
Rewarding Risk in Life-Cycle Investing

Eppo van der Heijden

3882632

Utrecht University Supervisors:
Department of Mathematics Dr. K. Dajani
Master Thesis Drs. H.J.M. de Bock

Drs. C. Dekker

Date of final version: May 29, 2020 Second reader:
Dr. C. Spitoni





Abstract

Recently, the Dutch government and the social partners came to an agreement about a renewal of
the Dutch pension system. The pension accrual of participants will be conditional and depend on
the achieved returns. The accrual will also be age-dependent and pension funds are allowed to invest
according the life-cycle principle, changing the level of risk for participants of different ages.

We derive the optimal allocation of assets according to the theory of life-cycle investing. We develop
a stylized pension fund model along with a financial market model that invests the assets according
to the life-cycle principle. We compare 4 different life-cycle strategies with a default strategy. No
significant improvement for the pension accrual is found for the life-cycle strategies.
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Chapter 1

Introduction

This thesis is written during an internship at InAdmin RiskCo B.V. as requirement to obtain the
Master’s degree in Mathematical Sciences at Utrecht University.

In June 2019, the Dutch government presented the Pension Agreement. This agreement came about
by the work of employers’ and employees’ organizations and the Dutch government in order to change
the Dutch pension system. Among other things, the agreement allows pension funds to invest based
on the ages of the participants, the so-called life-cycle investing. In this thesis, we will model a
pension fund that invests according to this principle.

In this chapter, we will give a description of the company InAdmin RiskCo B.V., followed by a
problem description, the research question and an outline of the thesis.

1.1 Description of InAdmin RiskCo B.V.

InAdmin RiskCo B.V., founded in 2002 as a consultancy firm, works on the intersection of business,
actuary and IT in the financial world. The company started as the distributor of ProductXpress, a
workbench for financial product development and calculations, and extended his offerings in, among
others, the areas of data quality and reporting for regulators. The company can be characterized
by:

• Performing projects for Life Insurance companies and Pension Funds, for the liabilities and
assets parts of the Balance sheet.

• Strategic partner of DXC for the implementation of the DXC ProductXpress calculation tool,
their most important IT platform for large scale calculations.

• 130 academics trained in mathematics, finance, business studies, economics, econometrics,
physics, software development and artificial intelligence.

• Offices in the Netherlands, Portugal and the Philippines.

• Performed projects in 16 jurisdictions in Europe, Asia, Australia, Africa and the Americas.

Examples of projects are:

3



• Development and implementation of a platform for reporting the liabilities to DNB, for a
Dutch system administrator for pension funds;

• Reserve calculations and capital requirements calculations under Solvency II (Redesign of IT
landscape for a Dutch insurance company);

• Implementation of product calculation engines for new or existing administration systems,
quotation systems and financial planners;

• Investment rule optimizations for banks; using replicating portfolios;

• Multiple data quality audits, using the RiskCo methodology on pension fund administrations;

• Implementation of the rules and calculations for illustration and administration purposes of
hundreds of products across many lines of business for a very large international insurance
company.

In the Netherlands, RiskCo B.V. worked for, among other companies, ASR, A&O services, Klaverblad,
PGGM, Nationale Nederlanden, Vivat and Delta Lloyd. Worldwide, the US based insurance com-
pany METLIFE is a customer.

In 2017 and 2018, Aon Hewitt Benefits Administration and InAdmin NV from APG were taken
over by RiskCo B.V. to form the new name InAdmin RiskCo B.V. The strategy of InAdmin RiskCo
B.V. is to deliver high quality pension administration based on an advanced open new home-built
administration platform called RAP.

1.2 Description of the problem

The Dutch pension system has been under pressure for over a decade. The current scheme leads
to intergenerational debate about the division of the available pension assets and is insufficiently
equipped for the changing labor market and increased differences and preferences of participants.
Recently, the government, employers and social partners have come to an agreement about the new
pension system. One of the proposed renewals is the transition from the current uniform investment
policy to a policy in which the degree of risk is linked to the age of the participant, the so-called
life-cycle investing.

The uniform investment policy conflicts with the two goals that pension funds in general have: offer
indexation of the pension rights through risky investments and at the same time provide stability of
the benefits for participants that are near or in retirement. A uniform investment policy does not
assign risk to groups that can and want to take it. Young participants have more time to compensate
their rights should a bad return occur. Older participants generally want to secure the wealth they
have built up so far, as they can not brush away bad results. Furthermore, the absolute size of
negative shocks is bigger for participants near retirement, because they have already built up more.

Life-cycle theory was developed as an answer to finding the optimal allocation of savings in either
stocks or bonds over the course of an employee’s life. It started off as a retirement plan for an
individual who does his own investments, but it has been suggested widely that pension funds
should embrace these ideas and include it in their investment policy. However, in most literature,
the emphasis is on the individual life-cycle and the effects on the pension collective and risk-sharing
have not been thoroughly investigated. In a very social pension system as the Netherlands currently
has, these effects should be known.
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Furthermore, there have not been many papers that suggest a fair way to compensate participants
in a fashion that agrees with the risk different groups take in a life-cycle-based model. In the new
pension agreement, the pension funds do not longer have to hold extra funds for the amount of risk
they take in their investment strategy, but good and bad return will immediately be divided amongst
the members. This thesis aims to formulate a policy that will let the indexation or drawback of
participants’ rights depend on the risk that is taken in their portfolio.

1.3 Research question

The research question of this thesis will be:

How can risk be shared between different groups in a pension system with life-cycle investing?

A further elaboration and explanation of the research question will be given in Section 2.6.

1.4 Outline

This thesis will consist of three parts.

The first part will contain an introduction to the Dutch pension system. In Chapter 2, the current
Dutch pension system is described and the research question will be explained and split up into
sub-questions.

The second part concerns the mathematical foundation, the model that is used and the model
assumptions. In Chapter 3, we will explain the necessary mathematical background that is used in
later chapters. Chapter 4 will focus on the literature and theory of lice-cycle investing. Chapter 4
will be about the methodology in the financial market model and the pension fund model.

The third part will describe the result, conclude the thesis and advice future research. Chapter 6
will be devoted to the results. In Chapter 7, our conclusions will be summarized. Chapter 8 will
contain recommendations for future research.
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Chapter 2

Dutch pension system, regulations
and recent developments

In this chapter, we will describe the structure of the Dutch pension system, the regulations that
are in place and recent developments that have been made in the pension system. In Section 2.1,
the three pillars of the pension systems are explained and specified for the Dutch case. In Section
2.2, we will explain the different pension schemes and the way that pension entitlement is built
up. In Section 2.3, the regulations of the pension system that are cast in the Financial Assessment
Framework are explained. Sections 2.4 and 2.5 treat the most recent development in the pension
system and in Section 2.6, we will elaborate on the research questions of this thesis.

2.1 The three pillars of the pension system

The Dutch pension system consist of three pillars, similar to many other European countries.

Figure 2.1.1: The three pillars of the Dutch pension system.
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The first pillar is the General Old Age Pension Act (AOW). This basic state pension is granted to
everyone who lived or worked in the Netherlands at some point of his life. For every year, 2% of a
full AOW is accrued, to a maximum of 100%. The value of the AOW depends on whether you live
together or not, and it is derived from the minimum wage.

The second pillar consists of the Dutch pension funds, which can usually be linked to a specific
company or sector. It is an addition to the state pension and is financed by premiums that employees
and employers pay. It is not compulsory by law, but for roughly 90% of all employees, it is an
obligation in the employment agreement. The pension fund is obliged to pay pension entitlements
till the participants’ death. These products can also be offered by insurance companies and by
premium pension institutions (PPIs). PPIs are pension executioners that do not bear the financial
risks themselves. They are especially interesting for multinationals, because they allow for the
centralization of the pension execution.

The third pillar is formed by the individual pension. This can consist of savings, money received
from inheritance, excess value on a house or savings with tax discount. In general, the third pillar
is a substitute for employees that can not or do not build up pension rights in the second pillar.

2.2 Pension schemes and investment strategies

Pension funds can be categorized by their pension schemes, which can be either a Defined Benefit
scheme (DB), a Defined Contribution scheme (DC) or a Collective Defined Contribution scheme
(CDC). In a DB scheme, the pension entitlements that you will receive after retirement are fixed. The
pension fund works in a collective setting, so indexation and cuts are applied to the all participants.
Because the accrual of pension rights highly depends on the financial developments, the pension
premiums may vary. In a DC scheme, the premiums are fixed, but the pension benefit is uncertain.
Furthermore, the DC schemes are individual plans.

Besides the contrasting DB and DC schemes, there is also a hybrid variant, called the Collective
Defined Contribution scheme. In this scheme, The pension premiums are fixed as in a DC scheme,
but the pension benefits depend upon the financial state of the entire pension fund.

In the Netherlands, most pension funds follow either a DB or CDC scheme, in contrast to individual
DC plans that can for instance be found in the US and the UK.

Pension funds have to invest the wealth according to the ’prudent person’ principle. This means that
their investment policies have to be in the interest of the active participants and retirees. The risk
appetites of different group in the pension funds have to be taken into account when assessing the
strategic investment policy. In most cases, pension funds combine these risk profiles into a uniform
investment policy.

2.3 Financial Assessment Framework

In the rest of this thesis, we will focus on the second pillar as it is regulated by the Pension Act.
In this chapter, we describe the new Financial Assessment Framework (nFTK) which is part of the
Pension Act and regulated by the Dutch central bank DNB.
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2.3.1 History

In 1952, the Dutch government introduced the first pension law, the Pension and Savings Funds
Act (Pensioen- en Spaarfondsenwet). In the following decades, it was regularly adjusted to keep up
with social developments, such as increasing labor mobility and the transition from a single-money-
maker model to a dual-income model. The law was finally replaced in 2007 by the Pensioen Act
(Pensioenwet), to offer employees more transparency, more certainty and more information. An
important feature incorporated in the new law was the Financial Assessment Framework (FTK),
that specifies recovery and indexation rules according to the financial health of the pension fund.
Financial health of a pension fund is measured by the funding ratio, which is based on accurate
market information.

Definition 2.3.1. The future value (FV ) of a cash flow at time t is the nominal value of an asset.
The value can be given or estimated by an assumed amount of growth.

Definition 2.3.2. The present value (PV ) is the current value of a future cash flow at time t given
a specific rate of return r. If FV (t) denotes the future cash flow at time t, then

PV (t) =
1

(1 + r)t
FV (t). (2.1)

Note that a smaller rate of return means a bigger present value.

Definition 2.3.3. The funding ratio (FR) of a pension fund at time t is the ratio of the present
value of the pension assets and the present value of the pension liabilities, usually displayed as a
percentage. In other words,

FR(t) =
PVA(t)

PVL(t)
· 100%, (2.2)

where PV denotes the present value and the subscripts A and L refer to the pension assets and
pension liabilities, respectively.

Definition 2.3.4. We call a pension fund overfunded if the funding ratio is above 100%. Similarly,
a pension fund is underfunded if the funding ratio is below 100%.

The new Pension Act was ratified at a time when most pension funds were largely overfunded, with
a weighted average funding ratio of 140% in 2007 as seen in Figure 2.3.1. In 2007, the total asset
value of the Dutch pension funds was more than 88%1 of the Dutch GDP. In 2017, this ratio even
grew to more than 184%2.

The 2008 financial crisis and the successive period of extremely low interest rates, as can be seen in
Figure 2.3.2, triggered the recovery plans of the FTK that come into force when a pension fund is
underfunded for a longer time.

1683 billion euros asset value divided by 774 billion euros GDP.
21338 billion euros asset value divided by 725.4 billion euros GDP.
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Figure 2.3.1: The weighted average funding ratio (red), 10%-percentile (light blue) and the 90%-
percentile (dark blue) of the Dutch pension funds. Image retrieved from [34] on 12th of June,
2019.

2.3.2 nFTK process

The financial position of pension funds can be measured in terms of the funding ratio FR. In the
regulations of the nFTK, however, the policy funding ratio (PFR) is used for decisions on indexation
and pension cuts.

Definition 2.3.5. The policy funding ratio (PFR) in month t is the past-12-month-average of the
funding ratio:

PFR(t) =
1

12

t∑
s=t−12

FR(s). (2.3)

At certain levels of the PFR, the nFTK specifies mandatory steps to be taken by pension funds. A
schematic overview of these steps and adjustments can be seen in Figure 2.3.3. Let us first remark
that besides the PFR, all quantities are function of time t with unit year. The Dutch Pension
Act dictates that pension funds are obliged to have a Minimal Required Own Funds (MROF ). The
calculation of the MROF is specified in the Dutch Pension Law. Its value depends on the investment
risk, gross technical provisions3 (GTP ) and management costs (MC) in year t:

• If a pension funds policy generates investment risk, then the MROF is calculated as

MROF (t) = 0.04 ·GTP (t) ·min
(NTP (t)

GTP (t)
, 0.85

)
,

3Gross technical provisions represent the amount that an insurer requires to fulfil its insurance obligations and
settle all expected commitments to policyholders and other beneficiaries arising over the lifetime of the insurer’s
portfolio of insurance contracts.
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Figure 2.3.2: The development of the European Central Bank (ECB) interest rates in % in the
period 1999-2019. Recovered from [31] on 12th of June, 2019.

where NTP (t) (net technical provisions) equal the gross technical provisions minus its rein-
sured part in year t. A pension fund that has more than 15% of its GTP reinsured hence has
a MROF of 0.85 · 4% = 3.4%.

• If a pension funds policy does not induce investment risk and the management costs are fixed
for more than 5 years, then

MROF (t) = 0.01 ·GTP (t).

• If a pension fund does not induce investment risk and the management costs are fixed for less
than five years, then

MROF (t) = 0.01 ·GTP (t) + 0.25 ·MC(t− 1).

For most pension funds, the MROF will be between 4% and 5%. The Minimum Required Funding
Ratio (MRFR) is defined to be 1 + MROF . When the PFR is below the MRFR for 5 years,
immediate measures have to be taken in order to be above the level again. This means that within
six months, pensions are reduced. Hence, in economic hard times, indexation for the working and
retired pension participants is at risk. The Required Funding Ratio (RFR) will be explained in the
next subsection.

2.3.3 Required Own Funds

The Required Own Funds (ROF ) is a measure for the assets a pension fund should keep in reserve
in order to counter economic shocks with a 97.5 % certainty.

The standard model for the ROF has ten risk categories or shocks, denoted by (Si)i∈{1,...,10}:

• Interest rate risk (S1),

• Stock and real estate risk (S2),

• Currency risk (S3),

• Commodity risk (S4),

• Credit risk (S5),

• Technical insurance risk (S6),

11



Figure 2.3.3: Schematic overview of the lower bounds on the funding ratios and steps that must be
taken according to the nFTK.

• Liquidity risk (S7),

• Concentration risk (S8),

• Operational risk (S9),

• Active management risk (S10).

All of these shocks have to be calculated on a 97.5% level of certainty based on a one-year horizon.
This is done by a specific simulation test that is provided by DNB and which is similar for all pension
funds. If the risk categories would all have correlation 1 with every other one, the ROF would equal∑10
i=1 Si. However, we assume a diversification effect on these shocks, i.e., not all shocks will occur

at the same time. Hence the ROF can be calculated as

ROF =

√√√√ 10∑
i=1

S2
i + 2ρ1,2S1S2 + 2ρ1,5S1S5 + 2ρ2,5S2S5, (2.4)

where ρ1,2, ρ1,5 and ρ2,5 are the correlations between subscripted risk categories. These values are
fixed by the DNB. Note that the DNB allows for a different calculation of the ROF , if a pension
fund can motivate why the standard does not apply to them.

The Required Funding Ratio (RFR) is the desired funding ratio such that there is 97.5% certainty
that a pension fund can fully pay out all pension rights on a one-year horizon.

Definition 2.3.6. The Required Funding Ratio (RFR) is defined as

RFR = 1 +ROF. (2.5)

The Pension Act specifies what pension funds have to do in case of a funding deficit. A funding
deficit occurs when the PFR is below the Required Funding Ratio (RFR). When the Policy Funding
Ratio is below the RFR, a Ten-Year recovery plan should be presented and implemented. In this
case, indexation, pension entitlements and premium are adjusted. For a deeper explanation of the
different shock categories and examples, see [27].
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2.4 Pension agreement

Recently, on 5th of June 2019, the government and social partners came to an agreement about the
renewal of the Dutch pension system [14]. Although a lot of ideas still need to be worked out, the
most important features of the agreement are:

• All pension contract will have to be Defined Contribution (DC) or Collective Defined Contri-
bution (CDC) instead of Defined Benefits (DB). The paid premiums will be converted into a
conditional accrual of the pension rights. In contrast to the DB pension contracts, this means
that the pension premiums are fixed. Based on a scenario set provided by DNB, the median of
all scenario is taken as the average outcome. This is the final pension right that a participant
sees. Furthermore, also a bad scenario (5th percentile) and good scenario (95th percentile) are
shown to illustrate the conditionality of the accrual. These rights will depend on the returns
the pension fund has made and the current and future economic conditions.

• The so-called ’doorsneesystematiek ’ will be abolished. In this system, a participant receives
the same accrual in each working year. Instead, agents will receive an accrual that depends
on their age.

• Pension funds will no longer have to keep Required Own Funds. Instead, the funds can index
its participants when the funding ratio is above 100% and will have to cut pension rights if
the funding ratio is below 100%.

• Pension funds will no longer be allowed to use premiums that do not cover the cost of the
pension rights.

• Participants will be able to withdraw up to 10% of their built-up pension rights around their
retirement. This money can be used, for instance, to pay off their mortgage or to go on a big
trip.

• Employees with a heavy profession will get the possibility to retire 3 years earlier than the
retirement age. Employers will no longer have to pay the fine on the RVU (Early Retirement
Scheme) for gross incomes up to 19,000AC.

• There will be a possibility to implement life-cycle investing in the new pension system. This
means that a pension fund can take different levels of risk for participants of different ages.
The concept of life-cycle investing is explained more further on.

2.5 Committee Parameters 2019

Based on the Dutch Pension Act, an independent committee consisting of 5 to 7 members with
knowledge in finance and pension planning, is assigned by the government. Members include, for
instance, several professors in Actuarial Science and Macro Economics, a former Minister of Finance
and a former member of the board of the Pension Federation. This committee is called the Committee
Parameters and it is assigned at least every five years to report their judgment on the maximal
parameters that pension funds can use in their recovery plans and the technical elaboration of the
valuation of pension rights. Its formation is laid down in the FTK and the committee members
are assigned by the Minister of Social Affairs and Employment. Typically, the members of the
committee are pension experts and professors affiliated with pension matters.
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The most recent committee was formed on 28 January 2019 and its members were given the task
to judge the technical elaboration of the valuation of long-term pension rights and to decide on the
values of the following parameters on the basis of the current financial-economic expectations:

• the minimal percentage of the average wage or price index;

• the maximal allowed average return on fixed-income securities;

• the maximal allowed risk premium on, among other things, stocks and real estate; and

• the uniform set with economic scenarios.

2.6 Elaboration research questions

In the current system, the pension funds have to account for the risk in their investment strategy by
incorporating the Required Own Funds (Equation 2.4) to the Required Funding Ratio (Definition
2.3.6). The ROF depends on the total capital and the sensitivity to a number of risk categories.
If the Policy Funding Ratio (Equation 2.3.5) is above the RFR, the pension fund is allowed to
(partially) index all its participants. Clearly, this policy will not be fair if the amount of risk in the
strategy of different participants will vary substantially, as will be possible for life-cycle investing.
Therefore, we will formulate a new policy that will let the indexation or drawback of participants’
rights depend on the risk in their portfolio. This leads to the following question:

How does life-cycle investment affect pension accrual in different age cohorts?

We want to model a pension fund where the participants’ savings are invested according to their
personal life-cycle. This is an explicit life-cycle scheme, because we explicitly follow each agent’s life-
cycle. We will test different life-cycle schemes that have been suggested in the literature. Comparison
of the different stratgies answers the question:

How do different explicit life-cycle methods perform compared to each other?

We are also interested in the financial health of the entire pension fund, i.e., with the funding ratio.
This leads to the following question:

How does life-cycle investment affect the development of the funding ratios of pension funds?
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Chapter 3

Mathematical foundation

In this chapter, we will introduce the mathematical foundation of stochastic calculus (also known
as Itô calculus) that will be used in the upcoming chapters. In Section 3.1, we introduce stochastic
processes and all kinds of martingales. In Section 3.2, the important concept of Brownian motion
is constructed in two different ways. The stochastic integral and stochastic differential equation
are defined in Section 3.3. Furthermore, we introduce the statistical methods that are used in this
thesis in Sections 3.4 and 3.5. In Appendix A, the measure-theoretic background can be found. The
reference for this the stochastic calculus of this chapter is [22].

3.1 Stochastic processes and martingales

First, let (Ω,F ,P) be a probability space. In this section, we will define martingales. We will see
below that these martingales are stochastic processes with certain defining properties. Let us first
define the latter concept.

Definition 3.1.1. Let T ∈ R+ and (E, E) some measurable space. A stochastic process indexed by
[0, T ] with values in (E, E) is a collection X = (Xt)t∈[0,T ] of random variables from the probability
space (Ω,F ,P) to (E, E). The space (E, E) is called the state space of the process.

Most of the times, we will take (E, E) = (R,B(R)). Let us give definitions for the variation of a
function and the quadratic variation of a stochastic process.

Definition 3.1.2. Let F : [a, b]→ R be some function, we define the variation of F by

VF (t) := sup

{
n∑
i=1

|F (si)− F (si−1)| : a = s0 < · · · < sn = t

}
,

which is the supremum over all partitions of [a, t]. We say that F has bounded variation on [a, t] if
VF (t) <∞.
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Definition 3.1.3. Let X be a stochastic process. The quadratic variation 〈X〉 = (〈X〉t)t≥0 is
defined by

〈X〉t = lim
mesh(∆n)→0

pn−1∑
i=0

(Xti+1−Xti )
2,

where mesh(∆n) = max{(tni − tni−1) : i = 1, . . . , n} is the mesh-size of the partition π = {0 = tn0 <
tn1 < · · · < tnpn = t} of the interval [0, t], provided it exists.

In the rest of this thesis, we will assume that the quadratic variation of stochastic processes of
interest always exists. We can use the quadratic variation of two processes X and Y on the same
space to define the quadratic covariation.

Definition 3.1.4. Let X, Y be two process on the same probability space. Then the quadratic
covariation of X and Y is defined as

〈X,Y 〉 =
1

2

(
〈X + Y 〉 − 〈X〉 − 〈X〉

)
.

In order to extend conditional expectation and variance to stochastic processes, we need to have
subsequent σ-algebras that ”keep up” with the process.

Definition 3.1.5. A filtration on a probability space (Ω,F ,P) is a collection of σ-algebras (Ft)t≥0

such that for all 0 ≤ s ≤ t <∞, we have that Fs ⊆ Ft ⊆ F . We set F∞ = σ(
⋃
t∈R+

Ft).

Definition 3.1.6. A stochastic process X is called adapted to filtration (Ft)t≥0 is Xt is Ft-
measurable for all t ∈ R+. The smallest filtration to which Xt is adapted is FXt = σ(Xs : 0 ≤ s ≤ t).

A stopping time is a random time that is measurable. Stopping times are often used for stopping
rules that decide when stochastic processes are cut off.

Definition 3.1.7. A stopping time τ : Ω→ [0,∞] is a random variable such that for all t ≥ 0,

{ω : τ(ω) ≤ t} ∈ Ft

We are now all set to introduce martingales. Let (Ft)t≥0 be a filtration on probability space (Ω,F ,P).

Definition 3.1.8. Let M = (Mt)t≥0 denote a stochastic process on (Ω,F ,P) such that for all t ≥ 0,

• (Mt)t≥0 is adapted to (Ft)t≥0,

• E [|Mt|] <∞.

It is called

1. a martingale w.r.t. (Ft)t≥0 if for all s < t: E [Mt | Fs] = Ms,

2. a submartingale w.r.t. (Ft)t≥0 if for all s < t: E [Mt | Fs] ≥Ms,

3. a supermartingale w.r.t. (Ft)t≥0 if for all s < t: E [Mt | Fs] ≤Ms.

Some stochastic process that are not martingales can be changed into martingales by localizing them.

16



Definition 3.1.9. Let M = (Mt)t≥0 be a continuous adapted process. M is called a local mar-
tingale if there exists a sequence of stopping times (Tn)n≥1 such that P(limn→∞ Tn = ∞) = 1 and
(MTn∧t −M0)t≥0 is a martingale. We say that (Tn)n≥1 is localizing the process M .

We can even extend local martingales to semimartingales by allowing processes of bounded variation
to be added.

Definition 3.1.10. A continuous adapted process X is called a semimartingale if it can be decom-
posed as

Xt = X0 +Mt + Vt,

where M is a continuous local martingale and V is an adapted continuous process with bounded
variation.

3.2 Brownian motion

Recall that a random variable has density f if

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

In this thesis, these random variables will mostly be normally (Gaussian) distributed. Recall that a
random variable X is normally distributed with mean µ and variance σ2 if its density is given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

We will now define a Gaussian vector.

Definition 3.2.1. Let X = (X1, . . . , Xd)
′ be a random vector. X is called a Gaussian vector if for

all λ1, . . . , λd ∈ R, we have that λ1X1 + · · ·+ λdXd is normally distributed.

For a Gaussian vector X = (X1, . . . , Xd)
′, we can write the expectation as

µ := E [X] = (µ1, . . . , µd)
′,

where E [Xi] = µi and covariance matrix C = (ci,j)1≤i,j≤d with

ci,j = E [(Xi − µi)(Xj − µj)] .

We are now almost set to define Brownian motions. First, we need to define Gaussian processes.

Definition 3.2.2. Let T ∈ R+ ∪ {∞}. A stochastic process (Xt)t∈[0,T [ is called a Gaussian process
if for all 0 ≤ t1 ≤ · · · ≤ tn < T , we have that (Xt1 , . . . , Xtn)′ is a Gaussian vector.

Gaussian processes are uniquely determined by their means and covariance matrices in the following
way:

µ(t) = E [Xt] ,

c(s, t) = Cov(Xs, Xt).

For certain forms of µ(t) and c(s, t), a Gaussian process is also a Brownian motion.
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Definition 3.2.3. A Brownian motion B = (Bt)t∈[0,T [ is a Gaussian process with µ(t) = 0 and
c(s, t) = s ∧ t.

From the following proposition, we see that we can characterize Brownian motion also by their
behavior on increments.

Proposition 3.2.4. The following are equivalent:

1. B = (Bt)t∈[0,T [ is a Brownian motion.

2. (i) X0 = 0 almost surely,

(ii) for all n ≥ 2, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, we have that Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1
are

independent,

(iii) for all s ≤ t, we have that Xt −Xs ∼ N (0, t− s).

Proof. See Proposition 3.1 in [22].

3.3 Stochastic calculus

In this section, we define the stochastic integral and stochastic differential equation. We follow the
constructive definition for the stochastic integral in means of a limit. Furthermore, we state the Itô
formula for continuous semimartingales.

Definition 3.3.1. Let M be a continuous local martingale, M0 = 0 and H an adapted continuous
process. The stochastic integral of H with respect to M is defined by∫ t

0

HsdMs = lim
mesh(π)→0

pn−1∑
i=0

Htni
(Mtni+1

−Mtni
),

where π = {0 ≤ tn0 < · · · < tnn ≤ t} is a partition of [0, t].

A stochastic process that can be written as the sum of a stochastic integral with respect to a
Brownian motion and an integral with respect to time is called an Itô process.

Definition 3.3.2. Let X be an adapted stochastic process and let B be a Brownian motion. If X
can be written as

Xt = X0 +

∫ t

0

σsdBs +

∫ t

0

µsds,

where σ and µ are adapted process that are integrable, then X is called an Itô process.

The quadratic variation of an Itô process can be written in a simple form.

Proposition 3.3.3. Let X be an Itô process. Then

〈X〉t =

∫ t

0

σ2
sds,

or in differential form:

d〈X〉t = σ2
t dt
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Proof. See [22].

Theorem 3.3.4. Let X = (X(1), · · ·X(d)) be a d-dimensional continuous semimartingale and f ∈
C2(Rd,R). We write f(Xt) for f(x1, . . . , xd), then

f(Xt) = f(X0) +

d∑
j=1

∫ t

0

∂

∂xj
f(Xs)dX(j)

s +
1

2

d∑
i,k=1

∫ t

0

∂2

∂xi∂xk
f(Xs)d〈X(i), X(j)〉s,

or in differential form

df(Xt) =

d∑
j=1

∂

∂xj
f(Xt)dX

(j)
t +

1

2

d∑
i,k=1

∂2

∂xi∂xk
f(Xt)d〈X(i), X(k)〉t. (3.1)

Proof. See [22].

An important consequence of Theorem 3.3.4 is the following. Consider d = 2 and Y = (Xt, t)t≥0,
then

f(Xt, t) = f(X0, 0) +

∫ t

0

∂

∂s
f(Xs, s)ds+

∫ t

0

∂

∂x
f(Xs, s)dXs +

1

2

∫ t

0

∂2

∂x2
f(Xs, s)d〈X〉s.

Similarly, we can write this in its differential form:

df(Xt, t) =
∂

∂t
f(Xt, t)dt+

∂

∂x
f(Xt, t)dXt +

1

2

∂2

∂x2
f(Xt, t)d〈X〉t.

Another corollary of Theorem 3.3.4 can be seen as a product rule for Itô calculus. We write it
directly in differential form.

Corollary 3.3.5. Let (Xt, Yt)t≥0 be a 2-dimensional continuous semimartingale, then

d(XtYt) = XtdYt + YtdXt + d〈X,Y 〉t.

Proof. Take f(x, y) = xy, then it follows from 3.3.4.

In particular, if X and Y are Itô processes with σ = 1, we can further simplify this because
d〈X,Y 〉t = dXtdYt. This will be used in later chapters.

3.4 Percentiles of observations

A percentile q divides the probability distribution function into two intervals, one from ]−∞, q] and
the other from ]q,∞[. For instance, the 75th percentile says that 75% of the observations will lie
below this value. In this thesis, these observations will be the outcomes of the simulations that are
made in the model.
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Definition 3.4.1. The a-percentile of a continuous and strictly monotone increasing distribution
function F of X is the value ξa for which FX(ξa) = P(X ≤ ξa) = a for 0 < a < 1. Hence we can
find the a-percentile ξa by

ξa = F−1
X (a).

Note that since the function FX is continuous and strictly monotone increasing, the value ξa is
unique and the inverse function F−1

X is well-defined.

3.5 Hypothesis testing

In experimentation, we use statistical interference to be able to conclude about the statistical signifi-
cance of certain outcomes. This is done by so-called hypothesis testing. In this set-up, we test several
hypotheses against each other: the null hypothesis H0 and the alternative hypotheses H1, H2, . . . Hm,
for some m ∈ Z. In general, the null hypothesis H0 states that there is no relationship between the
measured phenomena. Then, a test statistic T with a certain distribution is determined. This is
compared to the realized value t of the experimentation.

To draw conclusions about rejecting or accepting the null hypothesis H0, we set a significance level
α. Often, α = 0.05 is chosen. For a two-sided test, the p-value of the realized is determined as
follows:

p = 2 min{P(T ≤ t |H0),P(T ≥ t |H0)}.

Now, if p < α, we reject the null hypothesis H0. Otherwise, the null hypothesis is accepted.

3.5.1 Kruskal-Wallis test

The Kruskal-Wallis test is used to analyze the variance in different groups of data points without
assuming a certain parametric distribution of the underlying distribution. First, we rank all N data
points and we group all the data in groups i = 1, . . . , g together. Then, the test statistic is given by

H = (N − 1)

∑g
i=1 ni(ri − r)2∑g

i=1

∑ni
j=1(rij − r)2

,

where

• ni is the number of observations in group i,

• rij is the rank among all observations of observation j in group i,

• ri =

∑ni
j=1 rij

ni
is the average rank of all observations in group i,

• r = 1
2 (N + 1) is the average of all rij .
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3.5.2 Bonferroni correction

For multiple comparisons, we need to correct the significance level α for the number of hypothesis
tests that are performed simultaneously. This procedure is called the Bonferroni correction. If m
hypothesis tests are performed at the same, this is done by replacing α with α

m . We can equivalently
replace the calculated p-values with pm.

21





Chapter 4

Life-cycle investing

In this chapter, we motivate and construct the life-cycle methods that we will test in the model.
First, we give a short overview of the known literature about life-cycle theory. Then, we explain
the role of human capital and utility function theory. Next, we will derive the optimal allocation of
stocks according to the life-cycle theory. Finally, we will highlight the different life-cycle methods
that we use.

4.1 Life-cycle literature

In this section, we give an overview of the literature on life-cycle theory.

The theory of life-cycle saving and investing has been a matter of academic interest after Keynes
built the basics for a macroeconomic theory and associated policy. It arose after portfolio selection
theory proved to be useful for investors that want to invest in risky assets. The ideas of portfolio
selection originate from the work of Markowitz in 1952, [15], who showed that choosing different
assets that are not fully correlated can reduce the investment risk while keeping a high expected
return.

Under some mild assumptions, mathematical derivations of optimal portfolio allocation had been
constructed in the fifties and sixties. These models, however, were only maximized over one period.
The first economists that came up with multi-period models to solve this dynamic portfolio choice
problem for the allocation between safe assets (bonds) and risky assets (stocks), were Samuelson [23]
and Merton [16]. In their publications, it was shown that a consumer should maintain a constant
fraction of savings invested in stocks to receive an optimal pay-off if investment opportunities are
constant. This conclusion, however, was stated under the unrealistic assumption that an agent has
no labor income.

In 1992, Bodie, Merton and Samuelson, [4], expanded the existing models with flexible labor income.
Their main result shows that the fraction of financial wealth invested in stocks should decline with
age. This is due to the assumption that human capital, which will be explained in the next section,
is seen as a risk-free asset. As human capital declines over time, financial wealth should be shifted
towards the safe assets to be in line with the original models Samuelson and Merton proposed.
Other papers that assume the safe nature of human capital are Merton [16], Heaton and Lucas [11],
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Jaganathan and Kocherlacota [13], Campbell and Viceira [7], and Viceira [29]. A survey of recent
academic literature on financial planning over the life-cycle can be found in Bovenberg, Koijen,
Nijman, and Teulings [5].

Recently, however, empirical evidence has shown that the allocation of wealth to stocks does not
completely follow the result given by Bodie, Merton and Samuelson in [4]. Typically, the fraction
invested in the risky asset show a humped-shaped pattern, which is low for young agents, increases
towards the middle of the working life and then decreases as retirements gets closer. Empirical
evidence of this view can, for instance, be seen in Figure 4.1.1.

Figure 4.1.1: Equity Shares in Financial Assets, 1989-1998. Source: Ameriks and Zeldes (2004)

We can model a similar pattern by changing our view on human capital: instead of being an
implicit holding in a risk-free asset, human capital can be stochastically affected by changes in wage
and economic shocks. The risk in human capital can then be decomposed into an economic-wide
stochastic part, such as recession, and an individual stochastic part, such as sudden unemployment.

The assumption that human capital is of a risk-free nature follows from assuming that it is not
correlated with capital return. Benzoni, Collin-Dufresne and Goldstein [3] claim that in the long
run, labor income and capital income are highly cointegrated. This finding implies that the risk in
young workers’ labor income has a more risky nature and they should therefore hold more financial
wealth in risk-free assets. Other papers that study riskiness of labor income are Viceira [29] and
Cocco et al. [9].

A recent comparison between the risk-free and risky view of human capital based on Dutch data
has been done by Minderhoud, Molenaar and Ponds [18]. In this thesis, the risk-free view of human
capital is used.
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4.2 Human capital explained

The theory of optimal life-cycle investment has been extensively studied in the academic literature.
It has been developed as an answer to the question of what is the amount of money that should
be saved for retirement and what is the amount that should be spent now and is therefore relevant
for every working person. To answer this question, we must have a good guess of how much wealth
the person will earn until he retires. This wealth can be decomposed into two parts: current wealth
and future wealth. It is in general not difficult to value the current wealth, because this will mainly
consist of savings in a bank, risk-free investments (i.e. bonds) and risky investments (stocks), which
are at large valued by the market. However, an important decision to make is how to make an
estimate of how much wealth he will probably earn in the rest of his life.

It is clear that the future income of an agent cannot be determined deterministically, since there
are a lot of uncertainties about the development of the income. An agent can become unemployed,
for instance, or switch to a different kind of job with a different wage. We can, however, make an
estimate by looking at how much income we expect the agent to earn each year. If we do this for all
the future years up to the age of retirement, we can define the human capital HC(t) as the present
value of the expected future income:

HC(t) = E

[
T−t∑
s=1

PV(Ys)

]
=

T−t∑
s=1

1

(1 + rf )s
E [Ys] , (4.1)

where Ys is the (stochastic) annual labor income in year s, rf is the risk-free return and T − t marks
the length of the remaining working life in years. Then the total wealth W (t) of an agent at time t
is the sum of the human capital HC(t) and the financial wealth FW (t):

W (t) = HC(t) + FW (t), (4.2)

where the financial wealth is the total of the agents savings and invested assets. The individual’s
goal is to maximize his consumption c(t) over his entire lifetime, limited by the magnitude of the
total wealth W (t). The consumption c(t) is defined by the part of the total wealth W (t) that is
not saved. It is also conventional to include an agent’s risk appetite in the model. He can influence
the risk taken by investing a fraction αt in a risky asset and 1− αt is a risk-free asset at each time
instant t. It will follow that the development of the ratio αt depends highly on the nature of human
capital. In the following section, we will treat two views on human capital.

4.3 Risk-free view on human capital

In the classical portfolio choice problem, the total wealth is invested in two assets, a risk-free and
a risky asset. We now assume that the human capital is risk-free. Because it pays out every year
”dividends” in the form of labor income, we view it as extra capital in the risk-free asset. In this
model, the agent’s wealth consist of tradable financial assets and untradable human capital. To
see why human capital is untradable, let us assume towards contradiction that it is tradable. The
agent sells his future labor income. But then he has no more incentive to work and the sold claims
on his future labor income become worthless. Hence human capital must be untradable. A global
development of human capital, financial wealth and total wealth over the lifetime is given in Figure
4.3.1.
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Figure 4.3.1: Development of wealth components over the lifetime.

4.3.1 Utility function

Historically, utility was formulated as a quantitative measurement of the satisfaction one derives
from the choice for a certain good. Starting in the field of moral philosophers, it was embraced and
adapted by neoclassical economists to a utility function that represent the ordering of a consumer’s
preference of a set of choices. The functional representation opened the opportunity to use mathe-
matical tools to evaluate and prove properties. If choice y is preferred at least as much as choice x,
let us denote that by x � y. If y is preferred strictly over x, then we denote x ≺ y and if we can not
make a choice between x and y, then we write x ∼ y. Formally, a utility function is a quantification
of the preference relation to the real numbers:

Definition 4.3.1. Let X be a set of choices. A utility function U : X → R represent a preference
relation � if and only if for all x, y ∈ X,

U(x) ≤ U(y) ⇐⇒ x � y.

Note that the existence of a utility function given a preference relation is not clear so far. In order
to do this, we need to assume completeness and transitivity of the set of choices.

Axiom 4.3.2. For every pair x, y ∈ X, either x � y, y � x or both.

Axiom 4.3.3. For every triple x, y, z ∈ X, if x � y and y � z, then x � z.

These axioms provide the basic structure on the preferences that allow it to be fully captured by a
utility function.
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Theorem 4.3.4. Suppose that X admits a countable order dense subset1 and that Axioms (4.3.2)
and (4.3.3) hold, then there exists a utility function U : X → R that represents the preference rela-
tion �.

Axioms 4.3.2 and 4.3.3 are not enough to let decision-makers make rational choices when confronted
with risky outcomes of different choices. Suppose we can assign probabilities to each outcome
of a choice made. This allows us to look at linear combinations of outcomes and corresponding
probabilities, called lotteries.

Definition 4.3.5. Let Ai for i = 1, 2, . . . denote different outcomes of a random variable X, with
corresponding probabilities pi. A lottery L is any linear combination of the Ai with the pi as
constants, i.e., L can be written as

L =

∞∑
i=1

piAi.

Note that these different outcomes Ai are usually expressed as amounts of money. In the rest of this
thesis, we will assume that the different realizations of a lottery are amounts of money or wealth.
Since we are in a probabilistic setting now, it makes sense to look at the expectation of the utility
of the set of outcomes.

Definition 4.3.6. Let X be a set of choices. If U only has values on a finite or countably infinite
set {x1, x2, . . . , xn}, then the expected utility is

E [U(X)] =

n∑
i=1

piU(xi),

where n→∞ for a countably infinite set and pi is the probability that xi is realized.

In 1947, John von Neumann and Oskar Morgenstern published sufficient conditions for a decision-
maker to act as if he is maximizing his expected utility under a wealth constraint. Let us first give
two more axioms.

Axiom 4.3.7. If x ≺ y ≺ z, then there exists a probability p ∈ (0, 1) such that

px+ (1− p)z ∼ y.

This axiom, known as continuity, ensures that there is a tipping point between being better than
and worse than a give middle option. With other words, the space of options is in a continuous
spectrum.

Axiom 4.3.8. If x � y, then for every z and p ∈ [0, 1],

px+ (1− p)z � py + (1− p)z.
1A subset is said to be order dense if it is dense with respect to the order �: i.e., if for all x, y ∈ X for which

x � y, there is a z ∈ X such that x � z � y.
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This axiom implies that if individuals have a preference between two simple lotteries, this preference
remains when compound lotteries are considered.

If Axioms (4.3.2), (4.3.3), (4.3.7)2 and (4.3.8) are satistied, then any decision-maker is called a
rational agent. The following theorem holds.

Theorem 4.3.9. For any rational agent, i.e., decision-maker satisfying Axioms (4.3.2), (4.3.3),
(4.3.7) and (4.3.8), there exists a utility function U such that for any two lotteries L,M ,

L ≺M if and only if E(U(L)) < E(U(M)).

Proof. See [19].

This theorem shows that U can be uniquely determined up to adding a constant and multiplying
with a scalar by preferences between simple lotteries. Utility functions as such can then be seen as
the ordering individuals give to certain options. The shape of the graph of a utility function will tell
us something about the risk appetite of agents. Let us look at an example.

Example 4.3.10. An individual has the choice between two options: one with a guaranteed payoff
and one without. In the first option, the individual receives AC50. In the second option, a fair coin is
flipped to determine whether the person receives AC100 or nothing. The expected payoff is the same
in both scenarios, meaning that a person who is indifferent about risk does not have a preference
for one of the two options. However, individuals may have different risk attitudes:

• A risk averse person would accept the certain payment over the gamble.

• A risk neutral person is indifferent between the two choices.

• A risk loving person would go for the gamble instead of the certain payment.

In Figure 4.3.2 we see the shape of the graph for all three categories of risk appetite. In general, the
risk averse agent’s function is concave, the risk neutral agent’s function is linear and the risk loving
agent’s function is convex.

In this thesis, we will assume that agents are risk averse. There are several measure of the risk
aversion that a given utility function entails. We will focus on the so-called Arrow-Pratt measure of
relative risk aversion:

Definition 4.3.11. Let U : [0,∞) → R denote a utility function that is defined for every wealth
W . Then the relative risk aversion R(W ) is defined as

R(W ) =
−WU ′′(W )

U ′(W )
.

For one kind of utility, this relative risk aversion is constant, namely the power utility.

Definition 4.3.12. The power utility function U is defined as

U(W ) =
W 1−γ

1− γ
,

for γ ≥ 0, γ 6= 1.

2Instead of this axiom, the Archimedean property can be assumed, stating that for all x � y � z, there exists a
probability p ∈ [0, 1] such that (1− p)x + pz ≺ y ≺ px + (1− p)z.
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Figure 4.3.2: Utility function of a risk loving (upper graph), a risk neutral (middle graph) and a risk
averse (lower graph) person.

4.3.2 Derivation of optimal allocation

Let us now make some assumptions to find an expression for the optimal fraction invested in the
risky asset. We start without considering the human capital and will incorporate this later. Assume
that there are two assets categories, stocks (risky) and bonds (risk-free). Denote the return of the
risk-free asset at time t by Rb,t and the return of the risky asset at time t by Rs,t. We will assume
that Rb,t is deterministic. The conditional variance of the log return on the risky asset is σ2

s,t.
Suppose the agent invests a fraction αt in the risky asset and 1 − αt in the risk-free asset. The
portfolio return Rp,t+1 at time t+ 1 then equals

Rp,t+1 = αtRs,t+1 + (1− αt)Rb,t+1 = Rb,t+1 + αt(Rs,t+1 −Rb,t+1). (4.3)

The expected portfolio return given the information up to t is Et [Rp,t+1] = Rb,t+1 +αt(Et [Rs,t+1]−
Rb,t+1), and hence by the scaling property of the variance in Proposition A.5.4, the portfolio variance
is σ2

p,t = α2
tσ

2
s,t.

We will recall that the total wealth Wt = W (t) is defined as the sum of the human capital HC(t)
and the future wealth FW (t). The maximization problem in terms of utility is

max
αt

Et [U(Wt+1)] , (4.4)

such that it satisfies the wealth constraint

Wt+1 = (1 +Rp,t+1)Wt. (4.5)

We can rewrite this wealth constraint in log form as

wt+1 = rp,t+1 + wt, (4.6)
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where wt+1 = logWt+1 and rp,t+1 = log(1 + Rp,t+1). We will use the log form later. This utility
is a concave function in wealth Wt+1, resembling risk-aversion of investors as we have seen in the
previous subsection. There are several functional forms that we could choose to satisfy concavity.
We can minimize the options by assuming that the asset returns are log-normally distributed. The
results of the maximization problem are then simple if we assume power utility, given by

U(Wt+1) =
W 1−γ
t+1

1− γ
,

or equivalently,
U(Wt+1)(1− γ) = W 1−γ

t+1 , (4.7)

where γ := R(Wt) is the constant relative risk aversion. We assume that γ > 0, γ 6= 1. This function
also satisfies the favorable property that absolute risk aversion declines in wealth. Now note that
since log is a strictly increasing function, maximization of the utility is equivalent to maximization
the log utility. So rewriting the maximization problem in log form and using Equation 4.7, we want
to solve

max
αt

Et [U(Wt+1)] (1− γ) = max
αt

logEt
[
W 1−γ
t+1

]
(4.8)

= max
αt

(
(1− γ)Et [logWt+1] +

1

2
(1− γ)2Vart [logWt+1]

)
, (4.9)

where we use Lemma B.1.1 from the Appendix. Now dividing by 1 − γ and using the log form of
the wealth constraint from Equation 4.6, we rewrite it as

max
αt

Et [U(Wt+1)] = max
αt

(
Et [rp,t+1 + wt] +

1

2
(1− γ)Vart [rp,t+1 + wt]

)
, (4.10)

and finally noting that conditional on the information up to time t, wt is a constant, the maximization
can be rewritten as

max
αt

Et [U(Wt+1)] = max
αt

(
Et [rp,t+1] +

1

2
(1− γ)σ2

p,t

)
, (4.11)

where σ2
p,t = Vart [rp,t+1] denotes the conditional portfolio variance. Since we are looking for a

relation between the fraction αt and the return on the two asset categories, we need to find a way to
connect the log portfolio return to the log returns of the individual assets. We can rewrite Equation
4.3 such that we have

1 +Rp,t+1

1 +Rb,t+1
= 1 + αt

(1 +Rs,t+1

1 +Rb,t+1
− 1
)
.

Taking logs, this can be written as

rp,t+1 − rb,t+1 = log

(
1 + αt

(1 +Rs,t+1

1 +Rb,t+1
− 1
))

,

= log

(
1 + αt

(
exp(rs,t+1 − rb,t+1)− 1

))
.

This equation gives a relation between the log excess return on the risky asset, rs,t+1 − rb,t+1, and
the log excess on the portfolio, rp,t+1 − rb,t+1. We can approximate this relation by a second-order

30



Taylor expansion of the function ft(x) = log(1 + αt(e
x − 1)) around the point x = 0. This gives us

the approximation

ft(x) ≈ ft(0) + f ′t(0)x+
1

2
f ′′t (0)x2.

We can easily check that f ′t(0) = αt and f ′′t (0) = αt(1 − αt). Furthermore, we can make a sim-
plification by replacing x2 = (rs,t+1 − rb,t+1)2 by its conditional variance σ2

s,t. Combining these
observations leads to the relation

rp,t+1 − rb,t+1 = ft(rs,t+1 − rb,t+1) = αt(rs,t+1 − rb,t+1) +
1

2
αt(1− αt)σ2

s,t. (4.12)

In the limit as the time intervals shrink, this approximation is exact. Plugging in this approximation
in Equation 4.11 and using the fact that σ2

p,t = α2
tσ

2
s,t, the maximization function becomes

max
αt

Et [U(Wt+1)] = max
αt

(
rb,t+1 + αt(Et [rs,t+1]− rb,t+1) +

1

2
αt(1− αt)σ2

s,t +
1

2
(1− γ)α2

tσ
2
s,t

)
.

(4.13)

Let µt+1 := Et [rs,t+1] − rb,t+1 denote the conditional expected excess return. Define the function
g : [0, 1]→ R by

g(αt) = rb,t+1 + αtµt+1 +
1

2
αt(1− αt)σ2

s,t +
1

2
(1− γ)α2

tσ
2
s,t.

Then, taking the derivative gives

g′(αt) = µt+1 +
1

2
(1− αt)σ2

s,t −
1

2
αtσ

2
s,t + (1− γ)αtσ

2
s,t,

= µt+1 +
1

2
σ2
s,t − αtγσ2

s,t.

Now, setting this derivative to zero and solving for αt yields the solution for the optimal allocation:

αt =
2µt+1 + σ2

s,t

2γσ2
s,t

. (4.14)

Note that this is indeed a maximum, since

g′′(αt) = −γσ2
s,t < 0,

for all αt because γ, σ2
s,t > 0. This solution for αt is independent of the time horizon: suppose

we consider an n-period investment. The expected return on the risky asset and the return on the
risk-free asset both scale by n, and the variance of the portfolio return equals 1

nα
2
tσ

2
s,tn

2 = α2
tσ

2
s,tn,

so Equation 4.14 remains the same.

4.3.3 Including human capital

Let us now include the human capital in the solution. As mentioned before, it can be seen as
an implicit holding in a risk-free asset that pays out labor income as dividend. If we now take
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untradable human capital into account, how does Equation 4.14 change? By investing αtW (t) in
the risky asset, the optimal portfolio allocation is achieved. This means that the adjusted fraction
α̂t of the financial wealth invested in the risky asset should satisfy

α̂tFW (t) = αt(FW (t) +HC(t)), (4.15)

so we can find the optimal fraction by combining this with Equation 4.14:

α̂t = αt
FW (t) +HC(t)

FW (t)
=

2µt+1 + σ2
s,t

2γσ2
s,t

(
1 +

HC(t)

FW (t)

)
, (4.16)

where µt+1 denotes the conditional expected excess return on the risky asset. If the conditional
expected excess return and the variance are constant, the development of α̂t only depends on the
human capital and the financial wealth. In the light of Figure 4.3.1, the optimal allocation of financial
wealth to the risky asset should decline over time. This is because the human capital declines as
’dividend’ is paid out in the form of labor income. This labor income is partially consumed and
partially saved to increase financial wealth. The fraction of financial wealth invested in stocks and
bonds is shown in Figure 4.3.3.

Figure 4.3.3: Fraction of financial wealth invested in stocks and bonds over the lifetime.

4.4 Strategies

In this section, two different ways of determining the allocation of assets are described. These
different algorithms will be called strategies. As described before, this age-based risk appetite gives
rise to a way of compensating agents for the risk they are taking.
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We assume that all employees start working at the age of 25 and retire at the age of 67. Furthermore,
everyone between 25 and 67 is assumed to work. In all the following, g will denote the age at which
the investment strategy changes.

4.4.1 Linear decreasing life-cycle

In this strategy, the allocation of assets can be characterized by

α
(g)
t =


pstart, if g ≤ g,
−pstart − pend

67− g
g + pstart +

pstart − pend
67− g

g, if g < g < 67,

pend, if g ≥ 67,

(4.17)

where α
(g)
t is the fraction invested in stocks for the cohort g at time t.

4.4.2 Dynamic life-cycle

The dynamic life-cycle is an individual life-cycle investment strategy, suggested and motivated in
[1]. Let R denote the target compounded annual rate of return and rs the realization of the return
for the cohort with age s. Let g denote the age at which the portfolio is built down and 67 years
the pension age. Allocation of assets is based on the following algorithm:

• For the first g ≤ g years of an employee’s career, a fraction of pstart is invested in stocks.

• After g ∈
[
g, 1

2 (g + 67)
]

years, if

g∏
s=25

(1 + rs) ≥ (1 + R)g−25, set the allocation of assets in

stocks to pmiddle. Otherwise, set to pstart.

• After g ∈
[

1
2 (g + 67)

]
, 67] years, if

g∏
s=25

(1 + rs) ≥ (1 + R)g−25, set the allocation of assets in

stocks to pend. Otherwise, set to pstart.

• For g ≥ 67, the allocation of assets to stocks is fixed at pend.
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Chapter 5

Methodology

In this chapter, the underlying financial market model and pension fund model are explained. In
Section 5.1, the Uniform Calculation Method Model is laid out and several mathematical derivations
are given for the used results. In Section 5.2, we construct a stylized pension fund model that suits
the life-cycle setting.

The Dutch population is extracted from the data of the Dutch Central Bureau for Statistics and
mortality rates are approximated by the Dutch Royal Actuarial Society. In all following subsections,
we will assume that time step ∆t = 1 is used.

5.1 Uniform Calculation Method Model

The financial market in the Netherlands is modelled in this section. We will estimate the stock
market, the bond market and the interest rate. In order to estimate these processes, we need to
consider the inflation process as well. The assumptions are based on the CPB (Dutch Bureau for
Economic Policy Analysis) background document by Nick Draper [8]. The prime symbol denotes
the matrix transpose in the following.

We construct a portfolio with a stock index, long-term nominal bonds and nominal money1. The
interest rate and expected inflation are modelled by two variables that represent the uncertainty and
dynamics. These state variables are collected in 2-vector Xt. The instantaneous real interest rate
(rt) and the instantaneous expected inflation (πt) develop according to

rt = δ0,r + δ′1,rXt,

πt = δ0,π + δ′1,πXt,

where δ0,∗ are scalars that give the starting values and δ1,∗ are 2-vectors that give the correlation
between interest rate and inflation. The state variables collected in Xt following a mean-reverting
process around zero:

dXt = −KXtdt+ Σ′XdZt, (5.1)

1”Nominal” refers to the value of an asset, without taking inflation and other factors into account.
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with K a 2×2-matrix of parameters, Σ′X =

(
1 0 0 0
0 1 0 0

)
and Z a 4-dimensional Brownian motion.

The price index (Πt) is influenced by the inflation and the same Brownian motion Z:

dΠt

Πt
= πtdt+ σ′ΠdZt, (5.2)

with σΠ a 4-vector and Π0 = 1.

We use the following discrete approximation of the Stochastic Differential Equation 5.2 to determine
the price inflation in the URM model:

Πt+1

Πt
= exp

(
(πt −

1

2
σ′ΠσΠ)∆t+ σ′ΠZ(∆t)

)
, (5.3)

where Z ′(∆t) is a 4-vector consisting of 4 independent normal random variables Zi(∆t) ∼ N (0,∆t),
for i ∈ {1, 2, 3, 4}.

We further model the risk premium Λt as

Λt = Λ0 + Λ1Xt,

with Λ0 a 4-vector and Λ1 a 4×2-matrix. The present value of a future cash value can be computed
by multiplying the future value by a discount factor and taking the expectation. We will use this
to calculate present values of future stock and zero coupon bond prices. The nominal stochastic
discount factor (φt) develops as

dφt
φt

= −Rtdt− Λ′tdZt, (5.4)

where Rt is the nominal instantaneous interest rate. Rt is also updated by state variables in Xt:

Rt = R0 +R′1Xt. (5.5)

We will later see that we can express the values of R0 and R1 in terms of other parameters in this
section.

The stock index (St) develops as a geometric Brownian motion:

dSt
St

= (Rt + ηS)dt+ σ′SdZt, (5.6)

where we let S0 = 1, σS a 4-vector and ηS the equity risk premium.

In accordance with the approximation of the price inflation in Equation 5.3, we use the following
discrete approximation of the Stochastic Differential Equation 5.6 to compute the stock returns in
the URM model:

St+1

St
= exp

(
(Rt + ηS −

1

2
σ′SσS)∆t+ σ′SZ(∆t)

)
,

where Z ′(∆t) is a 4-vector consisting of 4 independent normal random variables Zi(∆t) ∼ N (0,∆t),
for i ∈ {1, 2, 3, 4}.

For the nominal zero-coupon bond P , we assume the fundamental pricing equation,
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E [dφP ] = 0,

which formulates that the expected value of the discount bond price does not change over time. By
Corollary 3.3.5, we have

E [dφP ] = E [Pdφ+ φdP + dφ · dP ] ,

E [dφP ] = E
[
P · dφ

φ
· φ+ φ · dP +

dφ

φ
· φ · dP

]
,

E [dφP ] = E
[
P · dφ

φ
· φ+ (φ+

dφ

φ
· φ) · dP

]
= 0. (5.7)

We assume that the nominal zero-coupon bond price is a function of time and state, so P = P (X, t),
then by Theorem 3.3.4 and inserting Equation 5.1 we have

dP = P ′XdX + Ptdt+
1

2
dX ′PXX′dX,

dP = P ′X(−KXtdt+ Σ′XdZt) + Ptdt
1

2
Z ′tΣXPXX′Σ

′
XdZt,

dP =
(
P ′X(−KXt) + Pt +

1

2
ΣXPXX′Σ

′
X

)
dt+ P ′XΣ′XdZt. (5.8)

Substituting Equations 5.4 and 5.8 into Equation 5.7 gives an expectation of several stochastic
variables which we can collect in terms of the differentials dt, dt2, dtdZt and dZ2

t . In the limit as dt
tends to 0, the dt2 and dtdZt terms disappear and the quadratic terms of the dZ2

t term tend to dt.
Hence, we see that in order to keep the expectation zero, the dZ2

t and dt terms should also equal 0:

P ′X(−KXt) + Pt +
1

2
tr(ΣXPXX′Σ

′
X)− PRt − P ′XΣ′XΛt = 0. (5.9)

We now include the maturity time T as a variable of P . Let τ = T − t denote the duration to
maturity, then it can be shown that the price of a zero-coupon bond P = P (Xt, t, T ) is of the form

P (Xt, t, t+ τ) = exp
(
A(τ) +B(τ)′Xt

)
. (5.10)

Now, we try to find the functions corresponding to A and B. By taking several partial derivatives
of Equation 5.10 and by noting that dτ = −dt, we find

PX = P ·B,

PXX′ = P ·BB′,

Pt = −Pτ = P · (−Ȧ− Ḃ′Xt),

where Ȧ and Ḃ denote the derivatives of A and B with respect to τ . Substituting this derivatives
and the formulas for Rt and Λt in Equation 5.9 and dividing by P gives us

B′(−KXt) + (−Ȧ− Ḃ′Xt) +
1

2
B′Σ′XΣXB − (R0 +R′1Xt)−B′Σ′X(Λ0 + Λ1Xt) = 0,
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where we used that tr(ΣXBB
′Σ′X) = tr(B′Σ′XΣXB) = B′Σ′XΣXB. Collecting stochastic and

non-stochastic terms, we find that

(−B′K −R′1 −B′ΣXΛ1 − Ḃ′)Xt + (
1

2
B′Σ′XΣXB −R0 −B′Σ′XΛ0 − Ȧ) = 0.

Since both the stochastic and the non-stochastic terms should equal zero, we can find that

Ȧ(τ) =
1

2
B′(τ)Σ′XΣXB(τ)−R0 −B′(τ)Σ′XΛ0,

Ḃ(τ) = −R1 − (K ′ + Λ′1ΣX)B(τ).

By definition of the nominal zero-coupon bond, we have that the bond price equals 1 if τ = 0. Hence,
the solution of to this set of differential equations is

B(τ) = (K ′ + Λ′1ΣX)−1 [exp(−(K ′ + Λ′1ΣX)τ)]R1,

and

A(τ) =

∫ τ

0

(1

2
B′(s)Σ′XΣXB(s)−R0 −B′(s)Σ′XΛ0

)
ds.

We assume the portfolio is permanently rebalanced so that the duration to maturity τ of the bonds
that are invested is kept constant. For simplicity, let P τt denote the price of a zero-coupon bond
with maturity τ . It can be shown that price of a zero-coupon bond follows the funds price dynamics
equation,

dP τt
P τt

= (Rt +B′(t)Σ′XΛt)dt+B′(t)Σ′XdZt. (5.11)

We approximate the long-term interest rate by the long-term treasury rate. Hence, the annual term

structure T
(τ)
t at time t with time to maturity τ can be computed from the zero-coupon bond prices.

It is given by:

T
(τ)
t =

(
1

P τt

)1/τ

− 1. (5.12)

We will use the following discrete approximation of Equation 5.11 to compute the zero-coupon bond
returns in the URM model:

P τt+1

P τt
= exp

(
(Rt + [B(t)]

′
Σ′XΛt −

1

2
[B(t)]

′
Σ′XΣXB(t))∆t+ [B(t)]

′
Σ′XZ(∆t)

)
,

where Z ′(∆t) is a 4-vector consisting of 4 independent normal random variables Zi(∆t) ∼ N (0,∆t),
for i ∈ {1, 2, 3, 4}.

5.2 Pension fund model

We will construct a stylized pension fund that will be used in the model calculations. It is based on
the model as presented in [25].
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Let us first discuss the notation. Time is denoted by t and a generation g is referred to by the
superscript (g). The first year is t = 2019. Every year t, a new generation g = t enters the working

life. At time t, we denote the number of individuals of generation g by N
(g)
t . We find the number

of individuals in the next year by iteration: N
(g)
t+1 = 1p

(g)
t N

(g)
t , where 1p

(g)
t is the one-year survival

probability of generation g at time t. In general, τp
(g)
t denotes the τ -year survival probability of

generation g at time t. The time to retirement of generation g at the start of time t ≥ g is denoted

by T
(g)
t . For simplification, we denote Tg = T

(g)
g . Lastly, we use the fact that T

(g)
t = T

(g)
t−1 − 1 for

t ≥ g + 1.

We assume that the pension fund follows a pension ambition of 75% of the average wage. This
means that in the calculations of the pension fund, parameters such as pension premium have to be
set such that this goal will be reached for all pension participants under reasonable assumptions.

The pension fund is modelled as the entire Dutch population. The data is retrieved from the CBS
(Dutch Central Bureau for Statistics) [33], and the distribution of people older than 99 years is
assumed to decrease linearly. In fact, this is done in the following way. If there are X individuals of
age y − 1, then there are cX individuals of age y, for y ∈ {99, 100, . . . , 120} and c ∈ [0, 1]. Since we

know that this will in general not give integers, we first try to find a c such that
∑120
y=99 fc(y) ≈ 3847,

the number of people older than 98 years, where fc : {99, 100, . . . , 120} → R+ is defined as

fc(y) =

{
c ·N98, if y = 99,

c · fc(y − 1), if y ∈ {100, 101, . . . , 120},
(5.13)

whit N98 = 2826 the number of people aged 98. We find that a value of c = 0.57655 gives∑120
y=99 fc(y) ≈ 3847.73 . . . Denoting [x] as the integer nearest to x, we see that

∑120
y=99 [fc(y)] = 3847.

We append the numbers of individuals [fc(y)] for ages y ∈ {100, 101, . . . , 120} to the data from the
CBS, [33]. The full expanded list can be found in Table 5.2.0.1.

To find future populations, we use the median estimates of the mortality rates of the Dutch Royal
Actuarial Society as given by [32]. Since these rates are different for men and women, we use the
average value of these rates in our model and we assume that highest possible age reached is 120
years old. By using survival probabilities, we will obtain non-integer population values. We solve
this by rounding off to the nearest integer. We assume a constant rate of people born every year of
170,000, which is equal to the number of people born in 2019 rounded off to ten thousands. New
generations enter the working life at age 25 and retire at age 67.

The pension base of generation g at the end of period t is denoted by W
(g)
t . This is the part of the

wage over which pension premium is paid. We assume that this pension base increases every year
due to a rise in price index Πt. If we set the initial wage for all generations g at W g

0 = 1, then the
pension wage is given by

W
(g)
t =

{
Πt, if g < t ≤ g + Tg,

0, if t > g + Tg.

Furthermore, the pension fund has to decide every year t what fraction βt of the pension base has
to be paid to follow the pension ambitions. Note that in the new pension agreement, this fraction

is independent of the generation g. The contribution of generation g at time t denoted by c
(g)
t and

is given by

39



c
(g)
t = N

(g)
t · βt ·W (g)

t .

We set βt = 0.25, which is usually assumed to be a good percentage for a pension ambition of 75%
of the average wage. We do not assume that the pension fund can alter the fraction.

The indexation It is set equal to the price inflation from Equation 5.3. The indexation factor It
determines PE

(g)
t , the pension entitlements of generation g at the beginning of period t:

PE
(g)
t =

{
PE

(g)
t− · It−1 + a

(g)
t−1W

(g)
t−1, if t ≤ g + Tg,

PE
(g)
t−1 · It−1, if t > g + Tg.

(5.14)

We start at PE
(g)
g = a

(g)
g W

(g)
g . For a

(g)
t , the pension entitlement as fraction of the pension base built

up for the individuals in generation g at time t, we assume an exponential decay. The reason that we
assume this specific kind of decay, is based upon the exponential character of return on investments.
If interest is compounded continuously, the future value of wealth increases exponentially in time.
Thus, the pension base that is built up grows in the opposite direction, which explains exponential
decay.

So let a
(g)
t = a

(g)
g e−λ(t−g), where a

(g)
g is the fraction built up in the first working year and λ is the

rate of decay. We would like a
(g)
t to be such that the average fraction over the working years equals

75%, which is in line with the pension ambition. We can do this by assuming that∫ g+42

g

a
(g)
t dt =

∫ g+42

g

a(g)
g e−λ(t−g)dt = 0.75

Let us find a solution to the integral. Let u = t− g, then∫ g+42

g

a
(g)
t dt =

∫ g+42

g

a(g)
g e−λ(t−g)dt

= a(g)
g

∫ 42

0

e−λudu

= −a
(g)
g

λ
e−λu

∣∣∣∣u=42

u=0

=
a

(g)
g (1− e−42λ)

λ
.

This solution should equal 0.75. We choose a λ that matches the average return on the investment
in our basic life-cycle. For 100,000 simulations, this gives λ ≈ 0.066. We can now find a solution

to a
(g)
g by fixing this λ. Then a

(g)
g ≈ 0.053 solves the equation. So we use the fraction a

(g)
t =

0.053 · e−0.066(t−g) in the model.

Let α
(g)
t denote the fraction of capital that generation g had invested in stocks at time t and let Rs,t

and Rb,t be the return on stocks and bonds at time t, respectively. Then, the return on the pension

plan’s assets of generation g at time t, R
(g)
t , are given by:

R
(g)
t = α

(g)
t ·Rs,t + (1− α(g)

t ) ·Rb,t. (5.15)
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Figure 5.2.1: Pension entitlements as fraction of the wage for different ages. This accrual corresponds

to the exponential decay a
(g)
t = 0.053 · e−0.066(t−g).

We then find that the assets of generation g at the beginning of time t, A
(g)
t are given by:

A
(g)
t = R

(g)
t ·A

(g)
t−1 + c

(g)
t .

We start with an initial wealth for all generations of 1. We will define the total assets of the pension
fund as

At =

t−25∑
g=t−67

A
(g)
t . (5.16)

Note that we only include the assets of the working generations. Besides the assets, we need to
define the liabilities in our setup to be able to calculate the funding ratio. Since these liabilities
include future payouts, we need discount factors. We have discount factors at the start of time t,
discounting τ periods back, given by:

D
(τ)
t =

1(
1 + d

(τ)
t

)τ , (5.17)

where d
(τ)
t is the discount rate. For the liabilities, we follow the DNB and use the simulated term

structure T
(τ)
t as given in Equation 5.12. However, the DNB advises to include the use of the

Ultimate Forward Rate (UFR) of 2.1% for yields that are more than 30 years away. This advice has
recently been confirmed by the Committee Parameters [10]. We assume an interpolated discount
factor, that starts converging from the First Smoothing Point at 30 years and converges at 100 years.
This is slightly different from the actual setup in the nFTK, where the UFR is an asymptote that is
never reached. However, our longest liabilities are 95 years as people start working at age 25 and live
no older than 120 years, so we never actually reach the value of the UFR either. We thus compute
the discount rate as

d
(τ)
t =


T

(τ)
t , if t ≤ 30,

T
(τ)
t + τ−30

100−30 (UFR− T (τ)
t ), if 31 ≤ t ≤ 99,

UFR, if t ≥ 100.
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We now have to find a good definition for the liabilities Lt. Inspired by Equation 6 of [25], we define
the liabilities as

Lt =

t∑
g=t−67

120−(t−g)∑
τ=max{1,T (g)

t }
τp

(g)
t ·N

(g)
t ·D(τ)

t · PE
(g)
t , (5.18)

where τp
(g)
t denotes the τ -year survival probability of generation g, N

(g)
t is the number of people in

generation g, D
(τ)
t is the discount factor from Equation 5.17 and PE

(g)
t are the pension entitlements

of generation g. We modified the definition of the liabilities to only include projected pension
payments for the working generations, so that it can be compared to the total assets of Equation
5.16. The Funding Ratio FRt at time t is now given by

FRt =
At
Lt
.

We now want a way to alter the liabilities if FRt 6= 1. That means that the assets are not equal to
the liabilities, so we can write At = δt +Lt, where δt denotes the difference between that assets and
liabilities at time t. We now note that we can write the Funding Ratio as

FRt = 1 +
δt
Lt
.

We want to change the Funding Ratio in F̃Rt so that it is closer to the desired value of 100%.
However, we do not want the shocks in pension entitlements to be too big. Hence we spread the
indexation over γ years. So the altered Funding Ratio F̃Rt is such that

F̃Rt = 1 +
δt
Lt
− 1

γ
· δt
Lt
,

=
γLt + (γ − 1)δt

γLt
. (5.19)

On the other hand, by definition, the altered Funding Ratio F̃Rt can be written as

F̃Rt =
At

L̃t
=
Lt + δ

L̃t
, (5.20)

for some value of the altered liabilities L̃t. Combining Equations 5.19 and 5.20, we can express L̃t
as

L̃t =
γLt(Lt + δt)

γLt + (γ − 1)δt
. (5.21)

The only factor in the Equation 5.18 that can be altered are the pension entitlements PE
(g)
t . Let,

as in Equation 5.15, α
(g)
t denote the fraction of capital that generation g had invested in stocks at

time t. We let the altered pension entitlements be of the form P̃E
(g)

t = Ct · α(g)
t · PE

(g)
t , and we

want to find the constant Ct that is universal over all working generations. First, we can write L̃t
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as

L̃t =

t∑
g=t−67

120−(t−g)∑
τ=max{1,T (g)

t }
τp

(g)
t ·N

(g)
t ·D(τ)

t · P̃E
(g)

t ,

=

t∑
g=t−67

120−(t−g)∑
τ=max{1,T (g)

t }
τp

(g)
t ·N

(g)
t ·D(τ)

t · (Ct · α
(g)
t · PE

(g)
t ),

and since Ct does not depend on g or τ ,

= Ct ·
t∑

g=t−67

120−(t−g)∑
τ=max{1,T (g)

t }
τp

(g)
t ·N

(g)
t ·D(τ)

t · (α
(g)
t · PE

(g)
t ),

= Ct · Lt,α,

where Lt,α =
∑t
g=t−67

∑120−(t−g)
τ=max{1,T (g)

t } τ
p

(g)
t ·N

(g)
t ·D

(τ)
t ·(α

(g)
t ·PE

(g)
t ). Thus, since L̃t can be written

as in Equation 5.21, we can solve for Ct:

Ct =
γLt(Lt + δt)

Lt,α

(
γLt + (γ − 1)δt

) . (5.22)

Hence, we can reset the funding ratio FRt to F̃Rt by replacing PE
(g)
t with P̃E

(g)

t = Ct ·α(g)
t ·PE

(g)
t ,

where Ct is given by Equation 5.22.

When a cohort finally enters the pension age at 67 years, their assets A
(g)
t are converted to an insured

annuity payment AP (g). We assume that this annuity payment is the same for all years that the

retired cohort lives. We can find the value of the annuity payments by noting that the assets A
(g)
t

should equal the present value of the future annuity payments AP (g). Hence, the present value of a
series of annuity payments that is paid each year for n years, is given by

A
(g)
t =

AP (g)

1 +R
+

AP (g)

(1 +R)2
+ · · ·+ AP (g)

(1 +R)n
, (5.23)

where R is the interested rate. We let R = Rg, where Rg is given by Equation 5.5 in the underlying
URM model. We see that Equation 5.23 is a geometric series, so by using the geometric series
formula, it becomes

A
(g)
t =

AP (g)

1+R −
AP (g)

1+R ( 1
1+R )n

1− 1
1+R

,

which simplifies to

A
(g)
t =

AP (g) −AP (g)( 1
1+R )n

(1 +R)− 1
,

A
(g)
t = AP (g)

1− ( 1
1+R )n

R
.
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Isolating AP (g) gives us the following formula:

AP (g) = A
(g)
t

R

1− ( 1
1+R )n

(5.24)

For simplicity, we will assume a fixed mortality of 85 years to calculate the annuity payments. This
implies that n = 85− 67 = 18 years.
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Age Number of people Age Number of people Age Number of people
0 years 168443 41 years 201027 81 years 90011
1 years 170816 42 years 202851 82 years 84177
2 years 174256 43 years 204259 83 years 76736
3 years 173722 44 years 213259 84 years 70095
4 years 178825 45 years 220643 85 years 62552
5 years 175210 46 years 238587 86 years 57367
6 years 180043 47 years 249933 87 years 50089
7 years 183815 48 years 260536 88 years 44093
8 years 188854 49 years 266020 89 years 35967
9 years 189520 50 years 254909 90 years 30351
10 years 190090 51 years 251946 91 years 24104
11 years 186613 52 years 253097 92 years 19691
12 years 190026 53 years 256392 93 years 15081
13 years 191909 54 years 260512 94 years 11736
14 years 197677 55 years 255864 95 years 8705
15 years 204306 56 years 250557 96 years 6138
16 years 205638 57 years 247542 97 years 4159
17 years 207992 58 years 240203 98 years 2826
18 years 216614 59 years 237366 99 years 1629
19 years 217469 60 years 230261 100 years 939
20 years 218315 61 years 224577 101 years 542
21 years 212979 62 years 219687 102 years 312
22 years 212854 63 years 213299 103 years 180
23 years 214501 64 years 209015 104 years 104
24 years 221276 65 years 204712 105 years 60
25 years 221595 66 years 203761 106 years 35
26 years 224138 67 years 194999 107 years 20
27 years 227080 68 years 194511 108 years 11
28 years 228156 69 years 195091 109 years 7
29 years 220894 70 years 198650 110 years 4
30 years 218629 71 years 206366 111 years 2
31 years 218397 72 years 209871 112 years 1
32 years 217522 73 years 147392 113 years 1
33 years 212882 74 years 151105 114 years 0
34 years 209476 75 years 140466 115 years 0
35 years 203806 76 years 126649 116 years 0
36 years 204401 77 years 117269 117 years 0
37 years 208114 78 years 116317 118 years 0
38 years 210971 79 years 108025 119 years 0
39 years 204001 80 years 101095 120 years 0
40 years 203992

Table 5.2.0.1: Distribution of ages among the Dutch population, as found in CBS data and extrap-
olated using the iterative function 5.13.

45





Chapter 6

Results

In this chapter, we will present and analyze the results that follow from simulations in our model.
In presenting the results, we will follow the Pension Communication Law of 2015, that obliges
pension funds to communicate the expected pension payment in three scenarios. In Section 6.1, the
conditions for the simulations and the method of presentation are explained. In Section 6.2, the
results are analyzed and statistically tested for significance.

6.1 Set-up

The Pension Communication Law of 2015 obliges pension funds to communicate the expected pension
payment in three scenarios: optimistic, expected and pessimistic. These three scenarios are defined
by the a-percentiles for a = 0.95, 0.5 and 0.05 respectively. The definition of an a-percentile can
be found in Subsection 3.4. So, for instance, the pessimistic scenario corresponds to the simulation
such that only 5% of the simulations lie below this value. Since we will simulate values for different
ages and different years, we will either take the pension age or the last time point to calculated the
percentiles. In Figure 6.1.1, we see an example of these three scenarios in a set of simulations.

We simulate the following 5 strategies, which are explained in Subsection 4.4.1:

1. α
(g)
t = 0.5 for all t and g.

2. Linear decreasing life-cycle with g = 40, pstart = 0.9 and pend = 0.1.

3. Linear decreasing life-cycle with g = 40, pstart = 0.6 and pend = 0.4.

4. Dynamic life-cycle with g = 40, R = 1.06, pstart = 0.9, pmiddle = 0.7 and pend = 0.5.

5. Dynamic life-cycle with g = 40, R = 1.06, pstart = 0.6, pmiddle = 0.4 and pend = 0.2.

First, 42 years are simulated without using the methodology for altering the Funding Ratio FR.
This is done to let the pension fund mature and make sure that the retirees will have followed a
complete investment cycle. Then, we let the model run for 25 more years. Let t denote the number
of years after the burn-in period of 42 years. We simulate the model N = 500 times.
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Figure 6.1.1: Different simulations for pension entitlements development, including the optimistic,
expected and pessimistic scenario. Image retrieved from [20].

6.2 Statistical tests

The development of the three scenarios of the FR(t) for t ∈ {0, · · · , 25} is visible in Figure 6.2.1. In
Table 6.2.0.1, we see that all strategies in the pessimistic scenario end at FR = 0.90. This is due to
the altering mechanism that immediately cuts pension entitlements to set the funding ratio back to
90% if the funding ratio gets below 90%. Furthermore, we see that all expected funding ratios are
close to each other near the value of 140%. However, in the optimistic scenario, there is a difference
between on the one hand the constant strategy 1 and the linear decreasing life-cycle strategies 2
and 3, and on the other hand the dynamic life-cycle strategies 4 and 5. Strategy 4, which keeps
the percentage invested in stocks relatively higher than strategy 5, seems to have bigger outliers on
the upside than strategy 5. This can be explained by the high amount invested in stocks, as stocks
in general generate higher returns. However, we might expect that this would also lead to bigger
outliers on the downside of the spectrum. This can not be concluded from this Table, because the
funding ratio is set to 90% each time it falls below. We would expect to be able to tell the difference

by comparing the pension entitlements PE
(g)
t .

FR Pessimistic Expected Optimistic
Strategy 1 0.90 1.39 3.58
Strategy 2 0.90 1.41 3.62
Strategy 3 0.90 1.38 3.58
Strategy 4 0.90 1.42 4.24
Strategy 5 0.90 1.37 3.42

Table 6.2.0.1: Values of FR at t = 25 for the simulated strategies and the three scenarios.

We perform a Kruskal-Wallis test (explained in Subsection 3.5.2) on the last 10 time points of the
adjusted mean funding ratios FR for all 5 strategies. First, we filter the funding ratios for all scenarios
that end at the 5% highest scenarios. For the remaining scenarios, we calculate the point-wise mean.
We set our significance level at 0.05. Since the p-value for the test statistic is 2.1 · 10−6, we perform
a Bonferroni correction to find the corrected p-values for the pairwise hypotheses. The results are
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shown in Table 6.2.0.2. This gives statistical evidence that there is a difference in variance between
the pairs (1,4), (3,4), (2,5) and (4,5). Clearly, strategies 1, 2 and 3 are not mutually correlated, so
these strategies exhibit similar behavior. What stands out, is that strategies 4 and 5, the dynamic
life-cycles, are mutually correlated, but strategy 4 is also correlated with 1 and 3 and strategy 5 with
2. This shows that the dynamic life-cycle strategies cause the funding ratios to behave capricious.
The linear decreasing life-cycle strategies tend to follow a more predictable path, although it can
not be said that these paths are more stable than strategy 1.

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5
Strategy 1 -1.000 1.000 1.000 0.003 0.886
Strategy 2 1.000 -1.000 1.000 0.251 0.405
Strategy 3 1.000 1.000 -1.000 0.002 0.945
Strategy 4 0.003 0.251 0.002 -1.000 0.000
Strategy 5 0.886 0.019 0.945 0.000 -1.000

Table 6.2.0.2: The corrected p-values for the Kruskal-Wallis test for the last 10 time point of the
mean funding ratios.

The development of the annuity payments AP (t) for the retired cohort at time t ∈ {0, · · · , 25} is
visible in Figure 6.2.2. We see that for all strategies, the optimistic scenario does not start at a
high amount. It rises to that value in the last few years before the simulation ends. The pessimistic
scenario however seem to be low over the entire duration. This may imply that once a high annuity
payments has been reached, it will not easily decrease anymore. In Table 6.2.0.3, we see that
the constant strategy is never at the extremum of the simulated values for the all three displayed
scenarios. The linear decreasing life-cycle strategies 2 and 3 seem to have slightly lower expected
annuity, but the optimistic scenario generates more annuity payment. The lower expected annuity
is a bit unexpected, since the funding ratios did not deviate significantly. For the dynamic life-cycle
strategies 4 and 5, it is clear that the pessimistic scenarios generate less annuity than the constant
strategy 1. However, we see that strategy 4 has lower expected annuity and higher optimistic annuity,
but strategy 5 has higher expected annuity and lower optimistic annuity.

AP (25) Pessimistic Expected Optimistic
Strategy 1 206,000 739,000 3,202,000
Strategy 2 208,000 709,000 3,668,000
Strategy 3 204,000 731,000 3,314,000
Strategy 4 121,000 702,000 3,800,000
Strategy 5 197,000 759,000 2,970,000

Table 6.2.0.3: Values of the annuity payments AP at t = 25 for the simulated strategies and the
three scenarios.

We also need to analyze the development of the pension entitlements PE
(g)
t . However, since the

pension entitlements are influenced by the inflation It and the price index Πt (see Equation 5.14),
we need to correct for the level of the price index. Hence, we plot the corrected pension entitlements

PE
(g)
t /Πt at the last time point t = 25 for all simulations. This is done in Figure 6.2.3. It imme-

diately stands out that the dynamic life-cycle strategies 4 and 5 let the pension entitlements drop
to near 0 after the age of 40. This can be explained by the set-up for the altering of the pension
entitlements. Since the pension entitlements are altered according to the fraction invested in stocks
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for a cohort g, we see that the participants that are 40 years or older are ”punished” in good years

because their fraction invested in stocks α
(g)
t drops as soon as the become 40. In Table 6.2.0.4, we

see that linear decreasing life-cycle strategies 2 and 3 arrive at similar values for the pessimistic
and the expected scenario as the constant strategy 1. However, we do see that the accrued pension
entitlements in the optimistic scenario are higher than those of strategy 1.

PE
(67)
25 /Π25 Pessimistic Expected Optimistic

Strategy 1 0.23 0.68 2.12
Strategy 2 0.21 0.66 2.34
Strategy 3 0.22 0.66 2.18
Strategy 4 0.00 0.00 0.00
Strategy 5 0.00 0.00 0.00

Table 6.2.0.4: Values of the corrected pension entitlements at t = 25 for the retired cohort.

We also adjust the corrected pension entitlements PE
(67)
25 /Π25 before we calculate the point-wise

mean by dropping the 5% highest scenarios. Then, we perform a Kruskal-Wallis test on the adjusted
mean to find statistical evidence for a difference in variance of the last 10 time points. We omit
comparing strategy 4 and 5 with all the others, since they clearly show a different behavior in the last
period of the graphs. The test statistic gives a p-value of 0.011, so we perform a Bonferroni correction
to find the pairwise corrected p-values. The results are shown in Table 6.2.0.5. Interestingly, strategy
1 and 3 seem to show no statistical evidence for a difference in variance in the last 10 years. We
would expect that strategy 2 and 3 would exhibit similar behavior since they both follow a linear
decreasing life-cycle.

Strategy 1 Strategy 2 Strategy 3
Strategy 1 -1.000 0.010 1.000
Strategy 2 0.010 -1.000 0.105
Strategy 3 1.000 0.105 -1.000

Table 6.2.0.5: The corrected p-values for the Kruskal-Wallis test of the mean corrected pension

entitlements PE
(g)
25 /Π25 for g = {58, . . . , 67}.
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(a) Strategy 1

(b) Strategy 2 (c) Strategy 3

(d) Strategy 4 (e) Strategy 5

Figure 6.2.1: Development of the funding ratio FR(t), t ∈ {0, . . . , 25} of the three scenarios for all

simulated strategies. By definition, FR(t) ≥ 0 and by the altering of pension entitlements PE
(g)
t ,

the FR(t) has a drift towards 1.
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(a) Strategy 1

(b) Strategy 2 (c) Strategy 3

(d) Strategy 4 (e) Strategy 5

Figure 6.2.2: Development of the annuity payments AP (t), t ∈ {0, . . . , 25} of the three scenarios for
all simulated strategies. By definition, we know that AP (t) ≥ 0.
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(a) Strategy 1

(b) Strategy 2 (c) Strategy 3

(d) Strategy 4 (e) Strategy 5

Figure 6.2.3: Development of the corrected pension entitlements PE
(g)
25 /Π25, g ∈ {0, . . . , 42} of the

three scenarios for all simulated strategies. By definition, we know that PE
(g)
t /Πt ≥ 0 for all t, g ∈ N.
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Chapter 7

Conclusions

In this chapter, we construct conclusions based on the simulations that are treated in Chapter 6.
We try to find an answer to the question:

How does life-cycle investment affect pension accrual in different age cohorts?

We have seen in our results that the pension accrual is built up very differently in different life-cycle
strategies. The dynamic life-cycle shows a spike downwards as soon the cohort passes the threshold
when the investment strategy is changed. This is due to the rewarding system for high investment
in stocks that we built into our model. The linear decreasing life-cycles tend to develop similarly
to the constant strategy. We expected that the life-cycle strategies would smooth the development
of the pension entitlements in the years before a cohort retires. However we did not see this. The
second question we answer is:

How do different explicit life-cycle methods perform compared to each other?

The dynamic life-cycles were outperformed by the linear decreasing life-cycles. In choosing the linear
decreasing life-cycles, there is no clear distinction between the one that starts at 90% and the one
that starts at 60% of the assets invested in stocks. The last subquestion we treat is:

How does life-cycle investment affect the development of the funding ratios of pension funds?

In comparing life-cycle investment with the development of the funding ratios of our model pension
fund, we see again that the linear decreasing life-cycle strategies clearly show a different behavior
than the dynamic life-cycle strategies. Even though the development of the funding ratios can be
rather unpredictable due to the nature of the financial market, the dynamic life-cycle strategies seem
to let the funding ratios be more unpredictable than the constant strategy and the linear decreasing
life-cycles. The main research question we tackled was the following:

How can risk be shared between different groups in a pension system with life-cycle investing?

In conclusion, we see that risk-sharing is possible between different groups, but the results in this
thesis do not show that it will lead to a higher or more stable pension accrual for cohort that near
retiring. A reason for this might be that the life-cycle strategies, although differentiating in age
of the participants, overall lead to a similar investment fraction in stocks as the constant strategy.
Since the indexation rules depend on the financial situation of the entire pension fund, the positive
and negatives excesses cancel each other out.
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Something we noticed in the results is that the funding ratio simulations are skewed around 1.
This can be explained by the altering mechanism that is used to give indexation to participants if
the funding ratio is higher than 1, and to cut pension entitlements if the funding ratio is below 1.
However, there are some simulation where the funding ratio explodes to values above 107. These
simulations generate so much wealth in the first years, that the drift towards 1 is not strong enough
to get it near a normal value. We decided to share 10% of the surplus each year with the participants,
but this is too low in the scenarios where the wealth grows extremely hard. We advice to use higher
percentages if the funding ratio gets above a certain value.
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Chapter 8

Future research

In this thesis, we limited ourselves to 4 different life-cycles strategies. Including more life-cycles
may give a better insight in the subtle differences there are in choosing the right parameters. In
this research, we derived the optimal allocation of the fraction in stocks according to the life-cycle
principle, but we did not use the exact optimal allocation. Instead, we simplified the development
of the allocation to a linear and dynamic life-cycle strategy. These strategies were preferred over
a strategy that follows that exact optimal allocation, because we wanted to stay as close to the
regulations in the nFTK as possible. Since the exact optimal allocation is based on several immea-
surable quantities, its calculation would involve approximating most of these quantities. Therefore,
it would have lead to expanding the URM model that is certified by the DNB and have limited the
ability to compare different life-cycle strategies. In a future research, historical data could be used
to estimate the expected excess return on stocks and the variance of the stock return. Assumptions
involving the human capital and the future wealth would then lead to an exact expression for the
optimal allocation of stocks. This may improve the development of the pension accrual in pension
funds that follow this exact allocation. A method that could be used to find a numerical optimal
allocation is simulated annealing. For more information on this topic, we refer to [21].

Furthermore, including more assets categories would model the reality better. In many researches
including this one, the only two assets categories that are invested are stocks and bonds. No clas-
sification is made between different kinds of stocks and bonds, and investments in real estate and
commodities are left out. Including these categories may simulate the scenarios more realistically.
However, the derivation of the optimal allocation will become more difficult and maybe even impos-
sible to calculate algebraically.
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Appendix A

This Appendix is based on [26], more details can be found there. We introduce the definitions of
topology and measure theory that are used in Chapter 3. The structure of the section is such that
every following section uses what is introduced before.

A.1 Topology

We introduce the notion of topology and a topological space in this section. Let I be some arbitrary
sets of indices. Basic set theory is assumed to be known.

Definition A.1.1. A system O = O(X) of subsets of X is called a topology if

(i) ∅, X ∈ O,

(ii) U, V ∈ O =⇒ U ∩ V ∈ O,

(iii) Ui ∈ O, i ∈ I =⇒
⋃
i∈I

Ui ∈ O.

The pair (X,O) is called a topological space.

A set U ∈ O is called an open set. A set F ⊆ X is called closed, if its complement F c is open. Let
us have a look at the neighbourhood of a point x ∈ X.

Definition A.1.2. If (X,O) is a topological space and x is a point in X, a neighbourhood of x is a
subset V of X that includes an open set U containing p, i.e.,

x ∈ U ⊆ V.

Through neighbourhoods, we can define dense subsets U of topological space (X,O).

Definition A.1.3. A subset U of a topological space (X,O) is dense in X if for any point x ∈ X,
any neighbourhood of x contains at least one point of U .

A.2 Measurability

Let us first introduce the notion of a σ-algebra.
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Definition A.2.1. Let S be a set. A collection Σ ⊆ 2S is called a σ-algebra on S if

(i) S ∈ Σ,

(ii) E ∈ Σ⇒ Ec ∈ Σ,

(iii) ∀E1, E2, · · · ∈ Σ,
⋃∞
n=1En ∈ Σ.

Note that (iii) implies, specifically, that E,F ∈ Σ ⇒ E ∪ F ∈ Σ. If Σ is a σ-algebra, then (S,Σ) is
called a measurable space and the elements in Σ are called measurable sets.

If C is some collection of subsets of S, then we will denote by σ(C) the smallest σ-algebra containing C.
We will say that C generates the σ-algebra σ(C). We call a σ-algebra A a sub-σ-algebra of Σ if A ⊆ Σ.

We will also need to look at B = B(R), the Borel sets of R. Let O be the collection of all subsets of
R that are open with respect to the usual topology. This means that the open subsets of R are of
the form

(a, b) = {x ∈ R | a < x < b}.

Then B := σ(O). Now, we can expand the measurable space to a measure space by considering a
measure:

Definition A.2.2. Let (S,Σ) be a measurable space and let µ : Σ→ [0,∞] be a mapping such that

(i) µ(∅) = 0,

(ii) µ(
⋃
n∈NEn) =

∑
n∈N µ(En), for every sequence (En)n∈N of disjoint sets in Σ.

Then the mapping µ is called a measure and the triplet (S,Σ, µ) is called a measure space.

A.3 Random variables

In this subsection, we will define random variables as measurable functions on a underlying probability
space. Let us first explain what a measurable function is. Let (S,Σ) be a measurable space.

Definition A.3.1. A function f : S → R is called measurable if f−1(B) ∈ Σ for all B ∈ B.

Note that in this definition, the measurability of f depends on B and Σ. We will therefore sometimes
speak of Σ-measurable functions, or Σ/B-measurable functions to stress this dependency.

Now, we can move to the concept of random variables. These can be defined on a special kind of
measurable space, namely a probability space.

Definition A.3.2. Let (Ω,F ,P) denote a measure space. If P(Ω) = 1, then (Ω,F ,P) is called a
probability space.

If (Ω,F ,P) is a probability space, then we call Ω the set of outcomes, F the possible events and
P the probability measure. We will sometimes use this notation to stress that we are working in a
probability space. For now, we will stay in this setting to define random variables.

Definition A.3.3. A function X : Ω→ R is called a random variable if it is F-measurable.
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For clarity, we will usually denote random variables by capital letters, such as X, to distinguish
them from other measurable functions. Note that random variable X induces a probability measure
on the measurable space (R,B) as it maps elements of Ω to R. This measure µ : B → [0, 1] is called
the distribution measure of the random variable X and it is defined as

µ(B) := P(X ∈ B) = P(X−1(B)). (A.1)

For a collection of sub-σ-algebras on the probability space (Ω,F ,P), we can define independence in
the following way:

Definition A.3.4. Let A1, . . . ,An be sub-σ-algebras of F . We say that A1, . . . ,An are independent
if for all A1 ∈ A1, . . . , An ∈ An, we have:

P(A1 ∩ · · · ∩An) = P(A1) · · · · · P(An).

This allows us to define independence of random variables.

Definition A.3.5. Let X1, . . . , Xn be random variables from the same probability space to R. We
call {X1, . . . , Xn} independent if and only if {σ(X1), . . . , σ(Xn)} are independent.

Measurable functions and random variables in particular can generate σ-algebras:

Definition A.3.6. Let f be an F-measurable function. The σ-algebra generated by f is given by

σ(f) := {f−1(B) |B ∈ F}.

The multi-dimensional equivalent of the random variable is called a random vector.

Definition A.3.7. A random vector is a vector X = (X1, . . . , Xn)′, whose components Xi, i =
1, . . . , n are random variables on the same probability space.

A.4 Lebesgue integrals

To define the expectation and variance of a random variable X, we need to consider the Lebesgue
integral. We will give a short, constructive definition of the Lebesgue integral. More details can, for
instance, be found in Chapter 4 of [26]. Consider the measure space (S,Σ, µ) and random variable
X. Let us first define the indicator function of a measurable set E:

Definition A.4.1. The indicator function 1E of a measurable set E ⊆ S is defined by

1E(x) =

{
1, if x ∈ E,
0, if x /∈ E.

The indicator function of a set E indicates whether an element x ∈ S is in subset E or not. We can
define the Lebesgue integral of an indicator function by the measure of E:

Definition A.4.2. The Lebesgue integral of an indicator function

∫
1E dµ ∈ [0,∞] is defined as∫

1E dµ := µ(E).
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Defining the integral of the indicator function as the measure allows us to expand the territory to
simple functions: f =

∑
k αk1Ek for αk ∈ R and Ek measurable for k = 1, 2, . . . . The following

definition constructs the linearity of the Lebesgue integral.

Definition A.4.3. The Lebesgue integral of a simple function f =
∑
k αk1Ek is defined by∫

f dµ =

∫ ∑
k

αk1Ek dµ :=
∑
k

αkµ(Ek).

Now, some care needs to be taken to extend the definition of the Lebesgue integral to all measurable
functions f . The first step is to define it for all positive functions f .

Definition A.4.4. The Lebesgue integral of a positive function f is defined as∫
f dµ = sup

(∫
g dµ : g ≤ f, g simple

)
.

In this sense, the Lebesgue integral of a positive function f is constructed as some sort of upper
bound of the integral of simple functions that approach f . For not strictly positive functions f , let
f+, f− denote respectively the positive and negative part of f , i.e., such that f = f+−f−. Defining
the integral for all measurable functions depends on the integrability of the function:

Definition A.4.5. A function f : S → R ∪ {∞} on a measure space (S,Σ, µ) is said to be

µ−integrable if it is measurable and if the integrals

∫
f+ dµ,

∫
f− dµ are finite. In this case,

we call ∫
f dµ :=

∫
f+ dµ−

∫
f− dµ

the Lebesgue integral of f .

We are now able to look at the integration of all measurable functions. We are only left with defining
the Lebesgue integral over a certain subset A:

Definition A.4.6. The Lebesgue integral of measurable function f over a subset A is defined as∫
A

f dµ :=

∫
1Af dµ.

Now, the following properties of the Lebesgue integral can be shown.

Proposition A.4.7. Let a, b ∈ R be constants and f, g be integrable functions. Then

(i) Let N = {x : f(x) 6= g(x)}. If µ(N) = 0, then

∫
f dµ =

∫
g dµ.

(ii)

∫
(af + bg) dµ = a

∫
f dµ+ b

∫
g dµ.

(iii) If f ≤ g, then

∫
f dµ ≤

∫
g dµ.
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Proof. Since f and g are measurable, so is N ∈ Σ. Hence (i) follows from

∫
f dµ =

∫
{f=g}

f dµ+

∫
{f 6=g}

f dµ

=

∫
{f=g}

g dµ+ 0

=

∫
{f=g}

g dµ+

∫
{f 6=g}

g dµ

=

∫
g dµ,

where we used the Markov inequality B.1.2 to conclude that

∫
{f 6=g}

f dµ = 0. Property (ii) follows

from the linearity of the simple functions that approach the functions f and g. Property (iii) follows
from the definition of the Lebesgue integral as supremum.

A.5 Expectation and variance

We can now use the knowledge of the Lebesgue integral to define expectation and variance. We will
switch to the probability space (Ω,F ,P). Recall that a random variable X : Ω→ R is a measurable
function.

Definition A.5.1. The integral or expectation of X (with respect to P) is defined as

E(X) =

∫
Ω

XdP,

provided that the integral is well-defined.

Let us look at some basic properties of the expectation.

Proposition A.5.2. Let a, b ∈ R be constants. The expectation of X satisfies the following prop-
erties:

(i) If P(X ≥ 0) = 1, then E(X) ≥ 0.

(ii) For X,Y random variables, E(aX + bY ) = aE(X) + bE(Y ).

(iii) E(X + a) = E(X) + a.

Proof. For (i), note that Ω = {X ≥ 0} ∪ {X < 0} and that P(X < 0) = 0. So by Proposition
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A.4.7(i),

E(X) =

∫
Ω

XdP,

=

∫
{X≥0}

XdP +

∫
{X<0}

XdP,

=

∫
{X≥0}

XdP + 0,

≥
∫
{X≥0}

0 dP = 0.

Statement (ii) follows from Proposition A.4.7(ii). For (iii), we use that P(Ω) = 1:

E(X + a) =

∫
Ω

(X + a)dP,

=

∫
Ω

XdP +

∫
Ω

adP,

=

∫
Ω

XdP + a,

= E(X) + a.

From the expectation of X, we can define the variance of X, which can informally be thought of as
a measure of how far the possible values of X are spread out from the average value.

Definition A.5.3. The variance Var(X) of the random variable X is defined as

Var(X) = E
(

(X − E(X))2
)
,

provided that the variance of X is well-defined.

Let us give some helpful properties of the variance.

Proposition A.5.4. Let a ∈ R be some constant. The variance of X satisfies the following prop-
erties:

(i) Var(X) ≥ 0.

(ii) Var(X + a) = Var(X).

(iii) Var(aX) = a2Var(X).

Proof. Property (i) follows from Proposition A.4.7(iii):

Var(X) = E
(

(X − E(X))2
)
≥ E(0) = 0.
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For (ii), we see that

Var(X + a) = E
(

(X + a− E(X + a))2
)
,

= E
(

(X + a− E(X) + a)2
)
,

= E
(

(X − E(X))2
)

= Var(X).

For (iii), we find that

Var(aX) = E
(

(aX − E(aX))2
)
,

= E
(

(aX − aE(X))2
)
,

= E
(
a2(X − E(X))2

)
,

= a2E
(

(X − E(X))2
)
,

= a2Var(X).

The measure the joint variability of two random variables, we can look at their covariance.

Definition A.5.5. The covariance Cov(X,Y ) of the random variables X and Y is defined as

Cov(X,Y ) = E
(

(X − E(X))(Y − E(Y ))
)
,

provided that the covariance is well-defined.

A.6 Conditional expectation and variance

In this subsection, we will expand our definitions of expectation and variance to respectively condi-
tional expectation and conditional variance. Let (Ω,F ,P) be a probability space and X be a random
variable.

Definition A.6.1. The conditional expectation of X given event H ∈ F with strictly positive
probability, is defined as

E(X |H) :=
E(1HX)

P(H)
=

∫
X
x dP(x |H),

where X is the range of X, and P(· |H) is the probability measure defined for sets A as P(A |H) =
P(A ∩H)

P(H)
.

Using this definition, we define the conditional variance.

Definition A.6.2. The conditional variance of X given event H ∈ F with strictly positive proba-
bility, is defined as

Var(X |H) = E
(

(X − E(X |H))2 |H
)
.

Informally, we can see these conditional quantities as variants given that certain conditions are
known to occur.
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Appendix B

In this Appendix, two lemmas are given, one of which is proved here.

B.1 Lemmas

The proof of the following lemma is by the hand of the author of this thesis.

Lemma B.1.1. For a log-normal random variable X, we have

logEt [Xt+1] = Et [logXt+1] +
1

2
Vart [logXt+1] . (B.1)

Proof. Let Y = logX, then Y is normally distributed. Denote the mean and variance of Y con-
ditional on the information up to time t by µt and σ2

t , respectively. Then we have to show that

Et [Xt+1] = eµt+
1
2σ

2
t . We consider

Et [Xt+1] = Et
[
eYt+1

]
=

∫ ∞
−∞

ey
1

σt
√

2π
e
− (y−µt)2

2σ2t dy. (B.2)

Now note that

y − (y − µt)2

2σ2
t

= −−2σ2
t y + y2 − 2µty + µ2

t

2σ2
t

= − 1

2σ2
t

(y2 − 2(µt + σ2
t )y + (µt + σ2

t )2 + µ2
t − (µt + σ2

t )2)

= − (y − (µt + σ2
t ))2

2σ2
t

− µ2
t − µ2

t − 2µtσ
2
t − σ4

t

2σ2
t

= − (y − µ′t)2

2σ2
t

+ µt +
1

2
σ2
t ,

where µ′t = µt + σ2
t . So we can rewrite Equation B.2 as

Et [Xt+1] = eµt+
1
2σ

2
t

∫ ∞
−∞

1

σt
√

2π
e
− (y−µ′t)

2

2σ2t dy

= eµt+
1
2σ

2
t .

The integral equals 1, because it is the integral of a normal density with parameters µ′t and σ2
t .

67



The following lemma is known as the Markov inequality.

Lemma B.1.2. Let X be a random variable, a ∈ R a constant and g : R → [0,∞] an increasing

function. Then E
(
g(X)

)
≥ g(a)P(X ≥ a).

Proof. See [26].
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