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Abstract

The intermittent nature of solar irradiance caused by clouds results in rapid short term fluctu-

ations in the power output of photovoltaics(PV)-systems. These fluctuations make this data

source difficult to integrate with the grid. This study focuses on short term (0-20 minutes)

forecasting of global horizon irradiance (GHI) using all sky imager (ASI) images and numerical

data as input. This numerical data is locally obtained (Almeria, Spain) from June to December

2019. Installed sensors measure humidity, temperature and GHI every 15 seconds.

Multiple approaches and models are proposed and compared with each other. We track clouds

with optical-flow and generate a future representation of the sky. This future image is the input

for a Convolutional neural network (CNN), which is trained to predict GHI. Secondly, extracted

information from images and additional numerical data are plugged into different classifier

models, including random forests (RF), multi-layer perceptrons (MLP), and long short-term

memory networks (LSTM). We tried multiple subsets of features and multiple sequence lengths

to find a good model. We categorized the features in 3 subsets and a combination of these are

used as input. Models are trained to predict GHI from 0 to 20 minutes ahead, with a step size

of 1 minute. We tried improving predictions by making the models predict the clear sky index

(CSI), where the GHI can be derived using the Perez conversion model. We implemented this

approach into the models, there was no improvement.

In solar forecasting the (smart-)persistence model is a common baseline. Persistence forecasts

the last observed GHI. Smart-persistence calculates the future direct normal irradiance (DNI)

and combines this with the last observed CSI to predict the expected GHI. We categorize days

in cloudy (C SI < 0.25), partially cloudy (C SI > 0.25,C SI < 0.75) and sunny (C SI > 0.75).

We implement multiple models and show that LSTM performs best, which agrees with it’s

know advantage of dealing with sequence problems. We learn what features are valuable

and the amount of minutes prior prediction moment that data has predictive value. The best

model(s) are able to predict statistically significantly better than the baseline for sunny and

cloudy weather.
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Glossary

Azimuth angle The azimuth angle is the compass direction from which the sunlight is com-

ing.. 24, 38

CSI The clearness index is a measure of the clearness of the atmosphere. It can be calculated

by the ratio of GHI and G H Iclr .. 15

Declination angle The Sun declination is the angle between the sun rays and the plane of

Earth’s equator. It is measured in degrees north and south of the celestial equator.. 24

Persistence model According to persistence. The production in the future is equal to current

production. 42, 46

Smart-persistence model Equal to persistence but considering change in position of the sun

[29]. 42, 46

Solar altitude angle The solar altitude angle is the angle between the sun’s rays and a hori-

zontal plane.. 24, 38

Solar elevation angle The solar elevation angle is the angle between the horizon and the sun’s

disc center.. 16, 38

Solar incidence angle The angle between the sun’s rays and the normal on a surface.. 15, 38

Solar zenith angle The angle between the zenith and the center of the sun’s disc.. 15, 16, 38
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Acronyms

G H Iclr Clear sky GHI. 1, 12–14, 38, 54

ANN Artificial Neural Network. 13, 16, 25, 29, 44, 49, 55, 59, 71

ASI All Sky Imager. 6, 7, 11–13, 16, 17, 24, 38, 76

CNN Convolutional neural network. 1, 7, 14, 25, 28, 44, 45, 53

CSI Clearness index. 12, 14, 38, 39, 41, 43, 45, 75

DHI Diffuse Horizontal Irradiance. 4, 5

DNI Direct Normal Irradiance. 4, 5, 13

GHI Global horizon irradiance. 1, 4–7, 9, 10, 12–17, 32, 34, 38, 40–43, 45, 67, 76

LSTM Long short-term memory. 25, 29, 44, 49, 55, 58, 59

MAE Mean Absolute Error. 17, 45

MAPE Mean Absolute Percentage Error. 45

MLP Multilayer perceptron. 13

MSE Mean Square Error. 31

NWP Numerical weather prediction. 6

RF Random Forests. 44, 49, 55, 67, 71

RMSE Root Mean Square Error. 17, 45, 46, 48, 59

RNN Recurrent neural network. 29

SS Skill Score. 45, 46
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SVM Support vector machine. 7, 12, 14, 16

SVR Support vector regression. 16
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Chapter 1

Introduction

One of the social challenges of today is an energy transition from mostly fossil fuels to renew-

able energy. Stated in the Paris agreement, by 2030 there should be a substantial increase

in the share of renewable energy in the global energy mix. The goal is that by 2050 100% of

the energy will come from a renewable source [43]. One of today’s options for an alternative

energy resource is solar energy.

The earth receives approximately 1.8∗1011MW power from solar irradiance directly from the

sun at an instance [23]. This is more than earths current annual total energy consumption

[51].

But solar energy is very dependent on weather conditions. Specifically, the amount of solar

irradiance that reaches the surface varies over time. As weather or solar irradiance is not

something we can control, the energy provided by a solar energy installation is uncertain.

Variation and uncertainty as an energy source make it difficult to integrate this particular

resource to the power grid. The problem occurs when keeping balance between generation,

loads and losses. Knowing how much PV power will be produced will reduce operational costs

of these PV power plants [35].

Solar irradiance is the amount of power received from the sun as electromagnetic radiation,

this is measured in W /m2. Solar irradiance is categorized in multiple types of irradiance [42]

(see fig. 1.1). Total solar irradiance (TSI) is a measure of solar irradiance over all wavelengths

incident on the Earth’s upper atmosphere.

We define Direct Normal Irradiance (DNI) as the solar radiation measured at the surface of

the earth perpendicular to the sun, this is the irradiance directly from the sun [42]. Following,

Diffuse Horizontal Irradiance (DHI) is the radiation measured on a horizontal surface on Earth,

but this irradiances source is radiance scattered by the atmosphere. Solar irradiance can also

reflect by (nearby) objects like the ground or buildings, we call this reflected radiation. Solar

panels tend to be tilted away from the reflected irridiance, so it rarely has contribution in the

total radiation received by their surface. Global horizon irradiance (GHI) is the total irradiance
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from the sun (after accounting for the Solar zenith angle (SZA)). It is defined to be the sum of

DHI, DNI and reflection:

G H I = D H I +DN I ∗cos(sza) (1.1)

where:

sza = solar zenith angle.

Figure 1.1: Visualization of different types of solar irradiance

The energy output of a solar panel is mostly affected by solar irradiance, which varies predica-

tively. Unfortunately, the amount of solar irradiance reaching the surface (a solar panel) does

not vary in a predictable way. GHI depends a lot on the movement and location of the clouds.

When the sky above the solar panel(s) becomes more cloudy the solar irradiance reaching the

solar panel drops, which affects the total power output of a photovoltaics(PV)-system [4].

The fluctuation and uncertainty of PV output make accurate GHI prediction of great value.

Accurate predictions would directly result in a safer and easier grid management. Which

makes GHI predictions important for both economical and sustainable reasons [49].

From this information follows the question "for what future horizon should you predict the

GHI?". Literature classifies the following prediction horizons [4]: Short term forecasting, also

known as intra-hour or now-casting. These methods cover forecasting from one second up to

an hour. This time-span is important to assure grid quality and stability, because in this time

frame the operators need to correctly schedule reserves and demand response to the grid [4].

The next forecast horizon is called intra-day forecasts, which covers one to six hours. These

horizons and are important for grid operators that control different load zones or who trade

outside their area [4].
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The resulting forecast horizons are six hours to one day ahead and two days or more. These

horizons are important for planning and trading. For example, this information is valuable

when to schedule maintenance efficiently. Preferably, this would be at a moment when the

expected production is low [45]. In this study we will set the scope to short term forecasting.

In the past there were multiple methods proposed for short term GHI forecasts. The choice of

method depends on the available data and preferred prediction horizon. Figure 1.2 displays

which data are used in general for what specific forecast horizon.

It is possible using sky-images to predict from one second up to 30 minutes. This method is

used to track clouds and determine the GHI. The limitations are that there is little research

compared to other methods and a camera (on location) is needed [4]. A big advantage of

using all All Sky Imager (ASI) images is that is able to predict very short term fluctuation due to

low clouds and large clouds variability. Capturing these sudden changes is nearly impossible

with meteorological records or Numerical weather prediction (NWP) approaches. Where ASI

methods are good to capture sudden changes their accuracy immediately decreases over

time, after 30 minutes most information from an image is outdated [14]. Quite similar are

predictions using satellites, as vectors and information is derived from images. An advantage

is that there will be available images for most places in the world, except for the North and

South pole. This method provides better short term performance than NWP models, but it is

less accurate than ASI models [4, 5].

Another approach is climatology using past weather records. It tries to identify climate trends

like seasons and averages, this makes this method static. An example is the persistence model

(see section 5.4.4) which predicts the same weather as last observed. An advantage is that these

methods are easy to implement. A downside is that they perform bad on sudden fluctuation

as the predictions are based on past events [29].

Next, there is Numerical weather prediction (NWP) models using the current weather data

as input. An example would be wind, humidity and surface pressure. This is input for math-

ematical models to simulate processes occurring in the atmosphere. Advantages are that

NWP models do not need historical data and they have a very broad prediction horizon from

approximately 10 minutes up to 10 days [25, 39]. Although, most often these models are used

from six hours to several days [32]. A downside is that these models are hard to implement as

one needs physical knowledge to simulate the atmosphere.

Then there are statistical learning models which use historical data to find relations. Where,

later direct observations can be translated to predictions. An example, Cristian Crisosto et al.

(2017) proposed a method where sky images are combined with external data like SZA and

average GHI [3]. An advantage is that statistical models have a broad prediction horizon from

several minutes up to a month [4]. In this study is focused on short term GHI predictions using

historical and realtime ASI and external data. A disadvantage is that you need access too much

accurate historical data.
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Figure 1.2: Distribution of different techniques and inputs with respect to their forecast

horizon. Image taken from [4].

Multiple studies use feature extraction of ASI. In this case feature extraction is the process

of transforming raw pixel values (from the ASI), to more meaningful information. Examples

of features are amount of cloud pixels or brightness. These features are suitable input for

statistical models like regression or SVM. These models are trained to predict GHI [21, 19].

In 2017 Y. Ai et al. used SVM to predict GHI under clear sky circumstances [2]. While combining

this with ASI and optical flow (movement of pixels between frames, see section 3.2) is predicted

how much the sun will be blocked. From this a near future GHI is estimated. In 2018 a

(Convolutional neural network (CNN)) method has been used. Its estimates the future GHI by

taking a generated image is input. This image is constructed with optical flow [6].

In this study we focus on short-term forecast (0 to 20 minutes into the future), which assures

grid quality and stability. Current research on this prediction horizon is limited. Additionally,

we combine sensor data and image data, which is another contribution. In this study we

compare multiple machine learning models which each other. The goal is to find what models

and data are suitable for short-term forecasts. We formulate this problem as a time-series

forecasting problem (see section 3.1). We use machine learning models random forests (RF),

artificial neural networks (ANN) and long short-term memory (LSTM). Additionally, this

problem can also be solved by estimating a future image with optical flow and estimating the

GHI from this future image. For this we use a convolutional neural network (CNN).



CHAPTER 1. INTRODUCTION 8

The used data set contains data from July to December, giving not the opportunity to observe

how models perform in other months. Additionally, the location Almeria in south Spain has

limited days which we categorize as cloudy (C SI < 0.25). A solution would be to conduct

similar experiments another region with preferred climate.

This document will first cover relevant literature, followed by a theoretical background. In

chapter four we give the problem description and details about used hardware. This chapter

also defines the goals and research question of this study. Next, in chapter five we formulate the

methodology. First, discussing the experiment setup. Followed by, the experiments, details of

models and performance evaluation. Chapter six highlights how the models are implemented

and the manner we searched for hyper-parameters. Then in chapter seven we show all the

results. This is separated in two sections, in section one we show the results of the model

selection. In section two we show the results on the test set. Finally, in the last chapter we

discuss the results and conclude.
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Chapter 2

Literature Study

In this chapter we describe an overview of existing literature on GHI forecasting. First of all,

we highlight what the challenges are in this field. Followed by, the current methods to tackle

these problems.

2.1 Solar forecasting

The main question in this field is ’How much solar irradiance will be observed at time t at some

location?’. Where time t is somewhere in the future. The amount of time in the future is also

know as the prediction horizon [4]. Solar irradiance is measured in kilowatt-hours per squared

meter. An alternative way is forecasting how much power output a photovoltaic(PV)-system

delivers some time in the future, this is measured in kilowatt-hour(kWh). The output of a

PV-system is determined by the amount of GHI, additionally temperature has a effect on the

efficiency of the panels [27]. Panels are less efficient with higher temperatures.

As discussed in the introduction the are multiple models. These models need some input

and/or data. Literature classifies this in 3 categories [1]:

1. NWP models that use meteorological and geographical parameters.

2. Endogenous variables, models that only consider historic solar irradiance.

3. Exogenous, models that consider other variables in addition to endogenous variables.

These variables are location bound, so these variables need to be observed by sensors installed

at locations. In the last 10 years research has been done all over the world (for example Canada,

Greece, China, Australia, USA). However, the historical data is usually not public.

As discussed in the introduction, literature classifies the following prediction horizons [49]:

• Short term, forecasting up to one hour.
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• Intra-day, one hour to 6 hours.

• Day-ahead, six hours to three days ahead.

In past research most common resolutions are 1 hour or day into the future [49]. A gap in

these studies is that most of them have a single prediction horizon, so a question remains how

models perform over different prediction horizons.

The fluctuation and uncertainty of PV output make accurate GHI prediction of great value.

Accurate predictions would directly result in a safer and easier grid management. Which makes

GHI predictions important for both economical and sustainable reasons [49]. In example grid

management would include turning on (fossil fuel based) generators to when power output

is too low [16]. It is not possible to put a number on the direct financial consequences of

forecasting. This is due the different variables per region, for example energy prices differ per

country. Additionally, in stable weather forecast would be less beneficial compared to weather

with much GHI fluctuations.

2.2 Cloud pixel detection

Clouds are most important when predicting GHI [2, 47]. When forecasting while using images

you want to extract information from relevant images. As in this study images of the sky are

used as input, we want to know if a pixel in an image is part of a cloud or not.

There are multiple ways to determine if a pixel belongs to a cloud. Chauvin et al. (2015)

identified three different categories for the existing cloud detection algorithms [12]: threshold

methods, neural networks and dedicated algorithms. In this study the scope is set to only

threshold methods. Moreover, a neural network based approach is not possible since the

dataset does not include a ground truth on clouded and non-clouded pixels, which is needed

to train a neural network. Also, dedicated algorithms will be too computationally expensive

and will require dedicated hardware to detect haze, thin clouds and opaque clouds.

Threshold algorithms do a calculation on a pixel, the output is compared with some predefined

threshold. As a result, the pixel is classified as cloud or sky. The methods often used in GHI

forecasting models are listed below.

2.2.1 Red-Blue Ratio

If The Red-Blue Ratio (RBR) (equation: 2.1) is higher than a fixed threshold it considered a

cloud pixel. Usually this threshold is set 0,6-0,8 [26].

RBR = R

B
(2.1)
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2.2.2 Red-Blue Red-Green Ratio

The Red-Blue Red-Green Ratio (BRBG) performs better than RBR [46]. The pixels with a higher

BRBG (equation: 2.2) then some threshold T h0 are considered sky. Usually T h0 is set to a fixed

value.

BRBG = B

R
+ B

G
(2.2)

2.2.3 Normalized Red-Blue Ratio

Normalized Red-Blue Ratio (NRBR) (equation 2.3) its threshold can be fixed, but QingYong Li

et al. (2011) proposed a better performing method with an adaptive threshold using minimum

cross-entrophy (MCE) [31]. The MCE thresholding algorithm selects a threshold by minimizing

the cross entropy between the original image and its segmented image. The segmented image

is calculated by the mean and the standard deviation of the normalized
B

R
ratio values.

N RBR = R −B

R +B
(2.3)

Figure 2.1: Image at 21 august 2019 at

12:00:00 PM. In this image no cloud pixel

method is applied.

Figure 2.2: Image at 21 august 2019 at

12:00:00 PM. Cloud pixels in green de-

tected with RBR, th = 0.8.

2.3 Prediction from onsite sources

In this study the definition of an onsite (data) source is: all sources that need to be installed

locally (on the ground). Examples are sensors for humidity, temperature, irridiance and a

camera (ASI). Excluded is the data-source satellites, because they cover a lot of area and are

not ground based.
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Figure 2.3: Image at 21 august 2019 at

12:00:00 PM. Cloud pixels in green de-

tected with BRBG, th = 2.

Figure 2.4: Image at 21 august 2019 at

12:00:00 PM. Cloud pixels in green de-

tected with NRBR, th = 0.8.

2.3.1 Regression with features

An approach for forecasting GHI is extracting features from a range of consecutive ASI images.

Common used features are: The number of cloud pixels in a frame, using a cloud pixel detect

method (section 2.2). Amount of cloud edges (section 3.3). The brightness levels, from the

normalized pixel values. Historical GHI (4.2), G H Iclr (4.2) and CSI derived from GHI and

G H Iclr prior to the prediction time. Features are used as input for support verctor regression

(SVR) or linear regression in past studies [21, 19]. These models can be trained to predict

the GHI on some future horizon. The prediction horizon of these models in these particular

studies differed from 1 minute to up to 1 hour.

Chia-Lin Fu et al. (2013) proposed a regression model based on feature extraction. Their

data-set exist out of 4 weeks, with an image sampling level of 10 seconds. 1 month is a limited

dataset, but there are more disadvantages. First of all, the resolution of 640x480 is quite limited

(with respect to the setup in this study with resolution 1920∗1920). Secondly, there is no

baseline measurement like persistence, which makes it hard to compare the performance of

this model. In this study they predict t = 5,10,15 minutes into the future using features of the

prior p = 5,10,15 minutes. The best results are achieved with t , p = 5 (minutes). Interesting is

that when using fewer features better results are achieved [21], unfortunately no explanation

is given. This raises a question "What is an ideal time frame prior to prediction for feature

extraction?".

Above described method is very similar to a method proposed by Cong Feng et al. (2017).

However, Cong Feng et al. (2017) used a SVM as model. The limitations of this study are the

static feature time-spam (4 hours) and prediction horizon of 1 hour [19]. What makes this

study state-of-the-art is that they achieved better result by splitting the data set in different

types of days (see 2.3.4) and trained an individual model for each type of day.
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Pierrick Bruneau et al. (2018) focused on predictions from 1-hour into the future. As input they

had acces to multiple onsite sensors which provided: GHI, Direct Normal Irradiance (DNI),

atmospheric air pressure, temperature, humidity and wind direction/speed. The data-set

contained data observed over two years, with a sample frequency of 1 minute. Furthermore,

the data-set contained data from 5 different locations. Used models are Auto Regressive

Integrated Moving Average (ARIMA), Multilayer perceptron (MLP) and XGBoost. ARIMA is a

regression model very common in time-series forecasting [49]. As MLP they used an single

hidden layer implementation of ANN, XGBoost is an implementation of decision trees with

boosted gradients [13]. They concluded that ’correlations between sites shows that data sets

for the 5 sites cannot be trivially merged prior to learning prediction models’. Additionally,

XGBoost performed best, but the question remains if a more complex ANN would performed

better. For future work they propose adapting convolutional neural networks and recurrent

neural networks models, because these models perform well on sequential problems [10].

2.3.2 Optical flow

With optical flow (discussed in 3.2) the velocity of clouds can be determined. Yiyang Ai et

al. (2017) used the Lukas-Kanade flow method (section 3.2). This method predicts GHI with

a future horizon of 1,2,3 minutes ahead. The input is ASI images of 3456×3456. Their data

exists out of a images shot in 1 month between 10 am and 2 pm with a sample time of every 30

seconds. The intuition behind their method is that the ASI is split in blocks of size 400x400

(The smallest possible such that the sun is able to fit in the square). Then with optical flow is

approximated what block will be at the same position as the sun. In this block the amount of

cloud pixels are calculated, which gives variable C the fraction of cloud pixels. They predict

the GHI with equation 2.4.

G ′(t +1) =G(t +1)−689.9∗C (t +1) (2.4)

where:

G ′ = the predicted GHI.

G = Clear sky GHI (G H Iclr ).

689.9 = output of SVR.

C = fraction of cloud pixels.

Missing in this study is what time between frames is used to determine the velocity of clouds.

A skill-score is given (see section5.5), but implemented model and persistence may predict

different on weather circumstances, so comparing with this in not reasonable. Additionally,

they test on a single day, the question remains how it performs on other types of days.
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2.3.3 Convolutional neural networks

S. Tiwari et al. (2018) proposed to use optical flow (see section 3.2) to generate an ASI image 10

minutes into the future [47]. This CNN was trained on the original (resized to 800x800) images,

which contain GHI as ground-truth labels.

The most common tool for analysis of visual imagery using deep learning is a CNN. It consists

of an input layer, an output layer and multiple hidden layers. The hidden layers perform a

convolution operation on the input data (an image) sending the output to the next subsequent

layer. The depth of a CNN is very important and it can be crucial for the accuracy convergence

of the CNN. This CNN is trained to predict the GHI from an ASI image input. In this particular

study ResNet-50 is used. A residual network architecture which has 50 layers, but it contains 3

additional layers before the last layer. Respectively with density of 1000, 500 & 5 neurons. The

last layer is replaced with a single neuron with activation "Linear". ResNet-50 was originally

used to classify images into 1000 object categories. For background information 3.5.4.

During experiments this CNN was fed an image generated with optical flow. As a result the

10-minute future GHI was predicted. This image was generated with Gunnar Farneback

optical flow (see 3.2.2) using two consecutive images with 10 minutes apart. A downside is

that this study does not compare to a baseline like persistence, which makes this model hard

to compare with others. The study does not answer the questions:

• What is a ideal time span between frames to construct a new image with optical flow?

• What are the limitations of this approach when speaking of prediction horizon?

2.3.4 Weather pattern classification model

C. Feng et al. (2017) achieved better result by training a model to classify what day it by only

looking at the first 4 hours. CSI is the ratio of GHI and Clear sky GHI (G H Iclr ), which can be

used as the criteria to classify the weather types.

• Sunny C SI > 0.75

• Cloudy C SI < 0.25

• Partially cloudy 0.75 >C SI > 0.25

For each of these day categories a separate model was proposed [19]. A SVM was trained to

classify the day by taking the data of first 4 hours. With this method they achieve 84% accuracy,

but there is just 1 cloudy day in 201 days. Eventually, they are able to beat persistence with

nMAE 6.7% (where persistence has 7.93%) and nRMSE 9.75% (where persistence has 12.94%).
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2.3.5 Perez conversion model

Stated by the Perez conversion model [38] you can derive GHI using the clearness index (CSI)

and extraterrestrial solar irradiance. In order to improve prediction accuracy, the following

is proposed: instead of predicting future GHI directly [21], it is possible to train a model to

predict CSI. From this CSI prediction the GHI can be derived using the Perez conversion model

(equation 2.5).

C SI =G H I /[T SI ∗ (r0/r )2Cos(SZ A) (2.5)

where:

• r0 is the mean earth-sun distance, which is approximately 149597871 km.

• r denotes the earth-sun distance at time t, this comes from a external data source (see

4.2).

• SZA is the solar zenith angle at the time of interest, which can be computed according

to a solar position algorithm (see section 3.4) [41, 46].

• Total solar irradiance (TSI), which measures mean extraterrestrial solar irradiance re-

ceived over a surface perpendicular to the solar beam. This comes from an external data

source ( section 4.2) .

The denominator on the right-hand side of the equation is the extraterrestrial solar irradiance.

Therefore, the solar irradiance we would like to predict, which is GHI, can be expressed by the

clearness index multiplied by T SI ∗ (r0/r )2Cos(SZ A).

In this study we try with this model if we can improve our predictions. Initially, our models

predict GHI. But, with the Perez conversion model we predict GHI and calculate the co-

responding GHI.

2.4 Predicting with external data

Li et al. (2016) proposed a statistical model for predicting 15 minutes, 1 hour and 1 day

ahead. This model was used to predict the output of a PV-system in kilowatt-hour (kWh). The

ground truth was taken from a data set of a photovoltaic(PV)-system, where a year of data was

available. The following input data came from weather services: temperature, wind speed and

wind direction. Additionally, more variables were found usefully:

• Solar zenith angle.

• Cosine of Solar incidence angle
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• Solar elevation angle

Statistical models Artificial Neural Network (ANN) and SVR were used, a baseline is missing so

the results do not mean much. However, ANN performed better than SVR [32]. The prediction

accuracy was worse on rainy and cloudy days. An advantage of this model that is able to

predict without image data. It clearly performs worse on rainy and cloudy days which is logical

as the models do not have actual data about clouds. The question remains if this model is

competitive to models that use ASI images. Since a common baseline lacks, this cannot be

verified. Additionally, models might predict different when weather circumstances change.

Ideally, models should be compared while predicting on the same dataset.

Chow et al. (2012) built an ANN to obtain real time, 10 and 20 minutes ahead predictions. The

following variables where used: dry-bulb temperature (air temperature, not influenced by

moisture or irradiance), Solar elevation angle, Solar zenith angle and GHI [15]. These variables

were measured on site for 15 days from 06:00 to 19:00 with a sample interval of 10 minutes.

It seems like adding data will improve predictions, but this is not the case for all data. Rana

et al. (2016) compared an univariate and a multivariate ANN model. In this study they used

PV installation data measured over 2 years, where they sampled every 5 minutes. Other

data came from the nearest weather station. It is unclear is how far this weather station is

located or how accurate this is. Where the univariate model only has access to PV installation

data, the multivariate model has access to solar irradiance, temperature, humidity and wind

speed. Two prediction algorithms are used ANN and SVM, whereas a result up to 20 minutes

ANN multivariate performs slightly better. From 25-30 minutes ahead the performance is

similar. Finally, from 25 to 60 minutes the univariate model outperform the multivariate for

both prediction algorithms [40]. This model gives some insight in what input variables are

important for prediction. Although, additional research is needed for input variables which

were outside the scope of this particular research.

2.5 Pre-processing

In general the first step is elimination, in solar forecasting night data is superfluous. The

normalization process depends on the models used. Random forests do not need to normalize

data [10]. Neural networks are very sensitive for normalization and common approaches are

normalization [0,1] and [−1,1].

2.6 Performance evaluation

In order to determine and optimize a model you need to measure how good it performs.

In relevant literature the performance evaluation is done by looking at the errors over all
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forecasted values. The error is defined as:

E = |yobs − ypr ed | (2.6)

where:

yobs = observed value.

ypr ed = predicted value

Common error metrics are Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

RMSE is more sensitive to extreme values with respect to MAE. for a detailed explanation see

section 5.5.

2.7 Summary

The past studies in short term GHI prediction using ASI’s use two different approaches, where

one approach mostly focuses on the extraction of features and uses this as input to a model.

The second approach estimates the movement and location of clouds and uses this future

prediction image as input for a statistical model. Since all studies have different data-sets,

weather circumstances and performance evaluations, performance among models is hard to

compare. A general observation is that results are averaged over multiple days. A problem with

this is that those days might have easier and more difficult days because of different weather

circumstances, this makes models even harder to compare. Additionally, little research is done

for short term prediction horizons.

In this thesis, we propose multiple models, using optical-flow and feature extraction. Statistical

and meteorological methods are the dominant models in this field [4], important data sources

are solar position data, wind direction, wind strength and temperature. A downside is the

availability of this data and not being able to capture sudden fluctuations. Present research

has gaps in comparing multiple models on the same dataset. Also, using ASI images in

combination with data as input variables for machine learning is limited.
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Year Author Pre-processing Models Data Horizon Timeframe skyimage Measures Notes

2012 Chow et al. - ANN
Temperature,

SZA, SEA, GHI
10m, 20m

coefficient of

correlation

2013
Chia-Lin Fu,

Hsu-Yung Cheng

normalization

[0,1]
Regression

#cloudpixels,

frame difference, gradient magnitude,

intensity level,

accumulated intensity,

number of corners

5m
15m.

1 per minute.
RMSE, MAE, MBE

Predicting clearness,

then calculate GHI.

CLI ground truth.

2016 Li et al.
normalization

[0,1]
ANN, SVR

SZA, Temperature,

Wind, SEA
15, 1h, 24h

MBE, MAE,

RMSE

2016 Rana et al.
normalization

[−1,1]
ANN, SVR

wind, temperature,

Humidity, GHI
5,10,..,60m MAE, MRE

2017 Feng et al.

Elimination,

normalization,

[0,1]

reconstruction.

SVR

Historical GHI,

Clearsky GHI, CSI, Skyimage mean,

variance, Renyi entrophy.

1h 4h nMAE, nRMSE
3 different models

for avg weather (CLI) day

2017 Y. Ai et al.
Crop images,

10AM to 2PM
Dense optical flow, SVR

Velocity field,

Grid cloud fraction
1,2,3-m 30s

MAE,

RMSE,

MAPE

2018 S. Tiwari et al.
Resize to 800*800.

Noise removal.
CNN

Predict future image

with dense optical flow.
10m 2 images 10m RMSE, MAE, MAPE -

2018 Bruneau et al. Std. ARIMA, MLP Onsite sensors 60m RMSE, MAE
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Chapter 3

Theoretical Background

In this chapter we describe in detail algorithms, machine learning techniques and (statistical)

models. These details are necessary to fully understand employed models and related design

decisions taken in our work. Later, where necessary it discusses a more extensive description

of parts from the literature study.

3.1 Time-series forecasting

Time-series exist out of a sequence of observations. These observations are measured at a

specific time [9]. Discrete time-series are time-series where these observations are captured at

instances from a discrete set of times. Formally, forecasting discrete time-series using past and

present observations are defined as follows. Let yt denote the value of some variable in period

t . Then, a forecast ỹ of its value for time t = 1, made at time t , is formulated as followed [34]:

ỹt+1 = f (yt , yt−1, .., yt−l ) (3.1)

where:

f = a function taking past and present observations as input.

l = the length/amount of variables used as input.

Traditionally time-series follow a certain behavior [34]:

xt = mt + st +εt (3.2)

where:

xt = the observed values at time t .

mt = a trend at time t .

st = seasonal bias at time t .

εt = an error margin.
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In univariate time-series the series is dependent on a single time dependent variable. In this

study we have multiple time dependent variables, this is defined as multivariate time series

forecasting.

3.2 Optical flow

Optical flow has been a reliable method to predict where future cloud might be positioned [2,

47].

Optical flow is the motion of objects between consecutive frames of sequence, caused by the

relative movement between the object and camera. This technique has been used on 1, 2, 3

and 10 minutes future predictions [47]. There are two types of optical flow, sparse and dense

optical flow.

Sparse optical flow tracks some distinguished pixels, which represent the boundaries and

edges of the object, and is mostly used when the image time frame is in seconds range since

there might be much movement.

Dense optical flow, on the other hand, tracks all the pixels in an image and is mostly used

when considerable movement is expected within the image frames. Dense optical is more

accurate but is more computationally expensive as it takes into account every pixel. The scope

is set to the most common method: the Gunnar Farneback method [6].

Optical flow in general: Let I (x, y, t ) be a pixel at time t . In the first image the pixel moves by a

distance in some time t. Let this distance be d x and d y .

I (x, y, t ) = I (x +d x, y +d y, t + td) (3.3)

With the Taylor series the movement will be [44]:

I (x +∆x, y +∆y, t +∆t ) = I (x, y, t )+ ∂I

∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t + [H .O.F.]. (3.4)

From this equation follows that:

∂I

∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t = 0 (3.5)

Which results in:
∂I

∂x
Vx + ∂I

∂y
Vy + ∂I

∂t
= 0 (3.6)

IxVx + IyVy =−It (3.7)
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3.2.1 Sparse optical flow

The Lucas–Kanade method assumes a neighborhood of pixels has the same velocity. Let

qi be pixel i at some time in the neighborhood. Ix (qi ), Iy (qi ) and It (qi ) denote the partial

derivatives of image I with respect to position (x, y) and time t , for pixel qi at the current time.

The set of equations is represented in the following matrices where Av = b:

A =



Ix (q1) Iy (q1)

Ix (q2) Iy (q2)

...
...

Ix (qn) Iy (qn)


v =

Vx

Vy

 b =



−It (q1)

−It (q2)

...

−It (qn)


(3.8)

Applying least squares fitting to solve for Vx and Vy [37] (page 241-242) will give an approxima-

tion for d x and d y .

Vx

Vy

=


∑

i Ix (qi )2 ∑
i Ix (qi )Iy (qi )

∑
i Iy (qi )Ix (qi )

∑
i Iy (qi )2


−1−

∑
i Ix (qi )It (qi )

−∑
i Iy (qi )It (qi )

 (3.9)

3.2.2 Dense optical flow

The Gunnar Farneback method is a two-frame flow estimation algorithm which calculates the

flow per pixel. It uses quadratic polynomials to approximate the motion between 2 frames. An

example in Figures 3.1-3.5. This can be done efficiently by using the polynomial expansion

transform [18].

Approximate each pixel neighborhood by a polynomial:

f1(x)~xT A1x +bT
1 x + c1 (3.10)

where:

A = a symmetric matrix.

b = a vector.

c = a scalar.

X = a 1×2 vector containing running variables x and y .

Now construct a new signal f2 with global displacement d .

f2(x) = f1(x −d) = (x −d)T A1(x −d)+bT
1 (x −d)+ c1

= xT A1x + (b1 −2A1d)T x +d T A1d −bT
1 d + c1

= xT A2x +bT
2 x + c2

(3.11)
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Equating the coefficients in the quadratic polynomials:

A2 = A1,

b2 = b1 −2A1d ,

c2 = d T A1d −bT
1 d + c1

(3.12)

From 3.12 we can solve for translation d , if A1 is non-singular:

2A1d =−(b2 −b1),

d =−1

2
A−1

1 (b2 −b1)
(3.13)

Figure 3.1: Image at 21 august 2019 at

12:00:15 PM.

Figure 3.2: Image at 21 august 2019 at

12:00:30 PM.
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Figure 3.3: Pixel intensity visualized

with Gunnar-Farneback flow.

Figure 3.4: Image at 21 august 2019 at

12:00:45 PM.

Figure 3.5: Generated image at 21 au-

gust 2019 at 12:00:45 PM.
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3.3 Harris corner detection algorithm

In the field of pattern recognition, the Harris algorithm is often used to detect corners [30].

Moreover, this method is also used to detect cloud corners in ASI images [21]. The algorithm

contains five steps:

1. Color to gray-scale.

2. Spatial derivative calculation for each pixel, this gives Ix (x, y) and Iy (x, y).

3. Structure tensor setup M (see 3.14). This co-variance matrix has the information of how

the gradients of local pixels are distributed.

4. Harris response calculation with k ∈ [0.04,0.06] (see 3.15). The smallest eigenvalue of

the tensor is approximated.

5. Non-maximum suppression, locate local maxima as corners with a 3×3 filter.

M = ∑
(x,y)∈W

[
I 2

x Ix Iy

Ix Iy I 2
y

]
=


∑

(x,y)∈W
I 2

x
∑

(x,y)∈W
Ix Iy∑

(x,y)∈W
Ix Iy

∑
(x,y)∈W

I 2
y

 (3.14)

R = det (M)−k(tr ace(M))2 =λ1λ2 −k(λ1 +λ2)2 (3.15)

3.4 Sun positioning

It is possible to scan for circles or bright areas in an image to locate the sun’s position. However

it is more precise to use the method proposed by Jiacheng Tang et al. (2018). The orientation

of the sun can be represented by Solar altitude angle (Hs) and Azimuth angle (As). This is

calculated by the local latitude φ, Declination angle (δ) and time angle ta [46].

δ= 23.45∗ si n(360∗ 284+n

265
) (3.16)

Where n is day of the year.

ta = (tt s −12)∗15. (3.17)

Hs = sin1(sinφ∗ sinδ+cosφ∗cosδ∗cos ta) (3.18)

As = cos−1 sin Hs ∗ sinφ− sinδ

cosδ∗cos ta
(3.19)
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From this follows x and y coordinates.

x = R ∗Hs

90◦ ∗cos As (3.20)

y = R ∗Hs

90◦ ∗ sin As , (3.21)

where R is the radius of the (pre-processed) image.

3.5 Neural networks

Neural networks are developed to determine and exploit stochastic dependencies within

individual samples of data. In this research we will cover and use Artificial Neural Network

(ANN), Convolutional neural network (CNN) and Long short-term memory (LSTM).

3.5.1 Artificial Neural Networks

The greatest advantage of Artificial Neural Network (ANN) over other modeling techniques

is their ability to model complex, nonlinear processes without assuming the form of the

relationship between input and output variables [15]. ANN have an input layer (L1) and an

output layer (Lk−1). The layers in between are called the hidden layers. This is a generic model

and it learns a non-linear mapping from an input vector to an output. An Artificial Neural

Network (ANN) has k layers, where i = 0..k. Moreover, each layer i has Li neurons. Where

the first layer is activated by the input data L1 = i nput the following layers are activated as

followed:

Li+1 =α(Wi ∗Li +bi ) (3.22)

where:

Wi = the weight matrix.

bi = the bias matrix.

α = some activation function (see 3.7).

The routine of pushing data trough this network is called feed-forward.

The output of fig. 3.6 is defined as followed:

Out put =α(Wi 1x1 +Wi 2x2 +Wi 3x3 +bi ) (3.23)

At the final layer the error is calculated with some loss function giving an error. This loss

function is dependent on the prediction. As we are dealing with a regression problem mean

squared error is an option:

E = 1

N

n∑
i=1

(|yi − y ′
i |)2 (3.24)
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where:

yi = the ground truth vector.

y ′
i = the predicted vector by the neural network.

Using a learning algorithm like gradient descent, the weights and biases are updated every

iteration [22]. As a result the error can get smaller every iteration.

Figure 3.6: A neuron in a Artificial neural network, where z is the result of the sum.

3.5.2 Activation functions

An activation function is a non-linear function applied by a neuron to introduce non-linear

properties in the network. Examples are given in fig. 3.7. Common used activation functions

are defined as followed [22]:

Si g moi d : f (z) = 1

1+e−z (3.25)

H y per bol i cTang ent : f (z) = ez −e−z

ez +e−z (3.26)

ReLU : f (z) = max(0, z) (3.27)

3.5.3 Back-propagation algorithm

The weights and biases determine the output of neural networks. These weights and biases

have to be updated to improve performance. This is done with a learning algorithm. An

example of such a learning algorithm is back-propagation [22]. While pushing data trough the
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Figure 3.7: Plotted activation functions, based on image from [50]

network, it has some output. From this output an error E can be calculated while comparing

it with the ground truth. This is called a loss function C . Back-propagation updates weights

and biases iteratively such that the loss is minimized. Back-propagation begins by applying

the chain rule twice to the error function partial derivative 3.28. The amount of samples that

is pushed simultaneously trough the network is called batch-size. When all the samples are

pushed trough the network it counts as 1 epoch.

∂E

∂wk
i , j

= ∂E

∂ak
j

∂ak
j

∂wk
i , j

(3.28)

where:

E = the error output by the loss function.

wk
i , j = the weight for node j , layer Lk for incoming node i

ak
j = the the output after activation for node i in layer Lk .

Basically, this equation gives the change to the error if you change a particular weight. Ac-

cording to this information the weight is updated, but how much should you change this

weight? Here the hyper-parameter learning rate η is introduced. Next, ∆wi , j is added to wk
i , j

as formulated in 3.29.

∆wi , j =−η ∂E

∂wk
i , j

(3.29)

Instead of only using current calculated gradient to update the weights, we can also take

multiple past steps under consideration. This is defined as momentum.

In this study we use 2 learning algorithms stochastic gradient decent (SGD) and adam. SGD

uses back-propagation until some defined minimum is found. Adam is an extension of SGD,

where it makes use of past seen values to adaptive change the momentum [28].
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3.5.4 Convolutional Neural Networks

Convolutional neural network (CNN) are regularized versions of ANN’s. The feed-forward

architecture stays the same but the input will be an image. The hidden layers perform convo-

lution, activation and pooling (In that order). Stage 1 consists out of receiving input into layer

Li+1, then convolution is performed. Convolution is shifting the weight matrix while multi-

plying both. In the second stage a non-linearity (activation) function is applied. Optionally,

afterwards pooling is applied, this can be considered stage 3 [22].

Convolution is performed with a filter, these filters are usually a square of dimension N∗N [36].

The filter and bias contain the weights to be updated (while training the model). This filter is

’convolved’ over the input (image/matrix), afterwards bias is added. During convolution the

usual stride is 1 (shift step size), but this might vary. The result of convolution has a smaller

dimension than the previous layer. To counter dimension shrinkage you could add padding.

Zero-padding is a margin of zero values which are placed around the image. The difference in

output size is given in equation 3.30 (normal output size) and equation 3.31 (output size with

zero padding ).

Lout put = (N −F )/S −1 (3.30)

where:

N = the size of the current layer.

F = the filter size.

S = the length of the stride.

Lout put = (N +2P −F )/S −1 (3.31)

where:

P = the padding depth.

Pooling is an operation where the size of the image is reduced. This is done by taking the

average or maximum of a group of ’pixels’. This is done the reduce the amount of parameters

and computation of a CNN.

When making a neural network ’too deep’, the conversion rate will drop. Residual networks

are developed as the solution to the problem of training a deep neural network. Normally a

neuron on feeds forward to the next neuron. Basically in a residual block it also feeds forward

to 2-3 neural forward.



CHAPTER 3. THEORETICAL BACKGROUND 29

3.5.5 Recurrent Neural Networks

A Recurrent neural network (RNN) is an extension of an ANN. RNN are specially designed

to process a sequence of observations. Respectively, the input should be a sequence of

observations, mapping it to some output. During this mapping each time step t is processed

individually. In every layer hi of a RNN it takes the output from the previous layer as additional

input (see equation 3.32).

Figure 3.8: Example of a RNN, where Ot is the output and xt the input of hidden layer ht .

Based on [20].

hi+1,t =α(W1σ(hi+1,t−1)+W2hi ,t +b) f or t = 1..N (3.32)

where:

Wi = the weight matrix.

bi = the bias matrix.

α = an activation function (see 3.7).

σ(hi , t ) = the hidden state of layer i

The hidden state represents context based information of past input(s). This information can

be used in future predictions. Although, a RNN loses this information over time, because it

only has information of last output. LSTM’s do not have this problem [47].

3.5.6 Long short-term memory

Long short-term memory (LSTM) is a type of RNN, but it is able to ’remember’ more of past

predictions/input. Basically it decides to keep a hidden state or trow it away. A LSTM has 3

additional ’gates’ to do these operations in a ’cell’.

• Forget gate: It decides when information is thrown away. It looks at the previous hidden
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state ht−1 and input xt and outputs a number between 0 and 1 for each number in the

cell state Ct−1. Respectively, 0 is forget and 1 is keep. (Equation 3.33).

• Input gate: It decides what new information it is stored. Next, a tanh layer creates a

vector of new candidate values, C̃t , that could be added to the state. (Equation 3.34)

• Output gate: It decides what parts of the cell state are output, giving ot . Followed by, a

multiplication of an activation of the cell state Ct and ot . Formulated in equation 3.35

[47].

ft =σ(W f ∗ [ht−1, xt ]+b f ) (3.33)

it =σ(W f ∗ [ht−1, xt ]+b f )

C̃t = t anh(Wc ∗ [ht−1, xt ]+bc )
(3.34)

ot =σ(Wo ∗ [ht−1, xt ]+bo)

ht = ot ∗ t anh(Ct )
(3.35)

where:

σ = an activation functions explained earlier this section.

t anh = ’tanh’ activation function.

Wi = the weight matrix.

bi = the bias matrix.

ht = the hidden state at time t .

xt = the input at time t .

3.6 Random Forests

In order to understand random forest you first need to understand the building block ’decision

tree’.

3.6.1 Decision tree

A decision tree is basically a tree data structure, but every node has a ratio of the population,

where the root node has 100% of the population. This node is split up in multiple nodes [7]. In

order to find the best split all possible splits over all possible features are evaluated such that
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the split with the lowest MSE is chosen. In literature MSE is common for regression problems

[33]. The process of splitting continues until a a limit of samples is reached (minimum of 1)

or when the maximum depth of the tree is reached. This trained decision tree can be used to

classify other data. But a decision tree tends to overfit the data. Random forests are composed

of multiple decision trees. This gives the following hyper-parameters:

• Minimum samples per leaf. If this amount is reached, no more splitting is necessary.

• Maximum depth of a tree m. Every time node(s) is/are split at layer l . A new layer l +1

is created, which exists out of the children nodes of layer l . When l == m, no more

splitting is necessary.

In a random forest each tree is not trained on the same training data. When constructing

such a tree, when performing a split operation only a random subset of features is considered.

Finally the result is averaged over all decision trees in the forest [7]. The amount of decision

trees in a random forest is another hyper-parameter called ’number of estimators’.
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Chapter 4

Problem Description

In this chapter we first formulate the problem. Next, we discuss the setup of data source and

how this data looks like. Finally, the research questions are formulated.

4.1 Problem definition

On some days GHI fluctuates much, this is clearly visible in figures 5.1 and 4.2. As discussed in

the introduction, this causes the grid to be off balanced. Past research delivered some methods

for predicting GHI, but all relevant studies use different data-sets (weather conditions) and

performance evaluation. It is hard to conclude with certainty what models are most suitable

for which circumstances and prediction horizons.

4.2 Data & equipment

4.2.1 Sensor setup

Two cameras are installed in Almeria, Spain. These cameras are owned by EKO whom have

a partnership with Copernicus Institute. The model name is "CMS-Schreder ASI-16/50". Its

camera hardware features a robust coated quartz glass dome, 180°/360° fish-eye optics, with

a 4-Megapixel resolution sensor, and an IR-cut filter avoid degradation of the sensor by long

time direct exposure to the sun disk. Additionally, this camera come with built-in sensors for

temperature and humidity.

The "ASI-16/50" comes with built-in ventilation and up to 60W airflow heating, to minimize

condensation on the glass dome and to quickly remove eventual raindrops and snow. The

system has been tested for harsh environments from -40°C up to more than +50°C air temper-

ature. Its double-cover design combined with its forced ventilation will minimize the risk of
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damages because of long time exposures to very strong direct sun radiation.

These cameras are located in Almeria (see fig. 4.1), Spain. Precisely, at the coordinates

37.091549◦N ,−2.363556◦E and 37.095253◦N ,−2.354785◦E . The distance between these cam-

eras is approximately 880,2 meters. So, this provides data from two locations.

Figure 4.1: Location of equipment, source: Google maps.

4.2.2 Data

We can split up the data in 3 categories: First, image data from the cameras. Secondly, data

measure by hardware at location of the cameras. Finally, additional data received from external

sources.

These cameras are online since July 23, 2019 and make 180 degrees images, with a sample time

of 15 seconds. These images have a usable resolution of 1920x1920 (Fish eye). Additional data

is saved which is measured at the same time and location:

• Outdoor temperature, measured in Celsius.
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• GHI, measured in W /m2

• Humidity.

Figures 4.2 to 4.4 are averages and variances of GHI, temperature and humidity over the the

months August until December 2019. As can be observed is that the averages follow a bell

curve closely. For GHI, September and October have higher variance (see figure 4.2). These

months might be harder to predict. This can be explained by moving more clouds, if a cloud

starts blocking the sun the GHI will drop, where the temperature is just affected very little.

This explains why there is more variance in GHI, making it harder to predict with respect to

temperature (see figure 4.3). These images show the differences and trends per season and

time of the day.
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Figure 4.2: Average and variance GHI (in kW h/m2) at camera site 1.

Figure 4.3: Average and variance in temperature (in Celsius) at camera site 1.

Figure 4.4: Average and variance humidity at camera site 1.
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From the images is information extracted. The intensity I as the mean grayscale of an image

defined as:

I =
∑

p∈i mag e pr +pb +pg

N
(4.1)

where:

N = the amount of pixels.

pr = pixel red.

pg = pixel green.

pb = pixel blue.

The amount of cloud pixels is detected with a cloud pixel algorithm RBR 2.1. The amount of

edges is detected with the canny edge detect algorithm [11]. The amount of corners is detected

with Harris algorithm 3.3. A distribution per month is visible in figures: 4.5-4.8.

An additional feature we implemented we call ’pxl’. We locate the sun by finding the brightest

object in the image. Next, we 7 circle areas around the sun with each 20 pixels more distance

of the located sun. We count the amount of pixels per area and each of those is a individual

feature. An example is given in fig. 4.9.

Figure 4.5: Average and variance number of edges at camera site 1.
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Figure 4.6: Average and variance of the intensity at camera site 1.

Figure 4.7: Average and variance of the number of corners at camera site 1.

Figure 4.8: Average and variance for the number of cloud pixels at camera site 1.
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Figure 4.9: Pixel location feature at 21 July 2019, 11 AM. The pixels are classified by there

distance from the sun (the white/red center). Each different distance is annotated with a

different color.

Next to the ASI images, temperature and GHI additional external data is available.

• Clear sky GHI (G H Iclr )

• CSI, calculated by the ratio of GHI and G H Icl r .

• Solar azimuth angle.

• Solar zenith angle.

• Sun-earth distance

• Apparent sun elevation accounting for atmospheric refraction.

• Actual elevation (not accounting for refraction) of the sun in decimal degrees, 0 = on

horizon. The complement of the zenith angle.

• Apparent zenith: apparent sun zenith accounting for atmospheric refraction.

• Solar time in decimal hours (solar noon is 12.00).

Pvlib (version 0.6.3) provides G H Iclr (’clearsky’ module), sun-earth distance at time t (‘pyephem’

module) and solar position data like Solar zenith angle,Solar incidence angle,Solar elevation

angle,Solar altitude angle and Azimuth angle [52].

All experiments and pre-processing will be done in Python (3.5.0). A public GitHub repository

is available containing all codes of this project https://github.com/nii3lsh/ASI_playground.

https://github.com/nii3lsh/ASI_playground
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4.2.3 Hardware experiments

All experiments (unless clearly noted) are run on a node that contains an AMD EPYC 7451

24-Core Processos and 256 GB (RAM) memory. Additionally, the node is equipped with a GTX

1080 Ti GPU.

4.2.4 Data-set

We consider data from the 1st of August 2019 to 31 December 2019. These exists out of 121

sunny days, 29 partially cloudy days and three cloudy days (total 153 days). We can not test

on all of these because of limited computation power, time in combination with the amount

of models. Lets say we predict on a day from 6 AM in the morning to 7PM. Gives 19−6 = 13

hours, 13∗60 = 780 minutes. Per minute we will do 20 predictions for each model. Thus, for

as test-set we take a random sample of five sunny days, three partially cloudy days and two

cloudy days.

The classes sunny, partially cloudy and cloudy are divided on average CSI per day:

• Sunny C SI > 0.75

• Cloudy C SI < 0.25

• Partially cloudy 0.75 >C SI > 0.25

The preliminary data set contains the following days:

• Sunny: 5, 6, 7, 8 October 2019.

• Partially cloudy: 10 October 2019.

We consider the preliminary data-set also as a ’validation-set’ to select the best performing

models. The selected models will also predict on the test-set. The test set is more balanced in

terms of weather circumstances and exists out:

• Sunny: 15 September, 15 October, 15 November and 15 December.

• Partially cloudy: 21 October, 17 November, 16 December.

• Cloudy: 22 October, 3 December.

4.2.5 Train, validation and test data

Let we predict for day t , in general at moment t we do not know anything about t +x, where

x > 0. Because of this, to predict for day t we can only use data to train observed before t . An

example would be stock pricing. If we want to predict the stock price p for tomorrow, we also
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do not know anything about the stock price after tomorrow. Because of this we can only use

’old’ data as input or training data.

We consider all data before predicting time t −3 as training data. Furthermore, the validation

set will exist out of t −3..t (not including t). Time t will be testing data. Therefore, when time

passes t will be larger and the training set will grow. Let 11 September 2019 be a day to predict.

All data prior to 11 September is taken as training data, excluding 3 days before 11 September

(8, 9, 10 September). These 3 days are included as validation set.

Figure 4.10: Example training and test-set. Where p is the day to predict(test) and n the

amount of validation days. t0 is the first data in the dataset.

4.3 Research questions

Regarding discussed available data and problem, the following research question is formulated:

How can we use machine learning to predict (short-time) Global horizon irradiance using all

sky images and sensor data in Almeria, Spain?

This research question can be separated in two categories. Questions regarding the model and

questions regarding data.

4.3.1 Models

We want to compare multiple models, this raises questions regarding different models:

• What different models are most suitable for what prediction horizon?

• What different models are most suitable for what weather circumstance?

• How does developing a separate model for each individually prediction horizon affect

forecast performance?

• To What extend can optical flow models be utilized to improve forecasting?
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• How does CSI prediction compare to GHI prediction?

4.3.2 Data

The different models use the same data. This gives questions about how to represent the data

and what data is valuable for this problem. Questions about data:

• To what extend is additional training data from another location beneficial for forecast

performance?

• What features are important for the models to predict GHI?

• How many minutes prior prediction moment are features relevant for prediction perfor-

mance?
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Chapter 5

Methodology

In this chapter we give an overview of the methodology. First, a global overview is given.

Followed by, how the data is represented, pre-processed and used as input. We will describe

the specifications of the proposed models. Finally, the performance evaluation is formulated.

5.1 Experiment setup

In this section the general experiments are covered. Later in this chapter we define multiple

models, each of these will have access to data of the same days. Accordingly, these models will

predict for the same time t on a specific day with an identical future horizon H . Additionally,

these models will have the same limitation/boundaries in terms of training, validation and

test-sets. If additional data is used this will be clearly noted. The goal of the experiments is

to answer each of the sub-research questions. While building a forecasting model you want

to compare the predictions to some baseline. A common baseline in GHI predictions is the

Persistence model and Smart-persistence model[29]. Every model (with exception of the

CCN-Flow model) will have a variation of input in data:

• Onsite measured data.

• Information/features extracted out images.

• External data from Pvlib 4.2.

• Access to training data from other site.

For every model the GHI ground truth is used, this is measured on location with a pyranometer

(see section 4.2).
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5.2 Pre-processing

The data exists out of numerical and image data (see section 4.2). The pre-processing subrou-

tine is different for these types of data. A part of the data is not use-able, that is when it is dark.

Respectively, we only consider data where the measured GHI at that time > 0.

5.2.1 Numerical data

First of all, the numerical data needs to be checked. The temperature contains incorrect

0 (temperature) values and negative data (GHI). The temperature can be interpolated with

neighbor data (a measurement 15s before/after). This can be done be taking the average of

both. The negative data will be set to 0, as it is a measure error of low GHI (which can not be

lower than 0). For all the observed variables the absolute variables and gradient are used as

input. For ANN and LSTM all numerical data y is normalized to [0,1], by applying:

y = x/z (5.1)

where:

z =
√∑n

i x2
i .

This is also know as Euclidean distance.

5.2.2 Image data

For image data, the black border around the raw image data is deleted. Afterwards, the images

resolution is still too big and will be resized to 400×400. Obstacles will be labeled as black

pixels. Finally, the image is normalized. This is done by subtracting the mean from each pixel

and then dividing the result by the standard deviation. We need the the pixel values to be

integer and positive, so the normalization scale is [0,255].

5.3 Experiments

In this section is highlighted what experiments are conducted to answer the research questions.

The length of the feature sequences is varied to answer the research question about ideal

amount of minutes of features prior prediction moment. Also, to determine what features are

important, a model will be trained and predict with a different subset of features (see table 6.2

for details). Additionally, another approach is to take CSI as ground truth and converting this

to GHI using the Perez conversion model. We can calculate this ground-truth with observed

G H I and G H Iclr from Pvlib (see section 4.2).
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In order to determine if data from site 2 is values for performance on site 1, the following

experiment is proposed. The data from site 2 will be added to the training set. The result

of this experiment will give insight if additional training data from the other site improves

performance.

First, all models will predict on the preliminary data-set (see section 4.2). Respectively, models

that perform well will also predict on the test-set. We say a models performs well if it performs

better as the baseline.

5.4 Models

This section formulates proposed models. These models will compete on the same experi-

ments. All models have the same input, with exception of Model 4 - CNN-flow and persistence,

this model only has access to the images. Models:

1. Random Forests (RF)

2. Artificial Neural Network (ANN).

3. Long short-term memory (LSTM)

4. Convolutional neural network (CNN)-flow

5. Persistence, baseline model.

Every numerical model can be adjusted to predict for prediction horizon i . Where i > 0 and

20 ≥ i . Another approach is where a model predicts all values 1..20 together. Respectively, in

the results we refer to the models that predict 20 steps at once as ‘multi’.

5.4.1 Model-selection

Giving the amount of models multiplied by the amount of settings (amount of features, length

of features), first a pre-selection of all the models will be done on the preliminary data-set (see

section 4.2). Models that perform well (better than the baseline) will be tested more thoroughly

on the test set. This has two reasons, first of all the limit of computational power. Secondly,

the more models that predict the bigger the chance one will predict well.

5.4.2 Numerical models

Models RF, ANN and LSTM will work on numerical input.

• These models use subsets of features, the individual elements are onsite measurements,

information from images and external data from Pvlib (see section 4.2).



CHAPTER 5. METHODOLOGY 45

• A model will get additional training data access of site 2. 4.2.

• A model will be trained to predict CSI. This will be converted to GHI using the Perez

conversion 2.5.

5.4.3 CNN-flow

This model exists out of two parts. First a CNN will be trained to predict GHI from an image.

The dataset has images with ground truth. Next to this a input needs to be generated. With

optical flow we can generate an future image from a few consecutive images. This will be the

input for the trained CNN. The only data this model uses is the images and the ground-truth

GHI to train. Multiple optical flow algorithms exist, the scope is set to Gunnar Farneback

method (dense) and sparse optical flow Lucas-Kanade (see section 3.2.2 for details).

5.4.4 Persistence Model

A common baseline model in solar irradiance forecasting is the persistence model [29, 3] (an

example in figure 5.4.4). ‘Regular’ persistence predicts valuet for time t +h, where t is time

and h the prediction horizon. An improvement on this is called smart-persistence, proposed by

Andrew Kumler et al. (2019). It assumes a stable CSI. The current CSI is calculated by the ratio

of the current DNI and GHI. While considering the SZA and time the future DNI is calculated.

The prediction is the multiplication of the future DNI with the current CSI.

5.5 Performance evaluation

Most often the following evaluation techniques are used in similar studies: Root Mean Square

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Skill

Score (SS) [21, 2, 3].

RMSE =
√

1

n
Σn

i=1

(
e2

i

)
(5.2)

M AE = 1

n
Σn

i=1

∣∣∣ei

∣∣∣ (5.3)

where:

ei = the error factor. The absolute difference between the observed oi and predicted pi value.

N = number of samples.

M APE = 1

n
Σn

i=1
|oi − p̄i |

oi
∗100% (5.4)
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SS = 1− Er r or f or ecast

Er r orbasel i ne
(5.5)

It is hard to compare results to other studies because of different data-sets, weather and earth

position. In forecasting a common metric is the SS (equation 5.5). In our case we compare

RMSE, MAE, MAPE and the ramp-score with the baseline. As a baseline method the Persistence

model and Smart-persistence model is proposed. All models are build to optimize on ‘Mean

Squared Error’. Thus, we consider RMSE the most important performance metric.

As an additional error the ramp-score is introduced. This metric aims to measure the ability to

forecast relevant GHI fluctuations [48]. Furthermore, in literature these are also called ’ramp

events’. Traditional error metrics capture the error at a certain moment. Ramp-score captures

fluctuations over a time period, rather than the error per time index. Therefore, this links

better to the problem of short term fluctuations as described in the introduction.

First, the prediction and observation time-series sequence is compressed with the swinging

door algorithm [8]. The significance of the resulting ramps is defined by a sensitivity parameter

ε. We can say a new ramp is detected when a linear function is required to approximate the

signal with absolute value lower as ε. In this study ε is set to 0.05.

In the error metric proposed by Vallence et al. (2017) is chosen to average the values by the

hour but they have a prediction horizon of 5 hours. Accordingly we average per 5 minutes.

Then the ramp-score is calculated with:

r amp − scor e = 1

tmax − tmi n

∫ tmi n

tmax

|SD(T (t ))−SD(R(t ))|d t (5.6)

where:

SD = the output of the swinging doors algorithm, giving the extracted slopes.

tmax = maximum bound of the period with G H I > 0.

tmi n = minimum bound of the period with G H I > 0.

An example of SD visualization is given in Fig 5.1.

5.5.1 Statistical significance

To compare if some model a is significantly better than model b the Diabold-Mariano test [17,

24] is proposed. In this significance test is looked at the prediction errors of both models over

a particular prediction horizon. We want to test if the null hypothesis:

H0 : E(dt ) = 0,∀t (5.7)

in comparison with the alternative hypothesis:

H1 : E(dt ) 6= 0,∀t (5.8)
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Figure 5.1: Swinging door compression for ’LSTM M 5 all data’ in sunny weather circumstances.

Respectively, from left to right days 15 September, 15 October, 15 November and 15 December.

On 15 November you can see there are many fluctuations in GHI. Calculated ramp-score

is 21.06. SD output is averaged by the hour in this figure to give a clear example. In our

experiments this is set to 5 minutes.
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We define the loss differential between two forecasts as dt = e1t − e2t , meaning the error at

time t for model 1 and model 2. In our case the error of some model will be RMSE. We take

a common (in forecasting) significance level of α= 0.05 [24, 17]. For each horizon this test

should be applied differently, since a further prediction horizon leads to more uncertainty.

Therefore, errors of models should be compared for a fixed prediction horizon H . Accordingly,

in case of this study H is set to 1..20 minutes.
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Chapter 6

Implementation

In this chapter we explain how the models are build in detail. For each model is discussed how

the data structure is made and how the hyper-parameters are selected. First, manual tuning

is applied. Followed by a search grid of hyper parameters. Additionally, we discuss how the

models are trained.

6.1 Data-frame

Let n f be the number of features (see section 4.2). let l be the length a sequence. We define an

instance of a data-frame to be a sequence of length l containing l prior values of each feature f .

Let fn,d ,t be feature number n at day d and time t in a sequence. Were this sequence predicts

at time t +l for some prediction horizon p. Each of these sequences xd ,t ,l has a observed value

yd ,t .

0 .. n

0 f0,0 fi ,0 fn,0

.. f0, j fi , j fn, j

l f0,l fi ,l fn,l

Table 6.1: Example instance of a data-frame xd ,t ,l , a ground truth value yd ,t belongs to it.

These sequences are used as input for each model. Here the size differs for the sequence

length l and the number of features n.

6.2 Numerical models

Models RF, ANN and LSTM take the described data-frame as input with a subset from the

features. The ANN and LSTM both have training iterations called epochs (3.5.3). To determine
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Figure 6.1: Flowchart from the start of raw to solar forecast predictions. The ’Machine learning

model’ in this chart is valid for RF, ANN and LSTM implemented in this research.

how much epochs are optimal, a technique early-stopping is used on the validation set. After

each epoch is checked if there is performance improvement in terms of validation-error. A

patience parameter is introduced, this parameter is set to 15. Accordingly, If after 15 epochs

(3.5) no improvement is observed in the validation-error, the weights are restored to the state

with minimum validation-error and training is stopped.

An example is given in figure 6.2. A visible detail is that the training-error is higher than

the validation-error. Normally, this would be strange unless the validation-set exist out of

easier samples. In our case the validation-set is easier, because it contains days of December.

Respectively, the training set contains days from July until November. Summer months have

longer days and higher GHI, which makes them harder to predict as Winter days. This can be

seen in fig. 4.2.

Next, we implemented subsets of features to determine what data is valuable. The sets are

all-data, img, onsite and meteor (see table 6.2).
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Features/Subsets all data img onsite meteor pxl

Time and date 3 3 3 3 3

GHI 3 7 3 7 3

Temperature 3 7 3 7 3

Humidity 3 7 3 7 3

Clear sky GHI 3 7 7 3 7

CSI 3 7 7 3 7

Azimuth 3 7 7 3 7

Zenith 3 7 7 3 7

Sun-earth distance 3 7 7 3 7

Number of cloud pixel 3 3 7 7 7

Brightness 3 3 7 7 7

Number of edges 3 3 7 7 7

Number of corners 3 3 7 7 7

Cloud pixels distance sun 7 7 7 7 3

Table 6.2: Feature subsets: what features are in what subset.

Figure 6.2: Loss and validation accuracy (MSE) plotted per epoch (training iteration). Training

set: all data but December. Validation set: December.
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6.2.1 Random Forests

We chose mean square error (see section 5.5) as loss function for random forest, because we

are dealing with a regression problem and we want to penalty extreme values. Our model

always considers all features. For the grid search is chosen for a 10-fold-cross-validation on

the training set (all days until 15 September). The grid search is done for number of estimators,

minimum samples per leaf and the max depth of a tree (see section 3.6 for explanation hyper-

parameters).

Hyper-parameters

The search exist out of the following parameters:

• Number of estimators = [50, 100, 150, 200, 300]

• Minimum samples leaf = [1, 2, 4, 12, 24, 64]

• Max depth = [25, 50, 75, 100, 200]

The best results came with: Estimators 200, minimum samples leaf 1 and a max depth of 25.

6.2.2 Artificial neural network

For the ANN is chosen for a 3 layer architecture (see section 3.5). It performed better then 2

layers and 4 performed worse. For this 3 layer network there is a search grid for the amount of

nodes per layer, activation functions, optimizers, learning rate and drop out (see section 3.5.3

for explanation hyper-parameters). Then the optimal amount of epochs is taken by taking the

minimum validation loss of the model with the minimum validation loss.

Hyper-parameters

The following search grid is used:

• Nodes = [(32, 64, 32), (64, 128, 64), (128, 265, 128)].

• Activation functions = [’relu’, ’sigmoid’].

• Learning rates = [0.001, 0.01, 0.1]

• Dropout = [0, 0.1, 0.5]

The best performance was achieved with nodes (64, 128, 64), activation function ReLu, learning

rate = 0.001 and dropout = 0.
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6.2.3 Long short term memory

For the LSTM is chosen for a 3 layer architecture. The first to layers are LSTM layers, were

the third one is a dense layer. For this 3 layer network there is a search grid for the amount of

nodes per layer, activation functions, optimizers, learning rate (see section 3.5).

Hyper-parameters

The following search grid is used:

• Nodes = [(50, 25, 10), (60, 30, 15), (80, 40, 20)]. Here are the first two layers LSTM layers,

the third a dense layer.

• Activation functions = [’relu’, ’sigmoid’].

• Learning rates = [0.001, 0.01, 0.1]

• Dropout = [0, 0.1, 0.5]

The best performance was achieved with nodes (50, 25, 10), activation function ReLu, learning

rate = 0.001 and dropout = 0.

6.3 Flow - Convolutional neural network

For each day a separate CNN is trained, including all the training data until that day. The reason

behind this is that you want to evaluate as much data as possible while training. However, you

could use transfer learning, but then we have a chance on overfitting on the old data (as we

will train on this more) or have some bias towards old data.

Let t be the current time and let the prediction horizon be x minutes into the future. From

the images t −x and t the flow will be computed and a new image i will be generated for t +x.

Image i will be used as input for the trained CNN on that particular day. The output will be the

predicted value for t +x.
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Chapter 7

Results

In this chapter we give an overview of the results by conducted experiments. Starting with

experiments on the preliminary data-set, these are a pre-selection of the proposed models.

Thus, models that perform good (see methodology) will be used to predict the test set.

Single models are trained to predict on exactly one prediction horizon, giving 20 different

models for 20 different prediction horizons. These ’single’ models are annotated with ’S’. Other

models predict for all horizon at once making them 20 times more efficient in terms of time,

we call these ’Multi’ models and are annotated with an ’M’.

All the models have access to data, the number next to the models annotates the amount

minutes prior to prediction moment data is access-able. Features are split in different classes

(see table 6.2).

• All features available ’all data’.

• Only features extracted out images ’img’.

• Only features from onsite equipment ’onsite’.

• Only features from external data resource ’meteor’.

• The feature subset ’pxl’ has access to the onsite features and the amount of cloud pixels

per distance of the sun.

Also, models annotated with ’prz’ predict G H Iclr , which is converted to GHI using the Perez

model 2.5. Finally, when training the models usually only training data from the prediction

location is used. When additional data is included this is notated as ’2CAM’.

This chapters gives the results of the preliminary data set. Next, the results of the test-set (B)

are given.
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7.1 Model selection

As discussed in 4.2, the preliminary data-set exist out of the following days 5-8 October and

the 20th of October. To this data the following models are fitted: RF, ANN, LSTM and the

flow model. The results are highlighted below. For plots only RMSE is shown, a more detailed

overview can be found in the appendix. As discussed, the models that perform relatively well

to the baselines will be selected to predict on the test-set.

7.1.1 Random forests

Shown in fig.7.1 and table 7.1 ’single’ perform worse than ’multi’ when the input is equal.

A sequence length of 5 has the best predictions, but the difference is too small to conclude

anything. The features that do best are the subsets ’all data’ and ’onsite’. External data

(’meteor’) performs bad with respect to the baseline. As selection we take the feature subsets

’all data’ and ’onsite’ as these perform best. Additionally, sequence length 5, 10, 20, 30 and 60.

Figure 7.1: RMSE per prediction horizon for preliminary data-set

7.1.2 Artificial neural network

Single models tend to be unstable and predict 0’s in some occasions, which leads to an

extremely high error. Multi models did not have this problem. Models with an relative short

sequence length seem to perform better on RMSE, where longer sequence perform better on

MAE (see table 7.2). As selection we take feature length 10,20,40,60 with features subsets ’all

data’ and ’onsite’.
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 101.62 50.65 31.94 23.96 NA NA NA NA

Smart-persistence 98.02 41.08 24.5 16.2 NA NA NA NA

RF S 10 all data 84.6 44.15 23.72 26.85 0.17 0.13 0.26 -0.12

RF S 10 img 88.5 45.66 25.73 30.76 0.13 0.1 0.19 -0.28

RF S 10 meteor 125.7 76.74 59.47 60.76 -0.24 -0.52 -0.86 -1.54

RF S 10 onsite 86.6 43.9 24.5 25.75 0.15 0.13 0.23 -0.07

RF S 20 all data 85.16 44.92 24.6 26.56 0.16 0.11 0.23 -0.11

RF S 20 img 84.7 43.94 24.92 26.24 0.17 0.13 0.22 -0.1

RF S 20 meteor 125.28 76.4 58.79 58.83 -0.23 -0.51 -0.84 -1.46

RF S 20 onsite 83.98 42.89 24.22 23.86 0.17 0.15 0.24 0.0

RF S 30 all data 85.9 45.84 25.33 26.41 0.15 0.1 0.21 -0.1

RF S 30 img 84.3 43.93 24.95 25.58 0.17 0.13 0.22 -0.07

RF S 30 meteor 129.5 78.46 59.95 61.62 -0.27 -0.55 -0.88 -1.57

RF S 30 onsite 83.99 43.01 24.29 24.31 0.17 0.15 0.24 -0.01

RF M 10 all data 80.22 39.75 16.37 24.19 0.21 0.22 0.49 -0.01

RF M 10 img 84.52 41.88 16.38 27.16 0.17 0.17 0.49 -0.13

RF M 10 meteor 117.88 67.96 23.17 53.56 -0.16 -0.34 0.27 -1.24

RF M 10 onsite 82.52 39.99 16.16 23.68 0.19 0.21 0.49 0.01

RF M 20 all data 80.49 40.58 16.38 24.5 0.21 0.2 0.49 -0.02

RF M 20 img 80.89 39.98 16.26 25.02 0.2 0.21 0.49 -0.04

RF M 20 meteor 119.53 68.96 23.42 54.12 -0.18 -0.36 0.27 -1.26

RF M 20 onsite 81.1 39.84 15.99 23.16 0.2 0.21 0.5 0.03

RF M 5 all data 80.18 39.62 16.13 25.22 0.21 0.22 0.5 -0.05

RF M 5 img 86.28 42.21 16.68 29.73 0.15 0.17 0.48 -0.24

RF M 5 meteor 120.22 69.46 23.13 59.9 -0.18 -0.37 0.28 -1.5

RF M 5 onsite 84.99 41.0 16.65 24.45 0.16 0.19 0.48 -0.02

Table 7.1: RF. Average performance on preliminary data-set.

Figure 7.2: RMSE per prediction horizon for preliminary data-set.
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 101.62 50.65 31.94 23.96 NA NA NA NA

Smart-persistence 100.21 42.71 53.17 16.91 NA NA NA NA

ANN M 20 all data 82.67 46.36 133.46 33.14 0.19 0.08 -3.18 -0.38

ANN M 20 all data 2CAM 81.51 47.0 47.6 34.83 0.2 0.07 -0.49 -0.45

ANN M 20 img 90.54 46.78 37.2 27.74 0.11 0.08 -0.16 -0.16

ANN M 20 img 2CAM 91.13 48.15 36.0 28.73 0.1 0.05 -0.13 -0.2

ANN M 20 meteor 145.39 88.66 52.72 78.31 -0.43 -0.75 -0.65 -2.27

ANN M 20 meteor 2CAM 166.78 100.31 63.15 89.16 -0.64 -0.98 -0.98 -2.72

ANN M 20 onsite 92.16 45.7 36.25 25.71 0.09 0.1 -0.13 -0.07

ANN M 20 onsite 2CAM 93.46 46.07 35.25 25.64 0.08 0.09 -0.1 -0.07

ANN M 40 all data 82.33 44.67 86.47 29.01 0.19 0.12 -1.71 -0.21

ANN M 40 all data 2CAM 82.75 47.34 45.54 29.61 0.19 0.07 -0.43 -0.24

ANN M 40 img 100.56 53.02 60.28 35.3 0.01 -0.05 -0.89 -0.47

ANN M 40 img 2CAM 92.55 48.03 66.33 28.4 0.09 0.05 -1.08 -0.19

ANN M 40 meteor 182.12 106.0 46.23 96.85 -0.79 -1.09 -0.45 -3.04

ANN M 40 meteor 2CAM 142.85 95.56 69.09 84.24 -0.41 -0.89 -1.16 -2.52

ANN M 40 onsite 95.87 47.86 32.75 27.52 0.06 0.06 -0.03 -0.15

ANN M 40 onsite 2CAM 95.98 49.12 43.98 24.27 0.06 0.03 -0.38 -0.01

ANN M 60 all data 85.3 48.76 106.5 33.1 0.16 0.04 -2.33 -0.38

ANN M 60 all data 2CAM 83.97 46.58 104.87 29.36 0.17 0.08 -2.28 -0.23

ANN M 60 img 96.15 51.5 59.35 28.85 0.05 -0.02 -0.86 -0.2

ANN M 60 img 2CAM 99.58 55.03 41.59 31.55 0.02 -0.09 -0.3 -0.32

ANN M 60 meteor 153.14 89.42 47.24 78.54 -0.51 -0.77 -0.48 -2.28

ANN M 60 meteor 2CAM 154.98 88.22 113.21 75.43 -0.53 -0.74 -2.54 -2.15

Table 7.2: ANN. Average performance on pre. data-set.
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7.1.3 Long short-term memory

LSTM has the same problem as ANN with ’single’ models predicting 0’s on occasions. Although,

it is much more stable as ANN. LSTM seems to be much more sensitive for sequence lengths.

Everything above 10 tends not to work in tried experiments. A sequence length of 3 seems to

short and has slightly worse prediction performance with respect to lengths 5 and 10 (visible in

fig. 7.3 and table 7.3). As selection we pick sequence lengths 5 and 10 with the feature subsets

’all data’ and ’onsite’.

Figure 7.3: LSTM. RMSE per prediction horizon for preliminary data-set.

7.1.4 Flow Model

Visible in figure 7.4 is that both optical flow models perform bad with respect to the baseline.

An possible explanation is that exists out of two models that both have an error. While

combining two models with both an error, the prediction performance only gets worse. The

firs error is when generating a future image with optical flow. The seconds error is when

classifying this image. While training the CNN there was already an average RMSE 300. These

models will not be selected for the test-set.

Figure 7.4: RMSE per prediction horizon for preliminary data-set.
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 101.62 50.65 31.94 23.96 NA NA NA NA

Smart-persistence 100.21 42.71 53.17 16.91 NA NA NA NA

LSTM S 5 all data 87.09 45.16 39.82 31.48 0.14 0.11 -0.25 -0.31

LSTM M 5 all data Prz 254.07 135.83 193.93 122.66 -1.5 -1.68 -5.07 -4.12

LSTM M 10 all data 232.24 125.1 425.93 111.43 -1.29 -1.47 -12.33 -3.65

LSTM M 10 all data 2CAM 81.12 43.79 53.27 27.03 0.2 0.14 -0.67 -0.13

LSTM M 10 img 87.71 43.09 53.85 25.91 0.14 0.15 -0.69 -0.08

LSTM M 10 img 2CAM 82.27 38.88 33.5 20.91 0.19 0.23 -0.05 0.13

LSTM M 10 meteor 123.55 74.75 98.99 61.03 -0.22 -0.48 -2.1 -1.55

LSTM M 10 meteor 2CAM 136.41 86.27 41.8 71.57 -0.34 -0.7 -0.31 -1.99

LSTM M 10 onsite 80.54 37.93 39.92 22.04 0.21 0.25 -0.25 0.08

LSTM M 10 onsite 2CAM 81.78 39.23 28.26 20.55 0.2 0.23 0.12 0.14

LSTM M 3 all data 80.5 42.86 41.95 28.93 0.21 0.15 -0.31 -0.21

LSTM M 3 all data 2CAM 81.1 42.04 47.31 26.69 0.2 0.17 -0.48 -0.11

LSTM M 3 img 88.62 42.46 44.57 24.26 0.13 0.16 -0.4 -0.01

LSTM M 3 img 2CAM 85.76 42.08 33.62 24.95 0.16 0.17 -0.05 -0.04

LSTM M 3 meteor 110.7 66.62 38.1 51.29 -0.09 -0.32 -0.19 -1.14

LSTM M 3 meteor 2CAM 138.56 81.08 117.08 64.59 -0.36 -0.6 -2.67 -1.7

LSTM M 3 onsite 92.28 45.49 31.84 27.21 0.09 0.1 0.0 -0.14

LSTM M 3 onsite 2CAM 83.8 40.29 50.46 25.58 0.18 0.2 -0.58 -0.07

LSTM M 5 all data 80.0 41.36 50.02 25.67 0.21 0.18 -0.57 -0.07

LSTM M 5 all data 2CAM 82.55 43.21 35.87 31.48 0.19 0.15 -0.12 -0.31

LSTM M 5 img 87.05 43.62 734.07 22.5 0.14 0.14 -21.98 0.06

LSTM M 5 img 2CAM 87.83 42.32 44.96 26.09 0.14 0.16 -0.41 -0.09

LSTM M 5 meteor 134.58 82.13 48.37 72.78 -0.32 -0.62 -0.51 -2.04

LSTM M 5 meteor 2CAM 142.35 81.97 55.08 69.33 -0.4 -0.62 -0.72 -1.89

LSTM M 5 onsite 82.62 38.04 42.77 24.71 0.19 0.25 -0.34 -0.03

LSTM M 5 onsite 2CAM 83.3 39.71 29.39 21.08 0.18 0.22 0.08 0.12

Table 7.3: LSTM. Average performance evaluation preliminary days.

Perez model

The model ’prz’ which predicts C SI instead of G H I performs much worse as both baselines.

At prediction horizon 20, the RMSE is 255.28 (visible in table 7.2). This model performs very

bad with respect to most others at all prediction horizons. The performance is not visible in

figure 7.3 because its above 120. Because of this performance this model will not predict on

the test-set. A possible explanation is that predicting CSI is harder and that there is some error

in converting CSI to GHI.

Single and Multi models

With the current implementation for ANN and LSTM the performance of the single models

is very unstable. It tends to predict 0 many occasions, next to this it takes 20 times more

computation time than multi models. On the test-set only multi models will predict. An

example of unstable predictions is ’LSTM S 5 all data’ (see fig.??), other single models were even

more unstable. The RF ’single’ models seem not to have this problem, but the computational
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problem remain. Because of these reasons all ’single’ models will be dropped for predictions

on the test-set.
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7.2 Test-set

In this section we show the results of the test-set. First, the general results of each model. For

each model is discussed when they perform best and how they relate to the baselines. Next,

we discuss for all models an in-depth performance for:

• Valuable features

• Different weather circumstances

• Times of the day

• Computation time

• Additional training data

• Statistical significance

No model is able to perform well on cloudy weather circumstances, most of these results

can be found in the appendix. This bad result is due the fact of limited data, the full dataset

contains 3 cloudy days. In total 2 cloudy days are included in this test-set. Respectively,

on the prediction of the first cloudy day the models have not encountered a cloudy day in

the training-set. The second time, the training-set contains 1 cloudy day, which is still very

limited. This is an explanation why current models perform bad on cloudy days with respect

to persistence (visible in fig. 7.5). Additionally, tables in this chapter only show averages over

all prediction horizons, in the appendix more specific tables and plots are shown (see section

A).

7.2.1 Random forests

Random forest is the quickest training of all proposed models (see table 7.2.6). A detail is

that this model is trained to minimize MSE and not MAE. For sunny weather ’RF M 5 onsite’

is able to beat the baseline on average. However, on average RF predict slightly worse than

smart-persistence. But, when considering the biggest prediction horizon of 20 minutes RF

prediction performance is (slightly) better as smart-persistence (see table A.1).

For partially cloudy weather ’RF M 60 all data’ performs best on average, this model is also able

to outperform both persistence and smart-persistence (see tables 7.4-7.5). On cloudy days it

performs very bad with respect to persistence. In Fig.7.5 the RMSE is plotted per prediction

horizon. More plots and tables are located in the appendix A.1. Finally, short sequences seem

to perform best for random forests sunny. Where longer sequences perform better for partially

cloudy weather on average. However, when considering the biggest prediction horizon for

partially cloudy weather smaller sequences perform better (see table A.2). This break even

point is from a prediction horizon of 13 minutes.
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Figure 7.5: Average RMSE on test-set for models RF and ANN.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 59.83 33.65 28.58 26.68 NA NA NA NA

Smart-persistence 55.37 19.77 84.26 21.3 NA NA NA NA

RF M 10 all data 59.31 29.53 19.2 26.73 0.01 0.12 0.33 -0.0

RF M 20 all data 57.88 26.85 20.8 25.24 0.03 0.2 0.27 0.05

RF M 30 all data 57.5 26.78 20.14 25.56 0.04 0.2 0.3 0.04

RF M 5 all data 60.12 30.77 19.85 28.16 -0.0 0.09 0.31 -0.06

RF M 5 onsite 56.73 27.95 18.36 26.17 0.05 0.17 0.36 0.02

RF M 60 all data 58.41 26.75 19.58 26.2 0.02 0.21 0.31 0.02

RF M 5 all data 2CAM 62.25 32.37 22.38 28.9 -0.04 0.04 0.22 -0.08

Table 7.4: RF. Average performance on test-set, with weather circumstance sunny.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 84.59 48.08 37.12 29.31 NA NA NA NA

Smart-persistence 87.85 47.82 74.22 28.66 NA NA NA NA

RF M 10 all data 79.98 47.87 44.82 31.17 0.05 0.0 -0.21 -0.06

RF M 20 all data 80.41 47.95 50.19 31.21 0.05 0.0 -0.35 -0.06

RF M 30 all data 78.3 47.26 45.05 30.58 0.07 0.02 -0.21 -0.04

RF M 5 all data 81.11 48.66 46.5 31.59 0.04 -0.01 -0.25 -0.08

RF M 5 onsite 80.26 49.58 45.45 31.36 0.05 -0.03 -0.22 -0.07

RF M 60 all data 77.4 46.43 48.11 29.61 0.08 0.03 -0.3 -0.01

RF M 5 all data 2CAM 81.05 48.16 63.14 31.36 0.04 -0.0 -0.7 -0.07

Table 7.5: RF. Average performance on test-set, with weather circumstance partially cloudy.
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7.2.2 Artificial neural networks

ANN models that take a sequence with length 10 perform the best. In general, we observe

that when the sequence length increases accuracy drops. In sunny weather circumstances

’ANN M 10 all-data’ is able to predict well (with respect to baseline) and the difference is small

with ’ANN M 10 onsite’. The downside is that ’ANN M 10 all-data’ has a bad ramp-score with

respect to the baselines. But, again must be noted that the models are optimized to minimize

MSE. Results are shown in 7.6-7.7. In sunny weather circumstances ANN is not able to beat

smart-persistence on average. Although, for a prediction horizon of 15-20 minutes, smart

persistence is also outperformed. Model ’ANN M 10 onsite’ is able to outperform persistence

on all prediction horizons for partially cloudy weather (see fig. 7.6). The ’all data’ subset

performs worse on this weather circumstance. For partially cloudy weather ’ANN M 10 onsite’

outperforms the baseline in all error metrics. Furthermore, ANN 10 is not able to beat smart-

persistence on the ramp-score metric. Finally, we see that short prediction horizons are more

difficult for ANN. The difference with the baselines gets bigger while the prediction horizon

grows.

Figure 7.6: Average Root mean squared error, test-set for ANN models.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 59.83 33.65 28.58 26.68 NA NA NA NA

Smart-persistence 55.37 19.77 84.26 21.3 NA NA NA NA

ANN M 40 all data 66.52 41.71 41.63 33.16 -0.11 -0.24 -0.46 -0.24

ANN M 60 all data 71.21 42.79 34.63 34.77 -0.19 -0.27 -0.21 -0.3

ANN M 10 all data 57.2 35.53 38.79 28.4 0.04 -0.06 -0.36 -0.06

ANN M 10 all data 2CAM 59.13 37.26 36.97 30.83 0.01 -0.11 -0.29 -0.16

ANN M 10 onsite 55.51 31.17 59.92 26.93 0.07 0.07 -1.1 -0.01

ANN M 10 onsite 2CAM 55.37 33.53 103.71 27.84 0.07 0.0 -2.63 -0.04

ANN M 20 all data 64.63 40.28 52.96 32.29 -0.08 -0.2 -0.85 -0.21

Table 7.6: ANN. Average performance on test-set, with weather circumstance sunny.
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 84.59 48.08 37.12 29.31 NA NA NA NA

Smart-persistence 87.85 47.82 74.22 28.66 NA NA NA NA

ANN M 40 all data 81.75 51.35 79.3 36.1 0.03 -0.07 -1.14 -0.23

ANN M 60 all data 85.61 55.55 126.4 39.72 -0.01 -0.16 -2.4 -0.36

ANN M 10 all data 79.29 46.38 73.98 32.21 0.06 0.04 -0.99 -0.1

ANN M 10 all data 2CAM 77.08 47.3 70.14 32.88 0.09 0.02 -0.89 -0.12

ANN M 10 onsite 66.13 39.46 63.26 26.29 0.22 0.18 -0.7 0.1

ANN M 10 onsite 2CAM 66.83 39.56 45.4 26.07 0.21 0.18 -0.22 0.11

ANN M 20 all data 78.08 48.72 72.56 33.93 0.08 -0.01 -0.95 -0.16

Table 7.7: ANN. Average performance on test-set, with weather circumstance partially cloudy.
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7.2.3 Long short-term memory

Conducted experiments show that when using LSTM models, the shorter the sequence the

better the performance. Actually, everything above a sequence length of 10 did not work

reliable. Some og the results were very off. The best results are achieved with a sequence

length of 5. On sunny weather ’LSTM M 5 all data’ performs best on average (example in fig.

7.9). However, all version of LSTM are not able to beat the baselines on very short prediction

horizons. The break even point is after 4 minutes with model ’LSTM M 5 all data’. For partially

cloudy, ’LSTM M 5 onsite’ performs slightly better with an average RMSE of 67.43. This is

shown in tables 7.8, 7.9. LSTM is able to outperform the baselines over all prediction horizons.

For short prediction horizons ’LSTM M 5 onsite’ also performs better on sunny weather (see

Fig.7.7). Additionally, LSTM is the only tested model in this study that had a better ramp-score

than (smart-)persistence for sunny and partially cloudy weather.

Figure 7.7: LSTM. Average Root mean squared error per prediction horizon.

Figure 7.8: LSTM. Root mean squared error per prediction horizon for test-set.
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 59.83 33.65 28.58 26.68 NA NA NA NA

Smart-persistence 55.37 19.77 84.26 21.3 NA NA NA NA

LSTM M 5 PXL 54.07 30.23 88.99 24.52 0.1 0.1 -2.11 0.08

LSTM M 10 all data 52.25 28.23 38.6 24.3 0.13 0.16 -0.35 0.09

LSTM M 5 all data 48.87 24.51 69.58 21.33 0.18 0.27 -1.43 0.2

LSTM M 5 all data 2CAM 49.29 23.47 48.97 20.91 0.18 0.3 -0.71 0.22

LSTM M 5 onsite 51.84 24.87 38.84 21.21 0.13 0.26 -0.36 0.21

Table 7.8: LSTM. Average performance on test-set, with weather circumstance sunny.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 84.59 48.08 37.12 29.31 NA NA NA NA

Smart-persistence 87.85 47.82 74.22 28.66 NA NA NA NA

LSTM M 5 PXL 68.69 38.76 45.62 24.01 0.19 0.19 -0.23 0.18

LSTM M 10 all data 76.13 49.54 622.03 32.88 0.1 -0.03 -15.76 -0.12

LSTM M 5 all data 71.35 41.04 53.63 26.34 0.16 0.15 -0.44 0.1

LSTM M 5 all data 2CAM 76.28 43.58 146.07 28.44 0.1 0.09 -2.93 0.03

LSTM M 5 onsite 67.43 37.34 55.45 23.43 0.2 0.22 -0.49 0.2

Table 7.9: LSTM. Average performance on test-set, with weather circumstance partially cloudy.

7.2.4 Valuable features

As discussed in the experiment setup and implementation, models predict while having access

to subset of the features. Clearly visible in table 7.3 is that the subsets ’meteor’ and ’img’

predict bad with respect to other subsets. An example observation for the LSTM 5 M model on

the validation-set is:

• Meteor, RMSE 144.15, MAE 93.68, MAPE 70.38, ramp-score 72.78.

• IMG. RMSE 98.1, MAE 58.67, MAPE 44.96, ramp-score 22.5.

• Onsite, RMSE 92.25, MAE 49.89, MAPE 34.81, ramp-score 24.71.

• All features, RMSE 89.13, MAE 51.81, MAPE 47.83, ramp-score 25.67.

Most likely this is due the fact that the variable to predict GHI is a feature in onsite (and

all features), making it much easier to predict. The onsite data-source performs best on

implemented models. In the model selection we saw that the subsets all-data and onsite

perform best. On the test-set we see that onsite performs best for models RF and ANN. LSTM

all data predicts better on sunny weather, where onsite performs better on partially cloudy

(while averaging over all prediction horizons).

7.2.5 Different weather circumstances

In this section the difference in prediction performance per weather circumstance is discussed.

Again, it should be considered that the full dataset contains 3 cloudy days. In total 2 cloudy
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days are included in this test-set. Respectively, on the prediction of the first cloudy day the

models have not encountered a cloudy day in the training-set. The second time, the training-

set contains 1 cloudy day, which is still very limited. This is an explanation why current models

perform bad on cloudy days with respect to persistence (visible in fig. 7.5).

The best performing models of RF, ANN and LSTM outperform the baseline on sunny and

partially cloudy weather.

In general for models RF, ANN and LSTM it is clear that easiest day to predict is sunny, because

it has the lowest errors. But, while comparing it to the baseline results it seems partially cloudy

days are the hardest to predict (but easier for implemented models). Current models are not

always able to beat smart-persistence for sunny weather for error metrics RMSE and MAE. But

for partially cloudy weather this is easier. The biggest (absolute) difference in performance

with respect to the baseline is on partially cloudy weather. A logical explanation is that the

baseline assumes constant weather. Additionally, for sunny and partially cloudy weather,

when the prediction horizon h increases the error difference with respect to the baseline gets

bigger.

LSTM seems to be the only model that is able to outperform the baseline quite well on

sunny weather circumstances, with SS-RMSE 18% and SS-MAE/SS-Ramp of 22%. Compared

with ANN (< 8%) and RF SS-RMSE 5%, SS-MAE 21% and SS-Ramp 5%. The bad average

performance of ANN is due to the fact that is not able to perform well on short horizons (< 10).

From a prediction horizon of (> 13) it start to predict well with respect to the base line (visible

in fig. 7.6). For partially cloudy weather circumstances are mostly able to beat persistence and

smart-persistence. ANN performs best with respect to to other models. Respectively, SS-RMSE

22%, SS-MAE 18%, SS-RAMP 11% where LSTM has SS-RMSE 20%, SS-MAE 22%, SS-RAMP 0%

and RF SS-RMSE 8%, MAE 3%, SS-RAMP 20%

7.2.6 Computation time

An application of this study would be to predict GHI for an actual solar farm to optimize energy

generation. When a model is more computationally intensive it will use more energy. In this

section we highlight the resources needed to perform predictions on 1 day. Usually neural

networks train on a GPU, but this would not be a fair comparison to RF. To straiten it out

training and prediction will be done on only the CPU (details: 4.2.3). ’Single’ models would

use 20 times more time as showed in table 7.10.

7.2.7 Additional training data

To answer the question if additional training data from the second site (see 4.2) is beneficial

we compare the same models. Accordingly, one of these models has additional training data,

where the other does not. Over all models this generally not the case, very few instances of
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RF ANN LSTM

Training 69.20s 72.59s 722.65s

Prediction 0.014ms 0.0038ms 15,6ms

Parameters n/a 71452 19280

Table 7.10: Training execution times (in seconds) per model on day 27 September 2019.

Training-set contains all available data before 27 September 2019 (excluding 3 days of

validation-set). The prediction times are 1 prediction for the next 1 .. 20 minutes in mil-

liseconds. For the neural network the amount of parameters per model.

models trained with data from site 2 predict slightly better. Results are shown tables: 7.4-7.9.

Figure 7.9: Predictions on sunny days of the test-set with prediction horizon 20. Model: LSTM

M 5 all data. Respectively, from left to right days 15 September, 15 October, 15 November and

15 December.

7.2.8 Statistical significance

To determine if a some model performs significantly better (see section 5.5.1) than the baseline,

the ’Diebold-Mariano’ test is applied. The null hypothesis ’competing model performs equal

to the baseline persistence’ is rejected when p < 0.05. None of the models perform better in

cloudy weather. Thus, these p-values are not shown. In the given models below we define

’n/a’ if that particular models does not predict better than the baseline for a certain prediction

horizon.
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Random Forests

In sunny weather, random forests only perform statistically significantly better while using the

feature subset ’onsite’ with a sequence length of 5 (minutes) on a prediction horizon from 19

to 20 minutes (see table 7.11).

In partially cloudy weather, random forest are only able to predict statistically significantly

better on short prediction horizons. The best model ’RF M 60 all data’ is able to predict

statistically significantly better up to a prediction horizon of 2 minutes (see table 7.11).

Sunny

Prediction horizon RF M 10 all data RF M 20 all data RF M 30 all data RF M 5 all data RF M 5 onsite RF M 60 all data RF M 5 all data 2CAM

17 0.68641 0.55651 0.49347 0.81773 0.17323 0.51069 0.94135

18 0.56022 0.45108 0.40583 0.61674 0.13587 0.39119 0.77597

19 0.5148 0.40375 0.3344 0.53361 0.04567 0.31747 0.66779

20 0.35767 0.35352 0.27043 0.43588 0.01097 0.23714 0.47557

Partially cloudy

Prediction horizon RF M 10 all data RF M 20 all data RF M 30 all data RF M 5 all data RF M 5 onsite RF M 60 all data RF M 5 all data 2CAM

1 0.01943 0.00203 0.00057 0.00602 0.00095 0.00023 0.02562

2 0.16788 0.02013 0.01895 0.15906 0.01618 0.015 0.19916

3 n/a 0.34332 0.13963 n/a 0.16606 0.12997 n/a

4 0.73451 0.32563 0.14682 0.86639 0.22904 0.0731 0.7541

5 n/a n/a 0.7329 n/a 0.53724 0.30573 n/a

Table 7.11: RF: Diabold-Mariono P value per horizon, compared with baseline model Persis-

tence. Weather circumstances: sunny & partially cloudy. (n/a implies competing model is not

performing better than the baseline).

Artificial neural network

For sunny weather ANN is able to predict statistically significantly better on short prediction

horizons. Model ’ANN M 10 all data’ does this best. Respectively, only this model is able to

predict statistically significantly better from 16 minutes future horizon (see table 7.12).

The ANN models perform better on partially cloudy weather. Consequently, over all prediction

horizons ANN predictions are statistically significantly better. For short horizons model

’ANN 10 onsite 2CAM’ performs best. However, it is beaten by ’ANN M 10 onsite’ on further

prediction horizons. Results can be observed in table 7.12.

Long-short term memory

For sunny weather ’LSTM M 5 all data’ predicts significantly better than the other LSTM models

with respect to persistence for prediction horizons of 11 minutes to 20. The complete table

is given at 7.13. Besides ’LSTM M 5 all data’, model ’LSTM M 5 onsite’ also starts to predict

significantly better from a prediction horizon of 15 minutes.

For partially cloudy weather ’LSTM M 5 onsite’ predicts significantly better for all horizons.

’LSTM M 5 onsite’ has the smallest p-value for all prediction horizons, which is logical as
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Sunny

Prediction horizon ANN M 40 all data ANN M 60 all data ANN M 10 all data ANN M 10 all data 2CAM ANN M 10 onsite ANN M 10 onsite 2CAM ANN M 20 all data

15 0.63916 n/a 0.0785 0.21662 0.17523 0.08136 0.79896

16 0.57073 n/a 0.03745 0.15996 0.11893 0.0522 0.44479

17 0.25503 n/a 0.0108 0.12427 0.08215 0.03188 0.28287

18 0.0986 0.86302 0.00467 0.05728 0.04039 0.01247 0.16455

19 0.05429 0.74579 0.00393 0.03495 0.02298 0.00744 0.20891

20 0.01986 0.54687 0.00096 0.02844 0.01858 0.00362 0.03516

Partially cloudy

Prediction horizon ANN M 40 all data ANN M 60 all data ANN M 10 all data ANN M 10 all data 2CAM ANN M 10 onsite ANN M 10 onsite 2CAM ANN M 20 all data

1 n/a n/a n/a n/a 0.0033 0.00065 n/a

5 n/a n/a n/a 0.91378 0.00376 0.00315 n/a

15 0.77735 n/a n/a 0.88094 0.0105 0.01803 0.86688

20 0.68039 0.97676 n/a 0.9916 0.0143 0.0389 0.85267

Table 7.12: ANN: Diabold-Mariono P value per horizon, compared with baseline model Persis-

tence. Weather circumstances: sunny & partially cloudy. (n/a implies competing model is not

performing better than the baseline).

it performs best on these weather circumstances. Other LSTM models predict better (with

respect to persistence), but not statistically significantly better.

Sunny

Prediction horizon LSTM M 10 all data LSTM M 5 all data LSTM M 5 all data 2CAM LSTM M 5 onsite

1 n/a n/a n/a n/a

5 n/a n/a 0.97638 0.89572

15 0.00665 0.00106 0.00918 0.08289

20 0.00031 5e-05 0.0001 0.02221

Partially cloudy

Prediction horizon LSTM M 10 all data LSTM M 5 all data LSTM M 5 all data 2CAM LSTM M 5 onsite

1 n/a 0.20505 0.02537 6e-05

5 n/a 0.1602 0.6053 0.00263

15 0.38254 0.23984 0.90999 0.00813

20 0.4408 0.26959 n/a 0.02017

Table 7.13: LSTM: Diabold-Mariono P value per horizon, compared with baseline model

persistence. Weather circumstances: sunny & partially cloudy. (n/a implies competing model

is not performing better than the baseline).
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7.2.9 Model comparison

In terms of simplicity Random Forests (RF) is good. The training time is relatively low, little

tuning of hyper-parameters and normalization is needed. Additionally, it performs reasonable

on most sequence lengths. The best model has RMSE 56.73 (sunny) and RMSE 77.4 (partially

cloudy) when we average the results over all prediction horizons. The difference get bigger

when the prediction horizon grows (see tables in A.1). RF M 60 all data performs best for

the random forest models, but with respect to other implemented models it performs bad

on every weather circumstance and prediction horizon (see fig 7.10-7.11). Artificial Neural

Network (ANN) is able to improve on sunny weather on average with RMSE 55.51, even due

the fact it does not perform as well on short horizons as RF. But, on average it performs better

on larger horizons. On average, it does predict better on partially cloudy weather with a RMSE

66.13. LSTM performs best on sunny weather with RMSE 48.87. Additionally, it is able to

predict significantly better than persistence from a prediction horizon of 11 minutes with

respect to ANN which is able to predict significantly better from 15 minutes. For partially

cloudy weather, LSTM is slightly worse as ANN with a RMSE 67.43. Additionally, LSTM has the

best ramp-score with respect to all tested models and baselines (smart-)persistence for sunny

(21.91) and partially cloudy (23.43) weather (see figures 7.10 & 7.11).

All models perform relatively well on partially cloudy weather with respect to the baseline.

This is likely due that the baselines assume some continuity. With cloudy and sunny weather

circumstances this approach works better, but in partially cloudy weather there is more

fluctuation.

When considering the furthest prediction horizon of 20 minutes, the difference with (smart-

)persistence is bigger. The results are shown in tables A.7 - A.9. The best obtained results are

that RMSE is improved with 32%, MAE with 50% and ramp-score with 48% (with respect to the

baseline).

Considering that the full dataset exists out of 121 sunny days, 29 partially cloudy days and 3

cloudy days, on average LSTM will perform best.
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Figure 7.10: Average performance on prediction horizon of 20 minutes with cloudy, partially

cloudy and sunny weather circumstances. Error in GHI (smaller is equal to better performing).
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Figure 7.11: Average performance over all prediction horizons with cloudy, partially cloudy

and sunny weather circumstances. Error in GHI (smaller is equal to better performing).
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Chapter 8

Conclusions

8.1 Discussion

In this section we discuss the results of all models. The results give insight in what models work

well for what particular prediction horizons and weather circumstances. Additionally, a notion

is given of what data is suitable as input for these models. However, these are sets of multiple

features (in example set meteor). The elements in a set have a similar data source. But, for

every subset of features there is a possibility that it includes a feature which is not relevant for

good predictions. It may be that dropping some of these features or partially merging subsets

will increase forecast performance.

Models RF and ANN both perform the best only using the feature subset ’onsite’, meaning

they do not capture value-able information from features in extracted images. However, LSTM

performs better while having access to this subset. LSTM is able to capture the complexity

of these features, thus being able to predict best over all our tested models. We saw that

the feature subset ’onsite’ performs best on partially cloudy. The image features do not

provide more valuable information to predict when clouds will block the sun. Additionally,

feature subset ’meteor’ is valuable in sunny weather circumstances. The reason behind this is

most likely that the features from subset ’meteor’ lose their value in more unstable weather.

This is the same reason that smart-persistence performs worse in partially cloudy weather

(with respect to persistence and sunny weather) (as discussed before smart-persistence uses

identical input as features in the subset ’meteor’).

On short prediction horizons (< 5 minutes) with sunny weather our models do not perform

better as the baselines. After five minutes or with partially cloudy weather circumstances this

does not happen. The baselines assume some continuity. Persistence assumes the same G H I

and smart-persistence the same C SI . Sunny weather is more consistent as cloudy weather,

meaning G H I fluctuates less in sunny weather. Likely, this is the reason for the difference in

performance between sunny and partially cloudy weather.
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From all the models that we test, the best ones perform better than (smart-)persistence on

partially cloudy and sunny weather circumstances. However, while predicting on cloudy

weather the none of the models is able to perform better than (smart-)persistence. Very

likely this is due the lack of cloudy days and would not happen in more balanced weather

circumstances.

In this research we average the values by 5 minutes while calculating the ramp-score. In

relevant literature it was proposed to normalize by an hour but while forecasting 5-hours into

the future. 5 minute averages represent fluctuations, but this number is an approximate.

Additionally, all data comes from the source Almeria, Spain. We cannot say with certainty how

the models would perform in total different weather circumstances/location while containing

the same hardware setup.

8.2 Conclusions

We wanted to answer ’How can we use machine learning to predict (short-time) G H I using

all sky images and sensor data in Almeria, Spain?’. This study describes the application and

implementation of random forest, ANN, CNN and LSTM to forecast G H I using different

subsets of input. We tested multiple approaches using optical flow and feature extraction and

decided to improve on the models that performed best on the preliminary data-set.

Out of our selection of tested models LSTM performed best on all weather circumstances.

Partially cloudy weather was easier to predict than sunny weather with respect to the baseline.

Although, in both scenarios LSTM performed better than the baselines and other tested

models. Furthermore, the predictions on cloudy weather were worse than the baseline. We

think this is due the lack of data of cloudy days. Additionally, all machine learning models

performed better with respect to (smart-)persistence while prediction horizon increased.

Additionally, we predicted G H I using a separate model for each prediction horizon (referred

to as ’single’ models) and compared this to models that predict 20 prediction horizons at

once. From this experiment we learned that ’multi’ models (models that predict 20 horizons

simultaneously) predict more accurate with respect to ’single’ models (models that are trained

for one particular prediction horizon).

We wanted to test to what extent we can utilize optical-flow with a CNN. The predictions did

not improve on the baselines. This model is not able to predict, likely due limited information.

Other models which had access to the onsite sensors performed much better.

We predicted CSI and calculated the G H I accordingly, eventually this did not improve our

models. Thus, we learned that predicting G H I directly is a better approach.

We had access two another identical setup, we tried adding data of a different site as training

data. We conclude that it did not improve our models.
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In our search to hyper-parameters we tested what subset of features is important. We saw

that onsite measure equipment was most important. However, some features did perform

better/worse depending on weather circumstances. The subset ’meteor’ was beneficial in

sunny weather, but it did not have much value in partially cloudy weather.

We observed that a big time-frame as input made performance worse, observed variables from

short period before prediction moment performed better. The amount of minutes depended

on the model, but we saw in general that the last observed five to 10 minutes is most valuable.

Current insights do fill up a gap in current literature. This study shows an approach on how

to use a combination of ASI and numerical data in machine learning. Additionally, while

forecasting GHI short sequences of features perform much better than long sequences.

8.3 Future work

The data-set is unbalanced due the weather circumstances in south Spain, which we cannot

change. As results our models perform bad on cloudy weather. Data augmentation might

be a good approach to fix this problem. Moreover, it might even lead to better predictions in

general. Next, our models only use observed variables, where for example smart-persistence

uses future estimates. The models may predict better when including (more) future estimates.

For early stopping we take the 3 prior days before prediction moment. There was manual

tuning involved finding this number, but additional research could give another number. Also,

while extracting features, we say all the cloud pixels are treated the same. However, you could

treat cloud pixels that are close to the sun differently. Additionally, flow could be added to our

best performing model LSTM.

In this study we had access to 1 additional site with the same equipment. If you surrounded

the location where you want to predict with more sensor sites and additionally wind speed

and direction you could predict an actual future while using data from other locations.
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Appendix A

Appendix

In this section the additional results are shown: figures for MAE, MAPE and ramp-score, tables

average error for prediction horizon of 20 minutes.

A.1 Random forests

Additional RF results.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 86.01 57.64 56.33 46.56 NA NA NA NA

Smart-persistence 74.21 29.13 95.14 32.86 NA NA NA NA

RF M 10 all data 74.89 38.36 24.08 33.48 0.13 0.33 0.57 0.28

RF M 20 all data 73.84 35.35 26.15 31.77 0.14 0.39 0.54 0.32

RF M 30 all data 73.18 35.07 25.4 33.86 0.15 0.39 0.55 0.27

RF M 5 all data 75.95 39.71 24.55 36.4 0.12 0.31 0.56 0.22

RF M 5 onsite 74.1 38.29 24.43 33.59 0.14 0.34 0.57 0.28

RF M 60 all data 74.2 35.07 25.24 34.2 0.14 0.39 0.55 0.27

RF M 5 all data 2CAM 75.32 39.15 26.48 33.57 0.12 0.32 0.53 0.28

Table A.1: RF. Average performance on test-set with prediction horizon 20, with weather

circumstance sunny.
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Figure A.1: MAE, MAPE per prediction horizon for test. data set

Figure A.2: Ramp-score, MAE per prediction horizon for test. data set

Figure A.3: MAPE, Ramp-score per prediction horizon for test. data set
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 96.92 64.26 59.66 43.59 NA NA NA NA

Smart-persistence 100.43 61.31 82.37 40.46 NA NA NA NA

RF M 10 all data 86.89 56.82 52.87 39.15 0.1 0.12 0.11 0.1

RF M 20 all data 89.55 58.82 54.93 40.88 0.08 0.08 0.08 0.06

RF M 30 all data 88.61 58.63 43.96 40.63 0.09 0.09 0.26 0.07

RF M 5 all data 87.78 56.3 45.19 39.1 0.09 0.12 0.24 0.1

RF M 5 onsite 89.54 61.22 41.24 41.95 0.08 0.05 0.31 0.04

RF M 60 all data 88.43 58.84 44.77 40.67 0.09 0.08 0.25 0.07

RF M 5 all data 2CAM 88.52 56.92 50.07 39.05 0.09 0.11 0.16 0.1

Table A.2: RF. Average performance on test-set with prediction horizon 20, with weather

circumstance partially cloudy.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 27.39 18.51 62.57 14.52 NA NA NA NA

Smart-persistence 26.87 18.36 81.59 14.36 NA NA NA NA

RF M 10 all data 86.54 61.66 66.14 49.08 -2.16 -2.33 -0.06 -2.38

RF M 20 all data 87.45 61.34 66.39 48.66 -2.19 -2.31 -0.06 -2.35

RF M 30 all data 103.88 68.78 67.83 54.32 -2.79 -2.72 -0.08 -2.74

RF M 5 all data 96.8 67.8 67.38 53.76 -2.53 -2.66 -0.08 -2.7

RF M 5 onsite 138.12 91.42 76.49 72.83 -4.04 -3.94 -0.22 -4.02

RF M 60 all data 146.77 97.67 69.14 77.68 -4.36 -4.28 -0.11 -4.35

RF M 5 all data 2CAM 86.89 62.46 67.28 49.91 -2.17 -2.37 -0.08 -2.44

Table A.3: RF. Average performance on test-set with prediction horizon 20, with weather

circumstance cloudy.
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A.2 Artificial neural networks

Additional ANN results.

Figure A.4: MAE, MAPE per prediction horizon for test. data set

Figure A.5: Ramp-score, MAE per prediction horizon for test. data set

Figure A.6: MAPE, Ramp-score per prediction horizon for test. data set
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 86.01 57.64 56.33 46.56 NA NA NA NA

Smart-persistence 74.21 29.13 95.14 32.86 NA NA NA NA

ANN M 40 all data 67.84 40.59 37.93 32.07 0.21 0.3 0.33 0.31

ANN M 60 all data 78.01 46.99 32.99 37.46 0.09 0.18 0.41 0.2

ANN M 10 all data 62.96 36.37 34.59 29.36 0.27 0.37 0.39 0.37

ANN M 10 all data 2CAM 66.69 42.44 34.06 33.35 0.22 0.26 0.4 0.28

ANN M 10 onsite 70.26 39.74 42.44 32.67 0.18 0.31 0.25 0.3

ANN M 10 onsite 2CAM 67.64 39.33 42.31 31.53 0.21 0.32 0.25 0.32

ANN M 20 all data 69.84 42.12 37.83 33.67 0.19 0.27 0.33 0.28

Table A.4: ANN. Average performance on test-set with prediction horizon 20, with weather

circumstance sunny.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 96.92 64.26 59.66 43.59 NA NA NA NA

Smart-persistence 100.43 61.31 82.37 40.46 NA NA NA NA

ANN M 40 all data 87.33 55.45 73.43 40.26 0.1 0.14 -0.23 0.08

ANN M 60 all data 90.91 59.9 78.74 44.17 0.06 0.07 -0.32 -0.01

ANN M 10 all data 89.63 53.82 102.47 39.46 0.08 0.16 -0.72 0.09

ANN M 10 all data 2CAM 88.48 55.81 52.36 40.91 0.09 0.13 0.12 0.06

ANN M 10 onsite 74.72 46.87 160.91 33.19 0.23 0.27 -1.7 0.24

ANN M 10 onsite 2CAM 76.84 48.25 71.97 34.23 0.21 0.25 -0.21 0.21

ANN M 20 all data 87.76 54.88 59.14 40.05 0.09 0.15 0.01 0.08

Table A.5: ANN. Average performance on test-set with prediction horizon 20, with weather

circumstance partially cloudy.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 27.39 18.51 62.57 14.52 NA NA NA NA

Smart-persistence 26.87 18.36 81.59 14.36 NA NA NA NA

ANN M 40 all data 56.44 43.15 63.75 34.5 -1.06 -1.33 -0.02 -1.38

ANN M 60 all data 55.99 43.35 63.45 34.47 -1.04 -1.34 -0.01 -1.37

ANN M 10 all data 70.74 54.9 71.35 43.73 -1.58 -1.97 -0.14 -2.01

ANN M 10 all data 2CAM 56.65 40.95 68.39 32.63 -1.07 -1.21 -0.09 -1.25

ANN M 10 onsite 40.74 29.65 103.19 23.4 -0.49 -0.6 -0.65 -0.61

ANN M 10 onsite 2CAM 67.35 43.65 64.62 34.65 -1.46 -1.36 -0.03 -1.39

ANN M 20 all data 59.23 45.3 65.85 35.91 -1.16 -1.45 -0.05 -1.47

Table A.6: ANN. Average performance on test-set with prediction horizon 20, with weather

circumstance cloudy.
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A.3 Long short-term memory

Additional LSTM results.

Figure A.7: MAE, MAPE per prediction horizon for test. data set

Figure A.8: Ramp-score, MAE per prediction horizon for test. data set

Figure A.9: MAPE, Ramp-score per prediction horizon for test. data set
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 86.01 57.64 56.33 46.56 NA NA NA NA

Smart-persistence 74.21 29.13 95.14 32.86 NA NA NA NA

LSTM M 5 PXL 65.79 33.53 46.91 27.32 0.24 0.42 0.17 0.41

LSTM M 10 all data 64.56 35.34 39.47 27.68 0.25 0.39 0.3 0.41

LSTM M 5 all data 58.27 28.79 58.31 24.59 0.32 0.5 -0.04 0.47

LSTM M 5 all data 2CAM 59.72 28.72 32.95 24.01 0.31 0.5 0.42 0.48

LSTM M 5 onsite 68.59 35.31 40.24 27.83 0.2 0.39 0.29 0.4

Table A.7: LSTM. Average performance on test-set with prediction horizon 20, with weather

circumstance sunny.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 96.92 64.26 59.66 43.59 NA NA NA NA

Smart-persistence 100.43 61.31 82.37 40.46 NA NA NA NA

LSTM M 5 PXL 76.98 46.57 54.8 31.89 0.21 0.28 0.08 0.27

LSTM M 10 all data 83.9 57.55 55.59 40.46 0.13 0.1 0.07 0.07

LSTM M 5 all data 81.25 50.7 68.36 35.41 0.16 0.21 -0.15 0.19

LSTM M 5 all data 2CAM 88.31 54.26 54.41 38.48 0.09 0.16 0.09 0.12

LSTM M 5 onsite 77.03 48.04 50.41 33.01 0.21 0.25 0.16 0.24

Table A.8: LSTM. Average performance on test-set with prediction horizon 20, with weather

circumstance partially cloudy.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ SS-RMSE ↑ SS-MAE ↑ SS-MAPE ↑ SS-RAMP ↑
Persistence 27.39 18.51 62.57 14.52 NA NA NA NA

Smart-persistence 26.87 18.36 81.59 14.36 NA NA NA NA

LSTM M 5 PXL 52.72 37.61 66.37 29.47 -0.92 -1.03 -0.06 -1.03

LSTM M 10 all data 64.78 49.61 66.32 39.55 -1.37 -1.68 -0.06 -1.72

LSTM M 5 all data 35.85 22.83 63.07 17.59 -0.31 -0.23 -0.01 -0.21

LSTM M 5 all data 2CAM 46.78 32.53 60.27 25.47 -0.71 -0.76 0.04 -0.75

LSTM M 5 onsite 57.98 34.35 65.76 26.94 -1.12 -0.86 -0.05 -0.86

Table A.9: LSTM. Average performance on test-set with prediction horizon 20, with weather

circumstance cloudy.
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Prediction horizon LSTM M 10 all data LSTM M 5 all data LSTM M 5 all data 2CAM LSTM M 5 onsite

4 n/a n/a n/a n/a

5 n/a n/a 0.97638 0.89572

6 n/a 0.61972 0.57584 0.54492

7 0.94459 0.48527 0.59795 0.64945

8 0.70199 0.34392 0.48086 0.58922

9 0.47267 0.17855 0.45788 0.60045

10 0.30276 0.09437 0.35869 0.55231

11 0.10685 0.03963 0.14345 0.30743

12 0.06426 0.01516 0.0755 0.21668

13 0.01873 0.00594 0.03699 0.14147

14 0.00845 0.00167 0.01824 0.06541

15 0.00665 0.00106 0.00918 0.08289

16 0.00448 0.00056 0.00578 0.07158

17 0.0024 0.00033 0.00207 0.06659

18 0.00137 0.00018 0.0009 0.04574

19 0.00066 7e-05 0.00029 0.03836

20 0.00031 5e-05 0.0001 0.02221

Table A.10: LSTM: Diabold-Mariono P value per horizon, compared with baseline model

Persistence. Weather circumstance sunny. (n/a implies competing model is not performing

better than the baseline).
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