:

H = −J̃
∑
i,ρ

Si · Si+ρ − K̃y

∑
i

(Syi )2 + K̃z

∑
i

(Szi )2. (E.1)

For simplicity we will assume that the spins are located on a cubic lattice with lattice constant a. In
the above formula the Si gives the spin at lattice side i, and i+ ρ gives the neighboring lattice sides.
The first term in the Hamiltonian gives the exchange interaction an the second and the third term
give anisotropy’s. In this case assume K̃y, K̃z > 0. We will see that the K̃z term will cause the spins

to prefer to point in the xy-plane and K̃y term will cause the spin to prefer to point parallel to the
y-axis.

E.1.1 Taking the continuum limit of the Hamiltonian

Because the system system size of the phenomena we are interested in (Bloch walls/domain walls) is
much larger than the lattice spacing a we are allowed to take the continuum limit of Eq. (E.1). This
section will be focused on doing this. By using the definition of a Riemann integral and using the
argument made above we are able to argue that for sufficiently large phenomena

1

a

∫
dx '

∑
i

. (E.2)

From now on we will write down the spin in coherent states basis Ref.[3, Appendix A], and write
Ω = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). We start finding an expression for the first term in Hamil-
tonian (E.1). We have Si · Si+ρ = S2 {cos(θ) cos(θ + δθ) + cos(δφ) sin(θ) sin(θ + δθ)}. By taking this
expansion op to second order in δθ we get

Si · Si+ρ ' S2

{
1− 1

2

(
δθ2 + sin2(θ)δφ2

)}
,

56
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Now we make the assumption that the system we consider is almost one dimensional (so needle like)
and assume θ, φ are only dependent on x- length direction. Notice that δθ = a ∂θ

∂x and δφ = a ∂φ∂x , this
implies

Si · Si+ρ ' a2S2

{
1− 1

2

((
∂θ

∂x

)2

+ sin2(θ)

(
∂φ

∂x

)2
)}

. (E.3)

Now combining Eqs. (E.2) and (E.3) we are able to rewrite Eq. (E.1) up to a constant

H = NA

∫
dx
{
J
[
(∂xθ)

2
+ sin2 θ (∂xφ)

2
]
−Ky

[
sin2 θ sin2 φ− 1

]
+Kz cos2 θ

}
. (E.4)

In the above formula NA denotes the number of spins in the cross sectional area. The constants are
given by J = J̃S2a and Ky, z = K̃y,zS

2/a. It follows that the Euclidean action is given by

SE = SWZ +

∫ β

0

dτ H, (E.5)

with the berry phase term

SWZ = i
SNA
a

∫ β

0

dτ

∫
dx φ̇(1− cosθ). (E.6)

By taking δSE = 0 and rotating to real time we get the following equations of motion

sin θ ∂tφ = − a
S

δH

δθ
, ∂tθ =

a

S

1

sin θ

δH

δφ
(E.7)

The equation in this particular case will be given by

sin θ ∂φ = − a
S

{
sin(2θ)

[
J(∂xφ)2 −Ky sin2 φ−Kz

]
− 2J(∂2

xθ)
}

(E.8)

∂tθ = − a
S

{
J
[
(∂2
xφ) sin θ + 4 sin θ cos θ(∂xθ)(∂xφ)

]
+Ky cosφ sinφ sin2 θ

}
(E.9)

E.2 Domain or Bloch wall configurations

In case of a Bloch wall, we want a stationary solution ({∂tθ = 0, ∂tφ = 0}) which connects the
anisotropy minima φ = ±π/2, in the θ = π/2 plane. We find that Eq. (E.8) will be trivial in this case.
On the other hand Eq. (E.9) will give us

J∂2
xφ+Ky sinφ cosφ = 0. (E.10)

With additional condition φ(±∞) = 0 Eq. (E.10) can be integrated over to obtain

J

Ky
(∂xφ)2 − cos2 φ = 0 (E.11)

It turns out that there are 4 different Bloch wall solutions (see, ref 47 paper):

φQC(x) = −QCπ
2

+ 2 arctan eCx/δ, (E.12)

in the above formula δ =
√
J/Ky and Q,C are respectively denoted as the charge and the chiralty.

With Q = (1/2)
∫

dx ∂x(sinφ) and

C =
1

π

∫
dx ∂xφ (E.13)

For Bloch walls Q,C = ±1, and the energy of this configuration is given by

E0 = 2JNA

∫
dx(∂xφQC)2 = 4NA

√
JKy . (E.14)

Note that these solutions are not topologically protected as long the spins are able to move in the
z-plane. In the limit of large hard axes (Kz � Ky), we note that the configuration space becomes a
circle and the chiralty C becomes topologically invariant (see Appendix A).
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E.3 Relating the action to the Sine-Gordon Model

In the case of domain walls we are interested in the case where Kz � Ky, thus deviations away from
the easy plane are small. So we are now able to expand

θ(x, τ) ' π/2− ϑ(x, τ), (E.15)

with |ϑ| � 1. We will now plug Eq. (E.15) into action (E.5) and expand up to second order

cos θ → ϑ+O(ϑ3)

cos2 θ → ϑ2 +O(ϑ3)

(∂xθ)
2 → (∂xϑ)2 +O(ϑ3)

sin2 θ(∂xφ)2 → (1− ϑ2)(∂xφ)2 +O(ϑ3)

sin2 θ sin2 φ→ (1− ϑ2) sin2 φ+O(ϑ3).

Thus we will end up with the following action

SWZ = i
SNA
a

∫ β

0

dτ

∫
dx φ̇(1− ϑ) (E.16)

H = NA

∫
dx
{
J
[
(∂xϑ)

2
+ (1− ϑ2) (∂xφ)

2
]
−Ky

[
(1− ϑ2) sin2 φ− 1

]
+Kzϑ

2
}

(E.17)

= NA

∫
dx
{
J(∂xφ)2 +Ky cos2 φ+ ϑLϑ

}
,

with L = −J∂2
x− J(∂xφ)2 +Ky sin2 φ+Kz (the second derivative term is obtained by partial integra-

tion). Thus the euclidean action will be given by

SE = NA

∫ β

0

dτ

∫
dx

{
i
S

a
∂τφ− i

S

a
ϑ ∂τφ+ J(∂xφ)2 +Ky cos2 φ+ ϑLϑ

}
. (E.18)

We get the following equations of motion

∂tϑ =
a

S

{
4Jϑ(∂xϑ)(∂xφ) + 2J(ϑ2 − 1)∂2

xφ) +Ky(ϑ2 − 1) sin(2φ)
}

(E.19)

∂tφ =
2a

S

{
J(∂xϑ)2 + Jϑ(∂xφ)2 −Kyϑ− 2Kzϑ

}
.

Because we are interested in a quantum mechanical description of a Bloch wall, we will use the path
integral formalism Ref.[3, Appendix A], we obtain

〈{Ωb}|e−βH|{Ωa}〉 =

∫
DφD(cos θ)e−SE [θ,φ]. (E.20)

Using the assumption that fluctuations in ϑ and φ have a wavelength lager than the domain wall with,
λ ≥ δ =⇒ k2 ≤ Ky/J (E.12), this means that that hard-axes anisotropy becomes dominant and
L = Kz(1 + O(Ky/Kz)). Using assumption (E.15) we are also able to rewrite D(cos θ) ' ϑ, now by
also plugging Eq. (E.18) into Eq. (E.20) instead of Eq. (E.5) we are now able to perform Gaussian
integrations with respect to ϑ

〈{Ωb}|e−βH|{Ωa}〉 =

∫
DφD(cos θ)e−SE [θ,φ] (E.21)

≈
∫
DφDϑe−SE [ϑ,φ] =

∫
Dφe−Sφ[φ]

∫
Dϑe−Sϑ[ϑ,φ] '

∫
Dφe−SSG[φ],
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with the restriction that φ(x, 0) = φa(x) and φ(x, β) = φb(x). The action we get which is only
dependent on φ is given by

SSG = NA

∫
dxdτ

{
i
S

a
∂τφ+ J

[
1

c2
(∂τφ)2 + (∂xφ)2

]
+Ky cos2 φ

}
, (E.22)

with c = (2a/S)
√
JKz the asymptotic spin wave velocity. Note that Eq. (E.21) was obtained using

Sϑ = NA

∫ β

0

dτ

∫
dx

{
ϑLϑ− iS

a
ϑ ∂τφ

}
(E.23)

ϑLϑ− iS
a
ϑ∂τφ = L−1

(
Lϑ− i S

2a
∂τφ

)2

+ L−1 S2

(2a)2
(∂τφ)2 (E.24)

' 1

Kz

(
Kzϑ− i

S

2a
∂τφ

)2

+
S2

(2a)2Kz
(∂τφ)2

and also

Sφ = NA

∫ β

0

dτ

∫
dx

{
i
S

a
∂τφ+ J(∂xφ)2 +Ky cos2 φ

}
(E.25)

E.4 Interaction between Bloch walls and spin waves

throughout this chapter we assume Ẋ/c is a small parameter. We also make use of the assumptions
of last chapter so it is allowed to use the sin-Gordon action. For now let’s consider a single Bloch
wall (E.12) φ0(x) = φQ=1,C=1(x), now recall that φ(x − X) is a static solution of δSSG = 0. Let’s
assume we have a Bloch wall at position X which is surrounded by spin waves (excitations with winding
number 0). We write

φ(x, τ) = φ0(x−X) + ϕ(x−X, τ) (E.26)

We expand action (E.22) up to second order in ϕ and Ẋ. We get∫
dxφ0(x−X) = −πẊ =⇒

∫
dτdx ∂τφ → −

∫
dτπẊ (E.27)∫

dx (∂xφ)2 →
∫

dx
{

(∂xφ0)2 + 2(∂xφ0)(∂xϕ) + (∂xϕ)2
}

(E.28)

=
E0

2JNA
+

∫ {
−2(∂2

xφ0)ϕ− ϕ∂2
xϕ
}

∫
dxdτ(dτφ)2 →

∫
dxdτ

{
(dτφ0)2 + 2(dτφ0)(dτϕ) + (dτϕ)2

}
(E.29)

=

∫
dxdτ

{
(∂xφ0)2Ẋ2 − 2(∂2

xφ0Ẋ
2 − ∂xφ0Ẍ)ϕ− ϕd2

τϕ
}

→
∫

dτ

{
E0

2JNA
Ẋ2 −

∫
dx
[
2(∂2

xφ0)Ẋ2ϕ+ ϕ
{
Ẋ2∂2

x − Ẋ∂x∂τ + ∂2
τ

}
ϕ
]}

∫
dx cosφ →

∫
dx
{

cosφ0 − 2(cosφ0 sinφ0)ϕ+
[
sin2 φ0 − cos2 φ0

]
ϕ2 +O(ϕ3)

}
(E.30)

= c1 +

∫
dx− 2(cosφ0 sinφ0)ϕ+

{
1− 2 sech2

(x
δ

)}
ϕ2 +O(ϕ3)

Note that in Eq. (E.29) we used
∫

dxϕd2
τϕ =

∫
dxϕdτ

{
−∂xϕẊ + ∂τϕ

}
=
∫

dx
{
ϕ∂2

xϕẊ
2 − 2ϕ∂xϕẌ + ϕ∂τ

[
−∂xϕẊ + ∂τϕ

]}
=
∫

dxϕ
{
Ẋ2∂2

x − Ẋ∂x∂τ + ∂2
τ

}
ϕ. Also note that the terms which are linear in Eqs. (E.28) and (E.30)

cancel each other. The reason is if you plug them in action (E.22) you get
{
J∂2

xφ0 +Ky sinφ0 cosφ0

}
ϕ =
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0, the term between brackets is now 0 because φ0 satisfies the stationary Euler Lagrange in Eq. (E.10).
In Eq. (E.30) we used the fact that

cos(arctanx) =
1√

1 + x2
, sin(arctanx) =

x√
1 + x2

=⇒ cos(2 arctanx) =
1− x2

1 + x2
, sin(2 arctanx) =

2x

1 + x2

=⇒ sin2 φ0 − cos2 φ0 = cos2(2 arctan ex/δ)− sin2(2 arctan ex/δ) = 1− 8

(ex/δ − e−x/δ)2
= 1− 2 sech2

(x
δ

)
.

By plugging Eqs. (E.22) and (E.27) to (E.30) in to Eq. (E.21) we get

〈{Ωb}|e−βH|{Ωa}〉 =

∫
DXe−SX [X]F [X], (E.31)

with

SX [X] =

∫
dt

{
−iαẊ +

M

2
Ẋ2

}
(E.32)

the action of the free Bloch wall and

F [X] =

∫
Dφ δ

(∫
dxφ′0(x−X)φ(x, τ)

)
det

(
δQ

δX

)
e−NA

∫
dxdτ{ϕ·[G+K]·ϕ+J ·ϕ}. (E.33)

describes the interaction between the Bloch wall and spin waves. In Eq. (E.32) α = πSNA/a and

M = E0

c2 = NAS
2

a2KZ

√
Ky
J . And functional F in Eq. (E.33) describes the interaction between the Bloch

wall and spin waves, where the operator

G = −J∂2
x − κ∂2

τ +Ky

[
1− 2 sech2

(x
δ

)]
. (E.34)

Note we use φ′′0 = ∂2
xφ0(x−X).

in this case κ = J/c2. The operators G and P describe the interaction of spin waves with a static
Bloch wall. The other two operators are used to describe the dynamic coupling between the Bloch
wall and spin waves

K = 2κẊ∂x∂τ − κẊ2∂2
x, J = −2κẊ2φ′′0 . (E.35)

E.5 Evaluating the damping kernel

We will now evaluate the functional derivative δQ
δX . Note by ’ we mean derivation w.r.t x.

Q[X + δX] =

∫
dxdτ ′ φ′0(x−X − δX)φ(x, τ ′)δ(τ − τ ′) (E.36)

= Q[X] +

∫
dxdτ ′

{
−φ′′0(x−X)φ(x, τ)δX +O(δX2)

}
δ(τ − τ ′) (E.37)

P.I. =⇒ δQ

δX
=

∫
dx
{
φ′20 (x−X)− φ′′0(x−X)ϕ(x−X, τ)

}
δ(τ − τ ′). (E.38)

To evaluate F [X] we want to complete the square in exponential. While we are only working up to
order O(Ẋ2/c2) it is sufficient to take ρ = (1/2)G−1J . Now we have
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(ϕ+ ρ).[G +K](ϕ+ ρ) = (E.39)

ϕ.[G +K]ϕ+ ϕ.[G +K]ρ+ ρ.[G +K]ϕ+ ρ.[G +K]ρ = (E.40)

ϕ.[G +K]ϕ+ ϕ.Gρ+ ρ.Gϕ+O(Ẋ3) =

ϕ.[G +K]ϕ+
1

2
ϕ.GG−1J +

1

2
G−1J .Gϕ+O(Ẋ3) =

ϕ.[G +K]ϕ+
1

2
ϕ.J +

1

2
GG−1J .ϕ+O(Ẋ3) =

ϕ.[G +K]ϕ+ J .ϕ+O(Ẋ3).

With G and K hermitian. In the second to last step we used the fact that G is hermitian. alternative
method:

ϕ.[G +K]ϕ+ ϕ.J =

[(ϕ+ ρ)− ρ].[G +K][(ϕ+ ρ)− ρ] + J [(ϕ+ ρ)− ρ] =

(ϕ+ ρ).[G +K](ϕ+ ρ)− 2ρ.[G +K](ϕ+ ρ) + J (ϕ+ ρ) +O(Ẋ3) =

(ϕ+ ρ).[G +K](ϕ+ ρ)− G−1J .[G +K](ϕ+ ρ) + J (ϕ+ ρ) +O(Ẋ3) =

(ϕ+ ρ).[G +K](ϕ+ ρ) +O(Ẋ3).

With (a.b =
∫

dxdτ a∗b). Now take ϕ̃ = ϕ+ ρ. We are now able to rewrite F [X] into the following
form

F [X] =

∫
Dϕ̃ det

[∫
dx{φ′′0 − φ′0(ϕ̃− ρ)}δ(τ − τ ′)

]
(E.41)

× δ
(∫

dxφ′0(x−X)[ϕ̃− ρ](x, τ)

)
e−NAϕ̃.[G+K]ϕ̃.

Now by rescaling ϕ̂ =
√
NAϕ̃ and using the identity det = exp tr ln, we are able to rewrite det

[
δQ
δX

]
as

det

[∫
dx{φ′′0 − φ′0(ϕ̃− ρ)}δ(τ − τ ′)

]
= exp

{
tr ln

(∫
dx{φ′′0 − φ′0(ϕ̃− ρ)}δ(τ − τ ′)

)}
(E.42)

= exp

{
tr ln

(∫
dxφ′′0 − φ′0(ϕ̃− ρ)

)}
∝ exp

{
tr ln

(
1− δ/2√

NA

∫
dxφ′0ϕ̂− (δ/2)

∫
dxφ′′0ρ

)}
Note in the above equation we used

∫
dxφ2

0 = 2/δ. For large NA the second term becomes negligible

and the last term will be proportional to Ẋ2 and thus gives rise to an effective mass correction. We
thus get

F [X] = e−∆M
∫

dτẊ2

∫
Dϕ̂ δ

(∫
φ′0ϕ̂

)
e−ϕ̂·[G+K]ϕ̂ (E.43)

= e−∆M
∫

dτẊ2 1√
det′(G +K)

,

the prime on the determinant means the omission of the Goldstone zero mode.
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[24] Christoph Schütte and Markus Garst. Magnon-skyrmion scattering in chiral magnets. Phys. Rev.
B, 90:094423, Sep 2014. doi: 10.1103/PhysRevB.90.094423. URL https://link.aps.org/doi/

10.1103/PhysRevB.90.094423.

[25] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002. ISBN
9780521795401.

[26] N. D. Mermin. The topological theory of defects in ordered media. Rev. Mod. Phys., 51:591–
648, Jul 1979. doi: 10.1103/RevModPhys.51.591. URL https://link.aps.org/doi/10.1103/

RevModPhys.51.591.

https://link.aps.org/doi/10.1103/PhysRevB.53.16573
https://link.aps.org/doi/10.1103/PhysRevB.53.16573
http://dx.doi.org/10.1038/nphys4030
http://stacks.iop.org/1367-2630/18/i=7/a=075016
https://link.aps.org/doi/10.1103/PhysRevB.90.094423
https://link.aps.org/doi/10.1103/PhysRevB.90.094423
https://link.aps.org/doi/10.1103/RevModPhys.51.591
https://link.aps.org/doi/10.1103/RevModPhys.51.591


Acknowledgements

First and most foremost I would like to thank my supervisor R.A. Duine, for his guidance through this
project. Secondly I would like to thank C. Psaroudaki for a helpful discussion.


	Introduction
	Skyrmions in ferromagnets
	Single skyrmion profile in a ferromagnet
	Dynamics of a non-interacting ferromagnetic skyrmion

	Skyrmions in antiferromagnets
	Dynamics of antiferromagnets
	Haldane's Mapping
	Some intuition behind Haldane's Mapping
	The Kinetic term / Berry phase
	The continuum Hamiltonian
	The partition function and Green's functions

	Skyrmion configurations in antiferromagnets
	Minimizing the free energy of the antiferromagnet
	Finding local skyrmion solutions
	No magnetic field
	Magnetic field  h/h0=0.3 
	Magnetic field  h/h0=1.2 


	Interaction between antiferromagnetic skyrmions and spin waves
	Taking a perturbation of spin-waves around the skyrmion 
	Skyrmionic dynamics due to spin wave interactions
	Skyrmion dynamics in the absence of a magnetic field
	Skyrmion dynamics for small magnetic fields

	Vortices in antiferromagnets
	Dynamics of vortices for small spin-flop fields

	Second order expansion of the free energy

	Conclusion, discussion and outlook
	Conclusion
	Discussion and Outlook

	Topological structures within a magnet
	Defining the topology of the magnet
	Homotopy
	Homotopy group

	Skyrmions and domain walls
	Definition of a Skyrmion
	Domain walls

	Topological structures in practice

	Calculations for effective action anti ferromagnet
	Cylindrical coordinates and the mass of a skyrmion
	Magnus force and Berry phase term for antiferromagnetic skyrmion
	Magnus force
	Berry phase


	Second order expansions of the Berry phase and the Hamiltonian
	Working out the kinetic term expansion
	Second order expansion of the free energy

	Dynamics of skyrmions and vortices for large spin flop fields
	The effective action for domain walls
	The model used in the paper
	Taking the continuum limit of the Hamiltonian

	Domain or Bloch wall configurations
	Relating the action to the Sine-Gordon Model
	Interaction between Bloch walls and spin waves
	Evaluating the damping kernel

	References
	Acknowledgements

