

Utrecht University

BSc Mathematics & Applications

The Strassen Algorithm and its

Computational Complexity

Rein Bressers

Supervised by:

Dr. T. van Leeuwen

June 5, 2020

2

Abstract

Due to the many computational applications of matrix multiplication, research into

efficient algorithms for multiplying matrices can lead to widespread improvements of

performance. In this thesis, we will first make the reader familiar with a universal

measure of the efficiency of an algorithm, its computational complexity. We will then

examine the Strassen algorithm, an algorithm that improves on the computational

complexity of the conventional method for matrix multiplication. To illustrate the

impact of this difference in complexity, we implement and test both algorithms, and

compare their runtimes. Our results show that while Strassen’s method improves on

the theoretical complexity of matrix multiplication, there are a number of practical

considerations that need to be addressed for this to actually result in improvements

on runtime.

3

Contents

1 Introduction 4

 1.1 Computational complexity .. 4

 1.2 Structure ... 4

2 Computational Complexity .. 5

 2.1 Time complexity .. 5

 2.2 Determining an algorithm’s complexity ... 5

 2.3 Asymptotic analysis ... 6

 2.3.1 The big-O notation .. 6

 2.4 Recurrent complexity functions... 7

 2.4.1 The Master Theorem .. 9

3 The Strassen Algorithm ... 12

 3.1 Divide-and-conquer approach .. 12

 3.1.1 Block-matrix multiplication .. 12

 3.1.2 Naive algorithm ... 14

 3.2 Strassen’s algorithm ... 15

 3.3 Complexity .. 16

 3.4 Practical considerations and implementation ... 17

 3.4.1 Hybrid variant ... 17

 3.4.2 Cross-over point ... 18

4 Experiment ... 19

 4.1 Implementations .. 19

 4.2 Parameters .. 19

5 Results ... 21

 5.1 Experiment I ... 21

 5.2 Experiment II .. 22

6 Conclusion .. 23

 6.1 Discussion ... 23

 6.2 Conclusion ... 23

References ... 24

4

Chapter 1

Introduction

Matrices and matrix multiplication know many computational applications. Take, for

example, graphics in video games; matrices are used to project the three-dimensional

scene onto a two-dimensional plane, and transformations on the scene like scaling and

rotation are performed using matrix multiplication [1]. Other examples of applications

of matrices and matrix multiplication include training neural networks with

backpropagation [2] and solving systems of linear equations [3]. Because of the

widespread use of matrices and matrix multiplication, researching efficient ways to

find the product of two matrices could result in further optimization in a lot of these

applications.

1.1 Computational complexity

When we multiply two matrices, the resulting matrix is equal to

.

We see that there are multiplications and additions required to find this

matrix. Generalizing for two matrices, we find that calculating the resulting

matrix requires multiplications and additions. This means that as

increases, the number of arithmetic operations needed to find the product of two

matrices increases at a much higher rate than the size of the matrices.

The ratio between an algorithm’s input and the resources it requires to find a solution

is called the computational complexity of the algorithm. As we saw above, in the case

of matrix multiplication the arithmetic computational complexity is equal to

. However, this “naive” approach is not optimal. In this thesis

we will examine an algorithm for matrix multiplication of lower computational

complexity, and conduct an experiment comparing the two approaches.

1.2 Structure

We will start this thesis by going into further detail on computational complexity,

introducing the big-O notation and showing how an algorithm’s computational

complexity can be determined. After that, we will look into the Strassen algorithm,

an algorithm used for matrix multiplication, and compare this to the naive approach.

In order to illustrate the impact of the difference in computational complexity, we

will implement both algorithms and test them on a number of matrices of different

sizes. Lastly, after presenting and analyzing the results of the experiment, we will

discuss the results found and state our conclusion.

5

Chapter 2

Computational Complexity

As stated in our introduction, an algorithm’s computational complexity is the amount

of resources required to execute the algorithm, relative to the size of its input. When

we talk about computational complexity, we generally consider one of two resources,

namely space and time. Space complexity concerns the amount of memory that is

required to run an algorithm, whereas time complexity concerns the runtime of an

algorithm. Usually, when (computational) complexity is mentioned without specifying

the resource, it refers to the latter. This will also be the case for this thesis, as we

will be examining the time complexity of matrix multiplication in particular.

2.1 Time complexity

Because the runtime of an algorithm can differ greatly from machine to machine, time

complexity cannot just simply be expressed as the absolute runtime of the algorithm

in seconds or minutes. Instead of using runtime, we look at the number of “steps” an

algorithm takes, to express time complexity. Here, a step represents the execution of

an operation whose runtime is not affected by the size of the input. In our

introduction, we counted the number of arithmetic operations needed to find the

product of two matrices, and stated that multiplying two matrices requires

the execution of arithmetic operations. While the total number of operations

depends on the dimension of the matrices , the individual runtimes of these

operations do not. Therefore, we say that these operations run in constant time, as

their runtimes stay consistent for all values of . By defining an algorithm’s time

complexity as the number of constant time operations that are executed when running

the algorithm, we can formalize a function for time complexity that is solely

based on the input size . This notion of time complexity is universal for all machines,

as the number of steps needed to run the algorithm will be the same for every machine.

2.2 Determining an algorithm’s complexity

To determine an algorithm’s complexity, we need to define a function that

expresses the number of required constant time operations, or steps, in terms of the

size of the input . However, the number of required steps can differ greatly between

inputs of the same size. Consider, for instance, an algorithm that determines whether

an array of size contains a particular value, by iteratively comparing the elements

in the array to the wanted value. Comparing two values is a constant time operation,

as the time required to do so is not affected by the size of the array. These comparisons

are the only constant time operations, and thus we can find the complexity of this

algorithm by counting the number of times the algorithm compares two values. If the

wanted value is not present in the array, the algorithm will check every element in

the array, requiring comparisons, before concluding that none of the elements match

the wanted value. However, if the array does contain the wanted value, the algorithm

could need anywhere from to comparisons, as the value could be located anywhere

in the array. Because the number of constant time operations required is not

consistent over inputs of size the same size, it is unclear what should be. This is

why is commonly defined as the maximum number of steps required over all

6

inputs of size . This worst-case complexity is generally a more useful measure of

overall complexity than best-case complexity, and while average-case complexity

might be an even better alternative, it is often much harder to determine than worst-

case complexity, making the latter a more practical choice. We can thus find by

identifying the constant time operations, and counting the number of times the

algorithm executes these operations, for the worst-case input of size .

In the case of naive matrix multiplication, the constant time operations consist of

multiplying two matrix elements and adding up these products. If an element in either

of the input matrices is equal to zero, we know that products of this element will also

equal zero, and thus addition of this product is trivial. As this results in a decrease

of constant time operations executed, the worst-case input is two matrices of which

no element equals zero. To compute a single element in the product of these matrices,

we need to take the dot product of a row in the first matrix and a column in the

second matrix. As the rows and columns both contain non-zero elements, this

requires multiplications and additions, adding up to constant

time operations. Because the output matrix contains elements, we find the

complexity function of naive matrix multiplication to be .

2.3 Asymptotic analysis

For small input sizes, a difference in complexity is often negligible. Take, for example,

two algorithms with complexity functions and . When we

run the algorithms on an input of size , the difference between the

and operations required will be unnoticeable, as both algorithms will

execute almost instantly. Furthermore, analyzing algorithms using small values of

may lead to incorrect conclusions on how the complexities of these algorithms

compare. If we run the algorithms in the example above on an input of size , we

find and , which might suggest that the first algorithm has a

higher complexity than the second algorithm. However, as grows larger and

differences in complexity become more apparent, it is clear to see that will grow

much faster than . For these reasons, the asymptotic behavior of an algorithm’s

complexity, that is the behavior of the complexity function as tends to infinity,

generally gives a more useful insight into how the algorithm’s complexity compares

to others.

2.3.1 The big-O notation

To express the asymptotic behavior of complexity functions, we use a notation that

gives an upper bound on the growth of a function, called the big-O notation. The

big-O notation is defined as follows:

Definition 2.1. The Big-O notation

Given two real valued, non-negative functions and , defined on an unbound subset

of the real non-negative numbers, we say that as tends to infinity if

there exist a positive constant and a real number such that for all

greater than or equal to .

7

Because the big-O notation provides an upper bound on the growth of a function, we

can use it to express the asymptotic behavior of complexity functions. To illustrate

this, consider the complexity functions and mentioned in the previous paragraph.

For and , we see that

 and for all ,

And thus follows that . In the same manner, we find , which

makes it clear to see that second algorithm is of higher complexity than the first

algorithm.

By only considering the most dominating term of the complexity function as grows

larger, the big-O notation makes it much easier to analyze algorithms and compare

their complexities. However, ignoring the lower-order terms and constant factors

means that it is possible that an algorithm of high order with small constants

outperforms an algorithm of low order with large constants, for most, or all, inputs

encountered in practice. Despite this, asymptotic analysis and the big-O notation

remain the conventional method to discuss and compare algorithms and their

respective complexities. As for naive matrix multiplication, we found a complexity

function of , and it is therefore that we say naive matrix multiplication

has a complexity of .

2.4 Recurrent complexity functions

As we saw in section 2.2, we can find an algorithm’s complexity function by counting

the number of constant time operations it executes, and we can use this function to

determine an algorithm’s (asymptotic) complexity. However, this does not always

suffice. Consider, for example, the following sorting algorithm, called Merge Sort:

Algorithm 1. Merge Sort1

 1. MergeSort()

 2. ← length()

 3.

 4.

 5.

 6. left ← []

 7. right ← []

 8.

 9. left ← MergeSort(left)

10. right ← MergeSort(right)

11. Merge(left, right)

1Here, [represents the subarray consisting of the elements in with indices through . The

function Merge(, merges two arrays into one, by iteratively taking the lowest value from and .

First, the algorithm checks for the base case. If the input array is empty or only

contains one element, it is consequently sorted, and the algorithm returns the array

unmodified. For input arrays containing more than one element, the algorithm splits

the array in two, sorts the two halves separately, merges the sorted arrays, and returns

the merged array. To find the complexity function of this algorithm, we need to

determine the complexities of these steps individually. For splitting and merging the

array, this is fairly straightforward. Splitting the input array requires placing the

elements in two separate arrays, thus having a complexity of The Merge function

iterates over the two sorted subarrays, which results in a complexity of as well.

8

Determining the complexity of sorting the two subarrays proves a bit more difficult.

In order to sort the subarrays, the algorithm uses Merge Sort, thus recursively calling

on itself. We do not know the complexity of Merge Sort, however, as this is what we

are actually trying to formalize. Because of this, we can only define recursively.

We know that is the complexity function for running Merge Sort on an input of

size , and therefore, the complexity function for sorting a subarray of size is equal

to . Combining this with the complexities of splitting and merging the array, we

find the recurrence relation , for some constant , with for

the base case. To better understand this expression, we can construct a recursion tree

for :

The nodes in this tree represent the recursive calls to , and for each node, the

complexity of splitting the input array and merging the two sorted subarrays is

specified. The leaves represent the recursive calls on arrays of size , i.e. the base

case. Note that at any depth , there are nodes representing a call on a subarray

of size , or a call on the base case. Since , we find the leaves at a depth of

, with a total complexity of . For depths smaller

than , the nodes have an associated complexity of , and thus the complexity

at these depths is equal to . The combined complexity of the layers

of internal nodes, paired with the complexity of the layer of leaves, therefore result

in a complexity function of .

As we have now explicitly defined , we can express Merge Sort’s asymptotic

behavior using the big-O notation. Since , the dominating

term in is , and we find Merge Sort has a complexity of . Here,

the base of the logarithm is intentionally left unspecified, as it does not affect the

function’s asymptotic growth. This can be easily shown using the “change of base”

rule for logarithms. This rule states that, given two real numbers and , the equality

 holds, from which follows that . Thus, we find

that two logarithms of , to any two bases, differ only by a constant factor . This

means that is equivalent to for any pair of real numbers and , and

we conclude that the bases of the logarithmic terms in a function are irrelevant to the

function’s asymptotic growth.

9

2.4.1 The Master Theorem

Algorithms that solve problems by using recursion in the same manner as Merge Sort,

are called divide-and-conquer algorithms. Instead of solving a problem iteratively,

divide-and-conquer algorithms solve a problem by splitting it into subproblems, and

combining the solutions of these subproblems, which are found by solving the

subproblems recursively. Because of their recursive nature, the complexity functions

of these algorithms typically consist of a recurrence relation of a generic form; for an

algorithm that divides a problem of size into subproblems of size , with ,

and the complexity function for splitting and recombining the problem, we find

a complexity function . Like we saw in the case of Merge Sort, there

are two factors that contribute to this complexity function, namely the complexity of

splitting and recombining the problem, and the complexity of the calls on the base

case, specified respectively at the internal nodes and the leaves of the recursion tree

for the complexity function. As we are concerned with the asymptotic growth of

complexity, we can distinguish the following three cases:

1. The complexity at the leaves is dominant over the complexity at the nodes, .

2. The complexity at the leaves is comparable to the complexity at the nodes, (2.1)

3. The complexity at the leaves is dominated by the complexity at the nodes, .

with a term being dominant over a term when is polynomially larger

than , i.e. there exist an such that . These three cases form

the basis for a general method for finding the complexity of divide-and-conquer

algorithms. The “Master Theorem”, first introduced in 1980 by Jon Bentley, Dorothea

Haken and James B. Saxe [4], provides asymptotic bounds on the complexities of

divide-and-conquer algorithms, using the generality of their complexity functions.

Theorem 2.1. The Master Theorem [5]

Given constants , , and function , we distinguish the following three cases

for the asymptotic bound on the recurrence relation of the form :

1. If , for some constant then ,

2. If , then ,

3. If , for some constant , and if for

some constant , and all sufficiently large , then .

Proof. To distinguish between cases (2.1), we need to find the complexities at both

the nodes and the leaves of the recursion tree for . At a depth in the recursion

tree, there will be nodes, with the non-leave nodes representing recursive calls on

subproblems of size . This is because the initial problem has then been divided

times, each time creating subproblems and reducing the size of the problem by a

factor . After dividing the problem times, these subproblems will be of size

, at which point they cannot be divided any further. This results in a maximum

depth of the tree of , and in the case where the entirety of leaves in the tree is

located at this depth, we find the tree contains at most leaves, along with

non-leave nodes at depths ranging from through , therefore representing a

maximum number of executions of the base case. Since the leaves represent calls

on the base case, As calls on the base case only occur for (sub)problems of sizes below

a certain threshold, the worst case complexity of a single call on the base case does

not depend on the initial input size , which means that execution of the base case

has a complexity of . We therefore find the combined complexity at the leaves of

the recursion tree to be equal to .

10

(2.2)

The complexity associated with each of the internal nodes is equal to that of splitting

and recombining the subproblem at that node. Thus, each of the nodes at depth ,

for , will have an individual complexity function of . As the

number of nodes at these depths is equal to , we find a complexity function of

for the combined complexity of the internal nodes in the recursion tree. For each of

the three cases of the Master Theorem, we will provide asymptotic bounds for this

summation, by substituting the corresponding bound on into equation (2.2). We

can then combine these complexities with the complexity at the leaves of the recursion

tree, to determine asymptotic bounds on , thereby proving each of the cases of

the Master Theorem individually.

For case (1) of the Master Theorem, we substitute into (2.2), which

results in the following expression:

As and are constants, we find an asymptotic bound of .

Since this is equal to the complexity at the leaves of the tree, we find an asymptotic

bound of , equal to the bound provided in first case of the

Master Theorem.

For second case of the Master Theorem, we substitute into (2.2):

This means that at every depth, the combined complexity of the nodes is ,

which is equal to the complexity at the leaves of the tree, which results in a total

complexity of . Since we write for the asymptotic bound on

a logarithm, regardless of its base, we find , thus

proving case (2) of the Master Theorem.

11

The third case applies for , and includes an additional condition. We

assume this condition has been met, such that for some constant and sufficiently

large , we have . If we divide both sides by , we find ,

and iterating this times gives us and , assuming all

values iterated over are sufficiently large. We substitute this into equation (2.2), and

add to cover the terms not covered by our assumption that is sufficiently large:

Because is a constant, we find an asymptotic (upper) bound of . This means

that, since , the complexity at the internal nodes of the tree dominates

the complexity at the leaves. It follows that , which

proves case (3) and completes our proof of the Master Theorem.

Because the summation in (2.2) is not defined for non-integer values of , this

proof only considers the cases where is an exact power of . However, as the Master

Theorem provides asymptotic upper bounds, floor and ceiling functions can be used

to extend this proof, so that it includes all other cases as well [6].

12

Chapter 3

The Strassen Algorithm

In 1969, mathematician Volker Strassen published a paper [7] in which he provided

an algorithm for matrix multiplication of sub-cubic complexity, thus proving that

naive matrix multiplication, having a complexity of , is not optimal. The basis

of the algorithm presented in this paper is a divide-and-conquer approach for matrix

multiplication, where the two input matrices are split into submatrices, and the

output matrix is constructed by recursively calculating and combining products of

these submatrices. The most elementary way of doing this has a complexity of ,

which is no better than the iterative approach. Strassen, however, managed to devise

a method to construct the output matrix that requires multiplying fewer pairs of

submatrices, thus reducing the number of recursive calls and lowering the complexity

of the algorithm. In this chapter, we will first expand on the “basic” divide-and-

conquer approach for matrix multiplication, after which we will present Strassen’s

alternative, and determine and compare their respective complexities.

3.1 Divide-and-conquer approach

To define a divide-and-conquer algorithm for matrix multiplication, we need to break

down the problem into subproblems, i.e. smaller instances of matrix multiplication,

and construct the output matrix using the solutions to these subproblems. This can

be done through a process called block-matrix multiplication.

3.1.1 Block-matrix multiplication

A block-matrix is a representation of a matrix that has been partitioned into

submatrices, or “blocks”. We can interpret the block-matrix representation of a matrix

by imagining a grid being projected on the matrix, dividing it into blocks. These

blocks, and their associated submatrices, can be referred to using the indices of the

rows and columns in the grid. For a matrix , and a block-matrix representation of

consisting of rows and columns of blocks, we write

where refers to the submatrix corresponding to the block in the th row and th

column of the block-matrix.

Definition 3.1. Block-matrix multiplication

Let and be matrices with block-matrix representations of respective sizes and

. If these block-matrices are compatible for multiplication, their product is

defined as follows:

with for and .

13

To multiply block-matrices, we use products of their submatrices. Therefore, for two

block-matrices to be compatible for multiplication, all corresponding submatrices need

to be compatible for multiplication as well.

Theorem 3.1. Let and be matrices with block-matrix representations compatible

for multiplication. The product of these block-matrices is in turn a block-matrix,

representing the product .

Proof. For the purpose of this thesis, it is only necessary to prove this for the case of

two square matrices of even dimension, partitioned into four blocks of equal size. Let

 and be matrices, both of dimension , with elements and for

. Partition both and into four submatrices of size , and let

 and (3.1)

be the block-matrix representations for and corresponding to this partition.

Without loss of generality, we can formalize the correspondence between and its

block-matrix representation using the equality (3.2), where

and . For and , each of the unique combinations

of represents an element in the block-matrix, and maps to a distinct pair ,

with , thus representing the elements of .

We will prove that the product of the block-matrices representing and (3.1) is

in turn a block-matrix representation of the product of and , by showing that the

equality (3.2) holds for the elements in and as well. By the definition of block-

matrix multiplication, we find the product of the block-matrix representations for

 and to be equal to:

 .

Given and , the element in is equal to

.

By the definition of matrix multiplication, we have

,

and using equality (3.2), we find

,

with and .

14

3.1.2 Naive algorithm

Because block-matrix multiplication allows us to find the product of two matrices by

using the products of smaller submatrices, we can now define a divide-and-conquer

algorithm for the multiplication of two matrices:

Algorithm 2. D&Q Matrix Multiplication [5]
 1. MatrixMultiplicationDAQ(,)

 2. ← dim()

 3. ← new matrix

 4.

 5. ←

 6.

 7. partition and into four quadrants, as in (3.1)

 8. ← MatrixMultiplicationDAQ(,)

 + MatrixMultiplicationDAQ(,)

 9. ← MatrixMultiplicationDAQ(,)

 + MatrixMultiplicationDAQ(,)

10. ← MatrixMultiplicationDAQ(,)

 + MatrixMultiplicationDAQ(,)

11. ← MatrixMultiplicationDAQ(,)

 + MatrixMultiplicationDAQ(,)

12. ←

12.

The base case for this algorithm is the multiplication of two matrices, in which

case the algorithm returns a matrix containing the product of the two elements

in the input matrices. If the input matrices are of a higher dimension, the algorithm

divides them into four equally sized quadrants, and uses products of these quadrants,

which it finds recursively, to construct and combine the quadrants of the output

matrix.

Because this is a divide-and-conquer algorithm, its complexity function is of the

familiar form , for an algorithm that divides the problem in

subproblems of size , with the complexity of splitting and recombining the

problem. In the algorithm described above, each of the four quadrants in the output

matrix is found by summing the results of two recursive calls on submatrices of

dimension , thus dividing the problem of matrix multiplication into 8

subproblems of half the size of the input problem, and we find and .

Partitioning the input matrices, summing two products of submatrices, and

constructing the output matrix all require iterating over the elements in the associated

matrices, therefore having a complexity of . These actions are performed a

constant number of times, regardless of the size of the input matrices; two matrices

are divided into submatrices, four matrix additions are used to find the quadrants of

the output matrix, and the output matrix is constructed only once. Therefore, the

complexity of splitting and recombining the problem is equal to ,

and we find a complexity function of .

15

Note that for input matrices of dimensions not equal to a power of two, we can simply

add rows and columns containing only zeros to these matrices, until it is possible to

divide them into four equally sized submatrices. This “padding” of the input matrices

allows us to use the above algorithm on inputs of non-square or uneven dimensions

as well, whose product can be found after stripping the output matrix of the rows and

columns padded with zeros.

3.2 Strassen’s algorithm

Rather surprisingly, Strassen managed to reduce the number of recursive calls needed

to construct the output matrix. In his paper, Strassen showed that the product of two

 matrices can be found using 7 multiplications and 18 addition or subtractions,

as opposed to the 8 multiplication and 4 additions used when multiplying the matrices

in the “traditional” manner. Strassen realized that this method can be used to find

the product of two block-matrices as well, as block-matrix multiplication is

equivalent to regular matrix multiplication, with the elements in the matrices

representing the blocks in the block-matrices. Given matrices and , with block-

matrix representations of the form described in (3.1), Strassen defined the following

matrices:

He then used these matrices to construct a block-matrix representation for the product

of and . For , Strassen found a corresponding block-matrix representation

 , where

Strassen modified the naive divide-and-conquer algorithm for matrix multiplication,

described in section 3.1.2, by replacing the 8 multiplications and 4 additions used to

construct the output matrix with the factoring scheme above. This resulted in the

following algorithm for matrix multiplication, which later became known as the

Strassen algorithm:

16

Algorithm 3. The Strassen Algorithm
 1. Strassen(,)

 2. ← dim()

 3. ← new matrix

 4.

 5. ←

 6.

 7. partition and into four quadrants, as in(3.1)

 8. ← Strassen(,)

 9. ← Strassen(,)

10. ← Strassen(,)

11. ← Strassen(,)

12. ← Strassen(,)

13. ← Strassen(,)

14. ← Strassen(,)

15. ←

16. ←

17. ←

18. ←

19. ←

20.

This algorithm finds the product of two matrices using 7 recursive calls on submatrices

of dimension , along with 18 matrix additions or subtractions. This means

that for its complexity function, likewise of the form , we find

and , since the algorithm divides the problem of matrix multiplication into only

7 subproblems of size . The 18 matrix additions and subtractions required by the

Strassen algorithm, compared to the 4 matrix additions required by the naive

algorithm, do result in a higher complexity for splitting and recombining the problem.

However, as the number of matrix additions and subtractions required by the

algorithms is not affected by the size of the inputs, these complexities differ by a

constant factor , and we therefore find . Thus, the

complexity function for the Strassen algorithm is equal to .

3.3 Complexity

As both algorithms described above are divide-and-conquer algorithms, we can use

the Master Theorem to determine their complexities. For the naive divide-and-

conquer algorithm, we found a complexity function of . Since

, this corresponds to the first case of the Master

Theorem,. We therefore find a complexity of , equal to complexity we

found for the naive, iterative algorithm.

The Strassen algorithm manages to improve on this complexity, by finding the

product of two matrices using only 7 recursive calls, instead of 8 . We found a

complexity function for the Strassen algorithm equal to , and since

 for , this corresponds to the first case of the

Master Theorem as well. However, because of the reduced number of recursive calls,

we find a sub-cubic complexity for the Strassen algorithm, equal to .

17

3.4 Practical considerations

Keep in mind that improving on an algorithm’s complexity does not always imply an

improvement of practical performance, since high constant factors could result in

implementations of this “improved” algorithm only reducing runtimes for problems of

sizes beyond those encountered in practice. Therefore, when evaluating the practical

uses of the Strassen algorithm, it is important that, besides asymptotic complexity,

we also consider the impact of the 18 matrix additions and subtractions performed at

each recursive calls on the runtime of the algorithm.

Asymptotically, the complexity of matrix addition and subtraction is dwarfed by the

complexity of the recursive calls on the Strassen algorithm, meaning that as the

dimension of input matrices tends to infinity, the impact of these operations on the

algorithm’s performance will be negligible. However, for input matrices of sufficiently

low dimensions, the decrease in complexity does not compensate for the additional

arithmetic operations required by the 18 matrix additions and subtractions performed

at these calls. This becomes apparent when we consider two input matrices of

dimension ; the arithmetic operations performed at the very

initial call on the Strassen algorithm already surpasses the naive algorithm’s total of

arithmetic operations, with subsequent recursive calls only

further increasing this disparity. When multiplying matrices of low enough

dimensions, this can result in a significant difference in efficiency in favor of naive

matrix multiplication. Furthermore, since the algorithm recurses down to submatrices

of dimension 1, these inefficient calls on low dimension inputs will inevitably occur

for higher dimension inputs as well. Because the number of recursive calls is increased

sevenfold at each level of recursion, the number of ineff icient calls grows rapidly with

the dimension of the input matrices, raising the point at which the Strassen algorithm

outperforms naive matrix multiplication.

3.4.1 Hybrid variant

To make effective use of the lower complexity of the Strassen algorithm, it is common

for practical implementations to use a “hybrid” of the two algorithms. Since there

exist some threshold for which the naive approach is likely to be faster than the

Strassen algorithm, we can replace the inefficient recursive calls, on submatrices of

dimensions lower than this threshold, with calls on the naive algorithm. As mentioned

in the previous section, the number of inefficient calls on the Strassen algorithm grows

rapidly with the dimension of the input matrices, which means that a relatively small

increase of the efficiency of these calls could result in a substantial improvement of

the overall performance of the Strassen algorithm. By stopping recursion early and

switching to naive matrix multiplication, we essentially extend the base-case of the

Strassen algorithm to include all inputs of dimensions lower than some , and for its

execution run the naive algorithm on these inputs. Note that, therefore, the traditional

Strassen approach and this variant differ solely in the definitions of their base-cases,

and we can thus define the algorithm for this hybrid variant by altering only lines 4

and 5 in Algorithm 3. Using the multiplication operator to represent naive matrix

multiplication, we this results in the following algorithm:

18

Algorithm 4. Hybrid variant
 1. StrassenHV(,)

 2. ← dim()

 3. ← new matrix

 4.

 5. ←

 6.

 7. partition and into four quadrants, as in (3.1)

 8. ← StrassenHV(,)

 9. ← StrassenHV(,)

10. ← StrassenHV(,)

11. ← StrassenHV(,)

12. ← StrassenHV(,)

13. ← StrassenHV(,)

14. ← StrassenHV(,)

15. ←

16. ←

17. ←

18. ←

19. ←

20.

Using this hybrid variant, we are able to reduce the recursion overhead of the Strassen

algorithm, which is very likely to result in an improvement of runtime. The extent of

this potential improvement, however, depends heavily on our choice of . For high

values of , the algorithm might resort to naive matrix multiplication too early, not

taking full advantage of the Strassen algorithm’s lower complexity. For low values of

, on the other hand, the algorithm might use recursive calls on inputs for which

naive matrix multiplication is faster, resulting in suboptimal runtimes. Thus, using

an appropriate value of is essential for maximizing the improvement of runtime

over the traditional Strassen algorithm. Note that, as we are concerned with runtime,

appropriate values of can differ heavily between machines and implementations,

and optimal values have to be determined empirically.

3.4.2 Cross-over point

A suitable value of would be the so called cross-over point. This is the input

dimension , for which performing one iteration of the Strassen algorithm, and

subsequently using the naive algorithm for multiplying the submatrices, results in

runtimes that are on par with those for naive matrix multiplication of matrices.

At this point, the improvement on complexity, compared to the naive algorithm,

makes up for the additional matrix additions and subtractions used for one iteration

of the Strassen algorithm. Due to their difference in complexity, the runtimes for

naive matrix multiplication grow at a faster rate than those for the Strassen approach.

Therefore, beyond this cross-over point, performing one iteration of the Strassen

algorithm before applying naive matrix multiplication will result in lower runtimes

compared to exclusively using the naive algorithm. This, in turn, means that if the

dimension of the submatrices resulting from one iteration of the Strassen algorithm is

again greater than this , another recursive iteration would improve on runtime even

further. Thus, we want to perform recursive iterations of the Strassen algorithm until

the dimensions of the resulting submatrices fall below this point, after which we switch

to the naive algorithm instead, which makes the cross-over point an ideal candidate

for the value of .

19

Chapter 4

Experiment

For the remainder of this thesis, we conduct an experiment to determine how the

difference in complexity between Strassen’s approach and the naive algorithm affects

practical performance of computational matrix multiplication. We do so by

implementing both algorithms, and comparing their respective runtimes for inputs of

varying sizes. To illustrate the impact on performance brought on by the additional

matrix additions and subtractions needed for the Strassen algorithm, we first compare

runtimes for the variant of the Strassen algorithm described in section 3.4.1, using

multiple values of . Additionally, this provides us with a general idea of the cross-

over point, which we can subsequently use for our comparison between naive matrix

multiplication and the Strassen approach. In this chapter, we will first expand on our

implementations of the algorithms, and specify the parameters of the experiment.

4.1 Implementations

For our experiment, we used to implement and test the matrix multiplication

algorithms. We first implemented an object to represent our test matrices, which we

defined using a jagged array, whose size corresponds to the dimensions of the matrix

it represents. We can construct an object either representing a matrix containing only

zeroes, or a randomly generated matrix. After construction, the values for individual

elements can be set using row and column indices, or a jagged array can be used to

set the entirety of the elements at once. We added methods for the partitioning of a

matrix into equally sized quadrants, which returns objects representing these four

submatrices, and made it possible to set the elements of a matrix object using such a

block-matrix representation. We included definitions for the addition and subtraction

operators, using conventional iterative methods for matrix addition and subtraction,

and wrote an implementation of naive matrix multiplication for the multiplication

operator.

By using this object to represent our test matrices, we were able to write an

implementation for the Strassen algorithm that closely resembles the pseudo-code we

presented in Algorithms 3 and 4. Note that for , the hybrid variant of the

Strassen algorithm is equivalent to the traditional algorithm, which allows us to use

a single implementation of Algorithm 4 for testing both variants.

Exact descriptions of the code used for our implementations can be found at
https://git.science.uu.nl/r.j.bressers/thesismatrixmultiplication .

4.2 Parameters

The first part of our experiment consists of a comparison between the performances

of naive matrix multiplication, the traditional Strassen approach, and the hybrid

variant of the Strassen algorithm, on input matrices of dimensions 32, 64, 96, 128 and

160. For the hybrid variant, we set to be equal to the dimension of the test matrices,

to narrow down the cross-over point for our particular implementation and machine.

https://git.science.uu.nl/r.j.bressers/thesismatrixmultiplication

20

In the second part of our experiment, we test naive matrix multiplication and the

Strassen algorithm on a greater range of input dimension for a more thorough

comparison of practical performance, with input matrices of dimensions 64, 128, 256,

512, 1024 and 2048. We use the results found in the first part of the experiment to

set the value of , taking the dimension for which the difference in performance

between the naive algorithm and the hybrid variant is minimal. If any of our intended

test dimensions happens to be smaller than the value found for , we will not include

it in our experiment since the Strassen implementation will be equivalent to the naive

algorithm for input dimensions lower than .

We measure the performance of the algorithms by recording the runtimes of their

corresponding implementations. In our first experiment, we run the implementations

on 150 pairs of input matrices of size , for each test dimension mentioned above,

and average over their respective runtimes. For our second experiment, we use

matrices of much greater dimension. As dimension grows, differences in complexity

become more evident, which reduces the need for a large test set. Since runtimes can

drastically increase with dimension, we have therefore chosen to use test sets of sizes

150, 100, 75, 50 and 25, respectively for the test dimensions in our second experiment.

To ensure a fair comparison, we use the same set of test matrices for all

implementations, consisting of randomly generated matrices with elements taking

integer values ranging between 1 and 10.000.

21

Chapter 5

Results

In this chapter, we will present the results of our experiment and give an analysis of

these results.

5.1 Experiment I

The table below shows the results of the first part of our experiment. Each column is

headed by the dimension of the tested input matrices, under which the average

runtimes on these inputs is stated. The furthermost left column of the table specifies

the implementation for which we found the given averages. Because some of the

runtimes were too low to accurately record, we did not include them in this table.

Table 5.1. Results of experiment I

 Average runtime (ms)

Algorithm

Naive

Strassen -

 -

As we can clearly see in Table 5.1, the traditional Strassen algorithm performs orders

of magnitude worse than the naive and the hybrid algorithms on matrices of these

sizes. To determine the point after which the Strassen algorithm outperforms naive

matrix multiplication, we can define functions for the approximate runtimes of our

implementations. Using the averages we found, we can determine coefficients for the

asymptotic complexities of the algorithms, as well as coefficients for the additional

quadratic and constant factors impacting runtime. These coefficients allow us to

formulate for each of the algorithms a function, that, given a dimension , returns the

expected runtime on our machine for inputs of this dimension. This resulted in the

following plot for the expected runtimes of the algorithms:

Figure 5.1 [8]. Expected runtimes for the traditional Strassen algorithm (blue),

naive matrix multiplication (green), and the hybrid variant using (red).

22

The functions we found for the Strassen algorithm and naive matrix multiplication

intersected at a dimension of around , meaning that the traditional Strassen

only outperforms naive matrix multiplication after a point way beyond practical use.

The hybrid variant, however, does show improvement over the naive algorithm, and

we can use its function to determine the cross-over point for our machine. The point

at which this function and the function for the naive algorithm intersect, is the point

where the hybrid variant, using , becomes faster than the naive algorithm. We

found the functions intersecting between dimensions and , meaning that

from onward, the hybrid variant outperforms naive matrix multiplication on

the machine used for this experiment. In our next experiment, we will use this cross-

over point to compare naive matrix multiplication to a more practical implementation

of the Strassen algorithm, i.e. the hybrid variant with .

5.2 Experiment II

The results for our seconds experiment are presented in the table below, in the same

manner as we did in Table 5.1. As we found a cross-over point greater than 64, we

did not test the algorithms on matrices of that dimension.

Table 5.2. Results of experiment II

 Average runtime (ms)

Algorithm

Naive

Strassen -

Comparing the average runtimes in Table 5.2, we can see that as the matrices grow

larger, the difference in complexity between the algorithms becomes more and more

noticeable. Not only is the Strassen variant faster for every tested input dimension,

the relative improvement over naive matrix multiplication grows with the sizes of the

input matrices. This implies that, for large matrices, the difference in complexity has

a significant impact on runtime and practicality. If we plot the runtime functions

corresponding to these results, the impact of complexity becomes even more apparent:

 Figure 5.2 [9]. Expected runtimes for the naive algorithm

 (green) and the hybrid variant using (red).

23

Chapter 6

Conclusion

In this chapter, we will discuss the results of our experiment and reflect on possible

limitations. To conclude this thesis, we will briefly discuss how our findings might

apply to problems other than matrix multiplication.

6.1 Discussion

While Strassen’s innovative method for matrix multiplication does improve on the

asymptotic complexity of naive matrix multiplication, our results show that it is

limited in its practicality, only improving on performance for matrices beyond

practical use. To benefit from its lower complexity, practical implementations of the

Strassen algorithm stop recursion early, resorting to the naive algorithm for

multiplying the submatrices instead. Our results show that using this hybrid variant,

the small difference in complexity between the Strassen algorithm and the naive

approach can provide significant improvements in runtime.

However, performance is heavily dependent on the choice of the switching point ,

and as optimal values for this point are highly system dependent, they to be

determined empirically for distinct machines and implementations. Additional

considerations regarding memory have to be made as well, due to the recursive nature

of the Strassen algorithm. Constructing matrices at each point of recursion can result

in substantial overhead, and the use of inefficient data structures can subsequently

lead to significant losses in performance. Also, because we used only square matrices

in our experiment, largely of dimensions , the padding required for the Strassen

algorithm was minimized. When multiplying matrices of arbitrary sizes, efficient

padding methods might be necessary to achieve competitive runtimes. Due to these

practical concerns, the Strassen algorithm might not always be the preferred choice

when deciding on an implementation of matrix multiplication, despite its lower

complexity.

On the other hand, by dividing the problem into subproblems, Strassen’s approach

allows for parallel implementations that compute the products of submatrices

concurrently. By using multiple processor cores simultaneously, this is likely to result

in significantly reduced runtimes. Unfortunately, the implementation we used for our

experiment does not take advantage of this, and it might be worthwhile to explore

the possibilities of multi-threaded implementations in future works.

6.2 Conclusion

Analyzing and comparing algorithms proves to be a complicated matter. Asymptotic

analysis and the big-O notation provide a universal notion of complexity, making it

easier to determine and compare the complexities of algorithms. However, this is not

a definitive measure, as there are often other factors affecting an algorithm’s practical

performance. This thesis illustrates this, by examining the Strassen algorithm for

matrix multiplication, and comparing it to naive matrix multiplication. While

Strassen’s method improves on the theoretical complexity of matrix multiplication,

implementations need to account for a number of practical considerations to benefit

from this reduced complexity.

24

References

[1] N. Lončarić and M. Kraljić, "Matrices in Computer Graphics," Tehnički glasnik,

pp. 120-123, 2018.

[2] C. Ionescu, O. Vantzos and C. Sminchisescu, "Matrix Backpropagation for Deep

Networks with Structured Layers," in The IEEE International Conference on

Computer Vision, 2015.

[3] K. Sood, "Solver Schemes for Linear Systems," 2016.

[4] J. L. Bentley, D. Haken and J. B. Saxe, "A General Method for Solving Divide-

and-Conquer Recurrences," SIGACT News, vol. 12, no. 3, p. 36–44, 1980.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, in Introduction to

Algorithms, The MIT Press, 2009, pp. 77, 94, 98-106.

[6] K. Bogart, S. Drysdale and C. Stein, in Discrete Math for Computer Science

Students, 2004, pp. 156-157.

[7] V. Strassen, "Gaussian Elimination is not Optimal," Numerische Mathematik,

vol. 13, pp. 354-356, 1969.

[8] M. Hohenwarter, "GeoGebra - Dynamic Mathematics for Everyone," [Online].

Available: https://www.geogebra.org/graphing/ewvgysfd.

[9] M. Hohenwarter, "GeoGebra - Dynamic Mathematics for Everyone," [Online].

Available: https://www.geogebra.org/graphing/mv3p2wn4.

