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1 INTRODUCTION 1

1 Introduction

This thesis will mainly focus on proving Weaver’s Conjecture KS2 in a way that is easier to understand for
3 year bachelor student. Without further ado Weaver’s Conjecture KS2.

Conjecture 1.0.1 (Weaver’s Conjecture KS2 [13]). There exist universal constants η ≥ 2 and θ > 0 such
that the following holds. Let w1, ..., wm ∈ Cd be vectors such that ||wi|| ≤ 1 for all i and that

m∑
i=1

|〈u,wi〉|2 = η (1)

for every unit vector u ∈ Cd. Then there exists a partition S0, S1 of [m] so that∑
i∈Sj

|〈u,wi〉|2 ≤ η − θ (2)

for every unit vector u ∈ Cd and every j.

The reason why Nik Weaver created this conjecture, is that a positive answer implies the Kadison-Singer
problem.

Question 1.0.2 (Kadison-Singer problem, Question 1.1 of [9]). Does every pure state on the C∗-algebra D
of bounded diagonal operators on `2 have a unique extension to a pure state on B(`2), the C∗-algebra of all
bounded operators on `2?

The Kadison-Singer problem finds its roots in quantum mechanics in the 1940s and was first formulated in
1959 by Richard Kadison and Isadore Singer [6]. It then went on to become one of the most important
problems in functional analysis, due to it being equivalent with many other open mathematical problems in
a variety fields and of course the implications it has for quantum mechanics.

1.1 Structure of thesis

Overall, the order in which things are proven is rather like that of the main source material [9]. The difference
mainly lies in how much is proven. With this thesis, we aim to create more of a complete image of the proof.
So, we will go into more detailed proofs and will also work out some of the references used in the main source
material.
This thesis will start with the preliminaries, in which we will explain all necessary notations for this thesis,
including those needed for understanding Weaver’s Conjecture KS2. In the preliminaries, we won’t give any
information about the terms used in the Kadison-Singer problem, because this thesis will not directly prove
the positive solution to the Kadison-Singer Problem.
After that we will introduce interlacing families and stable polynomials, which will be our main tools for
solving Weaver’s Conjecture KS2. We will then go on to apply such functions in mixed characteristic poly-
nomials, which we will then show have a limit on their largest roots. This limit we will then later be able to
put in relation with η − θ from the Weaver’s Conjecture KS2.
All that has been proven and introduced will then come together in chapter 6, where we will finally prove
Weaver’s Conjecture, the main aim of this thesis. This will be done by formulating and proving a theorem
which has similar properties to Weaver’s Conjecture. To prove that theorem we will use the connection
between the operator norm and eigenvalues. This is where we will get our use out of all that we have pre-
viously proven about mixed characteristic polynomials. After having proven this theorem, we will prove a
generalization of Weaver’s Conjecture, which we can then use to prove Weaver’s Conjecture.
In chapter 7 we will try to get a bit closer to fully proving the positive result of the Kadison-Singer problem.
We will do this by proving the Paving Conjecture which is equivalent to the Kadison-Singer Problem and
is also what Nik Weaver used to show that Weaver’s Conjecture implies the result of the Kadison-Singer
problem. This proof will be based on the generalization of Weaver’s Conjecture in chapter 6.
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2 Preliminaries

2.1 General notations

The natural numbers N will be defined as {1, 2, ...} in this thesis. The collection [m] is equal to {1, ...,m}.

2.2 Matrices

In this thesis, we are going to be working a lot with Hermitian and positive definite matrices. So here is some
pre-required knowledge about them.
A matrix X ∈ Cn×n is equal to 

X1,1 X1,2 · · · X1,n

X2,1 X2,2

...
...

. . .
...

Xn,1 · · · · · · Xn,n

 .

A transpose is noted down as

Xt =


X1,1 X2,1 · · · Xn,1

X1,2 X2,2

...
...

. . .
...

X1,n · · · · · · Xn,n

 .

The determinant of a matrix is denoted as

det(X) =

∣∣∣∣∣∣∣∣∣∣
X1,1 X1,2 · · · X1,n

X2,1 X2,2

...
...

. . .
...

Xn,1 · · · · · · Xn,n

∣∣∣∣∣∣∣∣∣∣
The adjugate of a matrix is denoted as

adj(X) =

+

∣∣∣∣∣∣∣∣∣∣
X2,2 X2,3 · · · X2,n

X3,2 X3,3

...
...

. . .
...

Xn,2 · · · · · · Xn,n

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
X1,2 X1,3 · · · X1,n

X3,2 X3,3

...
...

. . .
...

Xn,2 · · · · · · Xn,n

∣∣∣∣∣∣∣∣∣∣
· · · (−1)1+n

∣∣∣∣∣∣∣∣∣∣
X1,2 X1,3 · · · X1,n

X2,2 X2,3

...
...

. . .
...

Xn−1,2 · · · · · · Xn−1,n

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
X2,1 X2,3 · · · X2,n

X3,1 X3,3

...
...

. . .
...

Xn,1 · · · · · · Xn,n

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
X1,1 X1,3 · · · X1,n

X3,1 X3,3

...
...

. . .
...

Xn,1 · · · · · · Xn,n

∣∣∣∣∣∣∣∣∣∣
...

...
. . .

...

(−1)n+1

∣∣∣∣∣∣∣∣∣∣
X2,1 X2,2 · · · X2,n−1

X3,1 X3,2

...
...

. . .
...

Xn,1 · · · · · · Xn,n−1

∣∣∣∣∣∣∣∣∣∣
· · · · · · +

∣∣∣∣∣∣∣∣∣∣
X1,1 X1,2 · · · X1,n−1

X2,1 X2,2

...
...

. . .
...

Xn−1,1 · · · · · · Xn−1,n−1

∣∣∣∣∣∣∣∣∣∣


Important to remember here is that the value of column i and row j of the adjugate is equal to the determinant
of the matrix that misses column j and row i multiplied by (−1)i+j . The adjugate can be used for calculating
the inverse, since

X−1 =
adj(X)

det(X)
.

Some basic matrices are:
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• In is the unit matrix that is n× n.

• 1n×n is the matrix filled with only ones and 1n is the vector filled with only ones.

• 0n×n is the matrix filled with only zeros and 0n is the vector filled with only zeroes.

A coordinate projection is a matrix which is 0n×n except for certain values on the diagonal, which are then
equal to 1. Example 1 0 0

0 1 0
0 0 0


A unitary matrix U is a matrix such that U = U∗ = U−1.

2.2.1 Hermitian Matrices

Hermitian matrices are n× n matrices that stay the same during a Hermitian transpose which is defined as

M∗ = M
t
. An example of a Hermitian transpose(

1 1 + i
0 2− i

)∗
=

(
1 0

1− i 2 + i

)
Here are some important properties of Hermitian matrices

Lemma 2.2.1. All its eigenvalues are real.

Lemma 2.2.2. It is possible to diagonalize Hermitian matrices using unitary matrices.

These lemmas have all been proven in the undergraduate course linear algebra.

2.2.2 Characteristic Polynomials

For a matrix M ∈ Cn×n there is a characteristic polynomial of the form

χ[M ](x) = det(xI −M)

where I is the unit matrix. The roots of this polynomial are M ’s eigenvalues.

2.2.3 Positive Definite Matrices

A n×n Hermitian matrix H is positive definite when all values of v∗Hv are positive for every non-zero vector
v. Similar to this, a positive semidefinite matrix is a matrix H such that v∗Hv is non-negative. Another
way of telling if a Hermitian matrix is positive definite or semidefinite is by looking at the eigenvalues. If all
eigenvalues are positive, then the matrix is positive definite and when they are non-negative the matrix is
positive semidefinite.
Important properties of the positive definite matrices are

Lemma 2.2.3. Every positive definite matrix is invertible and its inverse is also positive definite.

Lemma 2.2.4. When you have matrices M and N that are positive semidefinite, then also M+N is positive
semidefinite. If M or N were also to be positive definite, then M +N is also positive definite.

Proof. For this simply look at the way we first defined positive definite and semidefinite matrices. It should
then be obvious from the fact that v∗(M +N)v = v∗Mv + v∗Nv.

Lemma 2.2.5. If M is positive semidefinite and Q has the same size, then also Q∗MQ is positive semidef-
inite. If moreover Q is invertible and M is positive definite then Q∗MQ is positive definite.

Lemma 2.2.6. Positive definite matrices have a unique square root matrix, that is positive definite. The
same is true for positive semidefinite matrices, except their square roots are positive semidefinite.
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Lemma 2.2.7. A Gram matrix is always positive semidefinite.

Proof. Put the vectors needed for the Gram matrix G in a matrix M such that M∗M = G. Then again by
using the first definition

v∗Gv = v∗M∗Mv = (Mv)∗(Mv) ≥ 0.

So, G must be positive semidefinite.

Lemma 2.2.8. If A and B are positive definite matrices of the same size, then

Tr(AB) ≥ 0

Proof. Use lemma 2.2.6 to get that A = XX and B = Y Y . Using the fact that X and Y are Hermitian we
get A = XX∗ and B = Y Y ∗.

Tr(AB) = Tr(XX∗Y Y ∗) = Tr((Y ∗X)(XY ∗)) = Tr((XY ∗)∗(XY ∗))

Because a vector multiplied by its Hermitian transpose always gives a non-negative value, all the values on
the diagonal are also non-negative and the same is true for the trace.

2.3 Norm

A norm ||...|| on a vector a space V is mapped ||...|| : V → R≥0 such that

1. ||x|| = 0 iff x = 0

2. ||λx|| = |λ| ∗ ||x|| where λ ∈ R

3. ||x+ y|| ≤ ||x||+ ||y||

In this thesis when x ∈ Rn we will use the Euclidean norm. For matrices, we will use the norm:

||M || = max
||x||=1

||Mx|| =
√

max{eigenvalues {M∗M}}.

Lemma 2.3.1. When M is positive semidefinite, then ||M || is equal to the largest eigenvalue of M .

Proof. Because M is positive semidefinite, it follows from our definition that it is also Hermitian.

||M || =
√

max{eigenvalues {M∗M}}

=
√

max{eigenvalues {MM}}

=
√

max{eigenvalues {M}}2 (when you raise a matrix to a certain value, the same will happen for it’s eigenvalues)

= max{eigenvalues {M}}

Definition 2.3.2. We will define the inner product of v, w ∈ Cn as

〈v, w〉 = vtw.

Lemma 2.3.3. Let A ∈ Cm×n and B ∈ Cn×m, then ||AB|| ≤ ||A||||B||.

Proof. This follows from the fact that ||AB|| = max||x||=1 ||ABx||, so splitting it into two parts means that
there more possible values added to take the maximum of.

Lemma 2.3.4. Let M ∈ Cm×n, then ||MM∗|| = ||M∗M ||.
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Proof. This proof is based on Proposition 2.7 of [3].
Set ||x|| = 1, then

||Mx||2 = 〈Mx,Mx〉
= 〈M∗Mx, x〉
≤ ||M∗Mx||||x||
= ||M∗Mx||
≤ ||M∗M || (follows from the definition of the matrix norm we use)

≤ ||M∗||||M || (using Lemma 2.3.3).

Using the definition ||...|| for matrices we get that

||Mx||2 ≤ ||M ||2

≤ ||M∗M ||
≤ ||M∗||||M ||.

By now dividing all the previous values by ||M ||, we get that ||M || ≤ ||M∗||. Since we didn’t define any
specific properties for M , this property also works the other way around; ||M || = ||M∗||. By now reversing
the division by ||M ||, we get that

||M ||2 = ||M∗M ||
= ||M∗||||M ||
= ||M ||||M∗||
= ||MM∗||

2.4 Probability

The notation E means expected value, P means the probability of something occurring.
When we state independent random vectors, we don’t mean that the vectors are linearly independent, but
that the probability of getting a certain vector value is independent of the other vectors.
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3 Polynomial Roots

This chapter shall particularly focus on the roots of polynomials. Using interlacing families to group poly-
nomials together and stability to avoid complex roots.

3.1 Hurwitz’ Theorem

Here is a bit of an abstract theorem about the roots of polynomials, which shall be rather useful in the
following proofs.

Theorem 3.1.1 (Hurwitz’ theorem, Theorem 2.3 of [1]). Let D be a domain (open connected set) in Cn
and suppose that {fk}∞k=1 is a sequence of nonvanishing (no roots) analytic (a value can locally be given
by a convergent power series) functions on D that converge to f uniformly on compact subsets of D (on a
Euclidean space this is regular convergence). Then f is either nonvanishing on D or else identical to zero.

To simplify the theorem a bit, here is the following lemma.

Lemma 3.1.2. A polynomial is always an analytic function.

Proof. This comes from the fact that every polynomial can be written as a finite power series.

3.2 Interlacing Families

This part will be about interlacing families existing out of real rooted polynomials. Real rooted means that
all its roots and coefficients are real.

Definition 3.2.1. Let g and f be real rooted polynomials of the form g(x) = α0

∏n−1
i=1 (x− αi) and f(x) =

β0
∏n
i=1(x− βi). We say that g interlaces f when β1 ≤ α1 ≤ β2 ≤ α2 ≤ ... ≤ αn−1 ≤ βn.

Definition 3.2.2. When there are multiple polynomials interlaced by the same polynomial we speak of
a common interlacing. Since we can construct polynomials with the roots where ever we want, we can
create a definition of this that doesn’t contain a polynomial that interlaces them both, only the concept
that such a polynomial can be created. This means when we have polynomials f1, ...fk which are real
rooted of the form fj(x) = βj,0

∏n
i=1(x − βj,i) we can say that they have a common interlacing when

max(β1,i, ..., βk,i) ≤ min(β1,i+1, ..., βk,i+1) for i ∈ [n].

To make the following text a bit less complicated, we will introduce the following notation. When f is a
polynomial, the largest root of f shall be denoted by ξ(f)

Lemma 3.2.3. Let f1,...,fk be real rooted, have a positive leading coefficient and have the same degree.
Define

f∅ =

k∑
i=1

fi

If f1,...,fk have a common interlacing, then there exists an i such that ξ(fi) is at most ξ(f∅).

Proof. Because every fj with j ∈ [k] has a positive leading coefficient, the function fj(x) will always converge
to ∞ when x goes to ∞. We now know that when x is greater than ξ(fj), that fj(x) > 0. Since we are
working with a common interlacing, setting c = inf{ξ(fj)|j ∈ [k]} we have fj(c) ≤ 0 and f∅(c) ≤ 0. So, ξ(f∅)
must be greater or equal to c.

Definition 3.2.4. Let S1,..., Sm be a finite sets and for every s1, ..., sm ∈ S1× ...×Sm let fs1,...,sm be a real
rooted polynomial of degree n with a positive leading coefficient. When k < m we define that

fs1,...,sk =
∑

sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm

also, that

f∅ =
∑

s1∈S1,...,sm∈Sm

fs1,...,sm
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We say that the polynomials {fs1,...,sm} are an interlacing family when for each k = 0, ...,m−1 and s1, ..., sk ∈
S1 × ...× Sk, the collection {fs1,...,sk,t}t∈Sk+1

has a common interlacing.

Theorem 3.2.5. Let {fs1,...,sm} be an interlacing family of polynomials, then there exists an s1, ..., sm such
that ξ(fs1,...,sm) is at most ξ(f∅).

Proof. We know that {ft}t∈s1 has a common interlacing and since the sum of them is equal to f∅, we can use
Lemma 3.2.3 to show that there exist an i1 ∈ s1 such that ξ(fi1) is at most ξ(f∅). Now we can start using
Lemma 3.2.3 inductively, since fi1,...,ik is the sum of functions {fi1,...,ik,t}t∈sk+1

, which leads to that there
exists a ik+1 such that ξ(fi1,...ik+1

) is at most ξ(fi1,...ik) which is at most ξ(f∅). So, for function fi1,...im goes
that ξ(fi1,...im) is at most ξ(f∅).

Later in this thesis we will need a proper way of determining when there is a common interlacing, for this
the next theorem can be used.

Theorem 3.2.6. Let f1, ..., fm be polynomials with a positive leading coefficient (it can easily be extended to
work without this property, but it in the proof for this we will use a positive leading coefficient) and all have
degree n. Then f1, f2, ..., fm have a common interlacing if and only if all convex combinations

∑m
i=1 λifi

where λi ≥ 0 and
∑m
i=1 λi = 1 are real rooted.

To prove the aforementioned theorem, we are going first prove a lemma (Theorem 2.1 of [4]) that can then
be used inductively.

Lemma 3.2.7. Let f and g be polynomials with a positive leading coefficient of degree n. Then
1. f and g have a common interlacing
if and only if
2. all convex combinations hλ = λf + (1− λ)g λ ∈ [0, 1]are real rooted.

Proof of Lemma 3.2.7 {(1)⇒ (2)}. Let f and g have roots l1, ..., ln and r1, ..., rn respectively with li ≤ li+1

and ri ≤ ri+1.
Here we only need to look at the case where λ ∈]0, 1[, because for there to be a common interlacing f and g
must be real rooted.
First, the case where f and g are simple rooted (meaning i 6= j, then li 6= lj). Using the fact that the we only
have simple roots and that they are part of a common interlacing, we can set max(li, ri) < bi < min(li+1, ri+1)
with b0 = −∞ and bn =∞. Since f and g both have a positive leading coefficient

sign(f(bi)) = sign(g(bi)) = sign(hλ(bi)) = −(−1)i.

This means that hλ will switch n times between positive and negative for real values. So, because hλ is a
continuous function it must be real rooted.

Second, the case that f and g aren’t simple rooted. This is done by creating function fε and gε, where
if ε → 0, that fε → f and gε → g. Important here is for which ε they here have a common interlacing.
As to demonstrate the proper approach for creating a good fε → f and gε → g here an example. Let
f(x) = (x− 5)(x− 5)(x− 5) and g(x) = (x− 6)(x− 5)(x− 3), then fε(x) = (x− 5− ε)(x− 5)(x− 5 + ε) and
gε(x) = (x− 6)(x− 5)(x− 3). If ε ∈]−∞, 0[∪]0,∞[ there will exist a common interlacing for these functions
as we proved earlier. Define

hλ,ε = λfε + (1− λ)gε

When ε→ 0, then hλ,ε → hλ. By using the Hurwitz’ theorem (3.1.1) we can now prove that hλ doesn’t have
any complex roots. For this we will use the Hurwitz’ theorem (3.1.1) twice. We define sequence {hλ,3−k}∞k=1,
these polynomials are analytic. Since those polynomials are all real rooted the sequence is nonvanishing in
domains D1 = {x ∈ C|Im(x) < 0} and D2 = {x ∈ C|Im(x) > 0} (separated, since otherwise the domains
wouldn’t be connected domains). Now according Hurwitz’ theorem (3.1.1) hλ is either nonvanishing for
values with an imaginary part or always equal to zero, we know the latter is not true due to hλ being the
sum of two polynomials with a positive leading coefficient. So, by process of elimination the roots of hλ have
to be real.
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Proof of Lemma 3.2.7 {(2)⇒ (1)}. First the proof for the case where all roots are distinct from each other.
We will do this by a proof by contradiction. Assume that there isn’t a common interlacing. Set k to be
the lowest value such that max(lk, rk) > min(lk+1, rk+1) and since f and g are interchangeable we can say
rk > lk+1 without losing generality. Set max(li, ri) < bi < min(li+1, ri+1) for i ∈ [k−1] and b0 = −∞. Define

qλ(x) =
hλ(x)

(1− λ)f
=

λ

1− λ
+
g(x)

f(x)

qλ. It has the same roots as hλ, because f and g have no common roots (Meaning that qλ is defined for all
roots of hλ). Hence, (1− λ)f also doesn’t have any common roots with hλ. Now we will make a small table
to show where the contradiction comes from.

bk−1 lk lk+1 rk
sign(f) −(−1)k−1 0 −(−1)k 0 −(−1)k+1

sign(g) −(−1)k−1 −(−1)k−1 −(−1)k−1 −(−1)k−1 0
sign(qλ) + - -

Here it shows that in domain ]lk, lk+1[ the function qλ is always negative, but when λ ↑ 1, then λ
1−λ → ∞.

So for every x ∈]lk, lk+1[, there should exist a λ such that qλ(x) is positive; a contradiction.

Proof for the case that f and/or g have a multiple root (the opposite of a simple root. As an example,
lk = lk+1, this would break the previous part of the proof), but still don’t have any roots in common. Define

fε = εf + (1− ε)g = hε

gε = (1− ε)f + εg = h1−ε

where ε > 0 and low enough to keep common roots between the two functions from happening. Since these
functions are real rooted, if we manage to prove that they are also simple rooted, we can then use the fact
that when they have a common interlacing the limit of when ε→ 0 should have a common interlacing. Since
the limit of max(lε,i, rε,i) ≤ min(lε,i+1, rε,i+1) should also hold this inequality.
To prove that fε and gε are simple rooted, we can prove that hε is simple rooted and that can be done by
showing that qε is simple rooted. Let’s assume there is a multiple root in qε, because ε is an element of an
open interval it can always be increased or decreased in value. If qε is positive before and after the multiple
root, then you can create a complex root by increasing the value of λ so that it doesn’t touch the x-axis there
any more, the other way around when the function is negative before and after the multiple root. In the case
that it goes from positive to negative or the other way around it should be clearly visible that a complex
root comes into being when the value of λ is changed. So, fε and gε are simple rooted.

Finally, the proof for the case for when f and g have a common root. If it is just one, we can rewrite
the functions as f(x) = (x − a)bfa(x) and g(x) = (x − a)bga(x), where a is the common root and b is in
case it is also a multiple root for both functions. Since fa and ga don’t have any common roots they will
have a common interlacing, giving us max(la,i, ra,i) ≤ min(la,i+1, ra,i+1) for i ∈ [n − b]. Now there are two
possibilities:

1. there exists a k such that max(la,k, ra,k) ≤ a ≤ min(la,k+1, ra,k+1) in which case max(lk, rk) ≤
min(lk+1, rk+1) = a and a = (lk+b, rk+b) ≤ min(lk+b+1, rk+b+1).

2. there exists a k such that min(la,k, ra,k) ≤ a ≤ max(la,k, ra,k) in which case a = max(min(la,k, ra,k), a) =
max(lk, rk) ≤ min(lk+1, rk+1) = min(max(la,k, ra,k), a) = a and a = max(min(la,k, ra,k), a) = max(lk+b, rk+b) ≤
min(lk+b+1, rk+b+1) = min(max(la,k, ra,k), a) = a.

Either way, f and g have a common interlacing. This proof can be done similarly for the case that there is
more than one common root.

Proof of Theorem 3.2.6. First the proof for when f1, .., fm have a common interlacing, then every convex
combination is real rooted. The easiest way this can be done is by taking the first half of the proof of Lemma
3.2.7 and extending it to work with m functions. This can be done by redefining bi as max(l1,i, ..., lm,i) ≤
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bi ≤ min(l1,i+1, ..., lm,i+1) where lj,i is the ith root of fj .
Now for the proof for when every convex combination of f1, .., fm is real rooted, then there is also a common
interlacing. For this we will use Lemma 3.2.7 inductively. The base case can be derived directly from
Lemma 3.2.7 when there are only 2 functions. Now to prove that when f1, .., fm−1 has a common interlacing
and all the convex combinations of f1, .., fm are real rooted, then also f1, .., fm has a common interlacing.
Here we need to use the fact that every convex combination of fm with fi is real rooted, so fm has a
common interlacing with every f1, .., fm−1. Let’s assume that f1, .., fm doesn’t have a common interlacing,
then there exist an k ∈ [n − 1] and a p ∈ [m − 1] such that lm,k > min(l1,k+1, ..., lm−1,k+1) = lp,k+1 or
lp,k = max(l1,k, ..., lm−1,k) < lm,k+1. This means there is no common interlacing between fm and fp; a
contradiction.

3.3 Stable Polynomials

Here we will focus on the creation of stable polynomials. What these are, will be explained in the following
definition.

Definition 3.3.1. Let f(z1, ..., zm) be a polynomial, we say f is stable if it either is the zero polynomial or
for f when Im(zi) > 0 for all i f(z1, ..., zm) 6= 0. We call f real stable if in addition also its coefficients are
real.

While this definition is easy to understand, it can be changed a bit such that the stability of a multivariate
function can be proven with only univariate functions.

Lemma 3.3.2. f(z1, ..., zm) is stable if and only if for all α ∈ Rn and v ∈ {x > 0|R}n univariate function
f(α+ vt) with t ∈ C is stable.

Proof. Since if a function is stable, is only determined by the values for which the function can’t be zero. We
only need to show that Im(t) > 0 if and only if Im(zi) > 0 for all i.
When Im(t) > 0, also Im(vit) > 0 for all i and since Im(αi) = 0 for all i, it goes without saying that also
Im(zi) > 0 for all i.
When Im(zi) > 0 for all i, it can only be that Im(t) > 0, because v values can’t be negative or equal to zero
and t is the only part that can take a complex value.
Knowing this, we know that there is a bijection between the two (this is partially possible because of Im(zi) >
0 for all i, since with (α+ vt) the imaginary part is either negative, positive or non existent).

Since we are busy with univariate polynomials, it’s time to prove an important property of them.

Lemma 3.3.3. A univariate polynomial f is real stable if and only if it is real rooted.

Proof. It’s a given that when f is real rooted it is also real stable, because real rooted is simply real stable
with added constraint that there can’t be any roots with a negative imaginary part.
Now for when we already now f is real stable. Let’s assume we have found a function that is real stable, but
not real rooted. f(z) =

∑n
j=0 cjz

j with cj ∈ R and root a− bi where b is positive.

0 = f(a− bi) = f(a− bi)

=

n∑
j=0

cj(a− bi)j

=

n∑
j=0

cj(a− bi)j

=

n∑
j=0

cj(a+ bi)j

= f(a+ bi)

Now f has a root with a positive imaginary part, this is in contradiction with f being real stable. So when
f is real stable, it has to also be real rooted.
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Now to create some real stable polynomials of our own. For this we will use Proposition 2.4 of [1].

Proposition 3.3.4 (Proposition 2.4 of [1]). When A1, ..., Am are positive semidefinite matrices, then

f(z1, ..., zm) = det

(
m∑
i=1

ziAi

)

is real stable.

Proof. We start by proving that if f is stable, it is real stable. This is because an alternative way of calculating
the determinant of a matrix is by multiplying all its eigenvalues. Since

∑n
i=1 ziAi is a Hermitian matrix when

z ∈ Rm, we can now make use of that Hermitian matrices only have real eigenvalues, that means f also only
gives real values when (z1, ..., zm) ∈ Rm. Hence, we can conclude that all coefficients of f also must be real.
Now only the stability is left to be proven, for this we start with the case that all Ai are positive definite.
By using Lemma 3.3.2 we can simplify f(z1, ..., zm) to a univariate polynomial f(α + vt), where α ∈ Rm,
v ∈ {x > 0|R}m and t ∈ C. Now we can start rewriting f(α+vt) in a form that is more useful to us. For this
we will use Lemma 2.2.3 which says there is a positive definite inverse for positive definite matrices, Lemma
2.2.4 tell us that summations of positive definite matrices are also positive semidefinite and 2.2.6 tells us that
there are exist unique positive definite square roots for all positive definite matrices.

f(α+ vt) = det

(
n∑
i=1

(αi + vit)Ai

)

= det

(
t

n∑
i=1

viAi +

n∑
i=1

αiAi

)

= det

( n∑
i=1

viAi

) 1
2

 det

(t n∑
i=1

viAi

) 1
2

+

(
n∑
i=1

αiAi

)(
n∑
i=1

viAi

)− 1
2


= det

(
n∑
i=1

viAi

)
det

tI +

(
n∑
i=1

viAi

)− 1
2
(

n∑
i=1

αiAi

)(
n∑
i=1

viAi

)− 1
2


= det (P ) det

(
tI + P−

1
2HP−

1
2

)
= det (P ) det

(
tI + P−

1
2H

(
P−

1
2

)∗)
The function, which we are now left with is a constant multiplied by the characteristic polynomial of

P−
1
2H

(
P−

1
2

)∗
, so the eigenvalues of that matrix are its roots. Since P−

1
2H

(
P−

1
2

)∗
is positive definite, it

is also Hermitian. This means that f(α+vt) only has real roots and that f(z1, ..., zm) is real stable according
to Lemma 3.3.2.
To prove it is also true when Ai is only positive semidefinite, we need to use the Hurwitz’ theorem (3.1.1).
Let D = {(z1, ..., zm) ∈ Cm|Im(xi) > 0 for all i} and {fk}∞k=1 be a sequence of functions that are created
the same way as f , but with only positive definite matrices, so fk is nonvanishing and analytic on D. Now
since {fk}∞k=1 can converge to f , it means that f is nonvanishing on D or identical to zero in other words
stable.

To further increase our possibilities with real stable polynomials, we will need to prove that they stay real
stable after having been multiplied by (1− ∂zi). To prove this, we first need the following lemma.

Lemma 3.3.5. Let q ∈ C[z] be stable, then q(z)− ∂zq(z) is also stable.

Proof. Define q(z) = a0(z−a1)...(z−an) this means that ∂zq(z) = a0
∑n
i=1((z−a1)...(z−ai−1)(z−ai+1)...(z−

an)). In this proof, we can ignore cases where ai is a root of both q and q(z) − ∂zq(z), because we then
already know that ai is a stable root. In order to ignore them, we will simply remove them from the domain
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of the functions.
We may then assume that q−∂zq

q has the same roots as q − ∂zq.

q(z)− ∂zq(z)
q(z)

= 1− ∂zq(z)

q(z)

= 1−
n∑
i=1

1

z − ai

= 1−
n∑
i=1

1

z − ai
z − ai
z − ai

= 1−
n∑
i=1

z − ai
|z − ai|2

When (∂zq − q)(z) is zero, we know that this equation has to be upheld.

0 = 1−
n∑
i=1

z − ai
|z − ai|2

z

n∑
i=1

1

|z − ai|2
= 1 +

n∑
i=1

ai
|z − ai|2

z

n∑
i=1

1

|z − ai|2
= 1 +

n∑
i=1

ai
|z − ai|2

Since
∑n
i=1

1
|z−ai|2 has a real positive value and Im

(
1 +

∑n
i=1

ai
|z−ai|2

)
≤ 0, hence all roots of q − ∂zq also

have to be stable.

Theorem 3.3.6. Let p ∈ R[z1, ..., zm] be real stable, then (1− ∂zi)p(z1, ..., zm) is also real stable.

Proof. Define
q(zi) = p(z1, ..., zm)|z1=x1,...,zi−1=xi−1,zi+1=xi+1,...,zm=xm

where x1, ..., xi−1, xi+1, ..., xm have a positive imaginary part. According to the previous lemma (3.3.5) since
q(zi) is stable, (1 − ∂zi)q(zi) is also stable. This implies that (1 − ∂zi)p(z1, ..., zm) has no roots where all
values have a positive imaginary part, hence is stable. It is also real stable, because you can’t create complex
values by taking the derivative of a polynomial.

Theorem 3.3.7 (Lemma 2.4(d) of [12]). Let f ∈ R[z1, ..., zm] be real stable and a ∈ R, then f |zi=a ∈
R[z1, ..., zi−1, zi+1, ..., zm] with i ∈ [m] is also real stable.

Proof. For this we will again need to use Hurwitz’ Theorem (3.1.1). Let D = (z1, ..., zm) ∈ {Cm|Im(xi) >
0 for all i} and {fk}∞k=1 = {f |zi=a+i2−k}∞

k=1
. Every fk is real stable since zi gets a value with a positive

imaginary part. Since this sequence converges to f |zi=a, so f |zi=a must be stable. Also since f ’s coefficients
are real and a is real, f |zi=a is real stable.

3.4 Determinants

Here we will focus on some properties of determinants.

Lemma 3.4.1 (Lemma 1.1 of [5]). When A is an invertible n× n matrix and u, v are vectors, then

det(A+ uv∗) = det(A)(1 + v∗A−1u)
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Proof. The first step is to separate the determinant of A, which gets us det(A) det(I + (A−1uv∗)). Now
the only thing left to prove is that det(I + A−1uv∗) = (1 + v∗A−1u). The first step is to create a larger
(n+ 1)× (n+ 1) matrix with the same determinant.

det(I +A−1uv∗) =

(
I +A−1uv∗ A−1u

0 1

)
This matrix should be read as the matrix I +A−1uv∗ with column vector A−1u pressed against it and with
a bottom row added which is filled with zeros except the last value. Since the bottom row is only zero except
the last value, all values in the vector A−1u are ignored in the determinant. Now we can go and add some
more matrices with a determinant value of 1.

det

(
I +A−1uv∗ A−1u

0 1

)
= det

(
I 0
v∗ 1

)
det

(
I +A−1uv∗ A−1u

0 1

)
det

(
I 0
−v∗ 1

)
= det

(
I 0
v∗ 1

)
det

(
I A−1u
−v∗ 1

)
= det

(
I A−1u
0 v∗A−1u+ 1

)
= 1 + v∗A−1u

There you have it.

Let A(t) be a differentiable function from C → Cn×n. We could turn this back into a value in C by taking
the determinant of it. Now one might wonder what the derivative of this might be, Jacobi’s formula was
created to simplify this process.

Theorem 3.4.2 (Jacobi’s formula, theorem 8.3 of [8]). When A(t) : C→ Cn×n, then

∂t det(A) = Tr(adj(A)(∂tA))

Proof. We will first define the determinant as a function, so that we can use the chain rule on it.

det(X) = det


X1,1 X1,2 · · · x1,n

X2,1 X2,2

...
...

. . .
...

Xn,1 · · · · · · Xn,n


= det(X1,1, X1,2, X1,3..., X2,1, X2,2, X2,3, ..., Xn,n)

=

n∑
j=1

Xi,jadjt(X)i,j

where X ∈ Cn×n. Here the determinant is written using the Laplace expansion, where i is an arbitrary row.
Now we can apply the chain rule.

∂t det(A) =

n∑
i=1

n∑
j=1

(∂Xi,j
det(A))(∂tA)i,j

Look at the derivative of the determinant, important here is that adjt(A)i,j doesn’t use the value of Ai,j .

∂Xi,j
det(A) = ∂Xi,j

n∑
j=k

Aikadjt(A)ik

=

n∑
j=k

∂Xi,j
Ai,kadjt(A)i,k

= ∂Xi,jAijadjt(A)i,j (if j 6= k, then that part doesn’t use Xi,j)

= adjt(A)i,j
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Now by only having used the chain rule we get

∂t det(A) =

n∑
i=1

n∑
j=1

adjt(A)i,j(∂tA)i,j

By using how the trace is taken of two matrices that are multiplied by each other, we get

n∑
i=1

n∑
j=1

adjt(A)i,j(∂tA)i,j = Tr(adj(A)(∂tA))

Corollary 3.4.3. Let A(t) = B + Ct, where B is an invertible square matrix and C a matrix of the same
size. If the value of t is equal to 0 then

∂t det(B + Ct)|t=0 = det(B)Tr(B−1C).

Similarly, when we only know that B + Ct is invertible

∂t det(B + Ct) = det(B + Ct)Tr((B + Ct)−1C).

Proof. This proof is near trivial due the previous theorem (3.4.2).

∂t det(B + Ct)|t=0 = Tr(adj(B + Ct)(∂t(B + Ct)))|t=0

= Tr(adj(B + Ct)C)|t=0

= Tr(adj(B)C)

= Tr(det(B)B−1C) (making use of that B−1 =
adj(B)

det(B)
)

= det(B)Tr(B−1C)

The proof for when we only know that B + Ct is invertible is nearly the same and is left as an exercise to
the reader.
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4 Mixed Characteristic Polynomials

In this chapter, we will explore mixed characteristic polynomials. This is a polynomial particularly created
for solving the Weaver conjecture.

Definition 4.0.1. Let A1, ..., Am be n× n matrices. We then call µ[A1, ..., Am](x) the mixed characteristic
polynomial of A1, ..., Am, which is the function given by

µ[A1, ..., Am](x) =

(
m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

)∣∣∣∣
z1=...=zm=0

.

We are particularly interested in mixed characteristic polynomials when all Ai are covariance matrices, what
covariance matrices are we will define now.

Definition 4.0.2. Let v be a random column vector taken from a distribution, then the covariance of its
possible values is shown by matrix C also known as the covariance matrix. Define

C = E vv∗

Definition 4.0.3. For distributions in thesis we will only use finite support, meaning that there is a finite
set of possible values the vector v can take. Each of those values has its own probability of occurring.

Theorem 4.0.4. Let v1, ..., vm ∈ Cn be independent random column vectors with finite support and set
Ai = E viv∗i . Then

Eχ

[
m∑
i=1

viv
∗
i

]
(x) =

(
m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

)∣∣∣∣
z1=...=zm=0

= µ[A1, ..., Am](x) (3)

To prove the above Theorem 4.0.4, we will need an operator which can show the relation between expected
values and partial derivatives.

Lemma 4.0.5. For every square matrix M ∈ Cn×n and random column vector v ∈ Cn, we have

Edet (M − vv∗) = (1− ∂t) det (M + tE vv∗) |t=0. (4)

Proof. We will start with the case that M is invertible.

E det (M − vv∗) = Edet(A)(1− v∗M−1v) (Using Lemma 3.4.1)

= Edet(M)(1− v∗(M−1v))

= Edet(M)(1− Tr((M−1v)v∗))

= det(M)E(1− Tr(M−1vv∗))

= det(M)− det(M)ETr(M−1vv∗)

= det(M)− det(M)Tr(M−1 E vv∗) (Possible, because trace is linear)

We will now be adding the t that is set to zero.

det(M)− det(M)Tr(M−1 E vv∗) = det(M + tE vv∗)|t=0 − det(M)Tr(M−1 E vv∗)
= det(M + tE vv∗)|t=0 − ∂t det(M + tE vv∗)|t=0 (Using Corollary 3.4.3)

= (1− ∂t) det(M + tE vv∗)|t=0

Now we have proven that the lemma holds for the case that M is invertible. So now it is time for the case
where M isn’t invertible.
For this we will create function N(t) = M−tI. When t→ 0, then N(t)→M . If t isn’t equal to an eigenvalue
of M , we know that N(t) is invertible. If we now put N(t) in both sides of Equation (4), we can use the
fact that both sides are then polynomials. So, continuity then implies that it also works for non invertible
matrices.
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Proof of Theorem 4.0.4. In order to prove Equation (3) inductively we will need to create a more generic
version of it. This is done by rewriting it to this

Edet

(
M −

m∑
i=1

viv
∗
i

)
=

(
m∏
i=1

1− ∂zi

)
det

(
M +

m∑
i=1

ziAi

)∣∣∣∣
z1=...=zm=0

,

where M is an arbitrary matrix in Cd×d. Start with the base case that m = 0. This case is rather trivial due
to all the summation and products being gone.

Edet(M) = det(M)

Now the proof for when m > 0 and it works for m − 1. (Notation note: here we will use E with an under
script, to show that the expected value is taken at a different time)

Edet

(
M −

m∑
i=1

viv
∗
i

)
= E
v1,...,vm−1

E
vm

det

(
M −

m−1∑
i=1

viv
∗
i − vmv∗m

)
(possible due to independence)

= E
v1,...,vm−1

(1− ∂zm) det

(
M + zmAm −

m−1∑
i=1

viv
∗
i

)∣∣∣∣
zm=0

(Lemma 4.0.5)

= (1− ∂zm) E
v1,...,vm−1

det

(
(M + zmAm)−

m−1∑
i=1

viv
∗
i

)∣∣∣∣
zm=0

= (1− ∂zm)

(
m−1∏
i=1

1− ∂zi

)
det

(
M + zmAm +

m−1∑
i=1

ziAi

)∣∣∣∣
z1=...=zm−1=0

∣∣∣∣
zm=0

=

(
m∏
i=1

1− ∂zi

)
det

(
M +

m−1∑
i=1

ziAi

)∣∣∣∣
z1=...=zm=0

Now by replacing M with xI, we get that(
m∏
i=1

1− ∂zi

)
det

(
xI +

m−1∑
i=1

ziAi

)∣∣∣∣
z1=...=zm=0

= Edet

(
xI −

m∑
i=1

viv
∗
i

)
= Eχ

[
m∑
i=1

viv
∗
i

]
(x).

Corollary 4.0.6. When A1, ..., Am are positive semidefinite, then µ[A1, ..., Am] is real rooted.

Proof. We start by using Theorem 4.0.4

µ[A1, ..., Am](x) =

(
m∏
i=1

1− ∂zi

)
det

(
xI +

m−1∑
i=1

ziAi

)∣∣∣∣
z1,...,zm=0

.

Since I is positive definite, we can use Proposition 3.3.4 to show that det
(
xI +

∑m−1
i=1 ziAi

)
is real stable,

then Theorem 3.3.6 to show, that (
∏m
i=1 1− ∂zi) det

(
xI +

∑m−1
i=1 ziAi

)
maintains the real stability and then

by inductively using Theorem 3.3.7 we get that (
∏m
i=1 1− ∂zi) det

(
xI +

∑m−1
i=1 ziAi

) ∣∣∣∣
z1,...,zm=0

is also real

stable. Now to finish this off we will use Lemma 3.3.3, which tells us that being real stable and real rooted
is the same thing for univariate functions.

Now to be able to use the previous Corollary 4.0.6, we need to prove it also works for E vv∗ matrices.

Lemma 4.0.7. Let A be equal to E vv∗, where v ∈ Cn is a random column vector with finite support, then
A is positive semidefinite.
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Proof. Let u ∈ Cn be one of the finite possibilities for v. Since uu∗ can be seen as the Gram matrix of a
collection of vectors in C1, it follows from Lemma 2.2.7 that uu∗ is positive semidefinite. Since there is only
a finite amount of possibilities for u, the value of E vv∗ can be calculated by a finite summation. So, then
according to Lemma 2.2.4 A is also positive semidefinite.

Now we can start using the real rooted property of mixed characteristic polynomials to prove that they can
form interlacing families using the values of its vectors. For this we will need to set some values related
to finite support. We will set li equal to the amount of possible values for vi, with wi,1, ..., wi,li being the
possible values. Each of those values has a probability of pi,1, ..., pi,li to occur. Let ji ∈ [li], define

qj1,...,jm =

(
m∏
i=1

pi,ji

)
χ

[
m∑
i=1

wi,jiw
∗
i,ji

]

Theorem 4.0.8. The polynomials qj1,...,jm form an interlacing family.

Proof. For k ∈ [m− 1], define

qj1,...,jk =

(
k∏
i=1

pi,ji

)
E

vk+1,...,vm
χ

[
k∑
i=1

wi,jiw
∗
i,ji +

m∑
i=k+1

viv
∗
i

]
.

Also, let

q∅ = E
v1,...,vm

χ

[
m∑
i=1

viv
∗
i

]
.

We now need to prove for all possible j1, ..., jk ∈ [l1]× ...× [lk] that the collection

{qj1,...,jk,t} with t ∈ [lk+1]

has a common interlacing. Due to Theorem 3.2.6 we can instead choose to prove that the convex combination
are real rooted. In order to show all convex combinations, let λ1, ..., λlk+1

be nonnegative numbers of which
the sum is equal to 1. This gives us the polynomial

lk+1∑
t=1

λiqj1,...,jk,t(x).

Now all that is left, is to show that it is real rooted. To prove this, let uk+1 be a random vector that is equal

to wk+1,t with a probability of λt. We then get that
∑lk+1

t=1 λiqj1,...,jk,t(x) equals(
k∏
i=1

pi,ji

)
E

uk+1,vk+1,...,vm

[
k∑
i=1

wi,jiw
∗
i,ji + uk+1u

∗
k+1 +

m∑
i=k+2

viv
∗
i

]
(x).

Since we can treat wi,ji as a random vector from a collection that only has 1 value, we can treat the above
polynomial as mixed characteristic polynomial multiplied by a real constant. According to Corollary 4.0.6
combined with Lemma 4.0.7, it is real rooted. So, every convex combination is real rooted, hence qj1,...,jm is
an interlacing family.
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5 Largest Root

This chapter will focus on proving the existence of an upper bound on the roots of mixed characteristic
polynomials with certain properties.

Theorem 5.0.1. Suppose we have Hermitian positive semidefinite matrices A1, ..., Am, which satisfy
∑m
i=1Ai =

I and Tr(Ai) < ε for all i. Then the largest root of µ[A1, ..., Am](x) is at most (1 +
√
ε)2.

First, we will prove how the
∑m
i=1Ai = I property can be applied in our favour.

Lemma 5.0.2. Let A1, ..., Am be Hermitian positive semidefinite matrices. If
∑m
i=1Ai = I, then

µ[A1, ...Am](x) =

(
m∏
i=1

1− ∂yi

)
det

(
m∑
i=1

yiAi

)∣∣∣∣
y1=...=ym=x

. (5)

Proof.

µ[A1, ...Am](x) =

(
m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

)∣∣∣∣
z1=...=zm=0

=

(
m∏
i=1

1− ∂zi

)
det

(
x

m∑
i=1

Ai +

m∑
i=1

ziAi

)∣∣∣∣
z1=...=zm=0

=

(
m∏
i=1

1− ∂zi

)
det

(
m∑
i=1

(x+ zi)Ai

)∣∣∣∣
z1=...=zm=0

=

(
m∏
i=1

1− ∂yi

)
det

(
m∑
i=1

yiAi

)∣∣∣∣
y1=...=ym=x

The last step is possible because x can be treated as a constant to the partial derivatives that are being
taken.

Definition 5.0.3. Let p(z1, ..., zm) be a multivariate polynomial, then z ∈ Rm is above the roots of p when
for all t = (t1, ..., tm) ∈ Rm where ti ≥ 0

p(z + t) 6= 0.

The collection of all the points that fulfil the previous definition are denoted as Abp.
To prove Theorem 5.0.1, we will need to show that (1 +

√
ε)21m ∈ AbQ. For this, we will use induction, by

slowly building up to the polynomial Q and proving that for each step the property (1 +
√
ε)21m ∈ AbQ is

true.
To prove Theorem 5.0.1, we will start working with the multivariate polynomial occurring in the right side
of Equation (5). We will call this part

Q(y1, ..., ym) =

(
m∏
i=1

1− ∂yi

)
det

(
m∑
i=1

yiAi

)
.

The reason why this is useful, is that when (u1, ..., um) is above the roots of Q, then maxmi=1(ui) is also above
the roots of µ[A1, ..., Am].

Definition 5.0.4. Let p(z1, ..., zm) be a real stable polynomial and z = (z1, ..., zm) an element of Abp. Then
the barrier function of p in direction i at z is

Φip(z) =
(∂zip(z))

p(z)

= ∂zi log±p(z) (reverse chain rule)

with the ± always being such that ±p(z) > 0. The value of ± also won’t need to change when the value of
z changes, because z is above the roots of p.
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Lemma 5.0.5. Analogous to Φip(z) there is the univariate version, for in the case we are only interested in
one variable.

Φip,z(zi) =

r∑
j=1

1

zi − λj

where λi, ..., λr are the roots of univariate polynomial

qz,i(t) = p(z1, ..., zi−1, t, zi+1, ..., zm). (6)

Those roots are real, as a result of Theorem 3.3.7.

Proof. The polynomial qz,i can be written as qz,i(t) = λ0
∏r
j=1(t − λj), so ∂qz,i = λ0

∑r
k=1(t − λ1)...(t −

λk−1)(t− λk+1)...(t− λr) according to the product rule. Now we can conclude that

Φip,z(zi) =
(∂qz,i(zi))

qz,i(zi)
=

r∑
j=1

1

zi − λj
.

Now some important properties of the barrier function, which can later be used inductively.

Theorem 5.0.6. Let p ∈ R[z1, ..., zm] be real stable and z ∈ Abp, then for all i, j ∈ [m] and δ ≥ 0

Φip(z + δej) ≤ Φip(z) (non-increasing)

and
Φip(z + δej) ≤ Φip(z) + δ∂zjΦip(z + δej) (convexity). (7)

Also, that Φip(z) > 0.

The following proof is based on Lemma 17 of [10].

Proof. We will start with the case that i = j. Since we are only interested in one variable of p, we can use
Lemma 5.0.5 Φip(z) =

∑r
k=1

1
zi−λk

where λk is real. Since z ∈ Abp, we know that zi > λk for all k, we can

apply this further giving us 0 < 1
zi−λk

> 1
zi+δ−λk

from this the non-increasing property follows and that

Φip(z) > 0.

Now the convexity property. We can do this by first generalizing taking the derivative of Φip(z).

∂lziΦ
i
p(z) = (−1)ll!

r∑
k=1

1

(zi − λk)l+1
(8)

for integer l > 0. If it is positive or not completely depends on the value of l. Since we already know that
∂ziΦ

i
p(z) is non-increasing and from Equation (8). We can deduce that the convexity property also must be

true.
The proof for the case when i 6= j. Since we are now only interested in two variables, we can turn p into a
bivariate function without losing generality.

qz,i,j(zi, zj) = p(z1, ..., zm)

To achieve our goal, we will first have to prove a generalization, that

(−1)l∂lzjΦiqz,i,j)(zi, zj) ≥ 0 (9)

where l > 0. To make the problem a bit more understandable

(−1)l∂zjΦqz,i,j (zi, zj)
i = (−1)l∂lzj∂zi log±qz,i,j(zi, zj) (definition 5.0.4)

= ∂zi

(
(−1)l∂lzj log±qz,i,j(zi, zj)

)
(possible, because z is above the roots of qz,i,j)
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So, we need to proof that (−1)l∂lzj log±qz,i,j(zi, zj) is non-decreasing in zi.
For this we will make use of the fact that polynomial qz,j from Equation (6) is real rooted and that the roots
of a polynomial are a continuous function of its coefficients. Now we can set y1(xi), ..., yd(xi) to be the roots
of qz,j , where d is constant. We then get,

(−1)l∂lzj log±qz,i,j(zi, zj) = −(l − 1)!

d∑
k=1

1

(xj − yk(xi))l
.

We can now prove Inequality (9) by showing that the value of 1
(zj−yk(zi))l is non-increasing for all k in zi. It

makes sense that when the value of zi increases, then the value of yk(zi) decreases, because we are getting
further away from the roots, causing 1

(xj−yk(xi))l
to decrease in value. Let’s assume this isn’t the case and

that yk(xi) increases, meaning that yk(xi) has a positive derivative for all x1 in a neighbourhood. Then
there exists a point x0 ∈ Rm such that the derivative of yk(x0) is positive and that for all xi sufficiently close
enough to x0, yk(xi) has a positive derivative and there exists a local constant multiplicity m (meaning that
there are m roots for qz,j in the point yk(xi) for all xi that are close enough).
Now we have 2 different cases. We will start with the case that m is 1, because of this we know that
polynomial t → qz,i,j(x

0, t) has to be increasing or decreasing for value t = yk(x0), otherwise the function
would be constant. Since qz,i,j(x

0, yk(x0)) = 0 and because qz,i,j(x
0, xj) is analytic (all polynomials are

analytic), we can use the implicit function theorem (Theorem 8.6 of [7])extended for complex values.
The implicit function theorem extended to complex values tells us that when f(x, y) is an analytic function,
x0, y0 in C2 have a neighbourhood, where x0, y0 are chosen such that f(x0, y0) = 0 and

∂yf |(x0,y0) 6= 0.

Then there exist an analytic function g :⊆ C→ C such that f(x, g(x)) = 0.
Applying this to what we just have proven, we get that yk is an analytic function. Now we can use the
Cauchy-Riemann Equation (Opmerking 4.31 of [11]), which states when f : U → C is an analytic function
(U is an open subset of C), it can then be rewritten as

f(x+ yi) = u(x, y) + iv(x, y)

where u, v : R2 → R, with following properties. That ∂xu = ∂yv and ∂yu = −∂xv.
From this we learn that because yk has positive derivative for real values in x0, it also must have a positive
derivative for imaginary values in x0. So, there has to be a t > 0 such that Im(yk(x0 + ti)) > 0, meaning
that qz,i,j has a root for which both xi and xj have a positive imaginary value. This contradicts that qz,i,j
is real stable, so yk has to be non-increasing when it has multiplicity 1.
For the case that m isn’t 1, we can do almost the exact same thing. Only now we need to use ∂m−1zj qz,i,j
instead of qz,i,j in the implicit function theorem. This works, because ∂m−1zj qz,i,j(xi, yk(xi)) = 0 and the
multiplicity of yk(xi) for this polynomial is also 1.
So, now we have successfully proven Equation (9), from that immediately follows the non-increasing and
convexity property of Φip.

Lemma 5.0.7. Let p(z1, ..., zm) be a real stable polynomial. When z ∈ Abp and Φip(z) < 1, then z ∈
Abp−∂zip.

Proof. Using the previous Theorem 5.0.6, we know that 0 < Φip(z) < 1. From this we learn that for every
nonnegative vector t, when p(z) is positive also p(z + t) and ∂zip(z + t) are positive. The same is true the
other way around when p(z) is negative. Since the proof for both cases is near identical, we will only do the
case where p(z) is positive. Using the non-increasing property of Φip we get that Φip(z+ t) < 1. This leads to

Φip(z + t) =
∂zip(z + t)

p(z + t)
< 1

which is equivalent to
∂zip(z + t) < p(z + t).

This gives us the desired result of (p− ∂zip)(z+ t) > 0, which means that z is above all roots of p− ∂zip.
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Lemma 5.0.8. Let p(z1, ..., zm) be real stable and z ∈ Abp. When Φjp(z) ≤ 1− 1
δ for δ > 0, then for all i

Φip−∂zj p
(z + δej) ≤ Φip(z). (10)

Proof. To start we will express Φip−∂zj p
in terms of Φp.

Φip−∂zj p
=
∂zi(p− ∂zjp)
p− ∂zjp

=
∂zi((1− Φjp)p)

(1− Φjp)p

=
(1− Φjp)(∂zip)

(1− Φjp)p
+
∂zi(1− Φjp)p

(1− Φjp)p
(product rule)

=
∂zip

p
+
∂zi(1− Φjp)

(1− Φjp)

= Φip −
∂ziΦ

j
p

1− Φjp

To make it so that it only contains Φip, we will have to rewrite ∂ziΦ
j
p using Φip.

∂ziΦ
j
p = ∂zi

∂zjp

p

=
(∂zj∂zip)p− (∂zip)(∂zjp)

p

=
(∂zi∂zjp)p− (∂zjp)(∂zip)

p

= ∂zjΦip.

So,

Φip−∂zj p
= Φip −

∂zjΦip

1− Φjp
. (11)

We now get back to proving Equation (10). By applying Equation (11) to it, we get the equivalent statement

Φip(z + δej)−
∂zjΦip(z + δej)

1− Φjp(z + δej)
≤ Φip(z)

The convexity property that we got from Theorem 5.0.6 tell us that

Φip(z + δej)− δ∂zjΦip(z + δej) ≤ Φip(z).

By combining this with what we already had, we now know that in order to prove this Lemma, we only need
to show that

−
∂zjΦip(z + δej)

1− Φjp(z + δej)
≤ −δ∂zjΦip(z + δej) (12)

In the proof of Theorem 5.0.6 we have shown that −∂zjΦip(z+ δej) ≥ 0, so Equation (12), can be implied by

1

1− Φjp(z + δej)
≤ −δ

Now by using the non-increasing property of Φip we get that

1

1− Φjp(z + δej)
≤ 1

1− Φjp(z)
≤ δ.
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This can be changed into

Φjp(z) ≤ 1− 1

δ

which is the condition for this lemma.

Proof of Theorem 5.0.1. We start by defining P (y1, ..., ym) = det(
∑m
i=1 yiAi). Let t > ε (the exact value for

t will be set later on), then

P (t, ..., t) = det(t

m∑
i=1

Ai) = det(tIn) = tn > 0.

To prove that this means that t1m ∈ AbP , we need to show that it is still true when the vector v = (v1, ..., vm)
(where vk ≥ 0 for all k ∈ [m]) is added to t1m. This can be done by using Lemma 2.2.4, which says that
because tIn is positive definite, also tIn +

∑m
k=1 vkAi is positive definite.

Using Corollary 3.4.3 and assuming that P (y) isn’t zero.

Φip(y1, ..., ym) =
∂zi det(

∑m
k=1 ykAk)

det(
∑m
k=1 ykAk)

=
det(

∑m
k=1 ykAk)Tr((

∑m
k=1 ykAk)−1Ai)

det(
∑m
k=1 ykAk)

= Tr((

m∑
k=1

ykAk)−1Ai).

So,

Φip(t, ..., t) = Tr((tI)−1Ai) =
Tr(Ai)

t
≤ ε

t
< 1.

Since we want to use Lemma 5.0.8, we need to turn this into something of form 1− 1
δ .

1− 1

δ
=
ε

t

is equivalent to

δ =
1

1− ε
t

.

So that is how we will define δ.
For k ∈ [m], define

Pk(y1, ..., ym) =

 k∏
j=1

(1− ∂zj )

P (y1, ..., ym).

This will be used to build up toward Q = Pm.
To prove that ΦiPm

((t+ δ)1m) ≤ 1− 1
δ , we will use a proof by induction. To do this we will increase the value

of k, while also increasing t1m step by step into (t+ δ)1m. In order to increase the value, we put in ΦiPk
, we

will set

xk = t1m +

k∑
j=1

δej .

For the inductive proof, we already have the base case; ΦiP0
(x0) ≤ 1 − 1

δ and x0 ∈ AbP0
. Now the proof

for when ΦiPk
(xk) ≤ 1 − 1

δ and xk ∈ AbPk
, then also ΦiPk+1

(xk+1) ≤ 1 − 1
δ and xk+1 ∈ AbPk+1

. The order

in which these two properties is proven doesn’t matter. So, we will start with xk+1 ∈ AbPk+1
. Use Lemma

5.0.7, which gives us that xk ∈ AbPk+1
and since xk+1 is above xk also xk+1 ∈ AbPk+1

. By using Lemma
5.0.8, we get that ΦiPk+1

(xk+1) ≤ ΦiPk
(xk) ≤ 1− 1

δ .
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Now we have that the largest root of Q is at most xm, this means that the largest root of µ[A1, ..., Am] is at
most t+ δ. By now finally setting the value of t to

√
ε+ ε, we get that

t+ δ = t+
1

1− ε
t

=
√
ε+ ε+

1

1− ε√
ε+ε

=
√
ε+ ε+

√
ε+ ε√
ε

=
√
ε+ ε+ 1 +

√
ε

= (1 +
√
ε)2

So, the largest root of µ[A1, ..., Am] is at most (1 +
√
ε)2.
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6 Proof Weaver’s Conjecture

The goal of this chapter is, as you might have read in the title, to prove Weaver’s conjecture. We will do this
by first proving a theorem which is an accumulation of all that we have proven so far. Then we will use that
to prove a generalisation of Weaver’s conjecture.

Theorem 6.0.1. Let ε > 0 and u1, ..., um are independent random vectors in Cn with finite support. If

m∑
i=1

Euiu∗i = I

and
E ||ui||2 ≤ ε for all i,

then

P

[∣∣∣∣∣∣∣∣ m∑
i=1

uiu
∗
i

∣∣∣∣∣∣∣∣ ≤ (1 +
√
ε)2

]
> 0 (13)

Proof. To simplify notation a bit, set M =
∑m
i=1 uiu

∗
i . We start with looking at the value of ||M ||. Since

M is a summation of positive definite matrices, it is also positive definite. Lemma 2.3.1 tells us that then
||M || is equal to the largest eigenvalue of M . This means Equation (13) is equivalent to saying that there is
a chance that the largest root of χ [M ] is smaller or equal to (1 +

√
ε)2.

To prove this, we will need to have a way to separately handle the possible values of ui. For this we will use
the same notation as we did at the end of Chapter 4. We set li equal to the number of possible values for ui,
with wi,1, ..., wi,li being the possible values. Each of those values has a probability of pi,1, ..., pi,li to occur.
Let ji ∈ [li], define

qj1,...,jm =

(
m∏
i=1

pi,ji

)
χ

[
m∑
i=1

wi,jiw
∗
i,ji

]
.

All possible χ [M ] can now be linked to a qj1,...,jm (this is a one on one relation). By using Theorem 4.0.8, we
get that these polynomials form an interlacing family. Then according to 3.2.5, there is a qj1,...,jm of which
the largest root is smaller than the largest root of q∅ (sum of all possible qj1,...,jm). Define Ai = Euiu∗i .
Theorem 4.0.4 tells us that we are now working with the characteristic polynomial of Ai, ..., Am.

q∅ =
∑

j1∈[l1],...,jm∈[lm]

qj1,...,jm = Eχ

[
m∑
i=1

uiu
∗
i

]
= µ[A1, ..., Am]

To finish this proof, we will use Theorem 5.0.1. For that we already have the condition that EM = I, we
only need to prove that Tr(Ai) ≤ ε. This follows from

Tr(Ai) = ETr(uiu
∗
i ) = Eu∗i ui = E ||ui||2 ≤ ε.

From Theorem 5.0.1, we get that because the largest root of q̃∅ is smaller than (1 +
√
ε)2, also Equation (13)

is true.

We shall move on to proving a generalization of Weaver’s Conjecture 1.0.1.

Corollary 6.0.2. Let v1, ..., vm ∈ Cd be column vectors such that

m∑
i=1

viv
∗
i = I (14)

and ||vi||2 ≤ δ for all i. Then for every positive integer r there exists a partition {S1, ..., Sr} of [m] such that∣∣∣∣∣∣∣∣ ∑
i∈Sj

viv
∗
i

∣∣∣∣∣∣∣∣ ≤ ( 1√
r

+
√
δ

)2

(15)
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Proof. This proof will mainly focus on how this corollary is a weaker or equally strong expression as Theorem
6.0.1.
Define wi,k ∈ Crd where i ∈ [m] and k ∈ [r]. The value of wi,k is that of r vectors combined together, where
the kth is vi and the others are 0d. For example,

wi,1 =


vi
0d
...

0d

 .

For the independent random vector ui from Theorem 6.0.1, we will use vectors of the size n = rd. The values
will be set as follows ui is equal to {

√
rwi,k}rk=1 with probability 1

r . Now to guarantee these values match
the conditions.

Euiu∗i =


1
r

√
rvi
√
rv∗i 0d×d · · · 0d×d

0d×d
1
r

√
rvi
√
rv∗i

...
...

. . .
...

0d×d · · · · · · 1
r

√
rvi
√
rv∗i



=


viv
∗
i 0d×d · · · 0d×d

0d×d viv
∗
i

...
...

. . .
...

0d×d · · · · · · viv
∗
i


and

E ||ui||2 = ||
√
rvi||2 = r||vi||2 ≤ rδ.

So,
∑m
i=1 Euiu∗i = Ird and ε = rδ. Now we can apply Theorem 6.0.1, which tells us that there exists an

assignment of u′i ∈ {
√
rwi,k}rk=1 such that

(1 +
√
rδ)2 ≥

∣∣∣∣∣∣∣∣ m∑
i=1

u′iu
′∗
i

∣∣∣∣∣∣∣∣
To go back to the values we started with, we will use Sk = {i|u′i =

√
rwi,k}.∣∣∣∣∣∣∣∣ m∑

i=1

u′iu
′∗
i

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ m∑
k=1

∑
Sk

(
√
rwi,k)(

√
rwi,k)∗

∣∣∣∣∣∣∣∣.
In conclusion for all k, ∣∣∣∣∣∣∣∣ ∑

i∈Sk

viv
∗
i

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∑
Sk

wi,kw
∗
i,k

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣ m∑
k=1

∑
Sk

wi,kw
∗
i,k

∣∣∣∣∣∣∣∣
=

1

r

∣∣∣∣∣∣∣∣ m∑
k=1

∑
Sk

(
√
rwi,k)(

√
rwi,k)∗

∣∣∣∣∣∣∣∣
≤ 1

r
(1 +

√
rδ)2

=

(
1√
r

+
√
δ

)2

.
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Proof of Weaver’s Conjecture 1.0.1. This proof will mainly show how Corollary 6.0.2 is a generalization of
Weaver’s Conjecture.
First, we bring back Corollary 6.0.2 to something simpler by setting r to 2, since we are only interested in
the case where a partition into 2 parts is made. Set vi = wi√

η . This means that

m∑
i=1

|〈u, vi〉|2 = 1.

To prove that this means that Equation (14) is true, we will rewrite Condition (1).

1 =

m∑
i=1

|〈u, vi〉|2

=

m∑
i=1

|utvi|2

=

m∑
i=1

(utvi)(utvi)

=

m∑
i=1

(utvi)(u
∗vi)

=

m∑
i=1

(utvi)(v
t
iu)

=

m∑
i=1

ut(viv
t
i)u

= ut

(
m∑
i=1

viv
t
i

)
u

Making use of the fact that u is a unit vector; utu = 1, so

m∑
i=1

viv
t
i = I

= I

=

m∑
i=1

viv
∗
i

From ||wi|| ≤ 1 for all i, we learn that ||vi||2 ≤ 1
η = δ. We now have all the conditions for Corollary 6.0.2.∣∣∣∣∣∣∣∣ ∑

i∈Sj

viv
∗
i

∣∣∣∣∣∣∣∣ ≤ ( 1√
r

+
√
δ

)2

is equivalent to ∣∣∣∣∣∣∣∣ ∑
i∈Sj

wiw
∗
i

∣∣∣∣∣∣∣∣ ≤ η( 1√
2

+

√
1

η

)2

=
η

2
+
√

2η + 1.

So, if η reaches a certain value, then η
2 +
√

2η+ 1 < η (Here it is important to note that not for every η there
has to exist a θ, only that there is a combination of the two that exists).
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Now to finish this prove, we need to prove that this is also true for maxu

(∑
i∈Sj
|〈u,wi〉|2

)
.

max
u

∑
i∈Sj

|〈u,wi〉|2
 = max

u

u∗
∑
i∈Sj

wiw
∗
i

u


= max

u
〈

∑
i∈Sj

wiw
∗
i

u, u〉

because u is a unit vector, we are now calculating the largest eigenvalue of
∑
i∈Sj

wiw
∗
i . This means that

max
u

∑
i∈Sj

|〈u,wi〉|2
 = max

eigenvalues

∑
i∈Sj

wiw
∗
i


=

∣∣∣∣∣∣∣∣ ∑
i∈Sj

wiw
∗
i

∣∣∣∣∣∣∣∣ (Using Lemma 2.3.1)

Now to give some examples of possible values for Weaver’s Conjecture KS2. When η
2 −
√

2η − 1 > 0, then
η and θ = η

2 −
√

2η − 1 are valid solutions for Weaver’s Conjecture KS2. To give a natural number example
there is η = 18 and θ = 2.
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7 Paving Conjecture

Using Corollary 6.0.2 we have already shown that we can prove Weaver’s Conjecture KS2 which is known
for implying the Kadison-Singer problem. Another thing we can do with it is prove the Paving Conjecture.
The reason why the Paving Conjecture is interesting, is because Weaver’s conjecture KS2 doesn’t directly
imply the positive solution to Kadison-Singer problem, but instead it implies the Paving Conjecture which
is known to be equivalent to the positive solution of the Kadison-Singer problem. So, by proving the Paving
Conjecture we are one step closer to fully proving the positive solution to the Kadison-Singer problem.
Before we can explain the Paving Conjecture we first need to define what pavings are.

Definition 7.0.1. Matrix M ∈ Cn×n can be (r, ε)-paved where ε > 0 and r ∈ N, if there exist coordinate
projections P1, ..., Pr with

∑m
i=1 Pi = In such that

||PiMPi|| ≤ ε||M ||

for all i ∈ [m].

Since we now understand what pavings are, we can go onto the Paving Conjecture.

Conjecture 7.0.2 (Paving Conjecture). For every ε > 0 there is a r ∈ N such that every Hermitian matrix
with a zero diagonal can be (r, ε)-paved.

7.1 Theorems for proving the Paving Conjecture

In this chapter, we will work with a variety of matrix types. To not define the same types of matrices over
and over again, we will define some collections.

Definition 7.1.1. We set:

• H is the collection of all Hermitian matrices with zero diagonal.

• U are all unitary matrices in H.

• Q is the collection of all Hermitian projection matrices where the values on the diagonal are 1
2 .

In order to prove the Paving Conjecture, we wish to stop working with matrices in H and step by step convert
it into a problem for matrices in Q.

Lemma 7.1.2 (Theorem 3 {(5) → (4)}of [2]). If there is a function r : R>0 → N such that every 2n × 2n
matrix U ∈ U can be (r(ε), ε)-paved, then every n× n matrix H ∈ H can be (r(ε), ε)-paved.

Proof. We use H to create matrix

U =

(
H

√
I −H2

√
I −H2 −H

)
∈ U .

Since U can be (r(ε), ε)-paved, we can now create the paving for H by simplifying the diagonal projections
for U leaving only the top left quarter behind. So, H can be (r(ε), ε)-paved.

Now we can prove the Paving Conjecture without using H, but instead using U . To push this even one step
further, we will first need to prove some connections between Q and U .

Lemma 7.1.3. The function f : U → Q defined by f(U) = I+U
2 is bijective.

Proof. To do this, we simply need to show that there exists a one on one relation between U and Q through
f . Since f only uses multiplication and summations to constant variables, we know that f creates a link from
each U to a unique element in f(U) and the other way around. So, we only need to prove that f(U) = Q.

f(U) =

(
I + U

2

)2

=
I + 2U + U2

4
=
I + U

2
∈ Q
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and
f−1(Q) = (2Q− I)

2
= 4Q− 4Q+ I = I.

So, f(U) ∈ Q and Q ∈ f(U).

Lemma 7.1.4 (Theorem 3 {(6) → (5)}of [2]). If there is a function r : R>0 → N such that every n × n
matrix Q ∈ Q can be (r(ε), 1+ε2 )-paved, then every n× n matrix U ∈ U can be (r(ε)2, ε)-paved.

Proof. Here it is important to first notice that ||U || = || − U ||. We start by using Lemma 7.1.3. For
U we can create matrix Q1 = f(U) ∈ Q with coordinate projections P1,1, ..., P1,r(ε). Now we know that

||P1,iQ1P1,i|| ≤ 1+ε
2 . Sadly, we cannot directly rely this back to ||U ||, this is because for some cases

||P1,iQ1P1,i|| ≤ ||P1,if(−U)P1,i||

(due to that in f the value I is added, which can both increase or decrease the value of ||...||, but if adding
I increase it, then it means that substracting I would decrease the value, also the other way around). In
order to solve this problem, we create Q2 = f(−U) ∈ Q with diagonal projections P2,1, ..., P2,r(ε). We now
can go and create a collection that covers both cases by creating P3,1, ..., P3,r(ε)2 from all possible products
of P1,1, ..., P1,r(ε) and P2,1, ..., P2,r(ε). If P3,k = P1,iP2,j , then

||P3,kUP3,k||

is smaller or equal to either
2||P1,iQ1P1,i|| − 1 ≤ ε

or
2||P2,jQ2P2,j || − 1 ≤ ε.

So, for all U ∈ U can be (r(ε)2, ε)-paved.

Now by combining Lemma 7.1.2 and Lemma 7.1.4, we can rewrite the Paving Conjecture to something that
is easier for us to solve.

7.2 Proving the Paving Conjecture

Proof of the Paving Conjecture 7.0.2. By using Lemma 7.1.2 and 7.1.4, we can simplify the conjecture so
that we only need to prove that for every ε > 0 there is an r such that every 2n× 2n matrix Q ∈ Q can be
(r, 1+ε2 )-paved.

Our first step will be to rewrite Q into a Gram matrix of vectors which fit the
∑i=1

2n viv
∗
i = In condition of

Corollary 6.0.2 (important to remember is that we are really aiming at creating a unit matrix of size n× n,
not 2n × 2n). For this we will first diagonalize Q using unitary matrix U (possible, because Lemma 2.2.2,
which states it is possible for Hermitian matrices).

Q̃ = UQU∗

Now we are going to deduce the eigenvalues of Q̃. Q has the same eigenvalues as Q̃, so we can start by looking
at the trace of Q. Since, all diagonal entries of Q are equal to 1

2 , we know that the sum of all eigenvalues

is n. To get even more information about the eigenvalues of Q̃ we will use that Q is a projection matrix, so
Q2 = Q.

Q̃2 = UQU∗UQU∗

= UQQU∗

= UQU∗

= Q̃
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This means that all eigenvalues of Q̃ are either 1 or 0. By combining this with the fact that the sum of the
eigenvalues is n, we get that the half the eigenvalues is 1 and the other 0. Knowing this, we can create a
collection of vectors ṽ1, ..., ṽ2n ∈ Cn which are either unit vectors or equal to 0n, such that the Gram matrix
of them is Q̃ = (ṽ1, ..., ṽn)(ṽ1, ..., ṽn)∗ and

∑i=1
2n ṽiṽ

∗
i = In. To ease the notation, we will write

Ṽ =
(
ṽ1, ..., ṽ2n

)
So, Q̃ = Ṽ ∗Ṽ .

Q = U∗Q̃U

= U∗Ṽ ∗Ṽ U

= (Ṽ U)∗Ṽ U

This means Q is also a Gram matrix of vectors of length n. Define(
v1, ..., v2n

)
= V = Ṽ U.

We can now get back to the condition of 6.0.2.

2n∑
i=1

viv
∗
i = V V ∗

= Ṽ U(Ṽ U)∗

= Ṽ UU∗Ṽ

= Ṽ Ṽ ∗

= In

This means we fulfil the first condition of Corollary 6.0.2. To obtain the other condition for Corollary 6.0.2;
||vi||2 ≤ δ we use the fact that all values on the diagonal of Q are 1

2 , meaning ||vi||2 = 1
2 = δ. Now we can

use Corollary 6.0.2, giving us partition S1, ..., Sr of [2n] such that∣∣∣∣∣∣∣∣ ∑
i∈Sj

viv
∗
i

∣∣∣∣∣∣∣∣ ≤ ( 1√
r

+
√
δ

)2

=

(
1√
r

+
1√
2

)2

.

Define diagonal projection Pk which is based on Sk, so when i ∈ Sk then the ith value of the diagonal is
equal to 1 else it is 0. This gives us ||PkQPk||, to deduce its value we will turn it into a Gram matrix. Define
Vk ∈ C2n×n, for which all columns which number is in Sk have the same value as their respective column in
V , the rest is equal to zero. Now PkQPk = V ∗k Vk, a Gram matrix of the columns of Vk. Now we can conclude
that

||PkQPk|| = ||V ∗k Vk||
= ||VkV ∗k || (using Lemma 2.3.4)

=

∣∣∣∣∣∣∣∣ ∑
i∈Sk

viv
∗
i

∣∣∣∣∣∣∣∣
=

(
1√
r

+
1√
2

)2

By picking r = 36
ε2 , we get that

||PkQPk|| ≤

 1√
36
ε2

+
1√
2

2

= ε.

Now we have proven the Paving Conjecture.
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8 Conclusion

We have done what we have set out to do. We have proven Weaver’s Conjecture KS2 and got a bit closer
to fully proving the Kadison-Singer Problem by proving the Paving Conjecture. To give a more complete
version of the proof, we also included the proofs that were only referenced in the source material. This is
most noticeable in chapter 3, 5 and 7. The only things that have been left open are Hurwitz’ Theorem 3.1.1,
the implicit function theorem extended to complex values and the Cauchy-Riemann Equation each with their
own reference. These are all things that the main source material for this thesis never mentioned, because
it left all the work of dealing with these to its references. They are all far more general knowledge than
most things mentioned in this thesis, that is why I’m okay with not proving them in this thesis. It especially
felt odd that Hurwitz’ Theorem hadn’t been mentioned in the source material, even though, it is extremely
useful in the context of Chapter 3. I even incorporated it into the proof for Lemma 3.2.7.
But before I get further off-topic. Overall, I’m fairly satisfied with the level of detail in this proof of Weaver’s
Conjecture KS2 and the Paving Conjecture. I hope that anyone who reads this finds it easier to understand
and more complete than the source material.
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