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Abstract 

 

Due to the many computational applications of matrix multiplication, research into 

efficient algorithms for multiplying matrices can lead to widespread improvements of 

performance. In this thesis, we will first make the reader familiar with a universal 

measure of the efficiency of an algorithm, its computational complexity. We will then 

examine the Strassen algorithm, an algorithm that improves on the computational 

complexity of the conventional method for matrix multiplication. To illustrate the 

impact of this difference in complexity, we implement and test both algorithms, and 

compare their runtimes. Our results show that while Strassen’s method improves on 

the theoretical complexity of matrix multiplication, there are a number of practical 

considerations that need to be addressed for this to actually result in improvements 

on runtime.  
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Chapter 1 

Introduction 

 

Matrices and matrix multiplication know many computational applications. Take, for 

example, graphics in video games; matrices are used to project the three-dimensional 

scene onto a two-dimensional plane, and transformations on the scene like scaling and 

rotation are performed using matrix multiplication [1]. Other examples of applications 

of matrices and matrix multiplication include training neural networks with 

backpropagation [2] and solving systems of linear equations [3]. Because of the 

widespread use of matrices and matrix multiplication, researching efficient ways to 

find the product of two matrices could result in further optimization in a lot of these 

applications.  

 

1.1    Computational complexity  

When we multiply two  matrices, the resulting matrix is equal to 

 

. 

We see that there are  multiplications and  additions required to find this 

matrix. Generalizing for two  matrices, we find that calculating the resulting 

matrix requires  multiplications and  additions. This means that as  

increases, the number of arithmetic operations needed to find the product of two  

matrices increases at a much higher rate than the size of the matrices.  

The ratio between an algorithm’s input and the resources it requires to find a solution 

is called the computational complexity of the algorithm. As we saw above, in the case 

of matrix multiplication the arithmetic computational complexity is equal to           

. However, this “naive” approach is not optimal. In this thesis 

we will examine an algorithm for matrix multiplication of lower computational 

complexity, and conduct an experiment comparing the two approaches.  

 

1.2    Structure  

We will start this thesis by going into further detail on computational complexity, 

introducing the big-O notation and showing how an algorithm’s computational 

complexity can be determined. After that, we will look into the Strassen algorithm, 

an algorithm used for matrix multiplication, and compare this to the naive approach. 

In order to illustrate the impact of the difference in computational complexity, we 

will implement both algorithms and test them on a number of matrices of different 

sizes. Lastly, after presenting and analyzing the results of the experiment, we will  

discuss the results found and state our conclusion. 
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Chapter 2 

Computational Complexity 

 

As stated in our introduction, an algorithm’s computational complexity is the amount 

of resources required to execute the algorithm, relative to the size of its input. When 

we talk about computational complexity, we generally consider one of two resources, 

namely space and time. Space complexity concerns the amount of memory that is 

required to run an algorithm, whereas time complexity concerns the runtime of an 

algorithm. Usually, when (computational) complexity is mentioned without specifying 

the resource, it refers to the latter. This will also be the case for this thesis, as we 

will be examining the time complexity of matrix multiplication in particular. 

 

2.1    Time complexity 

Because the runtime of an algorithm can differ greatly from machine to machine, time 

complexity cannot just simply be expressed as the absolute runtime of the algorithm 

in seconds or minutes. Instead of using runtime, we look at the number of “steps” an 

algorithm takes, to express time complexity. Here, a step represents the execution of 

an operation whose runtime is not affected by the size of the input. In our 

introduction, we counted the number of arithmetic operations needed to find the 

product of two  matrices, and stated that multiplying two  matrices requires 

the execution of  arithmetic operations. While the total number of operations 

depends on the dimension of the matrices , the individual runtimes of these 

operations do not. Therefore, we say that these operations run in constant time, as 

their runtimes stay consistent for all values of . By defining an algorithm’s time 

complexity as the number of constant time operations that are executed when running 

the algorithm, we can formalize a function  for time complexity that is solely 

based on the input size . This notion of time complexity is universal for all machines, 

as the number of steps needed to run the algorithm will be the same for every machine.  

 

2.2    Determining an algorithm’s complexity 

To determine an algorithm’s complexity, we need to define a function  that 

expresses the number of required constant time operations, or steps, in terms of the 

size of the input . However, the number of required steps can differ greatly between 

inputs of the same size. Consider, for instance, an algorithm that determines whether 

an array of size  contains a particular value, by iteratively comparing the elements 

in the array to the wanted value. Comparing two values is a constant time operation, 

as the time required to do so is not affected by the size of the array. These comparisons 

are the only constant time operations, and thus we can find the complexity of this 

algorithm by counting the number of times the algorithm compares two values. If the 

wanted value is not present in the array, the algorithm will check every element in 

the array, requiring  comparisons, before concluding that none of the elements match 

the wanted value. However, if the array does contain the wanted value, the algorithm 

could need anywhere from  to  comparisons, as the value could be located anywhere 

in the array. Because the number of constant time operations required is not 

consistent over inputs of size the same size, it is unclear what  should be. This is 

why  is commonly defined as the maximum number of steps required over all 
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inputs of size . This worst-case complexity is generally a more useful measure of 

overall complexity than best-case complexity, and while average-case complexity 

might be an even better alternative, it is often much harder to determine than worst-

case complexity, making the latter a more practical choice. We can thus find  by 

identifying the constant time operations, and counting the number of times the 

algorithm executes these operations, for the worst-case input of size .  

 

In the case of naive matrix multiplication, the constant time operations consist of 

multiplying two matrix elements and adding up these products. If an element in either 

of the input matrices is equal to zero, we know that products of this element will also 

equal zero, and thus addition of this product is trivial. As this results in a decrease 

of constant time operations executed, the worst-case input is two matrices of which 

no element equals zero. To compute a single element in the product of these matrices, 

we need to take the dot product of a row in the first matrix and a column in the 

second matrix. As the rows and columns both contain  non-zero elements, this 

requires  multiplications and  additions, adding up to  constant 

time operations. Because the output matrix contains  elements, we find the 

complexity function of naive matrix multiplication to be . 

 

2.3    Asymptotic analysis 

For small input sizes, a difference in complexity is often negligible. Take, for example, 

two algorithms with complexity functions  and . When we 

run the algorithms on an input of size , the difference between the  

and  operations required will be unnoticeable, as both algorithms will 

execute almost instantly. Furthermore, analyzing algorithms using small values of  

may lead to incorrect conclusions on how the complexities of these algorithms 

compare. If we run the algorithms in the example above on an input of size , we 

find  and , which might suggest that the first algorithm has a 

higher complexity than the second algorithm. However, as  grows larger and 

differences in complexity become more apparent, it is clear to see that  will grow 

much faster than . For these reasons, the asymptotic behavior of an algorithm’s 

complexity, that is the behavior of the complexity function as  tends to infinity, 

generally gives a more useful insight into how the algorithm’s complexity compares 

to others. 

 

2.3.1   The big-O  notation 

To express the asymptotic behavior of complexity functions, we use a notation that 

gives an upper bound on the growth of a function, called the big-O notation. The  

big-O notation is defined as follows: 

 

Definition 2.1. The Big-O notation 

Given two real valued, non-negative functions  and , defined on an unbound subset 

of the real non-negative numbers, we say that  as  tends to infinity if 

there exist a positive constant  and a real number  such that  for all  

greater than or equal to .  
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Because the big-O notation provides an upper bound on the growth of a function, we 

can use it to express the asymptotic behavior of complexity functions. To illustrate 

this, consider the complexity functions  and  mentioned in the previous paragraph. 

For  and , we see that 

 

 and for all , 

 

And thus follows that . In the same manner, we find , which 

makes it clear to see that second algorithm is of higher complexity than the first 

algorithm.  

 

By only considering the most dominating term of the complexity function as  grows 

larger, the big-O notation makes it much easier to analyze algorithms and compare 

their complexities. However, ignoring the lower-order terms and constant factors 

means that it is possible that an algorithm of high order with small constants 

outperforms an algorithm of low order with large constants, for most, or all, inputs 

encountered in practice. Despite this, asymptotic analysis and the big-O notation 

remain the conventional method to discuss and compare algorithms and their 

respective complexities. As for naive matrix multiplication, we found a complexity 

function of , and it is therefore that we say naive matrix multiplication 

has a complexity of . 

 

2.4    Recurrent complexity functions 

As we saw in section 2.2, we can find an algorithm’s complexity function by counting 

the number of constant time operations it executes, and we can use this function to 

determine an algorithm’s (asymptotic) complexity. However, this does not always 

suffice. Consider, for example, the following sorting algorithm, called Merge Sort:  
 

Algorithm 1. Merge Sort1 

 1.  MergeSort( ) 

 2.    ← length( ) 

 3.      

 4.       

 5.    

 6.   left  ← [ ] 

 7.   right ← [ ] 

 8.    

 9.   left  ← MergeSort(left)   

10.   right ← MergeSort(right) 

11.    Merge(left, right) 
 

1Here, [  represents the subarray consisting of the elements in  with indices  through . The 

function Merge( ,  merges two arrays into one, by iteratively taking the lowest value from  and . 
 

First, the algorithm checks for the base case. If the input array is empty or only 

contains one element, it is consequently sorted, and the algorithm returns the array 

unmodified. For input arrays containing more than one element, the algorithm splits 

the array in two, sorts the two halves separately, merges the sorted arrays, and returns 

the merged array. To find the complexity function  of this algorithm, we need to 

determine the complexities of these steps individually. For splitting and merging the 

array, this is fairly straightforward. Splitting the input array requires placing the  

elements in two separate arrays, thus having a complexity of  The Merge function 

iterates over the two sorted subarrays, which results in a complexity of as well.  
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Determining the complexity of sorting the two subarrays proves a bit more difficult. 

In order to sort the subarrays, the algorithm uses Merge Sort, thus recursively calling 

on itself. We do not know the complexity of Merge Sort, however, as this is what we  

are actually trying to formalize. Because of this, we can only define  recursively. 

We know that  is the complexity function for running Merge Sort on an input of 

size , and therefore, the complexity function for sorting a subarray of size  is equal 

to . Combining this with the complexities of splitting and merging the array, we 

find the recurrence relation , for some constant , with  for 

the base case. To better understand this expression, we can construct a recursion tree 

for :  

 

 

 

The nodes in this tree represent the recursive calls to , and for each node, the 

complexity of splitting the input array and merging the two sorted subarrays is 

specified. The leaves represent the recursive calls on arrays of size , i.e. the base 

case. Note that at any depth , there are  nodes representing a call on a subarray 

of size , or a call on the base case. Since , we find the leaves at a depth of 

, with a total complexity of . For depths  smaller 

than , the nodes have an associated complexity of , and thus the complexity 

at these depths is equal to . The combined complexity of the  layers 

of internal nodes, paired with the complexity of the layer of leaves, therefore result 

in a complexity function of . 

 

As we have now explicitly defined , we can express Merge Sort’s asymptotic 

behavior using the big-O notation. Since , the dominating 

term in  is , and we find Merge Sort has a complexity of . Here, 

the base of the logarithm is intentionally left unspecified, as it does not affect the 

function’s asymptotic growth. This can be easily shown using the “change of base” 

rule for logarithms. This rule states that, given two real numbers  and , the equality 

 holds, from which follows that . Thus, we find 

that two logarithms of , to any two bases, differ only by a constant factor . This 

means that  is equivalent to  for any pair of real numbers  and , and 

we conclude that the bases of the logarithmic terms in a function are irrelevant to the 

function’s asymptotic growth.   
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2.4.1   The Master Theorem  

Algorithms that solve problems by using recursion in the same manner as Merge Sort, 

are called divide-and-conquer algorithms. Instead of solving a problem iteratively, 

divide-and-conquer algorithms solve a problem by splitting it into subproblems, and 

combining the solutions of these subproblems, which are found by solving the 

subproblems recursively. Because of their recursive nature, the complexity functions 

of these algorithms typically consist of a recurrence relation of a generic form; for an 

algorithm that divides a problem of size  into  subproblems of size , with , 

and  the complexity function for splitting and recombining the problem, we find 

a complexity function . Like we saw in the case of Merge Sort, there 

are two factors that contribute to this complexity function, namely the complexity of 

splitting and recombining the problem, and the complexity of the calls on the base 

case, specified respectively at the internal nodes and the leaves of the recursion tree 

for the complexity function. As we are concerned with the asymptotic growth of 

complexity, we can distinguish the following three cases: 

1. The complexity at the leaves is dominant over the complexity at the nodes,            . 

2. The complexity at the leaves is comparable to the complexity at the nodes,     (2.1) 

3. The complexity at the leaves is dominated by the complexity at the nodes,            .       

with a term  being dominant over a term  when  is polynomially larger 

than , i.e. there exist an such that . These three cases form 

the basis for a general method for finding the complexity of divide-and-conquer 

algorithms. The “Master Theorem”, first introduced in 1980 by Jon Bentley, Dorothea 

Haken and James B. Saxe [4], provides asymptotic bounds on the complexities of 

divide-and-conquer algorithms, using the generality of their complexity functions.  

 

Theorem 2.1. The Master Theorem [5] 

Given constants , , and function , we distinguish the following three cases 

for the asymptotic bound on the recurrence relation of the form : 

1. If , for some constant  then , 

2. If , then ,         

3. If , for some constant , and if  for   

some constant , and all sufficiently large , then . 
 

Proof. To distinguish between cases (2.1), we need to find the complexities at both 

the nodes and the leaves of the recursion tree for . At a depth  in the recursion 

tree, there will be  nodes, with the non-leave nodes representing recursive calls on 

subproblems of size . This is because the initial problem has then been divided  

times, each time creating  subproblems and reducing the size of the problem by a 

factor . After dividing the problem  times, these subproblems will be of size 

, at which point they cannot be divided any further. This results in a maximum 

depth of the tree of , and in the case where the entirety of leaves in the tree is 

located at this depth, we find the tree contains at most  leaves, along with  

non-leave nodes at depths  ranging from  through , therefore representing a 

maximum number of  executions of the base case. Since the leaves represent calls 

on the base case, As calls on the base case only occur for (sub)problems of sizes below 

a certain threshold, the worst case complexity of a single call on the base case does 

not depend on the initial input size , which means that execution of the base case 

has a complexity of . We therefore find the combined complexity at the leaves of 

the recursion tree to be equal to . 
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(2.2) 

The complexity associated with each of the internal nodes is equal to that of splitting 

and recombining the subproblem at that node. Thus, each of the nodes at depth , 

for , will have an individual complexity function of . As the 

number of nodes at these depths is equal to , we find a complexity function of 

for the combined complexity of the internal nodes in the recursion tree. For each of 

the three cases of the Master Theorem, we will provide asymptotic bounds for this 

summation, by substituting the corresponding bound on  into equation (2.2). We 

can then combine these complexities with the complexity at the leaves of the recursion 

tree, to determine asymptotic bounds on , thereby proving each of the cases of 

the Master Theorem individually.  

  

For case (1) of the Master Theorem, we substitute  into (2.2), which 

results in the following expression: 

 

As  and  are constants, we find an asymptotic bound of . 

Since this is equal to the complexity at the leaves of the tree, we find an asymptotic 

bound of , equal to the bound provided in first case of the 

Master Theorem.  

 

For second case of the Master Theorem, we substitute  into (2.2): 

 

This means that at every depth, the combined complexity of the nodes is , 

which is equal to the complexity at the leaves of the tree, which results in a total 

complexity of . Since we write  for the asymptotic bound on 

a logarithm, regardless of its base, we find , thus 

proving case (2) of the Master Theorem. 
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The third case applies for , and includes an additional condition. We 

assume this condition has been met, such that for some constant  and sufficiently 

large , we have . If we divide both sides by , we find , 

and iterating this  times gives us  and , assuming all 

values iterated over are sufficiently large. We substitute this into equation (2.2), and 

add  to cover the terms not covered by our assumption that  is sufficiently large:  

 

Because  is a constant, we find an asymptotic (upper) bound of . This means 

that, since , the complexity at the internal nodes of the tree dominates 

the complexity at the leaves. It follows that , which 

proves case (3) and completes our proof of the Master Theorem. 

 

Because the summation in (2.2) is not defined for non-integer values of , this 

proof only considers the cases where  is an exact power of . However, as the Master 

Theorem provides asymptotic upper bounds, floor and ceiling functions can be used 

to extend this proof, so that it includes all other cases as well [6].  
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Chapter 3 

The Strassen Algorithm 

 

In 1969, mathematician Volker Strassen published a paper [7] in which he provided 

an algorithm for matrix multiplication of sub-cubic complexity, thus proving that 

naive matrix multiplication, having a complexity of , is not optimal. The basis 

of the algorithm presented in this paper is a divide-and-conquer approach for matrix 

multiplication, where the two input matrices are split into submatrices, and the 

output matrix is constructed by recursively calculating and combining products of 

these submatrices. The most elementary way of doing this has a complexity of , 

which is no better than the iterative approach. Strassen, however, managed to devise 

a method to construct the output matrix that requires multiplying fewer pairs of 

submatrices, thus reducing the number of recursive calls and lowering the complexity 

of the algorithm. In this chapter, we will first expand on the “basic” divide-and-

conquer approach for matrix multiplication, after which we will present Strassen’s 

alternative, and determine and compare their respective complexities.  

 

3.1    Divide-and-conquer approach 

To define a divide-and-conquer algorithm for matrix multiplication, we need to break 

down the problem into subproblems, i.e. smaller instances of matrix multiplication, 

and construct the output matrix using the solutions to these subproblems. This can 

be done through a process called block-matrix multiplication.  

 

3.1.1    Block-matrix multiplication 

A block-matrix is a representation of a matrix that has been partitioned into 

submatrices, or “blocks”. We can interpret the block-matrix representation of a matrix 

by imagining a grid being projected on the matrix, dividing it into blocks. These 

blocks, and their associated submatrices, can be referred to using the indices of the 

rows and columns in the grid. For a matrix , and a block-matrix representation of  

consisting of  rows and  columns of blocks, we write 
 
 

 

where  refers to the submatrix corresponding to the block in the th row and th 

column of the block-matrix.  

 

Definition 3.1. Block-matrix multiplication 

Let  and  be matrices with block-matrix representations of respective sizes  and 

. If these block-matrices are compatible for multiplication, their product  is 

defined as follows: 

  

with  for  and . 
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To multiply block-matrices, we use products of their submatrices. Therefore, for two 

block-matrices to be compatible for multiplication, all corresponding submatrices need 

to be compatible for multiplication as well.  

 

Theorem 3.1. Let  and  be matrices with block-matrix representations compatible 

for multiplication. The product of these block-matrices is in turn a block-matrix, 

representing the product . 

Proof. For the purpose of this thesis, it is only necessary to prove this for the case of 

two square matrices of even dimension, partitioned into four blocks of equal size. Let 

 and  be matrices, both of dimension , with elements  and  for 

. Partition both  and  into four submatrices of size , and let 

 and  (3.1) 

be the block-matrix representations for  and  corresponding to this partition. 

Without loss of generality, we can formalize the correspondence between  and its 

block-matrix representation using the equality  (3.2), where  

and . For  and , each of the  unique combinations 

of  represents an element in the block-matrix, and maps to a distinct pair , 

with , thus representing the elements of .  

 

We will prove that the product  of the block-matrices representing  and  (3.1) is 

in turn a block-matrix representation of the product of  and , by showing that the 

equality (3.2) holds for the elements in  and  as well. By the definition of block-

matrix multiplication, we find the product  of the block-matrix representations for 

 and  to be equal to: 

 .

Given  and , the element  in  is equal to 

.

By the definition of matrix multiplication, we have 

,

and using equality (3.2), we find 

,                                             

with  and .  
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3.1.2    Naive algorithm 

Because block-matrix multiplication allows us to find the product of two matrices by 

using the products of smaller submatrices, we can now define a divide-and-conquer 

algorithm for the multiplication of two  matrices: 

 

Algorithm 2. D&Q Matrix Multiplication [5] 
 1.  MatrixMultiplicationDAQ( , ) 

 2.    ← dim( ) 

 3.    ← new  matrix 

 4.      

 5.     ←  

 6.       

 7.    partition and  into four quadrants, as in (3.1) 

 8.    ← MatrixMultiplicationDAQ( , ) 

       + MatrixMultiplicationDAQ( , ) 

 9.    ← MatrixMultiplicationDAQ( , ) 

       + MatrixMultiplicationDAQ( , ) 

10.    ← MatrixMultiplicationDAQ( , ) 

       + MatrixMultiplicationDAQ( , ) 

11.    ← MatrixMultiplicationDAQ( , ) 

       + MatrixMultiplicationDAQ( , ) 

12.   ←  

12.     

The base case for this algorithm is the multiplication of two  matrices, in which 

case the algorithm returns a  matrix containing the product of the two elements 

in the input matrices. If the input matrices are of a higher dimension, the algorithm 

divides them into four equally sized quadrants, and uses products of these quadrants, 

which it finds recursively, to construct and combine the quadrants of the output 

matrix.  

 

Because this is a divide-and-conquer algorithm, its complexity function is of the 

familiar form , for an algorithm that divides the problem in  

subproblems of size , with  the complexity of splitting and recombining the 

problem. In the algorithm described above, each of the four quadrants in the output 

matrix is found by summing the results of two recursive calls on submatrices of 

dimension , thus dividing the problem of matrix multiplication into 8 

subproblems of half the size of the input problem, and we find  and . 

Partitioning the input matrices, summing two products of submatrices, and 

constructing the output matrix all require iterating over the elements in the associated 

matrices, therefore having a complexity of . These actions are performed a 

constant number of times, regardless of the size of the input matrices; two matrices 

are divided into submatrices, four matrix additions are used to find the quadrants of 

the output matrix, and the output matrix is constructed only once. Therefore, the 

complexity of splitting and recombining the problem is equal to , 

and we find a complexity function of . 
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Note that for input matrices of dimensions not equal to a power of two, we can simply 

add rows and columns containing only zeros to these matrices, until it is possible to 

divide them into four equally sized submatrices. This “padding” of the  input matrices 

allows us to use the above algorithm on inputs of non-square or uneven dimensions 

as well, whose product can be found after stripping the output matrix of the rows and 

columns padded with zeros. 

 

3.2    Strassen’s algorithm 

Rather surprisingly, Strassen managed to reduce the number of recursive calls needed 

to construct the output matrix. In his paper, Strassen showed that the product of two 

 matrices can be found using 7 multiplications and 18 addition or subtractions, 

as opposed to the 8 multiplication and 4 additions used when multiplying the matrices 

in the “traditional” manner. Strassen realized that this method can be used to find 

the product of two  block-matrices as well, as block-matrix multiplication is 

equivalent to regular matrix multiplication, with the elements in the matrices 

representing the blocks in the block-matrices. Given matrices  and , with block-

matrix representations of the form described in (3.1), Strassen defined the following 

matrices: 

 

 

He then used these matrices to construct a block-matrix representation for the product 

of  and . For , Strassen found a corresponding block-matrix representation                    

 , where 

 

Strassen modified the naive divide-and-conquer algorithm for matrix multiplication, 

described in section 3.1.2, by replacing the 8 multiplications and 4 additions used to 

construct the output matrix with the factoring scheme above. This resulted in the 

following algorithm for matrix multiplication, which later became known as the 

Strassen algorithm: 
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Algorithm 3. The Strassen Algorithm 
 1.  Strassen( , ) 

 2.    ← dim( ) 

 3.    ← new  matrix 

 4.      

 5.     ←  

 6.       

 7.    partition and  into four quadrants, as in(3.1) 

 8.    ← Strassen( , ) 

 9.    ← Strassen( , ) 

10.    ← Strassen( , ) 

11.    ← Strassen( , ) 

12.    ← Strassen( , ) 

13.    ← Strassen( , ) 

14.    ← Strassen( , ) 

15.   ←  

16.   ← 

17.   ← 

18.   ←  

19.   ←  

20.     

 

This algorithm finds the product of two matrices using 7 recursive calls on submatrices 

of dimension , along with 18 matrix additions or subtractions. This means 

that for its complexity function, likewise of the form , we find  

and , since the algorithm divides the problem of matrix multiplication into only 

7 subproblems of size . The 18 matrix additions and subtractions required by the 

Strassen algorithm, compared to the 4 matrix additions required by the naive 

algorithm, do result in a higher complexity for splitting and recombining the problem. 

However, as the number of matrix additions and subtractions required by the 

algorithms is not affected by the size of the inputs, these complexities differ by a 

constant factor , and we therefore find . Thus, the 

complexity function for the Strassen algorithm is equal to . 

 

3.3    Complexity 

As both algorithms described above are divide-and-conquer algorithms, we can use 

the Master Theorem to determine their complexities. For the naive divide-and-

conquer algorithm, we found a complexity function of . Since  

, this corresponds to the first case of the Master 

Theorem,. We therefore find a complexity of , equal to complexity we 

found for the naive, iterative algorithm.  

 

The Strassen algorithm manages to improve on this complexity, by finding the 

product of two matrices using only 7 recursive calls, instead of 8 . We found a 

complexity function for the Strassen algorithm equal to , and since 

 for , this corresponds to the first case of the 

Master Theorem as well. However, because of the reduced number of recursive calls, 

we find a sub-cubic complexity for the Strassen algorithm, equal to .
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3.4    Practical considerations 

Keep in mind that improving on an algorithm’s complexity does not always  imply an 

improvement of practical performance, since high constant factors could result in  

implementations of this “improved” algorithm only reducing runtimes for problems of 

sizes beyond those encountered in practice. Therefore, when evaluating the practical 

uses of the Strassen algorithm, it is important that, besides asymptotic complexity, 

we also consider the impact of the 18 matrix additions and subtractions performed at 

each recursive calls on the runtime of the algorithm.  

 

Asymptotically, the complexity of matrix addition and subtraction is dwarfed by the 

complexity of the recursive calls on the Strassen algorithm, meaning that as the 

dimension of input matrices tends to infinity, the impact of these operations on the 

algorithm’s performance will be negligible. However, for input matrices of sufficiently 

low dimensions, the decrease in complexity does not compensate for the additional 

arithmetic operations required by the 18 matrix additions and subtractions performed 

at these calls. This becomes apparent when we consider two input matrices of 

dimension ; the arithmetic operations performed at the very 

initial call on the Strassen algorithm already surpasses the naive algorithm’s total of 

arithmetic operations, with subsequent recursive calls only 

further increasing this disparity. When multiplying matrices of low enough 

dimensions, this can result in a significant difference in efficiency in favor of naive 

matrix multiplication. Furthermore, since the algorithm recurses down to submatrices 

of dimension 1, these inefficient calls on low dimension inputs will inevitably occur 

for higher dimension inputs as well. Because the number of recursive calls is increased 

sevenfold at each level of recursion, the number of ineff icient calls grows rapidly with 

the dimension of the input matrices, raising the point at which the Strassen algorithm 

outperforms naive matrix multiplication.   

 

3.4.1    Hybrid variant 

To make effective use of the lower complexity of the Strassen algorithm, it is common 

for practical implementations to use a “hybrid” of the two algorithms. Since there 

exist some threshold for which the naive approach is likely to be faster than the 

Strassen algorithm, we can replace the inefficient recursive calls, on submatrices of 

dimensions lower than this threshold, with calls on the naive algorithm. As mentioned 

in the previous section, the number of inefficient calls on the Strassen algorithm grows 

rapidly with the dimension of the input matrices, which means that a relatively small 

increase of the efficiency of these calls could result in a substantial improvement of 

the overall performance of the Strassen algorithm. By stopping recursion early and 

switching to naive matrix multiplication, we essentially extend the base-case of the 

Strassen algorithm to include all inputs of dimensions lower than some , and for its 

execution run the naive algorithm on these inputs. Note that, therefore, the traditional 

Strassen approach and this variant differ solely in the definitions of their base-cases, 

and we can thus define the algorithm for this hybrid variant by altering only lines 4 

and 5 in Algorithm 3. Using the multiplication operator to represent naive matrix 

multiplication, we this results in the following algorithm: 
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Algorithm 4. Hybrid variant 
 1.  StrassenHV( , ) 

 2.    ← dim( ) 

 3.    ← new  matrix 

 4.      

 5.     ←  

 6.       

 7.    partition and  into four quadrants, as in (3.1) 

 8.    ← StrassenHV( , ) 

 9.    ← StrassenHV( , ) 

10.    ← StrassenHV( , ) 

11.    ← StrassenHV( , ) 

12.    ← StrassenHV( , ) 

13.    ← StrassenHV( , ) 

14.    ← StrassenHV( , ) 

15.   ←  

16.   ← 

17.   ← 

18.   ←  

19.   ←  

20.     
 

Using this hybrid variant, we are able to reduce the recursion overhead of the Strassen 

algorithm, which is very likely to result in an improvement of runtime. The extent of 

this potential improvement, however, depends heavily on our choice of . For high 

values of , the algorithm might resort to naive matrix multiplication too early, not 

taking full advantage of the Strassen algorithm’s lower complexity. For low values of 

, on the other hand, the algorithm might use recursive calls on inputs for which 

naive matrix multiplication is faster, resulting in suboptimal runtimes. Thus, using 

an appropriate value of  is essential for maximizing the improvement of runtime 

over the traditional Strassen algorithm. Note that, as we are concerned with runtime, 

appropriate values of  can differ heavily between machines and implementations, 

and optimal values have to be determined empirically. 

 

3.4.2    Cross-over point 

A suitable value of  would be the so called cross-over point. This is the input 

dimension , for which performing one iteration of the Strassen algorithm, and 

subsequently using the naive algorithm for multiplying the submatrices, results in 

runtimes that are on par with those for naive matrix multiplication of  matrices. 

At this point, the improvement on complexity, compared to the naive algorithm, 

makes up for the additional matrix additions and subtractions used for one iteration 

of the Strassen algorithm. Due to their difference in complexity, the runtimes for 

naive matrix multiplication grow at a faster rate than those for the Strassen approach. 

Therefore, beyond this cross-over point, performing one iteration of the Strassen 

algorithm before applying naive matrix multiplication will result in lower runtimes 

compared to exclusively using the naive algorithm. This, in turn, means that if the 

dimension of the submatrices resulting from one iteration of the Strassen algorithm is 

again greater than this , another recursive iteration would improve on runtime even 

further. Thus, we want to perform recursive iterations of the Strassen algorithm until 

the dimensions of the resulting submatrices fall below this point, after which we switch 

to the naive algorithm instead, which makes the cross-over point an ideal candidate 

for the value of .  
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Chapter 4 

Experiment 

 

For the remainder of this thesis, we conduct an experiment to determine how the 

difference in complexity between Strassen’s approach and the naive algorithm affects 

practical performance of computational matrix multiplication. We do so by 

implementing both algorithms, and comparing their respective runtimes for inputs of 

varying sizes. To illustrate the impact on performance brought on by the additional 

matrix additions and subtractions needed for the Strassen algorithm, we first compare 

runtimes for the variant of the Strassen algorithm described in section 3.4.1, using 

multiple values of . Additionally, this provides us with a general idea of the cross-

over point, which we can subsequently use for our comparison between naive matrix 

multiplication and the Strassen approach. In this chapter, we will first  expand on our 

implementations of the algorithms, and specify the parameters of the experiment.  

 

4.1    Implementations 

For our experiment, we used  to implement and test the matrix multiplication 

algorithms. We first implemented an object to represent our test matrices, which we 

defined using a jagged array, whose size corresponds to the dimensions of the matrix 

it represents. We can construct an object either representing a matrix containing only 

zeroes, or a randomly generated matrix. After construction, the values for individual 

elements can be set using row and column indices, or a jagged array can be used to 

set the entirety of the elements at once. We added methods for the partitioning of a 

matrix into equally sized quadrants, which returns objects representing these four 

submatrices, and made it possible to set the elements of a matrix object using such a 

block-matrix representation. We included definitions for the addition and subtraction 

operators, using conventional iterative methods for matrix addition and subtraction, 

and wrote an implementation of naive matrix multiplication for the multiplication 

operator.   

 

By using this object to represent our test matrices, we were able to write an 

implementation for the Strassen algorithm that closely resembles the pseudo-code we 

presented in Algorithms 3 and 4. Note that for , the hybrid variant of the 

Strassen algorithm is equivalent to the traditional algorithm, which allows us to use 

a single implementation of Algorithm 4 for testing both variants.  

 

Exact descriptions of the code used for our implementations can be found at 
https://git.science.uu.nl/r.j.bressers/thesismatrixmultiplication . 

 

4.2    Parameters 

The first part of our experiment consists of a comparison between the performances 

of naive matrix multiplication, the traditional Strassen approach, and the hybrid  

variant of the Strassen algorithm, on input matrices of dimensions 32, 64, 96, 128 and 

160. For the hybrid variant, we set  to be equal to the dimension of the test matrices, 

to narrow down the cross-over point for our particular implementation and machine.  

https://git.science.uu.nl/r.j.bressers/thesismatrixmultiplication
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In the second part of our experiment, we test naive matrix multiplication and the 

Strassen algorithm on a greater range of input dimension for a more thorough 

comparison of practical performance, with input matrices of dimensions 64, 128, 256, 

512, 1024 and 2048. We use the results found in the first part of the experiment to 

set the value of , taking the dimension for which the difference in performance 

between the naive algorithm and the hybrid variant is minimal. If any of our intended 

test dimensions happens to be smaller than the value found for , we will not include 

it in our experiment since the Strassen implementation will be equivalent to the naive 

algorithm for input dimensions lower than . 

 

We measure the performance of the algorithms by recording the runtimes of their 

corresponding implementations. In our first experiment, we run the implementations 

on 150 pairs of input matrices of size , for each test dimension  mentioned above, 

and average over their respective runtimes. For our second experiment, we use 

matrices of much greater dimension. As dimension grows, differences in complexity 

become more evident, which reduces the need for a large test set. Since runtimes  can 

drastically increase with dimension, we have therefore chosen to use test sets of sizes 

150, 100, 75, 50 and 25, respectively for the test dimensions in our second experiment. 

To ensure a fair comparison, we use the same set of test matrices for all 

implementations, consisting of randomly generated matrices with elements taking 

integer values ranging between 1 and 10.000. 
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Chapter 5 

Results 

 

In this chapter, we will present the results of our experiment and give an analysis of  

these results.  

 

5.1    Experiment I 

The table below shows the results of the first part of our experiment. Each column is 

headed by the dimension of the tested input matrices, under which the average 

runtimes on these inputs is stated. The furthermost left column of the table specifies 

the implementation for which we found the given averages. Because some of the 

runtimes were too low to accurately record, we did not include them in this table. 

 

Table 5.1. Results of experiment I 

   Average runtime (ms) 

Algorithm 

Naive    

 
      

Strassen -       

 -       

 

As we can clearly see in Table 5.1, the traditional Strassen algorithm performs orders 

of magnitude worse than the naive and the hybrid algorithms on matrices of these 

sizes. To determine the point after which the Strassen algorithm outperforms naive 

matrix multiplication, we can define functions for the approximate runtimes of our 

implementations. Using the averages we found, we can determine coefficients for the 

asymptotic complexities of the algorithms, as well as coefficients for the additional 

quadratic and constant factors impacting runtime. These coefficients allow us to  

formulate for each of the algorithms a function, that, given a dimension , returns the 

expected runtime on our machine for inputs of this dimension. This resulted in the 

following plot for the expected runtimes of the algorithms: 

 

 

 

  

 

 

 

 

Figure 5.1 [8]. Expected runtimes for the traditional Strassen algorithm (blue),  

naive matrix multiplication (green), and the hybrid variant using  (red).   
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The functions we found for the Strassen algorithm and naive matrix multiplication 

intersected at a dimension of around , meaning that the traditional Strassen 

only outperforms naive matrix multiplication after a point way beyond practical use. 

The hybrid variant, however, does show improvement over the naive algorithm, and 

we can use its function to determine the cross-over point for our machine. The point 

at which this function and the function for the naive algorithm intersect, is the point 

where the hybrid variant, using , becomes faster than the naive algorithm. We 

found the functions intersecting between dimensions  and , meaning that 

from  onward, the hybrid variant outperforms naive matrix multiplication on 

the machine used for this experiment. In our next experiment, we will use this cross-

over point to compare naive matrix multiplication to a more practical implementation 

of the Strassen algorithm, i.e. the hybrid variant with .  

 

5.2    Experiment II 

The results for our seconds experiment are presented in the table below, in the same 

manner as we did in Table 5.1. As we found a cross-over point greater than 64, we 

did not test the algorithms on matrices of that dimension. 

 

Table 5.2. Results of experiment II 

   Average runtime (ms) 

Algorithm 

Naive    

 
      

Strassen -       

 

Comparing the average runtimes in Table 5.2, we can see that as the matrices grow 

larger, the difference in complexity between the algorithms becomes more and more 

noticeable. Not only is the Strassen variant faster for every tested input dimension, 

the relative improvement over naive matrix multiplication grows with the sizes of the 

input matrices. This implies that, for large matrices, the difference in complexity has 

a significant impact on runtime and practicality. If we plot the runtime functions 

corresponding to these results, the impact of complexity becomes even more apparent:  

 

 

 

 

 

 

 

 

             

      Figure 5.2 [9]. Expected runtimes for the naive algorithm   

       (green) and the hybrid variant using (red).  
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Chapter 6 

Conclusion 

 

In this chapter, we will discuss the results of our experiment and reflect on possible 

limitations. To conclude this thesis, we will briefly discuss how our findings might 

apply to problems other than matrix multiplication.  

 

6.1    Discussion 

While Strassen’s innovative method for matrix multiplication does improve on the 

asymptotic complexity of naive matrix multiplication, our results show that it is 

limited in its practicality, only improving on performance for matrices beyond 

practical use. To benefit from its lower complexity, practical implementations of the 

Strassen algorithm stop recursion early, resorting to the naive algorithm for 

multiplying the submatrices instead. Our results show that using this hybrid variant, 

the small difference in complexity between the Strassen algorithm and the naive 

approach can provide significant improvements in runtime.  

 

However, performance is heavily dependent on the choice of the switching point , 

and as optimal values for this point are highly system dependent, they to be 

determined empirically for distinct machines and implementations. Additional 

considerations regarding memory have to be made as well, due to the recursive nature 

of the Strassen algorithm. Constructing matrices at each point of recursion can result 

in substantial overhead, and the use of inefficient data structures can subsequently 

lead to significant losses in performance. Also, because we used only square matrices 

in our experiment, largely of dimensions , the padding required for the Strassen 

algorithm was minimized. When multiplying matrices of arbitrary sizes, efficient 

padding methods might be necessary to achieve competitive runtimes.  Due to these 

practical concerns, the Strassen algorithm might not always be the preferred choice 

when deciding on an implementation of matrix multiplication, despite its lower 

complexity.  

 

On the other hand, by dividing the problem into subproblems, Strassen’s approach 

allows for parallel implementations that compute the products of submatrices 

concurrently. By using multiple processor cores simultaneously, this is likely to result 

in significantly reduced runtimes. Unfortunately, the implementation we used for our 

experiment does not take advantage of this, and it might be worthwhile to explore 

the possibilities of multi-threaded implementations in future works.  

 

6.2    Conclusion 

Analyzing and comparing algorithms proves to be a complicated matter. Asymptotic 

analysis and the big-O notation provide a universal notion of complexity, making it 

easier to determine and compare the complexities of algorithms. However, this is not 

a definitive measure, as there are often other factors affecting an algorithm’s practical 

performance. This thesis illustrates this, by examining the Strassen algorithm for 

matrix multiplication, and comparing it to naive matrix multiplication. While 

Strassen’s method improves on the theoretical complexity of matrix multiplication, 

implementations need to account for a number of practical considerations to benefit 

from this reduced complexity.  
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