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Introduction

Gödel’s incompleteness theorems are considered to be among the most important
results in modern logic. His theorems concern what is now called Peano Arith-
metic, a widely used and powerful theory of arithmetic, and show its limitations.
To appreciate the theorems and their impact, we would benefit from considering
the context of Gödel’s work.

In the begin of the twentieth century, many mathematicians were concerned with
paradoxes related to set theory. In an attempt to save mathematics from any
such absurdities, Bertrand Russell and Alfred North Whitehead published Prin-
cipia Mathatica between 1910 and 1913. They were positive, and made a great
attempt to show, that all of mathematics could be derived from logic and a given
set of axioms. Certainly, mathematics would be free from contradiction. This
final property was a great concern to David Hilbert as well, who posed in 1900
as his second of twenty three open problems in mathematics: the consistency
of the axioms of arithmetic (which may be interpreted as the axioms of Peano
Arithmetic).

Gödel showed that the visions of Russell, Whitehead and Hilbert were entirely
too optimistic. His first incompleteness theorem states that Peano Arithmetic
is incomplete; that we can construct a true number theoretical statement that is
unprovable in it. His second incompleteness theorem states that Peano Arithmetic
is unable to prove its own consistency. We shall prove both theorems in this paper.

The idea behind the first incompleteness theorem, in its barest form, reminds us of
the Epimenides paradox. This paradox was named after the Cretan Epimenides,
who made the statement “All Cretans are liars”. A more direct phrasing of the
paradox would be “This statement is false”. The paradox violates the common
intuition that all statements must be either true or false; in the case of this
sentence, each option leads to a contradiction. In mathematics however, a well-
formed statement cannot violate this dichotomy. So how does the paradox relate
to mathematical statements? This was one of Gödel’s grandest discoveries: finding
a way to apply mathematical reasoning to mathematical reasoning itself. The
proof of the first theorem relies on constructing mathematical statement that, in
some sense, is self-referential. Gödel coded statements and proofs and assigned
them a unique natural number. This idea is often called Gödel-coding and will
discussed in this paper. It is this trick that makes it possible to apply mathematics
of natural numbers to statements about natural numbers as well since they can be
represented by a natural number. We will eventually construct a Gödel-sentence
which may be interpreted as “This statement is unprovable”, reminding us of
the Epimenides paradox. Mathematical proofs depend on a defined system; in
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the case of the Gödel-sentence, this was Peano Arithmetic. We will see though,
that the theorem can be applied to any system of number theory meeting certain
conditions so that we can find a similar unprovable statement. The first theorem
therefore refutes the project of Russell and Whitehead.

The second incompleteness theorem troubles Hilbert’s vision. Hilbert proposed
his Programme: to formulate a logical system in which we construct proofs about,
among other things, the natural numbers. He advocated for studying proofs so
that using this system, we can prove the consistency of arithmetic. Gödel showed
that the hope of proving a system such as Peano Arithmetic, using Peano Arith-
metic, is in vain. His second theorem therefore crushes Hilbert’s Programme.

Outline of this paper

The paper is structured as follows. The first section of this paper discusses lan-
guages and systems. It is included to introduce concepts and definitions important
to Gödel’s incompleteness theorems. In the second section, we present the theory
of Peano Arithmetic and develop some number theory inside it. The third section
defines primitive recursive functions. These functions are an important tool for
the construction of the Gödel-sentece. We furthermore show how they can be
represented in Peano Arithmetic. The first three sections all provide groundwork
for proving Gödel’s incompleteness theorems. We shall finally prove the first and
second theorem in the fourth and fifth section of this paper respectively. Addi-
tionally, we provide arguments for the theorems being applicable to arithmetical
theories neatly extending Peano Arithmetic, which demonstrates their strength.

The structure and results of this paper are heavily based on ([3]). However, some
definitions and lemmas are omitted or reformulated to suit this paper. The results
of section 4 and 5 take some inspiration of ([4]) as well.
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1 Formal Theories

The Incompleteness Theorems of Gödel prove the limits of theories of arithmetic.
Before proving the theorems, we need to consider the notion of a formal theory
- or simply a theory - as it is used in the study of mathematical logic. A theory
is built in a formal language and consists of a set of sentences in that language
which are considered the axioms of that theory. Finally it has a deductive system
which establishes how sentences may be derived from the axioms.

1.1 Formal languages

Since we will limit ourselves in this paper to first-order logic, we implicitly refer
to first-order languages whenever we mention or define languages.

Definition 1.1. A language L is a syntactically defined system of expressions.
The language consists of a set of non-logical symbols: constants, relation symbols
and function symbols. Next we consider a set of logical symbols consisting of

– the equality sign =;

– the absurdity symbol ⊥;

– readability symbols such as brackets and commas;

– the binary connectives ∨,∧,→ and the unary connective ¬;

– the quantifiers ∀ and ∃.

Together with formation rules, these non-logical and logical symbols determine
what constitutes as terms and formulas of L.

Definition 1.2. Given language L, the set of terms is defined as follows. Any
constant c of L and any variable x is a term of L. If t1, . . . , tn is an n-tuple of
terms and f is an n-place function of L, then f(t1, . . . , tn) is a term of L. Nothing
else is a term.

When a term does not contain any variables, it is called closed.

Definition 1.3. Given language L the set of formulas is defined as follows.

– If t1 and t2 are terms of L, then (t1 = t2) is a formula of L.

– If t1, . . . , tn is an n-tuple of L and R an n-place relation symbol, then
R(t1, . . . , tn) is a formula of L.

– ⊥ is a formula of L.
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1 FORMAL THEORIES

– If ϕ and ψ are formulas of L and x is a variable, then (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ→ ψ), (¬ϕ), (∀xϕ) and (∃xϕ) are formulas of L.

The first three items define what are considered atomic formulas.

Next we consider some definitions applicable to variables and formulas. If a vari-
able x occurs in ∀x or ∃x it is called bound in that formula; otherwise it is called
free. A formula that has no free variables is called a sentence or a statement of
L.

Definition 1.4. Let ϕ be an L-formula and τ be an L-term. We write ϕ[τ/x] te
denote the formula that is obtained by replacing each occurrence of variable x in
ϕ by the term τ . We are allowed to do this when x is a free variable in ϕ and all
variables in τ remain free in ϕ. Then ϕ[τ/x] is called a substitution.

1.2 Interpretations

A formal language determines what syntactically constitutes a formula or sen-
tence. By itself, a language does not assign meaning to its formulas. This is
where an interpretation is needed. First we will define what is means to be an
L-structure for a formal language L.

Definition 1.5. An L-structure M consists of a non-empty set together with the
following:

– for each n-place function symbol f and each k-place relation symbol R of
L, a function fM and a subset RM called the interpretations of f and R in
M :

fM : Mn →M and RM ⊂Mk

– for each constant c of L, an element cM of M called the interpretation of c
in M

Given L-structure M , we consider language LM that consists of L and, for each
element m of M , and extra constant (also denoted m).

Then for each closed term t of language LM , the interpretation tM as element of
M is defined by induction. It has already been defined for the case when t is a
constant. If t is of the form f(t1, . . . , tn) then t1, . . . , tn are closed terms of LM

for which, by induction hypothesis, interpretations tM1 , . . . , t
M
n have already been

defined. Then we let
tM = fM(tM1 , . . . , t

M
n )

Definition 1.6. Next we will inductively define what it means for “a formula ϕ
to be true in a structure M” (and the synonymous phrasings “ϕ holds in M” and
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1 FORMAL THEORIES

“M satisfies ϕ”). We use the following notation to express this relation:

M |= ϕ

For atomic formulas we define:

– M |=⊥ never holds

– M |= (t1 = t2) iff tM1 = tM2

– M |= R(t1, . . . , tn) iff (tM1 , . . . , t
M
n ) ∈ RM

where t1, . . . , tn are closed terms.

For formulas constructed by logical connectives and quantifiers we define:

– M |= (ϕ ∧ ψ) iff M |= ϕ and M |= ψ

– M |= (ϕ ∨ ψ) iff M |= ϕ or M |= ψ

– M |= (ϕ→ ψ) iff M |= ψ whenever M |= ϕ

– M |= ¬ϕ iff M 2 ϕ

– M |= ∀xϕ iff M |= ϕ[n/x] for all n ∈M

– M |= ∃xϕ iff M |= ϕ[n/x] for some n ∈M

In the last two clauses, ϕ[n/x] is the result of substituting variable x by a new
constant n as stated in definition 1.5.

1.3 Formalized theories

Definition 1.7. A theory Γ in language L, or an L-theory, is a set Γ of L-sentences
called the axioms of the theory.

If it can be effectively decided whether a given formula is an axiom, we call Γ an
axiomatized theory.

Definition 1.8. A model M of Γ is n L-structure such that M |= ϕ for every
ϕ ∈ Γ. We will use notation Γ |= ϕ if M |= ϕ for every model M of Γ.

Definition 1.9. Given a L-sentence ϕ, we write

Γ ` ϕ

to denote the relation “ϕ is provable in Γ”, i.e. there exits a Γ-proof of ϕ.

We abrreviate {ϕ} ` ψ as ϕ ` ψ, ∅ ` ψ as ` ψ and Γ ∪ {ϕ} ` ψ as Γ, ϕ ` ψ.
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1 FORMAL THEORIES

Remark 1.10. Given theories Γ and ∆, if Γ ⊆ ∆ and Γ ` ϕ, then ∆ ` ϕ.

Remark 1.11. Formulas are proven in a theory Γ when they are derived from
premisses and axioms by the correct application of inference rules. These rules
depend on the deductive system for which Γ is defined. Unfortunately, it is beyond
the scope of this paper to define and discuss any deductive system in particular.
We will assume that our ‘ordinary’ mathematical reasoning as used in this paper
is equivalent - in the sense of being able to prove precisely the same formulas
from a given set of premisses - to common deductive systems such as natural
deduction and Hilbert-style systems. The assumption includes that our reasoning
is truth-preserving.

We refer the reader to van Oosten ([3], p.11-16) and Mendelson ([2], p. 35-36) for
detailed overviews of natural deduction and a Hilbert-style system respectively.
Furthermore, these texts formally define proofs according to the inference rules of
their introduced deductive systems.

Definition 1.12. An L-theory Γ is consistent if it does not prove any contradic-
tion; for each L-sentence ϕ, Γ 0 ϕ or Γ 0 ¬ϕ, or both.

Definition 1.13. An L-theory Γ is complete if for every L-sentence ϕ we have
that Γ |= ϕ or Γ |= ¬ϕ. If there is a sentence ψ such that Γ 2 ψ and Γ 2 ¬ψ then
Γ is incomplete and ψ is called independent of Γ.
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2 Peano Arithmetic

We consider the system of Peano Arithetic, an important theory of arithmetic.
The system of Peano Arithmetic, or PA, is a theory in the language

LPA = {0, 1,+, ·}.

Here 0 and 1 are its constants and + and · its binary relation symbols. For the
purpose of readability we will write (x+y) and (x ·y) to denote +(x, y) and ·(x, y)
respectively.

Peano Arithmetic has the following axioms:

(A1) ∀x¬(x+ 1 = 0)

(A2) ∀xy(x+ 1 = y + 1→ x = y)

(A3) ∀x(x+ 0 = x)

(A4) ∀xy(x+ (y + 1) = (x+ y) + 1)

(A5) ∀x(x · 0 = 0)

(A6) ∀xy(x · (y + 1) = (x · y) + x)

(A7) ∀ #»x [(ϕ(0, #»x ) ∧ ∀y(ϕ(y, #»x )→ ϕ(y + 1, #»x )))→ ∀yϕ(y, #»x )]

The seventh item is to be read as an axiom scheme for what we call the induction
axioms ; so there is an induction axiom for every formula ϕ(y, #»x ). We see that
PA is an axiomatized theory: it can be effectively decided whether a formula is
among the first six axioms or whether it is an instance of the induction schema,
despite PA having infinitely many axioms.

As the formation rules of terms have been defined for formal languages in general
we can apply them to determine the terms of LPA. Any variable, as well as the
constants 0 and 1, are terms. If σ and τ are terms, then so are (σ+ τ) and (σ · τ).
Finally, as expected, nothing else is a term.

Since there are different structures in which the axioms above are true, there are
multiple models of the theory. The set of natural numbers, including 0 and 1,
together with its usual multiplication and addition, is one model of LPA. This
model is referred to as the standard model of PA. The standard model is denotated
by N .

Definition 2.1. Even though constants for all natural numbers are not included
in LPA, it will be useful to abbreviate the terms that represent the natural numbers
in N . To this end, we define for every n ∈ N a term n of LPA which we call the
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2 PEANO ARITHMETIC

standard numeral. The standard numerals are defined as follows: 0 = 0 and for
n ∈ N, n+ 1 = n+ 1. For example, the term ((0+1)+1) is equal to the term 2.

Peano arithmetic is able to express and prove many properties of elementary
number theory as will be shown in later chapters. For now, we will prove some
basic properties of addition.

Proposition 2.2. The following statements hold.

(P1) PA ` ∀xyz(x+ (y + z) = (x+ y) + z)

(P2) PA ` ∀xy(x+ y = y + x)

(P3) PA ` ∀x(x = 0 ∨ ∃y(x = y + 1))

(P4) PA ` ∀xy∃z(x+ z = y ∨ x = y + z)

(P5) PA ` ∀xyz(x+ z = y + z → x = y)

Proof. To prove the properties listed above we will use induction in PA.

For (P1) we let ϕ(z) be ∀xy(x+(y+z) = (x+y)+z). It immediately follows from
(A3) that PA ` ϕ(0). Assuming ϕ(z), we see that ∀xy(x+ (y + z) = (x+ y) + z)
holds in PA. Using (A4), we can deduct that x+(y+(z+1)) = x+((y+z)+1) =
(x+ (y+ z)) + 1 = ((x+ y) + z) + 1 = (x+ y) + (z+ 1) so the conclusion ϕ(z+ 1)
holds. Therefore PA ` ∀zϕ(z).

To prove (P2) we set ϕ(x) ≡ ∀y(x + y = y + x) so that we need to prove PA
` ∀xϕ(x). First we prove PA ` ϕ(0), equivalently PA ` ∀y(0 + y = y + 0), using
induction on y. Set ψ0(y) ≡ (0 + y = y + 0). Immediately we notice that PA
` 0 + 0 = 0 + 0 so PA ` ψ0(0). Next we assume PA ` ψ0(y) and derive PA
` ψ0(y+ 1). By our assumption, PA proves that 0 + y = y+ 0; by the axioms and
(P1), we have that

0 + (y + 1) = (0 + y) + 1 = (y + 0) + 1 = y + 1 = (y + 1) + 0

so PA ` 0 + (y+ 1) = (y+ 1) + 0. This proves that PA ` ψ0(y+ 1) and finally we
have PA ` ∀yψ0(y), so inded PA ` ϕ(0).

Next we let ψ1(y) be 1 + y = y+ 1 and prove PA ` ∀yψ1(y). Clearly PA ` ψ1(0).
We assume PA ` ψ1(y), i.e. PA proves 1 + y = y + 1. We see that 1 + (y + 1) =
(1 + y) + 1 = (y + 1) + 1 by (P1) so PA ` ψ1(y + 1). We conclude PA ` ∀yψ1(y).
Now we have all we need to prove PA ` ∀xϕ(x). We assume that PA ` ϕ(x),
i.e. that PA proves x+ y = y + x. Using the induction hypothesis, as well as the
axioms and properties of PA, we have

(x+ 1) + y = x+ (1 + y) = x+ (y + 1) = (x+ y) + 1 = (y + x) + 1 = y + (x+ 1).

6



2 PEANO ARITHMETIC

It follows that PA ` ∀x(ϕ(x)→ ϕ(x+1)). Finally we have PA ` ∀xy(x+y = y+x)
as desired.

The proof of (P3) is quite straightforward. For x = 0, we trivially have x =
0 ∨ ∃y(x = y + 1). Assuming for an arbitrary x that x = 0 ∨ ∃y(x = y + 1) holds
in PA, we see that x + 1 = 0 ∨ ∃y(x + 1 = y + 1) holds as well. So we have PA
` ∀x(x = 0 ∨ ∃y(x = y + 1)).

For (P4) we let ϕ(x) ≡ ∀y∃z(x + z = y ∨ x = y + z). Considering ϕ(0), we take
z = y and see that 0 + z = y follows from the axioms and (P2). Therefore we
have PA ` ϕ(0). Next we assume PA ` ϕ(x): for an arbitrary x we have that
∀y∃z(x+ z = y ∨ x = y + z). We consider two cases: z = 0 and ¬(z = 0) and see
if ∃v((x+ 1) + v = y ∨ x+ 1 = y + v) holds in PA in order to conclude ϕ(x+ 1).

When z = 0, our assumption leads to (x+0 = y∨x = y+0) or simply x = y. Let
v be 1 and we see that the formula x+ 1 = y + v is satisfied since x+ 1 = y + 1.
So ϕ(x+ 1) is satisfied as well.

When ¬(z = 0), there is a variable w such that z = w+1 by (P3). Our assumption
then leads to x + (w + 1) = y or x = y + (w + 1). In the first case we let v = w
and apply (P1) and (P2) to arrive at (x + 1) + v = y. In the second case we
let v = (w + 1) + 1 and have x = y + (w + 1), so x + 1 = y + (w + 1) + 1 and
x + 1 = y + v. In all cases we have ∃v((x + 1) + v = y ∨ x + 1 = y + v), so
ϕ(x+ 1) holds in PA whenever ϕ(x) holds in PA. Therefore we may conclude PA
` ∀xϕ(x).

(P5). We let ϕ(x, y, z) be the formula x + z = y + z → x = y. Clearly PA
` x + 0 = y + 0 → x = y from the axioms so PA ` ϕ(x, y, 0) holds. Next we
assume varphi(x, y, z) holds in PA. Furthermore, we assume x+(z+1) = y+(z+1).
By (P1), (x+ z) + 1 = (y+ z) + 1 and by (A2), x+ z = y+ z. From the induction
hypothesis we have that x = y. We see that PA ∀xy(ϕ(x, y, 0) ∧ ∀z(ϕ(x, y, z) →
ϕ(x, y, z+ 1))). By induction we finally see that PA ` ∀xyz(x+ z = y+ z → x =
y). �

We can express the less-than relation in LPA by the formula ∃z(x+ (z + 1) = y).
We will prove this formula defines a discrete linear order in PA. Additionally,
this order has a least element and satisfies the least number principle as we will
soon see. Since the order will be used often, we introduce the notation x < y to
abbreviate ∃z(x+ (z + 1) = y).

We introduce some more common abbreviations. We will use the natural notation
x ≤ y for x < y ∨ x = y and x 6= y for ¬(x = y). Furthermore, we will use the
abbreviations ∀x < yϕ and ∃x < yϕ for ∀x(x < y → ϕ) and ∃x(x < y ∧ ϕ)
respectively.

7



2 PEANO ARITHMETIC

Proposition 2.3. In PA, < satisfies the following.

1. It is a discrete linear order:

(i) PA ` ∀x(x < x+ 1)

(ii) PA ` ∀x¬(x < x)

(iii) PA ` ∀xyz(x < y ∧ y < z → x < z)

(iv) PA ` ∀xy(x < y ∨ x = y ∨ y < x)

(v) PA ` ∀xy(x < y → x+ 1 ≤ y)

2. It has a least element:

PA ` ∀x(x = 0 ∨ 0 < x)

3. It satisfies the least number principle: for all formulas ϕ,

PA ` ∃xϕ(x)→ ∃y(ϕ(y) ∧ ∀w < y¬ϕ(w))

Proof. 2. We will consider first the proof of the order having a least element in
PA. It follows immediately from (P3) that for all x, x = 0 or ∃y(y + 1 = x). In
the second case, ∃y(0 + (y + 1) = x) and we see that 0 < x holds by definition.

1. New we prove < is a linear order, beginning with item (i). Notice that x < x+1
is an abbreviation for ∃z(x + (z + 1) = x + 1). We let z be 0 and we are done.
For property (ii) we assume the opposite. That is: there is an x such that x < x
holds. For that x there is a z such that x + (z + 1) = x, which is equivalent to
x + (z + 1) = x + 0. By (P5), it follows that z + 1 = 0, which contradicts the
axioms of PA. Therefore PA ` ∀x¬(x < x).

For the third property, reason within PA and assume x < y and y < z for arbitrary
x, y, z. Then there exist u, v such that x + (u + 1) = y and y + (v + 1) = z.
By substituting y we get (x + (u + 1)) + (v + 1) = z which is equivalent to
x+ (((u+ 1) + v) + 1 = z. Evidently this may be written as x < z.

Next we prove property (iv). It follows from (P4) that given x, y in PA, there is
a z such that x+ z = y or x = y + z. If that z is equal to 0, in both cases x = y
holds, therefore x < y∨x = y∨y > x holds as well. If that z is greater than 0, we
define an integer v such that v + 1 = z. Then in the case of x + z = y it follows
that x + (v + 1) = y which, by definition, is equivalent to x < y. In the case of
x = y + z we have that y + (v + 1) = x therefore y > x. We have proven that in
all cases, either x < y, x = y or y > x holds. So PA ` ∀xy(x < y∨x = y∨y < x).

(v) For the final item we assume in PA x < y; that is, ∃z(x+ (z + 1) = y). Since
PA has a least number, we know that z = 0 or 0 < z. If z = 0 we have that

8



2 PEANO ARITHMETIC

x + (z + 1) = x + 1 = y. If 0 < z, we have ∃v(0 + (v + 1) = z). We substitute
z in the assumed formula ∃z(x + (z + 1) = y) to get ∃v(x + ((v + 1) + 1) = y).
Rewriting gives us ∃v(x+ 1 + (v + 1) = y) which is abbreviated by x+ 1 < y. So
in both cases we have x+ 1 ≤ y.

3. Finally we move on to the least number principle as stated in item 3. To prove
the principle we reason in PA, assume the opposite of the principle and derive a
contradiction. So let ϕ(x) hold for a certain variable x and certain formula ϕ.
Now let there be no least y such that ϕ(y). So:

∃xϕ(x) ∧ ∀y(ϕ(y)→ ∃z < yϕ(z)).

Consider the formula ∀y(ϕ(y)→ z < y) which we will denote with ψ(z). We use
induction to prove ∀zψ(z) which will ultimately lead to our desired contradiction.
For z = 0, the formula ∀y(ϕ(y)→ 0 < y) is true since by assumption there is no
least element for which ϕ holds, ϕ cannot hold for 0. So indeed for all y, if ϕ(y)
holds then 0 < y. The induction hypothesis is ψ(z): ∀y(ϕ(y)→ z < y). We want
to derive ∀y(ϕ(y)→ z + 1 < y).

Next we assume that ϕ(z + 1) holds. Since we assumed that there is no least
element for which ϕ holds, there has to be a w < z + 1 such that ϕ(w) holds as
well. We have w ≤ z; however, it follows from the induction hypothesis of ψ that
z < w follows from ϕ(w). This clearly contradicts w ≤ z, so our assumption of
ϕ(z + 1) holding in PA is false. Then ψ(z + 1) holds in PA trivially, so we may
conclude PA ` ∀yz(ϕ(y)→ z < y). From this statement we can derive in PA that
ϕ(x)→ x < x. We assumed in the beginning of our proof that varphi(x) holds so
we must indeed conclude x < x. This of course contradicts the irreflexivity of the
order <. Finally we have reached a contradiction from the assumption of there
being no least number for which a formula holds. We may conclude that the least
number principle holds for <. �

2.1 Properties of multiplication and division in PA

This section serves two main purposes. First, the strength of PA is demonstrated
as it is shown how some of the most fundamental theorems of elementary number
theory can be proven in PA. Second of all, the section will show how sequences of
numbers may be coded in PA using the elementary properties of multiplication
and division. As will become clear in the next chapter, this coding is what allows
us to capture many other functions in PA.

We begin by stating some fundamental arithmetical properties that hold in PA.
They are similar to those in proposition 2.2 and since their proofs are similar as
well, proofs will be omitted here.
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2 PEANO ARITHMETIC

Proposition 2.4. The following statements hold for PA:

1. PA ` ∀xyz((x · y) · z = x · (y · z))

2. PA ` ∀xyz(x · y = y · x)

3. PA ` ∀xyz(x · (y + z) = x · y + x · z)

4. PA ` ∀xyz(z 6= 0 ∧ x · z = y · z → x = y)

As the properties in proposition 2.2 and 2.4 are natural, we will use them in the
forthcoming proofs without mentioning.

Theorem 2.5 (Division with remainder).

PA ` ∀xy(y 6= 0→ ∃ab(x = a · y + b ∧ 0 ≤ b < y))

Furthermore, PA proves that such a and b are unique.

Proof. We will use induction on x. For x = 0, clearly 0 = 0 ·y+0 is satisfied in PA
for all y. We assume the equality holds for x: for all y, there are a and b such that
x = a · y+ b and 0 ≤ b < y. Now we consider x+ 1 = a · y+ b+ 1 and notice that
since b < y we have b+1 ≤ y. If b+1 < y, we let b′ = b+1 and have x+1 = a·y+b′

with 0 ≤ b′ < y. If b+ 1 = y, we have x+ 1 = a · y+ b+ 1 = a · y+ y = (a+ 1) · y.
We let a′ = a + 1 and b′ = 0 and have x = a′ · y + b′ where b′ satisfies 0 ≤ b < y
as well. Our induction proof is completed.

Next we prove uniqueness of a and b. Suppose there are x and y such that
x = a · y + b = a′ · y + b′ with 0 ≤ b, b′ < y. First we suppose a < a′. It follows
that a+ 1 ≤ a′ and

a · y + b < a · y + y ≤ a′ · y ≤ a′ · y + b′

So a · y + b < a′ · y + b′, but this contradicts our assumption. We conclude that
a ≥ a′, though it is easy to see that an assumption of a > a′ leads to a ≤ a′

similarly. Therefore we have a = a′, which means that a is unique. We then have
x = a · y + b = a · y + b′ and see that b = b′ as well. �

We will introduce some useful notation:

x|y ≡ ∃z(x · z = y)

prime(x) ≡ x > 1 ∧ ∀yz(x|(y · z)→ x|y ∨ x|z)

The following proposition is stated without proof as it may easily be checked by
the reader.

10
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Proposition 2.6. PA ` ∀x(x > 1→ ∃y(prime(y) ∧ y|x))

Theorem 2.5 allows us to define two more important relations. For x, y ≥ 1 we
know that x|(x · y) and y|(x · y). Then by the least number principle, there is a
unique smallest w > 0 such that x|w and y|w. We denote this w by lcm(x, y)
and call it the least common multiple of x and y. Clearly it is the case that
lcm(x, y) ≤ x · y.

We then write x · y = a · lcm(x, y) + b for certain a, b where 0 ≤ b < lcm(x, y). It
follows that x|b and y|b. If we assume that 0 < b < lcm(x, y), the minimality of
lcm(x, y) is contradicted. Therefore b = 0 and we have x · y = a · lcm(x, y) for a
certain unique a. This a is denoted by gcd(x, y) and is called the greates common
divisor of x and y. Since x|lcm(x, y) we write x = lcm(x, y) · c for some c. We
substitute this in equation x ·y = gcd(x, y) · lcm(x, y) and get x ·y = gcd(x, y) ·x ·c;
therefore y = gcd(x, y) · c. We see that gcd(x, y)|y and that a similar proof exists
for gcd(x, y)|x.

To confirm that gcd(x, y) is, in fact, the greatest common divisor, we argue the
following. Write gcd(x, y) as g and lcm(x, y) as l so that by definition, x · y = g · l
and g|x ∧ g|y. Assume that there is a d > g such that d|x ∧ d|y to derive a
contradiction. Then x = d · x′ and y = d · y′ for certain x′ and y′. The following
holds.

x · d · y′ = x · y = x′ · d · y

Therefore x · y′ = x′ · y and we see that both x|(x′ · y) and y|(x′ · y) hold. Then
(x′ · y) is a common multiple of x and y. As we defined g|x, there is a w such that
x = g · w. We have x = d · x′ as well and since d > g, it must be the case that
x′ < w. We have

g · l = x · y = w · g · y

from which it follows that l = w · y. Then x′ · y < w · y = l. So x′ · y is a common
multiple smaller than l, which contradicts the definition of lcm(x, y). So it cannot
be the case that there is a common divisor d of x and y greater than gcd(x, y).

Theorem 2.7 (Bézout’s theorem for PA).

PA ` ∀xy ≥ 1∃a ≤ y, b ≤ x(gcd(x, y) = a · x− b · y)

Proof. We prove the theorem by induction on x. For x = 1 we take a = 1 and
b = 0. Clearly gcd(x, y) = 1 for all y and the equality holds.

Next we consider the case of x > 1. We write y = u · x + v for certain u, v.
Dividing both sides by gcd(x, y) gives y′ = u · x′ + v′ where y = y′ · gcd(x, y) and
x = x′ · gcd(x, y). We have gcd(x′, v′) = 1. By induction, we assume the identity

11
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holds for x′ and v′ and prove it holds for x and y. By assumption then, there exist
c ≤ v′ and d ≤ x′ such that

1 = c · x′ − d · v′

We multiply both sides with gcd(x, y) and get gcd(x, y) = c·x−d·v. By definition,
v = y − u · x, so we have gcd(x, y) = c · x− d · (u− u · v), therefore

gcd(x, y) = (c+ d · u) · x− d · y

Using this equality, we will construct a ≤ y and b ≤ x such that gcd(x, y) =
a · x− b · y. Take the term (c+ d · u) and write (c+ d · u) = z · y + a for certain z
and 0 ≤ a < y. We have

gcd(x, y) = (c+ d · u) · x− d · y
= (z · y + a) · x− d · y
= a · x+ z · y · x− d · y
= a · x− (d− z · x) · y

We write b := (d − z · x) and see that b · y ≤ a · x < x · y from which it follows
that b < x. We have gcd(x, y) = a · x− b · y as desired and our induction proof is
completed. �

2.2 Coding sequences using Gödel’s β-function

We introduce another abbreviation: rm(x, y) denotes the remainder of x when
dividing by y. Finally we say that numbers x and y are coprime if gcd(x, y) =
1. Next we present a version of the Chinese Remainder theorem which we will
thereafter use to code sequences of numbers in PA.

Theorem 2.8 (Chinese Remainder Theorem). Given a sequence of numbers
x0, . . . , xk and pairwise coprime positive integers n0, . . . , nk. If for all 0 ≤ i ≤ k
it is the case that xi < ni, then there exists an integer a such that:

xi = rm(a, ni)

for all 0 ≤ i ≤ k.

Proof. For each 0 ≤ i ≤ k, we define Ni as the product of all nj, 0 ≤ j ≤ k except
for ni. Note that Ni and ni are coprime as well, so gcd(Ni, ni) = 1 and there are
ci, di such that ci ·Ni − di · ni = 1 by Bézout’s theorem (theorem 2.7).

We construct a =
∑k

j=0 xj · cj ·Nj and consider the remainder of dividing by ni.
For all 0 ≤ j ≤ k, if i 6= j, each term xj · cj · Nj is divisible by ni so there is no

12
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remainder. That leaves the remainder of the term xi · ci · Ni. Substitution gives
xi · (di · ni + 1) = xi · di · ni + xi. Since xi < ni, dividing the term by ni clearly
leaves remainder xi. We see that for all 0 ≤ i ≤ k, xi = rm(a, ni) as desired. �

Gödel showed that these are the tools we need to code sequences of numbers in
PA. Given a sequence of natural numbers x0, . . . , xk−1, using only multiplication
and addition, we can construct a pair (a,m) that code the sequence by Gödel’s
three-place β-function:

β(a,m, i) = xi for all 0 ≤ i < k.

First we need to construct a sequence of k pairwise coprime numbers. Let m =
max(x0, . . . , xk−1, k)! (note that the max -function can be expressed in LPA). We
show that for all 0 ≤ j < i < k the numbers m(i + 1) + 1 and m(j + 1) + 1 are
coprime. Assume the opposite, there being a prime p that divides both numbers,
to reach a contradiction. If p divides both numbers, it divides their difference,
(m(i + 1) + 1) − (m(j + 1) + 1) = m(i − j), as well. So p|m(i − j) and since p
is prime, either p|m or p|(i − j). We notice that k!|m and since 0 < i − j < k
(i− j)|k!, so (i− j)|m. Therefore if p|(i− j) we have p|m as well. So in both cases
p|m, which leads to p|m(i+ 1). By assumption we have p|m(i+ 1) + 1 as well so p
must divide 1 as well, which contradicts p being prime. So for all 0 ≤ j < i < k,
the numbers m(i+ 1) + 1 and m(j + 1) + 1 are coprime. Since xi < m(i+ 1) + 1
for all i, we apply the Chinese Remainder Theorem to find an a such that for all
0 ≤ i < k, xi = rm(a,m(i+ 1) + 1). We define our coding function by

β(a,m, i) = rm(a,m(i+ 1) + 1.

Theorem 2.9. The following properties hold when coding sequences in PA:

1. PA ` ∀x∃am(β(a,m, 0) = x)

2. PA ` ∀yxam∃bn(∀i < y(β(a,m, i) = β(b, n, i)) ∧ β(b, n, y) = x)

3. PA ` ∀ami(β(a,m, i) ≤ a)

Proof. See theorem 4.9 in ([3]). �

The properties stated in theorem 2.9 of the β-function show that for any x, there
is a sequence starting with x and that any sequence can be extended. Gödel
used these properties to represent and prove facts about all primitive recursive
functions in PA, not just addition and multiplication. We will go over the proof
in the next paragraph, but the idea of the proof might be clear already. For
primitive recursive functions, the function value of a number depends on the
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function value of the previous number. Therefore, by considering the function
values to be a sequence of numbers that each determine the next, we are able to
express primitive recursive functions in PA.

2.3 What PA can prove

Our focus for the remaining of this chapter is to explore further what can be
proven in PA. We will prove the important theorem of the Σ1-completeness of PA
that we will use later on. First we will introduce an important definition.

Definition 2.10. We speak of bounded quantifiers when they are of the form
∀x < y or ∃x < y for a term y not containing the variable x. We call other
quantifiers unbounded. An LPA-formula ϕ is called a ∆0-formula if all of its
quantifiers are bounded (if it has quantifiers at all) and we may write ϕ ∈ ∆0.

The Σ1-formulas are defined as the formulas of the form ∃xϕ where ϕ ∈ ∆0.
Similarly, the Π1-formulas are defined as the formulas of the form ∀xϕ where
ϕ ∈ ∆0.

PA being Σ1-complete means that a Σ1-sentence is true in N if and only if it is
provable in PA. To arrive at this theorem, we will first prove that PA correctly
evaluates all terms. Next we will cover some properties and definitions of formulas
and prove that PA is ∆0-complete. Finally, we use this lemma to prove the Σ1-
completeness of PA. First we mention some properties of formulas.

Lemma 2.11. For all natural numbers n and m, the following properties hold:

(i) PA ` n+m = n+m

(ii) PA ` n ·m = n ·m

(iii) PA ` n < m⇔ n < m

(iv) PA ` ∀x(x < n↔ x = 0 ∨ . . . ∨ x = n− 1) if n > 0

Proof. (i) We prove PA ` n+m = n+m by induction on n. For n = 0 we have
to show that PA ` 0 +m = m, which follows from the axioms. Assume we have a
proof of (i) for a number n and proceed in PA. We have n+ 1 +m = n+ 1 +m =
n+m+ 1 = n+ 1 +m by associativity, so the property holds for n+ 1 whenever
it holds for n. The proof of (ii) is similar.

For (iii), we suppose first that PA ` n < m so PA ` ∃z(n+(z+1) = m). It follows
that N |= (n + (z + 1) = m) which means that n < m holds. Next suppose that
n < m, then n+ (z+ 1) = m for some z ∈ N. By (i) we have PA ` n+ z + 1 = m
so PA ` n+ (z + 1) = m. This is abbreviated with PA ` n < m.
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(iv) We prove the property by induction on n. For n = 1 we have to prove PA
` ∀x(x < 1 ↔ x = 0). We reason in PA and let x < 1. It follows that either
x + 1 = 1 or x + 1 < 1, though the latter is clearly impossible. But if we have
that x + 1 = 1, it follows that x = 0. Now assume x = 0, trivially we have that
x < 1, so the property holds for n = 1. Next we assume the property holds for
n so PA ` ∀x(x < n ↔ x = 0 ∨ . . . ∨ x = n− 1). To prove it holds for n + 1 we
first let x < n+ 1. Either x+ 1 < n+ 1 or x+ 1 = n+ 1. The first case leads to
x < n, which by assumption leads to x = 0 ∨ . . . ∨ x = n− 1. The second case is
equivalent to x = n. In both cases, it follows that x = 0∨ . . .∨x = n− 1∨x = n.
Next we assume the opposite. If x = n it follows that x < n+ 1; if x = 0, . . .,
x = n− 1, it follows from our assumption that x < n and x < n+ 1. Therefore,
if x = 0 ∨ . . . ∨ x = n then x < n+ 1 and the property is proven for n + 1 if it
holds for n. By induction, the property holds for all n > 0. �

As we have just seen, equations correctly evaluating any term of the form n+m
or n · m can be proved in PA. Since closed terms are constants or the result of
repeated applications of the addition or multiplication functions on constants, it
is easy to see that PA can evaluate any closed term, regardless of its complexity.
This is stated in the following lemma.

Lemma 2.12. If τ is a closed term of LPA that takes the value t on interpretation
in the standard model, then

PA ` τ = t

Next we consider some useful properties of formulas.

Lemma 2.13. For every formula ϕ, there is:

– an equivalent formula ϕ′, called the negation normal form, such that each
occurrence of the negation symbol only applies to atomic formulas;

– an equivalent formula ϕ′′, called the prenex normal form, starting with a
string of quantifiers, followed by a formula in which no quantifiers occur.

Proof. We refer the reader to exercise 1.42 and lemma 2.29 of ([2]). �

Example 2.14. The following equivalencies hold for any formulas ϕ and ψ. They
are examples of formulas being written in negation normal form (as in the first
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three items) and prenex normal forms (as in the final three items).

¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ
¬(ϕ→ ψ)↔ ϕ ∧ ¬ψ
¬∃xϕ(x)↔ ∀x¬ϕ(x)

(∀xϕ(x))→ ψ ↔ ∃x(ϕ(x)→ ψ)

ϕ→ (∀xψ(x))↔ ∀x(ϕ→ ψ(x))

Finally, we are able to prove ∆0- completeness of PA.

Lemma 2.15. Let ϕ(x1, . . . , xk) be a ∆0-sentence, then for all n1, . . . , nk ∈ N:

PA ` ϕ(n1, . . . , nk)⇔ N |= ϕ(n1, . . . , nk).

Proof. The proof of the implication from left to right is trivial. Since N is a model
for PA, it follows that if PA ` (n1, . . . , nk) then N |= ϕ(n1, . . . , nk).

For the implication from right to left, assume N |= ϕ(n1, . . . , nk). We use induc-
tion for the number of bounded quantifiers. For a ∆0-sentence ϕ with no bounded
quantifiers, we use induction as well on the number k of binary connectives that
are in ϕ.

For k = 0, ϕ is of the form σ = τ or σ 6= τ . For the latter, it suffices to consider
σ < τ . As each closed term of LPA is interpreted by N as a natural number, σN

and τN are equivalent to certain s and t respectively in N . Since N |= ϕ, either
σN = τN or σN < τN is true in N . So either s = t or s < t for certain s, t ∈ N .
By lemma 2.11, closed terms are evaluated correctly in PA. So in the first case,
PA ` σ = s = t = τ . In the case of s < t, there is a natural number z such that
s + (z + 1) = t so PA ` ∃y(s + (y + 1) = t) which is equivalent to PA ` s < t so
PA ` σ < τ . In both cases, PA ` ϕ.

Now we assume the induction hypothesis that N |= ϕ⇒ PA ` ϕ for a quantifier-
free sentence ϕ having k binary connectives. Furthermore, we assumeN |= ψ with
ψ having k + 1 binary connectives. We can bring ψ into its equivalent negation
normal form ψ′ without changing the number of binary connectives. ThenN |= ψ′

as well. Moreover, ψ′ is of the form (ψ1 ∧ ψ2), (ψ1 ∨ ψ2) or (ψ1 → ψ2) where ψ1

and ψ2 are both formulas with at most k binary connectives.

Considering the first case, N |= ψ1 ∧ ψ2 from which it follows that both N |= ψ1

and N |= ψ2. By our induction hypothesis, PA ` ψ1 and PA ` ψ2 thus PA
` ψ1 ∧ ψ2. Similarly for the second case, we have that N |= ψ1 ∨ ψ2. This means
that N |= ψ1 or N |= ψ2 which leads, by assumption, to PA ` ψ1 or PA ` ψ2.
Therefore PA ` ψ1 ∨ ψ2, as desired. Finally, in the case of N |= ψ1 → ψ2, we
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consider the cases N |= ψ2 and N |= ¬ψ2. In the first case we have that PA
` ψ2 from which we may conclude PA ` ψ1 → ψ2. In the case of N |= ¬ψ2, we
know that N |= ¬ψ1 so PA ` ¬ψ1. Then PA ` ψ1 → ψ2 as well. In all cases
we may conclude PA ` ψ′ from N |= ψ, so the lemma holds for quantifier free
∆0-formulas.

We assume N |= ϕ ⇒ PA ` ϕ for all ∆0-sentences ϕ containing j bounded
quantifiers. Moreover, we assume N |= ψ with ψ ∈ ∆0 containing j + 1 bounded
quantifiers. We bring ψ in its equivalent prenex normal form, ψ′, which does not
change its number of quantfiers. So N |= ψ′. Then ψ′ is equivalent to either
∀x < tχ(x) or ∃x < tχ(x) with χ being a ∆0-sentence with j bounded quantifiers.

In the first case, N |= ∀x < tχ(x). The interpretation of t in N is an integer, so it
follows that χ(0), χ(1), . . . , χ(t− 1) are all true in the standard model. It follows
that χ(0) ∧ . . . ∧ χ(t − 1) is true as well. Since χ has j bounded quantifiers, it
follows from the induction hypothesis that PA ` χ(0)∧ . . .∧χ(tN − 1). Therefore
PA ` ∀x < tNχ(x) by item (iv) of lemma 2.10 and we may conclude PA ` ψ.

The case of N |= ∃x < tχ(x) is approached similarly. We notice that in this case
at least one of the ∆0-sentences χ(0), . . . , χ(t − 1) is true in the standard model
where each sentence has j bounded quantifiers. Therefore χ(0) ∨ . . . ∨ χ(t− 1) is
true as well. So PA ` χ(0)∨ . . .∨χ(tN − 1), PA ` ∃x < tNχ(x) and PA ` ψ hold.

Finally, by induction on both the number of bounded quantifiers and the number
of binary logical connectives, we have proven that for all ∆0-sentences ϕ,

N |= ϕ⇒ PA ` ϕ.

�

Theorem 2.16 (Σ1-completeness). Let ϕ(x1, . . . , xk) be a Σ1-sentence. Then for
all n1, . . . , nk ∈ N :

PA ` ϕ(n1, . . . , nk)⇔ N |= ϕ(n1, . . . , nk).

Proof. Similar to the proof of ∆0-completeness, the implication from left to right is
trivial. To complete the proof, we assumeN |= ϕ(n1, . . . , nk) and derive that PA `
ϕ(n1, . . . , nk). Since ϕ is a Σ1 formula, it can be written as ∃x1, . . . , xmψ(n1, . . . , nk, x1 . . . , xm)
for a ∆0-formula ψ. Since ∃x1, . . . , xmψ(n1, . . . , nk, x1 . . . , xm) is true by assump-
tion, for certain y1, . . . , ym ∈ N , we know that ψ(n1, . . . , nk, y1, . . . , ym) is true.
For ψ ∈ ∆0 we may apply lemma 2.15 and conclude that PA ` ψ(n1, . . . , nk, y1, . . . , ym)
for certain y1, . . . , ym, therefore PA ` ∃x1, . . . , xmψ(n1, . . . , nk, x1, . . . , xm). Fi-
nally we conclude that PA ` ϕ(n1, . . . , nk). �

Remark 2.17. Naturally each theory containing PA is Σ1-complete.
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This chapter will describe a large class of numerical functions: primitive recursive
functions. They are named after the process of recursion, which allows the value of
a function to be defined from other values of the same function. We will prove how
these functions can be represented in PA. The importance of these functions will
become clear in the next chapter, as some important properties of formulas and
proofs that we need to prove Gödel’s theorems are decided by primitive recursive
functions.

Before defining primitive recursive, we will go over a convention of notation we
will often employ in this paper. It is not uncommon to encounter expressions
such as xy without a specification of this expression referring to a function or a
variable.

The expression xy could refer to any one of (x, y) 7→ xy, (y, x) 7→ xy or (x, y, z) 7→
xy, or to a different function altogether. Usually, the context of a text will
implicate which function is referred to. However, for the purpose of this pa-
per it is important to clearly and explicitly distinguish between these different
meanings. We will use the λ-notation to avoid this ambiguity: the function
(x1, . . . , xn) 7→ F (x1, . . . , xn) will be denoted by λx1 . . . xn.F (x1, . . . , xn).

Example 3.1. The functions (x, y) 7→ xy, (y, x) 7→ xy and (x, y, z) 7→ xy will be
written as λxy.xy, λyx.xy and λxyz.xy respectively.

3.1 Primitive recursive functions

Definition 3.2. The class of primitive recursive functions is a subclass of all
numerical functions Nk → N (for k ∈ N), generated by the following clauses:

1. the zero function Z = λx.0 is primitive recursive;

2. the successor function S = λx.x+ 1 is primitive recursive;

3. the projections Πk
i = λx1, . . . , xk.xi (for 1 ≤ i ≤ k) are primitive recursive;

4. for primitive recursive functions G1, . . . Gl : Nk 7→ N and H : Nl 7→ N, the
function

λ #»x .H(G1( #»x ), . . . , Gl(
#»x ))

is primtive recursive as well. Furthermore, it is said to be defined from
G1, . . . , Gl and H by composition;

5. for primitive recursive functions G : Nk 7→ N and H : Nk+2 7→ N, the
primitive recursive function F : Nk+1 → N may be defined from G and H
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by primitive recursion as follows:

F (0, #»x ) = G( #»x )

F (y + 1, #»x ) = H(y, x, F (y, #»x ))

Example 3.3. λxy.x + y. We define a function G by Π1
1(y) which is known to

be primitive recursive. Next, we define H by the following composition of the
successor and projection function λuwv.S(Π3

3(u,w, v)). Then we have F (0, y) =
G(y) = Π1

1(y) = y = 0 + y, and F (x+ 1, y) = H(x, y, F (x, y)) = H(x, y, x+ y) =
S(x + y) = (x + y) + 1. Since F is defined by primitive recursion, it is primitive
recursive.

Example 3.4. λxy.xy. We take G to be the zero function. Using the result of
example 1.3 we know that the addition function is primitive recursive as well. By
composition, we define H as λuwv.Π3

3(u,w, v) + Π3
2(u,w, v). Then F is primitive

recursive, for F (0, y) = G(y) = 0 = 0y and F (x + 1, y) = H(x, y, F (x, y)) =
H(x, y, xy) = xy + y = (x+ 1)y.

Example 3.5. Consider the sign function, sg, and its compliment, sg:

sg(x) =

{
1 x > 0

0 else
sg(x) =

{
0 x > 0

1 else

The sign function is defined from primitive recursion. Since sg(0) = 0 and sg(x+
1) = 1, it follows that sg is primitive recursive. A similar proof can be given to
show that sg is primitive recursive.

Definition 3.6. A k-ary relation is a subset of Nk. For its characteristic function
we will use the following convention. A relation R has a characteristic function
χR : Nk → N such that

χR( #»x ) =

{
0 #»x ∈ R
1 else

If the characteristic function of a relation is primitive recursive, we speak of a
primitive recursive relation.

Proposition 3.7. If G1, G2 and H are primitive recursive functions Nk → N and
F is defined by

F ( #»x ) =

{
G1( #»x ) H( #»x ) = 0

G2( #»x ) else

then F is a primitive recursive function.

Proof. F may be defined by F ( #»x ) = sg(H( #»x ))G1( #»x ) + sg(H( #»x ))G2( #»x ). �
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3.2 Representing primitive recursive functions in PA

This chapter will be concluded by showing that facts about primitive recursive
functions and relations can be proven in Peano Arithmetic. Considering the primi-
tive recursive functions constitute such a large class of functions, Peano arithmetic
turns out to be a very strong theory, despite its seemingly rudimentary axioms.
First we go over some general definitions.

Definition 3.8. Given a theory Γ in the language L, a L-formula ϕ(x) represents
the numerical property P iff, for all n ∈ N,

if n has the property P , then Γ ` ϕ(n)

if n does not have the property P , then Γ ` ¬ϕ(n)

The L-formula ϕ(x1, . . . , xk) of k free variables represents k-ary relation R iff, for
all n1, . . . , nk ∈ N,

(n1, . . . , nk) ∈ R ⇒ Γ ` ϕ(n1, . . . , nk) and

(n1, . . . , nk) /∈ R ⇒ Γ ` ¬ϕ(n1, . . . , nk)

The L-formula ϕ(x1, . . . , xk, y) of k + 1 free variables represents k-ary function
F : Nk → N iff, for all n1, . . . , nk ∈ N,

Γ ` ϕ(n1, . . . , nk, F (n1, . . . , nk)) and

Γ ` ∃!yϕ(n1, . . . , nk, y)

Definition 3.9. A k-ary function F : Nk → N is provably recursive in PA if it is
represented by a Σ1-formula ϕ(x1, . . . , xk, y) such that

PA ` ∀x1 . . . xk∃!yϕ(x1, . . . , xk, y)

Theorem 3.10. All primitive recursive functions are provably recursive in PA.

Proof. Given a primitive recursive function F : Nk → N, we have to prove that
there is a Σ1-formula ϕ(x1, . . . , xk, y) such that for all n1, . . . , nk ∈ N:

(i) PA ` ϕ(n1, . . . , nk, F (n1, . . . , nk)) and (ii) PA ` ∀x1 . . . xk∃!yϕ(x1, . . . , xk, y)

The class of primitive recursive functions is generated inductively so we shall
prove the theorem using induction accordingly. The formulas for the three initial
functions are quite straightforward. For the zero function we can define ϕZ(x, y)
as (y = 0); for the successor function we can define ϕS(x, y) as (y = x + 1); for
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3 PRIMITIVE RECURSIVE FUNCTIONS

the projection function we can define ϕΠk
i
(x1, . . . , xk) as (y = xi). These are all

∆0-formulas and therefore Σ1-formulas as well.

The proofs that these formulas satisfy the properties are fairly uncomplicated so
we will only explicitly prove the theorem for the zero function. The other initial
functions are handled similarly. Let n ∈ N arbitrarily. We have Z(n) = 0 and
since PA proves that 0 = 0, PA ` ϕZ(n, 0). So it follows that PA ` ϕZ(n, Z(n)).
Now reasoning within PA, we notice that for any x, there is a unique y such that
y = 0 holds. Therefore PA ` ∀x∃!yϕZ(x, y) which concludes the proof of both
properties.

Next we suppose that F : Nk → N is defined by composition of primitive
recursive functions H : Nm → N and G1, . . . , Gm : Nk → N. So we have
F ( #»x ) = H(G1( #»x ), . . . , Gm( #»x )). By the induction hypothesis we have Σ1-formulas
ϕH , ϕG1 , . . . , ϕGm that each satisfy the two properties. Then we define ϕF ( #»x , y)
as

∃z1 . . . zm(ϕG1(
#»x , z1) ∧ . . . ∧ ϕGm( #»x , zm) ∧ ϕH(z1, . . . , zm, y)).

Clearly ϕF is a Σ1-formula as well. Take n1, . . . , nk ∈ N arbitrarily. We have
F (n1, . . . , nk) = H(G1(n1, . . . , nk), . . . , Gm(n1, . . . , nk)) thus there are l1, . . . , lm
such that for all 1 ≤ i ≤ m, Gi(n1, . . . , nk) = li and H(l1, . . . , lm) = F (n1, . . . , nk).

By hypothesis then, PA ` ϕG1(n1, . . . , nk, l1), . . ., PA ` ϕGm(n1, . . . , nk, lm) and
PA ` ϕH(l1, . . . , lm, F (n1, . . . , nk)). It follows that

PA `∃z1 . . . zm(ϕG1(n1, . . . , nk, z1) ∧ . . . ∧ ϕGm(n1, . . . , nk, zm)

∧ ϕH(z1, . . . , zm, F (n1, . . . , nk)))

This satisfies that for all n1, . . . , nk ∈ N, PA ` ϕF (n1, . . . , nk, F (n1, . . . , nk)) and
property (i) is proven. Next we prove property (ii). Clearly it follows from the
assumption that PA proves that for all #»x , there are unique z1, . . . , zm such that
ϕG1(

#»x , z1), . . . ϕGm( #»x , zm) hold in PA. Then for those z1, . . . , zm PA proves there
is a unique y such that ϕH(z1, . . . , zm, y) holds in PA. From this we may conclude
that

PA ` ∀x1 . . . xm∃!yϕF (x1, . . . , xk, y).

Indeed, the second property holds for F as well and F is provably recursive in
PA.

Finally we prove the theorem for a primitive recursive function F that is defined
by recursion from primitive recursive G and H. That is:

F (0, #»x ) = G( #»x )

F (z + 1, #»x ) = H(z, F (z, #»x ), x)
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3 PRIMITIVE RECURSIVE FUNCTIONS

By the induction hypothesis we have Σ1-formulas ϕG( #»x , y) and ϕH(z, u, #»x , y) that
satisfy the two properties. We define ϕF (z, #»x , y) by

∃am(ϕG( #»x , β(a,m, 0))∧∀i < zϕH(i, β(a,m, i), #»x , β(a,m, i+ 1))∧ y = β(a,m, z),

where the pair (a,m) encodes the sequence F (0, #»x ), . . . , F (z, #»x ). While β(a,m, i)
itself is not a term of LPA, it is an abbreviation for something that can be written
in LPA. For example, ϕG( #»x , β(a,m, 0)) denotes

∃k, l < a(a = k · (m+ 1) + l ∧ 0 ≤ l < m+ 1 ∧ ϕG( #»x , l)).

Here we have used property 3 of lemma 2.9 to see that the remainder is indeed
bounded. Considering this, as well as the assumption of ϕG and ϕH being Σ1-
formulas, it follows that ϕF is a Σ1-formula. We will use induction on z to prove
the formula satisfies the two properties as state in the theorem.

For z = 0 we notice that ϕF equates to ∃am(ϕG( #»x , β(a,m, 0)) ∧ y = β(a,m, 0)).
By hypothesis we have that for all n1, . . . , nk ∈ N, PA ` ϕG(n1, . . . , nk, G(n1, . . . , nk)).
We know that F (0, n1, . . . , nk) = G(n1, . . . , nk) and by lemma theorem 2.9 we
know that there are a,m such that β(a,m, 0) = G(n1, . . . , nk) = F (0, n1, . . . , nk).
Naturally we have for all n1, . . . , nk ∈ N that PA ` ∃am(ϕG(n1, . . . , nk, β(a,m, 0)).
Therefore PA ` ϕF (0, n1, . . . , nk, F (0, n1, . . . , nk) which proves the first property.
For any #»x , there is exactly one z such that ϕG( #»x , z) holds in PA. Likewise there
is a unique y such that ∃am(ϕG( #»x , β(a,m, 0))∧β(a,m, 0)) from which the second
property follows as well.

We assume furthermore that properties (i) and (ii) hold for ϕF (z, #»x , y). Let
n1, . . . , nk ∈ N, then there are a,m such that

PA `ϕG(n1, . . . , nk, β(a,m, 0)) ∧ ∀i < zϕH(i, β(a,m, i), n1, . . . , nk, β(a,m, i+ 1))

∧ F (z, n1, . . . , nk) = β(a,m, z).

By the induction hypothesis, there is a unique w such that ϕH(z, β(a,m, z), n1, . . . , nk, w)
holds in PA. Then by the second property of theorem 2.9, we can find b, h that
satisfy ∀i < (z+ 1)β(a,m, i) = β(b, h, i) and β(b, h, z + 1) = w. We have that PA
` ϕF (z + 1, n1, . . . , nk, F (z + 1, n1, . . . , nk)), from which we conclude that prop-
erty (i) holds for ϕF .

To prove the second property we reason within PA. Let #»x be given as well and
by the induction hypothesis there is a unique y for which ϕF (z, #»x , y). By as-
sumption, ϕG( #»x , β(a,m, 0)) guarantees that β(a,m, 0) is unique and that for all
i < z, ϕH(i, β(a,m, i), #»x , β(a,m, i+ 1)) makes β(a,m, i+ 1) unique as well. Then
β(a,m, z+ 1) in ϕH(z, β(a,m, z), #»x , β(a,m, z+ 1)) is unique. Therefore, a unique
y exists which satisfies the following in PA for certain a,m:

ϕG( #»x , β(a,m, 0))∧∀i < (z+1)ϕH(i, β(a,m, i), #»x , β(a,m, i+1))∧ y = β(a,m, z+1).
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3 PRIMITIVE RECURSIVE FUNCTIONS

Induction on z has proven that indeed

PA ` ∀z x1 . . . xk∃!yϕF (z, x1, . . . , xk, y).

We have concluded the proof that all primitive recursive functions are provably
recursive in PA. �
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4 Gödel’s First Incompleteness Theorem

In this chapter we shall prove the first incompleteness Theorem of Gödel. We
will construct a LPA-sentence of which we can prove its independence of Peano
Arithmetic.

4.1 Coding formulas and proofs

The proof of the incompleteness theorems of Gödel rests PA being able to make
statements about its own theorems. Gödel’s idea was to code formulas and proofs,
so that certain predicates can be interpreted as numerical relations, some of which
being primitive recursive. And as we have proven, PA is able to prove properties
of these primitive recursive relations. First we develop a way of coding formulas.
We use the same coding as van Oosten does in chapters 3 and 5 of ([3]).

There are many bijections from N × N → N. We call a function f : N × N → N
a paring function and say that f(x, y) codes the pair (x, y). We consider the
following pairing function:

j(n,m) =
1

2
(n+m)(n+m+ 1) + n

Function j enumerates elements of N× N as follows:

Since j is a composition of addition and multiplication, it is a primitive recursive
function. Furthermore, j is a bijection, which means that there exists functions
j1 and j2 such that

j(j1(z), j2(z)) = z.
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4 GÖDEL’S FIRST INCOMPLETENESS THEOREM

Since functions j1 and j2 are primitive recursive, we can define bijections from Nn

to N and projection functions from N to N in the following manner.

Definition 4.1. The bijections jn : Nn → N are defined by:

j1(x) = x

jn+1(x1, . . . , xn+1) = j(jn(x1, . . . , xn), xn+1)

There are projection functions jni : N→ N for 1 ≤ i ≤ n, satisfying

jn(jn1 (z), . . . , jnn(z)) = z

for all z ∈ N, and are defined by:

j1
1(z) = z

jn+1
i =

{
jni (j1(z)) if 1 ≤ i ≤ n

j2(z) if i = n+ 1

Considering that j, j1 and j2 are all primitive recursive, it can be seen that the
functions jn and jni are primitive recursive as well for all n ∈ N and 1 ≤ i ≤ n.

We are able to code finite sequences using these functions. A sequence (x1, . . . , xn)
is an element of Nn; we consider the unique element (−) of the set N0 as the empty
sequence. We will define a function below that, given a sequence, returns the code
of that sequence. We will use notation 〈x1, . . . , xn〉 and 〈〉 to denote the codes of
sequences (x1, . . . , xn) and (−) respectively.

Definition 4.2.

〈〉 = 0

〈x0, . . . , xn−1 = j(n− 1, jn(x0, . . . , xn−1)) + 1 if m > 0

Finally we need to define some important operations of sequences. Given a se-
quence, we want to be able to take its length, take its i-th element and concatenate
it with another sequence. Again, we have taken the following functions from van
Oosten ([3]).

Definition 4.3. Consider two sequences that are coded by numbers x and y.
Define function lh(x) that returns the length of sequence with code x by:

lh(x) =

{
0 if x = 0

j1(s− 1) + 1 if x > 0
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4 GÖDEL’S FIRST INCOMPLETENESS THEOREM

Define functions (x)i, returning the i-th element of the sequence coded by x as
long as 0 ≤ i ≤ lh(x), and 0 otherwise, by

(x)i =

{
j

lh(x)
i+1 (j2(x− 1)) if x > 0 and 0 ≤ i < lh(x)

0 else

Define the concatenation function x _ y by

〈〉_ y = y

x _ 〈〉 = x

〈(x)0, . . . , (x)lh(x)−1〉_ 〈(y)0, . . . , (y)lh(y)−1〉 = 〈(x)0, . . . , (x)lh(x)−1, (y)0, . . . , (y)lh(y)−1〉

The ability to code sequences is an essential tool for coding formulas and proofs.
Given a formula ϕ, we will assign it a code number. The code number is written
as pϕq and called the Gödel number of ϕ.

Each symbol of LPA (from now on we include <) is assigned a code number:

0 1 v + · = < ∧ ∨ → ¬ ∀ ∃
0 1 2 3 4 5 6 7 8 9 10 11 12

We assume that the variables of LPA are numbered as v0, v1, . . .. Then we code
the terms of LPA by recursion. So p0q = 〈0〉, p1q = 〈1〉 and pviq = 〈2, i〉.
Given terms t and s we define pt + sq = 〈3, ptq, psq〉 and pt · sq = 〈4, ptq, psq〉.
Likewise we code formulas by recursion, examples being pt < sq = 〈6, ptq, psq〉,
pϕ ∨ ψq = 〈8, pϕq, pψq〉, and p∃viϕq = 〈12, i, pϕq〉.

Immediately we have that properties such as “x is the code of a term”, “the
variable vi occurs freely in the formula coded by x” and so forth, are primitive
recursive in their arguments.

Likewise, we can recursively code proof trees. Similarly to how we assigned code
numbers to LPA-symbols, we can do so as well for each inference rule of our
deductive system (to see this worked out, we again refer to ([3]), this time to
section 5.2). As a consequence, we are able to formulate many properties of
proofs that are primitive recursive in their arguments as well. This includes the
important property that may be translated in ordinary language to “y is the Gödel
number of a correct proof in PA for the formula with Gödel number x”. We denote
this primitive recursive precidate by Prf(y, x).

4.2 Diagonalization

The proof of Gödel’s first incompleteness theorem relies heavily on the diagonl-
ization lemma. For this, we define the following primitive recursive subsitution
function:
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4 GÖDEL’S FIRST INCOMPLETENESS THEOREM

Sub(x, y, i) =

{
pϕ[s/vi]q if “y codes a formula ϕ” and “x codes a term s”

0 else

Lemma 4.4 (Diagonalization Lemma). Given an LPA-formula ϕ with free vari-
able v0, there is a LPA-formula ψ with the same free variables as ϕ except for v0,
such that

PA ` ψ ↔ ϕ[pψq/v0].

Proof. The function Sub(x, y, i) is a primitive recursive function which makes
λxy.Sub(x, y, 0) a primitive recursive function as well. By theorem 3.10, the
function is provably recursive and there is a Σ1-formula S that represents it in
PA. Furthermore, we consider the function that, given natural number n, returns
pnq, the Gödel number of n in PA. Let C be the Σ1-formula representing this
primitive recursive function.

By theorem 3.10, the following statements hold for S and C. For all n,m ∈ N:

PA ` S(n,m, Sub(n,m, 0)) (1)

PA ` ∀xy∃!zS(x, y, z) (2)

PA ` C(n, pnq) (3)

PA ` ∀x∃!zC(x, z) (4)

Now let ϕ be a formula that has free variable v0. Furthermore, define a formula
D by

∀xy(C(v0, x) ∧ S(x, v0, y)→ ϕ[y/v0])

and define ψ by

D[pDq/v0] ≡ ∀xy(C(pDq, x) ∧ S(x, pDq, y)→ ϕ[y/v0]).

We will prove that this formula satisfies the diagonalization lemma. We reason in
PA and prove the implication from left to right first. So assume ψ holds. That is,

∀xy(C(pDq, x) ∧ S(x, pDq, y)→ ϕ[y/v0]).

Notice that Sub(ppDqq, pDq, 0) = pD[pDq/v0]q. It follows that

C(pDq, ppDqq)

and
S(ppDqq, pDq, pD[pDq/v0]q)
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4 GÖDEL’S FIRST INCOMPLETENESS THEOREM

hold in PA. It follows from ψ that we may infer ϕ[pD[pDq/v0]q/v0] which, by
definition of ψ, is equivalent to ϕ[pψq/v0]. So the implication ψ → ϕ[pψq/v0]
holds in PA.

Next we assume that ϕ[pψq/v0] holds in PA and want to prove ψ. We have to
consider all x and y such that

C(v0, x) ∧ S(x, v0, y)

and check whether they imply ϕ[y/v0]. We know by theorem 3.10 that the formula

is satisfied for x = ppDqq and y = pD[pDq/v0] = pψq. Moreover, these x and y
are unique. By assumption we have ϕ[pψq/v0] so finally we conclude

∀xy(C(pDq, x) ∧ S(x, pDq, y)→ ϕ[y/v0]),

which is exactly how we defined ψ. Therefore, the implication holds from right to
left as well in PA. �

4.3 PA is incomplete

We have all the tools we need to prove the first incompleteness theorem. We
will begin by proving that the system of Peano Arithmetic is incomplete. Shortly
thereafter we will demonstrate the strength of Gödel’s theorem by proving that
any theory extending PA is incomplete. First we will state an important lemma.

Lemma 4.5. The proof predicate Prf(y, x) that states that “y is the Gödel number
of a proof in PA for the sentence with Gödel number x”, is primitive recursive. It
can therefore be represented by a Σ1-formula in PA, denoted by Prf(y, x).

We then define our provability predicate as follows:

Prov(x) ≡ ∃yPrf(y, x)

Notice that Prov(x) is a Σ1-formula as well.

Proposition 4.6. If PA ` ϕ, then PA ` Prov(pϕq)

Proof. If PA ` ϕ, then Prov(pϕq) is a true Σ1-formula. It follows from Σ1-
completeness that PA ` Prov(pϕq).

�

Theorem 4.7 (Gödel’s First Incompleteness Theorem). There is an LPA-sentence
G such that, if PA is consistent, it is independent of PA.
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Proof. We will construct a LPA-sentence G such that PA 0 G and PA 0 ¬G.

We apply the diagonalization lemma to ¬Prov(x) to construct a sentence G such
that

PA ` G↔ ¬Prov(pGq).

First we assume PA ` G and derive a contradiction. The assumption leads to the
equivalent PA ` ¬Prov(pGq). However, if PA ` G, it follows from proposition
4.5 that PA ` Prov(pGq). This contradicts the assumption that PA is consistent
and we conclude that PA 0 G.

Next we assume PA ` ¬G. By the construction of G we have PA ` Prov(pGq).
Since N is a model we have N |= ∃xPrf(x, pGq). In other words, it is true (in
the standard model) that there is a proof in PA of G. This is of course what is
represented by PA ` G. We have reached a contradiction and conclude PA 0 ¬G
as well. �

The sentence we have constructed translates in informal terms to “this sentence is
unprovable in PA”, and is called the Gödel sentence. Though G is independent of
the system of Peano Arithmetic, we can still deduce that it is true in the standard
model.

Proposition 4.8. For the Gödel sentence G, N |= G.

Proof. Assume the contrary: ¬G is true in N . Since ¬G is equivalent to the Σ1-
sentence ∃yPrf(y, pGq) and PA is Σ1-complete, it follows that ¬G is provable in
PA which contradicts that G is independent of PA. So G must be true in N . �

4.4 Generalizing the argument

Let us consider for a moment what we have proved so far. We have shown that if
PA is consistent, it is incomplete. One might hope at this point that the theory
may be “patched up” by adding the Gödel sentence to the axioms. The new
theory will be able to prove the Gödel sentence; however, Gödel’s argument may
be taken even further and we will shortly hereafter see that the new theory remains
incomplete. First we introduce a convenient definition.

Definition 4.9. A theory is called arithmetically sound, or simply called sound,
if it is true in the standard model N .

When constructing the new theory, PA+ = PA + {G}, we immediately notice
that it remains consistent and sound. However, for PA+ we can define a new
primitive recursive provability predicate to construct a new Gödel sentence G+
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that is independent of the theory. This argument is generalized in the following
theorem.

Theorem 4.10. Any axiomatized, consistent and sound theory T extending PA
has a Gödel sentence GT that is independent of T .

Remark 4.11. We specify that a theory needs to be axiomatized since the prov-
ability predicate of the theory is not primitive recursive if it cannot be effectively
decided whether a certain formula is among the axioms.

It follows that the truths of arithmetic cannot be effectively axiomatized by a
formal theory.

4.4.1 The syntactic argument for incompleteness

In our proof of the first incompleteness theorem we have used the fact that PA
is sound (and may be extended by sound theories). But if we define a different
extension of PA, for example

PA† = PA + ¬G,

what can we say about PA†? Since PA0 G, it is consistent; however, it is clearly
not a true theory in the standard model. Gödel proved that the semantic condi-
tion of soundness is not required to establish incompleteness, though he had to
introduce a different, somewhat inconvenient condition1.

For our proof, we will not use Gödel’s condition. Instead we turn to the important
improvement of J. Barkley Rosser, who showed that an extension of PA merely
needs to be consistent in order to prove that it is incomplete ([4], p. 185-190). We
rely on the fact that consistent extensions of PA are Σ1-complete and are therefore
able to prove primitive recursive properties. We will construct a Rosser sentence
R that informally says “if this sentence is provable, there exists a shorter proof of
its negation”. For a theory T , define a new provability predicate as follows:

RProvT (x) ≡ ∃y(PrfT (y, x) ∧ ∀z < y(¬PrfT (z, 〈10, x〉))).

Naturally we may apply the diagonalization lemma to consistent extensions T of
PA. We may therefore construct the sentence RT such that

T ` RT ↔ ¬RProvT (pRq)

We will prove that RT is independent of T .

1Gödel introduced the concept of ω-consistency in his original proof. He showed that for an
axiomatized theory T , if T satisfies the condition of ω-consistency, we may conclude T 0 ¬G
regardless of whether T ’s axioms are true. See section 4.2 of ([5]) for an overview of this proof.
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Theorem 4.12 (The Gödel-Rosser Theorem). Any axiomatized, consistent ex-
tension T of PA is incomplete.

Proof. We assume T ` RT and derive a contradiction. By consistency of T ,
T 0 ¬RT so it is the case that a proof of RT exists in T and that there is no
smaller proof of ¬RT . Therefore, the sentence

∃y(PrfT (y, pRTq) ∧ ∀z < y(¬PrfT (z, p¬RTq)))

is a true Σ1-sentence that is in fact equivalent to RProvT (pRTq). Then by Σ1-
completeness, T proves the sentence. We have that T ` RProvT (pRTq), equiva-
lently T ` ¬RT , which contradicts T 0 ¬RT . It follows then that T 0 RT .

Conversely we assume T ` ¬RT . By consistency, T 0 RT . Then the Σ1-sentences
PrfT (n, p¬RTq) and ∀m < n¬PrfT (m, pRTq) are true for some n ∈ N. By Σ1-
completeness, T ` PrfT (n, p¬RTq) and T ` ∀y < n¬PrfT (y, pRTq). From this, it
follows that

T ` ∀y(PrfT (y, pRTq)→ ∃z < y(PrfT (z, p¬RTq))),

which is equivalent to T ` ¬RProvT (pRTq). We have that T ` RT by definition,
though this contradicts the consistency of T . Therefore T 0 ¬RT . �
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We now turn to the second incompleteness theorem, which, in informal terms,
states that PA is unable to prove its own consistency.

To improve readability, we introduce some new notation: we will write �Tϕ to
abbreviate ProvT (pϕq) for a certain theory T . We will often omit the subscript
of the box symbol in practice as the context supplies it. To given an example, for
the Gödel sentence of PA we have

PA ` G↔ ¬�G.

A consistent system is one that does not prove any contradiction. This leads us
to the following notation.

Definition 5.1. Given theory T , we define the LT -statement Con(T ) as

Con(T ) ≡ ¬�T ⊥

Definition 5.2. The proof of the second incompleteness theorem relies on some
properties of the provability predicate, called the derivability conditions:

(1) If T ` ϕ, then T ` �ϕ;

(2) T ` �ϕ ∧�(ϕ→ ψ)→ �ψ;

(3) T ` �ϕ→ ��ϕ

Proposition 5.3. The derivability conditions hold for PA.

Proof. We have proven the first condition already, in proposition 4.6 of the pre-
vious section.

For the second condition, we reason in PA. Suppose �ϕ and �(ϕ → ψ); that is,
there are x and y that code proofs of ϕ and ϕ → ψ respectively. We are able to
combine these two proofs using →-elimination and construct a new proof for ψ,
coded by a certain z. Then Prf(z, pψq) holds, which is equivalent to �ψ.

Condition (3) is a consequence of a theorem more general, called formalized Σ1-
completeness. This theorem asserts that for any Σ1-formula ψ, it is the case that
PA ` ψ → �ψ. Since the provability predicate is Σ1, we can apply the theorem
to �ϕ for any ϕ and the third derivability condition holds for PA. For a proof of
formalized Σ1-completeness of PA we refer to theorem 5.7 of ([3]). �
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These conditions are the tools we need to prove the second incompleteness theo-
rem. We first use them to derive some more useful properties of the provability
predicate in PA.

Proposition 5.4. For any LPA-formulas ϕ and ψ, the following hold:

(1) If PA ` ϕ→ ψ, then PA ` �ϕ→ �ψ

(2) PA ` �(ϕ ∧ ψ)↔ �ϕ ∧�ψ

Proof. (1) We assume PA ` ϕ→ ψ. By the first condition we have that
PA ` �(ϕ → ψ). Combining this with the second condition, which states that
PA ` �ϕ ∧�(ϕ→ ψ)→ �ψ, we get PA ` �ϕ→ �ψ.

(2) We first prove the implication from left to right. We know by what we have
just proven, that PA ` �(ϕ ∧ ψ)→ �ϕ and PA ` �(ϕ ∧ ψ)→ �ψ since
PA ` ϕ ∧ ψ → ϕ and PA ` ϕ ∧ ψ → ψ hold. From this we may conclude that

PA ` �(ϕ ∧ ψ)→ �ϕ ∧�ψ.

For the converse, we consider first the fact PA ` ϕ → (ψ → ϕ ∧ ψ). We again
apply our previously proved property to derive PA ` �ϕ → �(ψ → ϕ ∧ ψ). It
follows from this and the derivability conditions that

PA ` �ϕ ∧�ψ → �(ψ → ϕ ∧ ψ) ∧�ψ → �(ϕ ∧ ψ),

which indeed leads to

PA ` �ϕ ∧�ψ → �(ϕ ∧ ψ).

�

Theorem 5.5. Given an LPA formula ϕ such that PA ` ϕ↔ ¬�ϕ, we have that

PA ` ϕ↔ ¬� ⊥ .

Proof. We know that PA `⊥→ ϕ for any ϕ. By proposition 5.4 then, it follows
that PA ` � ⊥→ �ϕ. Following from the assumption of ϕ, we have

PA ` ϕ→ ¬�ϕ→ ¬� ⊥ .

So indeed PA ` ϕ→ ¬� ⊥.

For the converse, we begin by deriving PA ` �ϕ→ �¬�ϕ from PA ` ϕ→ ¬�ϕ.
Furthermore, it follows from the third derivability condition that PA ` �ϕ →
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��ϕ. Combining those gives PA ` �ϕ → (�¬�ϕ ∧ ��ϕ). By proposition 5.4
then, PA ` �ϕ→ �(¬�ϕ ∧�ϕ) which is equivalent to PA ` �ϕ→ � ⊥. Using
the assumption on ϕ and taking the contraposition, we get

PA ` ¬� ⊥→ ¬�ϕ→ ϕ.

�

Theorem 5.6 (Gödel’s Second Incompleteness Theorem for PA).

If PA is consistent, PA 0 Con(PA)

Proof. We have defined Con(PA) to be equivalent to ¬� ⊥. We apply theorem
5.5 to the Gödel sentence to derive

PA ` G↔ Con(PA).

It follows from the first incompleteness theorem that, if PA is consistent, G is
independent of PA. Therefore Con(PA) is independent of PA as well. So indeed,
PA 0 Con(PA) if PA is consistent. �

5.1 Generalizing the argument

Similarly to how we proved the first incompleteness theorem applies to axioma-
tized extensions of PA, we can do the same with the second theorem. Let T be
an axiomatized consistent theory extending PA. As we have seen in theorem 4.9,
we can construct a Gödel sentence GT such that

T 0 GT and T 0 ¬GT .

It is clear that the derivability conditions hold for T , so we apply theorem 5.5 to
derive

T ` GT ↔ ¬�T ⊥↔ Con(T ).

Clearly T is unable to prove its own consistency as well. This is stated in the
following theorem.

Theorem 5.7. Any axiomatized, consistent theory T extending PA is unable to
prove its own consistency.
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5.2 T ’s ignorance about what it cannot prove

Next we consider an interesting result of the second incompleteness theorem. Let
T again be an axiomatized theory extending PA. As we have already seen, if T ` ϕ
then T ` �ϕ. So in a certain sense, T ‘knows’ that it can prove ϕ. However, in
this same sense, T is ignorant of what it cannot prove. As we will soon see, even
if T 0 ϕ, we will not get T ` ¬�ϕ.

As we have seen in the proof of theorem 5.5, for any LT -sentence ϕ, we have
T ` ¬�ϕ→ Con(T ). Therefore, if T would be able to prove its inability to prove
a sentence, it would prove its consistency. By Gödel’s second incompleteness
theorem however, we know that this cannot be the case. We have arrived at T ’s
ignorance about what it cannot prove, as stated in the theorem below.

Theorem 5.8. If T is an axiomatized and consistent theory extending PA, then
for no LPA-sentence ϕ do we have

T ` ¬�ϕ.
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