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Abstract
In this paper we introduce Lie algebras and list basic properties and results, including Weyl’s
theorem. We then introduce the important Lie algebra sl(2), and move on to briefly introduce
root systems. The main goal of the paper is to prove that semisimple Lie algebras are in one to
one correspondance with chrystallographic root systems.

Introduction
I have previously worked with root systems in their own right and in the context of Reflection
groups and Coxeter groups, based on Humphreys book of the same title. Therefore some knowl-
edge of root systems will be helpful to fully grasp the finer details of some of the fourth chapter.
However we aim to give sufficient details to make the reader who is new to root systems able to
follow along.
The structure of the paper is aimed at being the shortest route to proving that semisimple Lie
algebras are in one to one correspondance with chrystallographic root systems. In order to reach
this goal within a reasonable page number we will state many of the more basic results without
proof.
All results are from Introduction to Lie Algebras and Representation Theory by James E. Humphreys,
which will be refered to simply as Humphreys. The interested reader may look for further reading
on root systems in the bibliography.
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Chapter 1

Lie algebras

We start out by giving the general definition of a Lie algebra

Definition 1.0.1. We call a vector space L over a field F a Lie algebra if there is a map
L× L→ L denoted (x, y) 7→ [xy] satisfying:

(L1) : The map is bilinear over F
(L2) : ∀x ∈ L : [xx] = 0
(L3) : ∀x, y, z ∈ L : [x[yz]] + [y[zx]] + [z[xy]] = 0

A few remarks about notation and language, call the map the bracket or the commutator
of x and y, the motivation for the second name will be obvious when we look at the linear Lie
algebras. Furthermore sometimes we will write [x, y] = [xy] in order to avoid ambiguity.
The third criterion (L3) is called the Jacobi identity.
Notice that the bilinearity of the bracket ensures that a Lie algebra over F, is an F-algebra.
If the underlying field F is of characteristic greater than 2, then equivivalent criterion to (L2) is
(L2′) : [xy] = −[yx] due to

0 (L2)= [x+ y, x+ y] (L1)= [xx] + [yy] + [xy] + [yx] (L1)= [xy] + [yx] ⇐⇒ [xy] = −[yx]

Moving on to the standard notions, given two Lie algebras L and L′ and an isomorphism between
the underlying vector spaces φ : L → L′, we call φ a Lie algebra isomorphism if φ respects
the respective brackets, meaning that for all x, y ∈ L we have φ([xy]) = [φ(x)φ(y)].
A subalgebra of a Lie algebra is simply a subspace closed within the bracket, i.e. K ⊂ L a
subspace such that for all x, y ∈ K we have [xy] ∈ K. And naturally K is a Lie algebra in its
own right with the restricted bracket.
Untill now we have not assumed the underlying vector spaces to be finite dimensional, but for
the remainder of our journey through the theory we will pressume that our vector spaces are
finite dimensional, unless otherwise stated.

1.1 Linear Lie algebras
Linear Lie algebras are central in the study of Lie algebras, and built upon End(V ), the set of
endomorphisms (linear transformations) on V . We know from linear algebra that End(V ) is a
vector space over F with map composition as multiplication, i.e. xy = x ◦ y : V → V . Now we
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define the bracket to be the commutator [xy] = xy − yx, which is zero precisely when x and y
commute.
Definition 1.1.1. The general Lie algebra gl(V ) is the Lie algebra with vectorspace End(V) and
the commutator as bracket map.
Furthermore any subalgebra of gl(V ) is called a linear Lie algebra.
An advantage of using End(V) is that we can use matrix representations, i.e. gl(V ) = gl(n, F )
the set of n × n matrices over F where n = dimV . When we make this identification we can
apply linear algebra and get the standard matrix basis εi,j for 1 ≤ i, j ≤ n with a 1 in the (i, j)’th
coordinate and zeroes everywhere else. We have εi,jεk,l = δj,kεi,l and the bracket

[εi,j , εk,l] = εi,jεk,l − εk,lεi,j = δj,kεi,l − δl,iεk,j (1.1.1)

Note that the zero map [xy] = 0 for all x, y ∈ L satisfies the conditions (L1)-(L3), we call such
Lie algebras abelian due to the relation to the commutator in the case of linear Lie algebras.
Another way to construct a finite dimensional Lie algebra L is to take a basis x1, x2, . . . , xn,
n = dimL and consider the ai,j,k satisfying [xixj ] =

∑n
k=1 ai,j,kxk now with some tedious

algebra we can show that

(L2) 0 = [xixi] =
n∑
k=1

ai,i,kxk ⇐⇒ ai,i,k = 0 ∀ i, k

(L2′) 0 = [xixj ] + [xjxi] =
n∑
k=1

(ai,j,k + aj,i,k)xk ⇐⇒ ai,j,k = aj,i,k ∀ i, j, k

(L3) 0 = [xi[xjx`]] + [xj [x`xi]] + [x`[xixj ]]

=
∑
m

∑
k

(aj,`,kai,k,m + a`,i,kaj,k,m + ai,j,ka`,k,m)xm

⇐⇒
n∑
k=1

(aj,`,kai,k,m + a`,i,kaj,k,m + ai,j,ka`,k,m) = 0

This interpretation allows us to determine all the Lie algebras of dimension ≤ 2.
Dimension 1 is abelian because let x be the basis then [xx] = 0 by (L2) and bilinearity then
makes [yz] = [ayx, azx] = ayaz[xx] = 0.
In dimension two let x, y be a basis of L, then for w, z ∈ L write w = xwx+ywy and z = xzx+zyy
we get

[wz] = xwxz[xx] + xwyz[xy] + ywxz[xy] + ywyz[yy]
= (xwyz − ywyz)[xy]

So if [xy] = 0 L is abelian, if not let [xy] = x′ then x′ is a basis of the one dimensional subspace
of non abelian elements of L. Extend the basis to x′, y′ and we get [x′y′] = ax′ for some nonzero
a in F, now if we scale y′ by a−1 we still get a basis and [x′, a−1y′] = aa−1x′ = x′. In conclusion
we have two types of two dimensional Lie algebras, up to isomorphism, the abelian ones and the
ones with basis x1, x2 and a1,2,1 = 1, a1,2,2 = 0.

1.2 Ideals
Definition 1.2.1 (Ideal). For a Lie algebra L, a subspace I of L is called an ideal if for all x ∈ L
and y ∈ I we have [xy] ∈ I.
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Notice that an ideal is a subalgebra, and that the zero subspace is an ideal. A central example
of an ideal is the center Z(L) := {z ∈ L | [z`] = 0 ∀` ∈ L}, clearly L is abelian if and only if
L = Z(L).
Given ideals I and J we can construct ideals.

I + J = {x+ y | x ∈ I, y ∈ J}

[IJ ] =
{∑

[xiyj ] | xi ∈ I, yj ∈ J
}

An important ideal is the derived algebra denoted [LL]. It is immediately clear that L is abelian
if and only if [LL] = 0.

Definition 1.2.2 (Simple Lie algebra). We call a Lie algebra L simple if the only proper ideal
of L is 0 and if [LL] = L.

It follows immediately from the definition that simple Lie algebras have trivial center.
Having defined ideals it is natural to define the notion of quotients. For a Lie algebra L and an
ideal I ⊆ L we define L/I to be the quotient subspace in the usual sense and the bracket for the
equivivalence classes is [x + I, y + I] := [xy] + I. This is well defined because if x + I = x′ + I
and y + I = y′ + I we can write x = x′ + ix and y = y′ + iy then

[x+ I, y + I] = [x, y] + I = [(x′ + ix), (y′ + iy)] + I

=
(
[x′y′] + ([ix, y′] + [x′, iy] + [ix, iy])

)
+ I

= [x′y′] + I = [x′ + I, y′ + I]

Where the small parenthesis is in I by definition of ideals.
For later use we define two important subalgebras.

Definition 1.2.3 (normaliser NL(K) and centraliser CL(X)). Given a Lie algebra L, a subal-
gebra K, and a subset X we define the normaliser NL(K) and the centraliser CL(X) to be

NL(K) = {x ∈ L | [xK] ⊆ K}
CL(X) = {` ∈ L | [`X] = 0}

1.3 Homomorphisms
Defining homomorphisms at this point seems a bit odd, since we already defined isomorphisms.
Therefore the definition should come as no surprise.

Definition 1.3.1. Given two Lie algebra L and L’, we call a linear map φ : L → L′ a ho-
momorphism if it respects the bracket, i.e. φ([xy]) = [φ(x), φ(y)] for all x, y ∈ L. We call a
homomorphism a monomorphism if it has trivial kernel and an epimorphism if it is surjective,
and an isomorphism if it is both a monomorphism and an epimorphism. We write L ∼= L′ if
there exists an isomorphism φ : L→ L′, or equivivalently and isomorphism ψ : L′ → L.

Note that this is in agreement with the previously given definition of a Lie algebra isomorphism.
Now the kernel of a homomorphism φ : L → L′ is an ideal because if x ∈ kerφ we have
φ([xy]) = [φ(x)φ(y)] = [0φ(y)] = 0 for all y ∈ L, so [xy] ∈ ker(φ) as wanted. And as is usual in
Algebraic topics, we have a bijection between ideals and homomorphisms for φ a homomorphism
φ 7→ kerφ and for I an ideal I 7→ (x 7→ x+ I). Furthermore we have a standard homomorphism
theorem.
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Theorem 1.3.2 (Standard homomorphism theorem).
(a) If φ : L→ L′ is a homomorphism of Lie algebras, then L/ ker(φ) ∼= Im(φ). Furthermore if

I ⊆ ker(φ) is an ideal of L then there exists a unique homomorphism ψ : L/I → L′ such
that φ = ψ ◦ π, where π : L 7→ L/I is the cannonical map π(x) = x+ I.

(b) If I ⊆ J are ideals of L then J/I is an ideal of L/I and (L/I)/(J/I) ∼= L/J .
(c) If I, J are ideals of L, then (I + J)/J ∼= I/(I ∩ J).

An important type of homomorphisms are the representations, these are homomorphisms of the
form φ : L→ gl(V ) where V is a vector space over F . For our purposes the adjoint representation
is the most important representation.

1.4 The adjoint representation
Given an F-algebra U we call a linear map δ : U → U a derivation if for all a, b ∈ U we have
δ(ab) = aδ(b) + δ(b)a. We denote the set of all derivations by Der U, and it is clearly a vector
subspace of End U. A quick calculation shows that the commutator of two derivations is again
a derivation, making Der U a Lie subalgebra of gl(U).

Definition 1.4.1. For a Lie algebra L the map ad: L→ Der L ⊂ gl(L), given by
ad x = (y 7→ [xy]) is called the adjoint representation.

The adjoint representation will play a vital role in the theory to come. When we have K ⊆ L of
Lie algebras we denote adK x = ad x|K the restriction of the map (y 7→ [xy]) to y ∈ K, but x
may still be an element of the bigger Lie algebra L.
To see that the adjoint representation is indeed a homomorphism consider for x, y, z ∈ L

[ad x, ad y](z) = ad x ad y(z)− ad y ad x(z)
= ad x([yz])− ad y([xz])
= [x[yz]]− [y[xz]]
= (−[y[zx]]− [z[xy]]) + [y[zx]]
= [[xy]z] = ad [xy](z)

As wanted. Now we record a very usefull proposition, that allows the study of simple Lie algebras
to take place within the more convenient linear Lie algebras.

Proposition 1.4.2. All simple Lie algebras are isomorphic to some linear Lie algebra.

Proof: Notice that the kernel of the adjoint representation are the x that commute with all other
elements, in the sense that [xy] = 0 for all y ∈ L, and as such ker ad = Z(L) = CL(L). Now
recall that a simple Lie algebra has trivial center Z(L) = 0 so by the standard homomorphism
theorem we have an isomorphism L = L/ ker(ad) ∼= Im(ad) ⊆ gl(L) as wanted.

Definition 1.4.3. Automorphism An automorphism on a Lie algebra L is an isomorphism φ :
L→ L. Denote by Aut(L) the group of all automorphisms on L.

Another central definition is for charF = 0 and x ∈ L we call ad x nilpotent if there is an n ∈ N
such that (ad x)n = 0, as usual.
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1.5 Solvable and nilpotent Lie algebras
Definition 1.5.1. For a Lie algebra L we define the derived series L(n) and the descending
central series Ln by

L(0) = L,L(1) = [LL], L(2) = [L(1)L(1)], . . . , L(n) = [L(n−1)L(n−1)]
L0 = L,L1 = [LL], L2 = [LL1], . . . , Ln = [LLn−1]

We call L solvable if there exists an m ∈ N such that L(m) = 0, and we call L nilpotent if there
exists an m ∈ N such that Lm = 0.

Immediately notice that abelian Lie algebras are both solvable and nilpotent, simply because
L(1) = L1 = [LL] = 0.

Proposition 1.5.2. For L a Lie algebra we have:

(a) If L is solvable and/or nilpotent then so are all subalgebras and homomorphic images of L.
(b) If I is a solvable ideal of L such that L/I is solvable, then L itself is solvable.
(c) If I and J are solvable ideals of L, then so is I+J.
(d) If L/Z(L) is nilpotent, then so is L.
(e) If L is nilpotent and nonzero, then Z(L) 6= 0.

To introduce the next important theorem we call an x ∈ L ad-nilpotent if ad x is nilpotent, so
clearly if L is nilpotent then ad x is nilpotent for all x ∈ L.

Theorem 1.5.3 (Engel). If all elements of a Lie algebra are ad-nilpotent, then L is nilpotent.

To prove Engels theorem we need a few more results.

Lemma 1.5.4. If x ∈ gl(V ) is nilpotent as an endomorphism, then so is ad x.

Engels theorem follows from the following theorem.

Theorem 1.5.5. Let L be a subalgebra of gl(V ), where V is finite dimensional. If L consists of
nilpotent endomorphisms and V 6= 0, then there exists nonzero v ∈ V for which L.v = 0.

Proof of Engels theorem. Given a Lie algebra L with all elements ad-nilpotent, we get that
ad L ⊆ gl(L) consists purely of nilpotent endomorphisms, the theorem above then grants us an
x ∈ L such that [Lx] = 0, which is clearly an action on L. Now we have x ∈ Z(L) 6= 0. We
proceed by induction on dimL, and claim that L is nilpotent.
Induction start: For dimL = 1 we previously saw that L is abelian which we noted implies
nilpotency.
Induction step: Assume the hypothesis for Lie algebras of dimension less than n, we just saw
that Z(L) 6= 0 so dim(L/Z(L)) < n so it is nilpotent. Now 1.5.2(e) implies that L is nilpotent,
as wanted.
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Chapter 2

Semisimple Lie algebras

In the following we will need to restrict our choice of underlying field F to be of characteristic 0
and to be algebraically closed, the reason we are demanding algebraic closure is to ensure that
all eigenvalues are contained in F.

Definition 2.0.6 (Radical and semisimple).

• The radical of L denoted Rad(L) is the maximal solvable ideal, with regards to inclusion.
• A Lie algebra L is called semisimple if its radical is zero.

Saying the radical is well defined because if I and J are maximal solvable ideals then proposition
1.5.2 implies that also I + J is solvable so either I ⊆ J or J ⊆ I which is a contradiction in both
cases, unless they are identical. So the notion of the maximal solvable ideal is well defined.
Notice that any simple Lie algebra L is semisimple, because the only proper ideal is zero and
[LL] = L implies that simple Lie algebras are not solvable, so Rad(L) = 0 as wanted.

Theorem 2.0.7. Any solvable linear Lie algebra L ⊆ gl(V ) with V 6= 0 and finite dimensional,
then V contains a common eigenvector for all endomorphisms in L.

Corrollary 2.0.8 (Lie’s theorem). If L is a solvable subalgebra of gl(V ), then L stabilizes a flag
in V, i.e. there exists a suitable basis of V such that the matrix representations of the elements
of L are upper triangular. Recall that a flag is a chain of subspaces 0 ⊆ V0 ⊆ V1 ⊆ · · · ⊆ Vn =
V, such that dimVi = i, and n = dimV .

Corrollary 2.0.9. Let L be a solvable Lie algebra, then there exists a chain of ideals of L such
that 0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln with dimLi = i and dimL = n.

Corrollary 2.0.10. Let L be a solvable Lie algebra, then x ∈ [LL] ⇒ adLx is nilpotent. In
particular, [LL] is nilpotent.

Notice that [LL] ⊆ L and we defined the notation adLx for subsets the other way around but
here it is used to emphasize that we consider ad x : L→ L with x ∈ [LL].
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2.1 Jordan-Chevalley decomposition
In this subsection we do not need the assumption on the characteristic of F. We wish to introduce
a very important decomposition, as the title suggests.
Definition 2.1.1 (Semisimple endormorphism). For finite dimensional vector spaces V, call
an endomorphism x ∈End(V) semisimple if the roots of its minimal polynomial over F are all
distinct.
Recall from linear algebra that x ∈End(V) is semisimple if and only if x is diagonalizable, and
that two commuting diagonalizable endomorphisms can be simultaneously diagonalized, so the
sum and difference of semisimple endomorphisms are semisimple. Now for the main result
Proposition 2.1.2. For a finite dimensional vector space V over F and an endomorphism
x ∈End(V) we have the following
(a) There exists unique xs, xn ∈End(V) such that x = xs + xn where xs is semisimple and xn

is nilpotent.
(b) There exist polynomials p, q ∈ F [y] without constant term such that xs = p(x) and xt =

q(x). In particular xs and xn commute with anything that commutes with x.
(c) If A ⊆ B ⊆ V are subspaces, and x(B) ⊆ A then also xs(B) ⊆ A and xn(B) ⊆ A.

Given x ∈End(V) we call the xs and xn from part (a) of the above proposition the Jordan
decomposition of x. We have seen that x ∈ gl(V ) nilpotent implies that ad x is nilpotent as
well, so its is natural to ask the same question for semisimplicity. This turns out to be the
case, because for x ∈ gl(V ) semisimple choose a basis (v1, . . . , vn) of V such that x has diagonal
matrix representation diag(α1, . . . , αn) in this basis, this is possible due to results from linear
algebra. Denote by ε(i,j) the standard basis of gl(V ) relative to the (v1, . . . , vn) basis such that
ε(i,j)(v`) = δj,`vi and ad x(ε(i,j)) = (αi−αj)ε(i,j) which shows that the matrix representation of
ad x, on the n2 dimensional gl(V ), is diagonalizable so semisimple as well.
Lemma 2.1.3. The adjoint representation preserves Jordan decompositions, i.e. ad (xs+xn) =
ad xs + ad xn for x ∈End(V) and ad xs, ad xn ∈End(End(V)).
Lemma 2.1.4. For a finite dimensional F-algebra U, the vector space Der U contains the
semisimple and nilpotent parts of all its elements.

2.2 Cartan’s Criterion
Cartan’s Criterion proves very usefull when attempting to show that a Lie algebra is solvable.
Notice that [LL] nilpotent implies that L is solvable.
The above makes Corollary 2.0.10. a biimplication, L solvable if and only if [LL] is nilpotent,
applying Engels theorem we see that L is solvable if and only if ad[LL]x is nilpotent for all
x ∈ [LL], leading up to the following lemma using the trace map Tr.
Lemma 2.2.1. For A ⊆ B ⊆ gl(V ) subspaces with V finite dimensional, define
M = {x ∈ gl(V ) | [x,B] ⊆ A}. Now if x ∈ M satisfies Tr(xy) = 0 for all y ∈ M , then x is
nilpotent.

Recall the very usefull property of the trace that Tr(xy) = Tr(yx), similarly we see that

Tr([x, y]z) = Tr(xyz − yxz) = Tr(xyz)− Tr(y(xz))
= Tr(xyz)− Tr(xzy) = Tr(xyz − xzy)
= Tr(x[y, z])
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Theorem 2.2.2 (Cartan’s criterion). For a linear lie algebra L over a finite dimensional vector
space V, then Tr(xy) = 0 for all x ∈ [LL] and y ∈ L implies that L is solvable.

Corrollary 2.2.3. A lie algebra L with the property that Tr(ad x ad y)=0 for all x ∈ [LL] and
y ∈ L is solvable.

Proof: Apply Cartan’s Criterion to ad L and apply the standard homomorphism theorem
we get ad L ∼= L/ ker(ad), now proposition 3(a) implies that L/ ker(ad) is solvable, and recall
that ker(ad) = Z(L) is a solvable ideal so proposition 3(b) implies that L itself is solvable.

We will need a nondegenerate symmetric bilinear form later on, the one we will use is after
Wilhelm Killing.

Definition 2.2.4 (The Killing form). The Killing form is defined to be the symmetric bilinear
map κ : L× L→ F given by κ : (x, y) 7→ Tr(ad x ad y).

Applying the property of the trace map we proved in section 4, and remembering that the adjoint
representatioon is a homomorphism we see that

κ([xy], z) = Tr(ad [xy] ad z) = Tr([ad x, ad y]ad z)
= Tr(ad x[ad y, ad z])
= κ(x, [yz])

Another very fortunate property of the Killing form is the following lemma.

Lemma 2.2.5. For an ideal I of a Lie algebra L. Denote by κ respectively κI the Killing form
on L respectively I, then κI = κ |I×I the restriction of κ to I × I.

Recall that a symmetric bilinear form is nondegenerate if its radical {x ∈ L | κ(x, y) = 0∀y ∈ L}
is zero. It is clear that in our case the radical of κ is an ideal. Recall that we defined semisimple
Lie algebras to have Rad(L) = 0 not to be confused with the radical of κ.

Lemma 2.2.6. A Lie algebra L is semisimple if and only if it has no nonzero abelian ideals.

Proof: Assume first that L is semisimple, then it has Rad(L) = 0, and by maximality and
uniqueness Rad(L) contains all abelian ideals, so the only abelian ideal is zero.
For the other implication assume that L has no nonzero abelian ideals. Now Rad(L) is as-
sumed to be the maximal solvable ideal, this means in particular that there is a minimal n ∈ N
such that Rad(L)(n) = [Rad(L)(n−1),Rad(L)(n−1)] = 0 but then Rad(L)(n−1) is abelian, and
Rad(L)(n−1) = 0 so to avoid contradiction n must be zero, and Rad(L)(0) = Rad(L) = 0, as
wanted.

Theorem 2.2.7. A Lie algebra L is semisimple if and only if its Killing form is nondegenerate.

Proof: For the first implication let Rad L = 0, and let S be the radical of the killing form. We
have by definition that Tr(ad x ad y) = 0 for all x ∈ S and y ∈ L then especially we have it for
x, y ∈ S now we can apply Cartan’s Criterion to get that ad S is solvable, and then so is S.
For the other implication let S = 0. We employ a smart trick to show that every abelian ideal of
L is included in S thus proving that L is semisimple. Let I be an abelian ideal of L and consider
for x ∈ I and y ∈ L the map ad x ad y : L → I by the definition of ideal, next notice that
(ad x ad y)2(z) = [x[y[x[yz]]]] ∈ [II] = 0 so the map ad x ad y is nilpotent and has trace zero,
so since κ(x, y) = Tr(ad x ad y) = 0 for all x ∈ I and y ∈ L this is precisely the criterion of the
radical of the killing form, so I ⊆ S
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Definition 2.2.8 (Direct sum). Given a Lie algebra L, and a collection of ideals I1, I2, . . . , In
such that L = I1 + I2 + · · ·+ In as ideals and as a direct sum of vector subspaces we say that L
is the direct sum of the Ii, and write L = I1 ⊕ I2 ⊕ · · · ⊕ In.

Note that this works both ways, if we start out with a collection of Lie algebras sitting inside
the same underlying vector space their sum as ideals and diect sum as vector spaces makes the
collection a Lie algebra with componentwise bracket map.

Theorem 2.2.9 (Semisimple decomposition into simple ideals). A semisimple Lie algebra L can
be decomposed into simple ideals in the sense that there exists simple Lie algebras L1, L2, . . . , Ln ⊆
L such that L = L1 ⊕ · · · ⊕ Ln. Furthermore every simple ideal of L is contained in the list
L1, . . . Ln.

Corrollary 2.2.10. If L is a semisimple Lie algebra then L = [LL] and all ideals and homo-
morphic images of L are semisimple. Furthermore each ideal of L is a sum of certain simple
ideals of L.

2.3 Abstract Jordan decomposition
We wish to be able to talk about the Jordan decomposition of elements of semisimple L, not just
the endomorphisms upon L, to do this we need the following theorem.

Theorem 2.3.1. For a semisimple Lie algebras L, we have ad L = Der L.

Recall Lemma 2.1.4. that Der L contains the semisimple and nilpotent parts of all its elements.
This means that for semisimple L we can decompose the adjoint representation of x ∈ L into
ad x = ad s+ad n where ad s is semisimple and ad n is nilpotent, the abstract Jordan decompo-
sition is defined to be x = s+n. Recall that the kernel of the adjoint representation is an abelian
ideal, and as we previously proved, abelian ideals in a semisimple Lie algebra are zero. This
makes the abstract Jordan decomposition well defined and uniquely determined by x because
the adjoint representation is injective.
Notice that if we are talking about a linear Lie algebra L the elements of L are themselves
endomorphisms, so we could run into trouble with the notation x = xs + xn, however it turns
out that there is no cause to be alarmed as the abstract and regular Jordan compositions will
coinside in that case.

2.4 Modules
As is common in algebraic subjects the study of modules and of course representations proves to
be a fruitful one.

Definition 2.4.1. For a Lie algebra L, an L-module is a vector space W with a map L×W →W
denoted (x, v) 7→ x.v that satisfies the following conditions: for all x, y ∈ L, v, w ∈ W and
a, b ∈ F .

(M1) (ax+ by).v = a(x.v) + b(y.v)
(M2) x.(av + bw) = a(x.v) + b(y.v)
(M3) [xy].v = x.y.v − y.x.v

An L-submodule is a subspace that is closed within the module multiplication defined above.
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Note that representations are in bijection with modules via the equation x.v = φ(x)(v) with
φ : L → gl(V ), because if we start with a module the equation defines a representation, and if
we start with a representation the equation defines a module.
We define a homomorphism of L−modules to be a map φ : W →W ′ such that φ(x.w) = x.φ(w)
for all x ∈ L and w ∈W .
We call an L-module irreducible if the only proper submodule is the zero module, and we call
it completely reducible if it is a direct sum of irreducible submodules. Notice that L is an
L-module with the adjoint representation, and that the L-submodules are the ideals of L. In this
context it is clear that the irreducible L-submodules are the simple ideals and the completely
reducible L-submodules are the semisimple ideals. Especially a simple Lie algebra L is irreducible
as an L-module, and a semisimple Lie algebra L is completely reducible as an L-module.

2.5 Casimir element
We can raise the level of abstraction in what we have previously seen, in order to get a non-
degenerate symmetric bilinear form. Let L be a semisimple Lie algebra, and φ : L → gl(V )
a faithful(injective) representation. We define a symmetric bilinear form β : L × L → F
given by β(x, y) = Tr(φ(x)φ(y)) now recall Tr(x[yz]) = Tr([xy]z) for x, y, z ∈ End(V ), and
like before this implies that β is associative, and the radical of β is an ideal, say S. Now
φ(S) = φ|S (S) ∼= S/ ker(φ|S) = S by the standard homomorphism theorem, then clearly
S = {x ∈ L | β(φ(x), φ(y)) = 0 ∀y ∈ L} = 0 and β is nondegenerate.
Recall from linear algebra that given a basis x1, . . . , xn of L there exists a unique dual basis
y1, . . . , yn such that β(xi, yj) = δi,j . These bases are obviously closely related, for x ∈ L write
[xxi] =

∑
j ai,jxj and [xyi] =

∑
j ai,jyj then

ai,k =
∑
j

ai,jβ(xj , yk) = β([xxi], yj) = β(−[xix], yk) = β(xi,−[xyk]) = −
∑

bk,jβ(xk, yj)

= −bk,i (2.5.1)

Definition 2.5.1 (Casimir element). Let L be a Lie algebra. For a faithful representation
φ : L→ gl(V ) and the nondegenerate bilinear trace form β we define the Casimir element

Cφ(β) =
∑
i

φ(xi)φ(yi) ∈ End (V )

Where (xi)ni=1 is a basis of L and (yi)ni=1 is the dual basis with respect to β.
Whenever the nondegenerate bilinear form is understood we will write Cφ(β) = Cφ.

The important application of this endomorphism is the following proposition.
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Proposition 2.5.2. The Casimir element commutes wiith the corresponding representation.

Proof:

[φ(x), Cφ] =
∑
i

[φ(x), φ(xi)φ(yi)]

=
∑
i

(
[φ(x), φ(xi)]φ(yi) + φ(xi)[φ(x), φ(yi)]

)
=
∑
i

(
φ([x, xi]φ(yi) + φ(xi)φ[x, yi]

)
=
∑
i

(∑
j

φ(ai,jxj)φ(yi) +
∑
j

φ(xi)φ(bi,jyj)
)

(2.5.1)=
∑
i,j

(
ai,jφ(xj)φ(yi)− ai,jφ(xj)φ(yi)

)
= 0

Not surprisingly the trace of the Casimir element has the nice property that it is the dimension
of φ viewed as a module:

Tr(Cφ(β)) =
∑
i

Tr(φ(xi)φ(yi)) =
∑
i

β(xi, yi) =
∑
i

1 = dim(L)

This implies, via Schurs lemma, page 26 of [1](Humphreys), that if φ is irreducible we have
Cφ(β) = dim(L)/ dim(V ) as a scalar, simply because the matrix representation of Cφ(β) in this
case is a · idV and Tr(a · idV ) = a·dim(V ), so adim(V ) = dim(L), as wanted. Notice that in this
setting the Casimir element is independant of choice of basis.
In case φ is unfaithful, not faithful, we can still define the Casimir element. Decompose via
theorem 2.2.9 as follows L = L1 ⊕ · · · ⊕ Ln, pick out the simple ideals that are in the kernel of
φ, say without loss of generality L1 ⊕ · · · ⊕ Lm = ker(φ) with m ≤ n, then we can define the
Casimir element of φ restricted to Lm+1 ⊕ · · · ⊕Ln, and this incarnation of the Casimir element
still commutes with φ.

2.6 Weyls Theorem
Lemma 2.6.1. Representations of semisimple Lie algebras have their images contained in sl(V )

Proof: Recall that sl(V ) ⊆ gl(V ) is the set of traceless endomorphisms. To start out we see
that [gl(V ), gl(V )] ⊂ sl(V ), because for a, b ∈ gl(V ) we have

Tr([ab]) = Tr(ab− ba) = Tr(ab)− Tr(ba) = 0

Now corollary 2.2.10 states that L = [LL] so φ(L) = φ([LL]) = [φ(L)φ(L)] ⊆ [gl(V )gl(V )] ⊂
sl(V ), as wanted.

Theorem 2.6.2 (Weyl). Finite dimensional representations of semisimple Lie algebras are com-
pletely reducible.

Theorem 2.6.3 (Weyl,Jantzen). All finite dimensional L-modules are completely reducible if L
is semisimple and the underlying field has characteristic zero and is algebraically closed.
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The two versions of the theorem are obviously equivivalent, we aim to prove the second.
Proof: Let V be a finite dimensional L-module and φ : L→ gl(V ) the associated representation.
Let W ⊂ V be an L-submodule, we aim to find a complement of W i.e. a W ′ ⊂ V such that
V = W ⊕W ′.
Special case 1: dimV = dimW + 1 and φ(x)(V ) ⊆W for all x ∈ L
This assumption is clearly equivivalent to dimV/W = 1 since the representation ψ : L → V/W
is given by ψ(x)

(
v +W

)
= 0 +W ⇐⇒ ψ(x)(v) ∈W .

Now we proceed by induction on dimV . The goal is to find a v such that W ∩ Fv = 0 and
V = W ⊕ Fv, because then induction tells us that W is completely reducible, implying that
W ⊕ Fv is completely reducible aswell.
Special case 1.1: W is trivial in the sense that φ(x)(w) = 0 for all x ∈ L and w ∈W .
This implies that φ(x)(φ(y)(w) = 0 for all x, y ∈ L and w ∈W due to the assumption φ(x)(v) ∈
W for all v ∈ V . Then clearly φ([x, y]) = 0 for all x, y and especially 0 = φ([L,L]) = φ(L) by
semisimplicity L = [LL], so any v ∈ V \W works.
Special case 1.2: W is irreducible but non trivial, i.e. φ(L) 6= 0.
Finally we roll out the Casimir element Cφ. Recall that Cφ is defined to be a linear combination
of terms defined by φ, so Cφ(V ) ⊂ W which implies that Cφ |W∈ End LW . The assumption
that W is irreducible then gives that Cφ |W (W ) = 0 or Cφ |W (W ) = W , in the first case
Cφ |W (w) = 0 we get Cφ(Cφ(V )) ⊂ Cφ(W ) = 0 so Cφ is nilpotent and then has trace 0, which is
in contradiction with Tr(Cφ) = dimφ(V ) 6= 0 by non triviality assumption. So Cφ |W (W ) = W
and then naturally also Cφ(V ) = W , now a simple dimension calculation ensures dimkerCφ = 1.
Furthermore Cφ |W is a bijection because it is surjective endomorphism. All in all kerCφ∩W = 0
and V = W ⊕ kerCφ with kerCφ one dimensional as wanted.
Special case 1.3: W nontrivial and not irreducible.
Take U a nontrivial proper submodule of W , this is possible because if it is not W is irreducible.
In the quotients 0 6= W/U ( V/U we define φ : L→ gl(V/U) by φ(x) : (v+U) 7→ (φ(x)(v) +U),
clearly φ(x)(V/U) ⊂W/U because φ(x)(V ) ⊆W . Looking at dimensions we see that

dimW/U = dimW − dimU = dimV − 1− dimU = dimV/U − 1

Which allows us to use induction on W/U ( V/U and get an element z ∈ (V/U) \ (W/U)
such that φ(x)(z) = 0 for all x ∈ L. Take a representative v of z, then v /∈ W and φ(x)(z) =
φ(x)(v) + U = 0 + U so φ(x)(v) ∈ U for all x ∈ L. Define U ′ = U + Fv then by the previous
considerations we have φ(x)(U ′) ⊆ U and dimU ′ = dimU + 1 < dimW + 1 = dimV so we can
apply induction and the special case to get v′ ∈ U ′ \ U such that φ(x)(v′) = 0 for all x ∈ L and
U ′ = U⊕Fv′, now this very v′ will do the job in the bigger setting in the sense that V = W⊕Fv′
because v′ /∈W , since if it is we get U ′ = U ⊕ Fv′ ⊆W but we saw v ∈ U \W , a contradiction.
General case: For arbitrary 0 6= W ( V .
Note first that if we cannot find such a W then V is irreducible which is a special case of
completely reducible. Now take the representation ψ : L → gl(HomF (V,W )) by ψ(x)(f) =
φ(x) ◦ f − f ◦ φ(x) for x ∈ L and f ∈ HomF (V,W ) and φ : L → gl(V ) the representation of V .
Define

U = {f ∈ HomF (V,W ) : ∃α ∈ F : f |W= αf idW }
U ′ = {f ∈ U : f |W= 0}

Note U ′ = ker(ζ) where ζ : U → F given by ζ(f) = αf and dimU = dimU ′ + 1. Now for
f ∈ U,w ∈W,

ψ(x)(f)(w) = φ(x)(f(w))− f(φ(x)(w) = αφ(x)(w)− αφ(x)(w) = 0
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This means that ψ(L)(U) ⊆ U ′ satisfies the conditions of our special case and we get a f ∈ U \U ′
such that ψ(x)(f) is the zero map for all x ∈ L which means that f commutes with φ(x) for all
x ∈ L and as such f ∈ HomL(V,W ) making ker f an L module, we wish to use this module as
the compliment to W . To see that note that αf 6= 0 due to f ∈ U \ U ′, then ker f = 0 implying
naturally that W ∩ker f = 0 and then f |W is an injective endomorphism so f(V ) = W implying
finally V = W ⊕ ker f .
An important application of Weyls Theorem is the preservation of the Jordan decomposition

Theorem 2.6.4. Semisimple finite dimensional linear Lie algebras contain the semisimple and
nilpotent parts of their elements, furthermore the abstract and usual Jordan decompositions co-
incide.

Corrollary 2.6.5. For semisimple Lie algebras L and finite dimensional representations φ :
L → gl(V ), with V finite dimensional. If x = s + n is the abstract Jordan decomposition of
x ∈ L, then φ(x) = φ(s) + φ(n) is the Jordan decomposition of φ(x).
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Chapter 3

Traceless endomorphisms

A central example of Lie algebras are the traceless endomorphisms sl(n, F ) = sl(V ) ( gl(V )
with n = dimV ≥ 2. Obviously the basis of sl(n, F ) consists of the matrices εi,j for i 6= j and
hi = εi,i− εi+1,i+1 for 1 ≤ i < n giving dim sl(n, F ) = (n− 1) +n2−n = n2− 1, notice that this
is the vector space dimension, and not necessarily a Lie algebra dimension.
Viewed as a Lie algebra, and later associated to a root system we say these are of type An−1.

3.1 sl(2)
For a field F of characteristic > 2 write sl(2) = sl(3, F ) for the root system of type A2. Now we
wish to see that sl(2) is simple. We have the basis

x =
(

0 1
0 0

)
y =

(
0 0
1 0

)
(3.1.1)

h =
(

1 0
0 −1

)
With commutators [xy] = h, [hx] = 2x and [hy] = −2y, especially x, y and h are eigenvectors of
ad h with eigenvalues 2,−2, 0 respectively. Let I ⊂ sl(2) be an ideal, and i = ax + by + ch ∈ I
by definition I is closed under brackets but (ad x)2(i) = [x[xi]] = [x, (0 + bh− 2cx)] = −2bx and
likewise (ad y)2(i) = [y[yi]] = −2ay so if b 6= 0 then x ∈ I and then also [xy] = h ∈ I aswell as
[yh] = 2y so I = sl(2) similarly if a 6= 0. Now if b = a = 0 we have ch ∈ I and [xh], [yh] ∈ I so
once again I = L. So sl(2) is simple, and is generated as Lie algebra by a single element, any
one of x, y, h.

3.2 Representations of sl(2)
We start out by defining weights and weight spaces

Definition 3.2.1. For a finite dimensional sl(2)-module V, write V =
⊕

λ∈F Vλ where Vλ =
{v ∈ V | ρ(h)(v) = λv} are the eigenspacces of ρ(h). Whenever Vλ 6= 0 we call λ a weight and
Vλ a weight space.
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Lemma 3.2.2. If v ∈ Vλ then ρ(x)(v) ∈ Vλ+2 and ρ(y)(v) ∈ Vλ−2

Now since V is finite dimensional there can only be finitely many weights, so the lemma implies
that there must be λ such that Vλ 6= 0 and Vλ+2 = 0 such that ρ(x)(v) = 0 for all v ∈ Vλ, we
call these maximal vectors of weight λ.

Lemma 3.2.3. Define for an irreducible sl(2) module V a sequence given by v0 ∈ Vλ maximal,
v−1 = 0 and vi = 1

i!ρ(y)i(v0).

(a) ρ(h)(vi) = (λ− 2i)vi
(b) ρ(y)(vi) = (i+ 1)vi+1
(c) ρ(x)(vi) = (λ− i+ 1)vi−1

This lemma tells us that {v0, v1, . . . , vm} is a basis, where m is minimal such that vm 6= 0 and
vm+1 = 0, thism exists because V is finite dimensional. To see that the vi are indeed a basis, note
that they are all different eigenvectors so linearly independent, they span V because the subset
of V spanned by the vi is an sl(2)−module so by irreducibility of V it must be the entire thing.
On this basis it is clear that x respectively y act as strict upper respectively lower triangular
matricies by the above lemma, and h acts diagonally. Another neat application is that if we
apply (c) on i = m+ 1 we see that 0 = ρ(x)(vm+1) = (λ− (m+ 1) + 1)vm = (λ−m)vm ⇒ λ = m
so the weight of a maximal vector is simply dimV − 1 = m, futhermore (a) implies that for
λ = m − 2i with 0 ≤ i ≤ m we have dimVλ = 1 with basis vi, which is summarised in the
following theorem.

Theorem 3.2.4. For irreducible sl(2) modules V we have

(a) V =
⊕m

i=0 Vm−2i where Vm−2i are weight spaces, dimVm−2i = 1 and m = dimV − 1
(b) V has a unique maximal vector of weight m
(c) The action on V is given explicitely by lemma 3.2.3 and as such there is only a single

irreducible sl(2) module of each dimension ≥ 1.
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Chapter 4

Relation to root systems

Now we are finally ready to introduce the relation between semisimple Lie algebras and root
systems. In order to avoid self-plagiarism we will presume that the reader, like the author, has
knowledge of root systems, and skip many of the proofs. To determine the relation between
semisimple Lie algebras and root systems we need maximal toral subalgebras.
Definition 4.0.5 (Toral subalgebra). A subalgebra T ⊆ L consisting of semisimple elements is
called toral. A maximal toral subalgebra H is a toral subalgebra that is maximal with regards to
inclusion.
Lemma 4.0.6. Toral subalgebras are abelian
Due to this lemma all the endomorphisms in adLH are pairwise simultaneously diagonalizable,
because they commute and F is algebraically closed. Which means that L =

⊕
α∈H∗ Lα where

Lα = {x ∈ L | [hx] = α(h)x ∀h ∈ H}. Now take Φ = {α ∈ H∗ \ {0} | Lα 6= 0}, notice that
L0 = CL(H) the centralizer, but we do not wish to allow 0 to be in our root system so we exclude
this case and call the elements of Φ roots. We now have a decomposition L = CL(H)⊕

⊕
α∈H∗ Lα

called the root space decomposition of L. The main goal is to show that Φ is a root system
and that it alone characterises a unique semisimple Lie algebra.
To start off we want to be able to identify elements of H with roots, elements of H∗ the dual
vector space, to do that we need the following four results.
Proposition 4.0.7.
• For all α, β ∈ H∗ we have [Lα, Lβ ] ⊂ Lα+β
• For all x ∈ Lα for α 6= 0 we have ad x is nilpotent
• For all α, β ∈ H∗, α+ β 6= 0 we have Lα ⊥ Lβ with regards to the Killing form

Corrollary 4.0.8. κ |L0 is nondegenerate
Proof: Theorem 2.2.7 states that L is semisimple if and only if its Killing form is nondegenerate,
now the proposition implies that L0 ⊥ Lα for all α ∈ Φ, i.e. for z ∈ L0 and x ∈ Lα 6= L0 we
have κ(z, x) = 0 so if κ(z, y) = 0 for y ∈ L0 then the nondegeneracy of κ on the entirety of L
implies that z = 0
Proposition 4.0.9. Maximal toral subalgebras are self centralizing.
Corrollary 4.0.10. κ |H is nondegenerate
As promised we identify φ ∈ H∗ with tφ ∈ H defined uniquely by φ(h) = κ(tφ, h) for all h ∈ H
and more importantly we identify Φ ∼= {tα | α ∈ Φ} ⊂ H.
Moving on we wish to show that Φ is indeed a root system
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4.1 Root systems
Definition 4.1.1. For an euclidean space E over F with inner product (·, ·), a finite set Φ ⊂ E
is called a root system in E if
(R1) Φ is finite, span(Φ) = E, and 0 /∈ Φ
(R2) If α ∈ Φ, then Fα ∩ Φ = {±α}
(R3) If α ∈ Φ, the reflection σα(β 7→ β − 2(β,α)

(α,α) α)
(R4) If α, β ∈ Φ, then 〈β, α〉 = 2(β,α)

(α,α) ∈ Z

It is also interesting to study root systems without (R4), in which case we call root systems
satisfying (R4) Crystallographic. Root systems without (R4) are used in the context of Coxeter
groups, in the titles Combinatorics of Coxeter groups by Anders Björner & Francesco Brenti and
Reflection Groups and Coxeter Groups by Humphreys. We will go into minimal detail regarding
root systems in this paper, but the interested reader can explore the subject further in these
works.
We saw in proposition 4.0.7 that κ(Lα, Lβ) = 0 for α, β ∈ H∗ such that α + β 6= 0, so also
κ(H,Lα) = 0 for all α ∈ Φ.
Now to see that our Φ is indeed a root system we mention the following propositions without
proof.
Proposition 4.1.2. For α ∈ Φ
(a) Φ spans H∗
(b) −α ∈ Φ
(c) For x ∈ Lα, y ∈ Lβ we have [xy] = κ(x, y)tα
(d) [Lα, L−α] is one dimensional with basis tα
(e) α(tα) = κ(tα, tα) 6= 0
(f) let xα ∈ Lα \ {0} then there exists yα ∈ L−α such that xα, yα, hα = [xαyα] span a three

dimensional subalgebra isomorphic to sl(2) in the obvious way.
(g) hα = 2tα

κ(tα,tα) and hα = −h−α
Proposition 4.1.3. For α, β ∈ Φ
(a) dimLα = 1, and Sα = Lα + L−α +Hα with Hα = [Lα, L−α]
(b) For all xα ∈ Lα there exists a unique yα ∈ L−α such that [xαyα] = hα
(c) The only scalar multiples of α that is in Φ are ±α.
(d) β(hα) ∈ Z and β − β(hα) ∈ Φ.
(e) If α+ β ∈ Φ then [LαLβ ] = Lα+β.
(f) If β 6= ±α, let r, p be the largest respectively smallest integers such that β − rα ∈ Φ and

β + pα ∈ Φ. Then all the roots inbetween are roots aswell, i.e. β + iα ∈ Φ for −r ≤ i ≤ p
and β(hα) = r − q.

(g) L is generated as a Lie algebra by the root spaces Lα.
We wish to define EQ = spanQ(Φ) = H∗ and E = R ⊗Q EQ as an euclidean space. E is an
euclidean space because the nondegeneracy of the Killing form allows us to define a nondegenerate
bilinear positive definit form on H∗ by (γ, δ) = κ(tγ , tδ). Indeed we have seen that Φ spans H
so take a basis α1, . . . , α` ∈ Φ so for all Φ 3 β =

∑`
i=1 cβ,iαi with cβ,i ∈ F , with a bit of linear

algebra one can show that cβ,i ∈ Q, and that dimQ(EQ) = ` = dimF H
∗. Consider next for

λ, µ ∈ H∗

(λ, µ) = κ(tλ, tµ) =
∑
α∈Φ

α(tλ)α(tµ) =
∑
α∈Φ

(α, λ)(α, µ) (4.1.1)
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And especially for β ∈ Φ we have (β, β) =
∑
α∈Φ(α, β)2 now divide by (β, β)2 6= 0 and get

1
(β,β) =

∑
α∈Φ

(
(α,β)
(β,β)

)2
∈ Q due to proposition 4.1.3(d) so (β, β) ∈ Q so clearly also (α, β) ∈ Q

so based on (4.1.1) we see that also (α, β) ∈ Q so by bilinearity we get a nondegenerate positive
definit form on EQ and it extends cannonically to E, as claimed.

Theorem 4.1.4. For a semisimple Lie algebras L with maximal toral subalgebra H, root system
Φ and Euclidean space E then Φ is a root system in the sense of definition 4.1.1.

4.2 Isomorphism theorem 1
In this section we wish to prove the first part of the main goal of this paper, namely to show
that semisimple Lie algebras are completely determined by their root systems, here we make the
first step and show that if two semisimple Lie algebras have isomorphic root systems then the
algebras them selves are also isomorphic.

Definition 4.2.1. A root system is called irreducible if it cannot be partitioned into the union
of two proper subsets orthogonal to each other.

Proposition 4.2.2. Any root system that arises from a simple Lie algebra is irreducible.

With this proposition and theorem 2.2.9 we can reduce the problem to looking at simple Lie
algebras and irreducible root systems

Corrollary 4.2.3. A semisimple Lie algebra L with maximal toral subalgebra H and root system
Φ has decompositions

• L =
⊕

i Li with Li simple, this is just a repeat of theorem 2.2.9
• H =

⊕
iHi where Hi = H ∩ Li

• Φ =
⋃
i Φi where Φi is the irreducible root system in Li relative to Hi

Proof: write L =
⊕

i Li with Li simple, take a maximal toral subalgebra H in L and decompose
it in the following sense H = H ∩

⊕
i Li =:

⊕
iHi where Hi = Li ∩ H is maximal toral in Li

because if it is not it is included in some toral H ′i ⊆ Li and then we form a bigger toral algebra⊕
iHi ⊕ H ′i ) H which is a contradiction with the maximality of H. Denote then by Φi the

root systems in the smaller Lie algebras, but we can extend them in an obvious way. Define
for α ∈ Φi and h ∈ H \ Hi set α(h) = 0 so α ∈ Φ with Lα ⊆ Li, and if we take α ∈ Φ then
there is a Hi such that [HiLα] 6= 0 because if not then [HLα] = 0 and then Lα ⊂ H which is in
contradiction with α being a root. So Lα ⊂ Li and α |Hi is a root of Li relative to Hi.

Definition 4.2.4. For a semisimple Lie algebra L, and a maximal toral subalgebra H with root
system Φ and euclidean space E write (L,H,Φ,E)

Proposition 4.2.5. For a quadruple (L,H,Φ,E), fix a basis ∆ of Φ, then L is generated, as a
Lie algebra, by Lα and L−α for α ∈ ∆

Since the Lα are one dimensional the above proposition is equivivalent to saying that L is
generated as a Lie algebra by any choice of xα ∈ Lα and yα ∈ L−α.
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Theorem 4.2.6. Given two quadruples (L,H,Φ,E) and (L’,H’,Φ’,E’), with L,L′ simple, and an
isomorphism ψ : Φ→ Φ′ there exists an isomorphism π̃ : L→ L′.

Proof: The way we do this is to denote ψ(α) = α′ and then we have ψ(∆) = {α′ | α ∈ ∆}.
If we then choose xα ∈ Lα \ {0} and x′α ∈ L′α′ \ {0} we get an isomorphism πα : Lα→̃L′α′ extend
firstly to an isomorphism π : H→̃H ′ and finally π̃ : L→̃L′. In this setup the isomorphism is
unique, for each set of choices of xα and x′α, because we have seen that L is generated by the xα
and yα for α ∈ ∆ and that each xα uniquely determines a yα such that [xαyα] = hα, securing
uniqueness.
To prove existence we aim to construct a set D ⊆ L⊕L′ resembling the diagonal DL = {(x, x) |
x ∈ L} ⊆ L ⊕ L and then get that L ∼= L′ via the projections. To construct D define xα =
(xα, x′α), yα = (yα, y′α) and hα = (hα, h′α), and let D be generated by these. To see that D does
in fact resemble the diagonal, recall proposition 4.2.2 that Φ and Φ′ are irreducible, it is then a
fact of root systems that they have a unique maximal root, say β and β′, naturally ψ(β) = β′.
Take x ∈ Lβ and x′ ∈ L′β′ , and set x = (x, x′). Define M to be the subspace of L⊕L′ generated
by all

ad yα1 · · · ad yαm(x) (4.2.1)

For αi ∈ ∆. Note that these are elements of Lβ−∑m

i=1
αi
⊕ L′

β′−
∑m

i=1
α′
i

, and then especially
dim(M ∩Lβ ⊕L′β′) = 1 because of the maximality of β in the partial ordering of the roots. This
means that M ( L⊕ L′ as Lβ ⊕ L′β′ is two dimensional.
Claim: D stabilizes M
By definition it is clear that ad yα stabilizes M for α ∈ ∆ and since [hαyα] = −2yα so does hα
for α ∈ ∆. For αj ∈ ∆ just note that

ad xαjad yα1 · · · ad yαm(x)

=
{
ad yα1 · · · ad yαmad xαj (x) = 0 if αj 6= αi for all 1 ≤ i ≤ m
ad yα1 · · · (ad hαj + ad yαjad xαj ) · · · ad yαm(x) if αj = αi for some 1 ≤ i ≤ m

In the first case we get a zero because β+αj can never be a root by maximality in the root poset.
For the second case we apply the Jacobi identity and we already saw that hαj stabilizes so the
first term in the sum has already been taken care of, and the second term follows by repeated
application, proving the claim.
With the claim we have forced D to be a proper subalgebra because if it is not M would be a
proper nonzero ideal in contradiction with simplicity of L and L′.
The final step of the proof is to show that the projections of D onto its factors are isomor-
phisms. They are clearly surjective homomorphisms, to see that they are also injective supp-
pose for contradiction that D ∩ L = D ∩ ker p2 6= 0 where p2 : L ⊕ L′ → L′ is the projec-
tion. Then we have (ω, 0) ∈ D for some ω ∈ L \ {0}, denote zαi = xαi or yαi then also
zα1 · · · zαm(ω, 0) = (zα1 · · · zαm(ω), 0) ∈ D for αi ∈ ∆ the zα1 · · · zαm(ω) form a non zero ideal in
L so is equal to L by simplicity, then L ↪→ D and in similar fashion L′ ↪→ D but that contradicts
D ( L⊕ L′.
In conclusion we have L ∼= D ∼= L′ and L ∼= L′ as wanted.

The above theorem clearly generalises to semisimple Lie algebras aswell. When we introduce
free Lie algebras and how to construct Lie algebras from root systems proving this statement
becomes almost trivial, because we can define the Lie algebras solely based upon the root system,
so obtaining an isomorphism becomes a simple matter.
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To remove the choice of maximal toral subalgebra from the equation we introduce the Cartan
subalgebra (CSA) which is a Lie subalgebra that is equal to its normalizer and is nilpotent.
Certainly maximal toral subalgebras are CSA’s, and it turns out that if L is semisimple then
CSA’s are maximal toral. Humphreys proves in chapters 15 and 16 that all maximal toral sub-
algebras are conjugate under Aut(L) which implies that if we choose different maximal toral
subalgebras we get isomorphic root systems.

4.3 Free Lie algebras
In this section it is the goal to define the notion of a free Lie algebra defined via generators and
relations.

Definition 4.3.1 (Tensor algebra). For any field F and a vector space V above it define a
sequence

T 0(V ) = F, T 1(V ) = V, T 2(V ) = V ⊗ V, . . . , Tm(V ) =
m⊗
i=1

V

The tensor algebra is T(V ) :=
⊔∞
i=0 T

i(V ) with product
(v1 ⊗ · · · ⊗ vk)(v′1 ⊗ · · · ⊗ v′`) := (v1 ⊗ · · · ⊗ vk ⊗ v′1 ⊗ · · · ⊗ v′`)

The tensor algebra has the universal property that given any associative algebra B with 1
over F and any F-linear map φ : V 7→ B there exists a unique homomorphism of F-algebras

ψ : T(V ) 7→ B such that the following diagram commutes
V T(V )

B

i

φ
ψ

Definition 4.3.2 (Universal enveloping algebra). For a Lie algebra L we define the universal
enveloping algebra of L to be a pair (U,i) where U is an associative algebra with 1 over F and
i : L→ U is a linear function such that

i([xy]) = i(x)i(y)− i(y)i(x) (4.3.1)

and for all other universal enveloping algebras (A, j) there exists a unique φ : U → A such that
φ(1U) = 1A and φ ◦ i = j

It is not at all obvious that a the universal enveloping algebra exists

Proposition 4.3.3. For all Lie algebras L there exists a unique enveloping algebra.

L T(L)

A

l

j
ψ

Proof of existence: Unsurprisingly we use the tensor algebra T(L) on L, next
let J be the two sided ideal generated by all x⊗ y − y ⊗ x− [xy] for x, y ∈ L.
Now define U(L) = T(L)/J with quptient map π : T(L)→ T(L)/J . It is clear
that there are no scalars in J , it is also clear from the construction that we
have a copy (up to isomorphism) of L in U(L) which makes the termonology
’enveloping algebra’ meaningful. Write l : L→ T(L) for the inclusion. Now to
see tha U(L) has the desired property let (B, j) be a pair satisfying definition
4.3.2, we wish to find φ : U(L) → B such that φ ◦ i = j. The universal property of T(L)
gives us a ψ such that the above diagram commutes. Consider next the following diagram

Page 22 of 30



U(L)

L T(L)

B

φ

i

l

j

ψ

π

If we can show that x⊗y−y⊗x− [xy] ∈ kerψ for all x and y then φ(x+J) = ψ(x) is well defined
and works as intended by commutativity of the topmost and bottommost pockets of the diagram.
So to see that we have these elements in the kernel consider j([xy]) = j(x) · j(y) − j(y) · j(x)
while ψ(x⊗ y− y⊗ x) = ψ(x) ·ψ(y)−ψ(y) ·ψ(x) using that ψ is an F-Algebra homomorphism,
here · denotes the composition in B. Commutativity now implies that ψ(l(x)) = j(x) so in turn
ψ(x⊗ y − y ⊗ x) = j([xy]), and then naturally x⊗ y − y ⊗ x− [xy] ∈ kerψ as wanted.
Proof of uniqueness: This construction immediately implies uniqueness, consider another pair
(B, j) satisfying the conditions of definition 4.3.2, then we get homomorphisms φ : U → B and

ψ : B→ U

u

L

u

f

i

i

There is a unique homomorphism f , clearly the identity idU does the trick, but so does ψ ◦ φ
and a similar diagram ensures that φ◦ψ = idB, making ψ and φ mutually inverse isomorphisms.

Definition 4.3.4. A Lie algebra L over F generated by a set X that has the following property
is called free: For all Lie algebras M and maps φ : X →M there exists a unique homomorphism
ψ : L→M such that ψ |X= φ.

Proposition 4.3.5. Given a set X there exists a free Lie algebra L over F generated by X and
it is unique up to isomorphism.

Proof of uniqueness: This is very simple, given L and L′ free Lie algebras generated by
X, then the identity map φ : X → L′ given by x 7→ x then the free property gives a unique
homomorphism that extends φ and this map sends generators to generators so is obviously an
isomorphism, that is indeed unique.
Proof of existence: Take a vector space V with X as a basis, form the tensor algebra T(V )
and make it a Lie algebra with the commutator map as Lie operation. Now given another
Lie algebra M and a map φ : X → M , extend this map linearly to φ′ : V → M ⊆ U(M)
given by φ′(

∑
i fixi) =

∑
i fiφ(xi), next we induce φ : T(V ) → U(M) = T(M)/J given by

φ(⊗ivi) = ⊗iφ′(vi) + J and finally take ψ := φ |L: L → φ(L) ∼= M and ψ extends φ as wanted.

Definition 4.3.6. Given a free Lie algebra L generated by X, and an ideal R ⊆ L generated by
ri we call the quotient π : L→ L/R the Lie algebra with generators xi ∈ π(X) and relations ri.
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4.4 Isomorphism theorem 2
In the following we wish to construct a Lie algebra with generators and relations inspired by
the fact that within every semisimple Lie algebra we can find copies of sl(2) built upon the root
system. We have already proven that if two semisimple Lie algebras have isomorphic root systems
they are in turn isomorphic, so if we from a root system can build a semisimple Lie algebra we
immediately get that it is unique up to isomorphism and we establish the 1-1 correspondance we
seek.
We start out by finding, what turns out to be, sufficient relations to impose

Proposition 4.4.1 (Relations). Given a quadruple (L,H,Φ, E) with ∆ = {α1, . . . , α`} a basis
of the root system then L is generated by {xi, yi, hi | 1 ≤ i ≤ `} satisfying for 1 ≤ i, j ≤ ` and
i 6= j

(S1) [hihj ] = 0
(S2) [xiyj ] = δi,jhi
(S3) [hixj ] = 〈αj , αi〉xj, [hiyj ] = −〈αj , αi〉yj
(S+
ij) (ad xi)−〈αj ,αi〉+1(xj) = 0

(S−ij ) (ad yi)−〈αj ,αi〉+1(yj) = 0

Proof: (S1)-(S3) are obvious from previous propositions. It is a known fact about root sys-
tem that they are a disjoint union of those that have positive respectively negative coefi-
cients in the base, so no root is of the form αi − αj , we do however have a string of roots
αj , αj +αi, αj + 2αi, αj + 3αi, . . . , αj + qαi where q is such that αj + (q+ 1)αi is not a root, this
works because the root systems we are working with are finite, we also know that q = 〈αj , αi〉,
now ad xi maps xj into Lαi+αj and (ad xi)2(xj) ∈ Lαj+2αi and so on, leading to
(ad xi)−〈αj ,αi〉+1(xj) ∈ Lαj+(〈αj ,αi〉+1)αi = 0, as wanted.

With proposition 4.4.1 in mind we can proceed. Given a root system Φ with a basis ∆ =
{α1, α2, . . . , α`}, denote by ci,j = 〈αi, αj〉 the Cartan integers. Define a free Lie algebra L̂

generated by {xi, yi, hi | 1 ≤ i ≤ `} and define R̂ to be the ideal generated by the relations

[ĥiĥj ], [x̂iŷj ]− δi,j ĥi, [ĥix̂j ]− cj,ix̂j , [ĥiŷj ]− cj,iŷj (4.4.1)

Taking these relations clearly amounts to demanding (S1) − (S3) of proposition 4.4.1. Define
L0 = L̂/R̂. Next we wish to define a module to better understand the construction, let V ′ be an
` dimensional vector space over F with basis (v1, . . . , v`) and let V be the free associative algebra
on it, which means the algebra of words in the alphabet v1, v2, . . . , v` where composition is just
putting a word behind another F linearly, we will write

∏m
k=1 vik = vi1vi2 · · · vim for brevity. Let

φ̂ : L̂→ gl(V ) be given by

φ̂(ĥj) : 1 7→ 0,
∏
k

vik 7→ −
(∑

p

cip,j
)∏
k

vik

φ̂(ŷj) : 1 7→ vj ,
∏
k

vik 7→ vj
∏
k

vik i.e. left multiplication by vj (4.4.2)

φ̂(x̂j) : 1 7→ 0, vi 7→ 0,
m∏
k=1

vik 7→ vi1 · φ̂(x̂j)(
m∏
k=2

vik)− δi,j
( m∑
p=2

cip,j
) m∏
k=2

vik

Denote K̂0 := ker φ̂
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Proposition 4.4.2. R̂ ⊆ K̂0

Proof: Notice first that φ̂(ĥi) commutes with φ̂(ĥj) for i 6= j because they both have diagonal
matrix representations so [ĥiĥj ] ∈ K̂. Consider

φ̂(x̂i)φ̂(ŷj)(
m∏
i=1

vik)− φ̂(ŷi)φ̂(x̂i)(
m∏
i=1

vi1)

= φ̂(x̂i)(vj · vi1 · · · vim)− vj · φ̂(x̂i)(vi1 · · · vim)

=
{
vj · (φ̂(x̂i)(vi1 · · · vim)− φ̂(x̂i)(vi1 · · · vim)) = 0 if i 6= j

vj · (φ̂(x̂i)(v1...m)− (Σmk=2cik,i)v1...m − vj · (φ̂(x̂i)(v1...m) = −(Σmk=1cik,i)v1...m if i = j

= δj,iφ̂(ĥi)(
m∏
k=1

vik)

(φ̂(x̂i)φ̂(ŷj)− φ̂(ŷj)φ̂(x̂i))(1) = 0 = δi,j φ̂(ĥi)(1)

Here v1...m is short for
∏m
k=1 vik to make it fit in a single line in the above calculations, that

show [φ̂(x̂i)φ̂(ŷj)]− δi,j φ̂(ĥi) ∈ K̂0. Next up we wish to show [φ̂(ĥi)φ̂(ŷj)]− cj,iφ̂(ŷj) ∈ K̂0.

(φ̂(ĥi)φ̂(ŷj)− φ̂(ŷj)φ̂(ĥi)) = φ̂(ĥi)(vj) = −cj,ivj = −cj,iφ̂(ŷj)(1)

Which generalises in the expected way to a generator
∏m
i=1 vik , as wanted. For our final calcu-

lation we need the following

φ̂(ĥi)φ̂(x̂j)(
m∏
k=1

vik) = −(
m∑
k=1

cik,i − cj,i)φ̂(x̂j)(
m∏
k=1

vik) (4.4.3)

Which we prove by induciton on m, with the induction start being clear under the convention
that

∏0
k=1 vik = 1. For the induction step

φ̂(ĥi)φ̂(x̂j)(
m∏
k=1

vik) = φ̂(ĥi)
(
vi1 φ̂(x̂j)(

m∏
k=2

vik)− δi1,j(
m∑
k=2

cik,j)
m∏
k=2

vik

)

= −(
m∑
k=1

cik,i − cj,i)vi1 φ̂(x̂j)(
m∏
k=2

vik) + δi1,j(
m∑
k=2

cik,i)(
m∑
k=2

cik,j)
m∏
k=2

vik

= −(
m∑
k=1

cik,i − cj,i)φ̂(x̂j)(
m∏
k=1

vik)

The last equality is true because in case i1 = j the terms ci1,i − cj,i = 0 in the first sum, cancel
out and we get the wanted equality. Now that we have (4.4.3) we can calculate the last relation.

[φ̂(ĥi)φ̂(x̂j)− φ̂(x̂j)φ̂(ĥi)](1) = 0

[φ̂(ĥi)φ̂(x̂j)− φ̂(x̂j)φ̂(ĥi)](
m∏
k=1

vik) =
(
− (

m∑
k=1

cik,i − cj,i) + (
m∑
k=1

cik,i)
)
φ̂(x̂j)(

m∏
k=1

vik)

= cj,iφ̂(x̂j)(
m∏
k=1

vik)
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So [φ̂(ĥi)φ̂(x̂j)]− cj,iφ̂(x̂j) ∈ K̂0 as wanted.

With this proposition we can factor the representation φ̂ through L0 making V an L0 mod-

ule, we will need this in the proof of the following theorem.
L̂ gl(V )

L0

ψ

φ̂

φ

Theorem 4.4.3. Given a root system Φ with basis ∆ = {α1, . . . α`}. Let L0 be the Lie algebra
with generators {xi, yi, hi | 1 ≤ i ≤ `} and relations (S1)− (S3), then the subalgebra H generated
by {hi | 1 ≤ i ≤ `} is abelian and L = X ⊕Y ⊕H where X and Y are generated by the xi and yi.

Proof: We proceed in steps
Step 1:

∑
j Fĥj ∩ ker φ̂ = 0

Take ĥ =
∑
j aj ĥj ∈

∑
j Fĥj ∪ ker φ̂, then the eigenvalues of ĥ are 0, especially the ones with

respect to vi, 1 ≤ i ≤ ` but ĥ(vi) = −
∑
j ajci,j = 0 now it is a general fact from root systems

that the Cartan matrix with entries ci,j = 〈αi, αj〉 is invertible so the ci,j are linearly independent
in i respectively j, so aj = 0 for all j and ĥ = 0.
Step 2: ψ : L̂→ L0 maps

∑
j Fĥj isomorphically onto

∑
j Fhj .

Step 1 implies that the restriction of ψ is injective and the proposition ensures surjectivity.
Step 3:

∑
j Fx̂j +

∑
j F ŷj +

∑
j Fĥj maps isomorphically into L0

In step 1 we saw that the image of ĥj is nonzero so for a fixed i we get [xiyi] = hi, [hixi] =
2xi, [hiyi] = −2yi, because ci,i = 2 for all i. Then Fxi + Fyi + Fhi ∼= sl(2) and we know
that sl(2) is simple, so it does not have any Lie algebra ideals, forcing xi, yi, hi to be linearly
independent. To see that all {xj , yj , hj} are linearly independant we can look at the following
system of equations, by applying ad h1 0 to ` times.

λ1x1 + · · ·+ λ`x` + µ1y1 + · · ·+ µ`y` + ν1h1 + · · ·+ ν`h` = 0
λ1c1,1x1 + · · ·+ c`,1λ`x` − c1,1µ1y1 + · · · − c`,1µ`y` = 0
λ1c

2
1,1x1 + · · ·+ c2`,1λ`x` + c21,1µ1y1 + · · ·+ c2`,1µ`y` = 0

...
λ1c

`
1,1x1 + · · ·+ c``,1λ`x` + (−c1,1)`µ1y1 + · · ·+ (−c`,1)`µ`y` = 0

This resembles a Vandermonde matrix and with some linear algebra we get that this system has
a invertible coefficient matrix if all the ci,1 are non zero, but this might not be the case, if it is
not, say cj,1 = 0 we can get some of the coefficients to equal zero with ad h1 and the j′th ones
with ad hj applied a proper amount of times. So we have λi = 0 = µi, we already say in step 2
that the hi are linearly independant so we are done.
Step 4: H =

∑
j Fhj is an abelian subalgebra of L0.

Step 2 implies that it is a subalgebra and relation (S1) implies that it is indeed abelian.
Step 5: Denote [xi1 . . . xik ] = [xi1 [xi2 [· · · [xik−1xik ] . . . ]]] then
[hj [xi1 . . . xik ]] = (

∑k
t=1 cik,j)[xi1 . . . xik ] and [hj [yi1 . . . yik ]] = (

∑k
t=1 cik,j)[yi1 . . . yik ].

We proceed by induction on k, where the induction start is ensured by the relation (S3). For the
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induction step consider

[hj [xi1 . . . xik ]] = [hj [xi1 [xi2 . . . xik ]]]
= −[xi1 [[xi2 . . . xik ]hj ]]− [[xi2 . . . xik ][hjxi1 ]]

= −[xi1 [−(
k∑
t=2

cit,j)[xi2 . . . xik ]]]− [[xi2 . . . xik ][ci1,jxi1 ]]

=
k∑
t=1

cit,j [xi1 . . . xik ]

As wanted. An almost identical argument works in the other case.
Step 6: If k ≥ 2 then [yj [xi1 . . . xik ]] ∈ X and [xj [yi1 . . . yik ]] ∈ Y .
Once more we proceed by induction on k. For the induction start k = 2

[yj [xi1xi2 ]] = −[xi1 [xi2yj ]]− [xi2 [yjxi1 ]]
= δi2,j [xi1hj ]− δi1,j [xi2hj ]
= δi2,jci1,jxi1 − δi1,jci2,jxi2 ∈ X

The induction step follows directly from the Jacobi identity.
Step 7: X + Y +H = L0.
To see that X + Y +H is a subalgebra, we simply refer to the previous three steps to see that it
is closed under the bracket operation. And to see that it is the whole thing we simply note that
it contains all the generators.
Step 8: The sum from step 7 is direct.
Step 5 shows we can decompose L0 into eigenspaces of ad H, ensuring that the sum is direct.

Write xi,j = (ad xi)−cj,i+1(xj) and yi,j = (ad yi)−cj,i+1(yj).

Lemma 4.4.4. In L0 we have ad xk(yi,j) = 0 for 1 ≤ k, i, j ≤ ` where i 6= j.

Definition 4.4.5. In an infinite dimensional vector space V, an endomorphism x is locally
nilpotent if for all v ∈ V there exists a n ∈ N such that xn(v) = 0.

Clearly a locally nilpotent endomorphism x is nilpotent in the usual way if restricted to any
finite dimensional subspace W of V stable under x i.e. xW = W . Furthermore given two x
stable subspaces W,W ′ we have expx |W= expx |W ′ on W ∩W ′, so we can define expx as the
composite of the local maps.

Theorem 4.4.6 (Serre). For a root system Φ with basis ∆ = {α1, . . . , α`}. Let L be the Lie
algebra with generators {xi, yi, hi | 1 ≤ i ≤ `} and relations (S1) − (S3) and (S±ij ). Then
L is a finite dimensional semisimple Lie algebra with CSA spanned by {hi | 1 ≤ i ≤ `} and
corresponding root system Φ

Proof: We define L = L0/R
′, where R′ is the ideal generated by xi,j and yi,j for i 6= j, note

that R′ amounts to the relations (S±ij ), and L0 already had the relations (S1) − (S3) so L has
all the relations of proposition 4.4.1. Denote by I respectively J the ideals in X respectively Y
generated by xi,j respectively yi,j both included in R′. We proceed in steps.
Step 1: I and J are ideals of L0
Looking at J we see that yi,j is an eigenvector for ad hk with eigenvalue −cj,k+(cj,i−1)ci,k now
step 5 of the previous theorem implies that ad hk(Y ) ⊆ Y , clearly J ⊆ Y so also ad hk(J) ⊆ Y
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in fact in J by the Jacobi identity and a similar argument to step 5. Now step 6 and (S2) implies
that ad xk(Y ) ⊆ Y +H, but ad hk(J) ⊆ J and another application of the Jacobi identity we get
ad xk(J) ⊆ J .
Step 2: R′ = I + J .
Clearly I + J ⊆ R′, and I + J contains all the generators of xi,j , yi,j so K ⊆ I + J .
Step 3: L = N− ⊕H ⊕N where N− = Y/J and N = X/I.
This is a simple matter, L := H ⊕X⊕Y/R′ and we just saw R′ = I+J with I ⊆ X and J ⊆ Y ,
so L ∼= H ⊕X/I ⊕ Y/J .
Step 4:

∑
i Fxi +

∑
i Fyi +

∑
i Fhi ⊆ L0 maps isomorphically into L.

This uses a similar arguemnt to step 3 of the previous theorem, given that H behaves in the
same way as it did previously.
Definition: For λ ∈ H∗ define (L)λ = {x ∈ L | [hx] = λ(h)x ∀ h ∈ H}. We saw that (L0)0 = H,
and like previously we get X =

∑
λ�0(L0)λ and Y =

∑
λ≺0(L0)λ, where ≺ is the partial ordering

given by λ =
∑
i kiαi ≺ 0 if all ki ≥ 0 and likewise for �.

Step 5: H = (L)0, N =
∑
λ�0(L)λ and N− =

∑
λ≺0(L)λ and the (L)λ are finite dimensional.

This is clear from the previous steps.
Step 6: ad xi and ad yi are locally nilpotent endomorphisms.
For a fixed i define M = {x ∈ L | ∃nx ∈ N(ad xi)nx(x) = 0}. Take x ∈ M and y ∈ M then
lemma 15.1 of Humphreys implies that (ad xi)nx+ny ([xy]) = 0, now the relation (S+

ij) implies
that M contains all the xi and

(ad xi)−〈αi,αi〉+3(yi) = (ad xi)−〈αi,αi〉+2(hi) = ci,i(ad xi)−〈αi,αi〉+1(xi) = 0

So also yi ∈M , now the xi and yi generate L so M = L.
Step 7: τi = exp ad xi exp−ad yi exp ad xi ∈ Aut(L).
As previously noted locally nilpotent implies well defined exponential, which is an automorphism.
Step 8: For λ, µ ∈ H∗ and σλ = µ for some σ ∈ W then dimLλ = dimLµ.
Here W is the Weyl group associated to our root system, the Weyl group is the group of reflec-
tions in roots, where σα(β) = β − 2(β,α)

(α,α) α = β − 〈β, α〉α is a reflection, and if αi ∈ ∆ is a simple
root then W is generated by the corresponding reflections. So to prove the claim it is enough to
look at σαi . Locally on Lλ + Lµ we have τi as the usual exponential. It is not too difficult to
show that τi interchanges these spaces, so also dimLλ = dimLµ.
Step 9: dimLαi = 1 and dimLkαi = 0 for k /∈ {±1, 0}.
This is clear in L0, and step 4 then implies that it also works in L.
Step 10: α ∈ Φ⇒ dimLα = 1 and dimkα = 0 for k /∈ {±1, 0}.
It is a fact of root systems that all roots are conjugates of simple ones under the Weyl group, so
this statement follows directly from the previous steps.
Step 11: Lλ 6= 0⇒ λ ∈ Φ ∪ {0}
If not one can show that there exists a σ ∈ W, i 6= j such that (σλ)i > 0 and (σλ)j < 0 meaning
it has positive i’th coordinate and negative j’th coordinate, but as previously discussed no root
can have this property.
Step 12: dimL = `+ #Φ <∞
We know that dimH = ` and we see that the "root spaces" N and N− are in one to one corre-
spondance with roots, and since L = H ⊕N ⊕N− we have the desired dimension formula.
Step 13: L is semisimple.
Let A ⊂ L be an abelian ideal, we wish to show that A = 0. It is clear that ad H stabilises A.
Write L = H+

∑
α∈Φ Lα then A = A∩H+

∑
α∈Φ(Lα∩A) if there exists a root α ∈ Φ such that

Lα ⊂ A then [L−αLα] ⊂ A and we can include a copy of sl(2) ↪→ A, but sl(2) is not abelian, a
contradiction. So A ⊂ H and then [LαA] = 0 for all roots α and A ⊂

⋂
α∈Φ kerα = 0.

Step 14: H is a CSA of L, Φ the corresponding root system.
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H is an abelian subalgebra so clearly [HH] = 0 nilpotent, and self normalising because L =
H ⊕

∑
α∈Φ is a direct sum, so [xH] ⊂ H for all x ∈ H and by the relations (S2) these are the

only elements of L that satisfy this condition.

Finally we have all the tools to make the bijection between root systems and semisimple Lie
algebras, because if we have a root system we can build a semisimple Lie algebra via Serre’s the-
orem, and if we have semisimple Lie algebras with isomorphic root systems they are themselves
isomorphic due to theorem 4.2.6. At the end of the proof of theorem 4.2.6 we promised to give
another proof using generators and relations, let us delve into it.

Theorem 4.4.7. For semisimple Lie algebras L and L’ with isomorphic root systems there exists
an isomorphism between L and L’.

Proof: Let ψ : Φ→ Φ′ be the isomorphism between the root systems of L respectively L′ induced
by H respectively H ′. Continuing with the notation from the proof of Serre’s theorem and 4.2.6,
choose xα ∈ Lα and x′α ∈ L′α, choose yα and hα in L as in Serre’s theorem, then define h′α = π(hα)
and choose uniquely y′α ∈ L′ such that [x′αy′α] = h′α now the choices x′α, y′α and h′α satisfy the
relations of 4.4.1 so by construction of the free Lie algebra there exists a unique homomorphism
` extending the induced isomorphism π : H → H ′, sending xα, yα, hα to x′α, y′α, h′α. To see that
` is indeed an isomorphism recall that dimL = dimH +n = dimH ′+n = dimL′ where n is the
number of roots in Φ and Φ′, now our Lie algebras have the same finite dimension and ` maps
generators to generators, so it is an isomorphism.
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