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i

Abstract

It is shown that for an arbitrary position of a Hive game where both players have the same set of N pieces
it is PSPACE-hard to determine whether one of the players has a winning strategy. The proof is done by
reducing the known PSPACE-complete set of true quantified boolean formulas to a game concerning these
formulas, then to the game generalised geography, then to a version of that game with the restriction of
having only nodes with maximum degree 3, and finally to generalised Hive. This thesis includes a short
introduction to the subject of computational complexity.
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1

I really think that Hive represents a major achievement in gaming. If we look at the pinnacle of
games in its Genre, it would be fair to say that nothing has come close to games like Chess and
Go for Hundreds of years.

– Neil Thompson, board game expert with over 500 reviews on games on boardgamegeek.com

1 Introduction

The ancient games of chess and GO have been the subject of countless academic studies. In the early eighties,
generalised versions of these games were proved to be PSPACE-hard (GO) [5] and PSPACE-complete (chess)
[11]. Since then, the complexity of numerous other games has been determined. Recent examples of PSPACE-
complete problems are generalisations of the video game Lemmings [12] and the ancient Hawaiian board game
Konane [4]. This thesis presents a proof that the problem of determining whether one of the players has a
winning strategy in an arbitrary N-Hive position is PSPACE-hard. Hive is a popular tabletop game, designed
by John Yianni and published by Gen42 Games in 2001. Whilst containing only 22 pieces and having a small
set of rules, it is a very complex and abstract game according to board game enthusiasts. However, Hive has
a finite number of possible game positions. Hence it is in principle possible to construct a large look-up table
which unveils a winning strategy. In the interest of investigating the asymptotic computational complexity
it is necessary to generalise the game. With board games, this is usually done by generalising the board to
an NxN board. Hive does not have a board; the playing field is determined by the placement of pieces. We
generalise Hive to N-Hive by stating that each player has N pieces to play with, rather than 11. We make
no further adjustments to the rules. To preserve the spirit of the game, we demand that both players have
the same set of pieces. From here on we use the word Hive for N-Hive, and when the regular game is meant
we state this.

In this chapter we will give an introduction to the field of computational complexity theory, a general
description of the proof strategy, the rules of regular Hive and some strategic concepts for constructing the
proof. The next chapter contains the actual proof that Hive is PSPACE-hard. Finally, this thesis is concluded
by recommendations for future research.

1.1 Introduction

In complexity theory, the central question is:

What makes some problems computationally hard and others easy?

Despite over 40 years of intensive research, we still do not know the answer to this question. However,
researchers did develop a system to distinguish between computational problems on the matter of difficulty.
This elegent scheme for classifying problems according to their computational difficulty is one of the biggest
achievements in complexity theory [9, p. 2]. Some of the more important classes are polynomial time (P),
nondeterministic polynomial time (NP), exponential time (EXPTIME), polynomial space (PSPACE) and
nondeterministic polynomial space (NPSPACE). The class P, for instance, contains all decision problems
that can be solved in polynomial time. In this context, solved means that there exists an algorithm that can
determine the solution of every instance of the problem in polynomial time. Polynomial-time solvability is re-
garded the standard for being considered “feasibly” or “efficiently” solvable (known as the Cobham-Edmonds
thesis) [1, 2]. One of the most important unanswered questions in mathematics and theoretical computer
science is whether all problems in NP are also in P, also known as the P versus NP problem. For space
complexity, this question has been answered. In 1970, Walter J. Savitch showed that every nondeterministic
algorithm that runs in f(n) space can be converted into a deterministic algorithm that runs in maximum
f2(n) space [7]. The square of a polynomial is still a polynomial. Therefore, all problems in NPSPACE are
also in PSPACE.

So far, we know that the complexity classes mentioned before can be placed in the following order:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME,

It could be that one or more of these inclusions are actually equalities, as it is the case with PSPACE and
NPSPACE. A simulation like the one from Savitch’s theorem would be required to prove the merging of

https://boardgamegeek.com/
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two classes. However, most researchers think that these inclusions are proper. A consequence of the time
hierarchy theorem [3], which is beyond the scope of this thesis, is the fact that P ⊂ EXPTIME. Hence, at
least one of these inclusions has to be proper. Up until now we are not able to prove which.

A complete problem is seen as one of the most difficult problems in its class. It is most difficult because
the other problems in the class can be reduced to it. For a problem to be PSPACE-complete, it has to be
both PSPACE-hard and in PSPACE. A problem is PSPACE-hard if every problem in PSPACE is polynomial
time reducible to it. As such, it is sufficient to show that a PSPACE-complete problem is polynomial time
reducible to it. The reduction has to be polynomial time and not polynomial space because the reduction
must be easy relative to the complexity of the problems in the class. If the reduction is not easy to compute,
an easy solution to the problem would not necessarily provide an easy solution to the problems reducing to
it [9, p. 337-338].

1.2 General description of proof strategy

We will prove that Hive is PSPACE-hard by giving a reduction from a PSPACE-complete set, true quantified
boolean formulas (TQBF), to the problem of deciding whether one of the players has a winning strategy in
an arbitrary N-Hive position. The proof proceeds in a similar manner as the proofs for other PSPACE-hard
problems, namely via a series of steps. We use the GO paper as a blueprint [5]. First we reduce TQBF to
the TQBF game, then to a game called generalised geography (GG), then to a version with bipartite graphs
with maximum degree 3, and finally to Hive.

In the final reduction to Hive we make repeated use of the One Hive rule to force moves. The simulation
is designed in such a way that the player whose turn it is has only one reasonable move, starting with the
first Quantifier gadget and maintaining the flow throughout the whole formula.

1.3 Rules of regular Hive

The game is played on a flat surface by two players, Black and White. Both players have 11 hex-shaped
pieces at their disposal: 3 Ants, 3 Spiders, 2 Beetles, 2 Grasshoppers and a Queen Bee. Just like chess pieces,
they all behave in their own way. The goal of the game is to surround the opponent’s Queen Bee. During a
turn, a player can either place a new piece on the table or move one that is already in play. Turns alternate
between the two players. If a player is not able to place or move a piece, he or she passes. The game ends
when one Queen Bee is surrounded by other pieces. The player whose Queen is surrounded loses the game,
unless the piece that surrounded it also completes the surrounding of the other player’s Queen Bee. In that
case the game is drawn. In the proof we only consider positions where all pieces are on the table. Hence, the
rules for placing pieces are left out here. First, the pieces and their movement are discussed. Then, the One
Hive rule is explained and thereafter the Freedom To Move rule.

1.3.1 Queen Bee

The Queen Bee moves one space per turn. See figure 1 for an example.

Figure 1: The white Queen can move to any one of the four green spaces
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1.3.2 Beetle

Like the Queen Bee, the Beetle moves one space per turn. Additionally, the Beetle can, unlike any other
piece, move on top of another piece. A piece with a Beetle on top of it is unable to move. Once on top of
the Hive, the Beetle can move from tile to tile or drop off again. See figure 2 for an example.

Figure 2: The white Beetle can move to one of the two green spaces, or climb on top of the black Ant

1.3.3 Ant

In a turn, the Ant can move to any place it can get to, whilst taking into account the One Hive rule and the
Freedom To Move rule (as described in 1.3.6 and 1.3.7). See figure 3 for an example.

Figure 3: The white Ant can move to any one of the green spaces this turn

1.3.4 Spider

The Spider moves exactly three spaces per turn. During this movement it cannot go back and forth between
two spaces. See figure 4 for an example.

1.3.5 Grasshopper

The Grasshopper moves in a jumping manner. It starts its move by jumping on top of a piece that it is
adjacent to, and keeps moving in the same direction until it comes off the Hive again. This is where the
Grasshopper lands, and where it finishes its move. For an example see figure 5.
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Figure 4: The white Spider can move to one of the four green spaces marked with a 3. It is not allowed to
start its movement by going to the space on the right marked with a 2 and move on from there, as the Spider
would lose touch with the Hive during this movement

Figure 5: The white Grasshopper can jump to one of the two green spaces

1.3.6 One Hive rule

The pieces in play must at all times be linked to each other. They can be seen to form one (big) hive. Even
during a turn, the Hive may not be broken in two and no piece may be left stranded. See figure 6 and 7 for
two examples of a piece that is not allowed to move because of the One Hive rule.

1.3.7 Freedom To Move

The pieces move in a sliding fashion. So, if a piece is (almost) surrounded and is not able to physically slide
out of its spot, it is not allowed to move. Recall that the pieces are hex-shaped. It is not just the word
“Queen” written on a hex-shaped location. The entire hex is one piece, and that is why it is stuck and unable
to move. The Grasshopper and the Beetle form exceptions to the Freedom To Move rule, as they are able to
jump over and climb on top of the Hive respectively. See figure 8 for some examples.
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Figure 6: The white Spider is not allowed to move, because that would split the Hive in two

Figure 7: The white Beetle is not allowed to move to the space marked with an X, because that would leave
the black Spider stranded during the turn

Figure 8: The black Queen is not allowed to move, as it cannot physically slide out of its space. The same
goes for the white Queen. The white Ant is not allowed to move to the red space, as it cannot physically
slide into that space. The pink space is a suicide hex, as the white Spider would trap its own Queen there.
The blue space is an indirect suicide hex, since occupying it would free up the dangerous black ant
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1.4 Strategic concepts

In this subsection the strategic concepts used for the gadgets are discussed. By strategic concepts we thus
mean structures that are useful in the proof, not strategic concepts while playing the game. Nevertheless,
some can be used in a regular game. Examples are the trapping (section 1.4.3) or freeing (section 1.4.4) of
pieces using the One Hive rule.

1.4.1 Win threats

The most obvious strategic concept is that of a win threat. A piece threatening a win-in-one must be stopped.
See figure 9 for an example of a win threat being countered through trapping the dangerous piece by making
use of the One Hive rule.

1.4.2 Suicide hexes

Restricting the movement of a piece by surrounding it by suicide hexes is a useful strategy in constructing
the proof. A suicide hex is a space where a piece would complete the surrounding of a Queen of the same
colour. It is especially easy to implement with a piece that has the characteristic of only having a few spaces
it can move to, and those spaces also being far apart. Such is the case with the Spider and the Grasshopper.
See figure 8 for an example with a Spider.

1.4.3 Trap pieces using One Hive rule

To keep the flow of the game going, it is convenient to trap an incoming piece by moving another piece away.
See figure 9 for an example of this. The Grasshopper that is being trapped has just moved into its space.

Figure 9: White’s threat here is the win-in-one by the Grasshopper (moving it to the purple space would
complete the surrounding of the black Queen). Black can trap this white Grasshopper by moving his own
Grasshopper away. Then the white Grasshopper is the only link between the left and right-hand side of the
Hive, and not allowed to move anymore. Furthermore, even if it was still allowed to move, it would need the
black Grasshopper to be in its old spot to jump over it in order to get to the pink space.

1.4.4 Free a piece

Since in the proof all pieces are locked down except for the first one, the moving of that piece should free the
next one and so on. The freeing of pieces is usually done by exploiting the One Hive rule. See figure 10 for
an example.
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Figure 10: Moving the black Spider frees up the white Spider. Moving that piece then frees up the black
Grasshopper. If all other pieces were to be locked, it is clear that this leads to a forced flow.

1.4.5 Beetle tower

The Beetle is the only piece that can climb on top of the Hive, even on top of another Beetle that is already
on top of the Hive. In fact, there is no limitation on how high the Beetle can climb. It is thus possible to
build a Beetle tower as high as one wishes, with another piece on the bottom if desired.

1.4.6 Dead pieces

In our proof, it will be useful to construct positions containing some pieces that either cannot move (by the
game rules) or are not rational to move (because the piece’s owner would lose the game soon after moving
it). We call these dead pieces. There are multiple ways to construct a dead piece, all with their own benefits
and disadvantages. The list below is not exhaustive, but these are the dead pieces we use in the proof.

1. A Spider or Ant that is (almost) completely surrounded. It must keep being not able to slide out of its
spot throughout the course of the whole simulation. The colour of this dead piece is irrelevant.

2. A white Beetle on top of 6 black Beetles, with a white Queen on the bottom. This dead piece (or rather,
tower of pieces) is useful in places where the top Beetle cannot affect the game in any meaningful way
within one space reach. Once the white Beetle moves, the black Beetle underneath can immediately
climb on top of it and block it permanently. As the white Beetle’s move did not accomplish anything,
black can now in at most 5 moves surround the helpless white Queen underneath. In our proof con-
struction, we must be especially careful with this type of dead piece in areas where there is only one
space between the dead piece and another part of the Hive that should not be connected directly to
this part. The top Beetle making this direct connection is problematic for our proof if it frees up a
dangerous piece (which can complete the surrounding of an opponent’s Queen in one or two steps) of
the same colour, whilst not freeing up a dangerous piece of the other colour, as the punishment for
moving the top Beetle then comes a couple of turns later and the freeing of such a dangerous piece can
be materialised the next turn.
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3. A white Beetle on top of a Black ant. This type of dead piece can be a solution in areas where the
previous one cannot be used. Moving the Beetle frees up the black Ant underneath. The Ant should
then be able to reach a space where it can complete the surrounding of a white Queen.

Naturally, the colours in type 2 and 3 can be reversed to obtain a dead piece of opposite colour. In the
figures, dead pieces of type 1 are called “DEAD inside”, and dead pieces of type 2 and 3 are called “DEAD
edge”.

1.4.7 Chain of pieces

Any number of pieces can be immobilised by placing them in a long chain with a dead piece type 2 at the end.
The first piece of the chain is attached to the Hive at a spot where it does not interfere with the structure.
None of the pieces in the chain is allowed to move, as this would leave the rest of the chain unattached to
the Hive.



9

2 Proof

2.1 TQBF

The problem we start the proof off with concerns quantified Boolean formulas, specifically the set TQBF of
true fully quantified Boolean formulas. When each variable in a formula is in the scope of a quantifier, the
formula is said to be fully quantified. A fully quantified formula is always either true or false. Note that the
order of the quantifiers is important. A formula is in conjunctive normal form if it is a conjunction of clauses,
where each clause is a disjunction of literals. In this context a literal is either a variable or the negation of a
variable.

Definition 1. The set QBF of fully quantified Boolean formulas is {Q1v1...Qnvn · F (v1, ..., vn) | Qi ∈
{∀,∃}, where vi is a Boolean variable and F is a Boolean formula in conjunctive normal form containing the
variables v1, ..., vn}.

An example of a formula F ∈ QBF is ∃v1∀v2∃v3∀v4(v1 ∨ ¬v2 ∨ v3) ∧ (v2 ∨ ¬v4)

Definition 2. TQBF = {〈φ〉 | φ is a true fully quantified Boolean formula} [9, p. 338-339].

Theorem 1. TQBF is PSPACE-complete [10].

2.2 Preliminary reductions

2.2.1 Formula-Game

We now introduce a game in which two players oppose each other in a dispute over a formula. The players
are called the ∃-player and the ∀-player, but they are also addressed as the existential and universal player
respectively. The formula they get presented is of the form Q1v1...Qnvn ·F (v1, ..., vn), where Qi ∈ {∀,∃}, vi is
a Boolean variable and F is a Boolean formula in conjunctive normal form containing the variables v1, ..., vn.
The Q1v1...Qnvn part determines the flow of the game. The first quantifier prescribes which player starts.
If it is an ∃, it is the turn of the existential player, and if it is a ∀, it is the universal player’s turn. The same
holds for later turns. In a turn, the player chooses a value, 0 or 1, for the variable succeeding the quantifier.
After the first quantifier, play proceeds from left to right. Note that it is possible that a player has multiple
turns in a row. The goal of the existential player is to make the formula F (v1, ..., vn) true, and the goal
of the universal player is to make it false. After all the variables v1, ..., vn have been assigned a value, it
is time to fill them in in the formula F . If F is now true, the existential player wins. If it is false, the
universal player wins.

Definition 3. Formula-Game = {〈φ〉 | the ∃-player has a winning strategy in the formula game when
played with φ}.

Theorem 2. Formula-Game is PSPACE-complete.

It is not difficult to see that Formula-Game is PSPACE-complete. It is namely exactly the same as TQBF.

Proof. (Adapted from [9, p. 341-343]) Suppose we have a QBF-formula φ that looks like ∃v1∀v2∃v3∀v4...∃vn ·
F . The formula φ is true if there exists a value for v1 such that for all values of v2 there exists a value for
v3 such that for all values of v4, et cetera, F is true. Similarly, the ∃-player has a winning strategy in the
formula game when played with φ if she can find an assignment for v1 such that for all settings of v2 she can
find an assignment for v3 such that for all settings of v4, and so on, F is true. The same reasoning applies
when the quantifiers are in a different order. Hence, a formula φ ∈ Formula-Game exactly when φ ∈ TQBF
and with that Theorem 2 follows directly from Theorem 1 .

For the purpose of determining the computational complexity of a two player perfect information game,
it is in our opinion favourable to describe the game as the problem of deciding whether one of the players
has a winning strategy in an arbitrary [Game] position. Another option is to describe the game as a set:
[Game] = {x | player 1 has a winning strategy in game [Game] in position x}. However, this definition does
not give weight to the fact that it is in the spirit of such games that both players have equal chances.
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The Formula-Game can be described as the problem of determining whether one of the players has a
winning strategy in an arbitrary QBF-formula. The only difference with the set-based definition of the game
is that in the latter a check whether the formula at hand is a QBF-formula is necessary. This technicality is
left to the reader.

Theorem 3. The problem of determining whether one of the players has a winning strategy in the formula
game played with an arbitrary QBF-formula is PSPACE-complete.

2.2.2 Generalised geography

Geography is a game, usually played by children, in which players take turns naming cities from all over the
world. There are two simple rules: the city you name must start with the same letter as the last city ended
with, and a city can only be named once. If a player cannot come up with a city, or names a city that has
been named before, he or she loses. Play starts by the first player naming a city.

This game can be modeled by a directed graph. Every city has a corresponding node. There is an edge
from one node to another if, according to the game rules, the city corresponding to the second can be named
after the city corresponding to the first. Play starts by the first player marking a node. Players now take
turns marking a node that has an incoming edge coming from the last marked node. If a player marks a
node that has already been marked, he or she loses.

Without the references to cities, and with the additions of it being played by two players and a designated
start node, we have the game we are using in this proof.

Definition 4. Generalised geography (GG) is a two player game played on the nodes of a directed graph.
The first player starts by marking a designated start node. Players then alternate turns by marking a node
that has an incoming edge from the last marked node. If a player marks a node that has been marked before,
he or she loses the game.

Theorem 4. GG is PSPACE-complete. [8]

Proof. (Adapted from [9, p. 343-348]) To prove that GG is PSPACE-complete, it suffices to show that GG
∈ PSPACE, and that it is PSPACE-hard.

To prove that GG ∈ PSPACE, we give a recursive algorithm M that decides GG in polynomial space. If
G0 is the directed graph and s the designated start node, call M(〈G0, s, 0〉), where M(〈G, u, p〉) is defined
below for any given graph G, start node u, and p ∈ {0, 1}. When this returns 0, player 1 wins. When this
returns 1, player 2 wins.

M(〈G, u, p〉)

1. If u has outdegree 0, return p.

2. Else remove u and all edges containing u from G to form Gnew.

3. For all nodes v that had an incoming edge from u in the original G, recursively call M(〈Gnew, v, |p−1|〉).

4. If one of these returns |p − 1|, the other player has a winning strategy in this path, so return |p − 1|.
Else return p.

This algorithm clearly decides GG. The only space required by this algorithm is for the recursion stack. The
depth of the recursion is at most the number of nodes. At each level we add one node to the stack. Hence,
this algorithm even runs in linear space.

To prove that GG is PSPACE-hard, we give a polynomial time reduction from the formula game problem
of theorem 3. Player 1 from the GG game mimics the ∀-player, and player 2 the ∃-player. We construct the
quantifier part of the formula by a chain of diamond gadgets. Each diamond represents the choice that the
universal player, in case of a universal quantifier, or the existential player, in case of an existential quantifier,
has to make. Suppose we have a QBF-formula φ that looks like ∃v1∀v2∃v3∀v4...∃vn · F . The quantifier part
of the formula is now simulated as described in figure 11. Later we will separately consider the case wherein
the quantifier types are not alternating.
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Figure 11: Play starts by player 1 marking the designated start node.
Player 2 has the first choice: marking the left-hand node sets v1 to
true, and marking the right-hand node sets v1 to false. Both these
nodes have one outgoing edge, going to the bottom node of the first
diamond. Player 1 marks this node, after which player 2 marks the first
node of the next diamond. Player 1 can now choose to set v2 to true

by marking the left-hand node, or to false by marking the right-hand
node. And so on.

After play has gone through the last diamond we arrive at node c. In the formula game all variables
have been assigned a value by now, and the game would be finished at this point. If φ is true under these
settings, the existential player wins, and the universal player wins if it is false. To make sure player 2 has a
winning strategy when the existential player would have won, and player 1 has a winning strategy when the
universal player would have won, we need two help gadgets: a clause chooser gadget and a literal chooser
gadget. The universal player has won the formula game if there is a clause in which none of the literals is
true under the chosen assignment. We construct the clause chooser gadget by representing each clause by
a node. Node c has an outgoing edge to each of these nodes. Player 1 can now choose to continue play in
one of the clauses. The existential player has won the game if every clause has at least one literal that is
true under the chosen assignment. To construct the literal chooser gadget, we let every clause node have
outgoing edges to nodes representing the literals the clause contains. Player 2 can now choose which literal
from the clause to continue play with. Every node representing a literal has an outgoing edge to the node
representing the same literal in the diamond structures. If play traversed through this node in the diamond
structure, which means this literal was marked as true, player 1 now has to mark it again and loses. If
it is still unmarked, player 1 can mark it and player 2 has no choice but to mark the marked node on the
bottom of the diamond. So, with this construction player 1 has a winning strategy in the GG game when
the universal player has a winning strategy in the formula game, and player 2 has a winning strategy in the
GG game when the existential player has a winning strategy in the formula game. If the quantifiers are not
alternating as in the example of figure 11, we can adjust the construction by including dummy nodes where
needed. Such a dummy node is placed at the point where we need a turn switch without further interfering
with the game. It has one incoming edge, coming from the node above, and one outgoing edge, going to the
node below.
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2.2.3 Maximum degree 3

In GG, a node can have any number of incoming or outgoing edges. This is hard to simulate in a game like
Hive. To keep things simple, we demand that each node has at most two incoming and one outgoing, or one
incoming and two outgoing edges.

Theorem 5. GG is PSPACE-complete even when played on graphs with maximum degree 3, maximum
indegree 2 and maximum outdegree 2.

Proof. (Adapted from [6]) To accomplish these properties, we can make simple modifications to the nodes
that are not consistent with the theorem. They are treated as is explained in figure 12 and figure 13.

Figure 12: A node with indegree greater than 2 is replaced by
a chain of nodes. On the left-hand side is a node with indegree
3. This would be replaced by the chain on the right-hand side.
Naturally, greater indegree results in a longer chain.

Figure 13: A node with outdegree greater than 2 is treated in
a similar manner, and is replaced by a slightly different chain of
nodes. On the left-hand side is a node with outdegree 3. This
would be replaced by the chain on the right-hand side. Naturally,
greater outdegree results in a longer chain.

Note that in the proofs for PSPACE-hardness of other games, like GO [5] and Hex [6], the reduction is done
from a version of GG that is also bipartite and planar. For our proof these properties are not necessary. The
bipartite attribute ensures that both players play on their own set of nodes. This is particularly important at
the point where an edge from the literal chooser gadget goes to the corresponding node in the diamond of a
universal quantifier. The act of marking that node (again) is what we call the check-back. In the structures
of the proofs for these other games it is vital that the existential player, who is doing the check-back, was
also the one who possibly marked this exact node in the diamond. This is because of how this check-back is
designed in the proofs for these games. In our proof it is irrelevant whether it was a ∀-diamond or ∃-diamond,
because they are simulated by different gadgets (for which the check-back works in both cases). This can
be observed in the subsection where the quantifier and tester gadget (which includes the simulation of the
check-back) is explained (2.3.2). In most board games it is not possible to let two structures cross without
interfering with each other. For that reason, in proofs for other games there had to be found a solution for
crossing edges in GG. Planarity ensures that these crossings do not occur. Hive has a planar nature as well,
except for the fact that the Grasshopper can jump over structures. We use this to our advantage to overcome
planarity. See section 2.3.10 for the details.
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2.3 Final reduction to Hive

First the general idea of the reduction is discussed. After that the separate gadgets are introduced and
explained. Then we discuss how the gadgets are put together. The proof is concluded by some necessary
remarks on the bigger picture of the simulation.

2.3.1 General idea

The idea is that we are still simulating the Formula-Game problem from theorem 3, but via the graph problem
representation of generalised geography and with the restriction that it is played on graphs with maximum
degree 3.

From the starting position until the surrounding of a Queen, the game will proceed through a series of
stages. First, in the quantifier stage, the players will take turns assigning values to the variables. Next, the
∀-player will choose a clause in the clause chooser stage. Then, in the literal chooser stage, the ∃-player will
choose a literal from that clause. Finally, the ∃-player will do the check-back in the tester stage.

Our main strategy in designing this simulation is to at all times have all pieces locked down except for
one. Locked down means that the piece is either legally not allowed to move, or if it is, moving it would
result in an unavoidable loss. So, the player whose turn it is can only move one piece. Depending on the
situation, the piece can move to just one space or the player has the choice between two spaces.

The locking down of most pieces and regulating the flow of the game is done by making repeated use of
the One Hive rule. That this is the case in a single gadget can be easily verified. However, the fact that the
pieces that are locked by the One Hive rule in the separate gadgets are still locked when the gadgets are put
together to accomplish a simulation, is not trivial. The details on this are discussed in section 2.3.9.

All structures can be rotated in steps of 60 degrees when needed.

Theorem 6. Hive is PSPACE-hard.

Proof. To simulate the gadgets from the game in theorem 5, we need the following structures: ∃-player’s
choice at a quantifier, ∀-player’s choice at a quantifier, tester, join, ∀-player’s choice for the clause, and ∃-
player’s choice for the literal. To be able to put these gadgets together, we also need the following structures:
Turn switcher, direction changers and a gap.

2.3.2 Quantifier and tester

This gadget is the heart of the reduction. It simulates both the choice a player has to make at a quantifier,
assigning a value to the variable, and the tester that checks whether the variable was assigned true or false
and decides who wins. In the GG-representation of Formula-Game the diamonds look the same for both
players. In our proof, we have to make different structures for the ∃-quantifier and the ∀-quantifier. The
choice at the quantifier stage has to directly influence the tester stage. This is done by the placement of the
Spiders (the gadget’s main piece, whose choice of movement direction will determine whether the simulated
variable is assigned true or false), but because of the reversed colours the tester for the ∀-structure has to
be designed in a different way than the ∃-structure. Furthermore, we have to find a way to temporarily lock
the first Spider of each quantifier, only to unlock it at the right time. The structure that simulates the very
first quantifier of the formula should not contain this Spider-lock. Summarising, this gadget appears in four
different forms. The two possible structures simulating the first quantifier are simpler and are discussed first
(figure 14 for the ∃-quantifier and figure 17 for the ∀-quantifier).

When the first quantifier of the formula is ∃, the following structure is used to simulate it. Black (the
existential player) has the first turn of the game and the only piece that is not locked down is the black
Spider. Note that white’s Grasshoppers 1 and 2 are still locked during the quantifier phase of the game,
and are played to get to the tester part after the quantifier, clause and literal chooser stages have all been
completed.
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Figure 14: This structure simulates both the choice for the existential player at the first quantifier if it is
an ∃ and the tester that later checks whether the variable bound by the quantifier was assigned true or
false. The bottom half of this structure represents true, and the upper half represents false. The black
Spider is the only piece that can move. The existential player chooses to move the Spider down (assigning
the variable true) or up (assigning the variable false). In the case of moving it down, it frees up white
Spider 1, which has no choice but to move to the right (the red space is suicide). This then frees up black’s
Grasshopper 1, which can only jump away to the next structure. The special dead piece “bQ w/ 3bB +
1wB on top” is explained on the next page. Moving the black Spider up results in a similar sequence of
moves with white’s Spider 2 and black’s Grasshopper 2. Whichever one of the black Grasshoppers moves on
to the next structure will cause the next gadget to become unlocked. Now for the tester part. During the
tester stage, when the existential player chooses literal vtrue white Grasshopper 1 is coming in, and if vfalse
is chosen white Grasshopper 2 is coming in. A simple case analysis shows that the existential player has a
winning strategy iff he or she chooses the same literal in the tester phase as the literal that was chosen in
the quantifier phase (see below).
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Special dead piece “bQ w/ 3bB + 1wB on top” consists of a black Queen on the bottom, with 3 black
Beetles and 1 white Beetle on top. This tower of pieces has two functions. In the first place, naturally, it is
a dead piece. The top piece (the white Beetle) can make no valuable move in one turn. After it would move,
the black Beetle that now is on top of the tower would be able to jump on top of the white Beetle, leaving
the next black Beetle free to, without restraint, find a white Queen to surround in the next moves. In the
second place, the tower ensures that black Grasshopper 1 cannot jump over white Spider 1 to land on the
space next to it.

The following case analysis for the tester shows that for the first quantifier, in case of an ∃, the existential
player has a winning strategy iff he or she chooses the literal that was chosen in the quantifier phase. There
are four cases:

true true The variable was assigned true at the quantifier stage and the existential player chooses the literal
vtrue.
Before the white Grasshopper 1 is coming in we have the following close-up of the position from figure
14, with the rest of the pieces locked down (figure 15). It shows that the existential player indeed has
a winning strategy when he or she chooses the literal vtrue after v was assigned true in the quantifier
phase.

Figure 15: This is a close-up of the position from figure 14 (the variable was assigned true) right before the
white Grasshopper 1 is coming in. White Grasshopper 1 comes in from the left to land on the purple space.
This frees up black Ant 1, which can now complete the surrounding of the white Queen by moving to the
right red space. This means that the existential player has a winning strategy.

true false The variable was assigned true at the quantifier stage and the existential player chooses the literal
vfalse. Before the white Grasshopper 2 is coming in we have the following close-up of the position from
figure 14, with the rest of the pieces locked down (figure 16). It shows that the existential player does
not have a winning strategy when he or she chooses the literal vfalse after v was assigned true in the
quantifier phase. In fact, the universal player has a winning strategy.

false true This case is symmetric to the true false case.

false false This case is symmetric to the true true case.

Concluding, for the first variable of the formula, if it is bound by an ∃, it holds that the existential player
has a winning strategy iff he or she chooses the literal that was chosen in the quantifier phase. We will
generalise this to all variables when we discuss the other three forms of the gadget.
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Figure 16: This is a close-up of the position from figure 14 (the variable was assigned true) right before the
white Grasshopper 2 is coming in. White Grasshopper 2 comes in from the left to land on the purple space.
This does not free up any piece. In fact, black’s pieces are in total lock-down, and white can win on his next
turn by moving white Grasshopper 2 to the left red space and thereby completing the surrounding of the
black Queen, or punish black for moving one of his dead pieces. This means that the universal player has a
winning strategy.

Next, we look at the structure that simulates the first quantifier of the formula if it is a ∀. It is quite
similar to the previous structure. The colours are reversed for the quantifier part. For the tester part the
colours cannot simply be reversed, because the existential player should still have a winning strategy iff he
or she chooses the literal that was chosen in the quantifier phase. Hence, the tester part is designed in a
different way than in the ∃-structure.
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Figure 17: This structure simulates both the choice for the universal player at the first quantifier if it is a ∀
and the tester that checks whether the variable bound by the quantifier was assigned true or false. The
play through the quantifier part is analogous to figure 14, but with reversed colours. Here it is a white Spider
that can move, allowing the universal player the choice of assigning the variable true (moving the Spider
down) or false (moving it up). For the tester part there are again four possibilities. These are discussed on
the next page.
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The following case analysis shows that for the first quantifier, in case of a ∀, the existential player has
a winning strategy iff he or she chooses the literal that was chosen in the quantifier phase. This time the
figures are left out. There are four cases:

true true The variable was assigned true at the quantifier stage and the existential player chooses the literal
vtrue. White Grasshopper 3 is coming in to land on the purple space. This frees up black Grasshopper
1, which can now complete the surrounding of the bottom-left white Queen by jumping to the red space
next to it. This means that the existential player has a winning strategy.

true false The variable was assigned true at the quantifier stage and the existential player chooses the literal
vfalse. White Grasshopper 4 is coming in to land on the purple space. This does not free up any
piece. In fact, black’s pieces are in total lock-down, and white can win on his next turn by moving
white Grasshopper 4 to red space two spaces away on the top-right from it and thereby completing the
surrounding of the black Queen, or punish black for moving one of his dead pieces. This means that
the universal player has a winning strategy.

false true Similar to the previous case.

false false Similar to the true true case.

Summing up, we showed that for the first variable of the formula the existential player has a winning
strategy iff he or she chooses the literal that was chosen in the quantifier phase.

For the ∃ and ∀-structures that simulate the quantifiers in a formula that are not the first one, we need
to lock the first Spider, while being able to unlock it at the right time. We introduce the ∀-structure first, as
it is simpler.

Proceedings of play for figure 18: Black Grasshopper 3 is coming in from the previous structure to land on
green space 1. This causes a double connection between the quantifier and tester part of this structure and
the structure that black Grasshopper 3 came from. It must be a black piece making this double connection,
because it frees up black Spider 2 and black Grasshopper 2, which would now be able to complete the
surrounding of the white Queen on the red space. White Grasshopper 5 is now also free to move and it
can only jump away to green space 2. This frees up the white Spider, which is what we wanted to achieve.
However, it is black’s turn. White’s last move also freed up black Grasshopper 4, which jumps to green space
3 and prevents the white Grasshopper to surround the black Queen in the corner. It now is white’s turn,
with all pieces locked down except for the Spider. Play will now proceed in exactly the same manner as in
the previously discussed ∀-structure (figure 17). Moreover, the extra pieces in this structure do not affect
the tester part from figure 17, so we do not have to repeat the case analysis. Following up on this we have
that for variables bound by a ∀, the existential player has a winning strategy iff he or she chooses a literal
that was chosen in the quantifier phase.
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Figure 18: This structure simulates the variables bounded by a ∀, as well as the tester that checks whether
the variable was assigned true or false. See previous page for the proceedings of play.
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Figure 19: This structure simulates the variables bounded by an ∃, as well as the tester that checks whether
the variable was assigned true or false. See next page for the proceedings of play.
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Proceedings of play for figure 19: Black Grasshopper 3 is coming in from the previous structure to land
on green space 1. This frees up the white Grasshopper, which can only jump away to green space 2. This
frees up the black Spider, which is what we wanted to achieve. However, the white Grasshopper would be
able to complete the surrounding of a black Queen on its next turn (or, if designed in a different way, would
be able to move which would dismantle the reduction), so black must ensure that this Grasshopper cannot
move. White’s last move freed up black Grasshopper 4, which jumps to green space 3. This then frees up
white Spider 3, which moves to green space 4. Note that white Spider 3 will never move back to its previous
space because black Grasshopper 4 would then be able to surround a white Queen. Now it is black’s turn,
with the black Spider free to move. Play will now proceed in exactly the same manner as in the previously
discussed ∃-structure (figure 14). Moreover, the extra pieces in this structure do not affect the tester part
from figure 14, so we do not have to repeat the case analysis. Following up on this we have that for variables
bound by a ∃, the existential player has a winning strategy iff he or she chooses a literal that was chosen in
the quantifier phase. Combining this with the result for variables bound by a ∀, we have that the existential
player has a winning strategy iff he or she chooses a literal that was chosen in the quantifier phase.

2.3.3 Join

This gadget is required after each quantifier gadget, and when a literal appears in more than one clause.
There can only be one Grasshopper coming in to do the check-back in the tester gadget. So, if there are
multiple edges going to the tester they need to be joined beforehand.

Figure 20: This gadget joins two other structures together. Either Grasshopper 1, coming from the structure
above, or Grasshopper 2, coming in from the structure below, lands on the corresponding space marked with
a 1. This frees up the black Grasshopper, which can only jump to the space marked with a 2. This then frees
up Grasshopper 3, which continues to the next structure on the right. Naturally, the colours can be reversed
when two structures with black Grasshoppers coming out need to be joined.
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2.3.4 Clause/literal chooser

Figure 21: This gadget simulates the split from the proof for PSPACE-hardness of GG that is used when the
universal player chooses a clause, and when the existential player chooses a literal. The black Grasshopper
is coming in from the left and lands on the space marked with a 1. This frees up the white Grasshopper,
which can jump to one of the two spaces marked with a 2. This represents the choice between two clauses.
By reversing the colours, we obtain the literal chooser gadget.
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2.3.5 Turn switcher

Figure 22: This gadget’s only purpose is to switch turns. There is a black Grasshopper coming out of the
previous structure, but we need a white Grasshopper coming in in the next structure to then give black a
choice there. The black Grasshopper coming in from the left lands on the space marked with a 1. This frees
up the white Grasshopper, which has no choice but to jump to the structure on the right. Naturally, the
colours can be reversed to obtain a turn switch from black to white.
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2.3.6 60 degrees direction changer

Figure 23: This gadget enables us to make a turn of 60 degrees. The black Grasshopper comes in from the
left to land on the space marked with a 1. This frees up the white Grasshopper, which can only jump to the
space marked with a 2. Naturally, the colours can be reversed to obtain a direction changer with a white
Grasshopper coming in from the previous structure. Furthermore, the structure can be flipped vertically to
obtain an anticlockwise 60 degrees direction change.
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2.3.7 120 degrees direction changer

One could think that this gadget is redundant, as two 60 degrees direction changers combined with a turn
switcher would achieve exactly the same thing. However, with that construction a problem would arise at
the point where a Grasshopper is making its jump into the tester gadget. The structures simulating the
quantifiers of a formula are aligned horizontally, from left to right. The Grasshoppers coming in to the tester
parts are also coming in from left to right. Hence, we need a direction change to get those Grasshoppers
to jump from left to right. For structures that simulate quantifiers that are not the first quantifier, the 60
degrees direction changer does not fit at this point. The part with the “DEAD inside” (see figure 23) overlaps
the part that connects this quantifier with the previous one. You can verify this by examining figures 18 and
19 and imagining where the direction changers are incorporated. The 120 degrees direction changer gadget,
on the other hand, does fit at this point. The part with the almost surrounded Queen that is aligned with the
outgoing Grasshopper sticks out only one space. This leaves us with a two space gap for the the bottom half
of the quantifier, and a one space gap for the upper half. The attentive reader will realise that we need to
investigate the situation for the upper half, as white dead pieces of type 2 (see section 1.4.6) in the 120 degrees
direction changer are separated only by a one space gap from black dead pieces type 2 in the quantifier. We
examine the ∀-structure of figure 18 (the ∃-structure case is similar). There are two possibilities: play has
already gone through the quantifier, or it has not. In the first case, no pieces that pose an immediate threat
(so called dangerous pieces) are freed when the connection is made. In the second case, the loop that arises
after making the connection contains black Grasshopper 2, which can complete the surrounding of the white
Queen in one move by jumping to the red space. Hence, white will clearly not make the connection. If black
makes the connection, white has to respond in a swift manner. Moving white Grasshopper 5 to green space
2 prevents black Grasshopper 2 from moving again. Black now has no immediate win threats, and has to
move black Grasshopper 4 to green space 3 to prevent white’s threat, after which white can use the Beetles
that were freed up by the movement of the black Beetle to win in the coming turns.

Figure 24: This gadget enables us to make a turn of 120 degrees. The black Grasshopper comes in from the
left to land on the space marked with a 1. This frees up the white Grasshopper, which can only jump to the
space marked with a 2. Naturally, the colours can be reversed to obtain a direction changer with a white
Grasshopper coming in from the previous structure. Furthermore, the structure can be flipped vertically to
obtain an anticlockwise 120 degrees direction change.
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2.3.8 Gap

To ensure that all pieces trapped by the One Hive rule are really trapped, it is necesarry to at some places
include a gap between two structures. There are three types of places where we need a gap. First, a gap
is required in one of the two paths between two quantifier gadgets. Secondly, we need a gap between the
literal chooser gadgets and the tester gadgets. For the details on these two types, see the next section (2.3.9).
Lastly, the gap gadget is used whenever a crossing occurs (see section 2.3.10).

Figure 25: This gadget enables us to establish a gap where we need it. White Grasshopper 1 comes in from
the previous structure to land on the space marked with a 1. This frees up the black Spider, which can pass
over the gap by following the green arrow and move to the space marked with a 2 (moving left would be
suicide). This move frees up white Grasshopper 2, which jumps away to the next structure.

2.3.9 Putting the gadgets together

In this section we show how the gadgets can be put together to simulate a formula, while taking in account
that every gadget must be linked to any other gadget by exactly one path. There must be at least one path
because otherwise it would be the case that two pieces are not connected, which contradicts the One Hive
rule. There must be at most one path because otherwise the pieces that are purposely trapped using the
One Hive rule would no longer be trapped. When we consider the gadgets that are linked with each other,
the full board configuration of the simulation of a formula can be seen as a long horizontal line, with one
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branching tree at the end point, and possibly multiple branching trees on either side (top and bottom) of
the line. In this analogy, the quantifiers are the line. Play will flow from left to right, with the individual
quantifier gadgets linked solely via one way. The clause choosers, and after that literal choosers, following
the last quantifier will then start to form a branching tree. Looking in the opposite direction as the flow of
play, the join gadgets originating from a tester representing a literal that is used in multiple clauses form a
branching tree as well.

We achieve this setup by putting the gadgets together as follows:
Recall that the first quantifier gadget has two outgoing chains of pieces, one pointing to the top-left and one
pointing to the bottom-left. Direction changers are used to get them aligned again with the line (from left
to right). The bottom one has a gap incorporated. Next, their direction is pointed towards the middle to
join them with the join gadget, after which the next quantifier gadget (this time with an initially trapped
spider) is inserted. And so on for the rest of the quantifier gadgets. Note that the quantifiers are linked
only via one way, because of the gaps that are incorporated in the bottom half. After the last quantifier
the universal player must choose a clause. This is done by a series of clause choosers, branching out with
every extra clause after the second one (see figure 13). Then, for each clause, we have a similar branching
out for the literals (performed by literal chooser gadgets). At this point, there is one path for each possible
combination of clause and literal. At the end of each path, a gap is inserted. Then the paths that need to
go to the same tester are joined by join gadgets (see figure 12). Finally, every (potentially joined) path is
directed to the corresponding tester gadget.

2.3.10 Crossings

When enough space is taken between the gadgets, no crossings occur in the clause chooser and literal chooser
area. In the area after the incorporated gaps, however, when the literals from the clauses are directed to the
corresponding testers, crossings are unavoidable for some formulas. Note that some of the paths are joined
before they are directed to the corresponding tester. In this process crossings might also be unavoidable. In
this section we present a way to deal with these crossings.

Lemma 7. Even when crossings occur, all gadgets are still linked via exactly one path.

Proof. The crossing itself is easily implemented. At the point of the crossing, each of the two paths is a chain
of dead pieces over which a Grasshopper will jump from one gadget into the next one. So, to implement the
crossing we can let the two chains cross each other. At the point of the crossing, one piece from one of the
two chains is left out, as it would be in the same spot as a piece from the other chain. The Grasshoppers
of both chains are still able to jump over their respective chain in exactly the same manner as without a
crossing.

Let a be the path of one of the two paths from the aformentioned incorporated gap to the tester. Let b
be the path of the other one between its respective gap and tester. We divide a in two parts. Let a1 be the
part between tester and the crossing, and a2 the part between the crossing and the gap. We do the same for
b. There now are two paths from the quantifier area to the crossing, namely a1 and b1. This means that all
pieces that were previously locked down by the One Hive rule in a1, b1 and the quantifier gadgets between
(and including) the two testers are free to move, which would ruin the proof. This is prevented by including
a gap in b1, close to the crossing. b1 is now separated in two parts: b1a (from tester to newly included gap)
and b1b (from newly included gap to the crossing). In the situation where there was no crossing between the
two paths, a and b were two separate paths from different testers to different gaps. In the new situation,
there are two separate paths as well. One consists of a1, which at the crossing branches out into b1b, a2 and
b2. The other one is b1a. This method is carried out for all crossing paths, ensuring the One Hive rule still
applies in all gadgets.

2.3.11 Remarks

To complete the proof we need to address three things: the starting position of the simulation of a formula,
the amount of pieces that is required in a simulation and the duration of a simulation.

First we point out that the starting position of a simulation is reachable. The players take turns putting
pieces on the playing field and moving them, starting with the first quantifier and working their way through
all the gadgets. Given the fact that the pieces can be put into the game near the place where they need



2 PROOF 28

to end up, and the fact that they are quite versatile, it is easy to imagine that the starting position of the
simulation can be reached. The players only need to ensure they do not incidentally trap a Queen in the
process. The Beetles are useful pieces to assist another piece in reaching its spot (for instance by temporarily
making an extra connection such that a piece trapped by the One Hive rule can move), as they can reach
every possible space and are always able to move back to their designated space. As both players have the
same set of pieces, it is very likely that some pieces are not used after the full board configuration of the
simulation of a formula is reached. The remaining pieces are placed on the board and moved into a chain,
attached to a gadget that lies on the border of the Hive in such a way that it does not influence the game,
with a beetle tower at the end of the chain.

Next we note that a polynomial amount of pieces (relative to the length of the formula) is sufficient to
simulate the formula. This is straightforward, as every gadget consists of a fixed amount of pieces, and every
distinct variable, clause and literal requires a fixed amount of gadgets to be simulated by.

Lastly we point out that a simulation can be carried out in a polynomial amount of time (compared to
the length of the formula). To reach the starting position of the simulation of a formula takes more time than
the actual playthrough of the simulation that follows (which requires a linear amount of moves). However,
it is evident that the starting position can be reached in polynomial time.

This concludes the proof of theorem 6.
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3 Conclusion

We showed that generalised Hive is PSPACE-hard by reducing the PSPACE-complete set TQBF of true
quantified boolean formulas, via a series of steps, to the problem of deciding whether one of the two players
has a winning strategy in an arbitrary N-Hive position. Using these in-between steps is a well known technique
in proving the complexity of generalised versions of board games [4–6, 11] and video games [12]. Each of
these games has its own characteristics. The main contribution of this proof is that it gives insight in the
concept that underlies the One Hive rule, as we mainly relied on making repeated use of the One Hive rule
in designing the different gadgets (as well as in the broad configuration of the simulation of a formula).

The obvious recommendation for future research is to determine whether N-Hive is in PSPACE, and if
that does not succeed, in EXPTIME. Together with this proof, the proof for N-Hive being in PSPACE would
prove PSPACE-completeness.

It might be more in the spirit of the regular Hive game to include generalised versions that have one
Queen each. The analogous choice for the King was also made in NxN chess [11]. The Queen Bee in Hive is
similar to the King in chess. In both games the goal is to mate your opponent’s main piece: the Queen Bee
or King. Hence, we think that everyone agrees that you would need at least one main piece for each player in
any admissable generalisation. A suggestion for a proof for PSPACE-hardness of N-Hive with (at least) one
Queen each could be to change the proof strategy. In this proof we made repeated use of the One Hive rule
to lock most pieces down, and some pieces were locked down because they could only move to a suicide hex
as described in section 1.4.2. With only one Queen each, these suicide hexes are not at the mathematician’s
disposal anymore (alright, you can have one for each player). Instead, a suicide hex could be mimicked by a
space that would free an Ant when occupied. This Ant would then be able to trap the opponent’s one Queen
in only one move (or more, depending on the proof strategy). It could be convenient to abandon the idea of
forced moves by locking every piece down except for one using the One Hive rule and suicide hexes. In the
proofs for other games, GO for example, the idea of immediate win threats is used as the main strategy for
the flow of the game. That approach might be easier.

As addition to the basic game, Hive has three expansion pieces: the Ladybug, Mosquito and Pillbug.
It could be investigated whether adding these expansion pieces would change the complexity of the game.
Adding the expansion pieces would obviously not make the game less complex, but we think that it would
neither increase complexity. These pieces are merely interbreedings of other pieces, and the complexity of
Hive lies to a greater extend in the abstract rules (like the One Hive rule) than in the exact movement of the
pieces.
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