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Abstract

In this master thesis, we study Diophantine inequalities. Our aim is to
solve inequalities involving polynomials with arbitrary real coefficients,
where the ratio of two coefficients is irrational. In 1929, it was conjectured
by Oppenheim that the inequality

|α1x
2
1 + . . .+ αnx

2
n| < δ,

provided n ≥ 5, α1, . . . , αn ∈ R, not all of the same sign and such that two
coefficients have irrational ratio, is soluble for all δ > 0. A very interesting
topic is to make this result quantitative. We study a quantitative result of
Bourgain [5] on quadratic ternary diagonal forms for one parameter fam-
ilies and a generalisation to generic ternary diagonal forms by Schindler
[33]. We generalise this previous work and study general Diophantine
inequalities

|Gk(x1, x2)− α3x
l
3| < δ,

with Gk a binary form of degree k ≥ 3 and coefficients in R, l 6= k and
α3 ∈ R. The goal is to find non-trivial solutions (x1, x2, x3) ∈ Z where
x1, x2 are of size N l and x3 of size Nk. We obtain results for the cases
Gk(x1, x2) = xk1 − α2x

k
2 and Gk(x1, x2) = xk1 + α1x

k/2
1 x

k/2
2 + α2x

k
2 and

formulate a conjecture about a general polynomial Gk.
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1 Introduction
A fundamental subject in number theory is Diophantine approximation: the ap-
proximation of irrational numbers by rational numbers. A closely related topic
to approximation is solving inequalities in Z, which are called Diophantine in-
equalities. In this thesis, we consider irrational ternary forms Q(x1, x2, x3), i.e.,
a ternary form having two coefficients with irrational ratio. Clearly, these forms
cannot have rational solutions for Q(x) = 0. However, we could ask ourselves
if Q(x) has solutions close to zero and how close to zero these solutions are. A
well explored question is whether this is true for quadratic forms with irrational
coefficients.

Let Q be a non-degenerate quadratic form over Rn. That is, Q can be written
as

Q(x1, . . . , xn) =

n∑
i=1

n∑
j=1

aijxixj = xTAx, aij ∈ R,

where A is a symmetric real matrix A = (aij)1≤i,j≤n, which can be transformed,
after a base change, into a diagonal matrix

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn


with λi 6= 0 for 1 ≤ i ≤ n (see Gerstein [14] for a broader introduction on
quadratic forms).

If Q is definite, i.e., all λi are either positive or negative, then there exists a con-
stant c > 0 such that |Q(x)| ≥ c||x|| for all x ∈ Rn, i.e., the set of values Q(Zn)
of Q on Zn is a discrete subset of R. Also, when Q is a rational form, which
means all aij ∈ Q, then clearly Q(Zn) is a discrete subset of R. A quadratic
form is called irrational if it has two coefficients with an irrational ratio. In
1929, A. Oppenheim conjectured in [28] that if Q is a non-degenerate indefinite
irrational quadratic form and n ≥ 3, then Q(Zn) is dense in R. In other words,

Oppenheim Conjecture (1929) For every ε > 0, there exists a vector
(z1, . . . , zn) ∈ Zn\{0} such that

0 < |Q(z1, . . . , zn)| < ε.

Partial results were proved by Davenport and Heilbronn in 1946 by using the
analytical Hardy-Littlewood Circle Method [10]. They proved the conjecture for
diagonal forms in five variables. A complete proof of the conjecture was given
by Margulis in 1987 [24], [25], by using methods from ergodic theory.

By knowing there always exists a solution for the Diophantine inequality with
arbitrary ε, a natural question arises: how large does a solution have to be in
order to find a solution? In other words, can we make this quantitative, when do
we find a solution? A quantitative result on the quadratic form x1+α2x

2
2−α3x

2
3,
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where α2, α3 ∈ R\Q, taken on average, is proved by Bourgain [5]. His main
result is stated below.

Theorem 1.1 (Bourgain, [5]). Consider Q(x) = x2
1 +α2x

2
2−α3x

2
3 where α2 > 0

and α3 ∈ [ 1
2 , 1]. Then, for almost all α3, the following holds

(i) Assuming the Lindelöf hypothesis for the Riemann zeta function,

min
x∈Z3\{0}
|x|<N

|Q(x)| � N−1+ε for all ε > 0.

Moreover, there are functions A(N)→∞ and δ(N)→ 0 with
N →∞ depending on Q, such that

max
|ξ|<A(N)

min
x∈Z3,0<|x|<N

|Q(x)− ξ| < δ(N), (1.1)

provided
A(N)δ(N)−2 � N1−ε.

(ii) Unconditionally, we have

min
x∈Z3\{0}
|x|<N

|Q(x)| � N−
2
5 +ε

and (1.1) holds, assuming

A(N)3δ(N)−
11
2 � N1−ε.

In the proof, similar methods to the article of Blomer, Bourgain, Radziwiłł and
Rudnick [2] are used. An earlier result on the quantitative Oppenheim Theo-
rem is given by Lindenstraus and Margulis in [23], where A(N) and δ(N) as
defined in Theorem 1.1, are depending logarithmically on N . Another quantita-
tive result on the Oppenheim Conjecture to mention is from Ghosh and Kelmer,
where the inequality in Theorem 1.1(i) is established for generic members in the
family of all indefinite ternary quadratic forms. This family is 5-dimensional,
while in Theorem 1.1 a one-dimensional family is considered. Generally, a one-
dimensional family is considered harder, as there is less to average over.

Later on, Schindler [33] generalised Bourgain’s result to ternary forms of degree
k ≥ 3. She uses the idea of translating a Diophantine inequality into counting
rational points on a planar curve, where results of Huang [18] are being used.
For

P (x) = xk1 − α2x
k
2 − α3x

k
3 ,

the bounds of Theorem 1.1 can be replaced with

Nk−3+ε

assuming the Lindelöf hypothesis for the Riemann zeta function, and

Nk−12/5+ε
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for the unconditional case.

One could ask if this problem can be generalised even further. In this master
thesis, we generalise the results of Schindler and Bourgain on several forms. We
take a similar approach, but explain the advanced techniques and ideas in the
proof more thoroughly than is done in [5]. After reading this thesis, the reader
is able to understand the steps taken in [5] and [33].

The first natural generalisation, for which a quantitative version is found, is for
the ternary form

xk1 − α2x
k
2 − α3x

l
3,

with α2, α3 having similar conditions as in Theorem 1.1 and l, k ∈ Z, l ≥ k
fixed. The result is stated in the theorem below.

Theorem 1.2. Let α2 > 0 and k, l ∈ Z, with l ≥ k be fixed. Then for almost
all α3 ∈ [ 1

2 , 1], the following holds.

(i) Assuming the Lindelöf hypothesis for the Riemann zeta function,

min
x∈Z3

|x1|,|x2|∼N l,|x3|∼Nk

|xk1 − α2x
k
2 − α3x

l
3| � Nkl−2l−k+ε,

for any ε > 0, where the constant depends on α2, α3 and ε.

(ii) Unconditionally, one has

min
x∈Z3

|x1|,|x2|∼N l,|x3|∼Nk

|xk1 − α2x
k
2 − α3x

l
3| � Nkl− 12

5 k+ε,

for any ε > 0. Here the constant depends on α2, α3 and ε as well.

In the proof of this theorem, we need some general theorems from Fourier anal-
ysis and the Riemann zeta function. These concepts are introduced in Sections
3 and 5. Also, some theorems in measure theory are being used. These are
introduced in Section 6.1.

The bound in Theorem 1.2 (i) is essentially optimal. For |x1|, |x2| ∼ N l and
|x3| ∼ Nk, assuming values of xk1 − α2x

k
2 − α3x

l
3 are uniformly distributed, we

expect to find ∼ δN2l+k−kl solutions to

|xk1 − α2x
k
2 − α3x

l
3| < δ. (1.2)

Therefore, we expect at least one solution for (1.2) when δ � Nkl−2l−k.

One can also consider the inhomogeneous case, i.e.,

|xk1 − α2x
k
2 − α3x

l
3 − ξ| < δ,

where |ξ| ≤ Nkl is a fixed real parameter. Here the same heuristic holds for δ.
See also Figure 1 in Section 9 for a visualisation of a similar heuristic, where we
consider the distance between two solutions.
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Furthermore, we look at the Diophantine inequality

|xk1 − g(x2)− α3x
l
3| < δ,

where g(x2) := α2,0 + α2,1x2 + . . . + α2,kx
k
2 is a polynomial of degree k with

α2,k an irrational coefficient. It turns out such Diophantine inequalities have
a lot of similarities with Theorem 1.2. This inequality is explored in Section 9.2.

We can ask ourselves what would happen if we generalise Theorem 1.2 even
more, by finding results for

|Gk(x)− α3x
l
3| < δ, (1.3)

where Gk(x) is a binary form of degree k, defined as

Gk(x) := xk1 +

k∑
i=1

α2,ix
i
1x
k−i
2 , (1.4)

with α2,1, . . . α2,k ∈ R. We explore a quadratic version in Section 9.3 which
gives us the following result.

Theorem 1.3. Let k be even and Gk(x) = xk1 + α1x
k
2
1 x

k
2
2 + α2x

k
2 . Let k, l ∈ Z,

l ≥ k fixed. Furthermore, let α1, α2 > 0 such that the function

h(z3, z4) := (− 1
2α1 + 1

2 (α2
1 − 4α2 + 4Gk(z3, z4))

2
k

satisfies
C1 < |det∇2h(z3, z4)| < C2

for all (z3, z4) ∈ D, where D ⊂ R2 is a connected open bounded set, C1, C2

positive constants and ∇2h(z3, z4) the Hessian of h(z3, z4).
Then for almost all α3 ∈ [ 1

2 , 1], replacing xk1 −α2x
k
2 with Gk(x) in Theorem 1.2

leads to the same results.

One could see Theorem 1.2 as a special case of Theorem 1.3. However, note
that Theorem 1.2 gives a stronger result than Theorem 1.3, as we do not need
to assume conditions on the Hessian of a function defined as in Theorem 1.3.
In other words, we are able to prove that the condition on the Hessian holds for
xk1 −α2x

k
2 , so an assumption is not necessary. Therefore, we state the two cases

as different theorems.

The results proved in Section 9 show us that, considering the Diophantine in-
equalities (1.3), the most important condition for a general polynomial Gk(x)
is its size, i.e., the size of the variables x1, x2, x3. The following conjecture is
motivated by this observation.

Conjecture 1.4. Let Gk(x) be as in (1.4). Let α2,1, . . . , α2,k > 0 be such
that, considering the difference Gk(y1, y2) − Gk(y3, y4), we can write y1 =
Φ(y2, y3, y4), where Φ in its turn can be written as yiΦ̃(z) for i = 2, 3 or 4,
such that Φ̃ is a smooth function on a domain D, with

C1 < |det∇2Φ̃(z)| < C2

7



for all z ∈ D. Then for almost all α3 ∈ [ 1
2 , 1],

min
x∈Z3

|x1|,|x2|∼N l,|x3|∼Nk

|Gk(x1, x2)− α3x
l
3| � Nkl−2l−k+ε,

for any ε > 0, where the constant depends on α2,1, . . . , α2,k, α3 and ε.

If we assume the values of Gk(x1, x2) − α3x
l
3 to be uniformly distributed, we

would indeed expect to find ∼ δN2l+k−kl solutions to (1.3) for |x1|, |x2| ∼ N l

and |x3| ∼ Nk.

The idea behind the notion of Φ(y2, y3, y4) is motivated by the Implicit Func-
tion Theorem. We give a proof of this theorem in Section 7. In Section 9.4, a
motivation and explanation for the conjecture is given.

When looking at quantitative results for Diophantine inequalities, one can also
consider other properties than smallest solutions. If we consider more solu-
tions, then looking at the gaps between these values gives us some interesting
insights. In [2], Blomer, Bourgain, Radziwiłł and Rudnick considered generic
diagonal forms αm2 + n2, α > 0 and approached the problem of the smallest
gap between two such values. As mentioned before, the methods in the proof
are similar to [5]. In [32], a similar problem is considered or generic binary
quadratic forms αm2 + mn + βn2. An alternative approach to this problem is
given in [4]. Other results on the distribution of generic quadratic forms are
obtained in [13], but these results are not quantitative.

Results on smallest gaps between values of polynomials gives us information
about the distribution values of a Diophantine inequality. We introduce some
well-known theorems on distribution in Section 6.2 and consider gaps between
values of αm2 + n2 ≤ X where α ∈ R\Q, m,n ∈ Z, in Section 10. The theorem
we prove is stated below.

Let λj be the eigenvalues of the Dirichlet Laplacian of a rectangular billiard
with width π/

√
α and height π. Then each λj is of the form αm2 + n2 with

integers m,n ≥ 1. Therefore, let

#{j : λj ≤ X} = #{(m,n) : m,n ≥ 1, αm2 + n2 ≤ X}.

The size of the smallest gap between two λi’s is defined by

δ
(α)
min(N) = min(λi+1 − λi : 1 ≤ i < N).

Theorem 1.5 (Theorem 1.2 in [2]). For almost all α > 0 in the sense of
Lebesgue measure, we have

δ
(α)
min(N)� 1

N1−ε

for any ε > 0 and all N .

We follow the steps of [2], but give a more elaborate proof in which details of
the steps are more worked out. Furthermore, we mention some ideas about a

8



general case, i.e., we look at the Diophantine inequality αmk + n2 ≤ X, k ≥ 3,
and repeat some steps of the quadratic case.

Lastly, in Section 8 and 11, other techniques and results in analytic number
theory and Diophantine approximation are given. In Section 8, we introduce
the Dimension Growth Conjecture and some results of Huang [17],[18] which
are used in the proof of Theorem 1.2 and Theorem 1.3. In addition, we dis-
cuss the limitations of these results and the relation to the Dimension Growth
Conjecture. In Section 11, we discuss the well-known Hardy-Littlewood Circle
Method and explain some similarities and differences of this method compared
to the method in Section 9.

9



2 Notation
We write x ∈ Rn, for a point x = (x1, . . . , xn) where xi ∈ R for 1 ≤ i ≤ n.
We use the notation ||x|| for x ∈ R for the minimal distance of x to the nearest
integer. That is,

||x|| := min
n∈Z
|x− n|.

We write {x} for the fractional part of a real number x. Furthermore, we use
the Vinogradov notations �, O and o. The implied constants are independent
of α3, N and δ unless stated otherwise. They may depend on α2. When
f(x) � g(x) and g(x) � f(x), we write f(x) � g(x). We write e(z) := e2πiz

and eq(z) := e( zq ). We denote the punctured disc with center z0 ∈ C and radius
r > 0 by

D0(z0, r) := {z ∈ C : 0 < |z − z0| < r}.

10



3 Harmonic Analysis
The techniques that are being used in the proofs in Section 9, are concerned
with Fourier and Mellin transforms. In this section, we cover the basic material
of these two transforms that is needed to understand the steps that are being
taken in the proofs.

3.1 Fourier Analysis
The theorems and proofs of this section can be found in most of the general
analysis books, see for example the book on harmonic analysis of Stein [39]. We
start off by introducing Fourier coefficients and their convergence.

Theorem 3.1. Let f be a piecewise C1 function on R which is T -periodic, i.e.,
f(x + T ) = f(x) for all x ∈ R. Define the Fourier coefficients of f by the
formula

cn(f) =
1

T

∫ T

0

f(t)e−2πint/T dt.

Furthermore, define

f(x+) = lim
z→x
z>x

f(z), f(x−) = lim
z→x
z<x

f(z).

Then f admits a Fourier series
∑
n∈Z cn(f)e2πinx/T , that converges for all x.

We have
f(x+) + f(x−)

2
=
∑
n∈Z

cn(f)e2πinx/T .

In addition, if f is C1 everywhere, then its Fourier series converges uniformly
and absolutely pointwise to f .

We say f is in L1(R) if
∫
R |f(t)|dt converges.

Definition 3.2. If f ∈ L1(R), we define its Fourier transform f̂ by

f̂(x) =

∫
R
f(t)e−2πixtdt.

Sometimes, a different normalisation is used. This results in a different expo-
nential and a normalisation factor 1

2πi in front of the integral. Therefore, to
avoid confusion, in most sources the Fourier transform is explicitly defined.
An often used identity of Fourier transform is the following.

Proposition 3.3. (Parseval-Bessel) If f and g are piecewise continuous and
T -periodic on R and cn(f), cn(g) are their Fourier coefficients, we have

1

T

∫ T

0

f(t)g(t)dt =
∑
n∈Z

cn(f)cn(g).

In particular, we have 1
T

∫ T
0
|f(t)|2dt =

∑
n∈Z |cn(f)|2 and the series on the

right-hand side are convergent.

11



We continue this section by giving some very useful properties of the Fourier
transform. Again, we state these theorems without proofs as they can be found
in [39] and many other analysis books.

Theorem 3.4. (Inverse Fourier transform) If both f and f̂ are in L1(R), then
we have for all x where f is continuous

f(x) =

∫
R
f̂(t)e2πixtdt.

The next identity is a very helpful tool to switch between the expression for a
function and its Fourier transform.

Theorem 3.5. (Poisson summation) Assume that f is a continuous function
on R and that f ∈ L1(R). Then∑

n∈Z
f(x+ n) =

∑
m∈Z

f̂(m)e2πimx,

if both sides converge absolutely and uniformly. In particular,
∑
n∈Z f(n) =∑

m∈Z f̂(m).

We will make use of this theorem in the proofs in Section 9 and Section 10.

A similar statement, in which the relation between a function and its Fourier
transform is given is Parseval’s identity.

Theorem 3.6. (Parseval’s identity) Let f be a function on R and f̂ its Fourier
transform. Then ∫

R
|f(x)|2dx =

∫
R
|f̂(t)|2dt.

Lastly, we give two well-known examples of Fourier transforms.

Example 3.7. Let g, h ∈ L1(R).

(i) Let g(x) = e−πx
2

. Then ĝ(y) = g(y).

(ii) For any nonzero a ∈ R, we have ĥ(x/
√
a) =

√
ah(x/

√
a).

3.2 Mellin transform
The Mellin transform of f is defined by

M(f)(s) =

∫ ∞
0

f(t)ts−1dt.

Mellin transformation is a basic tool to analyse the behaviour of many important
functions, such as the Riemann zeta function, which will be introduced in Section
5. We build up enough knowledge to understand Theorem 3.10, which is of
importance in the proof of Theorem 1.2. The Mellin transform is a version of
the Fourier transform in the following way [8].

Proposition 3.8. Assume that f is continuous on (0,∞), that f(t) = O(t−α)
for some α ∈ R as t→ 0, and that f(t) tends to 0 faster than any power of t as
t→∞. Then the following holds:

12



(a) The Mellin transform of f converges absolutely for Re s > α and defines
a holomorphic function in that right half-plane.

(b) If we let s = σ + iT with σ > α and set gσ(t) = e−2πσtf(e−2πt), then

M(f)(s) = 2πĝσ(T ).

(c) We have the Mellin inversion formula which is valid for σ > α:

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
x−sM(f)(s)ds

for all x > 0.

Let α be a complex number and λ ∈ R>0. Then the Mellin transform satisfies
the following modifications (for more modifications see also the appendix of D.
Zagier in [47]).

Function Mellin transform
f(t) M(f)(s)

f(λt) λ−sM(f)(s)

tαf(t) M(f)(s+ α)

f ′(t) (1− s)M(f)(s− 1)

We give some examples of Mellin transforms which involve the Gamma function.
The Gamma function is defined by

Γ(s) :=

∫ ∞
0

xs−1e−xdx.

We have
M(e−x)(s) = Γ(s).

We can deduce some important properties of the Gamma function from its
Mellin transform. For example, we can deduce that Γ(s) has a simple pole at
s = 0 and that Γ(s + 1) = sΓ(s). More on poles can be found in Section 4.
Furthermore, we have

Γ(n+ 1) = n!.

Two other examples of Mellin transforms are

M
(

1

1 + t

)
(s) =

π

sin(πs)

and
M(et − 1)−1 = Γ(s)ζ(s).

The Mellin transform is useful in the study of Dirichlet series. Recall that a
Dirichlet series is of the form

ξ(s) =

∞∑
n=1

ann
−s,

13



where s ∈ C. A Dirichlet series has an abscissa of convergence σc ∈ C, such that
the series converges for all s ∈ C with Re s > σc. For example, the Riemann
zeta function, defined in Section 5, has abscissa of convergence 1.

According to Montgomery and Vaughan in [26], if A(x) =
∑
n≤x an, then

∞∑
n=1

ann
−s = s

∫ ∞
1

A(x)x−s−1dx

is also a Mellin transform. Note that the integral is from 1 to ∞ here, since
A(x) is defined from x = 1 on. We can also define the inverse Mellin transform
for the Dirichlet series. This is done by Perron’s formula, which is stated below
in the truncated version, i.e., we define the integral for T , and let T → ∞ if
possible.

Lemma 3.9 (Perron’s formula). If σ0 > max(0, σc) and x > 0, where σc is the
abscissa of convergence, then

∑
n≤x

′
an =

1

2πi

∫ σ0+iT

σ0−iT
ξ(s)

xs

s
ds,

where
∑′ indicates that if x is an integer, then the last term is counted with

weight 1/2.

Perron’s formula is also an important tool in the proof of the Prime Number
Theorem, see for example the proof in [26].

Let T →∞. The inverse Mellin transform for Dirichlet series can now be given
by

A(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
ξ(s)

xs

s
ds,

where σ0 > max(σc, 0) with σc the abscissa of convergence of ξ(s). We finish
this section by giving a more general theorem concerning the Mellin transform,
which will be used in the proofs of Theorem 1.2 and 1.5.

Theorem 3.10. Let ξ(s) =
∑
n≥1 ann

−s be a Dirichlet series and A(x) =∑
n≤x an. Let φ(x) be a function with Mellin transform φ̌(x) := M(φ)(s).

Then ∑
n≥1

anφ
( n
N

)
=

1

2πi

∫ c+i∞

c−i∞
ξ(s)φ̌(s)Nsds,

where the Dirichlet series converges absolutely for Re(s) = c.

This theorem can be proved by using the Mellin convolution theorem as in [46]
or other analytic number theory books.
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4 Complex analysis
In this introduction on complex analysis, we give some important definitions
and theorems that will be used in the proofs of the theorems introduced in
Section 1. More explicitly, it turns out in equation (9.21), that the function
F2(t) defined in equation (9.6) can be written as

F2(t) =
1

2πi

∫ 2+i∞

2−i∞
ζ(s− it)ω̌3(s)N lsds,

with ζ(s) the Riemann zeta function and ω̌3 the Mellin transform of a certain
smooth weight function ω3 that is defined in Section 9. For the definition of
ζ(s) and the Mellin transform we refer to Section 5 and Section 3 respectively.
In this section, we will show how complex analysis can be used to calculate the
integral of F2(t). Proofs of the stated theorems can be found in any complex
analysis book, for example in Complex Analysis from S. Lang [21]. We will cover
some material on calculating contour integrals. This includes holomorphic and
meromorphic functions, poles, Cauchy’s integral formula and the Residue theo-
rem. We start with defining path integrals.

Let g : [a, b] → C be a continuous function with a, b ∈ R, a < b. We call two
functions g1 : [a, b] → C, g2 : [c, d] → C equivalent if there is a continuous
monotone increasing function φ : [a, b] → [c, d] with g1 = g2 ◦ φ. We call such
equivalence classes paths in C.
A function g : [a, b]→ C representing a path γ is called a parametrisation of the
path. A continuously differentiable path is a path represented by a continuously
differentiable function g : [a, b]→ C. We define g(a) as start point and g(b) end
point.
A path γ is called closed if its start point and end point are equal to each other.
A closed path that has no self-intersections and is traversed counterclockwise is
called a contour.

If γ1, γ2 are two paths such that the end point of γ1 is equal to the start point
of γ2, then γ1 + γ2 is defined to be the path obtained by first traversing γ1 and
then γ2. If γ is a path, then −γ is the path traversed in the opposite direction.

Let γ be a continuously differentiable path and f : γ → C a continuous function.
If g : [a, b]→ C is a continuously differentiable parametrisation of γ, then∫

γ

f :=

∫ b

a

f(g(t))g′(t)dt.

We define the length of γ by

L(γ) :=

∫ b

a

|g′(t)|dt.

Furthermore, if γ = γ1 + . . .+ γr is a piecewise continuously differentiable path
with continuously differentiable pieces γi for i = 1, . . . , r, then for f : γ → C a
continuous function, we have ∫

γ

f :=

r∑
i=1

∫
γi

f
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and

L(γ) :=

r∑
i=1

L(γi).

From now on, a path is assumed to be piecewise continuously differentiable,
unless stated otherwise. A function F : U → C on an open subset U ⊂ C is
called analytic if for every z ∈ U the limit

F ′(z) = lim
h∈C,h→0

F (z + h)− F (z)

h

exists. If γ is a path with start point z0 and end point z1, then∫
γ

F ′ = F (z1)− F (z0).

Definition 4.1. Let U ∈ C and γ1, γ2 be two paths in U with the same start
point z0 and end point z1. Then γ1, γ2 are called homotopic in U if γ1 can be
continuously be deformed into the other within U .
In other words, there exist parametrisations f : [0, 1]→ C of γ1 and g : [0, 1]→
C of γ2, and a continuous map H : [0, 1]× [0, 1]→ U , such that

H(0, t) = f(t), H(1, t) = g(t) for 0 ≤ t ≤ 1, and
H(s, 0) = z0, H(s, 1) = z1 for 0 ≤ s ≤ 1.

Before introducing some important theorems of complex analysis, we need the
definition of an analytic function.

Definition 4.2. Let U be a non-empty open subset of C and f : U → C a
function. We call f analytic or holomorphic in z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0

exists. If the limit exists, we denote it by f ′(z0). If f is analytic in every z ∈ U ,
we call f analytic.

Remark 4.3. The definitions holomorphic and analytic will be used simultane-
ously, although analytic functions are primary defined in the topic of convergent
power series, whereas holomorphism is originally the definition for a function
that only has zeroes and no poles or other singularities. Later, it is proved that
a function is analytic if and only if it is holomorphic.

Lastly, f is called analytic around z0 if there exists some open disc D(z0, δ),
δ > 0 in which f is analytic. For two analytic functions on an open subset
U ⊂ C, the usual rules for differentiation hold.

A very important theorem in complex analysis is the following theorem from
Cauchy.

Theorem 4.4. Let U be a non-empty open subset of C and f : U → C an
analytic function. Let γ1, γ2 be two homotopic paths in U with the same start
point and end point. Then ∫

γ1

f =

∫
γ2

f.
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This leads to the following corollary, which is often used in analytic number
theory.

Corollary 4.5. Let U be a non-empty, open, simply connected subset of C and
f : U → C an analytic function. Then for any closed path γ in U ,∮

γ

f = 0.

We now state Cauchy’s integral formula.

Theorem 4.6. Let γ be a contour in C and U an open subset of C containing
γ and its interior. Let z0 be a point in the interior of γ and f : U → C an
analytic function. Then

1

2πi

∮
γ

f(z)

z − z0
dz = f(z0).

If f is an analytic function on the punctured disc D0(z0, r), r > 0, then z0 is
called an isolated singularity of f . If there exists an analytic function g on the
non-punctured disc D(z0, r), such that g(z) = f(z) for z ∈ D0(z0, r), then z0

is called a removable singularity of f . These definitions are important when
looking at Laurent series expansions.

Theorem 4.7. Let U be a non-empty open subset of C and f : U → C an
analytic function. Let z0 ∈ U and R > 0 such that D0(z0, R) ⊂ U . Then f has
a Laurent series expansion

f(z) =

∞∑
n=−∞

an(z − z0)n

that is convergent for z ∈ D0(z0, R). For n ∈ Z we have

an =
1

2πi

∮
γz0 ,r

f(z)

(z − z0)n+1
dz

for any 0 < r < R.

We say f has a Laurent expansion
∑
an(z − z0)n around z0 if there exists a

r > 0 such that f is equal to this Laurent expansion on D0(z0, r). Note that z0

is a removable singularity for f if an = 0 for all n < 0.

Definition 4.8. For f with a Laurent expansion
∑∞
n=−∞ an(z − z0)n around

z0, we define the order of f at z0 by

ordz0(f) := inf{all k ∈ Z such that ak 6= 0}.

We see that f is holomorphic at z0 if and only if ordz0(f) ≥ 0. Furthermore, we
call the point z0 an essential singularity of f if ordz0(f) = −∞, a pole or order
k if k > 0 and ordz0(f) = −k, and a zero of order k if k > 0 and ordz0(f) = k.
If the pole or zero has order 1, we call it a simple pole respectively a simple zero.

A complex function f is called meromorphic around z0 if f is analytic on
D0(z0, r) for a r > 0 and z0 is a pole or removable singularity of f . If U is
a non-empty open subset of C, then f is meromorphic on U if there is a discrete
set S in U such that f is defined and analytic on U\S, and all elements of S
are poles of f . The meromorphic functions on U form a field.
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Definition 4.9. For f with a Laurent expansion
∑∞
n=−∞ an(z−z0)n converging

on D0(z0, r), we define the residue of f at z0 as

res(z0, f) := a−1.

Note that by Theorem 4.7, we have

res(z0, f) =
1

2πi

∮
γz0 ,r

f

for 0 < r < R and in particular, if f is analytic, then res(z0, f) = 0.

The notion of residues leads to the following remarkable theorem, which is ex-
tremely beneficial in computing integrals over closed curves.

Theorem 4.10 (Residue Theorem). Let γ be a contour in C and z1, . . . , zp
be points in the interior of γ. Let f be a complex function that is analytic on
an open set containing γ and the interior of γ minus {z1, . . . , zp}. Then the
following holds.

1

2πi

∮
γ

f =

p∑
i=1

res(zi, f).

This theorem tells us that calculating a contour integral is all about finding
poles in the interior and summing up their residues.

In Theorem 5.1, it is suggested that the analytic continuation of the Riemann
zeta function to C\{1} has a simple pole at s = 1 with residue 1. This can be
explained by the following expression for ζ(s) with Re s > 1.

ζ(s) =
ξ(s)πs/2Γ( 1

2s+ 1)−1

s− 1
, (4.1)

where ξ(s) = 1
2s(s − 1)π−s/2Γ( 1

2s)ζ(s). This function has an analytic con-
tinuation to C and the functional equation ξ(1 − s) = ξ(s) for s ∈ C and
ξ(0) = ξ(1) = 1

2 . For a proof of this, see for example Multiplicative Number
theory of Davenport [11]. Equation (4.1) then shows that ζ(s) has an analytic
continuation to C\{1}. As s− 1 is not allowed to be equal to zero in (4.1), we
see s = 1 is a pole of order 1. Estimating the residue is now done by

lim
s→1

(s− 1)ζ(s) = lim
s→1

ξ(s)πs/2Γ( 1
2s+ 1)−1

= ξ(1)π1/2Γ( 3
2 )−1

= 1
2π

1/2( 1
2Γ( 1

2 ))−1

= 1
2π

1/2 · 2π−1/2

= 1.

In the next section, we will elaborate more on the Riemann zeta function and
give a formal definition.

Recall the definition of F2(t) in equation (9.21) from the beginning of this sec-
tion. The integral can now be calculated using the pole of the Riemann zeta
function at s = 1 with residue 1. This is explained in Section 9.1.
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5 Riemann zeta function
One of the most important functions in analytic number theory is the Riemann-
zeta function. As we will use the Riemann zeta function thoroughly in this
thesis, an introduction on this function can not be omitted. We first discuss
some important properties. Second, we elaborate on the Lindelöf hypothesis
for the Riemann-zeta function, which is used in Theorem 1.1 and Theorem 1.2.
The proofs and a wider background on the Riemann zeta function can be found
in several analytic number theory books, for example in Titchmarsh [43].

5.1 Properties and useful theorems
Let n ∈ Z≥1. We define the Riemann zeta function as

ζ(s) =

∞∑
n=1

n−s, (5.1)

where s = σ + it is a complex variable. It defines an analytic function on
{s ∈ C : Re s > 1} and has an analytic continuation to C\{1}.

We can also define ζ(s) as a product

ζ(s) =
∏
p

(1− p−s)−1, (5.2)

where p runs through all the primes. This is called the Euler product, from
which we can see it connects properties of primes with properties of ζ(s). One
can prove that this series converges for σ > 1. We also see from this definition,
that ζ(s) has no zeroes for σ > 1, as a convergent infinite product of non-zero
factors is non-zero. The zeros of ζ(s) lie at s = −2,−4,−6, . . . and in the critical
strip {s ∈ C : 0 < Re s < 1}.

We can see the Riemann zeta function as a Dirichlet L-series, namely as

D1(s) =

∞∑
n=1

1 · n−s;

the L-function of the principal character modulo 1.

There exist several interesting formulae concerning the Riemann zeta function,
which show relations between ζ(s) and the Möbius function, divisor functions
and the Von Mangoldt function. We have seen one relation in (4.1) in Section 4
already. Another very interesting relation between ζ(s) and the Gamma function
is the following.

Theorem 5.1. [43, p. 13] The function ζ(s) is analytic for all s except for
s = 1, where it has a simple pole with residue 1. Furthermore, ζ(s) satisfies the
functional equation

ζ(s) = 2sπs−1 sin
(

1
2sπ

)
Γ(1− s)ζ(1− s). (5.3)
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Sometimes we write this as

ζ(s) = χ(s)ζ(1− s),

where
χ(s) = 2sπs−1 sin(

1

2
sπ)Γ(1− s).

This is often called the symmetry property of ζ(s). There are several proofs for
the functional equation. In Section 4, we computed the residue of the simple
pole to be equal to 1. For the functional equation, we give a proof that concerns
the Poisson summation formula that is given in Theorem 3.5 and that uses
Jacobi’s θ-function, which is defined by

θ(τ) =
∑
n∈Z

eπin
2τ .

The sum is absolutely convergent on Im τ > 0 and thus holomorphic on the
upper half plane. It also satisfies two functional equations or symmetries, namely
θ(τ + 2) = θ(τ) (periodic modulo 2) and for all y ∈ R>0 we have

θ(i/y) =
√
yθ(iy).

The proof of Theorem 5.1 is based on the proof given in [38]. We use some
techniques introduced in Section 4.

Proof of Theorem 5.1. Let

F (s) = π−sΓ(s)ζ(2s),

which is meromorphic on C and holomorphic on Re s > 1
2 by the properties of

Γ(s) and ζ(s). We can write

F (s) = π−sΓ(s)
∑
n≥1

n−2s

=
∑
n≥1

(πn2)−sΓ(s)

=
∑
n≥1

∫ ∞
0

(πn2)−sts−1e−tdt

since Γ(s) is a Mellin transform. Furthermore, let t = πn2y and dt = πn2dy.
Then F (s) can be expressed as

F (s) =
∑
n≥1

∫ ∞
0

(πn2)−s(πn2y)s−1e−πn
2yπn2dy

=
∑
n≥1

∫ ∞
0

ys−1e−πn
2ydy.

Since the sum converges absolutely for Re s > 1
2 , that the sum and integral can

be interchanged here. We find

F (s) =

∫ ∞
0

ys−1
∑
n≥1

e−πn
2y.
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Recall that
θ(iy) =

∑
n∈Z

e−πn
2y = 1 + 2

∑
n≥1

e−πn
2y.

We obtain

F (s) =
1

2

∫ ∞
0

ys−1(θ(iy)− 1)dy

=
1

2

(∫ 1

0

ys−1θ(iy)dy − 1

s
+

∫ ∞
1

ys−1(θ(iy)− 1)dy

)
.

Substituting t = 1/y for the first part of this expression gives dy = −1/t2dt and
we find that the first part is equal to∫ 1

0

ys−1θ(iy)dy =

∫ 1

∞
t1−sθ(i/t) · −t−2dt

=

∫ ∞
1

t−s−1θ(i/t)dt.

Furthermore, recall that
θ(i/t) =

√
tθ(it).

Hence∫ 1

0

ys−1θ(iy)dy =

∫ ∞
1

t−s−1/2θ(it)dt

=

∫ ∞
1

t−s−1/2(θ(it)− 1)dt+

∫ ∞
1

t−s−1/2dt

=

∫ ∞
1

t−s−1/2(θ(it)− 1)dt− 2

1− 2s
.

We find that F (s) can be written as

F (s) =
1

2

∫ ∞
1

(ys−1 + y−s−1/2)(θ(iy)− 1)dy)− 1

2s
− 1

1− 2s
.

Note that F (s) = F ( 1
2 − s). We can extend F such that it is meromorphic on

C. Since Γ has no zeros on Re s > 0, the only zeros that F has come from the
Riemann zeta function, which has zeros in the critical strip 0 < Re s < 1. If we
look at F ( s2 ), then we see we can also extend ζ(s) to a meromorphic function
on C, since Γ( s2 ) has no zeros on Re s > 0 and the simple pole of F at s = 0
corresponds to the simple pole of Γ( s2 ) at zero. Since Γ( s2 ) has simple poles at
0,−2,−4, . . ., we find that ζ(s) has simple zeros at −2,−4, . . ., but not at 0. We
remove the poles at 0 and 1 by defining

ξ(s) = 1
2s(s− 1)F ( s2 ) = 1

2s(s− 1)F ( 1
2 (1− s)) = ξ(1− s).

Using this expression, we find the functional equation (5.3).

5.2 Lindelöf Hypothesis for the Riemann zeta function
Bourgain assumes in [5], in this thesis stated in Theorem 1.1, the Lindelöf Hy-
pothesis for the Riemann zeta function. As this concerns the critical strip of
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the Riemann-zeta function, it is closely related to the Riemann Hypothesis. We
first provide some theoretical background on the Lindelöf hypothesis for the
Riemann zeta function and finish this section with the hypothesis itself.

For t→∞, we can find a k ∈ N such that ζ(σ+ it)� tk, see [7, Lemma 2.6.1],
for a proof. Hence for σ ∈ R we can define

µ(σ) := inf{c : |ζ(σ + it)| � tc}. (5.4)

As a function of σ, it is true that µ(σ) is continuous, non-increasing and convex.
By the property that for σ > 1 we have |ζ(s)| ≤ ζ(Re s), we see that µ ≤ 0.
Also, since ζ(s)−1 =

∑∞
n=1

µ(s)
ns with µ(s) the Möbius function, we have that

|ζ(s)−1| ≤ ζ(Re s), hence

µ(σ) = 0 when σ > 1. (5.5)

By the functional equation (5.3), we can also say something about µ(σ) when
σ < 0. Titchmarsh showed in [43, p. 78] that |χ(s)| ≤ |t/(2π)| 12−σ(1 +O(|t|−1)
as t→∞. Therefore,

µ(s) = 1
2 − σ when σ < 0. (5.6)

For 0 < σ < 1, we need the approximate functional equation found by Hardy
and Littlewood [16], which is

ζ(s) =
∑
n≤x

n−s + χ(s)
∑
n≤y

ns−1 +O(x−σ) +O(|t| 12−σyσ−1) (5.7)

for 0 < σ < 1 and 2πxy = |t|. If we let x = y = (t/(2π))
1
2 , then

ζ(σ + it)� x1−σ + |t| 12−σyσ

=

(
t

2π

) 1
2 (1−σ)

+ |t| 12−σ
(
t

2π

) 1
2σ

� |t| 12 (1−σ).

Hence
µ(σ) ≤ 1

2 (1− σ) for 0 ≤ σ ≤ 1. (5.8)
Combining (5.5), (5.6) and (5.8) and the fact that µ(σ) is convex, we see that

µ(σ) ≥ max(0, 1
2 − σ). (5.9)

Hypothesis 5.2. (Lindelöf Hypothesis) We have an equality in (5.9).

By the convexity of µ(σ) we can rephrase this as µ( 1
2 ) = 0. Several mathemati-

cians have tried to prove the hypothesis, but the smallest bound for µ( 1
2 ) that

has been found so far is µ( 1
2 ) ≤ 13/84, which is a result by Bourgain [3]. An

often used bound is µ( 1
2 ) = 1

6 + ε, which is proved in [43], Theorem 5.12.

We can also formulate the Lindelöf hypothesis without the notion of µ(σ),
namely

ζ( 1
2 + it) = O(tε) for every ε > 0. (5.10)

There are several other formulations of the Lindelöf hypothesis. One of them
is stated and proved by Backlund, which immediately shows that the Riemann
Hypothesis implies the Lindelöf Hypothesis. A proof of this can be found in [43,
§13.5].
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6 Ergodic theory
The Oppenheim Conjecture [28] was proven by Margulis [24] using results and
methods from ergodic theory. Roughly spoken, ergodic theory can be defined as
the qualitative study of actions of groups on measure spaces [44], i.e., the long
term behaviour. We start this section by giving a short introduction to measure
theory, in order to understand the concepts of ergodic theory. Second, we dive
into the topic of equidistribution, during which we will also see some ergodic
theory.

6.1 Introduction to Measure theory
We discuss some subjects regarding measure theory, such as the Lebesgue mea-
sure, Chebyshev’s inequality and the Borel-Cantelli Lemma. A good reference
for this section is Real Analysis of Royden [29]. We start with providing some
definitions. Let X be an arbitrary set. The power set of X, denoted by 2X , is
the set of all subsets of X.

Definition 6.1. Let X and 2X be as above. A subset σ ⊂ 2X is called a
σ-algebra for X (notation: σ(X)) if it satisfies the following three properties.

1. X is in σ: X ∈ σ

2. σ is closed under complementation: A ∈ σ ⇒ X\A ∈ σ.

3. σ is closed under countable unions: for A1, A2, . . . ∈ σ, where Ai ∩Aj = ∅
for i 6= j, we have

⋃∞
i=1Ai ∈ σ.

If A ∈ σ(X), then A is called a measurable set inX. We call (X,σ) a measurable
space.

Definition 6.2. Let (X,σ) be a measurable space. On this space, the map
µ : X → R̄ is called a measure if it satisfies the following three properties.

1. The null-empty set: µ(∅) = 0.

2. Non-negativity: for all A ∈ σ we have µ(A) > 0.

3. Countable additivity: for all A1, A2, . . . ∈ σ with Ai ∩ Aj = ∅ for i 6= j,
we have µ (

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).

We call (X,σ, µ) a measure space. Let I be an interval. We define the length
l(I), in the usual sense, as the difference of the endpoints of the interval.

Definition 6.3. Let A ⊂ R. Let {In} be the countable collections of open
intervals that cover A, i.e., collections for which we have A ⊂

⋃
In. We define

the outer measure m∗A of A to be the infimum of sums of the lengths of the
intervals in the collections. In other words,

m∗A = inf
A⊂
⋃
In

∑
l(In).

Note that A ⊂ B implies m∗A ≤ m∗B. Furthermore, each set consisting of a
single point has outer measure zero. One can prove that the outer measure of
an interval is its length.
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Definition 6.4. A set E is called measurable if for each set A, we have

m∗A = m∗(A ∩ E) +M∗(A ∩ Ec).

Furthermore, if m∗E = 0, then E is measurable. Also, the following theorem
holds.

Theorem 6.5 ([29]). The collectionM of measurable sets is a σ-algebra.

If E is a measurable set, we define the Lebesgue measure µE to be the outer
measure of E. A countable collection of sets {An}∞n=1 is called ascending if
An ⊂ An+1 for each n and descending if An+1 ⊂ An for each n. The Lebesgue
measure has the following important property.

Proposition 6.6. The Lebesgue measure has the following continuity proper-
ties.

(i) If {An}∞n=1 is an ascending collection of measurable sets, then

µ
(⋃

An

)
= lim
n→∞

µ(An).

(ii) If {Bn}∞n=1 is a descending collection of measurable sets and µ(B1) <∞,
then

µ
(⋂

Bn

)
= lim
n→∞

µ(Bn).

Let I be a bounded interval and c a real constant. Let χI be the characteristic
function on the interval I, i.e.,

χI(x) =

{
1 if x ∈ I
0 if x 6∈ I.

We define the Lebesgue integral of cχI(x) over R as∫
R
cχI(x)dµ(x) = c · µ(I).

The dµ(x) in the integral denotes that our dummy variable of integration is x
and that we are integrating with respect to the Lebesgue measure µ. In general,
there are several notations for this.

Theorem 6.7. (General Chebyshev’s Inequality) Let (X,σ, µ) be a measure
space and let f be a real-valued measurable function defined on X. Let µ be
the Lebesgue measure and let g be a real-valued measurable function that is
nonnegative and nondecreasing on the range of f . Then, for any real number
t > 0 and 0 < p <∞ we have

µ({x ∈ X : f(x) ≥ t}) ≤ 1

g(t)

∫
X

g(f(x))dµ(x).

Proof. Let t be fixed and let At = {x ∈ X : f(x) ≥ t}. Let χAt be the charac-
teristic function on At. By assumption g is nondecreasing and it is nonnegative
on the range of f . Hence

0 ≤ g(t)χAt ≤ g(f(x))χAt .
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Using Lebesgue integration to integrate over X we get

g(t)µ(At) =

∫
X

g(t)χAtdµ.

By Proposition 2 of [29], the Lebesgue integral is nonnegative and preserves
inequalities. Hence∫

X

g(t)χAtdµ ≤
∫
X

g(f(x))χAT dµ =

∫
At

g(f(x))dµ ≤
∫
X

g(f(x))dµ.

We find
µ(At) ≤

1

g(t)

∫
X

g(f(x))dµ.

Chebyshev’s inequality is often stated in a probabilistic form. For completeness,
we state this theorem as well. We assume the reader is familiar with the basics
of probability theory.

Theorem 6.8. Let X : Ω → R be a random variable on a probability space
(Ω,F , P ). Suppose X has finite expected value m and finite nonzero variance
σ2. Then, for any real number k > 0, we have

P (|X −m| ≥ kσ) ≤ 1

k2
.

Another often used lemma in measure theory is the Borel-Cantelli Lemma, which
uses the properties of Proposition 6.6 in its proof.

For a measurable set A, we say that a property holds for almost everywhere on
A, or for almost all x ∈ A, if there is a subset A0 of A for which the Lebesgue
measure µ(A0) = 0 and the property holds for all x ∈ A\A0.

Lemma 6.9 (Borel-Cantelli). Let {An}∞n=1 be a countable collection of mea-
surable sets for which

∑∞
n=1An <∞. Then almost all x ∈ R belong to at most

finitely many of the An’s.

Proof. By the properties of a measurable space, we have for every k,

µ

( ∞⋃
n=k

An

)
≤
∞∑
n=k

µ(An) <∞.

Then by Proposition 6.6, we have

µ

( ∞⋂
k=1

( ∞⋃
n=k

An

))
= lim
k→∞

µ

( ∞⋃
n=k

An

)
≤ lim
k→∞

∞∑
n=k

µ(An) = 0.

We find that almost all x ∈ R fail to belong to ∩∞k=1(∪∞n=kAn) and therefore
belong to at most finitely many An’s.

The definition of ergodic uses the notion of measure-preserving transformations.
We first define what such transformation is.
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Definition 6.10 (Definition 1.1 of [44]). Let (X1, σ1, µ1) and (X2, σ2, µ2) be
measure spaces.

1. A transformation T : X1 → X2 is called measurable if T−1(σ2) ⊂ σ1.

2. A transformation T : X1 → X2 is called measure-preserving if T is mea-
surable and if µ1(T−1(A2)) = µ2(A2) for all A2 ∈ σ2.

3. A transformation T : X1 → X2 is called invertible measure-preserving if
T is measure-preserving, bijective, and T−1 is also measure preserving.

Let (X,σ, µ) be a measure space. A transformation T : X → X is called ergodic
if it is a measure-preserving transformation, and the only members An of σ
where T−1(An) = An satisfy µ(An) = 0 or µ(An) = 1. We are now ready to
state Birkhoff’s ergodic theorem. A proof can be found in [44].

Theorem 6.11 (Birkhoff’s Ergodic Theorem). Suppose T is a measure-preserving
transformation on (X,σ, µ) and let f ∈ L1(µ), where

L1(µ) := {f : X → C|f measurable and
∫
|f |dµ <∞}.

Then
1

n

n−1∑
i=0

f(T i(x))

converges almost everywhere to a function
∫
f∗dµ where f∗ ∈ L1(µ). Also,

f∗ ◦ T = f∗ almost everywhere, and if µ(X) <∞, then∫
f∗dµ =

∫
fdµ.

In the next section, it will become clear how the distribution of a sequence is
related to this theorem.

6.2 Uniform distribution mod one
In Section 10, we study the distribution of values of a Diophantine inequality.
In this section, we give some background on the distribution of sequences with
irrational coefficients.

We study the behaviour of the rational part of a sequence xn of real numbers
in R/Z, i.e., mod one. We call a sequence uniformly distributed modulo 1, or
equidistributed, if for every a, b with 0 ≤ a < b < 1 we have

1

n
#{j : 0 ≤ j ≤ n− 1, {xj} ∈ [a, b]} → b− a as n→∞.

Here {xn} is the usual notation for the fractional part of a real number. The
following result is a well known condition for xn to be uniformly distributed
mod one.
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Theorem 6.12 (Weyl’s criterion [45]). A sequence xn of real numbers is uni-
formly distributed modulo one if and only if for every integer b 6= 0 we have

1

n

n−1∑
j=0

e(bxj)→ 0

as n→∞.

Note that this expression is exactly the problem of non-trivially estimating an
exponential sum; an important problem in analytic number theory. We deduce
the following.

Corollary 6.13. A sequence xn of real numbers is uniformly distributed mod
one if and only if for any continuous function f : [0, 1] → R with f(0) = f(1)
we have

1

n

n−1∑
j=0

f({xj})→
∫ 1

0

f(x)dx.

Proof. Let xj be uniformly distributed mod one. Let χ[a,b] be the characteristic
function of the interval [a, b]. Then the definition of uniform distribution can
be rewritten as

1

n

n−1∑
j=0

χ[a.b](xj)→
∫ 1

0

χ[a, b](x)dx

as n→∞. This implies that for g being a step function, i.e., it is a finite linear
combination of characteristic functions of intervals, that

1

n

n−1∑
j=0

g(xj)→
∫ 1

0

g(x)dx

as n→∞. Let f be a continuous function on [0, 1]. We can find a step function,
given ε > 0, such that ||f − g|| ≤ ε. Hence∣∣∣∣∣∣ 1n

n−1∑
j=0

f(xj)−
∫ 1

0

f(x)dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

n−1∑
j=0

(f(xj)− g(xj))

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
n−1∑
j=0

g(xj)−
∫ 1

0

g(x)dx

∣∣∣∣∣∣
+

∣∣∣∣∫ 1

0

g(x)dx−
∫ 1

0

f(x)dx

∣∣∣∣
≤

∣∣∣∣∣∣ 1n
n−1∑
j=0

g(xj)−
∫ 1

0

g(x)dx

∣∣∣∣∣∣+ 2ε.

As the last term converges to 0 for n→∞, we find

lim sup
n→∞

∣∣∣∣∣∣ 1n
n−1∑
j=0

f(xj)−
∫ 1

0

f(x)dx

∣∣∣∣∣∣ ≤ 2ε,

hence
1

n

n−1∑
j=0

f(xj)→
∫ 1

0

f(x)dx

as n→∞.
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Sometimes, the little-oh notation is being used. The statement in Theorem 6.12
will then be replaced with

∑n−1
j=1 e(bx+ j) = ob(n) as n→∞ [15].

Example 6.14. The sequence {log(n)}n>1 is not uniformly distributed modulo
one. Let b = 1. Note

1

n

n∑
j=1

e2πi log(j) =
1

n

n∑
j=1

j2πi.

We use Euler’s summation formula, which states that for f(t) a complex valued
function with continuous derivative on t ∈ {1, N}, with N ≥ 1 an integer, we
have

N∑
n=1

f(n) =

∫ N

1

f(t)dt+
1

2
(f(1) + f(N)) +

∫ N

1

({t} − 1
2 )f ′(t)dt.

Let f(t) = e2πi log t. Divide both sides of the equation by N . Then

1

N

∫ N

1

f(t)dt =
1

N

∫ N

1

t2πidt =
1

2πiN
t2πi+1

∣∣N
t=1 ,

which does not converge for N →∞,

1

N

1

2
(f(1)− f(N)) =

1

2N
+

1

2
N2πi−1 → 0

as N →∞, and∣∣∣∣∣
∫ N

1

({t} − 1
2 ) · 2πit2πi−1dt

∣∣∣∣∣ ≤ 1

2
· 2π

∫ N

1

1

t
dt.

Hence the third term converges to zero as well, for N →∞. We obtain

lim
N→∞

1

N

N∑
n=1

f(n)→∞.

Weyl’s criterion is violated and therefore, {log n}n≥1 is not uniformly distributed
modulo one.

The next famous corollary is proved by Weyl’s criterion as well.

Corollary 6.15. The sequence xn = αn is uniformly distributed modulo one if
and only if α ∈ R\Q.

Proof. Let α ∈ Q, say α = p/q, where p ∈ Z, q ∈ N, gcd(p, q) = 1. Then {α}
can only take q distinct values, namely

0,

{
p

q

}
,

{
2p

q

}
, . . . ,

{
(q − 1)p

q

}
.

As this number is finite, we see it cannot be distributed uniformly modulo one.
Assume now α ∈ R\Q. As e(bα) 6= 1 for b a nonzero integer, we have

1

n

n−1∑
j=0

e(bαj) =
1

n

e(bαn)− 1

e(bα)− 1
.
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This implies ∣∣∣∣∣∣ 1n
n−1∑
j=0

e(bαj)

∣∣∣∣∣∣ ≤ 1

n

2

|e(bα)− 1|
→ 0

as n→∞. By Theorem 6.12, αn is uniformly distributed modulo one.

As we can linearly transform αn to a sequence yn = αn + β, we see yn is
uniformly distributed modulo one if and only if α is irrational as well. Corollary
6.15 is often called Weyl’s equidistribution theorem.

Remark 6.16. Weyl’s equidistribution theorem implies Kronecker’s theorem,
which says that for α an irrational number, the sequence {nα}n≥1 is dense in
[0, 1).

Remark 6.17. Birkhoff’s Ergodic Theorem 6.11 implies Weyl’s equidistribu-
tion theorem. In fact, Weyl’s theorem can be seen as a special case of Birkhoff’s
theorem.

One might ask what can be said about higher degree polynomials in n. We will
prove the following theorem, which is also a theorem by Weyl.

Theorem 6.18. Let α be an irrational real number. Then the sequence

{αn2 : n ≥ 1}

is uniformly distributed modulo one.

In order to prove this, we need the following lemma.

Lemma 6.19. Let a < b be nonnegative integers. Let θ be an irrational real
number. Then ∣∣∣∣∣

b∑
n=a

e(nθ)

∣∣∣∣∣� min(b− a, 1

||θ||
).

Proof. Recall that | sin(t)| ≤ ||t||. This implies |e(t) − 1| ≤ π||t||. Using the
triangle inequality and the fact that a, b are integers, we find∣∣∣∣∣

b∑
n=a

e(nθ)

∣∣∣∣∣ ≤ a− b+ 1� a− b.

As the exponential function is a geometric series, we have∣∣∣∣∣
b∑

n=a

e(nθ)

∣∣∣∣∣ =
|e(aθ)− e((b+ 1)θ)|

|1− e(θ)|

≤ 2

|1− e(θ)|

=
2

|e( θ2 )− e(−θ2 )|
=

1

| sin(πθ)|
.

As | sin(πt)| ≥ 2||t|| for all t, we obtain∣∣∣∣∣
b∑

n=a

e(nθ)

∣∣∣∣∣ ≤ 1

2||θ||
.

This completes the proof.

29



In the proof of Theorem 6.18, we also use the well-known theorem of Dirichlet,
which states that for α ∈ R\Q, there exists infinitely many pairs of integers p, q,
with gcd(p, q) = 1 and 2 ≤ q such that |α− p

q | ≤
1
q2 .

Proof of Theorem 6.18. In this proof, we make use of Weyl differencing. Define
S =

∑N
n=0 e(n

2α). Then

|S|2 =

N∑
n1=0

N∑
n2=0

e(α(n2
1 − n2

2)).

The idea of Weyl differencing is that this squared sum can be written as a
polynomial of one degree lower, i.e., the exponent does not contain (n1 − n2)2

anymore, but a linear polynomial in n1, n2. This can be done by re-indexing
this sum. We set h = n1 − n2 such that −N ≤ h ≤ N and max(0,−h) ≤ n2 =
n1 − h ≤ min(N,N − h). Then

|S|2 =
N∑

h=−N

min(N,N−h)∑
n2=max(−h,0)

e(α(2hn2+h2)) =
N∑

h=−N

e(αh2)

min(N,N−h)∑
n2=max(−h,0)

e(α(2hn2)).

Using triangle inequality and Lemma 6.19 we obtain

|S|2 �
N∑

h=−N

min(N,
1

||2hα||
).

Divide the interval [−N,N ] into smaller intervals of length at most q
2 , each of

the form M ≤ h < M + q
2 .

Claim: The sum of min(N, 1
||2hα|| ) over each interval is � N + q log q.

We will prove the claim for M = 0; the proof for other values of M is similar.
Define S̃ =

∑
0≤h<q/2 min(N, 1

||2hα|| ). Also, by Dirichlet, write α = p/q + θ

where |θ| ≤ 1/q2, gcd(p, q) = 1. As 0 ≤ 2h < q, all residues of 2h mod q are
distinct, so 2hp is congruent to 0, 1 and −1 mod q at most once. For other
values of h, we have ||2hα|| ≥

∥∥∥ 2hp
q

∥∥∥− 2h
q2 > 0. Hence

S̃ ≤ 3N +
∑

0≤h<q/2
2hp 6≡0,1,−1 mod q

min

N, 1∥∥∥ 2hp
q

∥∥∥− 1
q

 .

As ‖2hpq−1‖ takes on each value of 2
q , . . . ,

bq/2c
q at most twice, we obtain

S̃ ≤ 3N + 2

bq/2c∑
j=2

1

j/q − 1/q
= 3N + 2q

bq/2c−1∑
j=1

j−1 � N + q log q.

This proves the claim. As there are � N/q + 1 intervals, we find

|S|2 � (N + q log q)(N/q + 1)� N2/q + (q +N) log q.

Then
1

N

∣∣∣∣∣
N∑
n=1

e(n2α)

∣∣∣∣∣� 1
√
q

+

√
q log q

N2
+

log q

N
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and this converges to 1/
√
q as N → ∞. By Dirichlet’s theorem, q can be

arbitrarily large. So if we take q →∞, this sum converges to zero and thus αn2

is uniformly distributed mod one by Theorem 6.12.

We can generalise this theorem into the following.

Theorem 6.20. Let P (x) = adx
d + ad−1x

d−1 + . . .+ a1x+ a0 be a polynomial
with at least one of the coefficients a1, . . . , ad irrational. Then the sequence
{P (n) : n ≥ 1} is uniformly distributed modulo one.

Another generalisation of Weyl’s criterion is about applying the criterion on k
dimensions. Given v = (a1, . . . , ak) ∈ Rk, we define v mod 1 to be the vector
(a1 mod 1, . . . , ak mod 1). A sequence of vectors v1, v2, . . . ∈ Rk is called
uniformly distributed mod one if for any 0 ≤ bj < cj < 1 for j = 1, 2, . . . , k we
have

#

n ≤ N : an mod 1 ∈
k⊕
j=1

[bj , cj)

 ∼
k∏
j=1

(cj − bj) ·N

as N →∞ [15].

Theorem 6.21. A sequence of vectors v1, v2, . . . ,∈ Rk is uniformly distributed
mod one if and only if for every b ∈ Zk, b 6= 0 we have

1

n

n−1∑
j=0

e(bvj)→ 0

as n→∞.

A famous corollary from Kronecker [20], is that if 1, α1, . . . , αk are linearly in-
dependent over Q, then {(nα1, nα2, . . . , nαk) : n ≥ 1} are uniformly distributed
mod one. Furthermore, from Theorem 6.20 and 6.21, one can deduce that
the vectors {(nα, n2α, . . . , nkα) : n ≥ 1} are uniformly distributed mod one if
α ∈ R\Q [15]. More on equidistribution of polynomial sequences in R/Z can be
found in Higher Order Fourier Analysis from T. Tao [41].

These theorems look very promising for proving the forms used in Section 9
are uniformly distributed. However, a sequence that is uniformly distributed
modulo one does not have to be uniformly distributed in general. Furthermore,
these theorems state behaviour for n→∞, but do not tell us when this will hap-
pen exactly. In other words, Weyl’s condition and its corollaries are qualitative,
not quantitative. A quantitative version of Weyl’s criterion is the Erdös-Turán-
Koksma inequality [12].

A lot of research has been done on quantitative results on distributions of, for
example, quadratic forms. For example, the distribution of αm2 + n2, α ir-
rational, is explored in [2]. In this article, it is assumed that the sequence is
randomly distributed. The goal is to bound the smallest gap between two points
in the sequence. It turns out that the order of growth is consistent with Poisson
statistics, but finer details of the Poisson distribution are violated.

Recall that a Poisson probability distribution is applied when we look at the
number of times an event occurs in a certain time interval, where events occur
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randomly and independently [40]. Define λ as the mean number of occurrences
of the event in the given interval. Then

P (x) =
λxe−λ

x!
.

Its mean is equal to λ. If N points are picked independently and uniformly in
[0, N ], it is believed that the smallest gap is almost surely of size ≈ 1/N [22]. In
Section 10, we look at the proof of the smallest gap for the sequence αm2 + n2

with α > 0 irrational, based on [2].

We finish this section with the notion that other articles with quantitative re-
search on distributions, such as [2], [32] and [30], also contribute to understand-
ing the distribution of quadratic forms and forms in higher dimensions. Popular
statistical measures are the distribution of gaps between consecutive solutions
and the variance of solutions, which use a so-called pair correlation function.
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7 Implicit Function Theorem
Solutions of a quadratic equation ax2 + bx + c = 0, can be expressed as
x = 1

2a (−b ±
√
b2 − 4ac). For non-quadratic equations, with more variables,

it is sometimes not straightforward how to express a variable in terms of the
other variables. In this section, we explore how we can proceed for the more
difficult equations. We introduce the Implicit Function Theorem, which will be
used in Section 9.

Suppose we have a system of nonlinear equations Fi : Rn×Rm → R, Fi(x,y) =
Fi(x1, . . . , xn, y1, . . . , ym), 1 ≤ i ≤ m. In most cases, we are not able to solve
this system uniquely. However, we could try to find a relation between yi and
Fi(x,y), i.e., we write yi as a function of (x1, . . . , xn). Assume therefore that
we have a solution

Fi(x
0,y0) = Fi(x

0
1, . . . , x

0
n, y

0
1 , . . . , y

0
m) = 0, 1 ≤ i ≤ m.

The question is: when can we find, for each x = (x1, . . . , xn) near this solution
x0 a unique y = (y1, . . . , ym) near y0, which satisfies Fi(x,y) = 0? The answer
is given by the Implicit Function Theorem. There are several ways of stating
the theorem. Here, we state the theorem given by M. Spivak in [36].

Theorem 7.1 (Implicit Function Theorem). Suppose F : Rn × Rm → Rm
is continuously differentiable in an open set containing (x0,y0) and suppose
F (x0,y0) = 0. Let M be the m×m matrix given by

(Dn+jFi(x
0,y0)), 1 ≤ i, j ≤ m.

In other words,

M =


∂f1

∂y01
· · · ∂f1

∂y0m
...

. . .
...

∂fm

∂y01
· · · ∂fm

∂y0m

 .

If detM 6= 0, then there is an open set A ⊂ Rn containing x0 and an open set
B ∈ Rm containing y0, such that for each x ∈ A there is a unique g(x) ∈ B
such that F (x, g(x)) = 0. Furthermore, the function g is differentiable.

Note that if F (x,y) = c, we can always define G(x,y) = F (x,y) − c and use
the Implicit Function Theorem for G(x,y). This will be done in Section 9. The
Implicit Function Theorem is strongly related to another well-known theorem,
the Inverse Function Theorem. We will state this theorem below. A proof can
be found in [36].

Theorem 7.2 (Inverse Function Theorem). Suppose that f : Rn → Rn is con-
tinuously differentiable in an open set containing x0, and det f ′(x0) 6= 0. Then
there is an open set V containing x0 and an open set W containing f(x0) such
that f : V → W has a continuous inverse f−1 : W → V which is differentiable
and for all y ∈W we have

(f−1)′(y) = [f ′(f−1(y))]−1.

We will use this theorem to prove Theorem 7.1.
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Proof of Theorem 7.1. We define Ω : Rn × Rm → Rn × Rm by Ω(x,y) =
(x, F (x,y)). Then det Ω′(x0,y0) is given by

det



∂x0
1

∂x0
1
· · · ∂x0

1

∂x0
n

∂x0
1

∂y01
· · · ∂x0

1

∂y0m
...

. . .
...

...
. . .

...
∂x0
n

∂x0
1
· · · ∂x0

n

∂x0
n

∂x0
n

∂y01
· · · ∂x0

n

∂y0m

∂y01
∂x0

1
· · · ∂y01

∂x0
n

∂y01
∂y01

· · · ∂y01
∂y0m

...
. . .

...
...

. . .
...

∂y0m
∂x0

1
· · · ∂y0m

∂x0
n

∂y0m
∂y01

· · · ∂y0m
∂y0m


= det



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0

0 · · · 0 ∂f1

∂y01
· · · ∂f1

∂y0m
...

. . .
...

...
. . .

...
0 · · · 0 ∂fm

∂y01
· · · ∂fm

∂y0m


.

This is a triangular block matrix, which means det Ω′(x0,y0) = detM 6= 0. We
can use Theorem 7.2 now, which implies there is an open set W ⊂ Rn × Rm
containing F (x0,y0) = (x0,0), and an open set in Rn×Rm containing (x0,y0).
We take this open set to be of the form A× B, such that Ω : A× B → W has
a differentiable inverse h : W → A×B. Since Ω is of the form (x, F (x,y)), we
find that h is of the form h(x,y) = (x, k(x,y)) for some differentiable function
k. Let π : Rn × Rm → Rm be defined by π(x,y) = y. We have π ◦ Ω = F .
Hence

F (x, k(x,y)) = F ◦ h(x,y) = (π ◦ Ω) ◦ h(x,y)

= π ◦ (Ω ◦ h)(x,y) = π(x,y) = y.

This means F (x, k(x,0)) = 0. In other words, we can define a function g(x) =
k(x,0).

Since g is differentiable, we can find its derivative. We have F i(x, g(x)) = 0,
which means taking the derivative gives us

0 = DjF
i(x, g(x)) +

m∑
α=1

Dn+αf
i(x, g(x)) ·Djg

α(x)

for i, j = 1, . . . ,m. Since detM 6= 0, we can solve these equations for Djg
α(x).

We see that the answer will depend on the various DjF
i(x, g(x)) and thus on

g(x).

Example 7.3. We use the previous notion in an example. Consider the system{
F1 = x3y − z = −1

F2 = x+ y2 + z3 = 11

Then (x, y, z) = (1, 1, 2) is a solution of the system. Let us compute the values
for x and y when z = 2.1. We first compute the matrix M as in Theorem 7.1.(

∂F1

∂x
∂F1

∂y
∂F1

∂z
∂F2

∂x
∂F2

∂y
∂F2

∂z

)
=

(
3x2y x3 −1

1 2y 3z2

)
.

At the solution (1, 1, 2), the matrix is(
3 1 −1
1 2 12

)
.
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The determinant of the partial derivatives to x and y is∣∣∣∣3 1
1 2

∣∣∣∣ = 6− 1 = 5 6= 0.

We conclude: there exists a solution near (1, 1, 2). Denote by x(z), y(z) the
values of x resp. y when the value for z is given. Denote x′(z), y′(z) for their
derivatives. To find the derivatives, we solve the equation(

∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y .

)(
x′(2)
y′(2)

)
=

(
−∂F1

∂z

−∂F2

∂z

)
=

(
1
−12

)
.

We obtain (
3x′(2) + y′(2)
x′(2) + 2y′(2)

)
=

(
1

−12

)
.

Hence, x′(2) = 2 4
5 , y
′(2) = −7 2

5 . We conclude

x(2.1) ≈ x(2) + x′(2) · 0.1 = 1.28

y(2.1) ≈ y(2) + y′(2) · 0.1 = 0.26.

We have found an estimation of another solution (1.28, 0.26, 2.1).

The Implicit Function Theorem is very helpful in multivariable calculus. In the
previous example, it is shown how the theorem can be used. However, it is
not constructive in general: it only tells us there exists a solution, not how this
solution is derived. This will be a stumbling block in Section 9.
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8 Dimension Growth Conjecture
We can reformulate the idea of finding integer solutions of |Q(x)−ξ| < δ, taking
ξ = 0, as introduced in Theorem 1.1 to finding rational points near the planar
curve C ⊂ R2 given by 1 + α2y

2
2 − α3y

2
3 . We will use some ideas and results of

a recent paper of Huang [18] in which he gives a sharp asymptotic formula for
the number of rational points up to a given height near a hypersurface.

8.1 Prerequisites
This section thoroughly uses concepts regarding algebraic varieties. We state
the definitions that we will use in this section. These definitions are taken from
Silverman [35]. Let K be a perfect field, which means every algebraic extension
of K is separable. We denote the algebraic closure of K by K̄.

Definition 8.1. The affine n-space over K is the set of n-tuples

An(K̄) = {P = (x1, . . . , xn) : xi ∈ K̄}.

The set of K-rational points of An is the set

An(K) = {P = (x1, . . . , xn) ∈ An : xi ∈ K}.

Let K̄[X1, . . . , Xn] =: K̄[X] be a polynomial ring in n variables. Let I ⊂ K̄[X]
be an ideal. A subset of An associated to I, defined by

VI := {P ∈ An : f(P ) = 0 for all f ∈ I}

is called an affine algebraic set.

Definition 8.2. Let V be an algebraic set. The ideal of V is given by

I(V ) := {f ∈ K̄[X] : f(P ) = 0 for all P ∈ V }.

We call an algebraic set defined over K if its ideal I(V ) can be generated by
polynomials in K[X].

Definition 8.3. An affine algebraic set V is called an affine variety if I(V ) is
a prime ideal in K̄[X].

If V is a variety, then the dimension of V , denoted dim(V ), is the transcendence
degree of K̄(V ) over K̄.

We can now give the definition of a projective space.

Definition 8.4. The projective n-space over K, denoted Pn, is the set of all
(n+ 1)-tuples

(x0, . . . , xn) ∈ An+1

such that at least one xi is nonzero, modulo the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn)

if there exists a λ ∈ K̄∗, such that xi = λyi for all i. Furthermore denote
by [x0, . . . , xn] the equivalence class {λx0, . . . , λxn) : λ ∈ K̄∗}. We call the
individual coordinates x0, . . . , xn homogeneous coordinates for the corresponding
point in Pn.
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We can use a similar definition for a projective algebraic set as we defined for
the affine case.

Definition 8.5. A polynomial f ∈ K̄[X] = K̄[X0, . . . , Xn] is homogeneous of
degree d if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn)

for all λ ∈ K̄. We call an ideal I ∈ K̄[X] homogeneous if it is generated by
homogeneous polynomials.

Finally, a projective algebraic set is called a projective variety if its homogeneous
ideal I(V ) is a prime ideal in K̄[X]. In this section, we assume the varieties to
be cut out by a finite system of homogeneous equations over Q and when we
call a variety irreducible, we will mean that the variety is geometrically reduced
and irreducible.

8.2 A basic counting function
We focus on counting rational points lying on a manifold itself. Let f ∈
Z[x1, . . . , xn] be a polynomial and

Sf := {x = (x1, . . . , xn) ∈ Zn\{0} : f(x) = 0}

the corresponding zero locus of non-zero integer solutions. We want to under-
stand how the counting function

N(f ;B) := #{x ∈ Sf : ||x|| ≤ B} (8.1)

behaves when B → ∞. The norm || · || : Rn → R≥0 is an arbitrary norm
here. Suppose f is a polynomial of degree d ≥ 1, then for the vectors that are
counted in (8.1), the values f(x) are of order Bd and some have exact order Bd.
Therefore, we would expect that the probability of a random chosen value of
f(x) that vanishes is of order B−d. Since we have a polynomial in n variables,
we expect that

N(f ;B) � Bn−d.

Unfortunately, this is not always the case, as local conditions sometimes imply
that N(f ;B) is identically zero. Some examples where this might happen can
be found in the first chapter of [6]. Therefore, we need some conditions on f
for which the heuristic is true. The following theorem, due to Birch [1], gives
an asymptotic formula for our counting function which supports the heuristic.

Theorem 8.6. Suppose f ∈ Z[x1, . . . , xn] is a non-singular homogeneous poly-
nomial of degree d in n > (d − 1)2d variables. Assume that f(x) = 0 has
non-trivial solutions in R and each p-adic field Qp. Then there is a constant
cf > 0 such that

N(f ;B) ∼ cfBn−d

as B →∞.

The proof uses the Hardy-Littlewood circle method. See Section 11 for a intro-
duction on this method.
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We can expand this idea by phrasing this counting function in terms of arbitrary
projective algebraic varieties V ⊂ Pn−1. Let x = [x] ∈ Pn−1(Q) be a projective
rational point with x ∈ Zn chosen in a way that gcd(x1, . . . , xn) = 1. We define
the height of x to be H : Pn−1(Q) → R>0, x 7→ ||x||. Given a locally closed
subset U ⊂ V , we define

NU (B) := #{x ∈ U(Q) : H(x) ≤ B}

for each B ≥ 1, to be a more generalised counting function. All known examples
of this counting functions are of the shape

NU (B) ∼ cBa(logB)b,

as B → ∞. Here a, b, c ≥ 0, a ∈ Q and b ∈ 1
2Z. The main difference between

NU (B) and (8.1) is that we now only look at primitive integer solutions. The
relation between the two counting functions is given in the equation

NV (B) =
1

2

∞∑
k=1

µ(k)N(f ; k−1B),

where µ(k) is the Möbius function. This is encountered by the fact that x and
−x represent the same point in Pn−1 and that we have the following identity
for the Möbius function: ∑

d|n

µ(d) =

{
1, n = 1
0, n ∈ Z>1

8.3 Upper bounds for NV (B)

Let V ⊂ Pn−1 be an irreducible projective variety of degree d again, whose ideal
is generated by homogeneous polynomials f(x) defined over the rationals. Then
the following holds.

Lemma 8.7. When V is a linear space, so when d = 1, we have the following
asymptotic formula.

NV (B) ∼ cVBdimV+1, (8.2)

for B →∞ and for cV an appropriate constant cV > 0.

Proof. When V ⊂ Pn−1 is a linear space, we can write V as a system of linear
equations 

a11x1 + . . .+ a1nxn = 0

. . .

am1x1 + . . .+ amnxn = 0

(8.3)

Without loss of generality, we can even assume V = Pm, so dimV = m. Then

NV (B) =
1

2
{x ∈ Zm+1\{0}, gcd(x0, . . . , xm) = 1, max |xi| ≤ B}.

We see that this number NV (B) is bounded above by a constant times Bm+1 =
BdimV+1. As we let B →∞, the number of solutions will grow asymptotically
with this bound, hence

NV (B) ∼ cVBdimV+1.
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In fact, NV (B) can never grow faster for arbitrary d than it does for linear
varieties. This is stated in the following theorem.

Theorem 8.8. Let V ⊂ Pn−1 be a variety of degree d. Then

NV (B)�d,n B
dimV+1.

A proof of this theorem can be found in [6]. We would like to know if we can
improve upon this upper bound. Since this bound is optimal if V contains a
linear component of maximal dimension defined over Q, we need to make some
assumptions. Furthermore, if V contains a linear divisor which is defined over
the rationals, then it contains a space W ⊂ V such that dimW = dimV − 1.
Hence

NV (B)�V BdimV .

In 2013, Serre [34] stated the following conjecture.

Conjecture 8.9. Let V ⊂ Pn be an irreducible projective variety of degree d ≥ 2
defined over Q. Then

NV (B)�V BdimV (logB)cV

for some constant cV > 0.

This is nowadays called the Dimension Growth Conjecture. There has been
written many papers, especially by Browning, Heath-Brown and Salberger, to
find ways to prove this conjecture. A listing of references of these papers can
be found in [6]. A slightly weaker version of this conjecture is now a theorem
proved by Salberger [31] and is stated as follows.

Theorem 8.10. Let V ⊂ Pn be an irreducible projective variety of degree d ≥ 2.
Then we have

NV (B)�ε,V BdimV+ε,

for any ε > 0.

8.4 Rational points close to a manifold
In a recent paper of Huang [18], the problem of estimating

NM(Q, η) := #{p
q
∈ Qn : 1 ≤ q ≤ Q,dist(p

q
,M) ≤ η/q}, (8.4)

withM⊂ Rn is a bounded submanifold of dimensionm, Q > 1 and η ∈ (0, 1/2),
p ∈ Zn, q ∈ Z and dist(·, ·) = infy∈M |pq −y|, is central. We can see this problem
as estimating how many points there are close to a manifold instead of points on
a manifold as is being done in the Dimension Growth Conjecture (Conjecture
8.9).
Let S be a compact hypersurface that is given in the Monge form

(x, f(x)), x = (x1, x2, . . . , xn) ∈ D, (8.5)

where D ⊂ Rn−1 is a connected bounded open set and f a smooth function on
D. Assume that for all x ∈ D, the Hessian matrix ∇2f(x) :=

{
∂2f

∂xi∂xj

}
satisfies

0 < C1 ≤ |det∇2f(x)| ≤ C2 (8.6)
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for some positive numbers C1, C2. This implies that the gradient

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xn−1

)
is a diffeomorphism (an isomorphism between smooth manifolds), for a suffi-
ciently small neighbourhood of any x ∈ D. We smooth the counting function
(8.4) with a weight function ω ∈ C∞0 (Rn−1) with supp(ω) ⊂ D. Let

Nω
S (Q, η) :=

∑
a∈Zn−1

q≤Q
||qf(a/q)||<η

ω

(
a

q

)
(8.7)

be the smoothened counting function. Then Theorem 2 in [18] states the fol-
lowing.

Theorem 8.11. If S is a hypersurface given by (8.5), that satisfies (8.6) and
∇f : D → ∇f(D) is a diffeomorphism, then

Nω
S (Q, η) =

2ω̂(0)

n
ηQn +OS,ω(En(Q)). (8.8)

Here E3(Q) = Q2 exp(c
√

logQ) and En(Q) = Qn−1(logQ)κ for n ≥ 4, where c
and κ are some positive constants.

This theorem is strongly related to the Dimension Growth Conjecture (Conjec-
ture 8.9). In fact, this theorem is motivated by the conjecture in a certain sense.
In the definition of Nω

S (Q, η) in (8.7), we consider η as the distance of points
close to the hypersurface S. By taking η very small, the main term will be
smaller than the error term. For η arbitrarily close to zero, we can consider the
error term as main term, which is Qn−1(logQ)κ as defined in Theorem 8.11. In
this way, we are in fact counting points on the hypersurface. This is completely
in line with the Dimension Growth Conjecture as the dimension of a hypersur-
face in Pn is n − 1. A less heuristic argument of this analogue can be found
in Section 7 of Huang’s article [18]. We will use Theorem 8.11 in the proof of
Theorem 1.2.

8.5 Bourgain versus Huang
The problem in Bourgain’s research in [5], focused on finding solutions for

|x2
1 + α2x

2
2 − α3x

2
3 − ξ| < δ.

Recall that the theorem he proved is stated in Theorem 1.1. We can reformulate
this problem to finding rational points near C, by homogenizing the equation and
taking ξ = 0. Thus, let C ⊂ R2 be the planar curve given by 1+α2y

2
2−α3y

2
3 = 0.

For planar curves, a similar result as Theorem 8.11 is proved by Huang in [17].
This is labeled Theorem 3 in his article and is stated as follows.

Theorem 8.12. Let f be a C2 function f : I → R that satisfies (8.6). Further-
more, let f has a Lipschitz continuous second derivative. Then, for any ε > 0,
0 < η ≤ 1

2 and integer Q > 1 we have

NC(Q, η) = |I|ηQ2 +O
(
η

1
2

(
log η−1

)
Q

3
2 +Q1+ε

)
.
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Here the implicit constant only depends on I, C1, C2, ε and the Lipschitz con-
stant, and is in particular independent of f , η and Q.

Note that the main term is larger than the error when η � Q−2/3. Let us use
this theorem for finding a bound for the quadratic form case, and compare this to
the bound that has been found by Bourgain. We need to check if C satisfies the
necessary conditions for Theorem 8.12. First, we have that det∇2f = −4α2α3,
where f(y2, y3) = 1 + α2y

2
2 − α3y

2
3 . Then |det∇2f | is definitely bounded by a

positive constant, since α2, α3 > 0. Since this is a constant, it is also Lipschitz
continuous. Let I = [ 1

4 , 1], so that we can compare it to the weight functions
used by Bourgain. We have η = δ

N , since |x1| ∼ N . Therefore we have

NC(N, δN
−1) =

3

4
δN +O(δ

1
2 (log(δ−1N))N

1
2 +N1+ε) (8.9)

for 0 < δ ≤ 1
2N . Hence, for η � Q−2/3, and for δN1/3 → ∞, we find at least

one solution for |x2
1 + α2x

2
2 − α3x

2
3| < δ. In other words, we find at least one

solution when

min
x∈Z3

maxi |xi|∼N

|x2
1 + α2x

2
2 − α3x

2
3| � N−1/3+ε for all ε > 0.

Although Huang found this groundbreaking result on counting rational points
on planar curves, comparing this to Theorem 1.1, the bound given by Theorem
8.12 is worse than Bourgain has found whether the Lindelöf hypothesis is being
assumed or not. Let us elaborate why this is the case. The conditions of The-
orem 8.12 are based on a planar curve in R2. This is a very general statement,
while the quadratic form of Bourgain is based on the fact that it is diagonalis-
able, which allows us to write it in the form Q(x) = x2

1 + α2x
2
2 − α3x

2
3, which

then makes it possible to split the function into two logarithms as is being done
in equation (2.2) in [5]. Here α3 is being separated and this is a crucial step
in the proof, which is only possible if we are considering diagonalisable forms.
This motivates our decision to follow the strategy of Bourgain in proving our
main theorem.

On the other hand, Huang’s theorem gives a stronger result, in the sense that
the bound holds for all α2 and α3, while Bourgain’s theorem is averaged over
α3, with a small exceptional set for which the bound may not hold. Therefore,
if the two bounds would be equal, the theorem of Huang is preferred.

As the structure gives us ways to compute better bounds for three variables
than the theorems of Huang do, we will follow Bourgain’s method. However, we
still use the results of Huang in our calculations, as Theorem 8.11 gives better
results for higher dimensions. When working in n = 4, his results are good
enough and will help us to compute better results.
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9 The main problem
We generalise the work of Bourgain [5] and Schindler [33] and prove similar
results for the inequality

|Gk(x)− α3x
l
3| < δ, (9.1)

where we recall from (1.4) that Gk(x) is a binary form of degree k, such that

Gk(x) = xk1 − α2,1x1x
k−1
2 − . . .− α2,kx

k
2

where α2,i ∈ R, 1 ≤ i ≤ k, not all equal to zero. Furthermore, let k, l ∈ Z fixed,
α3 ∈ R>0 and δ > 0. Our goal is to find non-trivial integer solutions of (9.1),
where x1, x2 range over a box of size N l and x3 over a box of size Nk. Here we
differ from the proofs of Bourgain and Schindler. These different sizes of x1, x2

and x3 are chosen to obtain a more well-readable bound, as the exponent of N
turns out to be more simplified than taking x1, x2, x3 all of size N . We let δ be
sufficiently large and grow with size N . We study this problem on average over
α3 ∈ [ 1

2 , 1].

Note that when

α2,1 = α2,2 = . . . = α2,k−1 = 0, α2,k 6= 0,

we obtain results for the ternary form

xk1 − α2x
k
2 − α3x

l
3.

This is the ternary form as considered in Theorem 1.2. Furthermore, for k even,

α2,1, . . . , α2,k/2−1, α2,k/2+1 . . . α2,k−1 = 0, α2,k/2, α2,k 6= 0,

we obtain results for

xk1 − α2,k/2x
k/2
1 x

k/2
2 − α2,kx

k
2 ,

which is the ternary form considered in Theorem 1.3.

The steps in the proof of Theorem 1.2 and Theorem 1.3 are as follows. We start
with proving results for the general inequality (9.1). We find a lower bound for
a certain counting function that will lead to the smallest solution for (9.1). We
split this counting function in two parts: the main part and the error term. By
showing the contribution of the error term is small, the lower bound of the main
part will be our solution. We prove results for three examples of the general
polynomial Gk(x).

Let 0 < ai < bi be real parameters for 1 ≤ i ≤ 3. We introduce three smooth
bump functions, i.e., smooth functions f : Rn → R that are compactly sup-
ported. Let 0 ≤ ωi ≤ 1, 1 ≤ i ≤ 3, be smooth bump functions satisfying ωi = 1
on [ 1

2ai,
3
4bi] and supp(ωi) ⊂ [ 1

4ai, bi].
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Furthermore, let(
1

4
a1

)k
−
k−1∑
i=1

α2,ib
i
1b
k−i
2 − α2,kb

k
2 > 0

1

2

(
1

4
a3

)l
>

(
1

4
a1

)k
− 1

4k

k−1∑
i=1

α2,ia
i
1a
k−i
2 − α2,k

(
1

4
a2

)k
(9.2)

bk1 −
k−1∑
i=1

α2,ib
i
1b
k−i
2 − α2,kb

k
2 > bl3

Roughly speaking, the first inequality is to make sure that the logarithm of
Gk(x1, x2) is well defined. The second is to bound the error term f4(α3) of
f2(α3), which will be introduced in Lemma 9.1. The last inequality is to make
sure that the solution set of the considered Diophantine inequality is nonempty.

Let 0 ≤ ω0 ≤ 1 be a smooth bump function satisfying ω0 = 1 on [−1, 1],
supp ω0 ⊂ [−2, 2] and ω0(t) = ω0(−t). Furthermore, define the weight function

ω(x) :=

3∏
i=1

ωi(xi).

Let N := (N l, N l, Nk) such that

ω
( x

N

)
= ω1

( x1

N l

)
ω2

( x2

N l

)
ω3

( x3

Nk

)
.

With this weight function, we bound x1, x2, x3 in order to control their size.
Consequently, we make sure system (9.2) holds.

We seek to find a lower bound for∑
x∈Z3

ω
( x

N

)
1[|Gk(x)−α3xl3|<δ]. (9.3)

Let
| log(Gk(x))− log(α3x

l
3)| < δ

Nkl

for α3 ∈ [ 1
2 , 1]. Then if xi

Ni
lies in the support of ωi, and when the system (9.2)

holds, we have∣∣∣elog(Gk(x)) − elog(α3x
l
3)
∣∣∣� elog(α3x

l
3) δ

Nkl
= α3x

l
3

δ

Nkl
.

Since α3x
l
3 is bounded by α3N

kl ≤ Nkl, we see that

|Gk(x)− α3x
l
3| �c1 δ,

where the constant c1 depends on α2 (since α2 is fixed and α3 averaged over
[ 1
2 , 1]) and the support of ω. Therefore, instead of finding a lower bound for
(9.3), we can find a lower bound for

f1(α3) =
∑
x∈Z3

ω
( x

N

)
1[| log(Gk(x))−log(α3xl3)|< δ

Nkl
] (9.4)
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instead. Similar to the proof of Section 2 in [33], we define T = 2Nkl

δ . Further-
more, we define the two following functions:

F1(t) :=
∑

x1,x2∈Z
ω1

( x1

N l

)
ω2

( x2

N l

)
eit log(Gk(x)) (9.5)

F2(t) :=
∑
x3∈Z

ω3

( x3

Nk

)
eit log(x3). (9.6)

Furthermore, let ω̂0 be the Fourier transform of ω0, i.e.,

ω̂0(x) =
1

2π

∫
R
ω0(t)e−itxdt.

We obtain the following lower bound for f1(α3).

Lemma 9.1. Let f1(α3) be as in (9.4) and define

f2(α3) :=
1

T

∫
R
ω̂0

(
t

T

)
F1(t)F2(lt)e−it log(α3)dt. (9.7)

Then f1(α3) ≥ f2(α3).

Proof. As ω1 is a real-valued function,

f2(α3) =
1

T

∫
R
ω̂0

(
t

T

)
F1(t)F2(lt)e−it log(α3)dt

=
1

T

∫
R
ω̂0

(
t

T

) ∑
x∈Z3

ω
( x

N

)
eit log(Gk(x))elit log(x3)e−it log(α3)dt

=
1

T

∑
x∈Z3

ω
( x

N

)∫
R
ω̂0

(
t

T

)
eit(log(Gk(x))−log(α3x

l
3))dt.

Write t = Tt′. We obtain

f2(α3) =
1

T

∑
x∈Z3

ω
( x

N

)∫
R
T ω̂0(t′)eiT t

′(log(Gk(x))−log(α3x
l
3))dt′.

Using the inverse Fourier transform (see Section 3.1), we find

f2(α3) =
∑
x∈Z3

ω
( x

N

)
ω0(T (log(Gk(x))− log(α3x

l
3)).

As ω0 = 1 on the interval [−1, 1], equivalently this bump function is equal to
one if

|T (log(Gk(x))− log(α3x
l
3)| ≤ 1,

which means
| log(Gk(x))− log(α3x

l
3)| ≤ 1

T
=

1

2

δ

Nkl
.

Therefore, f2(α3) ≤ f1(α3).
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Next, we split ω̂0( tT ) as ω̂0( t√
N

) + (ω̂0( tT )− ω̂0( t√
N

)). We call the first contri-
bution f3(α3) and the second f4(α3). Then

f3(α3) =
1

T

∑
x∈Z3

ω
( x

N

)∫
R
ω̂0

(
t√
N

)
eit(log(Gk(x))−log(α3x

l
3))dt

and with the change of variables t =
√
Nt′, this is equal to

√
N

T

∑
x∈Z3

ω
( x

N

)
ω0(
√
N(log(Gk(x))− log(α3x

l
3))).

Similar to the calculations in the proof of Lemma 9.1, we obtain

f3(α3) ≥
√
N

T

∑
x∈Z3

ω
( x

N

)
1[| log(Gk(x))−log(α3xl3)|<N−1/2]. (9.8)

Let us estimate this bound heuristically. First, note that (9.8) implies the lower
bound

f3(α3) ≥
√
N

T

∑
x∈Z3

ω
( x

N

)
1[|Gk(x)−α3xl3|<c2Nkl−1/2]

with c2 > 0 small enough, depending on α3 and the support of ω.

As x1, x2 ∼ N l, x3 ∼ Nk, we expect Gk(x) − α3x
l
3 ∼ Nkl, or equivalently we

expect Gk(x)− α3x
l
3 to lie in the interval [−cNkl, cNkl] for some positive con-

stant c. We expect the number of vectors x that lie in the support of ω to be
of size N2l+k. Therefore, the distance between two solutions of Gk(x) − α3x

l
3

would be of size NklN−2l−k = Nkl−2l−k. A visualisation of this argument can
be found in Figure 1.

Figure 1: Visualisation of distance between two solutions of Gk(x)− α3x
l
3. We

assume c, c′ > 0.

The number of solutions of the counting function∑
x∈Z3

ω
( x

N

)
1

[|Gk(x)−α3xl3|<c2N
kl− 1

2 ]

therefore will be of size Nkl−1/2N2l+k−kl = N2l+k−1/2. Multiplying this with
the factor

√
NT−1, we expect that

f3(α3)� N2l+kT−1 � δN2l+k−kl.

We can prove this lower bound using the following general lemma.
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Lemma 9.2. The number of k-th powers in the interval (a, b] = (a, a + h],
assuming a > h, is h

ka
− k−1

k +O(h2 + 1). In other words,

#{mk ∈ (a, a+ h]} =
h

k
a−

k−1
k +O(h2 + 1).

Moreover, the minimum value of h such that (a, a + h] has at least one k-th
power is equal to ka

k−1
k .

Proof. We have

#{mk ∈ (a, b]} = #{mk ≤ b} −#{mk ≤ a}
= #{m ≤ b1/k} −#{m ≤ a1/k}
= b1/k − a1/k +O(1)

= (a+ h)1/k − a1/k +O(1)

= a1/k +
h

k
a−

k−1
k +O(h2)− a1/k +O(1)

=
h

k
a−

k−1
k +O(h2 + 1).

The second statement follows directly from the first.

Fix x1 and x2 in the support of ω1(x1/N
l) and ω2(x2/N

l). Let α3 ∈ [ 1
2 , 1] again.

In order to prove our prediction of the lower bound for f3(α3), we count the
number of solutions of

|Gk(x)− α3x
l
3| < c2N

kl−1/2,

which is the equivalent to counting the number of l-th powers that occur in

[Gk(x)− c2Nkl−1/2, Gk(x) + c2N
kl−1/2].

Assume x3 to lie in the support of ω3(x3/N
k). This means xl3 is of size Nkl.

However, this does not imply that xl3 has to be a kl-th power itself; it only has
to be an l-th power. Using Lemma 9.2, the number of l-th powers is found to
be � Nkl−1/2 · Nkl·(1−l)/l = Nk−1/2. Hence there are at least Nk−1/2 choices
for x3 that satisfy the inequality. We have

f3(α3)�
√
N

T
N2l+k−1/2 � δN2l+k−kl.

Our prediction can now be stated as lemma.

Lemma 9.3. For every α3 ∈ [ 1
2 , 1] we have f3(α3) � δN2l+k−kl, where the

implied constant only depends on α2, the support of ω and the system (9.2).

When considering f3(α3) as the main term of the counting function f2(α3), we
see, that |Gk(x)− α3x

l
3| < δ has at least one solution, if δ � Nkl−2l−k.

We can see (9.8) as a counting function for the Diophantine inequality

α3x
l
3

Gk(x)
= 1 +O(N−1/2),
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where x1 ∼ N l, x2 ∼ N l and x3 ∼ Nk. Note

| log(Gk(x))− log(α3x
l
3)| < N−1/2

implies that ∣∣∣∣ α3x
l
3

Gk(x)

∣∣∣∣ < eN
−1/2

= 1 +N−1/2 + . . .

by writing out the Taylor expansion. We obtain

α3x
l
3 = (Gk(x)) +O((Gk(x))N−1/2)

= (Gk(x)) +O(Nkl ·N−1/2)

and conclude
Gk(x)− α3x

l
3 = O(Nkl−1/2).

The other term in the counting function, f4(α3), can be seen as an error term.
We will estimate this term as a function of α3 by

Meas1 := meas{α3 ∈ [
1

2
, 1] : |f4(α3)| ≥ (1/2)c3δN

2l+k−kl}. (9.9)

Here c3 only depends on α2 and the support of ω. The factor 1
2 is to make

sure the error term will not outgrow f3(α3). Recall Chebyshev’s inequality in
Theorem 6.7. Take X = [ 1

2 , 1], f(x) = f3(x), g(t) = t2, and t = 1
2c3δN

2l+k−kl.
We obtain

Meas1 ≤
4N2kl−4l−2k

c23δ
2

∫ 1

1
2

|f4(α3)|2dα3.

Remark 9.4. From here on, we assume δ ≤ Nkl−1/2. If not, then δ > Nkl−1/2

implies T � Nkl/Nkl−1/2 which means |Gk(x) − α3x
l
3| < 1/T always has a

solution.

We prove three lemmas regarding the smooth bump function ω0.

Lemma 9.5. We have ∣∣∣∣ω̂0

(
t

T

)
− ω̂0

(
t√
N

)∣∣∣∣ ≤ c4
for some constant c4 > 0.

Proof. We note two things about ω0. First of all, we have |ω0(t)| ≤ 1 for t ∈ R.
Second, the support of ω0 lies in [−2, 2]. Hence

|ω̂0(t)| =
∫
R
ω0(x)e−itxdx =

∫ 2

−2

ω0(x)e−itxdx

and so

|ω̂0(t)| ≤
∫ 2

−2

|e−itx|dx = c

for some positive constant c as the integrand and interval are bounded. Hence
the difference of the two is also bounded by a constant.
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Lemma 9.6. Let t be small, say |t| < N1/10. Then∣∣∣∣ω̂0

(
t

T

)
− ω̂0

(
t√
N

)∣∣∣∣� t2

N
.

Proof. The Maclaurin expansion of ω̂0

(
t
T

)
is

ω̂0

(
t

T

)
= ω̂0(0) + ω̂0

′
(0)

t

T
+

1

2
ω̂0
′′
(0)

(
t

T

)2

+ . . .

Note that the first derivative of ω0 is equal to zero for t = 0, as ω0 = 1 at [−1, 1].
As ω̂0 is concave up, the second derivative is positive. We obtain∣∣∣∣ω̂0

(
t

T

)
− ω̂0

(
t√
N

)∣∣∣∣ ≤ ∣∣∣∣ω̂0

(
t

T

)
− 1

∣∣∣∣− ∣∣∣∣ω̂0

(
t√
N

)
− 1

∣∣∣∣
�
(
t

T

)2

−
(

t√
N

)2

�
(
t

T

)2

The last inequality follows as t is small and δ ≤ Nkl−1/2.

Lemma 9.7. For t large, say |t| > N1/10, we have∣∣∣∣ω̂0

(
t

T

)
− ω̂0

(
t√
N

)∣∣∣∣� (
T

|t|

)10

.

Here the power 10 is an arbitrary value, i.e., one could take any value N ≥ 0.

This is a result of the following theorem on oscillatory integrals [37].

Theorem 9.8. Let

I(λ) =

∫ b

a

eiλφ(x)ψ(x)dx,

where φ is a real valued smooth function, ψ a complex-valued and smooth func-
tion and with compact support in (a, b). Let φ′(x) 6= 0 for all x ∈ [a, b]. Then

I(λ) = O(λ−N ) as λ→∞

for all N ≥ 0.

Proof. This proof uses an integration by part argument. Note (eiλφ(x))′ =
(iλφ′(x))eiλφ(x). We define the differential operator D on a function f as

Df(x) = (iφ′(x))−1 df

dx
.

Then λ−1D(eiλφ(x)) = eiλφ(x). Since φ′(x) 6= 0 by assumption, this differential
operator D is well-defined. Since the differential operator is antisymmetric, its
transpose (denoted by tD) is given by

tDf(x) =
−d
dx

(
f

iφ′(x)

)
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Integration by parts leads to∫ b

a

eiλφ(x)ψ(x)dx =

∫ b

a

D(eiλφ(x))ψ(x)dx

=
eiλφ(x)ψ(x)

iλφ′(x)

∣∣∣b
a

+

∫ b

a

λ−1eiλφ(x)(tD)(ψ(x))dx.

By the support of ψ(x), the first term on the right hand side is equal to zero.
Repeating this argument N times, we find

I(λ) = λ−N
∫ b

a

λ−1eiλφ(x)(tD)N (ψ(x))dx.

Since the absolute value of the resulting integral is finite, we find

|I(λ)| � |λ|−N .

We return to the proof of Lemma 9.7.

Proof of Lemma 9.7. Using Theorem 9.8 with [a, b] = [−2, 2], ψ(x) = ω0(x) and
φ(x) = −x, we see

ω̂0(t) =

∫ 2

−2

ω0(x)e−itxdx

is an oscillatory integral. Also φ′(x) = −1. Therefore, |ω̂0(t)| � |t|−N , and
since t is large,∣∣∣∣ω̂0

(
t

T

)
− ω̂0

(
t√
N

)∣∣∣∣ ≤ ∣∣∣∣ω̂0

(
t

T

)∣∣∣∣� (
T

|t|

)10

.

We summarise these three lemmas by∣∣∣∣ω̂0

(
t

T

)
− ω̂0

(
t√
N

)∣∣∣∣ ≤ c5 min

(
1,
t2

N
,

(
T

|t|

)10
)
. (9.10)

Here c5 is a positive constant depending on N and the support of ω0. Let

I1 :=

∫ 1

1/2

|f4(α3)|2dα3.

We find

|f4(α3)|2 =

∣∣∣∣ 1

T

∫
R

(
ω̂0

(
t

T

)
− ω̂0

(
t√
N

))
F1(t)F2(lt)e−it log(α3)dt

∣∣∣∣2
≤ 1

T 2

∫
R

∣∣∣∣ω̂0

(
t

T

)
− ω̂0

(
t√
N

)∣∣∣∣2 |F1(t)|2|F2(lt)|2|e−it log(α3)|2dt

≤ c25
T 2

∫
R

min

(
1,

t4

N2
,

(
T

|t|

)20
)
|F1(t)|2|F2(lt)|2|e−it log(α3)|2dt.
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With change of variables β = log(α3),

I1 =

∫ 1

1
2

|f4(α3)|2dα3 =

∫ | log( 1
2 )|

0

|f4(eβ)|2dβ.

Let

H(t) :=
c5
T

min

(
1,
t2

N
,

(
T

|t|

)10
)
F1(t)F2(lt).

Recall Parseval’s identity as stated in Theorem 3.6. Using this, we obtain

I1 ≤
∫
R

∫
R
|H(t)e−itβdβ|2dt =

∫
R
|Ĥ(t)|2dt =

∫
R
|H(t)|2dt.

Hence

I1 ≤
c25
T 2

∫
R

min

(
1,

t4

N2
,

(
T

|t|

)20
)
|F1(t)|2|F2(lt)|2dt.

For sufficiently small t, say |t| ≤ N1/10, the minimum will be

min

(
1,

t4

N2
,

(
T

|t|

)20
)

=
t4

N2
.

However, for |t| > N1/10, this term will never be the minimum. Therefore, we
split the integral and obtain

I1≤
c25
T2

(∫
|t|≤N1/10

t4

N2 |F1(t)|2|F2(lt)|2dt+
∫
|t|>N1/10 min

(
1,( T|t| )

20
)
|F1(t)|2|F2(lt)|2dt

)
.

Note that for small t, we can bound |F1(t)|2 by N4l and |F2(lt)|2 by N2k. In
this way we find

I1 ≤ c6δ2N−3/2−2kl+4l+2k +
c25
T 2

∫
|t|>N1/10 min

(
1,( T|t| )

20
)
|F1(t)|2|F2(lt)|2dt.

Define I2 as

I2 :=
4N2kl−4l−2k

c23δ
2

· c
2
5

T 2

∫
|t|>N1/10

min

(
1,

(
T

|t|

)20
)
|F1(t)|2|F2(lt)|2dt

=
c25
c23
N−4l−2k

∫
|t|>N1/10

min

(
1,

(
T

|t|

)20
)
|F1(t)|2|F2(lt)|2dt. (9.11)

We find
Meas1 ≤ c7N−3/2 + I2.

for some constant c7 > 0. Since c7N−3/2 is already small enough for the pur-
poses of this estimation, we focus on estimating I2. Define

I3 :=

∫
R

min

(
1,

(
T

|t|

)10
)
|F1(t)|2dt.
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Then I2 is bounded by

I2 � N−4l−2k max
|t|>N1/10

(
min

(
1,

(
T

|t|

))
|F2(t)|

)2

I3. (9.12)

Furthermore, let

I(y) :=

∫
R

min

(
1,

(
T

|t|

)10
)
eitydt.

This can be bounded by

|I(y)| ≤
∫
R

min

(
1,

(
T

|t|

)10
)
dt ≤ 2T +

∫
|t|>T

(
T

|t|

)10

dt� T.

Furthermore, for y 6= 0, Theorem 9.8 implies

I(y) =

∫
|t|≤T

eity +

∫
|t|>T

(
T

|t|

)10

eitydt� 1

|y|
.

We conclude
|I(y)| � min

(
1

|y|
, T

)
. (9.13)

We continue on bounding I3. Let y = (y1, . . . , y4) and let

ω̃(y) := ω1(y1)ω2(y2)ω1(y3)ω2(y4).

Then

I3 =

∫
R

min

(
1,

(
T

|t|

)10
)∣∣∣∣∣∣

∑
x1,x2∈Z

ω1

( x1

N l

)
ω2

( x2

N l

)
eit log(Gk(x))

∣∣∣∣∣∣
2

dt

=

∫
R

min

(
1,

(
T

|t|

)10
) ∑

y∈Z4

ω̃
( y

N l

)
eit(log(Gk(y1,y2))−log(Gk(y3,y4)))dt

�
∑
y∈Z4

ω̃
( y

N l

)
min

(
1

| log(Gk(y1, y2))− log(Gk(y3, y4))|
, T

)
.

Here (9.13) is used in the last inequality. By the system (9.2), both logarithms
are real, i.e., Gk(y1, y2) > 0 and Gk(y3, y4) > 0. By ω̃, the values for y1, y2

are bounded above by b1, b2 respectively and bounded from below by 1
4a1,

1
4a2

respectively. Hence the smallest possible value for Gk(y1, y2) is at least(
1

4
a1

)k
−
k−1∑
i=1

α2,ib
i
1b
k−1
2 − α2,kb

k
2 ,

which is positive by the first inequality in (9.2). The same holds for Gk(y3, y4).

Furthermore, regarding the support of ω̃, each yi, i = 1, . . . , 4, is bounded by a
constant times N l. Hence

| log(Gk(y1, y2))− log(Gk(y3, y4))| � logN.
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We define

I4 := U
∑
y∈Z4

ω̃
( y

N l

)
1[| log(Gk(y1,y2))−log(Gk(y3,y4))|< 1

U ] (9.14)

for 1
logN � U ≤ T . Define

∆ := log(Gk(y1, y2))− log(Gk(y3, y4)).

We split I3 in two parts; ∆ < 1
T and ∆ ≥ 1

T . For the latter part, we use dyadic
decomposition in order to find an expression for it. Let k ≥ 0. We find

I3 �
∑
y∈Z4

ω̃
( y

N l

)
min

(
1

|∆|
, T

)
= T

∑
y∈Z4

ω̃
( y

N l

)
1|∆|< 1

T
+

∑
U=2−kT

U
∑
y∈Z4

1
2U<∆< 1

U

ω̃
( y

N l

)
1|∆|< 1

U

= I4(T ) +
∑

U=2−kT

I4(U).

Note 1
logN � 2−kT ≤ T is equivalent to 2k < T logN � Nα for some α > 0.

Hence

I3 � logN sup
1

logN�U≤T
I4(U).

Furthermore, I4 can be bounded by

I4(U) ≤ U
∑
y∈Z4

ω̃
( y

N l

)
1|Gk(y1,y2)−Gk(y3,y4)|�Nkl/U (9.15)

by the same reasoning as for f1(α3) in the beginning of this section.

We would like to bound the last expression. One way is to express y1 in terms
of an interval which concerns y2, y3, y4. In this way, we can try to find a bound
for an expression in the latter three variables, which gives us more insight in
the bound.

Define
G(y) := Gk(y1, y2)−Gk(y3, y4). (9.16)

Assume there exists a solution y0 = (y0
1 , y

0
2 , y

0
3 , y

0
4) for

|G(y)| � Nkl

U
,

say
G(y0) = ε

for some small ε > 0. As already mentioned in Section 7, in order to use the
Implicit Function Theorem, we can write G(y0)− ε = 0 and continue with the
latter equality. For simplicity, we assume G(y0) = 0.
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Since Gk is a binary form, G(y) is continuously differentiable in an open set
containing y0. By assumption, det(D4(G(y)) 6= 0. Hence by the Implicit Func-
tion Theorem 7.1, there exists an open set A ⊂ R3 containing (y0

2 , y
0
3 , y

0
4) and

an open set B ⊂ R containing y0
1 , such that for each (y2, y3, y4) ∈ A there exists

a unique function Φ(y2, y3, y4) = y1 ∈ B, for which we have

G(Φ(y2, y3, y4), y2, y3, y4) = 0.

This function is also differentiable.

In conclusion, by the Implicit Function Theorem, we can express y1 as a func-
tion of y2, y3, y4 if the derivative is not equal to zero. However, in order to
use the method introduced by Schindler [33], we need to make sure that this
function is smooth on a connected open bounded set D, and which has nonzero
Hessian for all y ∈ D. A natural question arises: when is the Hessian of such a
function nonzero? How can we decide whether we can express y1 as a function
of y2, y3, y4 with nonzero Hessian in a certain domain?

We don’t have an immediate answer to these questions. Luckily, there are
some examples of G(y), for which it is not unknown how to express y1 in terms
of y2, y3, y4. In the next subsections, we explore three examples. With these
examples, we will get more acquainted with G(y) and find explicit bounds for
the expression I4(U) in (9.15).

9.1 Proof of Theorem 1.2
We start with finding an upper bound of I4(U) for the inequality

|xk1 − α2x
k
2 − α3x

l| < δ, (9.17)

with α2 ∈ R, l, k ∈ Z, α3 ∈ R>0 and δ > 0. This inequality is equivalent to
equation (9.1) with Gk(x) = xk1 − α2x

k
2 . We follow the work of Schindler [33],

who uses recent work of Huang [18]. We rewrite inequality (9.15) in terms of
the inequality (9.17) and find

I4(U) ≤ U
∑
y∈Z4

ω̃
( y

N l

)
1|yk1−α2yk2 +yk3−α2yk4 |�Nkl/U .

We distinguish two different cases; small and large values of U . For small values
of U , say U � N l, we fix y2, y3 and y4 in the support of ω1. Using Lemma 9.2,
the number of choices for y1 will be � Nkl

U (Nkl)−(k−1)/k = N l

U . Therefore,

I4(U)� UN3lN
l

U
� N4l. (9.18)

For large values of U , so for c7N l ≤ U ≤ T , where c7 is a sufficiently large
positive constant. We apply a theorem of Huang [18]. Recall the notation and
theorems from Section 8. Adjusting Section 3 of Schindler’s work [33] to our
assumptions and findings, we find the following bound for I4(U), considering c7
sufficiently large.

I4(U) ≤ U
∑

(y2,y3,y4)∈Z3

1
4a1N

l≤y3≤b1N l

||(yk3 +α2(yk2−y
k
4 )1/k||�N l/U

ω2

( y2

N l

)
ω2

( y4

N l

)
. (9.19)
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Then, by defining the function

f := (1 + α2z
k
2 − α2z

k
4 )1/k

for z2, z4 ∈ D where D := [(1/4)a2b
−1
1 , 4b2a

−1
1 ]2, Schindler showed that the

Hessian of f is strictly negative on D. She defined a new smooth weight function
0 ≤ ω4 ≤ 1 such that supp(ω4) ⊂ [(1/4)a2b

−1
1 , 4b2a

−1
1 ]. We adopt this definition

and find
I4(U) ≤ U

∑
(y2,y4)∈Z2

1≤y3≤b1N l

||y3f(y2/y3,y4/y3)||�Nl

U

ω4

(
y2

y3

)
ω4

(
y4

y3

)
.

We can use Theorem 8.11 now, with η � N l/U , so that η < 1/2 when c7 is
sufficiently large, and take Q = b1N

l. Deduce that

I4(U)� U(ηN3l +N2l+ε). (9.20)

As
I3 � logN sup

1
logN�U≤T

I4(U),

we obtain a bound for I3 which is given in the following proposition.

Proposition 9.9. Assume that (9.2) holds. Then we have

I3 �ε N
4l+ε +

Nkl+2l+ε

δ

for any ε > 0.

We return to the bound on I2 in (9.12). We seek to obtain a bound for F2(t).
Recall the definition of the Mellin transform given in Section 3. Let

ω̌3(s) =

∫ ∞
0

ω3(x)xs−1dx

be the Mellin transform of ω3. We write

F2(t) =
∑
n∈Z

ω3

( n

Nk

)
eit logn =

∑
n∈Z

ω3

( n

Nk

)
nit.

Letting an = nit, and

ξ(s) =
∑
n≥1

ann
−s =

∑
n≥1

nit−s = ζ(s− it)

where ζ(s) is the Riemann zeta function, we use Theorem 3.10 with φ(x) =
ω3(x/Nk). We find

F2(t) =
∑
n≥1

nitω3

( n

Nk

)
=

1

2πi

∫ c+i∞

c−i∞
ξ(s)ω̌3(s)Nksds

=
1

2πi

∫ c+i∞

c−i∞
ζ(s− it)ω̌3(s)Nksds,
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provided that ξ(s) converges absolutely for Re(s) = c. We know from Section 5
that ζ(s) converges absolutely for Re(s) > 1, so if we let c = 2 we obtain

F2(t) =
1

2πi

∫ 2+i∞

2−i∞
ζ(s− it)ω̌3(s)Nksds. (9.21)

Write s = σ + it. We rewrite ω̌3 as

ω̌3(σ + it) =

∫ ∞
0

ω3(x)xσ+it−1dx

=

∫ ∞
0

ω3(x)xσ−1eit log xdx.

By letting λ = t, φ(x) = log x, which is real in the support of ω3, and ψ(x) =
ω3(x)xσ−1 which has compact support in ( 1

4a3, b3), we can apply Theorem 9.8.
Hence

ω̌3 = O(t−N )

for all N ≥ 0, as t → ∞. By taking N large enough, we see that on vertical
lines (i.e., letting t → ∞), ω̌3 has rapid decay. Now we can bound the contour
integral in (9.21) by iT and shift the line of integration to Re s = 1

2 . Inside
this contour, we find one pole at 1 + it from ζ. A visualisation of this contour
is given in Figure 2.

Figure 2: Contour of integration

From Section 4, we know the simple pole of ζ has residue 1. This gives a
contribution

ω̌3(1 + it)Nk(1+it)

to F2(t), but by the rapid decay of ω̌3, this is negligible for |t| > N1/10. There-
fore, letting s = σ + iy we can bound F2(t) by

F2(t)� (Nk)1/2

∫ ∞
−∞

|ζ( 1
2 + i(y − t))|
1 + |y|10

dy. (9.22)
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Here the denominator comes from taking N = 10 in applying Theorem 9.8 for ω̌3

for large values of y, and bounding by 1 for small values of y. Hence, assuming
the Lindelöf hypothesis (see Section 5.2) this is bounded by� (Nk)1/2(1+ |t|)ε.
Therefore,

I2 � N−4l−2kNk+ε

(
N4l+ε +

Nkl+2l+ε

δ

)
= N−k+ε +

Nkl−2l−k+ε

δ
.

Returning to Meas1, we see

Meas1 � N−3/2 +N−k+ε +
Nkl−2l−k+ε

δ
.

In conclusion, we have proved the following.

Proposition 9.10. Let α2 > 0 and k, l ∈ Z, where k 6= l, be fixed. Let N
be a large real parameter and assume δ > Nkl−2l−k. Assuming the Lindelöf
hypothesis for the Riemann zeta function, the inequality

|xk1 − α2x
k
2 − α3x

l
3| < δ

has a non-trivial solution where |x1|, |x2| ∼ N l, |x3| ∼ Nk, for all α3 ∈ [1/2, 1],
excluding an exceptional set of measure at most

� N−k+ε +
Nkl−2l−k+ε

δ
.

This leads to Theorem 1.2 as follows. Let δ > Nkl−2l−k+ε. Then

N−k+ε +
Nkl−2l−k+ε

δ
< N−k+ε + 1.

By letting N = 2ν , ν ∈ N large enough, we obtain∑
N=2ν

N−k+ε +
Nkl−2l−k+ε

δ
<
∑
N=2ν

N−k+ε + 1 <∞

as k ≥ 3 and 2νε converges. We are now in the position to apply the Borel-
Cantelli Lemma 6.9 for a discrete countable collection {Aν}ν∈N, where

Aν = (2ν)−k+ε + (2ν)kl−2l−k+εδ−1.

Then for almost all α3 ∈ [ 1
2 , 1] the inequality

|xk1 − α2x
k
2 − α3x

l
3| < (2ν)kl−2l−k+ε

holds. In order to be able to apply the lemma for all N , we let N range
from 2ν < N ≤ 2ν+1. If the inequality holds for 2ν , it certainly holds for
2ν < N ≤ 2ν+1 as kl − 2l − k > 0. Therefore, we conclude that for almost all
α3 ∈ [ 1

2 , 1] and δ = Nkl−2l−k+ε we have

|xk1 − α2x
k
2 − α3x

l
3| < Nkl−2l−k+ε.

This is exactly part (i) in Theorem 1.2.
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9.1.1 Unconditional case

As the Lindelöf Hypothesis is not proved yet, some things about the uncondi-
tional case need to be mentioned. In this case, we have |ζ( 1

2 + it)| � (1 + |t|) 1
6 ,

see Section 5. We obtain the bound F2(t)� N
1
2k|t|1/6. We find

I2 � N−4l−2kNk

(
Nkl

δ

) 1
3
(
N4l+ε +

Nkl+2l+ε

δ

)
� N

1
3kl−k+εδ−

1
3 +N

4
3kl−2l−k+εδ−

4
3 .

Hence
Meas1 � N−

3
2 +N

1
3kl−k+εδ−

1
3 +N

4
3kl−2l−k+εδ−

4
3 .

This leads to the following proposition.

Proposition 9.11. Let α2 > 0 and k, l ∈ Z, where k 6= l, be fixed. Let N be
a large real parameter and assume Nkl−2l−k < δ ≤ Nkl−1/2. Unconditionally,
the inequality

|xk1 − α2x
k
2 − α3x

l
3| < δ

has a non-trivial solution where |x1|, |x2| ∼ N l, |x3| ∼ Nk, for all α3 ∈ [1/2, 1],
excluding an exceptional set of measure at most

� N
1
3kl−k+εδ−

1
3 +N

4
3kl−2l−k+εδ−

4
3 .

Using the Borel-Cantelli Lemma 6.9 and dyadic composition would lead to a
weaker bound than the one in Theorem 1.2. For a stronger bound, we use
the ideas of Bourgain in [5], Section 3 and Schindler in [33], Section 4. As
we assumed the size of x1, x2 to be different than in [33], we rephrase Lemma
4.2 and 4.3 of the Note in order to use it for our purposes. Then Lemma 4.2
becomes

Lemma 9.12. Let F1(t) be defined as in (9.5) and let T > N2l. Assume that
equation (9.2) holds. Then

Meas{|t| ≤ T : |F1(t)| > λ} � TN2l+ελ−2.

Going through the proof of Lemma 4.2 in [33] should convince the reader that
this lemma holds in our case as well. The second lemma, wich is Lemma 4.3 in
[33], is rephrased as follows.

Lemma 9.13. Assume that |t| > N2l and assume the system (9.2) holds. Then

|F1(t)| � N l|t|1/3+ε.

The proof uses ideas of Titchmarsh [42] on bounding partial sums of the Epstein
zeta function. This strategy uses Weyl differencing (see Section 6) and second
derivative tests. As we defined our weight functions and the system of inequal-
ities (9.2) differently from [33], we rewrite the sum in the proof of Lemma 4.3
as

S(X1, X2) :=
∑

( 1
4a1)kN l≤x1<X1

( 1
4a2)kN l≤x2<X2

eit log(xk1−α2x
k
2 ) � N l|t| 13 +ε.
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By the first equation in the system (9.2), we have xk1 − α2x
k
2 ∼ Nkl. By the

same arguments as in the proof of Lemma 4.3 of [33], we find |t| < N3l and
(X1 − ( 1

4a1)kN l)(X2 − ( 1
4a2)kN l) � N l|t| 13 +ε. Set ρ := bN l|t|− 1

3 c. As we are
looking at the same binary form of degree k, all properties for f, g and G in the
proof of the lemma will hold for our case as well. We find

S(X1, X2)� N2l

ρ
+
N2l

ρ

(
ρ−1∑
λ=1

ρ2t1+ε

N l

) 1
2

� N2l

ρ
+N l/2|t|1+ερ1/2 � N l|t| 13 +ε.

Here λ = max{µ, ν} and µ, ν were used as variables for the Weyl differencing.
We use these two lemmas to prove the following proposition.

Proposition 9.14. Let α2 > 0 and l, k ≥ 3, where k 6= l, be fixed. Let N be a
large real parameter and assume Nkl−2l−k < δ ≤ Nkl−1/2. The inequality

|xk1 − α2x
k
2 − α3x

l
3| < δ

has a non-trivial solution where |x1|, |x2| ∼ N l, |x3| ∼ Nk, for all α3 ∈ [1/2, 1],
excluding an exceptional set of measure at most

� Nkl−k− 4
3 l+εδ−1 +N

10
9 kl−

2
3 l−2k+εδ−

10
9 +N

5
6kl−2k+εδ−

5
6 .

One more lemma is needed for the proof. We state the lemma without proof.

Lemma 9.15 (Lemma 1 in [5]). Consider the Dirichlet polynomial

S(t) =
∑
n∼N

ann
it with |an| ≤ 1.

Then, for T > N ,

Meas[|t| < T ; |S(t)| > V ]� N ε(N2V −2 +N4V −6T ).

Using these three lemmas and the idea of Section 4 in [5], we are in the position
to prove the proposition.

Proof of Proposition 9.14. Recall the definition of I2 in (9.11),

I2 =
c24
c23
N−4l−2k

∫
|t|>N1/10

min

(
1,

(
T

|t|

)20
)
|F1(t)|2|F2(lt)|2dt.

We subdivide the integral into∫
|t|>N1/10

=

∫
N1/10≤|t|≤N2l

+

∫
|t|>N2l

.

As F2(t) could be bounded by� N
1
2k|t| 16 , recalling the bound (9.12) for I2 and

the bound for I3 in Proposition 9.9, we bound the first integral as∫
N1/10≤|t|≤N2l

=

∫
N1/10≤|t|≤N2l

min

(
1,

(
T

|t|

)20
)
|F1(t)|2|F2(lt)|2dt.

� max
N1/10≤|t|≤N2l

(
min

(
1,

(
T

|t|

))
|F2(t)|

)2

I3

�
(
N

1
2k+ 1

3 l
)2
(
N4l+ε +

Nkl+2l+ε

δ

)
� Nk+ 14

3 l+ε +
Nkl+k+ 8

3 l+ε

δ
. (9.23)
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Let I = [N2l, T ] or of the form [T0, T0 + T ], where T0 ≥ T . By the high power
in min(1, ( T|t| )

10) it suffices to only consider a single interval I. As in Section 4
of [5], we introduce two level sets

Ωλ = {|t| ∈ I; |F1(t)| ∼ λ}

and
Ω′V = {|t| ∈ I; |F2(t)| ∼ V }.

Lemma 9.12 implies |Ωλ| � TN2l+ελ−2. Comparing this to Lemma 9.13, we
find λ can be restricted to λ ≤ λ∗ = N lT

1/3+ε
0 . Letting

S(t) = F2(t)2 =
∑
n∼N2l

ann
it

in Lemma 9.15, where we replace V with V 2, and where 0 ≤ |an| � N ε, we find

|Ω′V | � N ε(N4lV −4 +N8lV −12T ).

We obtain ∫
|t|>N2l

=

∫
|t|>N2l

min

(
1,

(
T

|t|

)20
)
|F1(t)|2|F2(lt)|2dt

� max
|t|>N2l

(
min

(
1,

(
T

|t|

))
|F2(t)|

)2

I3

� N ε max
λ≤λ∗,V

(λ2V 2) |Ωλ ∩ Ω′V |.

Comparing the bounds for |Ωλ| and |Ω′V |, we find

λ2V 2|Ωλ ∩ Ω′V | � N ε min(TN2lV 2, N4lV −2λ2 + TN8lV −10λ2).

If the minimum is TN2lV 2, then the inequality TN2lV 2 ≤ TN8lV −10λ2 implies
V 2lλ1/3 and thus

TN2lV 2 ≤ TN3lλ
1
3 ≤ TN3lλ

1
3
∗ .

If the minimum is N4lV −2λ2 + TN8lV −10λ2, then the inequality N4lV −2λ2 ≤
TN2lλ−2 implies V −2 ≤ T 1

2N−1λ−1 and therefore the minimum is bounded by

� N3lT
1
2λ ≤ N3lT

1
2λ∗.

We find

λ2V 2|Ωλ ∩ Ω′V | � N3l+εTλ
1
3
∗ +N3l+εT

1
2λ∗.

As T ≤ T0, we obtain

� N3l+εT0N
1
3 lT

1
9 +ε

0 +N3l+εT
1
2

0 N
lT

1
3 +ε

0

� N
10
3 l+εT

10
9

0 +N4l+εT
5
6

0 .
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Hence I2 can be bounded by

I2 � N−4l−2k

(
Nk+ 14

3 l+ε +
Nkl+k+ 8

3 l+ε

δ
+N

10
3 l+εT

10
9 +N4l+εT

5
6

)
� N−k+ 2

3 l+ε +Nkl−k− 4
3 l+εδ−1 +N−

2
3 l−2k+εT

10
9 +N−2k+εT

5
6 .

� Nkl−k− 4
3 l+εδ−1 +N

10
9 kl−

2
3 l−2k+εδ−

10
9 +N

5
6kl−2k+εδ−

5
6

as l ≥ k ≥ 3 and δ > Nkl−k−2l. This proves the proposition.

As in the proof of Theorem 1.2 (i), we find the smallest δ such that∑
N=2ν

Nkl−k− 4
3 l+εδ−1 +N

10
9 kl−

2
3 l−2k+εδ−

10
9 +N

5
6kl−2k+εδ−

5
6 <∞.

Noting that

Nkl−k− 4
3 l+εδ−1 ≤ 1 ⇐⇒ δ > Nkl−k− 4

3 l

N
10
9 kl−

2
3 l−2k+εδ−

10
9 ≤ 1 ⇐⇒ δ > Nkl− 3

5 l−
9
5k

N
5
6kl−2k+εδ−

5
6 ≤ 1 ⇐⇒ δ > Nkl− 12

5 k.

Using l ≥ k, we find the smallest δ such that all three inequalities hold is

δ = Nkl− 12
5 k+ε.

Using dyadic decomposition and the Borel-Cantelli Lemma 6.9, we obtain The-
orem 1.2 (ii).

Remark 9.16. The three lower bounds for δ that we have found above, give us
a good view on the importance of the Lindelöf Hypothesis, and on the reason
we took the unconditional bound |ζ( 1

2 + it)| � (1 + |t|) 1
6 for the Riemann zeta

function. As we discussed in Section 5, in the last century, there has been many
improvements in finding upper bounds for the Riemann zeta function at 1

2 + it.
In this proof, we did not choose the smallest bound that has been found so far.
However, note that the ‘chosen’ unconditional bound leads to the first lower
bound for δ, i.e.,

δ > Nkl−k− 4
3 l.

As we have seen, this is not the smallest bound for δ; the smallest bound is
determined by the third inequality and therefore the contribution of the first
term is not of main importance. The Lindelöf bound, however, would have
contributed to the lower bound

δ > Nkl−k−2l,

which is slightly smaller than the smallest bound for δ in the unconditional case.
Therefore, taking the bound for ζ the smallest bound possible, i.e., assuming
the Lindelöf Hypothesis, has great influence, but taking a slightly smaller bound
for ζ( 1

2 + it) than the bound we took, would not contribute to a smaller lower
bound for δ. In other words, we could have taken a smaller upper bound for the
Riemann zeta function, for example the one used in Section 10, but this would
not lead to a different result.
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9.2 A polynomial of degree k

We reproduce the steps of the previous section for a more general Gk, namely
for

Gk(y1, y2) := yk1 + g(y2),

where
g(y2) := α2,0 + α2,1y2 + . . .+ α2,ky

k
2

is a polynomial of degree k with α2,k an irrational coefficient. Note this is not
a binary form, but it is still continuously differentiable. As yk1 and g(y2) are
of size Nkl, we can apply the results we obtained until now, as all results are
based on the size of the terms. Inequality (9.15) can now be expressed as

I4(U) ≤ U
∑
y∈Z4

ω̃
( y

N l

)
1|yk1 +g(y2)−yk3−g(y4)|�Nkl

U

.

Note that the constant term α2,0 cancels out. Again, for U � N l, fix y2, y3, y4

in the support of ω1. As g(y2), yk3 and g(y4) are of order Nkl, we find the same
bound for I4(U) for small values of U as in the previous example, which means
I4(U) � N4l. For large values of U , i.e., for c7N l ≤ U ≤ T , with c7 a suffi-
ciently large positive constant, we apply the results of Huang again [18].

The inequality

|yk1 + g(y2)− yk3 − g(y4)| � Nkl

U

implies

yk1 ∈ [yk3 − g(y2) + g(y4)− cN
kl

U
, yk3 − g(y2) + g(y4) + c

Nkl

U
]

for some positive constant c. Assuming y3/N
l lies in the support of ω1 and

y2/N
l, y4/N

l lie in the support of ω2, equations (9.2) imply

yk3 − g(y2) + g(y4)� Nkl.

Therefore we can say

y1 ∈ [(yk3 − g(y2) + g(y4))1/k − c′N
l

U
, (yk3 − g(y2) + g(y4))1/k + c′

N l

U
] ∩ Z

for some positive constant c′. Taking c7 sufficiently large, this interval can
contain at most one integer point. Assume this is the case, then

||(yk3 − g(y2) + g(y4))1/k|| � N l

U
.

We define the function

h(z2, z4) := (1− g(z2) + g(z4))1/k.

We find

det(∇2h) =
1

k3
(−g(z2) + g(z4) + 1)2/k−3

× {(k − 1)g′′(z2)g
′(z4)

2 + g′′(z4)(k(g(z2)− g(z4)− 1)g′′(z2)− (k − 1)g′(z2)
2)}.
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We choose the domain of h such that h is well-defined and such that det∇2h is
either strictly positive or negative. Denote this domain with D. We introduce
a new weight function 0 ≤ ω5 ≤ 1 with support in D. Then

I4(U) ≤ U
∑

(y2,y4)∈Z4

1≤y3≤(b1N)k

||y4h(y2/y3,y4/y3)||�N l/U

ω5

(
y2

y3

)
ω5

(
y4

y3

)
. (9.24)

As det(∇2h) is either strictly positive or negative in D, we can apply the results
of Huang which we explored in Section 8.

Let’s compare these results with the previous example. As g(y2) is also of order
Nkl, and we have the similar conditions to the weight functions, we obtain
exactly the same results. We conclude for large values of U , we have

I4(U)� U(ηN3l +N2l+ε)

and obtain the following corollary of Theorem 1.2.

Corollary 9.17. Let k, l ≥ 2, k 6= l. Let g(x) = α2,0 + α2,1x+ . . .+ α2,kx
k be

a polynomial of degree k with α2,k irrational. Then for almost all α3 ∈ [ 1
2 , 1],

assuming the Lindelöf hypothesis for the Riemann zeta function,

min
x∈Z3

|x1|,|x2|∼N l,|x3|∼Nk

|xk1 + g(x2)− α3x
l
3| � Nkl−2l−k+ε,

for any ε > 0, where the constant depends only on α2,k, α3 and ε.

Example 9.18. Let g(y2) = −
√

2y3
2 − 1, k = 3. Then

h(z2, z4) = (1 +
√

2z3
2 −
√

2z3
4)

1
3

and
det(∇2h) =

−8z2z4

(
√

2z3
2 +
√

2z3
4 + 1)

7
3

.

Putting |det(∇2h)| > 0 we obtain the solutions

z2 ≤ −
1
6
√

2
, z4 < ((−1)2/3

3

√
2z3

2 +
√

2

3
√

2

− 1
6
√

2
< z2 < 0, z4 < 0

− 1
6
√

2
< z2 < 0, 0 < z4 < ((−1)2/3

3

√
2z3

2 +
√

2

3
√

2

z2 > 0, z4 < 0

z2 > 0, 0 < z4 < ((−1)2/3

3

√
2z3

2 +
√

2

3
√

2
.

By choosing D =
[
− 1

6√2
,−ε

]2
with ε > 0 a small constant, the conditions for

Theorem 8.11 are satisfied and the corollary above holds.
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9.3 Proof of Theorem 1.3
There are other examples of Gk(x), of which we know how to express y1 in
terms of y2, y3, y4. A well-known example is a quadratic function. Assume k is
even and

Gk(y1, y2) = yk1 + α1y
k/2
1 y

k/2
2 + α2y

k
2 .

This relates to understanding the inequality

|xk1 + α1x
k/2
1 x

k/2
2 + α2x

k
2 − α3x

l
3| < δ. (9.25)

We assume Gk(y1, y2) satisfies all conditions we stated in the beginning of the
proof. Therefore, we can continue to look for an expression for (9.15), which is
now equivalent to finding a bound for

I4(U) ≤ U
∑
y∈Z4

ω̃
( y

N l

)
1|yk1 +α1y

k/2
2 y

k/2
1 +α2yk2−yk3−α1y

k/2
3 y

k/2
4 −α2yk4 |�

Nkl

U

.

Let m = k/2. We can see the inequality as a quadratic function of the variable
ym1 . Let

f(y2, y3, y4) := α2y
2m
2 − y2m

3 − α1y
m
3 y

m
4 − α2y

2m
4 .

Solving

−cN
2ml

U
≤ y2m

1 + (α1y
m
2 )ym1 + f(y2, y3, y4) ≤ cN

2ml

U

leads to solving two separate quadratic inequalities. We solve the right hand
side.

y2m
1 + (α1y

m
2 )ym1 + f(y2, y3, y4) = c

N2ml

U

ym1 =
1

2

(
−α1y

m
2 ±

√
(α1ym2 )2 − 4

(
f(y2, y3, y4)− cN

2ml

U

))
.

We assume D := (α1y
m
2 )2 − 4

(
f(y2, y3, y4)− cN

2ml

U

)
> 0. We consider the

solution
ym1 =

1

2
(−α1y

m
2 +

√
D).

As D is of order N2ml, we find
√
D is of size Nml. Let

f̃(y2, y3, y4) := (α2
1 − 4α2)y2m

2 + 4y2m
3 + 4α1y

m
3 y

m
4 + 4α2y

2m
4 .

Then
√
D =

√
f̃(y2, y3, y4) + 4c

N2ml

U
=
√
N2ml

√
f̃

N2ml
+

4c

U
.

Let d(x) =
√
x. Using Taylor expansion, we find

d

(
f̃

N2ml
+

4c

U

)
= d

(
f̃

N2ml

)
+

4c

U
d′

(
f̃

N2ml

)
+O

((
4c

U

)2

d′′

(
f̃

N2ml

))

=

√
f̃

N2ml
+

4c

U
· 1

2
√
f̃/N2ml

+O

((
4c

U

)2

d′′

(
f̃

N2ml

))
.
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For U � Nml, we find

O

((
4c

U

)2

d′′

(
f̃

N2ml

))
≤ 3

4c

U

√
N2ml

2

√
f̃
.

Hence

f̃1/2 − 4cf̃−1/2 · N
2ml

U
≤
√
D ≤ f̃1/2 + 8cf̃−1/2N

2ml

U
.

We conclude that a solution of y2m
1 + (α1y

m
2 )ym1 + f(y2, y3, y4) = cN

2ml

U satisfies

ym1 ∈
[
−1

2
α1y

m
2 +

1

2
f̃1/2 − 4cf̃−1/2N

2ml

U
,−1

2
α1y

m
2 +

1

2
f̃1/2 + 4cf̃−1/2N

2ml

U

]
.

Assume y2/N
l, y4/N

l lie in the support of ω2 and y3/N
l in the support of ω1.

Then f̃(y2, y3, y4) � N2ml, so f̃1/2 � Nml and f̃−1/2 � N−ml. Then the
solution for y1 lies in the interval

y1 ∈

[(
−1

2
α1y

m
2 +

1

2
f̃1/2

) 1
m

− 4c
N l

U
,

(
−1

2
α1y

m
2 +

1

2
f̃1/2

) 1
m

+ 4c
N l

U

]
∩ Z,

where c a positive constant. Taking U ≥ c7N
l sufficiently large, this interval

can only contain at most one integer point. Then

||(− 1
2α1y

m
2 + 1

2 f̃(y2, y3, y4)
1
2 )

1
m || � N l

U .

Then the bound for I4(U) can be rewritten as

I4(U) ≤ U
∑

(y2,y3,y4)∈Z3

(a2/4)N l≤y2≤b2N l

||(− 1
2α1y

m
2 + 1

2 f̃(y2, y3, y4)
1
2 )

1
m || � N l

U

ω1

( y3

N l

)
ω2

( y4

N l

)
.

Recall

f̃(y2, y3, y4) = (α2
1 − 4α2)y2m

2 + 4y2m
3 + 4α1y

m
3 y

m
4 + 4α2y

2m
4 .

Define
h̃(z3, z4) := f̃(1, y3/y2, y4/y2)

and
h(z3, z4) := (− 1

2α1 + 1
2 h̃(z3, z4)

1
2 )

1
m .

Let the domain of h be such that h is well-defined and such that the determinant
of the Hessian ∇2h is either strictly negative or strictly positive on the domain.
Denote this domain with D. Then h(z3, z4) has non-vanishing curvature on the
domain D and we can apply the results of Huang [18] again. Furthermore, there
exists a smooth weight function 0 ≤ ω6 ≤ 1 with support in D, such that

I4(U) ≤
∑

(y3,y4)∈Z2

1≤y2≤b2N l

||y2h(y3/y2,y4/y2)||�Nl

U

ω6

(
y3

y2

)
ω6

(
y4

y2

)
.
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Applying Theorem 8.11 with Q = b1N
l and η � N l

U , we obtain

I4(U)� U(ηN3l +N2l+ε).

This is the same bound as we found in Section 9.1. Therefore, proceeding as in
Section 9.1, we obtain Theorem 1.3.

Example 9.19. Let G4(x1, x2) = x4
1− 1√

2
x2

1x
2
2+ 1√

2
x4

2. With the same notation
as in this section, we find

f(y2, y3, y4) =
1√
2
y4

2 − y4
3 +

1√
2
y2

3y
2
4 −

1√
2
y4

4

and
f̃(y2, y3, y4) = (1

2 − 2
√

2)y4
2 + 4y4

3 − 2
√

2y2
3y

2
4 + 2

√
2y4

4 .

Then

h̃(z3, z4) = f̃(1, y3/y2, y4/y2)

= ( 1
2 − 2

√
2) + 4(y3/y2)4 − 2

√
2(y3/y2)2(y4/y2)2 + 2

√
2(y4/y2)4

= ( 1
2 − 2

√
2) + 4z4

3 − 2
√

2z2
3z

2
4 + 2

√
2z4

4

and hence

h(z3, z4) =

(
1

2
√

2
+

1

2

((
1

2
− 2
√

2

)
+ 4z4

3 − 2
√

2z2
3z

2
4 + 2

√
2z4

4

) 1
2

) 1
2

.

We compute the determinant of the Hessian and find

det(∇2h) =− 1
4

 2
√

2z3z4√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

√
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

+
2 (
√

2z23z4−2
√

2z34)(
√

2z3z
2
4−4 z33)

(−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2 )
3
2

√
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

− (
√

2z23z4−2
√

2z34)(
√

2z3z
2
4−4 z33)

(4
√

2z23z
2
4−4

√
2z44−8 z43+4

√
2−1)

(
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

) 3
2


2

+ 1
4

 2 (
√

2z23z4−2
√

2z34)
2

(−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2 )
3
2

√
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

+
√

2z23−6
√

2z24√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

√
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

− (
√

2z23z4−2
√

2z34)
2

(4
√

2z23z
2
4−4

√
2z44−8 z43+4

√
2−1)

(
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

) 3
2


 2 (

√
2z3z

2
4−4 z33)

2

(−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2 )
3
2

√
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

+
√

2z24−12 z23√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

√
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

− (
√

2z3z
2
4−4 z33)

2

(4
√

2z23z
2
4−4

√
2z44−8 z43+4

√
2−1)

(
1
4

√
2+ 1

2

√
−2
√

2z23z
2
4+2

√
2z44+4 z43−2

√
2+ 1

2

) 3
2
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This determinant is computed with Sage and shows us an expression for the
determinant of the Hessian of h(z3, z4) is not straightforward. This motivates
why we have not explicitly given an expression for the set D in the proof of
Theorem 1.3.

For simplicity, we choose D = [ 1
4 , 1]2 to be the domain of (z3, z4) in this example.

The absolute value of the determinant is strictly positive for (z3, z4) ∈ D and we
can use Huang’s results. Therefore, the conditions for Theorem 1.3 are satisfied.

9.4 Conclusion of the three cases
The three examples show us, that the size of the variables x1, x2, x3 is the most
important condition on which the smallest solution depends. All these examples
give us the same result. Without explicitly proving the general case

|Gk(x)− α3x
l
3| < δ,

where Gk(x) = xk1 −α2,1x
k−1
1 x2 − . . .−α2,kx

k
2 , we have a strong suspicion that

we will obtain the same results as we obtained for the three examples.

Recall the discussion earlier in this section, regarding the Implicit Function
Theorem. This theorem, discussed in Section 7, showed us that it is possible to
express y1 in terms of y2, y3, y4. In order to use Huang’s theorem 8.11, we need to
assume that the expression y1 = Φ(y2, y3, y4) can be written as yiΦ̃(yj/yi, yk/yi)
for i, j, k ∈ {2, 3, 4}, i 6= j 6= k, with yj/yi, yk/yi ∈ D, where D is a domain on
which det(∇2Φ̃) is strictly positive or strictly negative. If this is the case, all
necessary conditions hold. We obtain Conjecture 1.4.

In order to prove the conjecture, one has to find a way of performing the same
steps as is done in Section 9.1 or 9.2, i.e., to find an upper bound for I4(U).
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10 Proof of Theorem 1.5
As discussed in Section 6.2, one way of exploring the distribution of the values
of polynomials in a Diophantine inequality, is by looking at the smallest gap
between two values. In the article of Blomer, Bourgain, Radziwiłł and Rudnick
[2], this is done for the Diophantine inequality αm2 + n2 ≤ X. Let α be an
irrational real number. Let λj be the eigenvalues of the Dirichlet Laplacian of
a rectangular billiard with width π/

√
α and height π. Then each λj is of the

form αm2 + n2 with integers m,n ≥ 1. Let

#{j : λj ≤ X} = #{(m,n) : m,n ≥ 1, αm2 + n2 ≤ X}.

We study the size of the minimal gap between two λi’s. Therefore, we define

δ
(α)
min(N) = min(λi+1 − λi : 1 ≤ i < N).

If αm2 + n2 ≤ X, then both m,n are of size � X
1
2 . This means there are at

most � X
1
2 different values for m and n. This, in its turn, implies that there

are also � X values for λj ≤ X. In particular, λX � X. Therefore, we expect
the values λi, λi+1 in δ

(α)
min(N) to be of size

√
N . In conclusion, by finding a

minimum for
|(αm2 + n2)− (αm′2 + n′2)|,

where m,m′, n, n′ �
√
N , we at least find an upper bound for δ(α)

min(N).

In [2, Proposition 2.2], some results on the lower bound of δ(α)
min(N) are given.

Blomer, Bourgain, Radziwiłł and Rudnick explain that the hardest part is to
give an upper bound. A simple argument shows we can at least expect an upper
bound

δ
(α)
min(N)� N−

1
2

for any irrational α > 0. Let Q ≥ 1 be sufficiently large. Recall Dirichlet’s
approximation theorem: there exist a ∈ Z, 1 ≤ q ≤ Q such that 0 < |a −
qα| ≤ 1/Q. As α > 0, we find a ≥ 1. Define m = 2q + 1,m′ = 2q − 1, and
n = 2a− 1, n′ = 2a+ 1. Then 1 ≤ m,m′, n, n′ � Q and

|αm2 + n2 − (αm′2 + n′2)| = |8αq − 8a| = 8|αq − a| ≤ 8

Q
.

As m,m′, n, n′ � N1/2, we choose Q = N1/2 and obtain the result. In [2], a
better result for an upper bound is obtained and is given in Theorem 1.5. In
this section, we prove this theorem.

We first prove the following proposition.

Proposition 10.1. Let J ⊂ (0,∞), α ∈ J , M ≥ 1 real and M3 ≤ T ≤ M4.
Define

S(M,T, α) := #

{
n1, n2, n3, n4 �M :

∣∣∣∣n1n2

n3n4
− α

∣∣∣∣� 1

T

}
.

Then for any η > 0 sufficiently small, we have S(M,M4−η, α) ≥ 1 for all
sufficiently large M ≥ M0(α), and all α ∈ J \TM , where TM is an exceptional
set of measure µ(TM )�M−ρ with ρ > 0 depending only on η > 0.
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This quantity S(M,T, α) is related to δ(α)
min(N) in the following way. By writing

n1 = m−m′, n2 = m+m′ and n3 = n−n′, n4 = n+n′, we find n1n2 = m2−m′2
and n3n4 = n2 − n′2, so by estimating S(M,T, α), we obtain the number of
m,m′, n, n′ that satisfy the inequality for n1, n2, n3, n4. As we want this number
to be minimal, we seek to find a lower bound for S(M,T, α) for almost all α
and T as large as possible in terms of M .

Remark 10.2. As this thesis is about generalising Diophantine inequalities,
one could ask what will happen for the inequality

αmk + n2 ≤ X,

where k ≥ 2. In this case, we want to minimise

|(αmk + n2)− (αm′k + n′2)|.

As in the quadratic case, we write

n2 − n′2 = (n− n′)(n+ n′) =: n2n3.

Furthermore, we can write the k-th powers as

mk −m′k = (m−m′)(mk−1 +mk−2m′ + . . .+mm′k−2 +m′k−1).

Denote n1 := m −m′ and pk−1 := mk−1 + mk−2m′ + . . . + mm′k−2 + m′k−1.
In this case, the counting function as defined in Proposition 10.1, will be of the
form

S(M,T, α) := #

{
n1, n2, n3 �M,pk−1 �Mk−1 :

∣∣∣∣n1pk−1

n2n3
− α

∣∣∣∣� 1

T

}
.

Note pk−1 is now a polynomial dependent of n1 and another variable which we
denote with n′.

We first prove Proposition 10.1. After that, we show how Theorem 1.5 can be
derived using this proposition.

Proof of Proposition 10.1. Similar to the proof of Theorem 1.2, we introduce
two non-negative smooth weight functions ω7, ω8 that are bounded by 1. Let
ω7 = 1 on [a, b] with 0 < a < b and supp(ω7) ⊂ [ 1

2a, 2b]. Let ω8 = 1 on [−1, 1]
and supp(ω8) ⊂ [−2, 2]. Fix some small η > 0 and let ε > 0 denote an arbitrarily
small constant, not necessarily the same each time it occurs. Define

S̃(M,T, α) := #

{
ni �Mη/4,mi �M1−η/4 :

∣∣∣∣n1m1n2m2

n3m3n4m4
− α

∣∣∣∣� 1

T

}
.

By the standard divisor bound, we obtain

S(M,T, α)�M−εS̃(M,T, α).

We are going to bound S̃ from below. Let β = logα. Note that S̃ can be
counted by

∑
n1,n2,n3,n4
m1,m2,m3,m4

4∏
i=1

ω7

( ni
Mη/4

)
ω7

( mi

M1−η/4

)
1∣∣∣n1m1n2m2

n3m3n4m4
−α
∣∣∣� 1

T

.
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Let us compare this strategy to the proof of Theorem 1.2. Recall the definitions
of F1(t) and F2(t) in equations (9.5) and (9.6) respectively. Let ω̂8(y) be the
Fourier transform of ω8 again. We define these expressions now as

F1(t) =
∑

n1,n2,n3,n4
m1,m2,m3,m4

4∏
i=1

ω7

( ni
Mη/4

)
ω7

( mi

M1−η/4

)
e
it log

(
n1m1n2m2
n3m3n4m4

)
(10.1)

F2(t) = eit log(α). (10.2)

Repeating the steps of the proof of Theorem 1.2, we obtain

1
T

∫
R ω̂8

(
t
T

)
F1(t)F2(t)dt

= 1
T

∑∏
ω7

(
ni

Mη/4

)
ω7

(
mi

M1−η/4

) ∫
R ω̂8

(
t
T

)
e
it
(

log
(
n1m1n2m2
n3m3n4m4

)
−log(α)

)

≥
∑∏

ω7

(
ni

Mη/4

)
ω7

(
mi

M1−η/4

)
ω8

(
T
(

log
(
n1m1n2m2

n3m3n4m4

)
− log(α)

))
.

Hence, a lower bound of S̃(M,T, α) is given by

S̃(M,T, α) ≥
∑
ω8

(
T
(

log n1m1n2m2

n3m4n4m4
− logα

))∏
ω7

(
ni

Mη/4

)
ω7

(
mi

M1−η/4

)
.

In [2], the lower bound is written as

1
T

∫∞
−∞ ω̂8

(
y
T

)
e−2πiyβ

∣∣∑
n ω7

(
n

Mη/4

)
n2πiy

∣∣4 ∣∣∑
m ω7

(
m

M1−η/4

)
m2πiy

∣∣4 dy.
This equation is explained by

ω8

(
T

(
log

n1m1n2m2

n3m3n4m4
− β

))
=

∫ ∞
−∞

ω̂8

( y
T

)
e2πi(log

n1m1n2m2
n3m3n4m4

−β)y dy

T

=
1

T

∫
ω̂8

( y
T

)
e−2πiβye2πi log(n1m1n2m2)e−2πi log(n3m3n4m4)dy

=
1

T

∫
ω̂8

( y
T

)
e−2πiβy(n1m1n2m2)2πiy(n3m3n4m4)−2πiydy.

Multiplying by
4∏
i=1

ω7

( ni
Mη/4

)
ω7

( mi

M1−η/4

)
and summing over n1, . . . , n4, m1, . . . ,m4 gives us the right expression.

We split the integral in two parts I1(β) + I2(β), where I1(β) is the integral for
|y| ≤M ε for some very small fixed ε > 0. I2(β) is the other part of the integral.
Again, we will show I1(β) is the main part and I2(β) can be considered as the
error term. We let ω̌7(s) be the Mellin transform of ω7 (see Section 5). Define

Σ(N, y) :=
∑
n

ω7

( n
N

)
n2πiy =

∫ 2+i∞

2−i∞
ω̌7(s)Nsζ(s− 2πiy)

ds

2πi
, (10.3)

69



where ζ(s) is the Riemann zeta function. As argued before, I1(β) has rapid
decay along the vertical lines, so for |y| ≤ M ε, N = M c for c = η/4 or c =
1− η/4, we find

Σ(N, y) = ω̌7(1 + 2πiy)N1+2πiy +O(N ε). (10.4)

We obtain

I1(β) =
1

T

∫ Mε

−Mε

ω̂8

(
y
T

)
e−2πiyβ

∣∣∑
n ω7

(
n

Mη/4

)
n2πiy

∣∣4 ∣∣∑
m ω7

(
m

M1−η/4

)
m2πiy

∣∣4 dy
=

1

T

∫ Mε

−Mε

ω̂8

( y
T

)
e−2πiyβ

∣∣∣Σ(Mη/4, y)
∣∣∣4 ∣∣∣Σ(M1−η/4, y)

∣∣∣4
=
M4

T

∫ Mε

−Mε

ω̂8

( y
T

)
e−2πiyβ |ω̌7(1 + 2πiy)|8dy +

1

T
O(N4−η/4+ε).

Define
c(β) = ω̂8(0)

∫ ∞
−∞

e−2πiyβ |ω̌7(1 + 2πiy)|8dy.

By Taylor’s theorem, we obtain

I1(β) = c(β)
M4

T
+O

(
M4−4/η+ε

T
+
M4

T 2

)
.

As in [2], we define v(t) := w7(et)et, which is a non-negative compactly sup-
ported function. Then

v̂(−t) =

∫ ∞
−∞

v(y)e2πitydy

=

∫ ∞
−∞

ω7(ey)eye2πitydy

=

∫ ∞
−∞

ω7(ey)ey(1+2πit)dy.

Substitute x = ey, dy = 1
xdx. Then

v̂(−t) =

∫ ∞
−∞

ω7(x)e(log x)(1+2πit) 1

x
dx

=

∫ ∞
−∞

ω7(x)x2πitdx

= ω̌7(1 + 2πit).

We obtain

c(β) = ω̂8(0)

∫
R7

v(t1) . . . v(t7)v(−β + t1 + . . .+ t4 − t5 − t6 − t7)dt1 · · · dt7.

Choosing the support of ω7 sufficiently large, we make sure c(β) is bounded
away from 0, uniformly for all eβ in the domain J . Then

I1(β)� M4

T
,
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uniformly in β.

The last part of the proof is showing that the contribution of I2(β), i.e., the
contribution of large frequencies |y| > M ε, is of lower order of magnitude, for
almost all β. Define

I :=

(∫
logJ

|I2(β)|2dβ
) 1

2

. (10.5)

Also, define

F (y) := 1|y|>Mε

1

T
ω̂8

( y
T

) ∣∣∣Σ(Mη/4, y)Σ(M1−η/4, y)
∣∣∣4 .

Then

I2(β) =

∫
|y|>Mε

ω̂8

( y
T

)
e−2πiyβ

∣∣∣Σ(Mη/4, y)Σ(M1−η/4, y)
∣∣∣4 dy.

=

∫ ∞
−∞

F (y)e−2πiβydy

= F̂ (β).

By Parseval’s theorem 3.6, we find

I2 ≤
∫ ∞
−∞
|I2(β)|2dβ =

∫ ∞
−∞
|F (y)|2dy.

Therefore,

I2 � 1

T 2

∫
|y|>Mε

∣∣∣ω̂8

( y
T

)∣∣∣2 ∣∣∣Σ(Mη/4, y)
∣∣∣8 ∣∣∣Σ(M1−η/4, y)

∣∣∣8 dy. (10.6)

We can bound Σ(M
η
4 , y) in a similar way as we did in Section 9.1. We shift the

contour in (10.3) to Re s = 1−η4. The pole at s = 1+2πiy falls in the contour.
As |y| ≥M ε, we find ω̌7 has rapid decay along the vertical lines. Therefore, the
contribution of this pole to the integral is negligible. Using the same strategy
as in Section 9.1, we find the following upper bound.

Σ(Mη/4, y)�Mη/4(1−η4)

∫ ∞
−∞

ζ(1− η4 − 2πiy + it)

1 + |t|10
dt.

We use the bound
|ζ(σ + it)| � |t|A(1−σ)3/2+ε,

with 1
2 ≤ σ ≤ 1, |t| ≥ 2 as opposed in [2]. This is valid as y ≥ 1

2π t and y ≥M
ε,

hence t ≥M ε, so by takingM sufficiently large, |t| ≥ 2.As σ = 1−η4, we obtain

|Σ(Mη/4, y)| �Mη/4(1−η4)|y|Aη
6+ε.

And therefore

I2 � 1

T 2
M2η(1−η4)

∫
R

∣∣∣ω̂8

( y
T

)∣∣∣2 |y|8Aη6+ε|Σ(M1−η/4, y)|8dy

� 1

T 2
M2η(1−η4)T 8Aη6+ε

∫
|y|≤T 1+ε

∣∣∣∣∣ ∑
n�M4−η

a(n)n2πiy

∣∣∣∣∣
2

dy.
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Here
a(n) =

∑
n1·...·n4=n

ω7

( n1

M1−η/4

)
· · ·ω7

( n4

M1−η/4

)
� nε.

We use the standard mean value theorem as stated in Theorem 9.1 in [19]. This
is ∫ X

0

∣∣∣∣∣∣
∑
n≤N

ann
it

∣∣∣∣∣∣
2

dt� (X +N)
∑
n≤N

|an|2.

With N = M4−η, X = T 1+ε and an = a(n), we obtain

I2 �M2η(1−η4) 1

T 2
T 8Aη6+ε(T 1+ε +M4−η)

∑
n�M4−η

|nε|2

�M2η(1−η4) 1

T 2
(M4−η)8Aη6+ε(M4−η+ε +M4−η) ·M4−η

�M2η(1−η4) 1

T 2
(M4−η)8Aη6+εM8−2η

� 1

T 2
M−2η5+32Aη6+8.

For η > 0 sufficiently small, η5 > 32Aη6 + ε. We obtain

I2 � 1

T 2
M8−η5 .

Set ρ = 1
2η

5. Then
I �M4−ρT−1, (10.7)

where T = M4−η. We claim this implies that

I2(β)�M4−ρ/2T−1

for all β except for a small set TM of measure �M−ρ. Let

B := M4−ρ/2T−1 = Mη−ρ/2.

As ∫
|I2(β)|>B

|I2(β)|2dβ ≥
∫
|I2(β)|>B

|I2(β)|2dβ ≥ B2 · µ{β : I2(β) > B},

we obtain

µ{β : I2(β) > B} =

∫
|I2(β)|>B

1 dβ � I2.

This results in the following inequality∫
|I2(β)|>B

1 dβ ≤
∫
|I2(β)|2

B2
dβ

=
I2

B2

� M2η−2ρ

M2η−ρ = M−ρ.
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The claim is hereby proved. Hence for all α ∈ J \TM ,

S(M,M4−η, α)�M−εS̃(M,M4−η, α)

�M−ε
(
M4

T
+O

(
M4−ρ

T

))
� M4−ε

T
≥ 1.

This completes the proof.

Remark 10.3. Generalising the proof for the case αmk +n2 is not so straight-
forward. Recall the discussion in Remark 10.2. One could think of defining
S̃(M,T, α) as

S̃(M,T, α) = #
{
ni �Mη/3,mi �M1−η/3, pk−1 �Mk−1 :

∣∣∣ n1m1pk−1

n2m2n3m3
− α

∣∣∣� 1
T

}
.

The expressions F1(t) and F2(t) as in (10.1) and (10.2) can be defined as

F1(t) =
∑

n1,n2,n3,
m1,m2,m3

3∏
i=1

ω7

( ni
Mη/3

)
ω7

( mi

M1−η/3

)
e
it log

(
n1m1pk−1
n2m2n3m3

)

F2(t) = eit log(α).

The interested reader is invited to think of ways how to proceed in solving this
problem.

For the proof of Theorem 1.5, we need one more lemma. Here an integer n is
called evenly divisible if there exists a divisor d of n such that min(d, n/d) �
n1/2−ε for all ε > 0.

Lemma 10.4 (Lemma 3.2 in [2]). Assume∣∣∣∣α− p

q

∣∣∣∣� 1

T

holds for some T ≤ q2. If α > 0 has infinitely many good rational approxima-
tions pn/qn with q1 < q2 < . . . , for this inequality, with both p and q evenly
divisible and qn ≥ cqn+1 for some constant c > 0 and all n ≥ 1, then

δ
(α)
min(N)� N1+εT−1

for all N and all ε > 0.

Using this lemma and Proposition 10.1, we are able to prove Theorem 1.5.

Proof of Theorem 1.5. The proof of the theorem is very similar to other tech-
niques we used in Section 9: we use dyadic decomposition and the Borel-Cantelli
Lemma 6.9 again. Assume Proposition 10.1 holds. Let M = 2ν , ν ∈ N. Then∑

M=2ν

µ(TM )�
∑
M=2ν

M−ρ =
∑
M=2ν

2−ρν <∞.
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We now use the Borel-Cantelli Lemma 6.9 and conclude S(M,M4−η, α) ≥ 1 for
almost all α, all sufficiently large M = 2ν ≥M0(α) and η > 0 sufficiently small.
Hence by the Borel-Cantelli Lemma, we have an exceptional set independent
of M . By a similar argument as in the proofs of Section 9, using dyadic de-
composition, the Borel-Cantelli Lemma holds for all M sufficiently large. Since
Proposition 10.1 holds, we can apply Lemma 10.4. As we took n1, . . . n4 � M
in our definition for S(M,T, α), we find T = M4−η = (N

1
2 )4−η. It follows

δ
(α)
min(N)� N1+εN

η−4
2 = N−1+η/2+ε. (10.8)

for all sufficiently large integers N ≥ N0(α). As the implied constant is allowed
to depend on α, this equation holds in fact for all N . Then for η sufficiently
small, we obtain the bound

δ
(α)
min(N)� 1

N1−ε

for all ε > 0 and all N . This completes the proof.
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11 Connection to Hardy-Littlewood circle method
An often used tool in analytic number theory, for studying rational points on
higher-dimensional algebraic varieties, is the Hardy-Littlewood circle method.
Let f ∈ Z[x1, . . . , xn] be a homogeneous polynomial of degree d. The method
concentrates on the counting function

N(f ;B) := #{x ∈ Zn : f(x) = 0, |x| ≤ B}

for any B ≥ 1. Important here is that the number of variables is sufficiently
large in terms of the degree. As this looks very similar to the counting problems
of this thesis, we will shortly introduce the concepts of the Hardy-Littlewood
circle method and explore the similarities between the two methods. Since our
original problem is not counting rational points on an algebraic variety, but
we are counting rational points close to it, we are not able to use the Hardy-
Littlewood circle method in Section 9.

11.1 Outline of the circle method
Without exploiting the technical details of the Hardy-Littlewood circle method,
we will outline the significant steps that are needed. Two well-readable refer-
ences which provide more technicalities are Chapter 8 of Browning [6] and Ana-
lytic methods for Diophantine equations and Diophantine inequalities from Dav-
enport [9]. Given B, the starting point of the Hardy-Littlewood circle method
is the generating function

S(α) =
∑

x∈Zn∩[−B,B]n

e(αf(x)).

Here α ∈ [0, 1] is a real variable. The strength of this generating function is the
identity ∫ 1

0

e(αn)dα =

{
1, if n = 0
0, if n ∈ Z\{0}. (11.1)

This suggests there will often be significant cancellation. Note∫ 1

0

S(α)dα =

∫ 1

0

∑
x∈Zn∩[−B,B]n

e(αf(x))dα

=
∑

x∈Zn∩[−B,B]n

∫ 1

0

e(αf(x))dα

= #{x ∈ Zn : f(x) = 0, |x| ≤ B},

thus we obtain the expression

N(f ;B) =

∫ 1

0

S(α)dα. (11.2)

The next step of the Hardy-Littlewood circle method is motivated by the ob-
servation that S(α) can be rather large for values of α ∈ (0, 1) that are well-
approximated by a rational number a

q with small denominator and one expects
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S(α) to be small for such α that are not well-approximated by rationals with
small denominator. To motivate the first observation, we look at S(0) = S( 0

1 ).
Note that

S(0) =
∑

x∈Zn∩[−B,B]n

e(0)

= #{x ∈ Zn : |x| ≤ B} = o(Bn)

and this is obviously the largest S(α) we could get. One can show that for any
fraction a

q ∈ Q, not just the value 0, the sum S(aq ) will be of exact order Bn.
To see this, we introduce

Sq,a :=
∑

x mod q

eq(af(x)),

where eq(a) := e(aq ). As eq(af(x)) = eq(af(y)) whenever x ≡ y mod q, we
find

S

(
a

q

)
=

∑
x mod q

eq(af(x))#{y ∈ Zn : |y| ≤ B, y ≡ x mod q}.

Furthermore, since

#{y ∈ Zn : |y| ≤ B, y ≡ x mod q} =

(
2B

q
+O(1)

)n
=

2nBn

qn
+O(Bn−1),

we obtain
S

(
a

q

)
=

2nBn

qn
+O(qnBn−1).

This shows why S(aq ) is of exact order Bn if Sa,q 6= 0. Extending this analysis,
one can show that S(α) is also of exact order Bn when α is close to such a

q .
Therefore, write α = a

q + z. Similar to what we did above, write

S

(
a

q
+ z

)
=

∑
x mod q

eq(af(x))
∑

y∈Zn∩[−B,B]n

y≡x mod q

e(zf(y)).

The following lemma is proved in [6] and gives us insightful results about this
sum.

Lemma 11.1 (Lemma 8.2 in [6]). Let a, q ∈ Z such that 1 ≤ a ≤ q ≤ B and
gcd(a, q) = 1. We have

S

(
a

q
+ z

)
= q−nBnSq,aI(zBd) +O(qBn−1(1 + |z|Bd)),

where I(γ) :=
∫
t∈[−1,1]n

e(γf(t))dt.

It follows that for fixed a
q such that Sq,a 6= 0, the exponential sum S(α) has

exact order Bn when z is sufficiently small as we write α = a
q + z.

The second observation, about the smaller order of badly approximable α, comes
from Weyl’s inequality and Hua’s lemma, which are stated below as they are
given and proved in [27].
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Theorem 11.2 (Weyl’s inequality). Let f(x) = αxk + . . . be a polynomial of
degree k ≥ 2 with real coefficients and suppose α has rational approximation a

q

such that |α − a
q | ≤

1
q2 , with q ≥ 1, gcd(a, q) = 1. Let S(f) =

∑N
n=1 e(f(n)).

Let K = 2k−1 and ε > 0. Then

S(f)� N1+ε(N−1 + q−1 +N−1q)1/K .

Theorem 11.3 (Hua’s lemma). Let k ≥ 2, and T (α) =
∑N
n=1 e(αn

k). Then∫ 1

0

|T (α)|2
k

dα� N2k−k+ε

for ε > 0.

This motivates to split the interval [0, 1] in two subsets, namely the major arcs
and minor arcs. Although we are working on an interval and not a circle, the
terminology comes from the original formulation, which used integration around
a circle in the complex plane. For specific examples, one can explicitly define
the major and minor arcs and prove with Weyl’s inequality and Hua’s lemma
that the contribution of the minor arcs is small, so that the minor arcs can
be regarded as error term. This is often the most difficult step of the Hardy-
Littlewood circle method. In most proofs using the method, bounding the order
of the major arcs is done in a couple of straightforward steps, while bounding
the minor arcs can take pages and requires some high level techniques.

11.2 Comparison to Section 9
When we are summarizing the steps taken in the proofs of Section 9, we would
say we translated the counting problem of the inequality

|Gk(x)− α3x
l
3| < δ

into bounding an exponential sum

f2(α3) =
1

T

∫
R
ω̂0

(
t

T

)
F1(t)F2(lt)e−it log(α3)dt

as given in (9.7). We divided f2(α3) into two parts;

f3(α3) =
1

T

∫
R
ω̂0

(
t√
N

)
F1(t)F2(lt)e−it log(α3)dt

and

f4(α3) =
1

T

∫
R

(
ω̂0

(
t

T

)
− ω̂0

(
t√
N

))
F1(t)F2(lt)e−it log(α3)dt.

The bound for f3(α3) was easily found and is considered as the main term;
we could therefore consider this as the major arcs. Second, finding a bound
for f4(α3) was significantly harder. The rest of the proof consisted therefore
of finding a bound for this counting function. We concluded that the order of
f4(α3) was smaller than f3(α3), hence f4(α3) can be seen as the minor arcs.
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A natural question arises: if the two methods look so similar, then why did we
not use the Hardy-Littlewood circle method? This comes from the fact that
the Hardy-Littlewood method uses the counting function N(f ;B) which counts
rational points on an algebraic variety, whereas our problem requires to count
rational points close to an algebraic variety.

In addition, the function we are looking at in Section 9 is not a polynomial in
Z[x1, x2, x3], like f is in N(f ;B). The function in inequality (9.1) has irrational
coefficients. Therefore, the crucial identity (11.1) for the Hardy-Littlewood cir-
cle method is not applicable to finding solutions to the problem in Section 9.

Lastly, the Hardy-Littlewood circle method requires n to be very large in com-
parison with the degree d of the polynomial. In Section 9, the degree is allowed
to be larger than three, resulting in a degree higher than the number of vari-
ables. The Hardy-Littlewood circle method is therefore not applicable in the
main problem of this thesis.

These three arguments show why we did not apply the Hardy-Littlewood circle
method. Instead, the well-thought-out ideas are being used in a different way
such that it becomes applicable for functions with irrational coefficients, that
are considered close to an algebraic variety.
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