UTRECHT UNIVERSITY
Faculty of Science
Department of Information and Computing Sciences

The Path Explosion Problem in SYMBOLIC EXECUTION

An Approach to The Effects of Concurrency and Aliasing

Supervisor
dr. S.W.B. (Wishnu) Prasetya
Second Examiner
prof. dr. G.K. (Gabriele) Keller

Abstract

Symbolic Execution is a technique used for the formal verification of software. A notorious problem with formal verification is the path explosion problem: the exponentially increasing requirement of computing power to verify more complex software. Common contributors to the path explosion problem are: (1) loops and recursion; (2) exceptions; (3) pointer aliasing; and (4) concurrency. In this thesis, we present an intermediate verification language: the OOX language. OOX is intended as a core language for object-oriented languages with support for concurrency, such as Java and C\#. We developed a symbolic execution engine for OOX, which aims to limit the effects of the path explosion problem resulting from the first, third and fourth contributors. To achieve this, we applied three main optimizations: partial order reduction, formula caching and expression evaluation. Furthermore, the logic to handle references is defined in the front-end of our approach. We use a SMT solver as a back-end to give a definitive answer when the front-end does not give a definitive answer. The results of this approach show a positive image. The optimizations drastically reduce the runtime and our approach can compete with existing tools like CBMC and CIVL.

Keywords: Formal verification, symbolic execution, software testing, partial order reduction.

Definitions

1 Definition (Mapping) 3
2 Definition (The Stack) 6
3 Definition (A Stack Frame) 6
$4 \quad$ Definition (The Heap) 6
5 Definition (The Type Environment) 8
$6 \quad$ Definition (Control Flow Graph) 39
$7 \quad$ Definition (Action) 40
8 Definition (The Symbolic State). 44
$9 \quad$ Definition (Independence Relation) 64
10 Definition (Guarded Independence Relation) 64

Acronyms

AST Abstract Syntax Tree. 9, 36, 37, 41

CFA Control Flow Analysis. 39
CFG Control Flow Graph. 36, 39, 41, 43, 49, 81
CSL Concurrent Separation Logic. 80

IVL Intermediate Verification Language. 78, 79, 81

POR Partial Order Reduction. 63, 66, 74, 82, 83

SE Symbolic Execution. 35,65
SEE Symbolic Execution Engine. [35, 37, 39, 40, 44, 45, 55, 60, 61, 67, 70, 75, 82
SS Symbolic State. $35,36,44,46,49,51,65,66$

Contents

1 Introduction 1
2 Preliminary 3
3 The OOX Language 5
3.1 The Memory 6
3.1.1 The Stack 6
3.1.2 The Heap 6
3.2 The Semantics 6
3.2.1 The Static Semantics 7
3.2.2 The Dynamic Semantics 7
3.3 The Abstract Syntax 8
3.4 Types 8
3.4.1 Primitive and Reference Types 9
3.4.2 Subtyping 9
3.5 Compilation Units 9
3.5.1 Threads and Scheduling 9
3.5.2 The Semantics 10
3.6 Classes 12
3.6.1 Methods and Constructors 12
3.6.2 Fields 13
3.7 Statements 14
3.7.1 Variable Declarations 14
3.7.2 Assignment Statements 15
3.7.3 Method Call Statements 20
3.7.4 Skip Statements 23
3.7.5 Assert Statements 23
3.7.6 Assume Statements 23
3.7.7 While Statements 24
3.7.8 If-Then-Else Statements 24
3.7.9 Continue and Break Statements 25
3.7.10 Return Statements 25
3.7.11 Throw Statements 26
3.7.12 Try Statements 26
3.7.13 Block Statements 27
3.7.14 Lock- and Unlock Statements 27
3.7.15 Join Statements 27
3.7.16 Fork Statements 28
3.7.17 Sequence Statements 28
3.7.18 Pop Statements 28
3.8 Expressions 29
3.8.1 Literals 29
3.8.2 References 30
3.8.3 Variable Access 31
3.8.4 Unary Operators 31
3.8.5 Binary Operators 31
3.8.6 Sizeof Operator 32
3.8.7 If-Then-Else Operator 32
3.8.8 Quantifiers 33
3.8.9 The Dynamic Semantics 33
4 Symbolic Execution of OOX Programs 35
4.1 Parsing 37
$4.2 \quad$ Static Analysis 39
4.2.1 Control Flow Analysis 39
4.3 The Symbolic Execution Engine 44
4.3.1 The Threads 44
4.3.2 The Memory 45
4.3.3 The Path Constraints 48
4.3.4 The Alias Map 48
4.3.5 The Locks 49
4.3.6 The Interleaving Constraints 49
4.4 The Symbolic Execution Algorithm 49
4.4.1 Symbolic Execution of Actions 51
4.4.2 Formula Caching 60
4.4.3 Expression Evaluation 61
4.4.4 Partial Order Reduction 63
5 Results 67
5.1 The Completeness, Soundness and Efficacy of the Optimizations 70
5.2 Scalability 73
5.3 A Comparison with CBMC and CIVL 75
6 Related Work 78
6.1 Intermediate Verification Languages 78
6.2 Formal Software Verification 79
7 Conclusions and Future Work 82
7.1 Future Work 83
A The Concrete Syntax of the OOX language 87
A. 1 Lexical Structure 87
A. 2 Syntactical Structure 88
B Experimental Data 93
B. 1 Bubblesort 93
B. 2 Minimum element in Linked List 94

Chapter 1

Introduction

The importance in our society is ever increasing. A major aspect of the software engineering field is that the software that is developed works as expected. All software that is developed is verified for correctness to some degree. The IEEE defines verification as "The evaluation of whether or not a system complies with a regulation, requirement, specification, or imposed condition. It is often an internal process, in contrast to validation, which aims to assure that the system meets the needs of the stakeholders" [1].

There exist several approaches to verify the correctness of software, ranging from manual testing to automated exhaustive approaches, such as (symbolic) model checking and symbolic execution. In manual approaches, specific test instances are created to execute the program, whether or not with the help of existing tools, checking that for those specific instances the program is correct. Automated approaches aim to verify that for all possible inputs, all possible executions are correct. In model checking, a transition system is constructed, which represents the program under verification. It is common for the specification to be described in some temporal logic. The transition system is regularly described using Kripke structures. In symbolic model checking, the transition system is modelled with logical formulas, in contrast to an explicit transition system. Symbolic execution is a technique where the program under verification is executed in a symbolic manner, in contrast to concrete execution. Some values are represented as symbolic values, which can take on different concrete values.

To select the appropriate verification approach, one can take several factors into account. The impact of a bug, the likelihood that a bug occurs, and the available budget are common considerations. Comparing two extremes, it is non-problematic to have an image on a website misaligned by a pixel opposed to the crash of the Ariana 5 Flight 501, costing hundreds of millions of dollars [19].

The main problem with automated approaches is that some constructs regularly found in programming languages increase the number of possible inputs and the search space by an extreme amount, known as the state explosion problem and the path explosion problem Major contributors to the path explosion problem are: iteration structures and recursion, concurrency [26], exceptions and reference aliasing. Ongoing research on automated approaches, a part of the

[^0]field of formal methods, aims to reduce the effects caused by the path explosion problem while maintaining the capability to find as many bugs as possible.

We designed and implemented an automated verification approach based on symbolic execution, including several optimizations. It aims to reduce the effects caused by the path explosion as a result of: branching statements, concurrency and reference aliasing. The target language of our approach is the OOX language, a language we designed for the purpose of this thesis. OOX is an intermediate verification language that is used as a core language to model object-oriented languages with support for concurrency, such as Java and C\#.

The main contributions of this thesis are:

1. The OOX language: a new intermediate verification language, including its formal staticand dynamic semantics;
2. A generalization of symbolic execution to concurrent programs;
3. A formalization of applying partial order reduction to this generalized approach of symbolic execution; and
4. The implementation of our symbolic execution engine, including several promising optimization techniques.

Thesis Outline. We begin this thesis with the preliminaries in Chapter 2. We present the OOX language in Chapter 3 and continue with the formalization of symbolic execution and the optimizations in Chapter 4. Its effectiveness will be evaluated in Chapter 5 . We will then present the related work in Chapter 6 and conclude and present future work in Chapter 7 .

Chapter 2

Preliminary

Sets, Sequences and Mappings. We assume that the reader is familiar with the notion of sets and sequences. We use $\mathcal{P}(A)$ to denote the power set of the set A. We use the binary set operator $A \cup B$ to denote an update of B inside A. That is, the union of A and B where B is first subtracted

$$
A \cup B=(A-B) \cup B
$$

We use the notion of a mapping for key-value pairs.
Definition 1 (Mapping). Let a mapping M be defined as

$$
M[k \mapsto v](x)= \begin{cases}M(x) & \text { if } x \neq k \\ v & \text { if } x=k\end{cases}
$$

Let [] denote an empty mapping.

Formal Verification. A program path is an unique sequence of statements of a program. A program can be represented as a set of program paths, which is of size at least one and is potentially infinite. Any non-trivial program has statements which cause branching behaviour. One of such statements is the if-then-else statement. For example, the statement if E then ... else ... has two program paths. One in which E holds true and one in which not E holds true. Such conditions are expressed using assume E; statements, which instruct the verification back-end to assume that the rest of the program paths can only be executed, or are feasible, when the assumption is true. assert E; statements are used to verify whether the assertion E is valid.

Pseudocode Notation. We use the pseudocode notation that is common in the literature. We introduce one new operation: "inner access", which is denoted by $a \cdot b$. We use this operation in the context of state update. For example, when we update the call stack σ of the thread $\mathcal{T}_{\text {tid }}$ to some σ^{\prime}, we write $\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow \sigma^{\prime}$. We let an update of a thread $\mathcal{T}_{\text {tid }} \in \mathcal{T}$ include the update inside \mathcal{T}, meaning that when executing the update from above, the statement $\mathcal{T} \leftarrow\left(\mathcal{T}-\left\{\mathcal{T}_{\text {tid }}\right\}\right) \cup\left\{\mathcal{T}_{\text {tid }}\right\}$ is implicit. We use - to denote a comment.

Auxiliary Notation. We use \perp to denote that some operation is undefined. For example, in the dynamic semantics of expression evaluation, when evaluating division by zero

$$
\mathcal{E} \llbracket \operatorname{binop}\left(E_{1}, /, E_{2}\right) \rrbracket(\sigma)= \begin{cases}\perp & \text { if } \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h)=0 \\ \mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) / \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) & \text { otherwise }\end{cases}
$$

We sometimes use an annotated variant \perp_{h}. We let $f^{\circ n}(x)$ denote n function compositions of f. For example

$$
f^{\circ 2}(x)=(f \circ f)(x)
$$

When defining an explicit example, we use \square to denote the end of an example.

Chapter 3

The OOX Language

OOX is a language designed to be an intermediate verification language that can represent objectoriented programming languages like Java and C\#. The language has support for classes and objects as first-class citizens, and has a strong type system. Another main feature is the support for concurrency via a fork-join model, including synchronization using a lock mechanism.

In its current state, the object-oriented language features are limited to declaring classes and using objects. The three main features associated with object-oriented languages: inheritance, encapsulation and polymorphism are outside the scope of this thesis. As such, the language can be viewed, not as object-oriented, but as a language with structs. However, the current design lays the foundation to extend the language with such features.

Example 1 (Concurrent Counting). Suppose a Counter class is defined, which supports incrementing its internal counter count safely in a concurrent setting and suppose a count method is defined. This count method takes an initial value and increments the counter N times, each in a separate thread. Finally, the aim is to verify that count is equal to initial + N.

```
class Counter
{
    int current;
    Counter(int initial) { this.current := initial; }
    static void count(int initial)
            requires(initial >= 0)
            exceptional(false)
    {
            Counter counter := new Counter(initial);
            int i := 0;
            while (i < N) {
                fork counter.increment();
                i := i + 1;
            }
            join;
            int value := counter.current;
            assert value == initial + N;
    }
    void increment()
    {
            lock (this)
            {
            int value := this.count;
            this.current := value + 1;
        }
    }
}
```


3.1 The Memory

The memory of an OOX program consists of two distinct parts: the stack and the heap. The stack contains the arguments and the local variable declarations, each living in a stack frame corresponding to the scope they live in. The stack frames are allocated and deallocated automatically when a new scope is entered or exited. The heap contains the variables that are created using the new operator. Object structures on the are accesses via references. A variable on the stack can be reference, allowing it to access object structures in the heap. The state of a program is defined as a pair containing both a stack and a heap.

3.1.1 The Stack

Definition 2 (The Stack). The stack, denoted by σ, is a sequence of stack frames where the top-most stack frame is the stack frame of the current scope.

Four operations are defined on stacks: reading from a stack, writing to a stack, pushing a stack frame on a stack and popping a stack frame from a stack. Let $\sigma(x)$ denote reading from the stack, defined as

$$
\sigma(x)=\sigma_{1}(x) \text { where } \sigma=\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

and let $\sigma[x \mapsto v]$ denote writing to the stack, defined as

$$
\sigma[x \mapsto v]=\sigma_{1}[x \mapsto v] \text { where } \sigma=\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

Let $\operatorname{push}(\sigma)$ and $\operatorname{pop}(\sigma)$ be the two operations that allow for stack frame management. That is,

$$
\begin{aligned}
\operatorname{push}(\sigma) & =\left[[], \sigma_{1}, \ldots, \sigma_{n}\right] \text { where } \sigma=\left[\sigma_{1}, \ldots, \sigma_{n}\right] \\
\operatorname{pop}(\sigma) & =\left(\sigma_{1}, \ldots, \sigma_{n}\right] \text { where } \sigma=\left[\sigma_{1}, \ldots, \sigma_{n}\right]
\end{aligned}
$$

Definition 3 (A Stack Frame). Let a stack frame be defined as a mapping from identifiers to values.

3.1.2 The Heap

Definition 4 (The Heap). The heap, denoted by h, is a mapping from references to object structures. An object structure, denoted by \mathcal{O}, is a mapping from fields to values.

The heap has support for three operations, allocation, reading and writing, where the latter two are inherited from the mapping structure. Allocation is defined by alloc (h), which returns a fresh unique reference. Reading from a heap, denoted by $h\left(r e f_{x}\right)$, retrieves the object structure of the reference $r e f_{x}$ in h iff x is defined h and not null. When $r e f_{x}$ is either not defined in h or is null, \perp_{h} is returned. Writing to a heap, denoted by $h\left[r e f_{x} \mapsto \mathcal{O}\right]$, returns an updated heap in which the reference $r e f_{x}$ maps to the object structure \mathcal{O}.

3.2 The Semantics

The semantics of OOX is defined by both the static- and dynamic semantics.

3.2.1 The Static Semantics

The static semantics are defined using inference rules. They describe the well-formedness, using the ok and ok in operators, and type judgements, as described in Section 3.4.

3.2.2 The Dynamic Semantics

The dynamic semantics are defined using a big-step operational semantics for the execution of the program, and a small-step operational semantics for the execution of statements and methods calls. The execution of expressions is described using a denotational semantics, see Section 3.8.9 for more details.

Program Transitions. Program transitions denote a reduction step in the execution of a program.

$$
(\underset{\text { prog }}{ }): \text { CompilationUnit } \times \text { Locks } \times \text { Threads } \times \text { Heap } \rightarrow \text { Locks } \times \text { Threads } \times \text { Heap }
$$

Statement Transitions. Statement transitions denote a reduction step in the execution of a statement.

$$
(\underset{\text { stat }}{ }): \text { Statement } \times(\text { Stack } \times \text { Heap }) \rightarrow \text { Statement } \times(\text { Stack } \times \text { Heap })
$$

Left-Hand Side Transitions. Left-hand side transitions denote a reduction step in the execution of the left-hand side of an assignment.

$$
(\underset{l h s}{\longrightarrow}): \text { Lhs } \times \text { Value } \times(\text { Stack } \times \text { Heap }) \rightarrow(\text { Stack } \times \text { Heap })
$$

Right-Hand Side Transitions. Right-hand side transitions denote a reduction step in the execution of the right-hand side of an assignment.

$$
(\underset{r h s}{\longrightarrow}): \text { Rhs } \times(\text { Stack } \times \text { Heap }) \rightarrow \text { Value } \times \text { Heap }
$$

Invocation Transitions. Invocation transitions denote a reduction step in the execution of a method or constructor invocation.

$$
(\underset{\text { inv }}{ }): \text { Invocation } \times(\text { Stack } \times \text { Heap }) \rightarrow \text { Statement } \times(\text { Stack } \times \text { Heap })
$$

3.3 The Abstract Syntax

Below is the complete list of the various syntactical categories that make the abstract syntax of OOX.

$U \in$ CompilationUnit	$n \in$ Nat
$M \in$ Method	$z \in$ Int
$K \in$ Constructor	$r \in$ Real
$\varphi \in$ Specification	$b \in$ Bool
$P \in$ FormalParameter	$s \in$ String
$F \in$ Field	$c \in$ Char
$S \in$ Statement	$\oplus \in$ UnaryOperator
$t \in$ Lhs	$\otimes \in$ BinaryOperator
$v \in$ Rhs	$\omega \in$ Type
$I \in$ Invocation	$\tau \in$ NonVoidType
$E \in$ Expression	$i \in$ Identifier

3.4 Types

OOX has a strong static type system where every expression, assignment target, assignment value and parameter has a type. The type rules of OOX are enforced in the static semantics of the language.

Definition 5 (The Type Environment). The type environment, denoted by Γ, contains the types of the variables in the current context.

The following three operations are defined on type environments

Type Judgement. Let $\Gamma \vdash E: \omega$ denote type judgment, which expresses that E has type ω when evaluated under the type environment Γ.

Type Existence. Let $x: \omega \in \Gamma$ denote type existence, which expresses that there exists a variable x in Γ and is of type ω. Let $x: \omega \notin \Gamma$ denote that there does not exist a variable x of type ω in Γ.

Type Insertion. Let $\Gamma \vdash x: \omega$ ok in X denote type insertion, which expresses that the variable x has type ω in the type environment Γ when evaluated within X.

There are two kind of types defined: types and non-void types.

```
\omega\in Type }\quad::=\mathrm{ type ( }\tau) | void
\tau\inNonVoidType ::= uint | int | float | bool | string | char | ref(C) | array(\tau)
```

Each non-void type has an associated default value, defined by

$$
\text { default : NonVoidType } \rightarrow \text { Expression }
$$

where

$$
\begin{array}{rlrl}
\operatorname{default}(\text { uint }) & =0 & \operatorname{default}(\text { string }) & =\text { null } \\
\operatorname{default}(\text { int }) & =0 & \operatorname{default}(\operatorname{ref}(C)) & =\text { null } \\
\operatorname{default}(\text { float }) & =0.0 & \operatorname{default}(\operatorname{array}(\tau)) & =\text { null } \\
\operatorname{default}(\text { bool }) & =\text { false } &
\end{array}
$$

3.4.1 Primitive and Reference Types

There are two categories of types: primitive types and reference types. Primitive types are values which do not point to some something allocated on the heap. Let uint, int, float, bool and char be the primitive types. Reference types are references to a value allocated on the heap. Let string, $\operatorname{ref}(C)$ and $\operatorname{array}(\tau)$ be the reference types.

3.4.2 Subtyping

OOX limited support for subtyping. Subtyping in the form of inheritance cannot be defined by the user. Some (sub)expressions have support for subtyping, more specifically operations with numbers and references. Let $\tau \prec \tau^{\prime}$ denote the subtype relation where τ^{\prime} is a subtype of τ.
There are two subtypes defined: REF, of which every reference type is a subtype, and NUM of which every numerical type is a subtype. These subtypes cannot be used directly by the user. The subtype $R E F$ allows null to be polymorphic. For example, to allow that the expression null $==\mathrm{x}$ is type correct. The subtype $N U M$ serves a similar purpose for expressions of numerical types, e.g. $0.0+1$ where 0.0 is of type float and 1 is type int.

3.5 Compilation Units

A compilation unit is the root node of the Abstract Syntax Tree AST. It defines a complete OOX program.

$$
U \in \text { CompilationUnit }::=\operatorname{program}(\underline{C})
$$

3.5.1 Threads and Scheduling

A program consists of one or more threads. Each thread executes a part of the program and has its own stack. New threads can be created using fork statements, and can be synchronized using both join statements and lock statements. All threads share the same heap, the heap of the program. The threads are represented as a set, denoted by \mathcal{T}. Let $\mathcal{T}_{\text {tid }}$ denote a thread with thread id tid $\in \mathbb{N}$, defined as a pair (S, σ), consisting of the next statement to be executed and the stack of that thread.

Let $\Sigma: \mathcal{P}($ Thread $) \rightarrow \mathbb{N}$ denote a scheduling function that chooses the next thread id to be executed from \mathcal{T}. No fairness assumptions are made about Σ.

3.5.2 The Semantics

A program is valid in the static semantics when a static main function is defined. This function is required to have return type void and have no formal parameters.

$$
\frac{\exists \operatorname{class}\left(\underline{M},{ }_{-},{ }_{-}\right) \in \underline{C}: \exists \operatorname{method}\left(b, \omega, i_{-},,_{-},{ }_{-}\right) \in \underline{M}: b=\operatorname{true} \wedge \omega=\operatorname{void} \wedge i=\operatorname{main}}{\Gamma \vdash \operatorname{program}(\underline{C}) \mathbf{o k}}
$$

(SSEM - program)

Program Initialization and Termination. The execution of the program begins at the main method. Let running' be a special reference in the lock set to denote that the program has started the execution.

$$
\begin{gathered}
\exists C=\operatorname{class}\left(\underline{M},{ }_{-},{ }_{-}\right) \in \underline{C}: \exists M=\operatorname{method}\left({\underset{-}{-}},,_{-}, i,,_{-},{ }_{-},{ }_{-}\right) \in \underline{M}: i=\text { main } \\
\mathcal{T}_{\text {tid }}=(\operatorname{call}(\operatorname{invoke}(C, M,[])),[])
\end{gathered}
$$

(DSEM - program: initialization)
The execution of the program has finished when it has started and there are no more threads to be executed.

$$
\frac{\text { running }{ }^{\prime} \in \mathcal{L}}{\langle U, \mathcal{L}, \emptyset, h\rangle \underset{\text { prog }}{\longrightarrow}\langle\mathcal{L}, \emptyset, h\rangle}
$$

(DSEM - program: termination)

Thread Spawning and Termination. When the next statement to be executed is a fork statement, a new thread is spawned and the forking thread continues its execution.

$$
\begin{gathered}
\operatorname{tid}=\Sigma(\mathcal{T}) \\
\mathcal{T}_{\text {tid }}=\left(\operatorname{seq}\left(\operatorname{fork}(I), S_{2}\right), \sigma\right) \in \mathcal{T} \\
\mathcal{T}_{\text {fresh }}=(\operatorname{call}(I), \sigma) \\
\frac{\mathcal{T}_{\text {tid }}^{\prime}=\left(S_{2}, \sigma\right)}{\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\left\langle\mathcal{L}, \mathcal{T} \cup\left\{\mathcal{T}_{\text {tid }}^{\prime}, \mathcal{T}_{\text {fresh }}\right\}, h\right\rangle} \quad \text { (DSEM - program: fork statement) }
\end{gathered}
$$

A thread will terminate when the single remaining statement of that thread is a skip statement. This will results in the thread being removed from the set of threads.

$$
\begin{gathered}
\text { tid }=\Sigma(\mathcal{T}) \\
\frac{\mathcal{T}_{\text {tid }}=(\text { skip }, \sigma) \in \mathcal{T}}{\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{ }\left\langle\mathcal{L}, \mathcal{T}-\left\{\mathcal{T}_{\text {tid }}\right\}, h\right\rangle} \quad \text { (DSEM - program: thread termination) }
\end{gathered}
$$

Lock Acquisition and Releasing. When the next statement to be executed is a lock statement, there are two options: the value of variable i is in the lock set \mathcal{L} or it is not in the lock set. When the value of variable i is not in the lock set, the reference is added to the lock set and the
execution continues. When the value of i is in the lock set, the thread performs no operation.

$$
\begin{aligned}
& \text { tid }=\Sigma(\mathcal{T}) \\
& \mathcal{T}_{\text {tid }}=\left(\operatorname{seq}\left(\operatorname{lock}(i), S_{2}\right), \sigma\right) \in \mathcal{T} \\
& \sigma(i)=\operatorname{ref}_{n} \notin \mathcal{L} \\
& \xrightarrow[\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\left\langle\mathcal{L} \cup\left\{r e f_{n}\right\}, \mathcal{T} \cup\left\{\mathcal{T}_{\text {tid }}^{\prime}\right\}, h\right\rangle]{\prime} \quad \text { (DSEM - program: lock statement (unlocked)) } \\
& \text { tid }=\Sigma(\mathcal{T}) \\
& \mathcal{T}_{\text {tid }}=\left(\operatorname{seq}\left(\operatorname{lock}(i), S_{2}\right), \sigma\right) \in \mathcal{T} \\
& \frac{\sigma(i)=\operatorname{ref}_{n} \in \mathcal{L}}{\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\langle\mathcal{L}, \mathcal{T}, h\rangle} \\
& \text { (DSEM - program: lock statement (locked)) } \\
& \begin{array}{c}
\text { tid }=\Sigma(\mathcal{T}) \\
\mathcal{T}_{\text {tid }}=\left(\operatorname{seq}\left(\operatorname{lock}(i), S_{2}\right), \sigma\right) \in \mathcal{T}
\end{array} \\
& \frac{\text { null }=\sigma(i)}{\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \\
& \text { (DSEM - program: lock statement (null dereference)) }
\end{aligned}
$$

When the next statement to be executed is an unlock statement, the value of the variable i is removed from the lock set \mathcal{L} and the thread continues its execution.

$$
\begin{gathered}
\text { tid }=\Sigma(\mathcal{T}) \\
\mathcal{T}_{\text {tid }}=\left(\operatorname{seq}\left(\operatorname{unlock}(i), S_{2}\right), \sigma\right) \in \mathcal{T} \\
\operatorname{ref}_{n}=\sigma(i) \\
\mathcal{T}_{\text {tid }}^{\prime}=\left(S_{2}, \sigma\right) \\
\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\left\langle\mathcal{L}-\left\{\operatorname{ref}_{n}\right\}, \mathcal{T} \cup\left\{\mathcal{T}_{\text {tid }}^{\prime}\right\}, h\right\rangle
\end{gathered} \quad \text { (DSEM - program: unlock statement) }
$$

Thread Joining. When the next statement to be executed is a join statement, there are two options: the first option is that there exists a child thread of the current thread, meaning that no operation will be performed. The second option is that there does not exist a child thread of the current thread, meaning that the execution continues.

$$
\left.\begin{array}{c}
\text { tid }=\Sigma(\mathcal{T}) \\
\mathcal{T}_{\text {tid }}=\left(\operatorname{seq}\left(\text { join }, S_{2}\right), \sigma\right) \in \mathcal{T} \\
\exists \mathcal{T}_{\text {tid }} \in \mathcal{T}: \operatorname{parent}\left(\mathcal{T}_{\text {tid }}\right)=\text { tid } \\
\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\langle\mathcal{L}, \mathcal{T}, h\rangle \\
\text { tid }=\Sigma(\mathcal{T}) \\
\mathcal{T}_{\text {tid }}=\left(\operatorname{seq}\left(\text { join, } S_{2}\right), \sigma\right) \in \mathcal{T} \\
\forall \mathcal{T}_{\text {tid }} \in \mathcal{T}: \operatorname{parent}\left(\mathcal{T}_{\text {tid }}\right) \neq \text { tid } \\
\frac{\mathcal{T}_{\text {tid }}^{\prime}}{\prime}=\left(S_{2}, \sigma\right) \\
\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\left\langle\mathcal{L}, \mathcal{T} \cup\left\{\mathcal{T}_{\text {tid }}^{\prime}\right\}, h\right\rangle
\end{array} \quad \text { (DSEM - program: join statement (wait)) } \quad \text { (DSEM - program: join statement (continue)) }\right)
$$

Exceptional Termination. When a thread results in an exceptional state, the program halts and terminates in the same exceptional state.

$$
\begin{gathered}
\text { tid }=\Sigma(\mathcal{T}) \\
\mathcal{T}_{\text {tid }}=(S, \sigma) \in \mathcal{T} \\
\langle S,(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{h^{\prime}}\right\rangle \\
\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\left\langle\perp_{h^{\prime}}\right\rangle
\end{gathered}
$$

(DSEM - program: exceptional execution)

Statement Execution. When none of the above cases match, the thread executes the next statement.

$$
\begin{gathered}
\text { tid }=\Sigma(\mathcal{T}) \\
\mathcal{T}_{\text {tid }}=(S, \sigma) \in \mathcal{T} \\
\langle S,(\sigma, h)\rangle{\underset{\text { stat }}{ }}{ }^{1}\left\langle S^{\prime},\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle \\
\frac{\mathcal{T}_{\text {tid }}^{\prime}=}{}=\left(S^{\prime}, \sigma^{\prime}\right) \\
\langle U, \mathcal{L}, \mathcal{T}, h\rangle \underset{\text { prog }}{\longrightarrow}\left\langle\mathcal{L}, \mathcal{T} \cup\left\{\mathcal{T}_{\text {tid }}^{\prime}\right\}, h^{\prime}\right\rangle
\end{gathered} \quad \text { (DSEM - program: normal execution) } \quad \text {) }
$$

3.6 Classes

A class is a structure containing members. There are three kind of members: methods, constructors and fields.

$$
C \in \operatorname{Class}::=\operatorname{class}(\underline{M}, \underline{K}, \underline{F})
$$

3.6.1 Methods and Constructors

A method is an executable part of a program, defined within a class. It consists of a sequence of statements which can be invoked via a method call.

The type definition of a method consists of both the return type and zero or more formal parameters. When the return type of a method is not void, a call to the method results in a value. The type of the return value must match the return type of the method.

A method can be either static or non-static. The difference between the two is that a non-static method is invoked on an object, which is passed on to the method body as an implicit formal parameter. This implicit formal parameter is named this and refers to the object on which the method is invoked.

Constructors are a special kind of static methods. They are used to create a new instance of a class. Constructors, unlike regular static methods, have an implicit this formal parameter. This formal parameter refers to a newly allocated object.

$$
\begin{array}{ll}
M \in \text { Method } & ::=\operatorname{method}(b, \omega, i, \varphi, \underline{P}, S) \\
K \in \text { Constructor }::=\operatorname{constructor}(C, \varphi, \underline{P}, S)
\end{array}
$$

Specifications. Methods and constructors can be annotated with a specification. Specifications consist of a pre-condition, a post-condition and an exceptional post-condition. Such specifications can be used by the verification back-end to verify whether the method or constructor satisfies its specification.

$$
\begin{gathered}
\varphi \in \text { Specification }::=\text { specification }\left(E_{1}, E_{2}, E_{3}\right) \\
\frac{\Gamma \vdash E_{1}: \text { bool } \Gamma \vdash E_{2}: \text { bool } \Gamma \vdash E_{3}: \text { bool }}{\Gamma \vdash \text { specification }\left(E_{1}, E_{2}, E_{3}\right) \mathbf{o k}}
\end{gathered}
$$

(SSEM - specification)

Formal Parameters. Formal parameters are a part of the type definition of methods and constructors. They define which arguments must be passed to the method or constructor when invoked. The formal parameters can be used as local variables inside the body of the method or constructor.

$$
P \in \text { FormalParameter }::=\operatorname{param}(\tau, i)
$$

3.6.2 Fields

Fields are members of a class which make up the data of classes and objects. Fields can be either static or non-static. Static fields are global variables and non-static fields are variables of a specific object.

$$
F \in \text { Field }::=\operatorname{field}(b, \tau, i)
$$

3.7 Statements

Below is the complete list of statements in the abstract syntax of OOX.

$$
\begin{aligned}
& S \in \text { Statement }::=\operatorname{declare}(\tau, i) \\
& \operatorname{assign}(t, v) \\
& \mid \operatorname{call}(I) \\
& \mid \operatorname{skip} \\
& \mid \operatorname{assert}(E) \\
& \operatorname{assume}(E) \\
& \mid \operatorname{while}(E, S) \\
& \mid \operatorname{ite}\left(E, S_{1}, S_{2}\right) \\
& \mid \operatorname{continue} \\
& \mid \operatorname{break} \\
& \operatorname{return} \\
& \mid \operatorname{return}(E) \\
& \mid \operatorname{throw} \\
& \mid \operatorname{try}\left(S_{1}, S_{2}\right) \\
& \mid \operatorname{block}(S) \\
& \mid \operatorname{lock}(i) \\
& \mid \operatorname{unlock}(i) \\
& \operatorname{join} \\
& \mid \operatorname{fork}(I) \\
& \mid \operatorname{seq}\left(S_{1}, S_{2}\right) \\
& \mid \operatorname{pop}
\end{aligned}
$$

3.7.1 Variable Declarations

Variable declarations introduce a new variable, which are declared in the stack. The default value of the corresponding type will be assigned to the variable.

$$
\text { declare }: \text { NonVoidType } \times \text { Identifier } \rightarrow \text { Statement }
$$

Variable declaration are valid in the static semantics if there exist no variable with the same name, i.e. variable shadowing is not allowed.

$$
\frac{i: \tau \notin \Gamma}{\Gamma \vdash \operatorname{declare}(\tau, i) \mathbf{o k}}
$$

(SSEM - variable declaration)

$$
\overline{\langle\operatorname{declare}(\tau, i),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\langle\text { skip, }(\sigma[i \mapsto \operatorname{default}(\tau)], h)\rangle}
$$

(DSEM - variable declaration)

3.7.2 Assignment Statements

Assignment statements update the value of a variable, field or array element. An assignment consists of two parts: the left-hand side and the right-hand side.

$$
\text { assign : Lhs } \times \text { Rhs } \rightarrow \text { Statement }
$$

Assignment statements are valid in the static semantics if the types of the left-hand side and the right-hand side match.

$$
\frac{\Gamma \vdash t: \tau \quad \Gamma \vdash v: \tau}{\Gamma \vdash \operatorname{assign}(t, v) \mathbf{o k}}
$$

(SSEM - assignment)

$$
\begin{aligned}
& v=r h s_{\text {call }}(I) \\
& v^{\prime}=r h s_{\text {expr }}\left(\operatorname{var}\left(\text { retval }^{\prime}\right)\right) \\
& \frac{S^{\prime}=\operatorname{seq}\left(\operatorname{call}(I), \operatorname{assign}\left(t, v^{\prime}\right)\right)}{\langle\operatorname{assign}(t, v),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle S^{\prime},(\sigma, h)\right\rangle} \\
& \langle v,(\sigma, h)\rangle \underset{r h s}{\longrightarrow}\left\langle v^{\prime}, h^{\prime}\right\rangle \\
& \frac{\left\langle t, v^{\prime},\left(\sigma, h^{\prime}\right)\right\rangle \underset{\text { lhs }}{\longrightarrow}\left\langle\left(\sigma^{\prime \prime}, h^{\prime \prime}\right)\right\rangle}{\langle\operatorname{assign}(t, v),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\text { skip },\left(\sigma^{\prime \prime}, h^{\prime \prime}\right)\right\rangle} \\
& \frac{\langle v,(\sigma, h)\rangle \underset{r h s}{\longrightarrow}\left\langle\perp_{h^{\prime}}\right\rangle}{\langle\operatorname{assign}(t, v),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{h^{\prime}}\right\rangle} \\
& \langle v,(\sigma, h)\rangle \underset{r h s}{\longrightarrow}\left\langle v^{\prime}, h^{\prime}\right\rangle \\
& \frac{\left\langle t, v^{\prime},\left(\sigma, h^{\prime}\right)\right\rangle \underset{\text { lhs }}{\longrightarrow}\left\langle\perp_{h^{\prime \prime}}\right\rangle}{\langle\operatorname{assign}(t, v),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{h^{\prime \prime}}\right\rangle} \\
& \text { (DSEM - assignment: invocation rhs) } \\
& \text { (DSEM - assignment: non-invocation rhs) } \\
& \text { (DSEM - assignment: exception rhs) } \\
& \text { (DSEM - assignment: exception lhs) }
\end{aligned}
$$

Left-Hand Side

The left-hand side of an assignment determines the memory location in which the value will be written. The left-hand side can be either: a variable, a field of an object or an element of an array.

$$
\begin{aligned}
& t \in L h s::=l h s_{\text {var }}(i) \\
& \mid l h s_{\text {field }}(i, F) \\
& \mid l h s_{\text {elem }}(i, E)
\end{aligned}
$$

Variable Target. Variable targets allow for writing a value to a variable declared on the stack. For example, in the assignment $\mathrm{x}:=\mathrm{e}$; , the expression e is written to the variable target x .

$$
l h s_{v a r}: \text { Identifier } \rightarrow \text { Lhs }
$$

A variable target is valid in the static semantics when the variable is declared.

$$
\begin{array}{cc}
\frac{i: \tau \in \Gamma}{\Gamma \vdash l h s_{v a r}(i): \tau} & \text { (SSEM - variable target) } \\
\frac{\left\langle l h s_{v a r}(i), v,(\sigma, h)\right\rangle \underset{l h s}{\longrightarrow}\langle(\sigma[i \mapsto v], h)\rangle}{} & \text { (DSEM - variable target) }
\end{array}
$$

Object Field Target. Object field targets allow for targeting a field of an object. For example, in the assignment x.f $:=e$; the expression e is written to the object field target $\mathrm{x} . \mathrm{f}$ of which f is the field and x is the variable.

$$
l h s_{\text {field }}: \text { Identifier } \times \text { Field } \rightarrow \text { Lhs }
$$

An object field target is valid in the static semantics when the variable is declared and its type is a class. This class must contain the field that is targeted.

$$
\begin{aligned}
& i: \tau \in \Gamma \\
& \tau=\operatorname{ref}\left(\operatorname{class}\left({ }_{-}, \quad, \underline{F}\right)\right) \\
& \frac{F=\operatorname{field}\left(\tau^{\prime},,-\underline{F}\right.}{\Gamma \vdash \operatorname{lh}_{\text {field }}(i, F): \tau^{\prime}} \\
& \frac{\left.\sigma(i)=\operatorname{ref}_{x} \quad h\left(\operatorname{ref}_{x}\right)=\mathcal{O} \quad F=\operatorname{field}^{(}, i^{\prime}\right)}{\left\langle l h s_{f_{\text {ield }}}(i, F), v,(\sigma, h)\right\rangle \underset{\text { lhs }}{\longrightarrow}\left\langle\left(\sigma, h\left[r e f_{x} \mapsto \mathcal{O}\left[i^{\prime} \mapsto v\right]\right]\right)\right\rangle} \quad \quad \text { (DSEM - field target) } \\
& \frac{\sigma(i)=\text { null }}{\left\langle l \operatorname{lhf}_{\text {field }}(i, F), v,(\sigma, h)\right\rangle \underset{l h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - field target: null dereference) }
\end{aligned}
$$

Array Element Target. Array element targets allow for targeting an element of an array. For example, in the assignment a[i] := e; the expression e is written to the array element target a[i] of which a is the variable and [i] is the specific element that is targeted.

$$
\text { lhs }_{\text {elem }}: \text { Identifier } \times \text { Expression } \rightarrow \text { Lhs }
$$

An array element target is valid in the static semantics when the index is of type int and the variable is a declared variable of type array.

$$
\begin{gathered}
\Gamma \vdash E: \text { int } \\
\frac{i: \operatorname{array}(\tau) \in \Gamma}{\Gamma \vdash l h s_{\text {elem }}(i, E): \tau}
\end{gathered}
$$

(SSEM - element target)

$$
\begin{aligned}
& \mathcal{E} \llbracket E \rrbracket(\sigma, h)=e \neq \perp \\
& \sigma(i)=r e f_{x} \\
& h\left(r e f_{x}\right)=\mathcal{O}=\left[\text { elem }_{0} \mapsto v_{0}, \ldots, \text { elem }_{n} \mapsto v_{n}\right) \\
& \frac{0 \leq e<n}{\left\langle\text { lhs }_{\text {elem }}(i, E), v,(\sigma, h)\right\rangle \underset{\text { lhs }}{\longrightarrow}\left\langle\left(\sigma, h\left[r e f_{x} \mapsto \mathcal{O}\left[\text { elem }_{e} \mapsto v\right]\right]\right)\right\rangle} \\
& \mathcal{E} \llbracket E \rrbracket(\sigma, h)=e \neq \perp \\
& \sigma(i)=r e f_{x} \\
& h\left(r e f_{x}\right)=\mathcal{O}=\left[\text { elem }_{0} \mapsto v_{0}, \ldots, \text { elem }_{n} \mapsto v_{n}\right) \\
& \frac{e<0 \vee e \geq n}{\left\langle\text { lhs }_{\text {elem }}(i, E), v,(\sigma, h)\right\rangle \underset{\text { lhs }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \\
& \text { (DSEM - element target: outside bounds) } \\
& \frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\left\langle\operatorname{lhs}_{\text {elem }}(i, E), v,(\sigma, h)\right\rangle \underset{\text { lhs }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \\
& \mathcal{E} \llbracket E \rrbracket(\sigma, h)=e \neq \perp \\
& \frac{\sigma(i)=\text { null }}{\left\langle\operatorname{lhs}_{\text {elem }}(i, E), v,(\sigma, h)\right\rangle \underset{\text { lhs }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \\
& \text { (DSEM - element target: evaluation exception) }
\end{aligned}
$$

Right-Hand Side

The right-hand side of an assignment determines the value that will be assigned to the lefthand side. The right-hand side can be either: an expression, a field of an object, a method- or constructor call, an array element or the instantiation of a new array.

$$
\begin{aligned}
v \in R h s::= & \operatorname{rrs}_{\text {expr }}(E) \\
\mid & r h s_{\text {field }}(i, F) \\
& \mid r h s_{\text {call }}(I) \\
& \mid r h s_{\text {elem }}(i, E) \\
& \mid r h s_{\text {array }}(\tau, \underline{E})
\end{aligned}
$$

Expression Values. Expression values are used to assign the evaluated expression to the lefthand side. For example, in the assignment $\mathrm{x}:=\mathrm{y}+1$;, the evaluated expression $\mathrm{y}+1$ will be assigned to the left-hand side.

$$
\begin{aligned}
& r h s_{\text {expr }}: \text { Expression } \rightarrow R h s \\
& \frac{\Gamma \vdash E: \tau}{\Gamma \vdash r h s_{\text {expr }}(E): \tau}
\end{aligned}
$$

(SSEM - expression value)

$$
\begin{gathered}
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=v \neq \perp}{\left\langle r h s_{\text {expr }}(E),(\sigma, h)\right\rangle \underset{l h s}{\longrightarrow}\langle v, h\rangle} \quad \text { (DSEM - expression value) } \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\left\langle r h s_{\text {expr }}(E),(\sigma, h)\right\rangle \underset{l h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - expression value: evaluation exception) }
\end{gathered}
$$

Field Values. Field values are used to assign the value of a field of an object to the left-hand side. For example, in the assignment $x:=y . f ;$, the evaluated field value y.f of field f of variable y will be assigned to the left-hand side.

$$
r h s_{\text {field }}: \text { Identifier } \times \text { Field } \rightarrow \text { Rhs }
$$

A field value is valid in the static semantics when the variable is declared and its type is a class. This class must contain the field that is targeted.

$$
\begin{aligned}
& i: \operatorname{ref}\left(\operatorname{class}\left(_, \quad, \underline{F}\right)\right) \in \Gamma \\
& \frac{F=\operatorname{field}\left(\tau,{ }_{-}\right) \in \underline{F}}{\Gamma \vdash r \operatorname{rhfield}(i, F): \tau} \\
& \frac{\sigma(i)=r e f_{x} \quad h\left(r e f_{x}\right)=\mathcal{O} \quad \mathcal{O}\left(i^{\prime}\right)=v}{\left\langle r h s_{\text {field }}\left(i, \operatorname{field}^{\prime}\left(, i^{\prime}\right)\right),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\langle v, h\rangle} \\
& \frac{\sigma(i)=\text { null }}{\left\langle r h s_{\text {field }}(i, F),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - field value: null dereference) }
\end{aligned}
$$

Call Result Values. Call result values are used to assign the return value of the method or constructor call to the left-hand side. For example, in the assignment $\mathrm{x}:=\mathrm{Math} . \min (\mathrm{a}, \mathrm{b})$; , the return value of the method call $\operatorname{Math} \cdot \min (\mathrm{a}, \mathrm{b})$ will be assigned to the left-hand side.

$$
r h s_{\text {call }}: \text { Invocation } \rightarrow \text { Rhs }
$$

A call result value is valid in the static semantics when the invocation I is valid in the static semantics. See Subsection 3.7 .3 for more information.

$$
\frac{\Gamma \vdash I: \operatorname{type}(\tau)}{\Gamma \vdash r h s_{\operatorname{call}}(I): \tau} \quad \text { (Static semantics of call result value) }
$$

Note that the dynamic semantics of call result values are handled in the dynamic semantics of assignment itself. See Subsection 3.7 .2 for more information.

Array Element Values. Array element values are used to assign an element of an array to the left-hand side. For example, in the assignment $\mathrm{x}:=\mathrm{a}[\mathrm{i}]$;, the evaluated array element a[i] of element i of array a will be assigned to the left-hand side.

$$
\text { rhs }{ }_{\text {elem }}: \text { Identifier } \times \text { Expression } \rightarrow \text { Rhs }
$$

An array element value is valid in the static semantics when the index expression is of type int and the variable is an existing variable of array type.

$$
\begin{aligned}
& \Gamma \vdash E \text { : int } \\
& \frac{i: \operatorname{array}(\tau) \in \Gamma}{\Gamma \vdash r h s_{\text {elem }}(i, E): \tau} \\
& \mathcal{E} \llbracket E \rrbracket(\sigma, h)=e \neq \perp \\
& \sigma(i)=r e f_{x} \\
& h\left(\text { ref }_{x}\right)=\mathcal{O}=\left[\text { elem }_{0} \mapsto v_{0}, \ldots, \text { elem }_{n} \mapsto v_{n}\right) \\
& \frac{0 \leq e<n}{\left\langle r h s_{\text {elem }}(i, E),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle v_{e}, h\right\rangle} \\
& \mathcal{E} \llbracket E \rrbracket(\sigma, h)=e \neq \perp \\
& \sigma(i)=r e f_{x} \\
& h\left(\text { ref }_{x}\right)=\left[\text { elem }_{0} \mapsto v_{0}, \ldots, \text { elem }_{n} \mapsto v_{n}\right) \\
& \frac{e<0 \vee e \geq n}{\left\langle r h s_{\text {elem }}(i, E),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - array element value: outside bounds) } \\
& \frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\left\langle r h s_{\text {elem }}(i, E),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - array element value: evaluation exception) } \\
& \begin{array}{c}
\mathcal{E} \llbracket E \rrbracket(\sigma, h)=e \neq \perp \\
\frac{\sigma(i)=\text { null }}{\left\langle r h s_{\text {elem }}(i, E),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - array element value: null dereference) }
\end{array}
\end{aligned}
$$

Array Instantiation. Array instantiation can be used to assign a newly allocated array to the left-hand side. For example, in the assignment $\mathrm{x}:=$ new int[3];, a new array of size 3 containing elements of type int will be assigned to the left-hand side. There is support for both single- and multidimensional arrays.

$$
\text { rhs array }: \text { Non VoidType } \times[\text { Expression }] \rightarrow \text { Rhs }
$$

An array instantiation is valid in the static semantics when each size is of type int and is at least one-dimensional.

$$
\begin{gathered}
|\underline{E}| \geq 1 \\
\frac{\Gamma \vdash \underline{E}_{1}: \text { int } \ldots \quad \Gamma \vdash \underline{E}_{n}: \text { int }}{\Gamma \vdash r h s_{\text {array }}(\tau, \underline{E}): \operatorname{array}^{\circ n}(\tau)} \quad \text { (SSEM - array instantiation) }
\end{gathered}
$$

$$
\begin{aligned}
& |\underline{E}|>1 \\
& \operatorname{alloc}(h)=\text { ref }_{\text {fresh }} \\
& 0<s=\mathcal{E} \llbracket \underline{E}_{1} \rrbracket(\sigma, h) \neq \perp \\
& \underline{E}^{\prime}=\left[\underline{E}_{2}, \ldots, \underline{E}_{n}\right] \\
& \tau=\operatorname{array}\left(\tau^{\prime}\right) \\
& \left\langle r h s_{\text {array }}\left(\tau^{\prime}, \underline{E}^{\prime}\right),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle r e f_{0}, h_{0}\right\rangle \quad \ldots \quad\left\langle r h s_{\text {array }}\left(\tau^{\prime}, \underline{E}^{\prime}\right),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle r e f_{s-1}, h_{s-1}\right\rangle \\
& h^{\prime}=\cup_{i=0}^{s-1} h_{i} \\
& \left.\left.\frac{\mathcal{O}=\left[\text { elem }_{0} \mapsto \text { ref }_{0}, \ldots, \text { elem }_{s} \mapsto \text { ref }_{s}\right)}{\left\langle\text { rhs }_{\text {array }}(\tau, \underline{E}),(\sigma, h)\right\rangle \underset{r \text { rhs }}{\longrightarrow}\left\langle\text { ref fresh }, h^{\prime}[\text { ref fresh }\right.} \mapsto \mathcal{O}\right]\right\rangle \\
& \text { (DSEM - array instantiation: multi-dimensional) } \\
& |\underline{E}|=1 \\
& \operatorname{alloc}(h)=\text { ref }_{\text {fresh }} \\
& 0<s=\mathcal{E} \llbracket \underline{E}_{1} \rrbracket(\sigma, h) \neq \perp
\end{aligned}
$$

$$
\begin{aligned}
& \text { (DSEM - array instantiation: one dimension) }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\mathcal{E} \llbracket \underline{E}_{1} \rrbracket(\sigma, h)=\perp}{\left\langle r h s_{\text {array }}(\tau, \underline{E}),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \\
\frac{\exists E \in \underline{E}: \mathcal{E} \llbracket E \rrbracket(\sigma, h) \leq 0}{\langle\text { (DSEM - array instantiation: evaluation exception) }} \\
\frac{\left.\exists r s_{\text {array }}(\tau, \underline{E}),(\sigma, h)\right\rangle \underset{r h s}{\longrightarrow}\left\langle\perp_{h}\right\rangle}{} \quad \text { (DSEM - array instantiation: non-positive size) }
\end{gathered}
$$

3.7.3 Method Call Statements

Method call statements provide a way to execute the statements of a static or non-static method with the formal parameters set the arguments.

$$
\begin{array}{cr}
\text { call }: \text { Invocation } \rightarrow \text { Statement } & \\
\frac{\Gamma \vdash I: \omega}{\Gamma \vdash \operatorname{call}(I) \text { ok }} & \text { (SSEM - method call) } \\
\frac{\langle I,(\sigma, h)\rangle \underset{\text { inv }}{\longrightarrow}\left\langle S,\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle}{\langle\operatorname{call}(I),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\operatorname{seq}(S, \text { pop }),\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle} \\
\frac{\langle I,(\sigma, h)\rangle \xrightarrow[\text { inv }]{\longrightarrow}\left\langle\perp_{h^{\prime}}\right\rangle}{\langle\operatorname{call}(I),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{\left.h^{\prime}\right\rangle}\right.} & \text { (DSEM - method call) }
\end{array}
$$

Invocations

An invocation is the process of executing the body of a constructor or method, and assigning the arguments to the formal parameters.

$$
\begin{aligned}
& I \in \text { Invocation }::=\operatorname{invoke}(i, M, \underline{E}) \\
& \mid \operatorname{invoke}(C, M, \underline{E}) \\
& \mid \operatorname{invoke}(K, \underline{E})
\end{aligned}
$$

Non-Static Method Invocations. Non-static method invocations execute the body of a non-static method.

$$
\text { invoke : Identifier } \times \text { Method } \times[\text { Expression }] \rightarrow \text { Invocation }
$$

Non-static invocations are valid in the static semantics when the variable on which the method is called is a class type that contains the method that is called, and when the types of the formal parameters match that of the arguments.

$$
\begin{aligned}
& M=\operatorname{method}\left(\mathrm{false}, \omega,{ }_{-}, \quad, \underline{P}, S\right) \\
& |\underline{P}|=|\underline{E}| \\
& i: \operatorname{ref}(C) \in \Gamma \\
& C=\operatorname{class}\left(\underline{M},{ }_{-},{ }_{-}\right) \\
& M \in \underline{M} \\
& \underline{\tau}=\left[\tau \mid \operatorname{param}\left(\tau,{ }_{-}\right) \in \underline{P}\right] \\
& \forall j \in\{1, \ldots,|\underline{E}|\}: \Gamma \vdash \underline{E}_{j}: \underline{\tau}_{j} \\
& \Gamma \vdash \text { this: } r e f(C) \text { ok in } S \\
& \frac{\forall \operatorname{param}\left(\tau_{p}, x_{p}\right) \in \underline{P}: \Gamma \vdash x_{p}: \tau_{p} \text { ok in } S}{\Gamma \vdash \operatorname{invoke}(i, M, \underline{E}): \omega} \\
& \sigma(i) \neq \text { null } \\
& M=\operatorname{method}\left({ }_{-},{ }_{-},{ }_{-}, \quad, \underline{P}, S\right) \\
& v_{1} \neq \perp=\mathcal{E} \llbracket \underline{E}_{1} \rrbracket(\sigma, h) \quad \ldots \quad v_{n} \neq \perp=\mathcal{E} \llbracket \underline{E}_{n} \rrbracket(\sigma, h) \\
& \underline{P}=\left[\operatorname{param}\left(_, x_{1}\right), \ldots, \operatorname{param}\left(_, x_{n}\right)\right] \\
& \frac{\sigma^{\prime}=\operatorname{push}(\sigma)\left[\text { this } \mapsto i, x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right]}{\langle\operatorname{invoke}(i, M, \underline{E}),(\sigma, h)\rangle \underset{i n v}{\longrightarrow}\left\langle S,\left(\sigma^{\prime}, h\right)\right\rangle} \quad \text { (DSEM - non-static invocation) } \\
& \frac{\sigma(i)=\mathrm{null}}{\langle\text { invoke }(i, M, \underline{E}),(\sigma, h)\rangle \underset{\text { inv }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - non-static invocation: null dereference) } \\
& \frac{\exists E \in \underline{E}: \mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\langle\text { invoke }(i, M, \underline{E}),(\sigma, h)\rangle \underset{\text { inv }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - non-static invocation: evaluation exception) }
\end{aligned}
$$

Static Method Invocations. Static method invocations execute the body of a static method.

$$
\text { invoke : Class } \times \text { Method } \times[\text { Expression }] \rightarrow \text { Invocation }
$$

Static invocations are valid in the static semantics when the class the method is called on exists and contains the method that is called. The types of the formal parameters must match that of the arguments.

$$
\begin{aligned}
& M=\operatorname{method}\left(\text { true }, \omega,_{-}, \quad, \underline{P}, S\right) \\
& |\underline{P}|=|\underline{E}| \\
& C=\operatorname{class}\left(\underline{M},{ }_{-},{ }_{-}\right) \\
& M \in \underline{M} \\
& \underline{\tau}=\left[\tau \mid \operatorname{param}\left(\tau,{ }_{-}\right) \in \underline{P}\right] \\
& \forall j \in\{1, \ldots,|\underline{E}|\}: \Gamma \vdash \underline{E}_{j}: \underline{\tau}_{j} \\
& \frac{\forall \operatorname{param}\left(\tau_{p}, x_{p}\right) \in \underline{P}: \Gamma \vdash x_{p}: \tau_{p} \text { ok in } S}{\Gamma \vdash \operatorname{invoke}(C, M, \underline{E}): \omega} \\
& M=\operatorname{method}\left({ }_{-},,_{-},{ }_{-}, \underline{P}, S\right) \\
& v_{1} \neq \perp=\mathcal{E} \llbracket \underline{E}_{1} \rrbracket(\sigma, h) \quad \ldots \quad v_{n} \neq \perp=\mathcal{E} \llbracket \underline{E}_{n} \rrbracket(\sigma, h) \\
& \underline{P}=\left[\operatorname{param}\left(_, x_{1}\right), \ldots, \operatorname{param}\left(_, x_{n}\right)\right] \\
& \frac{\sigma^{\prime}=\operatorname{push}(\sigma)\left[x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right]}{\langle\operatorname{invoke}(C, M, \underline{E}),(\sigma, h)\rangle \underset{\text { inv }}{\longrightarrow}\left\langle S,\left(\sigma^{\prime}, h\right)\right\rangle} \\
& \text { (DSEM - static invocation) } \\
& \frac{\exists E \in \underline{E}: \mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\langle\text { invoke }(C, M, \underline{E}),(\sigma, h)\rangle \underset{\text { inv }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \\
& \text { (DSEM - static invocation: evaluation exception) }
\end{aligned}
$$

Constructor Invocations. Constructor invocations execute the body of a constructor after which it returns a newly allocated object.

$$
\text { invoke }: \text { Constructor } \times[\text { Expression }] \rightarrow \text { Invocation }
$$

Constructor invocations are valid in the static semantics when the class the constructor is called on exists and contains the constructor that is called. The types of the formal parameters must match that of the arguments.

$$
\begin{gathered}
K=\operatorname{constructor}\left(C,_{-}, \underline{P}, S\right) \\
|\underline{P}|=|\underline{E}| \\
\underline{\tau}=\left[\tau \mid \operatorname{param}\left(\tau,,_{-}\right) \in \underline{P}\right] \\
\forall j \in\{1, \ldots,|\underline{E}|\}: \Gamma \vdash \underline{E}_{j}: \underline{\tau}_{j} \\
\Gamma \vdash \operatorname{this}: \operatorname{ref}(C) \text { ok in } S \\
\forall \operatorname{param}\left(\tau_{p}, x_{p}\right) \in \underline{P}: \Gamma \vdash x_{p}: \tau_{p} \text { ok in } S \\
\Gamma \vdash \operatorname{invoke}(K, \underline{E}): \operatorname{type}(\operatorname{ref}(C))
\end{gathered}
$$

(SSEM - constructor invocation)

$$
\begin{aligned}
& \operatorname{alloc}(h)=\text { ref }_{f r e s h} \\
& K=\operatorname{constructor}(C, \quad, \underline{P}, S) \\
& C=\operatorname{class}\left(__{,}, \underline{F}\right) \\
& \mathcal{O}=[x \mapsto \operatorname{default}(\tau) \mid \text { field }(\tau, x) \in \underline{F}] \\
& v_{1} \neq \perp=\mathcal{E} \llbracket \underline{E}_{1} \rrbracket(\sigma, h) \quad \ldots \quad v_{n} \neq \perp=\mathcal{E} \llbracket \underline{E}_{n} \rrbracket(\sigma, h) \\
& \underline{P}=\left[\operatorname{param}\left(__{-}, x_{1}\right), \ldots, \operatorname{param}\left({ }_{-}, x_{n}\right)\right] \\
& \frac{\sigma^{\prime}=\operatorname{push}(\sigma)\left[\text { this } \mapsto \operatorname{ref}_{\text {fresh }}, x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right]}{\langle\text { invoke }(K, \underline{E}),(\sigma, h)\rangle \underset{\text { inv }}{\longrightarrow}\left\langle S,\left(\sigma^{\prime}, h\left[r e f_{\text {fresh }} \mapsto \mathcal{O}\right]\right)\right\rangle} \\
& \text { (DSEM - constructor invocation) } \\
& \frac{\exists E \in \underline{E}: \mathcal{E} \llbracket \mathbb{E} \rrbracket(\sigma, h)=\perp}{\langle\text { invoke }(K, \underline{E}),(\sigma, h)\rangle \overrightarrow{\text { inv }}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - constructor invocation: evaluation exception) }
\end{aligned}
$$

3.7.4 Skip Statements

A skip statement performs no operation.
skip : Statement

The dynamic semantics of skip statements is handled in the program execution. When a skip statement is single last statement of a thread, the thread is terminated. See Section 3.5 for more information.

3.7.5 Assert Statements

An assert statement instructs the verification back-end to verify whether the given expression is valid or not. If this is the case, the execution continues as normal, otherwise, the execution halts.

$$
\text { assert }: \text { Expression } \rightarrow \text { Statement }
$$

An assert statement is valid in the static semantics if the assertion is of type bool.

$$
\begin{array}{cc}
\frac{\Gamma \vdash E: \text { bool }}{\Gamma \vdash \operatorname{assert}(E) \text { ok }} & \text { (SSEM - assert) } \\
\langle\operatorname{assert}(E),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\langle\text { skip, }(\sigma, h)\rangle & \text { (DSEM - assert) }
\end{array}
$$

3.7.6 Assume Statements

An assume statement instructs the verification back-end to assume that the given expression holds in the rest of the execution.

$$
\text { assume }: \text { Expression } \rightarrow \text { Statement }
$$

An assume statement is valid in the static semantics if the assumption is of type bool.

$$
\begin{array}{cc}
\frac{\Gamma \vdash E: \text { bool }}{\Gamma \vdash \operatorname{assume}(E) \mathbf{o k}} & \text { (SSEM - assume) } \\
\langle\text { assume }(E),(\sigma, h)\rangle \xrightarrow[\text { stat }]{\longrightarrow}\langle\text { skip },(\sigma, h)\rangle & \text { (DSEM - assume) }
\end{array}
$$

3.7.7 While Statements

A while statement executes the body of the loop as long as the guard evaluates to true.

$$
\text { while }: \text { Expression } \times \text { Statement } \rightarrow \text { Statement }
$$

A while statement is valid in the static semantics when the guard is of type bool.

$$
\begin{array}{cc}
\frac{\Gamma \vdash E: \text { bool }}{\Gamma \vdash \text { while }(E, S) \mathbf{o k}} & \quad \text { (SSEM - while) } \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\operatorname{true}}{\langle\text { while }(E, S),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\langle\operatorname{seq}(S, \text { while }(E, S)),(\sigma, h)\rangle} & \text { (DSEM - while: true case) } \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\text { false }}{\langle w h i l e(E, S),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\langle\text { skip },(\sigma, h)\rangle} & \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\langle w h i l e(E, S),(\sigma, h)\rangle \underset{\text { stat }}{\perp}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - while: false case) }
\end{array}
$$

3.7.8 If-Then-Else Statements

An if-then-else statement allows for conditional execution of statements.

$$
\text { ite }: \text { Expression } \times \text { Statement } \times \text { Statement } \rightarrow \text { Statement }
$$

A if-then-else statement is valid in the static semantics when the guard is of type bool.

$$
\begin{gathered}
\frac{\Gamma \vdash E: \text { bool }}{\Gamma \vdash \text { ite }\left(E, S_{1}, S_{2}\right) \mathbf{o k}} \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\mathrm{true}}{\left.\overrightarrow{\langle i t e(}\left(E, S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle S_{1},(\sigma, h)\right\rangle} \quad \text { (SSEM - if-then-else) } \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\mathrm{false}}{\left\langle\text { ite }\left(E, S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle S_{2},(\sigma, h)\right\rangle} \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\left\langle\text { ite }\left(E, S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{ }\left\langle\perp_{\left.h^{\prime}\right\rangle}\right.} \quad \text { (DSEM - if-then-else: true case) } \\
\text { (DSEM - if-then-else: guard evaluation exception) }
\end{gathered}
$$

3.7.9 Continue and Break Statements

The continue and break statements affect the control flow when placed inside a while loop. Both statements can only be placed within the body of a while loop.

Continue Statements. A continue statement transfers the control flow to the guard of the loop in which it is embedded.

> continue : Statement

$$
\overline{\Gamma \vdash \text { continue ok in } S \text { of } \text { while }(E, S)}
$$

(SSEM - continue)

Break Statements. A break statement transfers the control flow to the statement that comes after the loop in which it is embedded. For example, in the program while(e) break; x := 1;, the break statement transfers the control flow to the statement $\mathrm{x}:=1$;
break: Statement

$$
\overline{\Gamma \vdash \text { break ok in } S \text { of while }(E, S)}
$$

3.7.10 Return Statements

Return statements allow for the returning of values inside methods and constructors. A return statement transfers the control flow back to the statement that contained the method call. There are two kind of return statements: one that only terminates the current method, and one that terminates the current method and returns a value.

The first kind of return statement is defined as
return : Statement

The first kind of return statement is valid in the static semantics when the return type of the method call the return statement is contained in is of type void.

$$
\begin{array}{cc}
\frac{\omega=\text { void }}{\Gamma \vdash \text { return ok in } S \text { of } \operatorname{method}(\omega, i, \underline{P}, S)} \\
\frac{\text { (SSEM - return) }}{} & \\
& \text { (DSEM - return) }
\end{array}
$$

The second kind of return statement is defined as

$$
\text { return }: \text { Expression } \rightarrow \text { Statement }
$$

The second kind of return statement is valid in the static semantics when the return type of the method call the return statement is contained in matches that of the supplied expression.

$$
\begin{array}{cc}
\frac{\omega=\operatorname{type}(\tau) \quad \Gamma \vdash E: \tau}{\Gamma \vdash \operatorname{return}(E) \text { ok in } S \text { of method }(\omega, i, \underline{P}, S)} \\
\left.\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=v \neq \perp}{\langle r e t u r n}(E),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\text { skip, }\left(\sigma\left[\text { retval }^{\prime} \mapsto v\right], h\right)\right\rangle & \text { (SSEM - return) } \\
\frac{\mathcal{E} \llbracket E \rrbracket(\sigma, h)=\perp}{\langle\operatorname{return}(E),(\sigma, h)\rangle \underset{\text { stat }}{\perp}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - return) } \\
&
\end{array}
$$

3.7.11 Throw Statements

Throw statements are used to transfer the control flow to the exceptional state. When this exceptional state is encapsulated within a try-catch statement, the control flow is transferred to the corresponding catch block.
throw : Statement

$$
\overline{\langle\text { throw, }(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{h}\right\rangle}
$$

(DSEM - throw)

3.7.12 Try Statements

Try statements allow for handling exceptional states.

$$
\begin{gathered}
\text { try: Statement } \times \text { Statement } \rightarrow \text { Statement } \\
\frac{\left\langle S_{1},(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle S_{1}^{\prime},\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle \quad S_{1}^{\prime} \neq \text { skip }}{\left\langle\operatorname{try}\left(S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\operatorname{try}\left(S_{1}^{\prime}, S_{2}\right),\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle} \quad \text { (DSEM - try: normal execution) } \\
\frac{\left\langle S_{1},(\sigma, h)\right\rangle \xrightarrow[\text { stat }]{\longrightarrow}\left\langle\text { skip },\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle}{\left\langle\operatorname{try}\left(S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\text { skip },\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle} \\
\begin{array}{l}
\left\langle S_{1},(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{h^{\prime}}\right\rangle \\
\left\langle\operatorname{try}\left(S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle S_{2},\left(\sigma, h^{\prime}\right)\right\rangle
\end{array}
\end{gathered}
$$

3.7.13 Block Statements

Block statements allow for the grouping of statements and introducing new scopes. Variables declared in this new scope are no longer available when the control flow is transferred to the statement that follows the block statement.

$$
\text { block }: \text { Statement } \rightarrow \text { Statement }
$$

A block statement is always valid in the static semantics.

$$
\begin{array}{cc}
\overline{\Gamma \vdash \operatorname{block}(S) \mathbf{o k}} & \text { (SSEM - block) } \\
\frac{\sigma^{\prime}=\operatorname{push}(\sigma)}{\langle\operatorname{block}(S),(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\operatorname{seq}(S, \operatorname{pop}),\left(\sigma^{\prime}, h\right)\right\rangle} & \text { (DSEM - block) }
\end{array}
$$

3.7.14 Lock- and Unlock Statements

Lock and unlock statements allow for locking and unlocking a reference to the heap. When another thread tries to lock this reference, this thread waits until the reference is freed. This type of lock is regularly named a monitor.

$$
\begin{gathered}
\text { lock }: \text { Identifier } \rightarrow \text { Statement } \\
\text { unlock }: \text { Identifier } \rightarrow \text { Statement }
\end{gathered}
$$

The lock and unlock statements are valid in the static semantics when the variable they aim to lock is a reference type.

$$
\begin{array}{cr}
\frac{i: \tau \in \Gamma \quad \tau \prec R E F}{\Gamma \vdash \operatorname{lock}(i) \mathbf{o k}} & \text { (SSEM - lock) } \tag{SSEM-lock}\\
\frac{i: \tau \in \Gamma \quad \tau \prec R E F}{\Gamma \vdash \operatorname{unlock}(i) \text { ok }} & \text { (SSEM - unlock) }
\end{array}
$$

The dynamic semantics of lock- and unlock statements is handled in the program execution. See Section 3.5 for more information.

3.7.15 Join Statements

A join statement lets the current thread wait if and until all child threads have terminated. The dynamic semantics of the join statement is handled in the program execution. See Section 3.5 for more information.

A join statement is always valid in the static semantics.

$$
\begin{equation*}
\overline{\Gamma \vdash \text { join } \mathbf{o k}} \tag{SSEM-join}
\end{equation*}
$$

3.7.16 Fork Statements

A fork statement spawns a new thread starting at the given method invocation.

$$
\begin{gather*}
\text { fork }: \text { Invocation } \rightarrow \text { Statement } \\
\frac{\Gamma \vdash I: \omega}{\Gamma \vdash \operatorname{fork}(I) \mathbf{o k}} \tag{SSEM-fork}
\end{gather*}
$$

The dynamic semantics of fork statements is handled in the program execution. See Section 3.5 for more information.

3.7.17 Sequence Statements

Sequence statements are implicit statements which are used to define two statements one executed after the other.

$$
\begin{aligned}
& \text { seq : Statement } \times \text { Statement } \rightarrow \text { Statement } \\
& \frac{S_{1}=\operatorname{declare}(\tau, i) \quad \Gamma \vdash i: \tau \text { ok in } S_{2}}{\Gamma \vdash \operatorname{seq}\left(S_{1}, S_{2}\right) \text { ok }} \\
& \frac{S_{1} \neq \operatorname{declare}(\tau, i)}{\Gamma \vdash \operatorname{seq}\left(S_{1}, S_{2}\right) \mathbf{o k}} \\
& \frac{\left\langle S_{1},(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle S_{1}^{\prime},\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle \quad S_{1}^{\prime} \neq \text { skip }}{\left\langle\operatorname{seq}\left(S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\operatorname{seq}\left(S_{1}^{\prime}, S_{2}\right),\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle} \quad \quad \text { (DSEM - sequence: statement) } \\
& \frac{\left\langle S_{1},(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\text { skip },\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle}{\left\langle\operatorname{seq}\left(S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle S_{2},\left(\sigma^{\prime}, h^{\prime}\right)\right\rangle} \quad \text { (DSEM - sequence: skip statement) } \\
& \frac{\left\langle S_{1},(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{h}\right\rangle}{\left\langle\operatorname{seq}\left(S_{1}, S_{2}\right),(\sigma, h)\right\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\perp_{h}\right\rangle} \quad \text { (DSEM - sequence: exception) }
\end{aligned}
$$

3.7.18 Pop Statements

Pop statements are implicit statements that pop the top-most stack frame from the stack.
pop : Statement

A pop statement is always valid in the static semantics.

$$
\begin{array}{cc}
\overline{\Gamma \vdash \text { pop ok }} & \text { (SSEM - pop) } \\
\frac{\sigma^{\prime}=p o p(\sigma)\left[\text { retval }^{\prime} \mapsto \sigma\left(\text { retval }^{\prime}\right)\right]}{\langle\text { pop },(\sigma, h)\rangle \underset{\text { stat }}{\longrightarrow}\left\langle\text { skip },\left(\sigma^{\prime}, h\right)\right\rangle} & \text { (DSEM - pop) }
\end{array}
$$

3.8 Expressions

An expression is a sequence of operators and operands which result in a value when evaluated. The complete list of expressions in the abstract syntax of OOX is defined as

```
\(E \in \operatorname{Expression} \quad::=\operatorname{lit}(n)|\operatorname{lit}(z)| \operatorname{lit}(r)|\operatorname{lit}(b)| \operatorname{lit}(s) \mid \operatorname{lit}(c)\)
    \(\mid r e f n\)
    | null
    \(\mid \operatorname{var}(i)\)
    \(\mid\) unop \((E, \oplus)\)
    \(\mid \operatorname{binop}\left(E_{1}, \otimes, E_{2}\right)\)
    | sizeof \((i)\)
    \(\mid \operatorname{ite}\left(E_{1}, E_{2}, E_{3}\right)\)
    \(\mid\) forall \(\left(i_{1}, i_{2}, i_{3}, E\right)\)
    \(\mid \operatorname{exists}\left(i_{1}, i_{2}, i_{3}, E\right)\)
\(n \in\) Nat \(\quad::=\mathbb{N}_{0}\)
\(z \in\) Int \(\quad::=\mathbb{Z}\)
\(r \in\) Real \(\quad::=\mathbb{R}\)
\(b \in\) Bool \(\quad::=\) true | false
\(s \in\) String
\(c \in\) Char
\(\oplus \in\) UnaryOperator \(::=\) ! | -
\(\otimes \in\) BinaryOperator \(::=* \quad|\quad| \%|+|-\)
```



```
    | \(!=|\& \&|| |\) | \(==>\)
```


3.8.1 Literals

OOX defines seven different literals. Below is a complete list of the literals in OOX.

Unsigned Integer Literals. The unsigned integer literals are the constant values that can represent the numbers in \mathbb{N}_{0} up to but not including 2^{32}.

$$
\text { lit }: \text { Nat } \rightarrow \text { Expression }
$$

Signed Integer Literals. The signed integer literals are the constant values that can represent the numbers in \mathbb{Z} from -2^{31} up to but not including 2^{31}.

$$
\text { lit }: \text { Int } \rightarrow \text { Expression }
$$

(SSEM - signed integer literals)

Floating Point Literals. The floating point literals are the constant values that can represent a subset of the numbers in \mathbb{R}.

$$
\text { lit : Real } \rightarrow \text { Expression }
$$

$$
\overline{\Gamma \vdash \operatorname{lit}(r): \text { float }}
$$

(SSEM - floating point literals)

Boolean Literals. The boolean literals are the constant values that represent truth values. That is, they can be either true or false.

$$
\text { lit : Bool } \rightarrow \text { Expression }
$$

$$
\overline{\Gamma \vdash \operatorname{lit}(b): \text { bool }}
$$

(SSEM - boolean literals)

String Literals. The string literals are the constant values that can represent human readable text.

$$
\text { lit : String } \rightarrow \text { Expression }
$$

$$
\overline{\Gamma \vdash \operatorname{lit}(s): \text { string }}
$$

(SSEM - string literals)

Character Literals. The character literals are the constant values that can represent a single human readable character.

$$
\begin{aligned}
& \qquad \text { lit : Char } \rightarrow \text { Expression } \\
& \overline{\Gamma \vdash \operatorname{lit}(c): \operatorname{char}} \quad \text { (SSEM - character literals) }
\end{aligned}
$$

3.8.2 References

A reference, also named pointers in some languages, represents an abstract memory address on the heap.

$$
\begin{aligned}
\text { ref : } & \text { Nat } \rightarrow \text { Expression } \\
& \\
& \frac{\tau \prec R E F}{\Gamma \vdash \operatorname{ref}(n): \tau} \quad \text { (SSEM - references) }
\end{aligned}
$$

The Null Literal. The null literal is a special kind of reference representing a reference that points to nothing on the heap. In other words, an unallocated value.

> null : Expression

$$
\frac{\tau \prec R E F}{\Gamma \vdash \text { null }: \tau}
$$

(SSEM - the null literal)

3.8.3 Variable Access

Variable access allows for the reading of a variable on the stack. For example, the variable x is read in the expression $\mathrm{x}+1$.

$$
\begin{aligned}
& \quad \text { var }: \text { Identifier } \rightarrow \text { Expression } \\
& \frac{i: \tau \in \Gamma}{\Gamma \vdash \operatorname{var}(i): \tau}
\end{aligned}
$$

(SSEM - variable access)

3.8.4 Unary Operators

OOX defines two unary operators: numerical negation, written using the - operator, and boolean negation, written using the ! operator.

$$
\begin{aligned}
& \text { unop : Expression } \times \text { UnaryOperator } \rightarrow \text { Expression } \\
& \begin{array}{ll}
\frac{\Gamma \vdash E: \tau \quad \tau \prec N U M}{\Gamma \vdash \text { unop }(E,-): \tau} & \text { (SSEM - numeric negation) } \\
\frac{\Gamma \vdash E: \text { bool }}{\Gamma \vdash \text { unop }(E,!): \text { bool }} & \text { (SSEM - boolean negation) }
\end{array}
\end{aligned}
$$

3.8.5 Binary Operators

OOX defines four categories of binary operators: arithmetic-, comparison-, equality- and boolean operators.

$$
\text { binop }: \text { Expression } \times \text { BinaryOperator } \times \text { Expression } \rightarrow \text { Expression }
$$

Arithmetic Operators. The arithmetic operators take two numerical operands and when evaluated result in a numerical value. The operators that are defined are: multiplication, division, remainder, addition and subtraction, written using $*, /, \%$, + and - respectively.

$$
\begin{gathered}
\odot \in\{*, /, \%,+,-\} \\
\Gamma \vdash E_{1}: \tau_{1} \quad \tau_{1} \prec N U M \\
\frac{\Gamma \vdash E_{2}: \tau_{2}}{} \quad \tau_{2} \prec N U M \\
\Gamma \vdash \operatorname{binop}\left(E_{1}, \odot, E_{2}\right): \tau_{1}
\end{gathered}
$$

(SSEM - arithmetic operators)

Comparison Operators. The comparison operators take two numerical operands and when evaluated result in a boolean value. The comparison operators that are defined are: less than, less than or equal, greater than and greater than or equal, written using $<,<=,>$ and $>=$ respectively.

$$
\begin{gathered}
\odot \in\{<,<=,>,>=\} \\
\Gamma \vdash E_{1}: \tau_{1} \\
\tau_{1} \prec N U M \\
\Gamma \vdash E_{2}: \tau_{2} \\
\tau_{2} \prec N U M \\
\Gamma \vdash \operatorname{binop}\left(E_{1}, \odot, E_{2}\right): \text { bool }
\end{gathered}
$$

(SSEM - comparison operators)

Equality Operators. The equality operators take two operands that are of equal type and when evaluated result in a boolean value. The equality operators that are defined are: equality, written using $==$, and inequality, written using $!=$.

$$
\frac{\Gamma \vdash E_{1}: \tau \quad \Gamma \vdash E_{2}: \tau \quad \odot \in\{==,!=\}}{\Gamma \vdash \operatorname{binop}\left(E_{1}, \odot, E_{2}\right): \text { bool }}
$$

(SSEM - equality operators)

Boolean Operators. The boolean take two boolean operands and when evaluated result in a boolean value. The boolean operators that are defined are: conjunction, disjunction and implication, written using \&\&, || and ==> respectively.

$$
\frac{\Gamma \vdash E_{1}: \text { bool } \Gamma \vdash E_{2}: \text { bool } \odot \in\{\& \&,| |,==>\}}{\Gamma \vdash \operatorname{binop}\left(E_{1}, \odot, E_{2}\right): \text { bool }} \quad \text { (SSEM }- \text { boolean operators) }
$$

3.8.6 Sizeof Operator

OOX defines a sizeof operator that takes a variable of array type as an operand and results in an integer value. The sizeof operator is written using \#.

$$
\begin{aligned}
& \text { sizeof }: \text { Identifier } \rightarrow \text { Expression } \\
& \frac{i: \operatorname{array}(\tau) \in \Gamma}{\Gamma \vdash \operatorname{sizeof}(i): \operatorname{int}} \quad \text { (SSEM - sizeof operator) }
\end{aligned}
$$

3.8.7 If-Then-Else Operator

OOX defines an if-then-else operator which results either the evaluated second or third expression, depending on the value of the first expression.

$$
\begin{aligned}
& \text { ite }: \text { Expression } \times \text { Expression } \times \text { Expression } \rightarrow \text { Expression } \\
& \frac{\Gamma \vdash E_{1}: \text { bool } \quad \Gamma \vdash E_{2}: \tau \quad \Gamma \vdash E_{3}: \tau}{\Gamma \vdash \text { ite }\left(E_{1}, E_{2}, E_{3}\right): \tau}
\end{aligned}
$$

3.8.8 Quantifiers

OOX defines the two quantifiers from first-order logic: forall and exists. These quantifiers can be used to quantify over the elements and indices of an array.

```
forall : Identifier \(\times\) Identifier \(\times\) Identifier \(\times\) Expression \(\rightarrow\) Expression
\[
\begin{gathered}
i_{3}: \operatorname{array}(\tau) \in \Gamma \\
\Gamma \vdash i_{1}: \tau, i_{2}: \text { int ok in } E \\
\Gamma \vdash E: \text { bool } \\
\frac{\Gamma \vdash \operatorname{forall}\left(i_{1}, i_{2}, i_{3}, E\right): \text { bool }}{}
\end{gathered}
\]
(SSEM - forall quantifiers)
exists : Identifier \(\times\) Identifier \(\times\) Identifier \(\times\) Expression \(\rightarrow\) Expression
\[
\begin{gathered}
i_{3}: \operatorname{array}(\tau) \in \Gamma \\
\Gamma \vdash i_{1}: \tau, i_{2}: \text { int ok in } E \\
\Gamma \vdash E: \text { bool } \\
\hline \vdash \operatorname{exists}\left(i_{1}, i_{2}, i_{3}, E\right): \text { bool }
\end{gathered}
\]
(SSEM - exists quantifiers)
```


3.8.9 The Dynamic Semantics

The dynamic semantics of expressions are defined using a denotational semantics. Let \mathcal{E} be the valuation function

$$
\mathcal{E} \llbracket E \rrbracket: \text { Expression } \times(\text { Stack } \times \text { Heap }) \rightarrow \text { Value }
$$

where

$$
\begin{gathered}
\mathcal{E} \llbracket l i t(x) \rrbracket(\sigma, h)=x \\
\mathcal{E} \llbracket \operatorname{var}(i) \rrbracket(\sigma, h)=\sigma(i) \\
\mathcal{E} \llbracket \text { unop }(E,-) \rrbracket(\sigma, h)=-\mathcal{E} \llbracket E \rrbracket(\sigma, h) \\
\mathcal{E} \llbracket \text { unop }(E,!) \rrbracket(\sigma, h)=\neg \mathcal{E} \llbracket E \rrbracket(\sigma, h)
\end{gathered} \begin{aligned}
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1}, *, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) \cdot \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1}, /, E_{2}\right) \rrbracket(\sigma)= \begin{cases}\perp & \text { if } \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h)=0 \\
\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) / \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) & \text { otherwise }\end{cases} \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1}, \%, E_{2}\right) \rrbracket(\sigma, h)= \begin{cases}\perp & \text { if } \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h)=0 \\
\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)\left(\bmod \mathcal{E} \llbracket E_{2} \rrbracket(\sigma), h\right) & \text { otherwise }\end{cases} \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1},+, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)+\mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1},-, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)-\mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{E} \llbracket \text { binop }\left(E_{1},<, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)<\mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1},<=, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) \leq \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket b i n o p\left(E_{1},>, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)>\mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1},>=, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) \geq \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \text { binop }\left(E_{1},==, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1},!=, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) \neq \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \text { binop }\left(E_{1}, \& \& \in, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) \wedge \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \text { binop }\left(E_{1}, \mid I, E_{2}\right) \rrbracket(\sigma, h)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) \vee \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \operatorname{binop}\left(E_{1},==>, E_{2}\right) \rrbracket(\sigma)=\mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h) \Rightarrow \mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) \\
& \mathcal{E} \llbracket \operatorname{sizeof}(i) \rrbracket(\sigma, h)= \begin{cases}\perp & \text { if } \sigma(i)=\text { null } \\
\operatorname{size}(h(\sigma(i))) & \text { otherwise }\end{cases} \\
& \mathcal{E} \llbracket i t e\left(E_{1}, E_{2}, E_{3}\right) \rrbracket(\sigma, h)= \begin{cases}\mathcal{E} \llbracket E_{2} \rrbracket(\sigma, h) & \text { if } \mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)=\text { true } \\
\mathcal{E} \llbracket E_{3} \rrbracket(\sigma, h) & \text { if } \mathcal{E} \llbracket E_{1} \rrbracket(\sigma, h)=\text { false }\end{cases} \\
& \mathcal{E} \llbracket \text { forall }\left(i_{1}, i_{2}, i_{3}, E\right) \rrbracket(\sigma, h)=\left\{\begin{array}{l}
\perp \\
\wedge_{j=0}^{n-1} \mathcal{E} \llbracket E \rrbracket\left(\sigma\left[i_{1} \mapsto v_{j}, i_{2} \mapsto j\right], h\right)
\end{array}\right. \\
& \mathcal{E} \llbracket \text { exists }\left(i_{1}, i_{2}, i_{3}, E\right) \rrbracket(\sigma, h)=\left\{\begin{array}{l}
\perp \\
\vee_{j=0}^{n-1} \mathcal{E} \llbracket E \rrbracket\left(\sigma\left[i_{1} \mapsto v_{j}, i_{2} \mapsto j\right], h\right)
\end{array}\right. \\
& \text { if } \sigma\left(i_{3}\right)=\text { null } \\
& \text { otherwise } \\
& \text { if } \sigma\left(i_{3}\right)=\text { null } \\
& \text { otherwise }
\end{aligned}
$$

where $h\left(\sigma\left(i_{3}\right)\right)=\mathcal{O}=\left[\right.$ elem $_{0} \mapsto v_{0}, \ldots$, elem $\left._{n} \mapsto v_{n}\right)$

Chapter 4

Symbolic Execution of OOX
 Programs

Symbolic Execution SE was introduced by James C. King [25] as a means of executing a program where some variables are left symbolically, in contrast to concrete values. Symbolic execution has multiple use cases, but in the context of this thesis, symbolic execution is used to verify program correctness. Symbol execution is driven by the Symbolic Execution Engine (SEE), which operates on the Symbolic State (SS).

The Symbolic Execution Engine consists of three main phases, as presented in Figure 4.1. These three phases are: (1) parsing; (2) static analysis; and (3) symbolic execution. In the first two phases, the OOX program is preprocessed to be handled safely during the symbolic execution. That is, the exceptions are inserted as explicit if-then-else statements, the guards if-then-else statements and loops are inserted as explicit assume statements, and the program is verified to be free of syntactical- and (static) semantical errors. The SEE terminates with either a syntactical- or (static) semantical error, or with a verification result, which can be either that the program is considered invalid, valid, will result in a deadlock or that it is unknown.

Figure 4.1: The global architecture of the Symbolic Execution Engine

Example 2 (A quick overview of the SEE). Suppose we have the method as presented in Listing 4.1 and suppose that this method is contained in the class Math. This function takes two int arguments, x and y , and returns the maximum of the two. Its specification describes that the return value must be greater than both x and y, and that te method will not terminate with an exception.
The first step of the SEE is to parse the source code into the AST and apply the syntactical transformations that yield the method as presented in Listing 4.2. See Section 4.1 for more details on the syntactical transformations that are applied.

Listing 4.2: The max method with the syntac-

Listing 4.1: The original max method.

```
static int max(int x, int y)
```

 ensures(retval >= x && retval >= y)
    ```
    ensures(retval >= x && retval >= y)
    exceptional(false)
    exceptional(false)
{
{
    if (x >= y) {
    if (x >= y) {
        return x;
        return x;
    } else {
    } else {
            return y;
            return y;
    }
    }
}
```

}

```
```

 lse {
    ```
```

 lse {
    ```
static int max (int \(x\), int \(y\) )
    ensures (retval >= \(x\) \&\& retval \(>=y\) )
    exceptional(false)
\{
    if ( \(x>=y\) ) \{
        assume \(x>=y\);
        return x ;
    \} else \{
        assume ! \((x>=y)\);
        return \(y\);
    \}
\}

The next step is to verify the static semantics of the transformed program and if this succeeds, construct CFG from the AST. This yields the CFG as presented in Figure 4.2.

Figure 4.2: The CFG of the max method.


The third step is to execute the SEE algorithm, as presented in Section 4.3. The SEE algorithm, among other functionality, explores the search space, updates the Symbolic State and queries Z3 when necessary.

The search space consists of two program paths
\[
p_{1}=l_{1} ; l_{2} ; l_{3} ; l_{4} ; l_{7} ; \quad p_{2}=l_{1} ; l_{2} ; l_{5} ; l_{6} ; l_{7}
\]
as presented in Figure 4.3. We begin with an initial state state \(_{0}\) in which only the main thread, \(\mathcal{T}_{1}\), exists. The local variable of the call stack of \(\mathcal{T}_{1}\) consists of two variables: x and y , which map to the symbolic variables \(\alpha\) and \(\beta\) respectively. Let us exemplify the case in which the SEE verifies program path \(p_{1}\). It starts with the actions corresponding to vertex \(l_{1}\) and \(l_{2}\), which are treated as skip statements in this particular example. It becomes interesting at the action corresponding to vertex \(l_{3}\). This statement modifies the path constraints \(\pi\) from \(\emptyset\) to the evaluated expression \(\alpha \geq \beta\). The action at vertex \(l_{4}\) assigns \(\alpha\) to the variable retval. Finally the action at vertex \(l_{7}\) will trigger the verification of the ensures specification. The ensures specification will combine the path constraints with the assertion to the formula
\[
\alpha \geq \beta \wedge \neg(\alpha \geq \alpha \wedge \alpha \geq \beta)
\]

The SEE queries Z3 to check whether this formula is satisfiable. When the formula is satisfiable, there exists a counter example and the specification does not hold. The same process is executed for program path \(p_{2}\). Both these program paths yield an unsatisfiable specification which implies that the program satisfies its specification.

Figure 4.3: The search space of the max method.


\subsection*{4.1 Parsing}

During the first phase of the Symbolic Execution Engine, the input file is lexed and parsed according to the concrete syntax, as defined in Appendix A. This will result into an AST, on which two syntactical transformations are applied: (1) every program point that can throw an exception, which is not an explicit throw statement, will be guarded with an if-then-else
statement; and (2) the guards of each if-then-else and while statement will be inserted explicitly as assume statements at their appropriate positions.

The first kind of transformation is that every program point that can throw an exception and is not an throw statement is embedded within an if-then-else statement. The guard of this if-thenelse statement represents the condition for the exception to be thrown, the true branch contains a throw statement and the false branch contains the original statement.

Example 3. Suppose we have the statement \(\mathrm{x}:=\mathrm{a}[\mathrm{e}]\); . This statement throws an exception if either a == null or if the index is outside the bounds of the array. The statement is transformed into
```

if (a == null || e < 0 || e >= \#a) throw; else x := a[e];

```

The condition for some exception to occur in statement \(S\) is defined by the function exceptions. The statement \(S\) is transformed using transform : Statement \(\rightarrow\) Statement. The transform function is applied to every statement in which an exception might occur. That is, every statement \(S\) in the program is transformed using:
\[
\operatorname{transform}(S)= \begin{cases}S & \text { if } \operatorname{exceptional}(S)=\emptyset \\ \text { ite }\left(E_{1}\|\ldots\| E_{n}, \text { throw, } S\right) & \text { if } \operatorname{exceptional}(S)=\left\{E_{1}, \ldots, E_{n}\right\}\end{cases}
\]

Where the exceptions function is defined as
\[
\begin{aligned}
\text { exceptions }(\operatorname{assign}(t, v)) & =\text { exceptions }(t) \cup \text { exceptions }(v) \\
\text { exceptions }(\operatorname{call}(I)) & =\text { exceptions }(I) \\
\text { exceptions }(\operatorname{assert}(E)) & =\text { exceptions }(E) \\
\text { exceptions }(\operatorname{assume}(E)) & =\text { exceptions }(E) \\
\text { exceptions }\left(\text { ite }\left(E, S_{1}, S_{2}\right)\right) & =\text { exceptions }(E) \\
\text { exceptions }(\operatorname{return}(E)) & =\text { exceptions }(E) \\
\text { exceptions }(\operatorname{lock}(i)) & =\{i==\operatorname{null}\} \\
\text { exceptions }(\operatorname{unlock}(i)) & =\{i==\operatorname{null}\} \\
\operatorname{exceptions~}(\operatorname{fork}(I)) & =\text { exceptions }(I) \\
\operatorname{exceptions}(S) & =\emptyset
\end{aligned}
\]
```

 exceptions \(\left(\right.\) lhs \(\left._{\text {var }}(i)\right)=\emptyset\)
 exceptions $\left(\operatorname{lhs}_{f_{\text {field }}}(i, F)\right)=\{i==\operatorname{null}\}$
exceptions $\left(\operatorname{lhs} s_{\text {elem }}(i, E)\right)=\{i==$ null, $!(0<=E<\# i)\} \cup$ exceptions (E)
$\operatorname{exceptions}\left(r h s_{\text {expr }}(E)\right)=\operatorname{exceptions}(E)$
$\operatorname{exceptions}\left(r h s_{\text {field }}(i, F)\right)=\{i==$ null $\}$
$\operatorname{exceptions}\left(r h s_{\text {call }}(I)\right)=\operatorname{exceptions}(I)$
$\operatorname{exceptions}\left(r h s_{\text {elem }}(i, E)\right)=\{i==\operatorname{null},!(0<=E<\# i)\} \cup \operatorname{exceptions}(E)$
$\operatorname{exceptions}\left(r h s_{\text {array }}(\tau, \underline{E})\right)=\bigcup_{E \in \underline{E}}\{!(0<=E)\} \cup \operatorname{exceptions}(E)$

```
\[
\left.\begin{array}{rl}
\operatorname{exceptions}(\text { invoke }(i, M, \underline{E})) & =\bigcup_{E \in \underline{E}} \text { exceptions }(E) \cup\{i==\mathrm{null}\} \\
\operatorname{exceptions}(\text { invoke }(C, M, \underline{E})) & =\bigcup_{E \in \underline{E}} \operatorname{exceptions}(E)
\end{array} \quad \begin{array}{rl}
\operatorname{exceptions}(\text { invoke }(K, \underline{E})) & =\bigcup_{E \in \underline{E}} \text { exceptions }(E)
\end{array}\right] \begin{aligned}
& \operatorname{exceptions}\left(E_{1} / E_{2}\right)=\left\{E_{2}==0\right\} \cup \operatorname{exceptions}\left(E_{1}\right) \cup \operatorname{exceptions}\left(E_{e}\right) \\
& \operatorname{exceptions}\left(E_{1} \% E_{2}\right)=\left\{E_{2}==0\right\} \cup \operatorname{exceptions}\left(E_{1}\right) \cup \operatorname{exceptions}\left(E_{e}\right)
\end{aligned}
\]

The second kind of transformation is that for each if-then-else- and while statement in the program, the guard is inserted explicitly as an assume statement.

Example 4. Suppose we have the statement while(e) \{x:=x+1; \}. This statement will be transformed into the statements
```

while (e) { assume e; x := x + 1; } assume !e;

```

That is, every branching statement \(S\) in the program is transformed using
\[
\begin{aligned}
\operatorname{transform}\left(\operatorname{ite}\left(E, S_{1}, S_{2}\right)\right) & =\operatorname{ite}\left(E, \operatorname{seq}\left(\operatorname{assume}(E), S_{1}\right), \operatorname{seq}\left(\operatorname{assume}(!E), S_{2}\right)\right) \\
\operatorname{transform}(\operatorname{while}(E, S)) & =\operatorname{seq}(\operatorname{while}(E, \operatorname{seq}(\operatorname{assume}(E), S)), \operatorname{assume}(!E))
\end{aligned}
\]

\subsection*{4.2 Static Analysis}

The static analysis consists of two parts: the verification of the static semantics and the control flow analysis. The verification of the static semantics includes type checking, as defined throughout Chapter 3 This type information is available during the symbolic execution and is, among other things, used to limit the effects of the path explosion problem arising from aliasing.

\subsection*{4.2.1 Control Flow Analysis}

Control Flow Analysis (CFA is a static analysis to determine the control flow of a program. Different kinds of control flow can be defined. For example: the intraprocedural control flow and the interprocedural control flow. The difference between the two being that the second captures the control flow of method calls to their respective methods. The CFA opted for is an intraprocedural procedural control flow. The invocations and their callbacks are managed in the SEE The control flow is described using the Control Flow Graph CFG).

Definition 6 (Control Flow Graph). The CFG is a directed graph \(G=(V, E)\) where each node \(v \in V\) represents a program point and each edge \((v, w) \in E\) represents the possible control flow between those program points. Let action : V Action be a total function to retrieve the corresponding action of a vertex.

Example 5 (The CFG representation of methods and method calls.). Suppose we have the program in Listing 4.3, which increments the value 1 via a method call. The CFG of the whole program is shown in Figure 4.4. The control flow between the different methods are disconnected. The Symbolic Execution Engine is responsible to find which method is called and it transfers the control flow to the correct method.

Listing 4.3: A main method with an inc function.
```

class Main {
static int main() {
int x;
x := Main.inc(1);
assert x == 2;
}
static int inc(int x) {
return x + 1;
}
}

```

Figure 4.4: The CFG of the program in Listing 4.3


Each program point represents an executable position of the program, which is named an action.

Definition 7 (Action). An action \(a=\operatorname{action}(v)\) of a vertex \(v \in V\) is either: (1) a statement; (2) the entry point of a method or constructor; (3) the exit point of a method or constructor; (4) the call of a method or constructor; (5) the fork of a new thread; (6) the entry point of a try block; (7) the exit point of a try block; (8) the entry point of a catch block; (9) the exit point of a catch block; or (10) the exceptional state.

The CFG is constructed using the approach taken by Nielson et al. 30, adapted for the OOX language and extended with support for the control flow breaking statements break, continue, return and throw.

Let us first give an introduction to the approach taken by Nielson et al. Suppose that each node in the AST has an unique integer label \(l\) and suppose that each try-catch node has four unique integer \(\left(l_{1}, l_{2}, l_{3}, l_{4}\right){ }_{-}^{1}\) Let these labels be ordered in increasing order from top to bottom and left to right, as appearing in the original source code. Then, three functions are defined: init : Statement \(\rightarrow V\), final : Statement \(\rightarrow \mathcal{P}(V)\) and flow : Statement \(\rightarrow \mathcal{P}(E)\), where init defines the initial label of a statement, final defines the final labels of a statement and flow defines the control flow of a statement.

Let the init function be defined as the entry point of each statement, that is
\[
\begin{aligned}
\operatorname{init}\left(\operatorname{declare}(\tau, i)^{l}\right) & =l \\
\text { init }\left(\operatorname{assign}(t, v)^{l}\right) & =l \\
\operatorname{init}\left(\operatorname{call}(I)^{l}\right) & =l \\
\text { init }\left(\text { skip }^{l}\right) & =l \\
\text { init }\left(\operatorname{assert}(E)^{l}\right) & =l \\
\text { init }\left(\operatorname{assume}(E)^{l}\right) & =l \\
\text { init }\left(\text { while }(E, S)^{l}\right) & =l \\
\text { init }\left(\text { ite }\left(E, S_{1}, S_{2}\right)^{l}\right) & =l \\
\text { init }\left(\operatorname{continue}^{l}\right) & =l \\
\text { init }\left(\text { break }^{l}\right) & =l
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{init}\left(\text { return }{ }^{l}\right)=l \\
& \operatorname{init}\left(\operatorname{return}(E)^{l}\right)=l \\
& \operatorname{init}\left(\text { throw }^{l}\right)=l \\
& \operatorname{init}\left(\operatorname{try}\left(S_{1}, S_{2}\right)^{\left(l_{1}, l_{2}, l_{3}, l_{4}\right)}\right)=l_{1} \\
& \operatorname{init}\left(\operatorname{block}(S)^{l}\right)=\operatorname{init}(S) \\
& \operatorname{init}\left(\operatorname{lock}(i)^{l}\right)=l \\
& \text { init }\left(\text { unlock }(i)^{l}\right)=l \\
& \operatorname{init}\left(\text { join }{ }^{l}\right)=l \\
& \operatorname{init}\left(\text { fork }(I)^{l}\right)=l \\
& \operatorname{init}\left(\operatorname{seq}\left(S_{1}, S_{2}\right)^{l}\right)=\operatorname{init}\left(S_{1}\right)
\end{aligned}
\]

The approach is extended with the fallthrough : Statement \(\rightarrow \mathcal{P}\) (Statement) function which defines the control flow breaking statements contained in the statement. The function generates a singleton for the control flow breaking statements
\[
\begin{aligned}
\text { fallthrough }\left(\text { break }^{l}\right) & =\left\{\text { break }^{l}\right\} \\
\text { fallthrough }\left(\text { continue }^{l}\right) & =\left\{\text { continue }^{l}\right\} \\
\text { fallthrough }\left(\text { return }^{l}\right) & =\left\{\text { return }^{l}\right\} \\
\text { fallthrough }\left(\operatorname{return}(E)^{l}\right) & =\left\{\operatorname{return}(E)^{l}\right\}
\end{aligned}
\]
which are removed in their respective targets
\[
\begin{aligned}
\text { fallthrough }\left(\text { while }(E, S)^{l}\right) & =\left\{S^{\prime} \mid S^{\prime} \neq \operatorname{continue}^{l^{\prime}} \in \operatorname{fallthrough}(S)\right\} \\
\text { fallthrough }\left(\operatorname{seq}\left(\text { while }(E, S)^{l}, S_{2}\right)\right) & =\left\{S^{\prime} \mid S^{\prime} \neq \operatorname{break}^{l^{\prime}} \in \operatorname{fallthrough}(S)\right\} \cup \operatorname{fallthrough}\left(S_{2}\right)
\end{aligned}
\]

Let the final function be defined as the exit point of each statement. It is defined as the singleton

\footnotetext{
\({ }^{1}\) try-catch statements are a special case. They do not appear explicitly in the CFG but four nodes are inserted: the entry and exit of both the try and catch block.
}
label for the statements that do not contain nested statements.
\[
\begin{aligned}
& \text { final }\left(\operatorname{declare}(\tau, i)^{l}\right)=\{l\} \quad \text { final }\left(\operatorname{assert}(E)^{l}\right)=\{l\} \\
& \text { final }\left(\operatorname{assign}\left(t, \text { rhs call }\left(I^{l^{\prime}}\right)^{l}\right)=\left\{l^{\prime}\right\} \quad \text { final }\left(\operatorname{assume}(E)^{l}\right)=\{l\}\right. \\
& \text { final }\left(\operatorname{assign}(t, v)^{l}\right)=\{l\} \quad \text { final }\left(\operatorname{lock}(i)^{l}\right)=\{l\} \\
& \text { final }\left(\operatorname{call}\left(I^{l^{\prime}}\right)^{l}\right)=\left\{l^{\prime}\right\} \quad \text { final }\left(\text { unlock }(i)^{l}\right)=\{l\} \\
& \text { final }\left(\text { fork }\left(I^{l^{\prime}}\right)^{l}\right)=\left\{l^{\prime}\right\} \quad \text { final }\left(\text { join }{ }^{l}\right)=\{l\} \\
& \text { final(skip } \left.{ }^{l}\right)=\{l\}
\end{aligned}
\]

For the control flow breaking statements, the final function is defined as the empty set. Their induced control flow is captured in their respective targets.
\[
\begin{aligned}
\text { final }\left(\text { continue }^{l}\right) & =\emptyset \\
\text { final }\left(\text { break }^{l}\right) & =\emptyset \\
\text { final }\left(\text { return }^{l}\right) & =\emptyset
\end{aligned}
\]
\[
\begin{aligned}
\text { final }\left(\text { return }(E)^{l}\right) & =\emptyset \\
\text { final }\left(\operatorname{throw}^{l}\right) & =\emptyset
\end{aligned}
\]

The final function for statements that contain statements themselves is defined as
\[
\begin{aligned}
\operatorname{final}\left(\text { while }(E, S)^{l}\right) & =\{l\} \cup\left\{l^{\prime} \mid \text { breakl }^{l^{\prime}} \in \operatorname{fallthrough}(S)\right\} \\
\operatorname{final}\left(\operatorname{ite}\left(E, S_{1}, S_{2}\right)^{l}\right) & =\operatorname{final}\left(S_{1}\right) \cup \operatorname{final}\left(S_{2}\right) \\
\operatorname{final}\left(\operatorname{try}\left(S_{1}, S_{2}\right)^{\left(l_{1}, l_{2}, l_{3}, l_{4}\right)}\right) & =\left\{l_{2}, l_{4}\right\} \\
\operatorname{final}\left(\operatorname{block}(S)^{l}\right) & =\operatorname{final}(S)
\end{aligned}
\]

Finally, for the seq statements, the final function is defined as
\[
\begin{aligned}
\operatorname{final}\left(\operatorname{seq}\left(\operatorname{continue}, S_{2}\right)^{l}\right) & =\emptyset & \text { final } \left.\left(\operatorname{seq}\left(\operatorname{return}(E), S_{2}\right)^{l}\right)\right) & =\emptyset \\
\operatorname{final}\left(\operatorname{seq}\left(\text { break, } S_{2}\right)^{l}\right) & =\emptyset & \operatorname{final}\left(\operatorname{seq}\left(\text { throw }{ }^{l^{\prime}}, S_{2}\right)^{l}\right) & =\emptyset \\
\operatorname{final}\left(\operatorname{seq}\left(\text { return, } S_{2}\right)^{l}\right) & =\emptyset & \operatorname{final}\left(\operatorname{seq}\left(S_{1}, S_{2}\right)^{l}\right) & =\operatorname{final}\left(S_{2}\right)
\end{aligned}
\]

Let the flow function be defined as the control flow induced by the statements. For statements that do not contain nested statements it is defined as
\[
\begin{aligned}
& \text { flow }\left(\operatorname{declare}(\tau, i)^{l}\right)=\emptyset \\
& \operatorname{flow}\left(\operatorname{assign}\left(t, r h s_{\text {call }}\left(I^{l^{\prime}}\right)^{l}\right)=\left\{\left(l, l^{\prime}\right)\right\}\right. \\
& \text { flow }\left(\operatorname{assign}(t, v)^{l}\right)=\emptyset \\
& \text { flow }\left(\operatorname{call}\left(I^{l^{\prime}}\right)^{l}\right)=\left\{\left(l, l^{\prime}\right)\right\} \\
& \text { flow }\left(\text { skip }^{l}\right)=\emptyset \\
& \text { flow }\left(\operatorname{assert}(E)^{l}\right)=\emptyset \\
& \text { flow }\left(\operatorname{assume}(E)^{l}\right)=\emptyset \\
& \text { flow }\left(\text { continue }{ }^{l}\right)=\emptyset \\
& \text { flow }\left(\text { break }^{l}\right)=\emptyset \\
& \text { flow }\left(\text { return }^{l}\right)=\emptyset \\
& \text { flow }\left(\operatorname{return}(E)^{l}\right)=\emptyset \\
& \text { flow }\left(\text { throw }^{l}\right)=\left\{\left(l, l_{\perp}\right)\right\} \\
& \text { flow }\left(\operatorname{lock}(i)^{l}\right)=\emptyset \\
& \text { flow }\left(\operatorname{unlock}(i)^{l}\right)=\emptyset \\
& \text { flow }\left(\text { join }{ }^{l}\right)=\emptyset \\
& \text { flow }\left(\operatorname{fork}\left(I^{l^{\prime}}\right)^{l}\right)=\left\{\left(l, l^{\prime}\right)\right\}
\end{aligned}
\]
where \(l_{\perp}\) is a special label that denotes the label of the exceptional state.

For the statements that contain nested statements, the flow function is defined as
\[
\begin{aligned}
\text { flow }\left(\text { while }(E, S)^{l}\right) & =\operatorname{flow}(S) \cup\{(l, \text { init }(S))\} \\
& \cup\left\{\left(l_{f}, l\right) \mid l_{f} \in \operatorname{final}(S)\right\} \\
& \cup\left\{\left(l^{\prime}, l\right) \mid \operatorname{continue}{ }^{l^{\prime}} \in \operatorname{fallthrough}(S)\right\} \\
\operatorname{flow}\left(\operatorname{ite}\left(E, S_{1}, S_{2}\right)^{l}\right) & =\operatorname{flow}\left(S_{1}\right) \cup \operatorname{flow}\left(S_{2}\right) \cup\left\{\left(l, S_{2}\right)^{\left(l_{1}, l_{2}, l_{3}, l_{4}\right)}\right) \\
& \left.\left.=\operatorname{flow}\left(S_{1}\right)\right),\left(l, \text { init }\left(S_{1}\right) \cup \operatorname{flow}\left(S_{2}\right)\right)\right\} \\
& \cup\left\{\left(l_{1}, \operatorname{init}\left(S_{1}\right)\right),\left(l_{3}, \operatorname{init}\left(S_{2}\right)\right)\right\} \\
& \cup\left\{\left(l_{f}, l_{2}\right) \mid l_{f} \in \operatorname{final}\left(S_{1}\right)\right\} \\
& \cup\left\{\left(l_{f}, l_{4}\right) \mid l_{f} \in \operatorname{final}\left(S_{2}\right)\right\} \\
\operatorname{flow}\left(\operatorname{block}(S)^{l}\right) & =\operatorname{flow}(S)
\end{aligned}
\]

Finally, for the seq statements, the flow function is defined as
\[
\begin{aligned}
\text { flow }\left(\operatorname{seq}\left(\operatorname{continue}, S_{2}\right)^{l}\right) & =\emptyset \\
\text { flow }\left(\operatorname{seq}\left(\text { break }, S_{2}\right)^{l}\right) & =\emptyset \\
\text { flow }\left(\operatorname{seq}\left(\operatorname{return}, S_{2}\right)^{l}\right) & =\emptyset \\
\text { flow }\left(\operatorname{seq}\left(\operatorname{return}(E), S_{2}\right)^{l}\right) & =\emptyset \\
\text { flow }\left(\operatorname{seq}\left(\operatorname{throw} l^{l^{\prime}}, S_{2}\right)^{l}\right) & =\text { flow }\left(\text { throw } l^{l^{\prime}}\right) \\
\operatorname{flow}\left(\operatorname{seq}\left(S_{1}, S_{2}\right)^{l}\right) & =\operatorname{flow}\left(S_{1}\right) \cup \operatorname{flow}\left(S_{2}\right) \cup\left\{\left(l_{f}, \operatorname{init}\left(S_{2}\right)\right) \mid l_{f} \in \operatorname{final}\left(S_{1}\right)\right\}
\end{aligned}
\]

Let flow \(_{U}\) define the control flow of a compilation unit, let flow \(_{C}\) define the control flow of a class, and let flow \(_{M}\) and flow \(_{K}\) define the control flow of a method and constructor respectively. We then define their control flow as
\[
\begin{aligned}
\operatorname{flow}_{U}\left(\operatorname{program}_{(\underline{C})}\right) & =\bigcup_{C \in \underline{C}} \operatorname{flow}_{C}(C) \\
\operatorname{flow}_{C}(\operatorname{class}(\underline{M}, \underline{K}, \underline{F}))=\bigcup_{M \in \underline{M}} & \left.\operatorname{flow}_{M}(M) \cup \bigcup_{K \in \underline{K}} \operatorname{flow}_{K}(K)\right) \\
\text { flow }_{M}\left(\operatorname{method}(b, \omega, i, \varphi, \underline{P}, S)^{\left(l_{i}, l_{f}\right)}\right) & ={\operatorname{flow}(S) \cup\left\{\left(l_{i}, \operatorname{init}(S)\right)\right\}} \cup\left\{\left\{\left(l, l_{f}\right) \mid l \in \operatorname{final}(S)\right\}\right. \\
& \cup\left\{\left(l, l_{f}\right) \mid S^{l} \in \operatorname{fallthrough}(S)\right\} \\
\operatorname{flow}_{K}\left(\operatorname{constructor}(C, \varphi, \underline{P}, S)^{\left(l_{i}, l_{f}\right)}\right) & ={\operatorname{flow}(S) \cup\left\{\left(l_{i}, \operatorname{init}(S)\right)\right\}} \cup\left\{\left(l, l_{f}\right) \mid l \in \operatorname{final}(S)\right\} \\
& \cup\left\{\left(l, l_{f}\right) \mid S^{l} \in \operatorname{fallthrough}(S)\right\}
\end{aligned}
\]

The complete Control Flow Graph of the program \(U=\operatorname{program}(\underline{C})\) is then defined in terms of the flow \(E=\operatorname{flow}_{U}(\operatorname{program}(\underline{C}))\)
\[
C F G=\left(\cup_{(v, w) \in E}\{v, w\}, E\right)
\]

\subsection*{4.3 The Symbolic Execution Engine}

The Symbolic Execution Engine is the main process that drives the verification. There are a wide variety of design choices [3]. For example: is the exploration forward [20, 28], from the starting point of the program towards the end point of the program, or backward [22], from the end point of the program towards the starting point of the program. Another major design choice is in what way to explore the search space. Common considerations are breadth-first search, depth-first search, a heuristic, or a combination of these.
Our Symbolic Execution Engine uses a forward, depth-first path exploration approach. The logic to handle references to objects on the heap is handled in the SEE and the formula solving is transferred to Z3 [13], a SMT solver. This allows for greater flexibility of handling references, like lazy reference initialization and symbolic reference concretization. Four main optimization techniques are implemented: (1) lazy symbolic reference initialization; (2) formula caching; (3) expression evaluation; and (4) partial-order reduction. Each of these optimizations will be explained in detail in the coming sections.

The main structure of the Symbolic Execution Engine is the Symbolic State which is defined as:

Definition 8 (The Symbolic State). The SS is a 6 -tuple state \(=(\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\) where
- \(\mathcal{T}\) is the set of threads;
- \(h\) is the heap, a mapping from references object structures. An object structure is a mapping from fields (or indices) to expressions;
- \(\pi\) is the set of path constraints that must be satisfiable for the current program path to be reachable;
- \(\mathcal{A}\) is the mapping from symbolic references to their possible concrete references;
- \(\mathcal{L}\) is the mapping from reference to thread id, representing the references that are currently locked by which threads; and
- \(\mathcal{I}\) is the set of interleaving constraints.

\subsection*{4.3.1 The Threads}

The basis of the executable program are the threads. Each thread is a three-tuple \(\mathcal{T}_{\text {tid }}=(p c, \sigma, \eta)\) consisting of:
- a program counter \(p c \in V\);
- the call stack \(\sigma\) consisting of stack frames; and
- the exception handler stack \(\eta\).

A thread is disabled if it is waiting for a lock to be freed, or the current action is a join statement and there exists a child thread of this thread. A thread is enabled if it is not disabled. Let parent (tid) be a function that returns the thread id of the parent of the thread with thread id tid.

The Call Stack. The call stack consists of the data necessary to keep track of the method calls that are made. Tt contains the local variables, each in their respective stack frame. Each method call is represented as a stack frame on the call stack. The call stack is defined as a sequence of stack frames, and is denoted by \(\sigma\). New stack frames can be pushed and popped from the stack using
\[
\begin{gathered}
\text { push }_{\text {stack }}(\sigma, p c, t)=\left[(p c, t,[]), \sigma_{1}, \ldots, \sigma_{n}\right] \text { where } \sigma=\left[\sigma_{1}, \ldots, \sigma_{n}\right] \\
p o p_{\text {stack }}(\sigma)=\left(\sigma_{1}, \ldots, \sigma_{n}\right] \text { where } \sigma=\left[\sigma_{1}, \ldots, \sigma_{n}\right]
\end{gathered}
\]

Each stack frame is a triple \((p c, t, \mathcal{M})\) where \(p c\) represents the program counter to return to when the method has finished its execution, \(t\) is the left-hand side the return value of the method will be assigned to and \(\mathcal{M}\) are the local variables.

The Exception Handler Stack. The exception handler stack manages the data necessary to know whether or not the current statement is within a try block and where to return to if an exception occurs. The exception handler stack is defined as a sequence of 2-tuples, denoted by \(\eta\). The first element of the tuple defines the program point of the catch entry that belongs to the current try block. The second element of the tuple defines the current depth of the call stack relative to when the try block point was entered. Exception handlers can be inserted and removed using
\[
\begin{gathered}
\text { insert }_{\text {handler }}(\eta,(p c, n))=\left[(p c, n), \eta_{1}, \ldots, \eta_{n}\right] \text { where } \eta=\left[\eta_{1}, \ldots, \eta_{n}\right] \\
\operatorname{remove}_{\text {handler }}(\eta)=\left(\eta_{1}, \ldots, \eta_{n}\right] \text { where } \eta=\left[\eta_{1}, \ldots, \eta_{n}\right]
\end{gathered}
\]

\subsection*{4.3.2 The Memory}

The memory consists of two distinct parts: the local variables, contained in the stack frames, and the heap. The values of the local variables are represented using the expression language of the OOX language. The objects on the heap are represented via an object structure, which is defined as a mapping from fields or indices to expressions.

The main difference between the expression language of OOX and the expression language of the SEE is that literals and references can be symbolic. A symbolic reference or value can represent multiple concrete values, possibly constrained by the path constraints \(\pi\). The symbolic values and references that can exist are the arguments of the method under verification and the inner data of those arguments. Let \(\alpha, \beta, \ldots\) denote symbolic values and references, e.g. lit \((\alpha)\) instead of \(\operatorname{lit}(z)\) and \(r e f_{\alpha}\) instead of \(r e f_{n}\).

\section*{The Local Variables}

The local variables are defined as a mapping \(\mathcal{M}\) where \(\mathcal{M}[x \mapsto e]\) returns a new mapping with \(x \mapsto e\) inserted as a new entry and \(\mathcal{M}(x)\) returns the latest inserted expression \(e\) for variable \(x\). Let writing to and reading from the stack be defined as
\[
\begin{gathered}
\text { write }_{\text {stack }}(\sigma, i, E)=\left[(p c, t, \mathcal{M}[i \mapsto E]), \ldots, \sigma_{n}\right] \text { where } \sigma=\left[\sigma_{1}=(p c, t, \mathcal{M}), \ldots, \sigma_{n}\right] \\
\operatorname{read}_{\text {stack }}(\sigma, i)=\mathcal{M}(i) \text { where } \sigma=\left[\sigma_{1}=(p c, t, \mathcal{M}), \ldots, \sigma_{n}\right]
\end{gathered}
\]

\section*{The Heap}

The heap is defined as a mapping \(h\) from concrete reference to object structure. An object structure itself is again a mapping from each element in the object structure to the values of those elements. That is, the object structure of an instance of a class consists of its fields to their values and the object structure of an array consists of all indices to their values.

Reading from a Field A field of an object can be read from both a concrete and a symbolic reference. When reading a field from a concrete reference, the value enclosed in the field of the object structure of the corresponding concrete reference is retrieved. When reading the field of a symbolic reference, a chained if-then-else expression is returned, which accounts for every possible concrete reference the symbolic reference can be in \(\mathcal{A}\).
Example 6 (Reading a field of a symbolic reference). Suppose we have a \(\mathrm{SS}(\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\) and the statement value \(:=\mathrm{x} . \mathrm{f}\) is to be executed where the variable x is the symbolic reference \(r e f_{\alpha}\) in the \(S S\). Suppose that the symbolic reference \(r e f_{\alpha}\) is mapped to the concrete references \(\left\{r e f_{1}, r e f_{2}\right\}\) in \(\mathcal{A}\).

Two reads will occur: one for the \(r e f_{1}\) case and one for the \(r e f_{2}\) case. Both cases are merged into one expression, leading to the expression
\[
\operatorname{ite}\left(r e f_{\alpha}==\operatorname{ref}_{1}, \operatorname{read}_{\text {field }}\left(h, \emptyset, r e f_{1}, i\right), \operatorname{read}_{\text {field }}\left(h, \emptyset, \operatorname{ref}_{2}, i\right)\right)
\]

Reading from a field is formalized as follows. Let \(A\) be the set of concrete references of \(r e f_{\alpha}\) retrieved from the alias map \(\mathcal{A}\). Reading from a field is defined as
\[
\begin{aligned}
& \operatorname{read}_{\text {field }}\left(h, A, \operatorname{ref}_{n}, i\right)=h\left(\operatorname{ref}_{n}\right)(i) \\
& \operatorname{read}_{\text {field }}\left(h, A, \operatorname{ref}_{\alpha}, i\right)= \begin{cases}h\left(\operatorname{ref}_{n}\right)(i) & \text { if } A=\left\{r e f_{n}\right\} \\
i t e\left(r e f_{\alpha}==\operatorname{ref}_{n}, h\left(r e f_{n}\right)(i), \text { tail }\right) & \text { if } A=\left\{r e f_{n}, \ldots\right\}\end{cases}
\end{aligned}
\]
where tail contains the read of the other possibilities, i.e.
\[
\text { tail }=\operatorname{read}_{\text {field }}\left(h, A-\left\{r e f_{n}\right\}, r e f_{\alpha}, i\right)
\]

Writing to a Field. A field of an object can be written to on both concrete and symbolic references. When writing to a concrete reference, the value enclosed in the field of the object structure of the corresponding concrete reference is updated. On the contrary, when writing to a symbolic reference, one must account for every possible concrete reference the symbolic reference could be and thus, a write to every possible concrete reference will occur.
Example 7 (Writing to a field of a symbolic reference). Suppose we have a \(\mathrm{SS}(\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\) and the statement x.f \(:=1\); is to be executed where the variable x is the symbolic reference \(r e f_{\alpha}\) in the SS Suppose that the symbolic reference \(r e f_{\alpha}\) is mapped to the concrete references \(\left\{r e f_{1}, r e f_{2}\right\}\) in \(\mathcal{A}\).
Two writes will be executed: one to the concrete reference ref \({ }_{1}\) and one to the concrete reference \(r e f_{2}\). For both writes, the value to be assigned is changed from the right-hand side, 1, to a conditional which constraints the write to include that the symbolic reference must be equal to
the concrete reference. The true case of this conditional contains the right-hand side and the false case contains the original value, as if no write occurs. That is, the value written to field \(f\) of \(r e f_{1}\) will be
\[
\operatorname{ite}\left(r e f_{\alpha}==r e f_{1}, 1, \operatorname{read}_{\text {field }}\left(h, \emptyset, r e f_{n}, i\right)\right)
\]

Writing to a field is formalized as follows. Let \(A\) be the set of concrete references of ref \({ }_{\alpha}\) retrieved from the alias map \(\mathcal{A}\). Writing to a field is defined as
\[
\begin{aligned}
& \text { write }_{\text {field }}\left(h, A, \operatorname{ref}_{n}, i, E\right)=h\left[\operatorname{ref}_{n} \mapsto h\left(\operatorname{ref}_{n}\right)[i \mapsto E]\right] \\
& \text { write }_{\text {field }}\left(h, A, \operatorname{ref}_{\alpha}, i, E\right)= \begin{cases}\text { write }_{\text {field }}\left(h, A, r e f_{n}, i, E\right) & \text { if } A=\left\{r e f_{n}\right\} \\
\text { write }_{\text {field }}\left(h^{\prime}, A-\left\{r e f_{n}\right\}, E\right) & \text { if } A=\left\{r e f_{n}, \ldots\right\}\end{cases}
\end{aligned}
\]
where \(h^{\prime}\) contains the write to the current concrete possibility \(r e f_{n}\) of \(r e f_{\alpha}\). I.e.
\[
h^{\prime}=\text { write }_{\text {field }}\left(h, \emptyset, \operatorname{ref}_{n}, i, \text { ite }\left(\operatorname{ref}_{\alpha}==\operatorname{ref}_{n}, E, \operatorname{read}_{\text {field }}\left(h, \emptyset, \operatorname{ref}_{n}, i\right)\right)\right)
\]

Reading an Array Element. A array element can only be read from a array pointed to by a concrete reference. However, the index may be symbolic. When reading an element from an array, the element corresponding to the index is retrieved from the object structure, similar to reading from a field. The difference between the two being that the element in the object structure may not exist, in other words, the given index is out of range. If this is the case, the function returns infeasible. If the given index contains a symbolic variable, all possible concrete cases must be accounted for. A chained if-then-else is constructed that contains a conditional for each possible concrete index.

Example 8 (Reading an array element with a symbolic index from a concrete array). Suppose we have a \(\operatorname{SS}(\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\) and the statement \(\mathrm{x}:=\mathrm{a}[\mathrm{i}]\); is to be executed, where a is a concrete array with object structure \(\mathcal{O}=\left[\right.\) elem \(_{0} \mapsto 10\), elem \({ }_{1} \mapsto 20\), elem \(\left.{ }_{2} \mapsto 30\right]\) of size 3 and i is a symbolic value.

The value that is assigned to x will be
\[
\operatorname{ite}(i==0,10, \operatorname{ite}(i==1,20,30))
\]

Reading an array element is formalized as follows. Let \(s=\operatorname{size}\left(h\left(r e f_{n}\right)\right)\) be the size of the array pointed to by reference \(\operatorname{ref}_{n}\). Note that the size of an array is always a concrete value. Let \(I=\{0, \ldots, s-1\}\) be the set of all indices and let \(E^{\prime}=\operatorname{eval} \llbracket E \rrbracket(\sigma, h)\) be the evaluated value of expression \(E\). Then reading an array element is defined as
\[
\operatorname{read}_{\text {elem }}\left(\sigma, h, \operatorname{ref}_{n}, E\right)= \begin{cases}\operatorname{read}_{\text {selem }}\left(h, I, r e f_{n}, E\right) & \text { if } E \text { is a symbolic expr. } \\ h\left(r e f_{n}\right)\left(\text { elem }_{E^{\prime}}\right) & \text { if } 0 \leq E^{\prime}<s \\ \text { infeasible }^{\text {otherwise }}\end{cases}
\]
where reading a symbolic array element is defined as
\[
\operatorname{read}_{\text {selem }}\left(\sigma, h, I, \operatorname{ref}_{n}, E\right)= \begin{cases}\operatorname{read}_{\text {elem }}\left(\sigma, h, \operatorname{ref}_{n}, i\right) & \text { if } I=\{i\} \\ \text { ite } \left.^{\left(e_{E}=\right.}=i, \operatorname{read}_{\text {elem }}\left(\sigma, h, \operatorname{ref}_{n}, E\right), \text { tail }\right) & \text { if } I=\{i, \ldots,\}\end{cases}
\]
where tail \(=\operatorname{read}_{\text {selem }}\left(\sigma, h, I-\{i\}, \operatorname{ref}_{n}, E\right)\).

Writing to an Array Element. An array element can only be written to when performed on a concrete reference. Similar to reading an array element, the index may be symbolic. When writing to a symbolic array index, an if-then-else is written to each possible index. The if-thenelse represents that the write only occurs when the symbolic reference is equal to the concrete reference.
Example 9 (Writing to an array element with a symbolic index of a concrete array). Suppose
 concrete array \(\mathcal{O}=\left[\right.\) elem \(_{0} \mapsto 10\), elem \(\left._{1} \mapsto 20\right]\) of size 2 and \(i\) is a symbolic value.

Two writes will occur: one to elem \(_{0}\) and one to elem \(_{1}\). The values assigned to each element will be an if-then-else expression that represents that the index \(i\) must match the concrete index. We have that the expression ite \((0==i, x, 10)\) will be assigned to elem \({ }_{0}\).

Writing to an array element is defined as follows
\[
\text { write }_{\text {elem }}\left(\sigma, h, \operatorname{ref}_{n}, E_{1}, E_{2}\right)= \begin{cases}\text { write }_{\text {selem }}\left(\sigma, h, I, \operatorname{ref}_{n}, E_{1}, E_{2}\right) & \text { if } E_{1} \text { is a symbolic expr. } \\ h\left[r e f_{n} \mapsto h\left(r e f_{n}\right)[\text { elem }\right. \\ \left.\left.E_{1}^{\prime} \mapsto E_{2}^{\prime}\right]\right] & \text { if } 0 \leq E_{1}^{\prime}<s \\ \text { infeasible } & \text { otherwise }\end{cases}
\]
where writing to a symbolic array element is defined as
\[
\text { write }_{\text {selem }}\left(\sigma, h, I, \operatorname{ref}_{n}, E_{1}, E_{2}\right)= \begin{cases}\text { write }_{\text {elem }}\left(\sigma, h, \operatorname{ref}_{n}, i, v\right) & \text { if } I=\{i\} \\ \text { write }_{\text {selem }}\left(\sigma, h^{\prime}, I-\{i\}, \text { ref }_{n}, E_{1}, E_{2}\right) & \text { if } I=\{i, \ldots\}\end{cases}
\]
where \(v=\operatorname{ite}\left(i==E_{1}, E_{2}, \operatorname{read}_{\text {elem }}\left(\sigma, h, r e f_{n}, i\right)\right)\) is the expression containing the conditional write for when index \(i\) equals the symbolic index \(E_{1}\) and \(h^{\prime}=\) write \(_{\text {selem }}\left(\sigma, h,\{i\}, r e f_{n}, E_{1}, E_{2}\right)\) is the updated heap containing the write to index \(i\).

\subsection*{4.3.3 The Path Constraints}

The path constraints, denoted by \(\pi\), is the set of assumptions that must hold for the current program path to be reached. The path constraints are accumulated during the exploration. When an assume E; statement is executed, the boolean expression \(E\) is evaluated into one of three cases: (1) into a simplified expression \(E^{\prime} ;(2)\) into the constant true; and (3) into the constant false. When the evaluation results in \(E^{\prime}\), the path constraints are updated to include the new assumption \(\pi=\pi \cup\left\{E^{\prime}\right\}\). When the evaluation results in true, meaning that \(E\) is valid, and thus will always hold, the exploration of this program path will continue. Finally, when the evaluation results in false the exploration of this program path will halt as there exists no input such that this program path will be executed.

\subsection*{4.3.4 The Alias Map}

The alias map, denoted by \(\mathcal{A}\), is a mapping from symbolic references to sets of concrete references. The alias map has several purposes. Its primary purpose is to keep track of the concrete references a symbolic reference can point to. Its secondary purpose is to determine which aliases a symbolic reference can point to when it is first initialized, as described in more detail in Section 4.4.1.

The alias map and its inhabitants are initialized lazily, inspired by [24]. The aim of lazy initialization is twofold: (1) to avoid the issues arising from cyclic data structures, e.g. a linked list; and (2) to reduce the runtime of the symbolic execution engine.

A symbolic reference is inserted in the alias map the first time it is either: (1) dereferenced via a read or write to an element or field; (2) dereferenced via the array size operator; or (3) used in a lock. When an alias map entry is initialized, the concrete reference set will be inhabited by: (1) a new concrete reference allocated on the heap with all elements of its object structure set to fresh symbolic values- and references; (2) null; and (3) all other concrete references pointed to by other symbolic references in \(\mathcal{A}\) that are of the same type.

\subsection*{4.3.5 The Locks}

The lock set, denoted by \(\mathcal{L}\), is a mapping from references to thread ids. Each entry represents a lock being held on a reference by the thread with the corresponding thread id.

\subsection*{4.3.6 The Interleaving Constraints}

The interleaving constraints, denoted by \(\mathcal{I}\), is a set of binary relations \(a \sim_{G} b\) and \(a \not \chi_{G} b\), denoting that the actions \(a\) and \(b\) are independent and not independent respectively. When two actions \(a\) and \(b\) are independent, no (sub)path in which \(a\) is executed before \(b\) will be explored. The interleaving constraints are generated using partial order reduction, which is described in Section 4.4.4 in more detail.

\subsection*{4.4 The Symbolic Execution Algorithm}

The main tasks of the algorithm are to: (1) explore the search space up to some predefined maximum program path length \(k\), based on the structure of the CFG (2) update the Symbolic State during the exploration; (3) add the path constraints when an assumption is encountered and try to deduce if an assumption makes a path infeasible; and (4) verify an assertion when one is encountered.

There are two modes to explore the search space. The default mode, which explores the search space by prioritizing the actions by lowest vertex label, as described in Section 4.2.1, and interleaving by lowest thread id. The random mode explores the search space randomly for the different interleavings.

The main algorithm is presented in Algorithm 1 and the execution of specific actions is presented in Subsection 4.4.1. The algorithm explores the search space until either \(k=0\) or all threads have terminated. It explores the program paths in which threads are enabled and the different interleavings which are not constrained by the interleaving constraints in \(\mathcal{I}\). In the main algorithm, let trace denote the actions previously executed by this branch.

The algorithm is executed with the initial symbolic state:
- \(\mathcal{T}\) is a singleton consisting of the main thread. In this thread, \(p c\) is set to the method entry of the method under verification, \(\sigma\) is set to a single stack frame where the program
counter to return to and the left-hand side are undefined, and the local variables are set to an unique symbolic- value or reference for each parameter;
- \(h\) is an empty mapping;
- \(\pi\) is the evaluated pre-condition of the method under verification;
- \(\mathcal{A}\) is an empty mapping;
- \(\mathcal{L}\) is an empty mapping; and
- \(\mathcal{I}\) is an empty set.
```

Algorithm 1 The main symbolic execution algorithm
Input: The symbolic state state and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExECUTE $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}), k)$
if $k=0 \vee \mathcal{T}=\emptyset$ then
return valid
else
$\mathcal{T}_{\text {enabled }} \leftarrow \operatorname{enabled}(\mathcal{T})$
if $\mathcal{T}_{\text {enabled }}=\emptyset$ then
return deadlock
else
- Construct the set of threads $\mathcal{T}_{\text {unique }}$ that need to be explored.
$\mathcal{T}_{\text {unique }} \leftarrow \emptyset$
for all Threads $\mathcal{T}_{\text {tid }}=(p c, \sigma, \eta) \in \mathcal{T}_{\text {enabled }}$ do
$a \leftarrow \operatorname{action}(p c)$
if $\neg \exists a_{i} \sim_{G} a_{j} \in \mathcal{I}: a_{j} \in \operatorname{trace} \wedge a=a_{i}$ then
$\mathcal{T}_{\text {unique }} \leftarrow \mathcal{T}_{\text {unique }} \cup \mathcal{T}_{\text {tid }}$
end if
end for
- Construct the set of new interleavings.
$A \leftarrow$ the actions of all a unordered pairs of $\mathcal{T}_{\text {enabled }}$
$\mathcal{I}_{\text {new }} \leftarrow \operatorname{por}($ state,$A)$
$\mathcal{I} \leftarrow$ filter $_{\text {conflicts }}\left(\mathcal{I}_{\text {new }}, \mathcal{I}\right) \cup \mathcal{I}_{\text {new }}$
- Branch and continue the exploration for each thread that needs to be explored.
for all Threads $\mathcal{T}_{\text {tid }}=(p c, \sigma, \eta) \in \mathcal{T}_{\text {unique }}$ do
result \leftarrow ExecuteAction $($ state, tid, k)
if result $\in\{$ invalid, deadlock, unknown $\}$ then
return result
end if
end for
end if
end if
end procedure

```
```

Input: The symbolic state state, the current thread id tid and some integer k
Output: valid, invalid, deadlock or unknown
procedure $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }} \in \mathcal{T}$
neighbours $\leftarrow N_{C F G}(p c)$
for all Neighbours $p c^{\prime} \in$ neighbours do
$\mathcal{T}_{\text {tid }} \bullet p c \leftarrow p c^{\prime}$
result $\leftarrow \operatorname{ExEcute}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}), k-1)$
if result \neq valid then
return result
end if
end for
end procedure

```

\subsection*{4.4.1 Symbolic Execution of Actions}

Let ExecuteAction be the procedure that selects the procedure corresponding to the given action. The actions are divided into two categories: the ones that affect the Symbolic State and those that do not. The actions that affect the SS are described in more detail below. The actions that are not described are treated as a skip statement, and only execute the BRANCH procedure.

Declare Statements. A declare statement defines a new variable in the current stack frame of the call stack. The value assigned to the new variable \(i\) is the default value of the corresponding type \(\tau\).

Input: The symbolic state state, the current thread id tid, the type of the variable \(\tau\), the name of the variable \(i\) and some integer \(k\)
Output: valid, invalid, deadlock or unknown
procedure \(\operatorname{ExEcuteDEcLare}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\), tid \(, \tau, i, k)\)
\((p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }} \in \mathcal{T}\)
\(\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow\) write \(_{\text {stack }}(\sigma, i, \operatorname{default}(\tau))\)
return \(\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\), tid, \(k)\)
end procedure

Assignment Statements. An assignment statement modifies the value on the left-hand side to the value on the right-hand side. The left-hand side can be either a variable, a field or an element of an array. The right-hand side can be either an expression, a field, an array element, or the instantiation of a new array. Method calls on the right-hand side are handled by first executing the method body followed by an assignment statement in which the original left-hand side is assigned to the expression right-hand side retval.

Assignment statements consists of three parts: (1) the (potential) initialization of symbolic reference(s); (2) the determination of the memory location of the left-hand side; and (3) the evaluation of the right-hand side.

Let us begin with the initialization of symbolic reference(s). Let init define the function that initializes a symbolic reference if it has not been initialized already. A symbolic reference \(r e f_{\alpha}\) is initialized iff the alias map \(\mathcal{A}\) contains \(r e f_{\alpha}\). Let init be defined as
\[
\text { init : Heap } \times \text { AliasMap } \times \text { SymbolicReference } \rightarrow \text { Heap } \times \text { AliasMap }
\]
where
\[
\operatorname{init}\left(h, \mathcal{A}, \operatorname{ref}_{\alpha}\right)= \begin{cases}(h, \mathcal{A}) & \text { if } r e f_{\alpha} \in \mathcal{A} \\ \left(h\left[r e f_{n} \mapsto \mathcal{O}\right], \mathcal{A}\left[r e f_{\alpha} \mapsto A\right]\right) & \text { otherwise }\end{cases}
\]
where \(\operatorname{ref}_{n}\) is a fresh concrete reference, \(\mathcal{O}\) is the object structure of the newly allocated object, each field is set to a symbolic reference or symbolic value, and
\[
A=A_{\text {existing }} \cup\left\{\text { null }, r e f_{\text {fresh }}\right\}
\]
is the set of possible concrete references ref \({ }_{\alpha}\) can point to. Let \(A_{\text {existing }}\) be the union of the sets of concrete references of all other symbolic references of the same type in \(\mathcal{A}\).

Let assign be the function that defines the assignment of the value resulting from the right-hand side to the left-hand side and initializing a symbolic reference, when applicable. It is defined as
\[
\text { assign : Stack } \times \text { Heap } \times \text { AliasMap } \times \text { Lhs } \times \text { Expression } \rightarrow \text { Stack } \times \text { Heap } \times \text { AliasMap }
\]
where
\[
\begin{aligned}
& \operatorname{assign}\left(\sigma, h, \mathcal{A}, \text { lhs }_{\text {var }}(i), E_{v}\right)=\left(\text { write }_{\text {stack }}\left(\sigma, i, E_{v}\right), h, \mathcal{A}\right) \\
& \operatorname{assign}\left(\sigma, h, \mathcal{A}, \text { lhs }_{\text {field }}\left(i_{1}, i_{2}\right), E_{v}\right)=\left\{\begin{array}{c}
\left(\sigma, \text { write }_{\text {field }}\left(h, \emptyset, \operatorname{ref}_{n}, i_{2}, E_{v}\right), \mathcal{A}\right) \\
\text { if } \operatorname{read}_{\text {stack }}\left(\sigma, i_{1}\right)=\operatorname{ref}_{n} \\
\text { infeasible }^{\text {if } \operatorname{read}_{\text {stack }}\left(\sigma, i_{1}\right)=\operatorname{null}} \\
\left(\sigma, \operatorname{write}_{\text {field }}\left(h^{\prime}, \mathcal{A}^{\prime}\left(\operatorname{ref}_{\alpha}\right), i_{2}, E_{v}\right), \mathcal{A}^{\prime}\right) \\
\text { if } \operatorname{read}_{\text {stack }}\left(\sigma, i_{1}\right)=\operatorname{ref}_{\alpha}, \text { init }\left(h, \mathcal{A}, \operatorname{ref}_{\alpha}\right)=\left(h^{\prime}, \mathcal{A}^{\prime}\right)
\end{array}\right. \\
& \operatorname{assign}\left(\sigma, h, \mathcal{A}, \operatorname{lhs}_{\text {elem }}(i, E), E_{v}\right)=\left\{\begin{array}{c}
\left(\sigma, \operatorname{write}_{\text {index }}\left(h, \operatorname{ref}_{n}, E, E_{v}\right), \mathcal{A}\right) \\
\text { if } \operatorname{read}_{\text {stack }}(\sigma, i)=\operatorname{ref}_{n} \\
\text { infeasible }^{\text {if } \operatorname{read}_{\text {stack }}(\sigma, i)=\operatorname{null}}
\end{array}\right.
\end{aligned}
\]

Let evaluate be the function that evaluates the right-hand side of the assignment, defined as
\[
\text { evaluate }: \text { Stack } \times \text { Heap } \times \text { AliasMap } \times \text { Rhs } \rightarrow \text { Expression } \times \text { Heap } \times \text { AliasMap }
\]
where
\[
\begin{aligned}
& \operatorname{evaluate}\left(\sigma, h, \mathcal{A}, \operatorname{rhs}_{\text {expr }}(E)\right)=(\operatorname{eval\llbracket E\rrbracket (\sigma ,h),h,\mathcal {A})} \\
& \text { evaluate }\left(\sigma, h, \mathcal{A}, \operatorname{rhs}_{\text {field }}\left(i, i_{2}\right)\right)=\left\{\begin{array}{c}
\left(\operatorname{read}_{\text {field }}\left(\sigma, h, \emptyset, \operatorname{ref}_{n}, i_{2}\right), h, \mathcal{A}\right) \\
\text { if } \operatorname{read}_{\text {stack }}\left(\sigma, i_{1}\right)=\operatorname{ref}_{n} \\
\text { infeasible } \\
\text { if } \operatorname{read}_{\text {stack }}\left(\sigma, i_{1}\right)=\operatorname{null} \\
\left(\operatorname { r e a d } _ { \text { field } } \left(\sigma, h^{\prime}, \mathcal{A}(r e f\right.\right. \\
\text { if } \left.\left.\operatorname{read}_{\text {stack }}\left(\sigma, i_{1}\right)=\operatorname{ref}_{\alpha}, i_{2}\right), h^{\prime}, \mathcal{A}^{\prime}\right)
\end{array}\right. \\
& \text { init }\left(h, \mathcal{A}, \operatorname{ref}_{\alpha}\right)=\left(h^{\prime}, \mathcal{A}^{\prime}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{evaluate}\left(\sigma, h, \mathcal{A}, r \operatorname{rhs}_{\text {elem }}(i, E)\right)= \begin{cases}\left(\operatorname{read}_{\text {elem }}\left(h, r e f_{n}, E\right), h^{\prime}, \mathcal{A}\right) & \text { if } \operatorname{read}_{\text {stack }}(\sigma, i)=\operatorname{ref}_{n} \\
\operatorname{infeasible~} & \text { if } \operatorname{read}_{\text {stack }}(\sigma, i)=\operatorname{null}\end{cases} \\
& \text { evaluate }\left(\sigma, h, \mathcal{A}, r \operatorname{rhs}_{\text {array }}(\tau, \underline{E})\right)= \begin{cases}\left(\operatorname{ref}_{n}, h\left[r e f_{n} \mapsto \mathcal{O}\right], \mathcal{A}\right) & \text { if } \underline{E}=\left[E_{1}\right] \\
\left(\operatorname{ref}_{n}, h\left[r e f_{n} \mapsto \mathcal{O}\right], \mathcal{A}\right) & \text { if } \underline{E}=\left[E_{1}, \ldots, E_{n}\right], \tau=\operatorname{array}\left(\tau^{\prime}\right)\end{cases}
\end{aligned}
\]

For the base case of ref array we have that \(r e f_{n}\) is a fresh reference, and we have the object structure of the new array \(\mathcal{O}=\left[\operatorname{elem}_{0} \mapsto \operatorname{default}(\tau), \ldots\right.\), elem \(\left._{E_{1}^{\prime}} \mapsto \operatorname{default}(\tau)\right)\) For the recursive case, we again have that ref \({ }_{n}\) is a fresh reference, and we have the objeect structure \(\mathcal{O}=\left[\right.\) elem \(m_{0} \mapsto\) \(r e f_{1}, \ldots\), elem \(_{E_{1}^{\prime}} \mapsto r e f_{n}\) ), where each \(r e f_{1} \ldots r e f_{n}\) are fresh references that result from recursive evaluations
\[
\operatorname{evaluate}\left(\sigma, h_{j}, \mathcal{A}, r h s_{\text {array }}\left(\tau^{\prime},\left(E_{1}, \ldots, E_{n}\right)\right)\right)
\]

Finally, \(h_{j}\) is the heap from the previous allocated fresh reference \(r e f_{j-1}\).
```

$\overline{\text { Input: The symbolic state state, the current thread id tid, the left-hand side } t \text {, the right-hand }}$
side v and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteAssign $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $t, v, k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }} \in \mathcal{T}$
if $v \neq r h s_{\text {call }}(I)$ then
if t or v contains a read or write from an symbolic reference $r e f_{\alpha}$ which is an array
then
for all Concrete references $\operatorname{ref}_{n} \in \mathcal{A}\left(r e f_{\alpha}\right)$ do
$\mathcal{A}^{\prime} \leftarrow \mathcal{A}\left[r e f_{\alpha} \mapsto\left\{r e f_{n}\right\}\right]$
$\pi^{\prime} \leftarrow \pi \cup\left\{r e f_{\alpha}==r e f_{n}\right\}$
result \leftarrow ExecuteAssign $\left(\left(\mathcal{T}, h, \pi^{\prime}, \mathcal{A}^{\prime}, \mathcal{L}, \mathcal{I}\right)\right.$, tid $\left., t, v, k\right)$
if result $\in\{$ invalid, deadlock, unknown then
return result
end if
end for
else
value $\leftarrow \operatorname{evaluate}(\sigma, h, \mathcal{A}, v)$
if value $=$ infeasible then
return infeasible
else if value $=\left(E_{v}, h^{\prime}, \mathcal{A}^{\prime}\right)$ then
result $\leftarrow \operatorname{assign}\left(\sigma, h^{\prime}, \mathcal{A}^{\prime}, t, E_{v}\right)$
if result $=$ infeasible then
return infeasible
else if result $=\left(\sigma^{\prime \prime}, h^{\prime \prime}, \mathcal{A}^{\prime \prime}\right)$ then
$\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow \sigma^{\prime \prime}$
return $\operatorname{Branch}\left(\left(\mathcal{T}, h^{\prime \prime}, \pi, \mathcal{A}^{\prime \prime}, \mathcal{L}, \mathcal{I}\right)\right.$, tid, $\left.k\right)$
end if
end if
end if
else
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
end if
end procedure

```

Assert Statements. An assert statement triggers the verification of the assertion. The assertion \(E\) is combined with the path constraints \(\pi\) to form the formula
\[
\varphi=\bigwedge_{\psi \in \pi} \psi \wedge \neg E
\]
which is first evaluated. If the result is true, the assertion is incorrect, if it is \(f\) alse, the assertion is correct. Otherwise, if the result is a simplified formula \(E^{\prime}\), the formula \(E^{\prime}\) is processed further. When the formula \(E^{\prime}\) contains at least one symbolic reference, a formula will be generated for each of the concrete cases. When \(E^{\prime}\) contains multiple symbolic references, a formula for each combination of concrete references will be generated. Each formula will then be solved using Z3.
```

Input: The symbolic state state, the current thread id tid, the assertion E and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteAssert $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $E, k)$
$E^{\prime} \leftarrow \operatorname{eval} \llbracket \wedge_{\psi \in \pi} \psi \wedge \neg E \rrbracket(\sigma, h)$
if $E^{\prime}=l i t($ true $)$ then return invalid
else if $E^{\prime}=\operatorname{lit}($ false $)$ then return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
else
result $\leftarrow \mathrm{Z} 3\left(E^{\prime}\right)$
if result \neq unsatisfiable then
return result
else
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
end if
end if
end procedure

```

Assume Statements. An assume statement asserts that the assumption must be satisfiable to continue the exploration of this branch. The first step is to try solve the formula using evaluation. If the formula evaluates to true, the assumption always holds and the exploration of this branch continues, if it evaluates to false, the assumption never holds, halting further exploration of this branch. Otherwise, the simplified expression \(E^{\prime}\) is added to the path constraints.
```

$\overline{\text { Input: The symbolic state state, the current thread id tid, the assumption } E \text { and some integer }}$
k
Output: valid, invalid, deadlock or unknown
procedure ExEcuteAssume $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $E, k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
$E^{\prime} \leftarrow \operatorname{eval} \llbracket E \rrbracket(\sigma, h)$
if $E^{\prime}=l i t(f a l s e)$ then
return infeasible
else if $E^{\prime} \neq \operatorname{lit}($ true) then
$\pi \leftarrow \pi \cup E^{\prime}$
end if
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}), k)$
end procedure

```

Return Statements. A return statement assigns the evaluated value of the expression to the special variable retval.
```

Input: The symbolic state state, the current thread id tid, the return value E and some integer
k
Output: valid, invalid, deadlock or unknown
procedure ExecuteReturn $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $E, k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
$\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow$ write $_{\text {stack }}(\sigma$, retval, eval $\llbracket E \rrbracket(\sigma, h))$
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}), k)$
end procedure

```

Lock Statements. A lock statement aims to acquire the lock of a reference pointed to by the variable \(i\). This reference can be either concrete and symbolic. We need to consider three cases: (1) the reference is a symbolic reference \(r e f_{\alpha}\). The SEE branches for each concrete reference of \(r e f_{\alpha}\) in the alias map \(\mathcal{A}\). The path constraints \(\pi\) are updated accordingly; (2) the reference is a concrete reference \(\operatorname{ref}_{n}\). Then, if the lock reference is locked by another thread, the path is considered infeasible. If the lock is not held by another thread, the reference is added to the lock set; and (3) the reference is null. The program path is considered infeasible.
```

Input: The symbolic state state, the current thread id tid, the variable to lock i and some
integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteLock $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $i, k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
switch $\operatorname{read}_{\text {stack }}(\sigma, i)$ do
case Concrete reference ref ${ }_{n}$:
if $\mathcal{L}\left(r e f_{n}\right) \neq$ tid then
return infeasible
else
$\mathcal{L} \leftarrow \mathcal{L}\left[\right.$ ref $_{n} \mapsto$ tid $]$
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}), k)$
end if
case Symbolic reference $\operatorname{ref}{ }_{\alpha}$:
for all Concrete reference $\operatorname{ref}_{n} \in \mathcal{A}\left(\right.$ ref $\left._{\alpha}\right)$ do
$\pi^{\prime} \leftarrow \pi \cup\left\{r e f_{n}==r e f_{\alpha}\right\}$
$\mathcal{A}^{\prime} \leftarrow \mathcal{A}\left[r e f_{\alpha} \mapsto\left\{r e f_{n}\right\}\right]$
$\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow \sigma\left[\right.$ var $\left.\leftarrow r e f_{i}\right]$
result $\leftarrow \operatorname{ExEcuteLock}\left(\left(\mathcal{T}, h, \pi^{\prime}, \mathcal{A}^{\prime}, \mathcal{L}, \mathcal{I}\right)\right.$, tid $\left., i, k\right)$
if result $\in\{$ invalid, deadlock, unknown $\}$ then
return result
end if
end for
case null:
return infeasible
end procedure

```

Unlock Statements. An unlock statement removes the lock of the reference \(r e f_{n}\) pointed to by variable \(i\) from the lock set \(\mathcal{L}\).
```

Input: The symbolic state state, the current thread id tid, the variable to unlock i and some
integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteUnlock $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $i, k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
$\operatorname{ref}_{n} \leftarrow \operatorname{read}_{\text {stack }}(\sigma, i)$
$\mathcal{L} \leftarrow \operatorname{remove}_{\text {lock }}\left(\mathcal{L}\right.$, ref $\left._{n}\right)$
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}), k)$
end procedure

```

The Entry of a Method or Constructor. The entry of a method or constructor defines its entry point. The control flow is transferred from the calling method to the method body and the pre-condition of the method is verified as if it is an assert statement.
```

Input: The symbolic state state, the current thread id tid and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteMethodEntry $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
if The method has a pre-condition E then
Verify E in the same way as an assert statement.
end if
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
end procedure

```

The Exit of a Method or Constructor. The exit of a method or constructor defines its exit point. The top-most stack frame is popped from the call stack and post-condition of the method is verified as if it is an assert statement.
```

$\overline{\text { Input: The symbolic state state, the current thread id tid, the left-hand side to assign the return }}$
value to t and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteMethodExit $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $t, k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
if The method has a post-condition E then
Verify E in the same way as an assert statement.
end if
if $|\sigma|=1$ then
$\mathcal{T} \leftarrow \mathcal{T}-\left\{\mathcal{T}_{\text {tid }}\right\}$
$h^{\prime} \leftarrow h$
else
retval $\leftarrow \operatorname{read}_{\text {stack }}(\sigma$, retval $)$
$\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow$ write $_{\text {stack }}\left(\right.$ pop $_{\text {stack }}(\sigma)$, retval, retval $)$
if $\eta=\left[\left(p c^{\prime}, n\right)_{1}, \ldots\right]$ then
$\mathcal{T}_{\text {tid }} \bullet \eta \leftarrow\left[\left(p c^{\prime}, n-1\right)_{1}, \ldots\right]$
end if
end if
return $\operatorname{Branch}\left(\left(\mathcal{T}, h^{\prime}, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}\right), k\right)$
end procedure

```

The Call of a Method or Constructor. The call of a method or constructor defines that a method or constructor needs to be executed. A new stack frame is pushed on the call stack, containing the parameters \(\underline{P}\) of the method or constructor assigned to the arguments \(\underline{E}\). When the current statements is inside a try block, the call depth of the exception handler stack \(\eta\) is increased by one. For constructors, the same algorithm is executed, with some modifications. A fresh reference \(r e f_{\text {fresh }}\) is created. This reference is inserted on the call stack as an implicit this argument, similar to the other arguments supplied to the constructor. A new object structure \(\mathcal{O}\) is created, which is allocated on the heap, pointed to by \(r e f_{\text {fresh }}\). The fields in the object structure \(\mathcal{O}\) are set to the default values of their corresponding types.
```

$\overline{\text { Input: The symbolic state state, the current thread id tid, the entry point of the method } p c^{\prime} \text {, }}$
the parameters \underline{P}, the arguments \underline{E}, the left-hand side to assign the return value to t and some
integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteMethodCall $\left((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\right.$, tid, $\left.p c^{\prime}, \underline{P}, \underline{E}, t, k\right)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
- Create a new stack frame consisting of the arguments.
$\left\{p c^{\prime \prime}\right\} \leftarrow N_{C F G}(p c)$
$\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow$ push $_{\text {stack }}\left(\sigma, p c^{\prime \prime}, t\right)$
for $j \leftarrow 1$ to $|P|$ do
$\operatorname{param}(\tau, i) \leftarrow \underline{P}_{j}$
$\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow$ write $_{\text {stack }}\left(\sigma, i\right.$, eval $\left.\llbracket \underline{E}_{j} \rrbracket(\sigma, h)\right)$
end for
- Update the exception handler stack, if it exists.
if $\eta=\left[\left(p c^{\prime \prime}, n\right)_{1}, \ldots\right]$ then
$\mathcal{T}_{\text {tid }} \bullet \eta \leftarrow\left[\left(p c^{\prime \prime}, n+1\right)_{1}, \ldots\right]$
end if
- Update the program counter manually and continue the exploration.
$\mathcal{T}_{\bullet} p c \leftarrow p c^{\prime}$
return $\operatorname{ExEcute}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I}), k-1)$
end procedure

```

Fork Statements. The fork of a method spawn a new thread starting with at the program counter \(p c^{\prime}\) with parameters \(\underline{P}\) and arguments \(\underline{E}\). This new thread is assigned a fresh thread id, tid \(_{\text {fresh }}\).
```

Input: The symbolic state state, the current thread id tid, the entry point of the method $p c^{\prime}$,
the parameters \underline{P}, the arguments \underline{E} and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteFork $\left((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\right.$, tid, $\left.p c^{\prime}, \underline{P}, \underline{E}, k\right)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
tid $_{\text {fresh }} \leftarrow$ a fresh thread id
$\sigma^{\prime} \leftarrow$ push $_{\text {stack }}([]$, undefined, undefined $)$
for $j \leftarrow 1$ to $|P|$ do
$\operatorname{param}(\tau, i) \leftarrow \underline{P}_{j}$
$\sigma^{\prime} \leftarrow$ write $_{\text {stack }}\left(\sigma^{\prime}, i, \operatorname{eval} \llbracket \underline{E}_{j} \rrbracket(\sigma, h)\right)$
end for
$\mathcal{T}_{\text {tid fresh }} \leftarrow\left(p c^{\prime}\right.$, tid $\left., \sigma^{\prime},[]\right)$
$\mathcal{T} \leftarrow \mathcal{T} \cup\left\{\mathcal{T}_{\text {tid }}^{\text {fresh }}\right.$ $\}$
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid,$k)$
end procedure

```

The Entry of a Try Block. The entry point of a try block will be executed when a try block will be entered. It inserts a new exception handler as the top-most exception handler to the \(\eta\) of the current thread.
```

Input: The symbolic state state, the current thread id tid, the catch entry block program
counter $p c^{\prime}$, and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteTryEntry $\left((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\right.$, tid, $\left.p c^{\prime}, k\right)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
$\mathcal{T}_{\text {tid }} \bullet \eta \leftarrow \operatorname{insert}_{\text {handler }}\left(\eta,\left(p c^{\prime}, 0\right)\right)$
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
end procedure

```

The Exit of a Try Block. The exit point of a try block will be executed when a try block will be exited. It removes the top-most exception handler from the exception handler stack \(\eta\) of the current thread.
```

Input: The symbolic state state, the current thread id tid, and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteTryExit $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
$\mathcal{T}_{\text {tid }} \bullet \eta \leftarrow$ remove $_{\text {handler }}(\eta)$
return $\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
end procedure

```

The Entry of a Catch Block. The entry of a catch block will be executed after an exception has occurred within a try block. The top-most exception handler will be removed from the exception handler stack \(\eta\) of the current thread. The control flow continues in the body of the catch block.

Input: The symbolic state state, the current thread id tid, and some integer \(k\)
Output: valid, invalid, deadlock or unknown
procedure ExEcuteCatchEntry \(((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\), tid, \(k)\)
\[
(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}
\]
\(\mathcal{T}_{\text {tid }} \bullet \eta \leftarrow\) remove \(_{\text {handler }}(\eta)\)
return \(\operatorname{Branch}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})\), tid,\(k)\)
end procedure

The Exceptional State. The exceptional state is a special action that is reached after a throw has been executed. The exceptional state The exceptional state considers two cases: (1) there is a corresponding catch block the control flow will be transferred to. In this case, the stack frames of the calls made will be popped and their exceptional post-conditions will be verified; and (2) there is no corresponding catch block. In this case, the exceptional post-condition of all methods in the call stack will be verified and the exploration of this branch stops.
```

Input: The symbolic state state, the current thread id tid, and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExEcuteExceptional $((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
$(p c, \sigma, \eta) \leftarrow \mathcal{T}_{\text {tid }}$
if $|\eta|=0$ then
while $|\sigma|>0$ do
if The method on top of the call stack has an exceptional post-condition E then
Verify E in the same way as an assert statement.
end if
$\sigma \leftarrow \operatorname{pop}_{\text {stack }}(\sigma)$
end while
else
$\left(p c^{\prime}, n\right) \leftarrow \eta_{1}$
while $n>0$ do
if The method in which $p c^{\prime}$ resides has an exceptional post-condition E then
Verify E in the same way as an assert statement.
end if
$\mathcal{T}_{\text {tid }} \bullet \sigma \leftarrow \operatorname{pop}_{\text {stack }}(\sigma)$
$n \leftarrow n-1$
end while
if The method has an exceptional post-condition E then
Verify E in the same way as an assert statement.
end if
$\mathcal{T}_{\text {tid }} \bullet p c \leftarrow p c^{\prime}$
return $\operatorname{BRANCH}((\mathcal{T}, h, \pi, \mathcal{A}, \mathcal{L}, \mathcal{I})$, tid, $k)$
end if
end procedure

```

\subsection*{4.4.2 Formula Caching}

One fairly trivial optimization is to store formulas that are sent to the SMT solver in a cache. When a formula is verified, the first step is to check if the cache contains that formula. If this is the case, the formula is valid, otherwise the SEE will have returned that the formula is invalid the first time it is sent to the SMT solver and the SEE will have terminated.

The main problem with implementing a caching approach is to control the runtime overhead. Comparing two expressions can become quite expensive, especially when expressions grow bigger.

Initial experiments showed that a set data structure based on a binary search tree [2] with \(O(\log n)\) lookup time and \(O(\log n)\) insert time actually reduces the overall performance of the SEE The main reason being that it requires an ordering of expressions, which implies comparisons between different expressions.

The data structure we chose is a hash array mapped trie with \(O(\log n)\) average lookup time and \(O(\log n)\) average insert time. In practice, these operations are performed in \(O(1)\) time. Another advantage is that the expressions are hashed, which removes the need for expensive comparisons between expressions.

\subsection*{4.4.3 Expression Evaluation}

The Symbolic Execution Engine includes an expression evaluator. This expression evaluator aims to simplify expressions to a constant, which is possible iff the expression does not contain a symbolic reference or symbolic value. The aim of expression evaluation is threefold: (1) to determine the outcome of assume statements. If the outcome is a literal, the path can be pruned or the path constraint does not have to be included in the path constraints; (2) to determine the outcome of assert statements, which can remove the need to invoke Z3; and (3) to reduce the size of expressions in general.

The expression evaluator is defined as
\[
\text { eval } \llbracket E \rrbracket: \text { Expression } \times(\text { Stack }, \text { Heap }) \rightarrow \text { Expression }
\]

In the following definitions, let some primed expression \(E^{\prime}\) be the evaluated expression of \(E\). That is, \(E^{\prime}=e v a l \llbracket E \rrbracket(\sigma, h)\).

Literals and References. Let the expression evaluator be the identity function for the literals and the references.
\[
\begin{aligned}
\operatorname{eval} \llbracket l i t(z) \rrbracket(\sigma, h) & =\operatorname{lit}(z) \\
\text { eval} \llbracket l i t(b) \rrbracket(\sigma, h) & =\operatorname{lit}(b) \\
\text { eval } \llbracket i t(\alpha) \rrbracket(\sigma, h) & =\operatorname{lit}(\alpha) \\
\text { eval } \llbracket r e f_{n} \rrbracket(\sigma, h) & =r e f_{n} \\
e v a l \llbracket r e f_{\alpha} \rrbracket(\sigma, h) & =r e f_{\alpha} \\
\text { eval} \llbracket \text { nulı } \rrbracket(\sigma, h) & =\text { null }
\end{aligned}
\]

Variable Access. Let the expression evaluator read the variable \(i\) from the stack \(\sigma\) when reading a variable.
\[
e v a l \llbracket \operatorname{var}(i) \rrbracket(\sigma, h)=\operatorname{read}_{\text {stack }}(\sigma, i)
\]

Unary Operators. Let the expression evaluator apply the unary operator when the operand is a literal.
\[
\begin{aligned}
& \operatorname{eval\llbracket unop}(E,!) \rrbracket(\sigma, h)= \begin{cases}\operatorname{lit}(\neg b) & \text { if } E^{\prime}=\operatorname{lit}(b) \\
\operatorname{unop}\left(E^{\prime},!\right) & \text { otherwise }\end{cases} \\
& \text { eval } \llbracket \operatorname{unop}(E,-) \rrbracket(\sigma, h)= \begin{cases}\operatorname{lit}(-z) & \text { if } E^{\prime}=\operatorname{liz}(z) \\
\operatorname{unop}\left(E^{\prime},-\right) & \text { otherwise }\end{cases}
\end{aligned}
\]

Arithmetic Operators. Let the expression evaluator apply the binary arithmatic operator when both operands are literals.
\[
\operatorname{eval\llbracket \operatorname {binop}(E_{1},\odot ,E_{2})\rrbracket (\sigma ,h)=\{ \begin{array} {ll}
{\operatorname {lit}(z_{1}\odot z_{2})}&{\text {if}E_{1}^{\prime }=\operatorname {lit}(z_{1})\text {and}E_{2}^{\prime }=\operatorname {lit}(z_{2})}\\
{\operatorname {binop}(E_{1}^{\prime },\odot ,E_{2}^{\prime })}&{\text {otherwise}}
\end{array} \text {(t)}}
\]

Logical Operators. Let all binary logical operators be defined in terms of logical conjunction. Let the expression evaluator apply the logical conjunction operator be when both operands are literals. Otherwise, if either operand results in true the expression evaluator results in the simplified expression of the other operand.
\[
\begin{aligned}
& \operatorname{eval} \llbracket \operatorname{binop}\left(E_{1}, \& \&, E_{2}\right) \rrbracket(\sigma, h)= \begin{cases}\operatorname{lit}\left(b_{1} \wedge b_{2}\right) & \text { if } E_{1}^{\prime}=\operatorname{lit}\left(b_{1}\right) \text { and } E_{2}^{\prime}=\operatorname{lit}\left(b_{2}\right) \\
E_{2}^{\prime} & \text { if } E_{1}^{\prime}=\operatorname{lit}(\text { true }) \\
E_{1}^{\prime} & \text { if } E_{2}^{\prime}=\operatorname{lit}(\text { true }) \\
\operatorname{lit}(\mathrm{false}) & \text { if } E_{1}^{\prime}=\operatorname{lit}(\mathrm{false}) \text { or } E_{2}^{\prime}=\operatorname{lit}(\mathrm{false}) \\
\operatorname{binop}\left(E_{1}^{\prime}, \& \&, E_{2}^{\prime}\right) & \text { otherwise }\end{cases} \\
& \operatorname{eval\llbracket \operatorname {binop}(E_{1},||,E_{2}\rrbracket (\sigma ,h)=\operatorname {eval\llbracket unop}(\operatorname {binop}(\operatorname {unop}(E_{1},!),\& \& ,\operatorname {unop}(E_{2},!)),!)\rrbracket (\sigma ,h)} \\
& \operatorname{eval\llbracket \operatorname {binop}(E_{1},==>,E_{2}\rrbracket (\sigma ,h)=\operatorname {eval\llbracket \operatorname {binop}(\operatorname {unop}(E_{1},!),||,E_{2})\rrbracket (\sigma ,h)}}
\end{aligned}
\]

Equality and Inequality Operators. Let inequality be defined in terms of equality. Let the expression evaluator apply the the equality operator when both operands are either literals or references.
\[
\begin{aligned}
& \operatorname{eval\llbracket \operatorname {binop}(E_{1},==,E_{2})\rrbracket (\sigma ,h)=\{ \begin{array} {ll}
{\operatorname {lit}(z_{1}=z_{2})}&{\text {if}E_{1}^{\prime }=\operatorname {lit}(z_{1})\text {and}E_{2}^{\prime }=\operatorname {lit}(z_{2})}\\
{\operatorname {lit}(b_{1}=b_{2})}&{\text {if}E_{1}^{\prime }=\operatorname {lit}(b_{1})\text {and}E_{2}^{\prime }=\operatorname {lit}(b_{2})}\\
{\operatorname {lit(rf_{a}=\operatorname {ref}_{b})}}&{\text {if}E_{1}^{\prime }=ref_{a}\text {and}E_{2}^{\prime }=\operatorname {ref}}
\end{array} b} \begin{array}{l}
\operatorname{binop}\left(E_{1}^{\prime},==, E_{2}^{\prime}\right) \\
\text { otherwise }
\end{array} \\
& \operatorname{eval\llbracket \operatorname {binop}(E_{1},!=,E_{2})\rrbracket (\sigma ,h)=\operatorname {eval\llbracket \operatorname {unop}(\operatorname {binop}(E_{1},==,E_{2}),!)\rrbracket (\sigma ,h)}} \$
\end{aligned}
\]

Comparison Operators. Let all comparison operators be defined in terms of <. Let the expression evaluator apply the comparison operator when both operands are literals.
\[
\begin{aligned}
\operatorname{eval} \llbracket \operatorname{binop}\left(E_{1},<, E_{2}\right) \rrbracket(\sigma, h) & = \begin{cases}\operatorname{lit}\left(z_{1}<z_{2}\right) & \text { if } E_{1}^{\prime}=\operatorname{lit}\left(z_{1}\right) \text { and } E_{2}^{\prime}=\operatorname{lit}\left(z_{2}\right) \\
\operatorname{binop}\left(E_{1}^{\prime},<, E_{2}^{\prime}\right) & \text { otherwise }\end{cases} \\
\operatorname{eval} \llbracket \operatorname{binop}\left(E_{1},<=, E_{2}\right) \rrbracket(\sigma, h) & =\operatorname{eval\llbracket \operatorname {unop}(\operatorname {binop}(E_{2},<,E_{1}),!)\rrbracket (\sigma ,h)} \\
\operatorname{eval} \llbracket \operatorname{binop}\left(E_{1},>, E_{2}\right) \rrbracket(\sigma, h) & =\operatorname{eval\llbracket \operatorname {binop}(E_{2},<,E_{1})\rrbracket (\sigma ,h)} \\
\operatorname{eval} \llbracket \operatorname{binop}\left(E_{1},>=, E_{2}\right) \rrbracket(\sigma, h) & =\operatorname{eval\llbracket \operatorname {unop}(\operatorname {binop}(E_{1},<,E_{2}),!)\rrbracket (\sigma ,h)}
\end{aligned}
\]

Sizeof Operator. Let the expression evaluator return the size of the array pointed to by the variable \(i\).
\[
\operatorname{eval} \llbracket \operatorname{sizeof}(i) \rrbracket(\sigma, h)=\operatorname{lit}\left(\operatorname{size}\left(h\left(\operatorname{read}_{\text {stack }}(\sigma, i)\right)\right)\right)
\]

If-Then-Else Operator. Let the expression evaluator return the true expression \(E_{2}^{\prime}\) when the guard \(E_{1}^{\prime}\) evaluates to true and let the false expression \(E_{3}^{\prime}\) be returned when the guard evaluates to false.
\[
\text { eval } \llbracket i t e\left(E_{1}, E_{2}, E_{3}\right) \rrbracket(\sigma, h)= \begin{cases}E_{2}^{\prime} & \text { if } E_{1}^{\prime}=\operatorname{lit}(\text { true }) \\ E_{3}^{\prime} & \text { if } E_{1}^{\prime}=\operatorname{lit}(\mathrm{false}) \\ \text { ite }\left(E_{1}^{\prime}, E_{2}^{\prime}, E_{3}^{\prime}\right) & \text { otherwise }\end{cases}
\]

Quantifiers. Let the expression evaluator return an evaluated chain of the respective logical operators.
\[
\begin{aligned}
& \text { eval } \llbracket \text { forall }\left(i_{1}, i_{2}, i_{3}, E\right) \rrbracket(\sigma, h)=\operatorname{eval} \llbracket \& \& \& \in \operatorname{lin} \operatorname{eval} \llbracket E \rrbracket\left(\sigma_{j}, h\right) \rrbracket(\sigma, h) \\
& \operatorname{eval} \llbracket \operatorname{exists}\left(i_{1}, i_{2}, i_{3}, E\right) \rrbracket(\sigma, h)=\operatorname{eval\llbracket } \prod_{j=0}^{n-1} \operatorname{eval} \llbracket E \rrbracket\left(\sigma_{j}, h\right) \rrbracket(\sigma, h)
\end{aligned}
\]
where \(j\) represents the indices \([0, \ldots, n)\) of the array retrieved from the object structure
\[
\left.\operatorname{read}_{\text {stack }}\left(\sigma, i_{3}\right)\right)=\mathcal{O}=\left[\operatorname{elem}_{0} \mapsto E_{0}, \ldots, \text { elem }_{n} \mapsto E_{n}\right)
\]
and
\[
\sigma_{j}=\text { write }_{\text {stack }}\left(\text { write }_{\text {stack }}\left(\sigma, i_{1}, E_{j}\right), i_{2}, j\right)
\]
represents the stack with the current index \(j\) and element at index \(j\) written to the stack.

\subsection*{4.4.4 Partial Order Reduction}

Partial Order Reduction (POR is a technique to reduce the number of different interleavings and thus aims to limit the effects of the path explosion problem as a result of concurrency. POR exploits the fact that the interleaving of actions of different threads is a partial order, in which some orders result in the same state as others.

Suppose we have a simple program, as shown in Figure 4.5, consisting of two methods foo and bar, which are executed concurrently. Suppose Num is a class that contains the field value. The complete interleaving forms the partial order as shown in Figure 4.6. The partial order consists of three paths: \(p_{1}, p_{2}\) and \(p_{3}\), each corresponding to an unique interleaving.
\[
p_{1}=1 ; 2 ; a ; \quad p_{2}=1 ; a ; 2 ; \quad p_{3}=a ; 1 ; 2
\]

Paths \(p_{2}\) and \(p_{3}\) always lead to the same state, while \(p_{1}\) and \(p_{2}\) lead to the same state iff num points to a different reference. POR aims to identify these equivalences and prune those paths that lead to the same state.

Figure 4.5: A program consisting of two threads.
Listing 4.4: Thread 1
Listing 4.5: Thread 2
```

void foo(Num num) {
int y := 1;
num.value := y;
}
void bar(Num num) {
num.value := 2;

```

Figure 4.6: The partial order of interleavings of the two threads in Figure 4.5. Each path from top to bottom represents an unique interleaving.


Conventional Partial Order Reduction uses the notion of an independence relation 18.
Definition 9 (Independence Relation). \(\sim \subseteq\) Action \(\times\) Action is an independence relation iff for each \(\left(a_{1}, a_{2}\right) \in \sim\) the following two properties hold for all states state \(\in\) SymbolicState:
1. if \(a_{1}\) is enabled in state and state \(\xrightarrow{a_{1}}\) state \(^{\prime}\), then \(a_{2}\) is enabled in state iff \(a_{2}\) is enabled in state \({ }^{\prime}\); and
2. if \(a_{1}, a_{2}\) are enabled in state, there is a unique state state \({ }^{\prime}\) such that state \(\xrightarrow{a_{1} ; a_{2}}\) state \(^{\prime}\) and state \(\xrightarrow{a_{2} ; a_{1}}\) state \(^{\prime}\).

These two properties formalize that (1) two independent actions cannot enable or disable each other and that (2) the order in which these two actions are executed is irrelevant, i.e. they are commutative.

Our approach to Partial Order Reduction, inspired by [36], uses the notion of guarded independence.

Definition 10 (Guarded Independence Relation). \(\sim_{G} \subseteq\) Action \(\times\) Action is a guarded independence relation with respect to a condition \(c_{G}\) iff \(c_{G}\) implies that the following two properties hold:
1. if \(a_{1}\) is enabled in state and state \(\xrightarrow{a_{1}}\) state \({ }^{\prime}\), then \(a_{2}\) is enabled in state iff \(a_{2}\) is enabled in state \(^{\prime}\); and
2. if \(a_{1}, a_{2}\) are enabled in state, there is a unique state state \({ }^{\prime}\) such that state \(\xrightarrow{a_{1} ; a_{2}}\) state \(^{\prime}\) and state \(\xrightarrow{a_{2} ; a_{1}}\) state \(^{\prime}\).
stating that, instead of defining the independence relation in terms of all possible states, the independence relation is defined in terms of a formula \(c_{G}\).
The formula \(c_{G}\) of two actions \(a_{1}\) and \(a_{2}\) is defined using the following two functions
\[
R \llbracket a \rrbracket: \text { Action } \times \text { SymbolicState } \rightarrow \mathcal{P}(\text { Reference })
\]
and
\[
W \llbracket a \rrbracket: \text { Action } \times \text { SymbolicState } \rightarrow \mathcal{P}(\text { Reference })
\]
which define the set of references read from and written to by the action respectively. The formula \(c_{G}\) is defined as the conjunction of the following three equalities
\[
\begin{aligned}
W \llbracket a_{1} \rrbracket(\text { state }) \cap W \llbracket a_{2} \rrbracket(\text { state }) & =\emptyset \\
R \llbracket a_{1} \rrbracket(\text { state }) \cap W \llbracket a_{2} \rrbracket(\text { state }) & =\emptyset \\
R \llbracket a_{2} \rrbracket(\text { state }) \cap W \llbracket a_{1} \rrbracket(\text { state }) & =\emptyset
\end{aligned}
\]
in other words, do actions \(a_{1}\) and \(a_{2}\) both write, or read and write, to the same region of the heap in the Symbolic State.

\section*{Implementation in Symbolic Execution}

Partial Order Reduction is typically used in the context of symbolic- and explicit model checking [36, 37, 18, but it also appears in Symbolic Execution 20; which uses an approach where they keep track of the independence using a backtracking set.

The guarded indepdence relation \(a_{1} \sim_{G} a_{2}\) can be viewed from two perspectives:
1. from the POR perspective, where we construct the actual independence relations: the guarded independence relation is a symmetric binary relation denoting that two actions \(a_{1}\) and \(a_{2}\) are independent; and
2. from the interleaving perspective, where we choose which interleaving to explore and which not to explore: the guarded independence relation is a binary relation denoting that any interleaving containing the (sub)path \(a_{1} ; \ldots a_{2}\); will not be explored. This implies that the guarded independence relation is no longer symmetric.
Let por be the function that constructs the interleaving constraints from the symbolic state state and all unordered pairs of actions of all threads \(A\).
\[
\operatorname{por}(\text { state }, A)=\bigcup_{\left\{a_{i}, a_{j}\right\} \in A} \text { independent }\left(\text { state }, a_{i}, a_{j}\right)
\]

Then let independent determine whether two actions are independent, using the definition of \(c_{G}\) as described above.
\[
\text { independent }\left(\text { state }, a_{i}, a_{j}\right)= \begin{cases}\left\{a_{i} \sim_{G} a_{j}\right\} & \text { if } c_{G} \text { holds for } a_{i} \text { and } a_{j} \\ \left\{a_{i} \not \chi_{G} a_{j}\right\} & \text { otherwise }\end{cases}
\]

We say two interleaving constraints \(a_{i} \sim_{G} a_{j}\) and \(a_{p} \not \chi_{G} a_{q}\) are in conflict when their intersection is not empty. That is, \(\left\{a_{i}, a_{j}\right\} \cap\left\{a_{p}, a_{q}\right\} \neq \emptyset\). The filter \({ }_{\text {conflicts }}\) function filters such conflicts from an interleaving constraint set \(\mathcal{I}\) given some new interleaving constraints \(\mathcal{I}_{\text {new }}\).
\[
\text { filter }_{\text {conflicts }}\left(\mathcal{I}_{\text {new }}, \mathcal{I}\right)=\left\{a_{i} \sim_{G} a_{j} \in \mathcal{I} \mid \neg \operatorname{conflict}\left(\mathcal{I}_{\text {new }}, a_{i} \sim_{G} a_{j}\right)\right\} \cup\left\{a_{i} \not \chi_{G} a_{j} \in \mathcal{I}\right\}
\]
where the conflict between two independence relations is given by
\[
\operatorname{conflict}\left(\mathcal{I}_{\text {new }}, a_{i} \sim_{G} a_{j}\right)=\exists a_{p} \not \chi_{G} a_{q} \in \mathcal{I}_{\text {new }}:\left\{a_{i}, a_{j}\right\} \cap\left\{a_{p}, a_{q}\right\} \neq \emptyset
\]

Example 10 POR applied to the example in Figure 4.5). Suppose we have the program as shown in Figure 4.5. where \(r e f_{1}\) is supplied as an argument to num in both threads. The Symbolic Execution can be seen in Figure 4.7, where states with a dashed border will be pruned due to

POR. Simplified versions of the states will be presented; thread only consists of a program counter and its local variables and the path constraints, alias map and lock set are omitted.

Suppose that the symbolic execution starts with the symbolic state state \({ }_{0}\). Both threads need to be explored, as there are no interleaving constraints at this point. The first step is to compute the new interleaving constraints of all unordered pairs of actions. That is, actions 1 and action \(a\). They do not write to the same part to the heap, i.e. \(c_{G}\) holds for \(a\) and 1 . Thus, the interleaving constraint \(1 \sim_{G} a\) is generated and is added to \(\mathcal{I}\).

When branching from state \(_{1}\), the first step is to check if there exists an interleaving constraint \(1 \sim_{G} a \in \mathcal{I}\) that implies that action 2 does not have to be explored. This interleaving constraint does not exist, so the interleaving will be explored. The formula \(c_{G}\) does not hold for 2 and \(a\), as they both write to \(r e f_{1}\), meaning that the independence relation \(2 \not \chi_{G} a\) will be added to the interleaving constraints.

When branching from state \(_{2}\), the first step is to check if there exists and interleaving constraint \(1 \sim_{G} a \in \mathcal{I}\). This relation exists, implying that this branch does not have to be explored, as it will lead to the same state as another interleaving.

Figure 4.7: The search space of the program in Figure 4.5. including the Symbolic State. A state with a dashed border denotes that the branch will not be explored.


\section*{Chapter 5}

\section*{Results}

To evaluate our approach, we developed a prototype of the Symbolic Execution Engine based on the description in Chapter 4 . This prototype supports all of the features as described, except for:
- Non-static methods, these can be modelled using static methods \({ }^{1}\)
- Any primitive typed variable other than booleans and integers; and
- Assigning a new array of symbolic size to a variable.

The goal of the experiments are to verify the completeness, the soundness and to measure the performance. These goals has been split into seven categories, as described in Table 5.1

We performed all experiments on a Hyper-V virtual machine with a 64 -bit Ubuntu 19.10 operating system. The machine used an Intel Core i5-4670 processor and was allocated with 7 gigabyte of memory.

Table 5.1: An overview of the goals of individual experiments.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{} \\
\hline Soundness & & & & & & & X & X \\
\hline Completeness & X & X & X & X & & & & \\
\hline Soundness of Optimizations & X & X & X & X & & & & \\
\hline Completeness of Optimizations & X & X & X & X & & & & \\
\hline Efficacy of Optimizations & X & X & X & X & & & & \\
\hline Scalability & & & & & X & X & & \\
\hline Relative Performance & & & & & & & X & X \\
\hline
\end{tabular}

To verify the soundness and completeness of the approach and optimizations, a mutation operator

\footnotetext{
\({ }^{1}\) Static methods can model non-static methods due to the fact that OOX does not have dynamic dispatch. Suppose that inheritence will be supported. Then dynamic dispatch will be required and static methods can no longer model non-static methods.
}
scheme is designed, which is presented in Table 5.3. A mutant is generated for each point in the program where a mutation operator can be applied.

To compare the effect of individual optimizations, all possible combinations of optimizations will be compared. These combinations are presented in Table 5.2.

Table 5.2: The following scenarios will be compared. Note that when the test case is a nonconcurrent program, partial order reduction is irrelevant and different cases collapse. That is \(\mathrm{A}=/ \mathrm{rand}=\mathrm{A} / \operatorname{def}=\mathrm{SC}, \mathrm{PS}=\mathrm{S}, \mathrm{PC}=\mathrm{C}\) and \(\mathrm{P}=\mathrm{N}\).


Table 5.3: Mutation operator scheme. When a point in the program matches the pattern in the second column of the table, a mutant is generated for each option in the third column. Let \(\epsilon\) denote the removal of that specific point in the program.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Mutation operators of statements} \\
\hline DEL & S; & \(\epsilon\) & Statement removal. \\
\hline FLOW & continue; break; & break; continue; & Mutation of control flow breaking statements. \\
\hline \multicolumn{4}{|c|}{Mutation of concurrency statements [7]} \\
\hline FORK & fork f(a, b); & \(\mathrm{f}(\mathrm{a}, \mathrm{b})\) & Mutation of a fork into a regular call. \\
\hline LOCK & \(\operatorname{lock}(\mathrm{x})\) \{ S; \} & lock(y) \{ S ; \} S S \} & Mutation of a lock to lock a different (existing) reference or the removal of the lock. \\
\hline \multicolumn{4}{|c|}{Mutation operators of variables} \\
\hline VAR & \[
\begin{aligned}
& \hline \mathrm{x} \\
& \mathrm{x.f} \\
& \text { x[e] }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{y} \\
& \mathrm{y} . \mathrm{f} \\
& \mathrm{y}[\mathrm{e}]
\end{aligned}
\] & Mutation of a variable to a different (existing) variable of the same type. \\
\hline \multicolumn{4}{|c|}{Mutation operators of literals} \\
\hline LIT & \begin{tabular}{l}
n
true \\
false
\end{tabular} & \[
\begin{aligned}
& \mathrm{n}+1 \mathrm{n}-1 \\
& \text { false } \\
& \text { true }
\end{aligned}
\] & Mutation of an integer or boolean literal. \\
\hline \multicolumn{4}{|c|}{Mutation operators of binary operators} \\
\hline EQ & \[
=
\] & != & Mutation of the equality operators. \\
\hline CMP & <
\(<\)
\(>\)
\(>\)
\(>=\) &  & Mutation of the comparison operators. \\
\hline ARITH & \% & \[
\begin{aligned}
& -* / \% \\
& +* / \% \\
& +-/ \% \\
& +-* \% \\
& +-* /
\end{aligned}
\] & Mutation of the arithmetic operators. \\
\hline BOOL & \[
\begin{aligned}
& 11 \\
& \& \& 8 \\
& ==>
\end{aligned}
\] & \[
\begin{aligned}
& \& \&==> \\
& 11=> \\
& 1 \mid \& \&
\end{aligned}
\] & Mutation of the boolean operators. \\
\hline \multicolumn{4}{|c|}{Mutation operators of the unary operators} \\
\hline UN &  & \[
\begin{aligned}
& \epsilon \\
& \epsilon
\end{aligned}
\] & Unary operator removal. \\
\hline
\end{tabular}

\subsection*{5.1 The Completeness, Soundness and Efficacy of the Optimizations}

The first part of the experiments aims to evaluate the completeness of the Symbolic Execution Engine, and the completeness, soundness and efficacy of the optimizations.

EXP-1: Bubblesort. The first experiment consists of the verification of a bubblesort algorithm. The algorithm is described in Listing B.1. The algorithm is checked to be valid with respect to its specification, that is: given a non-null array of integers, the return value of the method is an array of integers in ascending order and the method will not terminate with an exception. The maximum program depth we used is 80 and the maximum size of the symbolic arrays is limited to 3 .

The mutation test generator created 61 mutants of which 20 resulted in a valid specification of which 8 were non-terminating and 12 were due to a specification that is not strong enough, these were verified by hand; 21 resulted in an invalid ensures specification; and 20 resulted in an invalid exceptional specification.

The results clearly show that the optimizations can drastically reduce the runtime. Formula caching decreases the runtime by a factor of 5 and in some cases about \(25 \%\) of the formulas are duplicate, and can be retrieved from the cache. The expression evaluation also greatly contributes, in some cases decreasing the runtime by a factor of 7 .

Runtime of the mutants that resulted in an invalid ensures specification.

Runtime of the mutants that resulted in an invalid exceptional specification.



EXP-2: Finding the Minimum Element in a Linked List. The second experiment aims to verify an algorithm that finds the minimum element stored in a linked list data structure. The algorithm, as described in Listing B.4, contains some auxiliary verification code: the variable N to determine the maximum depth of the linked list, the array values to keep track of all values in the linked list, and the final assertion to verify if the minimum element actually is the minimum element. The maximum program depth we used is 85 .

The mutation test generator created 47 mutants of which 18 were valid of which 8 were nonterminating and 10 were due to an specification that is not strong enough, these were verified by hand; 18 resulted in an invalid final assertion; and 11 resulted in an invalid exceptional specification.

The results show that the expression evaluation optimization decreases the runtime by up to a factor of 10 , from 10 seconds to 100 seconds. The formula caching increases the runtime by a tiny amount, but its effect is negligible.


EXP-3: Concurrent Mergesort. The third experiment aims to verify a concurrent mergesort algorithm. It is described in Listing B.5. It is a concurrent version of the mergesort algorithm with a fork-join approach. The algorithm is valid with respect to its specification, that is: given a non-null array of integers, the return value of the method is an array of integers in ascending order and the method will not terminate with an exception. The maximum program depth we used is 125 and the maximum size of the symbolic arrays is limited to 3 .
The mutation test generator created 480 mutants of which 278 resulted in a valid specification; 139 resulted in an invalid ensures specification; and 63 resulted in an invalid exceptional specification.

The experiments show that there is a small performance gain in using randomized path selection over default path selection, but this effect is minimal. There is one outlier (CMP2), which has a runtime 130 seconds. This mutant has an extreme runtime compared to the others while terminating with a correct result. This mutant has an extreme runtime because of the order in which the symbolic array are concretized. A concrete array of size 1 gets explored before size 2 . An array of size 1 causes infinite recursion in which, at every recursive step, a new thread gets
spawned. This causes many different interleavings that have to be explored. For an array of size 2 , the algorithm terminates immediately with the correct result.

Runtime of the mutants that resulted in an invalid ensures specification.

Runtime of the mutants that resulted in an invalid exceptional specification.


EXP-4: The Dining Philosophers Problem. The fourth experiment aims to find the deadlock in the algorithm for the dining philosophers problem. The algorithm to (incorrectly) handle the problem is given in Listing B.7. It is expected that the algorithm results in a deadlock. The program contains an auxiliary variable n which denotes the number of philosophers, and thus the number of child threads of the main thread. The eating of philosophers is modelled using locks. The maximum program depth we used is 100 .

The program was executed 50 times using two modes: A/rand and A/def. Both modes correctly found that the program result in a deadlock. The default mode finds the deadlock in an average time of 0.42 seconds with a standard deviation of 0.045 . The random mode finds the deadlock in 0.701 seconds with a standard deviation of 0.363 seconds.

\subsection*{5.2 Scalability}

The second part of the experiments aims to determine the scalability of our approach.

EXP-5: Finding the Minimum Element in a Linked List. The fifth experiment again uses the algorithm to find the minimum element in a linked list. In this instance to determine the limits of the maximum program depth \(k\). A maximum runtime of 300 seconds was given and the runtime for the different linked lists of length 1 up to 5 are compared.

The experiment shows that the length of the linked list does not affect the performance; the maximum depth does, as expected. The limit of the maximum program depth was 110, after which the runtime was more than 300 seconds. Most of the runtime is due to the number invocations of Z3. The number of invocations required increases exponentially relative to the maximum program depth.

Scalability using different depths.


EXP-6: Concurrent Mergesort. The sixth experiment again uses the concurrent mergesort algorithm. The algorithm is used to check the need and effectivity of Partial Order Reduction. The results show that when multiple threads exist, POR is a necessity. The runtime is linear up to program depth 35 . After program depth 35 , multiple threads begin to exist, drastically increasing the runtime. When using POR, the runtime does not show this drastic increase.

Scaliblity using POR and not using POR


\subsection*{5.3 A Comparison with CBMC and CIVL}

We compared our approach with CBMC [11] and CIVL [34]. CBMC is a symbolic model checker for (non-concurrent) C programs and CIVL is a symbolic execution engine for (concurrent) C programs. See Section 6.2 for more information about CIVL and CBMC.

A comparison between OOX and C cannot be completely fair. For example, when verifying C programs, one has to account for low-level pointer arithmetic. To remain sound, the Symbolic Execution Engine also needs to account that a pointer can point to every possible position in the memory. The type system of C can not be of much help either, as the C type system is fairly weak. Our aim is to make the comparison as fair as possible. We tweaked both CBMC and CIVL to halt on the first specification violation, and only verify user-defined assertions, division by zero, and array bounds. The commands we used are
```

cbmc -bounds-check -div-by-zero-check -stop-on-fail -depth <depth> <file>
civl verify -checkMemoryLeak=false -maxDepth=<depth> <file>

```
where <depth> is the maximum program path length, which we set equal to their OOX counterparts and <file> is the file under verification. The default SMT solver of CMBC is MiniSAT [15]. Early experiments showed that CBMC performed better using MiniSAT than using Z3. We used Z3 [13] as the SMT solver for CIVL. For each experiment, the original OOX program and the invalid mutations (or a subset of mutations) were translated to a version for CBMC and a version for CIVL. The translated programs were implemented to be as similar to their OOX counterparts as possible. We executed each experiment 5 times, similar to the OOX experiments.

EXP-7: Bubblesort. The seventh experiment consists of comparing our results of the bubblesort algorithm with results of CBMC and CIVL. The algorithm is translated to two other versions: a version in C for CBMC, as presented in Listing B. 2 and a version in CIVL-C, as presented in Listing B. 3 .
The results show that our approach is sound; the results are the same as that of CBMC and CIVL. Our approach shows to have a competitive runtime in comparison.

Table 5.4: The comparative results of the bubblesort algorithm between OOX, CBMC and CIVL.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{File} & \multicolumn{2}{|c|}{OOX} & \multicolumn{2}{|r|}{CBMC} & \multicolumn{2}{|r|}{CIVL} \\
\hline & \begin{tabular}{l}
Expec. \\
Result
\end{tabular} & Time (s) & \begin{tabular}{l}
Equiv \\
Result
\end{tabular} & Time (s) & \begin{tabular}{l}
Equiv \\
Result
\end{tabular} & Time (s) \\
\hline ORIGINAL & VALID & 0.342 & \(\checkmark\) & 1.460 & \(\checkmark\) & 2.96 \\
\hline ARITH0 & INVALID & 0.130 & \(\checkmark\) & 0.541 & \(\checkmark\) & 2.15 \\
\hline ARITH1 & INVALID & 0.205 & \(\checkmark\) & 0.560 & \(\checkmark\) & 2.16 \\
\hline ARITH2 & INVALID & 0.178 & \(\checkmark\) & 0.559 & \(\checkmark\) & 2.17 \\
\hline ARITH3 & INVALID & 0.327 & \(\checkmark\) & 0.666 & \(\checkmark\) & 2.49 \\
\hline ARITH4 & INVALID & 0.178 & \(\checkmark\) & 0.578 & \(\checkmark\) & 2.18 \\
\hline ARITH8 & INVALID & 0.155 & \(\checkmark\) & 0.677 & \(\checkmark\) & 2.28 \\
\hline ARITH11 & INVALID & 0.143 & \(\checkmark\) & 0.633 & \(\checkmark\) & 2.34 \\
\hline CMP1 & INVALID & 0.180 & \(\checkmark\) & 0.575 & \(\checkmark\) & 2.46 \\
\hline CMP2 & INVALID & 0.176 & \(\checkmark\) & 0.567 & \(\checkmark\) & 2.80 \\
\hline CMP3 & INVALID & 0.174 & \(\checkmark\) & 0.578 & \(\checkmark\) & 2.09 \\
\hline CMP4 & INVALID & 0.104 & \(\checkmark\) & 0.589 & \(\checkmark\) & 2.24 \\
\hline CMP5 & INVALID & 0.120 & \(\checkmark\) & 0.601 & \(\checkmark\) & 2.09 \\
\hline DEL2 & INVALID & 0.113 & \(\checkmark\) & 43.098 & \(\checkmark\) & 2.06 \\
\hline DEL3 & INVALID & 0.169 & \(\checkmark\) & 0.644 & \(\checkmark\) & 2.21 \\
\hline DEL4 & INVALID & 0.153 & \(\checkmark\) & 0.666 & \(\checkmark\) & 2.23 \\
\hline DEL7 & INVALID & 0.218 & \(\checkmark\) & 0.272 & \(\checkmark\) & 2.42 \\
\hline LIT0 & INVALID & 0.048 & \(\checkmark\) & 0.204 & \(\checkmark\) & 2.19 \\
\hline LIT2 & INVALID & 0.122 & \(\checkmark\) & 0.633 & \(\checkmark\) & 2.10 \\
\hline LIT3 & INVALID & 0.162 & \(\checkmark\) & 0.570 & \(\checkmark\) & 2.30 \\
\hline LIT4 & INVALID & 0.168 & \(\checkmark\) & 0.528 & \(\checkmark\) & 2.36 \\
\hline LIT5 & INVALID & 0.116 & \(\checkmark\) & 0.636 & \(\checkmark\) & 2.20 \\
\hline LIT7 & INVALID & 0.143 & \(\checkmark\) & 0.660 & \(\checkmark\) & 2.26 \\
\hline LIT8 & INVALID & 0.232 & \(\checkmark\) & 0.303 & \(\checkmark\) & 2.38 \\
\hline LIT10 & INVALID & 0.262 & \(\checkmark\) & 0.543 & \(\checkmark\) & 2.35 \\
\hline UN0 & INVALID & 0.054 & \(\checkmark\) & 0.205 & \(\checkmark\) & 2.07 \\
\hline VAR0 & INVALID & 0.116 & \(\checkmark\) & 32.603 & \(\checkmark\) & 2.14 \\
\hline VAR1 & INVALID & 0.175 & \(\checkmark\) & 9.543 & \(\checkmark\) & 2.14 \\
\hline VAR2 & INVALID & 0.184 & \(\checkmark\) & 0.602 & \(\checkmark\) & 2.12 \\
\hline VAR3 & INVALID & 0.140 & \(\checkmark\) & 33.697 & \(\checkmark\) & 2.10 \\
\hline VAR4 & INVALID & 0.120 & \(\checkmark\) & 6.517 & \(\checkmark\) & 2.29 \\
\hline VAR5 & INVALID & 0.267 & \(\checkmark\) & 6.367 & \(\checkmark\) & 2.35 \\
\hline VAR6 & INVALID & 0.136 & \(\checkmark\) & 6.514 & \(\checkmark\) & 2.32 \\
\hline VAR7 & INVALID & 0.141 & \(\checkmark\) & 6.733 & \(\checkmark\) & 2.19 \\
\hline VAR10 & INVALID & 0.136 & \(\checkmark\) & 6.609 & \(\checkmark\) & 2.19 \\
\hline VAR11 & INVALID & 0.129 & \(\checkmark\) & 6.787 & \(\checkmark\) & 2.31 \\
\hline VAR14 & INVALID & 0.189 & \(\checkmark\) & 0.185 & \(\checkmark\) & 2.34 \\
\hline VAR15 & INVALID & 0.211 & \(\checkmark\) & 0.601 & \(\checkmark\) & 3.45 \\
\hline VAR16 & INVALID & 0.209 & \(\checkmark\) & 0.200 & \(\checkmark\) & 2.18 \\
\hline VAR17 & INVALID & 0.188 & \(\checkmark\) & 0.573 & \(\checkmark\) & 3.30 \\
\hline VAR20 & INVALID & 0.162 & \(\checkmark\) & 9.156 & \(\checkmark\) & 2.28 \\
\hline VAR21 & INVALID & 0.158 & \(\checkmark\) & 8.991 & \(\checkmark\) & 2.27 \\
\hline
\end{tabular}

EXP-8: Concurrent Mergesort. The eight experiments consists of comparing our results of the concurrent mergesort algorithm with results of CBMC and CIVL. The concurrent mergesort algorithm is translated to one other version: a version in CIVL-C, as presented in Listing B. 6

The results again show that our approach is sound; the results are the same as that of CIVL. There is one anomaly: the extreme runtime difference of CMP2. We contacted the researchers of CIVL, but they could not help in explaining this difference. They mentioned that "CIVL might be lucky".

Table 5.5: The comparative results of the concurrent mergesort algorithm between OOX and CIVL.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{File} & \multicolumn{2}{|c|}{OOX} & \multicolumn{2}{|r|}{CIVL} \\
\hline & Expec. Result & Time (s) & \begin{tabular}{l}
Equiv \\
Result
\end{tabular} & Time (s) \\
\hline ORIGINAL & VALID & 1.194 & \(\checkmark\) & 4.43 \\
\hline CMP2 & INVALID & 130.765 & \(\checkmark\) & 4.06 \\
\hline LIT14 & INVALID & 0.189 & \(\checkmark\) & 3.55 \\
\hline VAR103 & INVALID & 0.200 & \(\checkmark\) & 4.00 \\
\hline VAR155 & INVALID & 0.254 & \(\checkmark\) & 4.26 \\
\hline
\end{tabular}

\section*{Chapter 6}

\section*{Related Work}

\subsection*{6.1 Intermediate Verification Languages}

Several Intermediate Verification Language IVL have been developed. A comparison can be seen in Table 6.1, where the main features of interest of five languages and the OOX language are compared.

Table 6.1: A comparison between the key features of different languages.
\begin{tabular}{lccc}
\hline Language & IVL & Object-oriented & Concurrency \\
\hline Boogie & X & & \\
CVL-MS & X & & X \\
Why & & & \\
Silver & X & & X \\
CIVL-C & X & X & X \\
OOX & X & X & \\
\hline
\end{tabular}

Boogie. Boogie is an IVL developed by the RiSE group at Microsoft Research [27]. It can be considered low-level as there is no native support for object-oriented concepts, concurrency or a memory model, but most such things can be modelled. This has the advantage that it is flexible, but comes at the cost of extra development time and design choices for the user. There exist several translations into Boogie, for example Spec\# [4] and Java bytecode using BML [9].

Boogie has a simple type system which includes user defined types and the following standard types: (1) booleans; (2) integers (3) bit-vectors of arbitrary size; and (4) a polymorphic map. There is no native support for subtyping, but this can be modelled using partial orders.

The statements that are part of the Boogie language are those that are expected, that is: (1) assignment; (2) while loops; (3) if-then-else statements; (4) control flow statements (goto and return); (5) method call statements; (6) assertions and assumptions; and (7) havoc statements that allow for the assignment of non-deterministic values to variables.

Overall, Boogie is flexible enough to model object-oriented languages as C\# and Java, but this flexibility has the downside that low-level aspects need to be modelled explicitly. Boogie has no native support for concurrency.

Microsoft Research also developed a language on top of Boogie: CIVL 21] (note that this language differs from the other similarly language, also named CIVL. For clarity, we will refer to this version of CIVL as CIVL-MS.). It extends Boogie with support for concurrency.

Silver. Silver is an IVL developed at ETH Zürich [29]. It aims to provide an infrastructure to verify permission based logics and separation logic [33] in particular. One mayor different design choice between Silver and most other IVL; is that the heap is defined in the language itself, and need not be explicitly defined, like in Boogie. This choice has been made to accommodate for the permission based logics.
Silver has no explicit language support for object-oriented concepts or concurrency, although flexible enough to model both. The downside of this approach is that the every possible interleaving of the target language has to be modelled and thus optimizations such as partial order reduction are not applied.
The back-end of Silver, named Viper, consists of two verification tools. The first one is a verification condition generator, which generates formulas which in turn can be passed to a SMT solver. The second one is based on symbolic execution, which reasons about heap properties directly and resorts for non-heap related properties to a SMT solver.

Why. Why is a tool for deductive program verification [17]. It specifies a programming and specification language called WhyML. It is used as an intermediate verification language to verify C, Java and Ada programs.

WhyML is a dialect of ML, with several modifications. Nested functions and partial function application are supported, but higher-order functions are not. WhyML does not make explicit use of a memory model, but instead statically determines the possible aliases. WhyML does not support concurrency.

CIVL-C. CIVL-C (not to be confused with CIVL from Microsoft Research) is an IVL that is a superset of ANSI-C with a formal semantics 34. It adds constructs to simplify the modelling of concurrency, verification and memory aspects of the original C language. CIVL-C includes a verification back-end, named CIVL. For more details about CIVL, see Section 6.2.

\subsection*{6.2 Formal Software Verification}

Formal software verification is a widely studied field where two approaches are common practice: symbolic execution and model checking. There exists a variety of mature tools with different supported language constructs and target languages. A selection can be seen in Table 6.2 .

Table 6.2: A selection of tools for program verification.
\begin{tabular}{llcl}
\hline Name & Approach & Concurrency & Target languages \\
\hline KLEE & Symbolic execution & & LLVM bitcode \\
Cloud9 & Symbolic execution (cloud) & & LLVM bitcode \\
VerCors & Symbolic execution & \(\checkmark\) & Java, OpenCL, PVL \\
CBMC/JBMC & Symbolic model checking & & C, C++ / Java bytecode \\
CIVL & Symbolic execution & \(\checkmark\) & CIVL-C \\
\hline
\end{tabular}

KLEE and Cloud9. KLEE and Cloud9 are tools based on symbolic execution to automatically generate tests aiming at high test coverage and verify programs in LLVM bitcode [8]. Several optimizations are built into KLEE:
1. Compact State Representation: a representation of the heap as an immutable map which allows for the sharing between different states;
2. Query Optimizations: (1) expression rewriting; (2) implied value concretization, for example when a constraint has the form \(x+1=10, x=9\) can be deduced; and (3) a counter-example cache; and
3. State Scheduling: different techniques to explore the search space, e.g. random path selection and targeting uncovered code.

Cloud9 is a tool based on KLEE and parallelizes the symbolic execution engine to achieve a speed-up. Secondly, Cloud9 runs in the cloud, like Amazon EC2 [10].

VerCors. VerCors is a tool developed by the Formal Methods and Tools group at the University of Twente. It aims to verify concurrent programs, written in either Java, C, OpenCL, OpenMP and its own prototypical verification language PVL 6]. VerCors allows for the verification of the absence of data-races, memory safety and functional correctness. It uses Concurrent Separation Logic (CSL) as its underlying logic 31.
Concurrent Separation Logic, an extension of Hoare logic, is a specialized logic to reason about properties of the heap in a concurrent setting. Two main concepts of CSL are the notions of ownership and disjointness. The ownership of a heap property must be made explicit. The notion of disjointness, described using the operator \(P * Q\), denotes that \(P\) and \(Q\) are disjoint. They are not allowed to both write to the same location in the heap [31].

CBMC and JBMC. CBMC and JBMC are tools based on (bounded) symbolic model checking, both using the CPROVER back-end [11. CBMC targets C and C ++ where JBMC targets Java bytecode. CBMC supports verifying pointer safety, array bounds and user-provided assertions. CBMC unwinds and expands all loops, function calls and goto statement until a feasible depth is reached. This feasibility is verified by generating unwinding assertions, which verify that enough unwinding has been done. CBMC replaces all assignments such that they have a staticsingle assignment form, removing all side-effects from the original program. CBMC generates formulas in conjunctive normal form, which are verified using a SMT solver.

JBMC [12] is an extension of CBMC, adding support for Java. JBMC is a front-end for CBMC, which translates Java bytecode into a CFG representation, suitable for CBMC. JBMC includes an abstract representation of the standard Java libraries, which they call the operation model.

At this point CBMC and JBMC do not have support for concurrency.

CIVL. CIVL is the verification back-end of the IVLCIVL-C 34], as described in Section 6.1. It is based on symbolic execution and is able to find, among other things, assertion violations, deadlocks and memory leaks. Instead of directly using a SMT solver, it uses the Symbolic Algebra and Reasoning Library, which reasons about the formulas. If this library cannot give a definitive answer, it invokes a SMT solver to give a conclusive result. CIVL uses a logical model of the memory, in contrast to a physical memory model, which OOX uses.

CIVL has support for concurrency and optimizes the symbolic execution with partial order reduction. They describe a generalized version of [14].

\section*{Chapter 7}

\section*{Conclusions and Future Work}

We presented the intermediate verification language, OOX, with a formally defined static- and dynamic syntax, presented our symbolic execution engine for OOX and shown the results of our experiments.
We have shown that OOX is capable of modelling several algorithms, concurrency and data structures. OOX currently lacks the convenience of expressive expressions to be used in specifications, assumptions and assertions, although this problem can be mitigated by integrating the specifications with the algorithm or logic of the code itself.
We first evaluated the completeness of our Symbolic Execution Engine the soundness and completeness of the optimizations and the efficacy of the optimizations. For the first experiment, we have shown that the SEE found the bugs in all mutants that were invalid according to its specification and terminated. The same holds true for the second experiment. We have shown that our approach is also able to find the deadlock in the fourth experiment. Suggesting that our approach is complete. The optimizations show to have a drastic effect in most cases, being able to reduce the runtime from 100 seconds to 10 seconds in some extremes. We expected the random interleaving exploration to have a positive effect on the runtime, but the experiments suggest that this is not the case. Random interleaving exploration seems to double the runtime on average for the dining philosophers problem. The verification results of all experiments in all different configurations yielded were equal, suggesting that the optimizations are sound and complete.
We evaluated how scalable our Symbolic Execution Engine is. It has been shown that our SEE is able to completely explore the search space of the algorithm for finding the minimum element in a linked list, up to a linked list of size 5 with maximum depth 120 , which is well above necessary, in reasonable time. Partial Order Reduction is shown to be a necessity when verifying concurrent programs, as expected.
Finally, to verify the soundness of our Symbolic Execution Engine, we compared it with CBMC and CIVL, two established tools for which it is reasonable to assume soundness. All experiments showed that the verification results were equal. The runtimes show that our SEE is on par with CBMC and CIVL. There was one outlier in the concurrent mergesort comparison experiment, the mutant CMP2, for which our SEE needed 130 seconds, while CIVL managed to verify the same mutant in 4 seconds. Further investigation of this outlier can be helpful to improve our SEE

\subsection*{7.1 Future Work}

This thesis provides a basis for possible future work. We provide several of such directions.

Extending the OOX Language. It is thinkable that most real-world Java and C\# programs consists of more complex constructs which are not part of this thesis. Extending the OOX language with support to model such constructs would be beneficial. One possibility is to extend OOX with user-defined subtyping, allowing for more Java and C\# programs to be modelled using OOX. This will lead to new challenges in the symbolic execution engine as, for example, dynamic dispatch might be required.
Another interesting direction is to extend the specification language to be more expressive. For example, extending the specifications to be metamorphic. Research on this subject has already been done, of which the work by Barnett et al. [5] is a promising starting point.

Exploring Other Approaches to Reduce the Effects of Concurrency on The Path Explosion Problem. We successfully reduced the effects of concurrency on the path explosion problem when only a few threads exist. However, it is thinkable that one wants to verify programs consisting of more threads.

One way to achieve this goal is to explore other approaches to Partial Order Reduction The Partial Order Reduction approach we have taken has the advantage that it fits neatly with symbolic execution, unlike many other partial order approaches. Other approaches are more suitable for application in model checking. The current technique can be improved by, instead of defining the independence relation only on the reference level, defining it on the reference, field and array index level. Another way to optimize is to identify parts of the symbolic execution engine where one can decrease the possible concrete references that a symbolic reference can point to. Extensive research has been done on Partial Order Reduction, some claiming to be optimal. The improved variant [23] of the approach we used claims to be optimal for an arbitrary number of threads. This is worthwhile to investigate, as the experiments showed that Partial Order Reduction can drastically improve the scalability of the symbolic execution.

Another way to achieve this goal is to explore how our approach can be combined with approaches based on compositionality. It would be more efficient if one could verify a component in isolation of another component [32], like in VerCors [6], where they make use of Concurrent Separation Logic.

Exploring Other Optimization Techniques. The literature contains a vast collection of other techniques aiming to reduce the effects of the path explosion problem. The survey by Baldoni et al. 3] presents a wide variety of optimization techniques, other than described in this thesis. Other techniques can be explored as well, like the use of program slicing [16, 35].

\section*{Bibliography}
[1] IEEE Draft Guide: Adoption of the Project Management Institute (PMI) Standard: A Guide to the Project Management Body of Knowledge (PMBOK Guide)-2008 (4th edition). IEEE P1490/D1, May 2011, pages 1-505, June 2011.
[2] Stephen Adams. Implementing sets efficiently in a functional language. 1992.
[3] Roberto Baldoni, Emilio Coppa, Daniele Cono DâĂŹelia, Camil Demetrescu, and Irene Finocchi. A survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1-39, 2018.
[4] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino. Boogie: A modular reusable verifier for object-oriented programs. In International Symposium on Formal Methods for Components and Objects, pages 364-387. Springer, 2005.
[5] Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. \(99.44 \%\) pure: Useful abstractions in specifications. In ECOOP workshop on formal techniques for Java-like programs (FTfJP), 2004.
[6] Stefan Blom and Marieke Huisman. The vercors tool for verification of concurrent programs. In International Symposium on Formal Methods, pages 127-131. Springer, 2014.
[7] Jeremy S Bradbury, James R Cordy, and Juergen Dingel. Mutation operators for concurrent java (j2se 5.0). In Second Workshop on Mutation Analysis (Mutation 2006-ISSRE Workshops 2006), pages 11-11. IEEE, 2006.
[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs. In \(O S D I\), volume 8, pages 209-224, 2008.
[9] Jacek Chrzaszcz, Marieke Huisman, and Aleksy Schubert. Bml and related tools. In International Symposium on Formal Methods for Components and Objects, pages 278-297. Springer, 2008.
[10] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George Candea. Cloud9: A software testing service. ACM SIGOPS Operating Systems Review, 43(4):5-10, 2010.
[11] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c programs. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 168-176. Springer, 2004.
[12] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek Trtik. Jbmc: A bounded model checking tool for verifying java bytecode. In International Conference on Computer Aided Verification, pages 183-190. Springer, 2018.
[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 337-340. Springer, 2008.
[14] Matthew B Dwyer, John Hatcliff, Venkatesh Prasad Ranganath, et al. Exploiting object escape and locking information in partial-order reductions for concurrent object-oriented programs. Formal Methods in System Design, 25(2-3):199-240, 2004.
[15] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In International conference on theory and applications of satisfiability testing, pages 502-518. Springer, 2003.
[16] RR Eilers. Fine-grained model slicing for faster verification. Master's thesis, 2018.
[17] Jean-Christophe Filliâtre and Andrei Paskevich. Why3âăǍŤwhere programs meet provers. In European Symposium on Programming, pages 125-128. Springer, 2013.
[18] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model checking software. In ACM Sigplan Notices, volume 40, pages 110-121. ACM, 2005.
[19] Simson Garfinkel. History's worst software bugs. Wired News, Nov, 2005.
[20] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. Assertion guided symbolic execution of multithreaded programs. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 854-865. ACM, 2015.
[21] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and modular refinement reasoning for concurrent programs. In International Conference on Computer Aided Verification, pages 449-465. Springer, 2015.
[22] Robert Husák and Filip Zavoral. Source code assertion verification using backward symbolic execution. In AIP Conference Proceedings, volume 2116, page 350004. AIP Publishing LLC, 2019.
[23] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction: An optimal symbolic partial order reduction technique. In International Conference on Computer Aided Verification, pages 398-413. Springer, 2009.
[24] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. Generalized symbolic execution for model checking and testing. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 553-568. Springer, 2003.
[25] James C King. Symbolic execution and program testing. Communications of the ACM, 19(7):385-394, 1976.
[26] John Lång and ISWB Prasetya. Model checking a c++ software framework: a case study. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 1026-1036, 2019.
[27] K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131):9, 2008.
[28] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks. Directed symbolic execution. In International Static Analysis Symposium, pages 95-111. Springer, 2011.
[29] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A verification infrastructure for permission-based reasoning. In International Conference on Verification, Model Checking, and Abstract Interpretation, pages 41-62. Springer, 2016.
[30] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis. Springer, 2015.
[31] Wytse Hendrikus Marinus Oortwijn. Deductive techniques for model-based concurrency verification. PhD thesis, 2019.
[32] ISWB Prasetya, SD Swierstra, and B Widjaja. Component-wise formal approach to design distributed systems, 2000.
[33] John C Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings \(1^{\text {² }}\) th Annual IEEE Symposium on Logic in Computer Science, pages 55-74. IEEE, 2002.
[34] Stephen F Siegel, Manchun Zheng, Ziqing Luo, Timothy K Zirkel, Andre V Marianiello, John G Edenhofner, Matthew B Dwyer, and Michael S Rogers. Civl: the concurrency intermediate verification language. In SC'15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1-12. IEEE, 2015.
[35] Josep Silva. A vocabulary of program slicing-based techniques. ACM computing surveys (CSUR), 44(3):1-41, 2012.
[36] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial order reduction. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 382-396. Springer, 2008.
[37] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M Kirby. Efficient stateful dynamic partial order reduction. In International SPIN Workshop on Model Checking of Software, pages 288-305. Springer, 2008.

\section*{Appendix A}

\section*{The Concrete Syntax of the OOX language}

\section*{A． 1 Lexical Structure}
\begin{tabular}{|c|c|c|c|}
\hline 〈input〉 & \multicolumn{3}{|l|}{\(::=\left(\langle\text { section }\rangle^{*}\left\langle\text {＂newline character＂}{ }^{\prime}\right)^{*}\right.\)} \\
\hline 〈section〉 & \[
\begin{gathered}
::=\langle " \text { whitespace" }\rangle \\
\mid\langle\text { comment }\rangle \\
\mid\langle\text { token }\rangle
\end{gathered}
\] & & \\
\hline 〈comment＞ & \multicolumn{3}{|l|}{\(::=\backslash \backslash\) 〈＂any character except newline characters＂〉} \\
\hline ＜token＞ & \[
\begin{gathered}
::=\langle\text { identifier }\rangle \\
\mid \quad\langle\text { keyword }\rangle \\
\mid\langle\text { literal }\rangle \\
\mid \\
\mid \text { punctuator }\rangle
\end{gathered}
\] & & \\
\hline 〈identifier＞ & \multicolumn{3}{|l|}{\(::=\left\langle " a n y\right.\) english alphabet character＂\({ }^{\text {a }}+\)} \\
\hline \multirow[t]{9}{*}{\(\langle\) keyword〉} & \multirow[t]{9}{*}{\(\left.\begin{aligned} & ::=\text { assert } \mid \text { assume } \\ & \left|\begin{array}{l}\text { catch }\end{array}\right| \text { char } \\ & \text { else } \\ & \text { false } \\ & \text { fasures } \\ & \text { if } \\ & \text { if }\end{aligned} \right\rvert\,\)} & bool & break \\
\hline & & ｜class & continue \\
\hline & & ｜exceptional & exists \\
\hline & & ｜forall & fork \\
\hline & & ｜join & lock \\
\hline & & ｜requires & return \\
\hline & & ｜this & throw \\
\hline & & ｜uint & void \\
\hline & & & \\
\hline
\end{tabular}


\section*{A. 2 Syntactical Structure}
```

\langleprogram\rangle ::=\langleclass\rangle*
<class\rangle ::= class \langleidentifier \rangle { \langlemember \rangle* }
\langlemember\rangle ::=\langle constructor }\rangle|\langle\mathrm{ method }\rangle|\langle\mathrm{ field }
\langleconstructor\rangle ::=\langleidentifier\rangle (\langleparameters\rangle) \langlespecification\rangle\langlebody\rangle
\langlemethod\rangle ::= static? \langletype\rangle\langleidentifier\rangle (\langleparameters\rangle) \langlespecification\rangle\langlebody\rangle
\langleparameters\rangle ::=\langle\mathrm{ parameter }\rangle(,\langle\mathrm{ parameter }\rangle)*|

```
\begin{tabular}{|c|c|}
\hline \(\langle\) parameter＞ & \(::=\langle\) nonvoidtype \(\rangle\langle\) identifier \(\rangle\) \\
\hline 〈specification＞ & ```
::= requires ( \langleverificationexpression\rangle)
    ensures ( \langleverificationexpression\rangle)
    exceptional ( \verificationexpression\rangle
``` \\
\hline \(\langle\) field \(\rangle\) & \(::=\langle\) nonvoidtype \(\rangle\langle\) identifier \(\rangle\) ； \\
\hline \(\langle\) body \(\rangle\) & \(::=\{\langle\) statement \(\rangle+\}\) \\
\hline \(\langle\) type \(\rangle\) & \(::=\) void \(\mid\langle\) nonvoidtype \(\rangle\) \\
\hline \(\langle\) nonvoidtype〉 & \(::=\langle\) primitivetype \(\rangle \mid\langle\) referencetype \(\rangle\) \\
\hline 〈primitivetype〉 & ：：＝uint｜int｜bool｜float｜char \\
\hline \(\langle\) referencetype〉 & \(::=\langle\) classtype \(\rangle\)｜\(\langle\) arraytype \(\rangle\) \\
\hline 〈classtype〉 & ：：\(=\langle\) identifier \(\rangle\)｜string \\
\hline ＜arraytype〉 & \(::=(\langle\) classtype \(\rangle \mid\langle\) primitivetype \(\rangle)([])+\) \\
\hline ＜statements＞ & \(::=\langle\text { statement }\rangle^{*}\) \\
\hline ＜statement＞ & \begin{tabular}{ll}
\(::=\) & \(\langle\) declaration \(\rangle\) \\
\(\mid\) & \(\langle\) assignment \(\rangle\) \\
\(\mid\) & \(\langle\) call \(\rangle\) \\
\(\mid\) & \(\langle\) skip \(\rangle\) \\
\(\mid\) & \(\langle\) assert \(\rangle\) \\
& \(\langle\) assume \(\rangle\) \\
\(\mid\langle\) while \(\rangle\) \\
\(\mid\) & \(\langle\) ite \(\rangle\) \\
\(\mid\) & \(\langle\) continue \(\rangle\) \\
\(\mid\) & \(\langle\) break \(\rangle\) \\
\(\mid\) & \(\langle\) return \(\rangle\) \\
\(\mid\) & \(\langle\) throw \(\rangle\) \\
\(\mid\) & \(\langle\) try \(\rangle\) \\
\(\mid\) & \(\langle\) block \(\rangle\) \\
\(\mid\) lock \(\rangle\) \\
\(\mid\) & \(\langle\) fork \(\rangle\) \\
\(\mid\) & \(\langle\) join \(\rangle\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\langle\) declaration \(\rangle\) & \(::=\langle\) nonvoidtype \(\rangle\langle\) identifier \(\rangle\) ； \\
\hline ＜assignment＞ & \(::=\langle l h s\rangle:=\langle r h s\rangle ;\) \\
\hline \(\langle l h s\rangle\) & ```
::= \langleidentifier\rangle
| 〈identifier\rangle. \identifier\rangle
| \langleidentifier\rangle [<expression\rangle]
``` \\
\hline \(\langle r h s\rangle\) & ```
::=\langleexpression\rangle
    \langleidentifier\rangle. 〈identifier\rangle
    <invocation>
    \langleidentifier\rangle [ <expression\rangle]
    new \langleidentifier\rangle ( \langlearguments\rangle)
    new (\langleclasstype\rangle | \langleprimitivetype\rangle) ([ \langleinteger > ])+
``` \\
\hline \(\langle\) call \(\rangle\) & \(::=\langle\) invocation \(\rangle\) ； \\
\hline 〈invocation＞ & \(::=\langle\) identifier \(\rangle\) ．\(\langle\) identifier \(\rangle\)（ \(\langle\) arguments \(\rangle\) ） \\
\hline ＜arguments＞ & \(::=\langle\) expression \(\rangle(,\langle\text { expression }\rangle)^{*} \mid \epsilon\) \\
\hline 〈skip＞ & ：：＝； \\
\hline ＜assert＞ & ：：＝assert \(\langle\) verificationexpression〉； \\
\hline \(\langle a s s u m e\rangle\) & ：：＝assume \(\langle\) verificationexpression〉； \\
\hline \(\langle\) while〉 & \(::=\) while（ \(\langle\) expression \(\rangle\) ）〈statement \(\rangle\) \\
\hline \(\langle i t e\rangle\) & \(::=\) if（ \(\langle\) expression \(\rangle\) ）〈statement \(\rangle\) else \(\langle\) statement \(\rangle\) \\
\hline ＜continue〉 & \(::=\) continue ； \\
\hline \(\langle b r e a k\rangle\) & ：：＝break ； \\
\hline \(\langle r e t u r n\rangle\) & ：：＝return \(\langle\) expression〉？； \\
\hline \(\langle\) throw \(\rangle\) & ：：＝throw ； \\
\hline \(\langle t r y\rangle\) & \(::=\operatorname{try}\) \｛ \(\langle\) statements \(\rangle\}\) catch \｛ \(\langle\) statements \(\rangle\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\langle b l o c k\rangle\) & \(::=\{\langle\) statements \(\rangle\}\) \\
\hline \(\langle l o c k\rangle\) & \(::=\) lock \((\langle\) identifier \(\rangle\) ）\｛ \(\langle\) statements \(\rangle\) \} \\
\hline \(\langle\) fork \(\rangle\) & ：：＝fork \(\langle\) invocation〉； \\
\hline \(\langle j o i n\rangle\) & ：：＝join ； \\
\hline \(\langle\) expression＞ & \(::=\langle\) expression2 \(\rangle\) \\
\hline ＜verificationex & \(\rangle::=\langle\) expression 1\(\rangle\) \\
\hline 〈expression1＞ & ```
::= forall \langleidentifier\rangle,\langleidentifier\rangle:\langleidentifier\rangle:\langleexpression1\rangle
 exists \langleidentifier\rangle,\langleidentifier\rangle : \langleidentifier\rangle: \langleexpression1\rangle
 <expression2\rangle
``` \\
\hline 〈expression2〉 & \[
\begin{aligned}
&::=\langle\text { expression3 }\rangle==>\langle\text { expression2 }\rangle \\
& \mid\langle\text { expression3 }\rangle
\end{aligned}
\] \\
\hline 〈expression3＞ & ```
::=\langleexpression4\rangle && \langleexpression3\rangle
    | \langleexpression4\rangle || <expression3\rangle
    | <expression4\rangle
``` \\
\hline ＜expression4＞ & \[
\begin{aligned}
&::=\langle\text { expression5 }\rangle==\langle\text { expression } 4\rangle \\
& \mid\langle\text { expression } 5\rangle!=\langle\text { expression4 }\rangle \\
& \mid\langle\text { expression5 }\rangle
\end{aligned}
\] \\
\hline 〈expression5＞ & \[
\begin{aligned}
&::=\langle\text { expression6 }\rangle<\langle\text { expression5 }\rangle \\
& \mid\langle\text { expression6 }\rangle>\langle\text { expression5 }\rangle \\
& \mid\langle\text { expression }\rangle\langle=\langle\text { expression } 5\rangle \\
& \mid\langle\text { expression }\rangle\rangle>=\langle\text { expression5 }\rangle \\
& \mid\langle\text { expression6 }\rangle
\end{aligned}
\] \\
\hline \(\langle\) expression6＞ & \[
\begin{aligned}
::= & \langle\text { expression } 7\rangle+\langle\text { expression6 }\rangle \\
\mid & \langle\text { expression } 7\rangle-\langle\text { expression }\rangle \\
\mid & \langle\text { expression } 7\rangle
\end{aligned}
\] \\
\hline 〈expression7＞ & \[
\begin{aligned}
&::=\langle\text { expression } 8\rangle *\langle\text { expression } 7\rangle \\
& \mid\langle\text { expression } 8\rangle /\langle\text { expression } 7\rangle \\
& \mid\langle\text { expression }\rangle\rangle \%\langle\text { expression } 7\rangle \\
& \mid\langle\text { expression8 }\rangle
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\langle\) expression8> & \[
\begin{array}{cc}
::= & -\langle\text { expression } 8\rangle \\
\mid & !\langle\text { expression } 8\rangle \\
\mid & \langle\text { expression }\rangle\rangle
\end{array}
\] \\
\hline \(\left\langle\right.\) expression9 \({ }^{\text {¢ }}\) & \[
\begin{aligned}
::= & \langle\text { identifier }\rangle \\
\mid & \text { \# }\langle\text { identifier }\rangle \\
& (\langle\text { expression }\rangle) \\
\mid & \langle\text { literal }\rangle
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Appendix B}

\section*{Experimental Data}

\section*{B. 1 Bubblesort}
\begin{tabular}{|llrlll|}
\hline Name & Result & SC (s) & S (s) & C (s) & N (s) \\
\hline ORIGINAL & VALID & 0.342 & 0.644 & 4.888 & 10.600 \\
\hline ARITH5 & VALID & 0.315 & 0.538 & 4.457 & 10.504 \\
\hline ARITH6 & VALID & 0.320 & 0.541 & 4.396 & 10.449 \\
\hline ARITH7 & VALID & 0.328 & 0.557 & 4.582 & 10.351 \\
\hline ARITH9 & VALID & 0.456 & 0.859 & 6.774 & 13.607 \\
\hline ARITH10 & VALID & 0.429 & 0.812 & 6.113 & 11.524 \\
\hline CMP0 & VALID & 0.350 & 0.536 & 4.536 & 10.389 \\
\hline DEL0 & VALID & 0.337 & 0.538 & 4.494 & 10.418 \\
\hline DEL1 & VALID & 0.432 & 0.848 & 4.391 & 10.606 \\
\hline DEL5 & VALID & 0.337 & 0.526 & 4.654 & 10.825 \\
\hline DEL6 & VALID & 0.344 & 0.514 & 4.558 & 10.781 \\
\hline DEL8 & VALID & 0.476 & 0.872 & 4.358 & 13.801 \\
\hline LIT1 & VALID & 0.438 & 0.844 & 4.451 & 10.386 \\
\hline LIT6 & VALID & 0.345 & 0.583 & 4.682 & 10.533 \\
\hline LIT9 & VALID & 0.467 & 0.859 & 6.753 & 13.528 \\
\hline VAR8 & VALID & 0.330 & 0.550 & 4.613 & 10.432 \\
\hline VAR9 & VALID & 0.338 & 0.535 & 4.582 & 10.496 \\
\hline VAR12 & VALID & 0.322 & 0.539 & 4.483 & 10.416 \\
\hline VAR13 & VALID & 0.354 & 0.558 & 4.524 & 10.481 \\
\hline VAR18 & VALID & 0.469 & 0.854 & 4.367 & 13.397 \\
\hline VAR19 & VALID & 0.449 & 0.860 & 4.337 & 13.508 \\
\hline ARITH1 & INVALID (ensures) & 0.205 & 0.244 & 0.993 & 1.662 \\
\hline ARITH2 & INVALID (ensures) & 0.178 & 0.248 & 1.007 & 1.670 \\
\hline ARITH3 & INVALID (ensures) & 0.327 & 0.559 & 2.304 & 3.148 \\
\hline CMP1 & INVALID (ensures) & 0.180 & 0.222 & 0.402 & 0.440 \\
\hline CMP2 & INVALID (ensures) & 0.176 & 0.231 & 0.425 & 0.424 \\
\hline CMP4 & INVALID (ensures) & 0.104 & 0.098 & 3.523 & 6.973 \\
\hline DEL3 & INVALID (ensures) & 0.169 & 0.201 & 2.940 & 4.829 \\
\hline
\end{tabular}
\begin{tabular}{|lllllr|}
\hline DEL4 & INVALID (ensures) & 0.153 & 0.162 & 1.257 & 2.524 \\
\hline DEL7 & INVALID (ensures) & 0.218 & 0.299 & 1.281 & 1.909 \\
\hline LIT0 & INVALID (ensures) & 0.048 & 0.057 & 4.455 & 10.619 \\
\hline LIT10 & INVALID (ensures) & 0.262 & 0.401 & 1.336 & 1.972 \\
\hline LIT3 & INVALID (ensures) & 0.162 & 0.236 & 0.431 & 0.483 \\
\hline LIT4 & INVALID (ensures) & 0.168 & 0.243 & 1.028 & 1.675 \\
\hline LIT8 & INVALID (ensures) & 0.232 & 0.303 & 1.283 & 1.950 \\
\hline UN0 & INVALID (ensures) & 0.054 & 0.064 & 4.546 & 10.320 \\
\hline VAR1 & INVALID (ensures) & 0.175 & 0.233 & 2.002 & 3.332 \\
\hline VAR2 & INVALID (ensures) & 0.184 & 0.258 & 0.986 & 1.635 \\
\hline VAR14 & INVALID (ensures) & 0.189 & 0.249 & 1.030 & 1.634 \\
\hline VAR16 & INVALID (ensures) & 0.209 & 0.301 & 1.194 & 1.707 \\
\hline VAR15 & INVALID (ensures) & 0.211 & 0.247 & 1.047 & 1.682 \\
\hline VAR17 & INVALID (ensures) & 0.188 & 0.253 & 1.028 & 1.632 \\
\hline ARITH0 & INVALID (exceptional) & 0.130 & 0.124 & 0.168 & 0.173 \\
\hline ARITH4 & INVALID (exceptional) & 0.178 & 0.149 & 0.208 & 0.233 \\
\hline ARITH8 & INVALID (exceptional) & 0.155 & 0.182 & 0.259 & 0.281 \\
\hline ARITH11 & INVALID (exceptional) & 0.143 & 0.192 & 0.260 & 0.298 \\
\hline CMP3 & INVALID (exceptional) & 0.174 & 0.236 & 0.176 & 0.195 \\
\hline CMP5 & INVALID (exceptional) & 0.120 & 0.290 & 0.281 & 0.272 \\
\hline DEL2 & INVALID (exceptional) & 0.113 & 0.124 & 0.149 & 0.141 \\
\hline LIT2 & INVALID (exceptional) & 0.122 & 0.124 & 0.132 & 0.163 \\
\hline LIT5 & INVALID (exceptional) & 0.116 & 0.122 & 0.182 & 0.163 \\
\hline LIT7 & INVALID (exceptional) & 0.143 & 0.143 & 0.223 & 0.203 \\
\hline VAR0 & INVALID (exceptional) & 0.116 & 0.130 & 0.186 & 0.183 \\
\hline VAR3 & INVALID (exceptional) & 0.140 & 0.139 & 0.201 & 0.179 \\
\hline VAR4 & INVALID (exceptional) & 0.120 & 0.131 & 0.169 & 0.175 \\
\hline VAR5 & INVALID (exceptional) & 0.267 & 0.244 & 0.199 & 0.193 \\
\hline VAR6 & INVALID (exceptional) & 0.136 & 0.146 & 0.193 & 0.186 \\
\hline VAR7 & INVALID (exceptional) & 0.141 & 0.134 & 0.189 & 0.203 \\
\hline VAR10 & INVALID (exceptional) & 0.136 & 0.162 & 0.211 & 0.217 \\
\hline VAR11 & INVALID (exceptional) & 0.129 & 0.150 & 0.234 & 0.230 \\
\hline VAR20 & INVALID (exceptional) & 0.162 & 0.161 & 0.253 & 0.238 \\
\hline VAR21 & INVALID (exceptional) & 0.158 & 0.161 & 0.248 & 0.234 \\
\hline & & & & & \\
\hline & & & & \\
\hline & INAL & & & \\
\hline
\end{tabular}

\section*{B. 2 Minimum element in Linked List}
\begin{tabular}{|llrrrr|}
\hline Name & Result & SC (s) & S (s) & C (s) & N (s) \\
\hline ORIGINAL & VALID & 8.125 & 7.797 & 76.218 & 76.728 \\
\hline ARITH3 & VALID & 61.242 & 58.983 & 80.835 & 80.844 \\
\hline ARITH4 & VALID & 29.939 & 30.531 & 52.165 & 53.957 \\
\hline ARITH5 & VALID & 29.700 & 29.613 & 51.703 & 51.971 \\
\hline CMP2 & VALID & 7.714 & 7.736 & 77.599 & 77.512 \\
\hline DEL4 & VALID & 8.166 & 8.164 & 79.384 & 79.352 \\
\hline DEL5 & VALID & 7.746 & 7.767 & 103.350 & 103.098 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DEL7 & VALID & 1.864 & 2.145 & 66.456 & 106.410 \\
\hline DEL9 & VALID & 0.628 & 0.701 & 2.265 & 2.686 \\
\hline DEL11 & VALID & 56.278 & 56.503 & 79.915 & 82.629 \\
\hline LIT6 & VALID & 58.517 & 57.949 & 78.601 & 78.659 \\
\hline VAR9 & VALID & 5.851 & 5.847 & 75.989 & 76.761 \\
\hline VAR10 & VALID & 4.209 & 7.573 & 24.306 & 70.866 \\
\hline VAR23 & VALID & 0.718 & 1.003 & 2.084 & 2.692 \\
\hline VAR24 & VALID & 0.902 & 1.035 & 2.524 & 2.876 \\
\hline VAR30 & VALID & 7.886 & 7.885 & 77.293 & 77.752 \\
\hline VAR32 & VALID & 54.572 & 54.673 & 75.995 & 74.647 \\
\hline VAR33 & VALID & 57.309 & 56.630 & 76.116 & 75.924 \\
\hline VAR37 & VALID & 7.172 & 7.188 & 55.967 & 56.099 \\
\hline CMP3 & INVALID (ensures) & 1.195 & 1.203 & 10.322 & 10.205 \\
\hline CMP4 & INVALID (ensures) & 1.177 & 1.183 & 9.939 & 9.832 \\
\hline DEL6 & INVALID (ensures) & 0.076 & 0.063 & 0.107 & 0.097 \\
\hline DEL8 & INVALID (ensures) & 1.117 & 1.105 & 9.561 & 9.479 \\
\hline DEL10 & INVALID (ensures) & 1.174 & 1.148 & 76.753 & 75.652 \\
\hline EQ2 & INVALID (ensures) & 7.968 & 8.054 & 78.971 & 78.509 \\
\hline LIT5 & INVALID (ensures) & 0.352 & 0.311 & 3.040 & 3.010 \\
\hline LIT7 & INVALID (ensures) & 0.337 & 0.357 & 3.116 & 3.078 \\
\hline VAR5 & INVALID (ensures) & 0.097 & 0.081 & 0.123 & 0.113 \\
\hline VAR13 & INVALID (ensures) & 1.020 & 1.056 & 9.024 & 9.074 \\
\hline VAR15 & INVALID (ensures) & 1.020 & 1.006 & 8.953 & 8.972 \\
\hline VAR16 & INVALID (ensures) & 1.076 & 1.048 & 9.371 & 9.305 \\
\hline VAR17 & INVALID (ensures) & 0.977 & 1.011 & 8.687 & 8.641 \\
\hline VAR18 & INVALID (ensures) & 1.028 & 1.024 & 8.727 & 8.645 \\
\hline VAR19 & INVALID (ensures) & 7.218 & 7.227 & 72.054 & 70.539 \\
\hline VAR21 & INVALID (ensures) & 1.025 & 1.002 & 8.963 & 9.012 \\
\hline VAR22 & INVALID (ensures) & 7.582 & 7.575 & 79.089 & 80.521 \\
\hline VAR29 & INVALID (ensures) & 1.157 & 1.117 & 9.721 & 9.701 \\
\hline ARITH2 & INVALID (exceptional) & 0.367 & 0.317 & 0.495 & 0.445 \\
\hline DEL3 & INVALID (exceptional) & 0.152 & 0.135 & 0.149 & 0.151 \\
\hline LIT4 & INVALID (exceptional) & 0.150 & 0.137 & 0.169 & 0.181 \\
\hline VAR36 & INVALID (exceptional) & 0.326 & 0.320 & 0.469 & 0.463 \\
\hline VAR4 & INVALID (exceptional) & 0.157 & 0.131 & 0.165 & 0.161 \\
\hline VAR6 & INVALID (exceptional) & 0.068 & 0.067 & 0.080 & 0.087 \\
\hline VAR8 & INVALID (exceptional) & 0.130 & 0.136 & 0.160 & 0.158 \\
\hline VAR12 & INVALID (exceptional) & 0.177 & 0.149 & 0.182 & 0.178 \\
\hline VAR26 & INVALID (exceptional) & 0.215 & 0.132 & 0.187 & 0.164 \\
\hline VAR27 & INVALID (exceptional) & 0.143 & 0.132 & 0.181 & 0.180 \\
\hline VAR35 & INVALID (exceptional) & 0.369 & 0.358 & 0.500 & 0.507 \\
\hline
\end{tabular}

\section*{B. 3 Concurrent Mergesort}
\begin{tabular}{|lll|}
\hline Name & Result & A/rand (s) A/def (s) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ORIGINAL & VALID & 1.163 & 1.194 \\
\hline ARITH4 & VALID & 37.034 & 37.648 \\
\hline ARITH5 & VALID & 18.708 & 18.666 \\
\hline ARITH6 & VALID & 37.258 & 37.191 \\
\hline ARITH7 & VALID & 11.311 & 11.411 \\
\hline ARITH8 & VALID & 19.977 & 19.956 \\
\hline ARITH9 & VALID & 0.436 & 0.428 \\
\hline ARITH10 & VALID & 10.326 & 10.348 \\
\hline ARITH11 & VALID & 10.498 & 10.288 \\
\hline ARITH12 & VALID & 178.864 & 178.424 \\
\hline ARITH13 & VALID & 25.063 & 24.940 \\
\hline ARITH14 & VALID & 25.525 & 25.005 \\
\hline ARITH15 & VALID & 122.039 & 122.673 \\
\hline ARITH20 & VALID & 1.150 & 1.147 \\
\hline ARITH22 & VALID & 0.319 & 0.319 \\
\hline ARITH23 & VALID & 0.319 & 0.316 \\
\hline ARITH29 & VALID & 1.164 & 1.187 \\
\hline ARITH30 & VALID & 1.168 & 1.138 \\
\hline ARITH31 & VALID & 1.165 & 1.234 \\
\hline ARITH33 & VALID & 1.404 & 1.444 \\
\hline ARITH34 & VALID & 1.350 & 1.333 \\
\hline ARITH35 & VALID & 1.342 & 1.337 \\
\hline ARITH37 & VALID & 1.198 & 1.178 \\
\hline ARITH38 & VALID & 1.206 & 1.202 \\
\hline ARITH39 & VALID & 1.170 & 1.145 \\
\hline ARITH41 & VALID & 1.475 & 1.333 \\
\hline ARITH42 & VALID & 1.314 & 1.330 \\
\hline ARITH44 & VALID & 1.140 & 1.125 \\
\hline ARITH45 & VALID & 1.136 & 1.142 \\
\hline ARITH46 & VALID & 1.147 & 1.139 \\
\hline ARITH47 & VALID & 1.184 & 1.313 \\
\hline ARITH52 & VALID & 1.140 & 1.140 \\
\hline ARITH53 & VALID & 1.157 & 1.133 \\
\hline ARITH54 & VALID & 1.128 & 1.142 \\
\hline ARITH55 & VALID & 1.234 & 1.224 \\
\hline ARITH60 & VALID & 1.191 & 1.147 \\
\hline ARITH61 & VALID & 1.213 & 1.102 \\
\hline ARITH62 & VALID & 1.004 & 0.999 \\
\hline ARITH63 & VALID & 1.012 & 1.006 \\
\hline ARITH65 & VALID & 1.166 & 1.147 \\
\hline ARITH66 & VALID & 1.150 & 1.135 \\
\hline ARITH67 & VALID & 1.144 & 1.166 \\
\hline CMP0 & VALID & 42.602 & 42.966 \\
\hline CMP3 & VALID & 1.178 & 1.200 \\
\hline CMP4 & VALID & 1.157 & 1.177 \\
\hline CMP5 & VALID & 1.174 & 1.164 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CMP18 & VALID & 1.160 & 1.165 \\
\hline DEL2 & VALID & 18.910 & 18.546 \\
\hline DEL3 & VALID & 0.446 & 0.453 \\
\hline DEL4 & VALID & 0.544 & 0.634 \\
\hline DEL5 & VALID & 80.056 & 79.138 \\
\hline DEL8 & VALID & 1.156 & 1.172 \\
\hline DEL10 & VALID & 1.294 & 1.138 \\
\hline DEL14 & VALID & 1.164 & 1.147 \\
\hline DEL15 & VALID & 1.396 & 1.363 \\
\hline DEL17 & VALID & 1.167 & 1.179 \\
\hline DEL18 & VALID & 1.381 & 1.360 \\
\hline DEL20 & VALID & 1.154 & 1.136 \\
\hline DEL23 & VALID & 1.169 & 1.157 \\
\hline DEL25 & VALID & 1.147 & 1.141 \\
\hline DEL27 & VALID & 1.179 & 1.145 \\
\hline FORK0 & VALID & 0.355 & 0.344 \\
\hline LIT6 & VALID & 21.951 & 22.597 \\
\hline LIT7 & VALID & 0.426 & 0.430 \\
\hline LIT8 & VALID & 25.257 & 24.696 \\
\hline LIT9 & VALID & 1.173 & 1.156 \\
\hline LIT11 & VALID & 1.152 & 1.153 \\
\hline LIT16 & VALID & 1.157 & 1.149 \\
\hline LIT18 & VALID & 1.372 & 1.372 \\
\hline LIT19 & VALID & 1.159 & 1.164 \\
\hline LIT20 & VALID & 1.207 & 1.146 \\
\hline LIT22 & VALID & 1.376 & 1.393 \\
\hline LIT23 & VALID & 1.142 & 1.145 \\
\hline LIT24 & VALID & 1.136 & 1.132 \\
\hline LIT25 & VALID & 1.189 & 1.149 \\
\hline LIT27 & VALID & 1.186 & 1.170 \\
\hline LIT28 & VALID & 1.181 & 1.180 \\
\hline LIT29 & VALID & 1.185 & 1.164 \\
\hline LIT31 & VALID & 1.170 & 1.175 \\
\hline LIT32 & VALID & 1.164 & 1.134 \\
\hline LIT33 & VALID & 1.146 & 1.183 \\
\hline VAR0 & VALID & 10.232 & 10.289 \\
\hline VAR2 & VALID & 1.174 & 1.157 \\
\hline VAR3 & VALID & 22.114 & 22.225 \\
\hline VAR4 & VALID & 0.428 & 0.415 \\
\hline VAR5 & VALID & 10.210 & 10.201 \\
\hline VAR6 & VALID & 0.431 & 0.415 \\
\hline VAR7 & VALID & 0.451 & 0.425 \\
\hline VAR8 & VALID & 0.428 & 0.418 \\
\hline VAR9 & VALID & 22.128 & 22.207 \\
\hline VAR10 & VALID & 4.923 & 5.020 \\
\hline VAR11 & VALID & 1.147 & 1.143 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline VAR12 & VALID & 1.150 & 1.130 \\
\hline VAR13 & VALID & 1.172 & 1.154 \\
\hline VAR14 & VALID & 1.151 & 1.143 \\
\hline VAR16 & VALID & 1.133 & 1.142 \\
\hline VAR25 & VALID & 1.175 & 1.163 \\
\hline VAR27 & VALID & 1.116 & 1.151 \\
\hline VAR28 & VALID & 1.160 & 1.148 \\
\hline VAR30 & VALID & 1.179 & 1.168 \\
\hline VAR31 & VALID & 1.170 & 1.149 \\
\hline VAR37 & VALID & 1.157 & 1.170 \\
\hline VAR38 & VALID & 1.124 & 1.139 \\
\hline VAR39 & VALID & 1.186 & 1.292 \\
\hline VAR41 & VALID & 1.143 & 1.143 \\
\hline VAR43 & VALID & 1.147 & 1.205 \\
\hline VAR44 & VALID & 1.164 & 1.145 \\
\hline VAR52 & VALID & 1.168 & 1.166 \\
\hline VAR53 & VALID & 1.167 & 1.160 \\
\hline VAR54 & VALID & 1.159 & 1.160 \\
\hline VAR55 & VALID & 1.145 & 1.136 \\
\hline VAR56 & VALID & 1.282 & 1.118 \\
\hline VAR57 & VALID & 1.170 & 1.151 \\
\hline VAR58 & VALID & 1.199 & 1.255 \\
\hline VAR59 & VALID & 1.187 & 1.155 \\
\hline VAR66 & VALID & 1.162 & 1.143 \\
\hline VAR68 & VALID & 1.149 & 1.142 \\
\hline VAR69 & VALID & 1.155 & 1.173 \\
\hline VAR70 & VALID & 1.141 & 1.141 \\
\hline VAR71 & VALID & 1.181 & 1.180 \\
\hline VAR72 & VALID & 1.141 & 1.148 \\
\hline VAR73 & VALID & 1.164 & 1.151 \\
\hline VAR77 & VALID & 1.164 & 1.146 \\
\hline VAR78 & VALID & 1.147 & 1.133 \\
\hline VAR79 & VALID & 1.177 & 1.179 \\
\hline VAR80 & VALID & 1.190 & 1.168 \\
\hline VAR81 & VALID & 1.165 & 1.177 \\
\hline VAR85 & VALID & 1.144 & 1.155 \\
\hline VAR86 & VALID & 1.179 & 1.179 \\
\hline VAR87 & VALID & 1.166 & 1.151 \\
\hline VAR88 & VALID & 1.200 & 1.143 \\
\hline VAR89 & VALID & 1.192 & 1.184 \\
\hline VAR90 & VALID & 1.154 & 1.145 \\
\hline VAR91 & VALID & 1.186 & 1.175 \\
\hline VAR92 & VALID & 1.157 & 1.164 \\
\hline VAR93 & VALID & 1.180 & 1.218 \\
\hline VAR94 & VALID & 1.208 & 1.157 \\
\hline VAR95 & VALID & 1.362 & 1.331 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline VAR96 & VALID & 1.167 & 1.156 \\
\hline VAR99 & VALID & 1.180 & 1.154 \\
\hline VAR101 & VALID & 1.154 & 1.146 \\
\hline VAR102 & VALID & 1.217 & 1.172 \\
\hline VAR104 & VALID & 1.378 & 1.351 \\
\hline VAR105 & VALID & 1.422 & 1.365 \\
\hline VAR106 & VALID & 1.385 & 1.374 \\
\hline VAR107 & VALID & 1.348 & 1.338 \\
\hline VAR108 & VALID & 1.377 & 1.344 \\
\hline VAR109 & VALID & 1.367 & 1.358 \\
\hline VAR110 & VALID & 1.358 & 1.377 \\
\hline VAR113 & VALID & 1.155 & 1.147 \\
\hline VAR114 & VALID & 1.169 & 1.148 \\
\hline VAR115 & VALID & 1.161 & 1.154 \\
\hline VAR116 & VALID & 1.173 & 1.174 \\
\hline VAR117 & VALID & 1.128 & 1.131 \\
\hline VAR121 & VALID & 1.149 & 1.141 \\
\hline VAR122 & VALID & 1.153 & 1.140 \\
\hline VAR123 & VALID & 1.156 & 1.146 \\
\hline VAR124 & VALID & 1.159 & 1.137 \\
\hline VAR125 & VALID & 1.154 & 1.166 \\
\hline VAR129 & VALID & 1.176 & 1.158 \\
\hline VAR130 & VALID & 1.164 & 1.161 \\
\hline VAR131 & VALID & 1.273 & 1.161 \\
\hline VAR132 & VALID & 1.190 & 1.162 \\
\hline VAR133 & VALID & 1.186 & 1.180 \\
\hline VAR134 & VALID & 1.170 & 1.170 \\
\hline VAR135 & VALID & 1.179 & 1.155 \\
\hline VAR137 & VALID & 1.262 & 1.136 \\
\hline VAR138 & VALID & 1.213 & 1.181 \\
\hline VAR139 & VALID & 1.153 & 1.174 \\
\hline VAR140 & VALID & 1.208 & 1.178 \\
\hline VAR143 & VALID & 1.151 & 1.165 \\
\hline VAR145 & VALID & 1.165 & 1.181 \\
\hline VAR146 & VALID & 1.148 & 1.146 \\
\hline VAR148 & VALID & 1.367 & 1.368 \\
\hline VAR149 & VALID & 1.362 & 1.376 \\
\hline VAR150 & VALID & 1.238 & 1.127 \\
\hline VAR152 & VALID & 1.364 & 1.367 \\
\hline VAR153 & VALID & 1.409 & 1.388 \\
\hline VAR154 & VALID & 1.377 & 1.379 \\
\hline VAR157 & VALID & 1.432 & 1.337 \\
\hline VAR158 & VALID & 1.232 & 1.152 \\
\hline VAR159 & VALID & 1.383 & 1.379 \\
\hline VAR160 & VALID & 1.382 & 1.386 \\
\hline VAR161 & VALID & 1.167 & 1.150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline VAR162 & VALID & 1.131 & 1.152 \\
\hline VAR163 & VALID & 1.153 & 1.146 \\
\hline VAR164 & VALID & 1.168 & 1.161 \\
\hline VAR165 & VALID & 1.148 & 1.145 \\
\hline VAR166 & VALID & 1.158 & 1.150 \\
\hline VAR167 & VALID & 1.291 & 1.155 \\
\hline VAR168 & VALID & 1.174 & 1.157 \\
\hline VAR169 & VALID & 1.160 & 1.151 \\
\hline VAR170 & VALID & 1.144 & 1.157 \\
\hline VAR171 & VALID & 1.193 & 1.160 \\
\hline VAR172 & VALID & 1.154 & 1.147 \\
\hline VAR173 & VALID & 1.146 & 1.140 \\
\hline VAR174 & VALID & 1.165 & 1.161 \\
\hline VAR175 & VALID & 1.263 & 1.126 \\
\hline VAR177 & VALID & 1.137 & 1.141 \\
\hline VAR184 & VALID & 1.141 & 1.156 \\
\hline VAR197 & VALID & 1.140 & 1.127 \\
\hline VAR199 & VALID & 1.144 & 1.149 \\
\hline VAR200 & VALID & 1.182 & 1.153 \\
\hline VAR201 & VALID & 1.186 & 1.137 \\
\hline VAR202 & VALID & 1.192 & 1.283 \\
\hline VAR204 & VALID & 1.153 & 1.155 \\
\hline VAR205 & VALID & 1.140 & 1.140 \\
\hline VAR206 & VALID & 1.189 & 1.169 \\
\hline VAR207 & VALID & 1.165 & 1.139 \\
\hline VAR208 & VALID & 1.171 & 1.141 \\
\hline VAR209 & VALID & 1.156 & 1.134 \\
\hline VAR213 & VALID & 1.250 & 1.295 \\
\hline VAR214 & VALID & 1.143 & 1.144 \\
\hline VAR215 & VALID & 1.154 & 1.147 \\
\hline VAR216 & VALID & 1.144 & 1.143 \\
\hline VAR217 & VALID & 1.158 & 1.127 \\
\hline VAR219 & VALID & 1.176 & 1.187 \\
\hline VAR223 & VALID & 1.158 & 1.176 \\
\hline VAR224 & VALID & 1.176 & 1.176 \\
\hline VAR225 & VALID & 1.143 & 1.143 \\
\hline VAR226 & VALID & 1.139 & 1.118 \\
\hline VAR227 & VALID & 1.271 & 1.155 \\
\hline VAR236 & VALID & 1.154 & 1.145 \\
\hline VAR239 & VALID & 1.157 & 1.132 \\
\hline VAR240 & VALID & 1.135 & 1.154 \\
\hline VAR241 & VALID & 1.137 & 1.130 \\
\hline VAR242 & VALID & 1.182 & 1.186 \\
\hline VAR243 & VALID & 1.166 & 1.165 \\
\hline VAR245 & VALID & 1.236 & 1.216 \\
\hline VAR246 & VALID & 1.114 & 1.146 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline VAR247 & VALID & 1.162 & 1.169 \\
\hline VAR248 & VALID & 1.305 & 1.140 \\
\hline VAR249 & VALID & 1.155 & 1.159 \\
\hline VAR250 & VALID & 1.191 & 1.141 \\
\hline VAR251 & VALID & 1.147 & 1.138 \\
\hline VAR252 & VALID & 1.081 & 1.071 \\
\hline VAR253 & VALID & 1.180 & 1.174 \\
\hline VAR255 & VALID & 1.165 & 1.141 \\
\hline VAR256 & VALID & 1.192 & 1.164 \\
\hline VAR257 & VALID & 1.152 & 1.169 \\
\hline VAR258 & VALID & 1.155 & 1.159 \\
\hline VAR259 & VALID & 1.213 & 1.189 \\
\hline VAR265 & VALID & 1.180 & 1.154 \\
\hline VAR266 & VALID & 1.185 & 1.161 \\
\hline VAR269 & VALID & 1.216 & 1.252 \\
\hline VAR271 & VALID & 1.160 & 1.150 \\
\hline VAR275 & VALID & 1.154 & 1.148 \\
\hline VAR280 & VALID & 1.126 & 1.119 \\
\hline VAR281 & VALID & 1.141 & 1.113 \\
\hline VAR282 & VALID & 1.147 & 1.144 \\
\hline VAR283 & VALID & 1.116 & 1.115 \\
\hline VAR285 & VALID & 1.133 & 1.238 \\
\hline VAR288 & VALID & 1.174 & 1.182 \\
\hline VAR289 & VALID & 1.145 & 1.148 \\
\hline VAR293 & VALID & 1.129 & 1.141 \\
\hline VAR294 & VALID & 1.165 & 1.138 \\
\hline VAR295 & VALID & 1.164 & 1.153 \\
\hline VAR299 & VALID & 1.196 & 1.154 \\
\hline VAR300 & VALID & 1.152 & 1.146 \\
\hline VAR301 & VALID & 1.177 & 1.146 \\
\hline VAR302 & VALID & 1.161 & 1.150 \\
\hline VAR305 & VALID & 1.161 & 1.148 \\
\hline VAR307 & VALID & 1.190 & 1.181 \\
\hline VAR308 & VALID & 1.163 & 1.150 \\
\hline VAR310 & VALID & 1.183 & 1.170 \\
\hline VAR311 & VALID & 1.155 & 1.152 \\
\hline VAR312 & VALID & 1.140 & 1.141 \\
\hline VAR313 & VALID & 1.150 & 1.122 \\
\hline VAR314 & VALID & 1.149 & 1.148 \\
\hline VAR315 & VALID & 1.183 & 1.192 \\
\hline VAR316 & VALID & 1.168 & 1.146 \\
\hline VAR319 & VALID & 1.188 & 1.162 \\
\hline VAR320 & VALID & 1.192 & 1.186 \\
\hline VAR321 & VALID & 1.174 & 1.144 \\
\hline VAR322 & VALID & 1.176 & 1.159 \\
\hline VAR323 & VALID & 1.201 & 1.170 \\
\hline
\end{tabular}
\begin{tabular}{|lllr|}
\hline VAR324 & VALID & 1.206 & 1.151 \\
\hline VAR325 & VALID & 1.125 & 1.126 \\
\hline VAR326 & VALID & 1.131 & 1.144 \\
\hline ARITH3 & INVALID (ensures) & 0.142 & 0.141 \\
\hline CMP1 & INVALID (ensures) & 0.152 & 0.131 \\
\hline CMP2 & INVALID (ensures) & 130.805 & 130.765 \\
\hline CMP6 & INVALID (ensures) & 0.203 & 0.199 \\
\hline CMP7 & INVALID (ensures) & 0.198 & 0.194 \\
\hline CMP9 & INVALID (ensures) & 0.226 & 0.204 \\
\hline CMP10 & INVALID (ensures) & 0.196 & 0.195 \\
\hline CMP12 & INVALID (ensures) & 0.259 & 0.263 \\
\hline CMP15 & INVALID (ensures) & 0.207 & 0.232 \\
\hline CMP16 & INVALID (ensures) & 0.219 & 0.208 \\
\hline CMP19 & INVALID (ensures) & 0.258 & 0.255 \\
\hline CMP20 & INVALID (ensures) & 0.259 & 0.249 \\
\hline DEL1 & INVALID (ensures) & 0.125 & 0.135 \\
\hline DEL6 & INVALID (ensures) & 0.165 & 0.154 \\
\hline DEL11 & INVALID (ensures) & 0.226 & 0.211 \\
\hline DEL12 & INVALID (ensures) & 0.217 & 0.235 \\
\hline DEL13 & INVALID (ensures) & 0.230 & 0.205 \\
\hline DEL16 & INVALID (ensures) & 0.268 & 0.251 \\
\hline DEL19 & INVALID (ensures) & 0.257 & 0.255 \\
\hline DEL22 & INVALID (ensures) & 0.219 & 0.217 \\
\hline DEL26 & INVALID (ensures) & 0.243 & 0.259 \\
\hline LIT3 & INVALID (ensures) & 0.136 & 0.143 \\
\hline LIT5 & INVALID (ensures) & 0.149 & 0.133 \\
\hline LIT13 & INVALID (ensures) & 0.192 & 0.208 \\
\hline VAR1 & INVALID (ensures) & 0.194 & 0.199 \\
\hline VAR15 & INVALID (ensures) & 0.205 & 0.193 \\
\hline VAR17 & INVALID (ensures) & 0.216 & 0.196 \\
\hline VAR18 & INVALID (ensures) & 0.183 & 0.180 \\
\hline VAR19 & INVALID (ensures) & 0.203 & 0.205 \\
\hline VAR20 & INVALID (ensures) & 0.148 & 0.144 \\
\hline VAR21 & INVALID (ensures) & 0.147 & 0.130 \\
\hline VAR29 & INVALID (ensures) & 0.188 & 0.190 \\
\hline VAR32 & INVALID (ensures) & 0.182 & 0.195 \\
\hline VAR33 & INVALID (ensures) & 0.219 & 0.198 \\
\hline VAR40 & INVALID (ensures) & 0.214 & 0.196 \\
\hline VAR45 & INVALID (ensures) & 0.189 & 0.193 \\
\hline VAR74 & INVALID (ensures) & 0.229 & 0.216 \\
\hline VAR82 & INVALID (ensures) & 0.222 & 0.216 \\
\hline VAR118 & INVALID (ensures) & 0.267 & 0.263 \\
\hline VAR126 & INVALID (ensures) & 0.258 \\
\hline VAR136 & INVALID (ensures) & 0.258 \\
\hline VAR176 & INVALID (ensures) & 0.198 \\
\hline VAR180 & INVALID (ensures) & 0.194 \\
\hline & & 0.2036 \\
\hline & & & \\
\hline & & 0.2
\end{tabular}
\begin{tabular}{|llll|}
\hline VAR191 & INVALID (ensures) & 0.195 & 0.206 \\
\hline VAR193 & INVALID (ensures) & 0.195 & 0.202 \\
\hline VAR194 & INVALID (ensures) & 0.204 & 0.197 \\
\hline VAR195 & INVALID (ensures) & 0.211 & 0.204 \\
\hline VAR196 & INVALID (ensures) & 0.258 & 0.265 \\
\hline VAR210 & INVALID (ensures) & 0.270 & 0.328 \\
\hline VAR228 & INVALID (ensures) & 0.268 & 0.256 \\
\hline VAR229 & INVALID (ensures) & 0.267 & 0.262 \\
\hline VAR232 & INVALID (ensures) & 0.267 & 0.269 \\
\hline VAR238 & INVALID (ensures) & 0.229 & 0.224 \\
\hline VAR244 & INVALID (ensures) & 0.221 & 0.215 \\
\hline VAR278 & INVALID (ensures) & 0.221 & 0.223 \\
\hline VAR279 & INVALID (ensures) & 0.214 & 0.222 \\
\hline VAR284 & INVALID (ensures) & 0.252 & 0.271 \\
\hline VAR286 & INVALID (ensures) & 0.249 & 0.251 \\
\hline VAR287 & INVALID (ensures) & 0.249 & 0.240 \\
\hline VAR290 & INVALID (ensures) & 0.270 & 0.293 \\
\hline VAR296 & INVALID (ensures) & 0.287 & 0.286 \\
\hline VAR317 & INVALID (ensures) & 0.254 & 0.258 \\
\hline VAR318 & INVALID (ensures) & 0.267 & 0.255 \\
\hline ARITH0 & INVALID (exceptional) & 0.346 & 0.428 \\
\hline ARITH1 & INVALID (exceptional) & 0.189 & 0.170 \\
\hline ARITH2 & INVALID (exceptional) & 0.166 & 0.176 \\
\hline ARITH16 & INVALID (exceptional) & 0.145 & 0.160 \\
\hline ARITH17 & INVALID (exceptional) & 0.199 & 0.205 \\
\hline ARITH18 & INVALID (exceptional) & 0.200 & 0.205 \\
\hline ARITH19 & INVALID (exceptional) & 0.198 & 0.196 \\
\hline ARITH21 & INVALID (exceptional) & 0.205 & 0.213 \\
\hline ARITH24 & INVALID (exceptional) & 0.168 & 0.173 \\
\hline ARITH25 & INVALID (exceptional) & 0.209 & 0.205 \\
\hline ARITH26 & INVALID (exceptional) & 0.209 & 0.211 \\
\hline ARITH27 & INVALID (exceptional) & 0.218 & 0.214 \\
\hline ARITH28 & INVALID (exceptional) & 0.207 & 0.202 \\
\hline ARITH32 & INVALID (exceptional) & 0.209 & 0.205 \\
\hline ARITH36 & INVALID (exceptional) & 0.261 & 0.252 \\
\hline ARITH40 & INVALID (exceptional) & 0.270 & 0.295 \\
\hline ARITH43 & INVALID (exceptional) & 0.274 & 0.269 \\
\hline ARITH48 & INVALID (exceptional) & 0.268 & 0.247 \\
\hline ARITH49 & INVALID (exceptional) & 0.268 & 0.254 \\
\hline ARITH50 & INVALID (exceptional) & 0.254 & 0.255 \\
\hline ARITH51 & INVALID (exceptional) & 0.254 & 0.249 \\
\hline ARITH56 & INVALID (exceptional) & 0.208 & 0.195 \\
\hline ARITH57 & INVALID (exceptional) & 0.218 & 0.204 \\
\hline ARITH58 & INVALID (exceptional) & 0.214 & 0.209 \\
\hline ARITH64 & INVALID (exceptional) & 0.211 & 0.207 \\
\hline & INVALID (exceptional) & 0.214 \\
\hline & & \\
\hline VNV7 & & 0.2
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline BOOL0 & INVALID (exceptional) & 0.211 & 0.244 \\
\hline BOOL1 & INVALID (exceptional) & 0.233 & 0.225 \\
\hline CMP8 & INVALID (exceptional) & 0.230 & 0.234 \\
\hline CMP11 & INVALID (exceptional) & 0.238 & 0.238 \\
\hline CMP13 & INVALID (exceptional) & 0.212 & 0.210 \\
\hline CMP14 & INVALID (exceptional) & 0.214 & 0.201 \\
\hline CMP17 & INVALID (exceptional) & 0.217 & 0.202 \\
\hline DEL7 & INVALID (exceptional) & 0.181 & 0.193 \\
\hline DEL9 & INVALID (exceptional) & 0.217 & 0.203 \\
\hline DEL21 & INVALID (exceptional) & 0.253 & 0.251 \\
\hline DEL24 & INVALID (exceptional) & 0.216 & 0.209 \\
\hline LIT0 & INVALID (exceptional) & 0.129 & 0.122 \\
\hline LIT1 & INVALID (exceptional) & 0.135 & 0.122 \\
\hline LIT2 & INVALID (exceptional) & 0.161 & 0.169 \\
\hline LIT4 & INVALID (exceptional) & 0.168 & 0.166 \\
\hline LIT10 & INVALID (exceptional) & 0.193 & 0.195 \\
\hline LIT12 & INVALID (exceptional) & 0.216 & 0.207 \\
\hline LIT14 & INVALID (exceptional) & 0.204 & 0.189 \\
\hline LIT15 & INVALID (exceptional) & 0.202 & 0.216 \\
\hline LIT17 & INVALID (exceptional) & 0.215 & 0.197 \\
\hline LIT21 & INVALID (exceptional) & 0.267 & 0.244 \\
\hline LIT26 & INVALID (exceptional) & 0.242 & 0.261 \\
\hline LIT30 & INVALID (exceptional) & 0.202 & 0.205 \\
\hline VAR22 & INVALID (exceptional) & 0.169 & 0.162 \\
\hline VAR23 & INVALID (exceptional) & 0.197 & 0.202 \\
\hline VAR24 & INVALID (exceptional) & 0.197 & 0.202 \\
\hline VAR26 & INVALID (exceptional) & 0.347 & 0.180 \\
\hline VAR34 & INVALID (exceptional) & 0.204 & 0.212 \\
\hline VAR35 & INVALID (exceptional) & 0.232 & 0.223 \\
\hline VAR36 & INVALID (exceptional) & 0.208 & 0.206 \\
\hline VAR42 & INVALID (exceptional) & 0.211 & 0.203 \\
\hline VAR46 & INVALID (exceptional) & 0.192 & 0.192 \\
\hline VAR47 & INVALID (exceptional) & 0.182 & 0.174 \\
\hline VAR48 & INVALID (exceptional) & 0.190 & 0.192 \\
\hline VAR49 & INVALID (exceptional) & 0.236 & 0.223 \\
\hline VAR50 & INVALID (exceptional) & 0.246 & 0.232 \\
\hline VAR51 & INVALID (exceptional) & 0.239 & 0.226 \\
\hline VAR60 & INVALID (exceptional) & 0.190 & 0.195 \\
\hline VAR61 & INVALID (exceptional) & 0.216 & 0.213 \\
\hline VAR62 & INVALID (exceptional) & 0.195 & 0.200 \\
\hline VAR63 & INVALID (exceptional) & 0.248 & 0.233 \\
\hline VAR64 & INVALID (exceptional) & 0.343 & 0.344 \\
\hline VAR65 & INVALID (exceptional) & 0.233 & 0.226 \\
\hline VAR67 & INVALID (exceptional) & 0.164 & 0.175 \\
\hline VAR75 & INVALID (exceptional) & 0.194 & 0.203 \\
\hline VAR76 & INVALID (exceptional) & 0.194 & 0.200 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline VAR83 & INVALID (exceptional) & 0.189 & 0.197 \\
\hline VAR84 & INVALID (exceptional) & 0.205 & 0.196 \\
\hline VAR97 & INVALID (exceptional) & 0.219 & 0.202 \\
\hline VAR98 & INVALID (exceptional) & 0.209 & 0.196 \\
\hline VAR100 & INVALID (exceptional) & 0.191 & 0.212 \\
\hline VAR103 & INVALID (exceptional) & 0.205 & 0.200 \\
\hline VAR111 & INVALID (exceptional) & 0.207 & 0.209 \\
\hline VAR112 & INVALID (exceptional) & 0.216 & 0.209 \\
\hline VAR119 & INVALID (exceptional) & 0.235 & 0.235 \\
\hline VAR120 & INVALID (exceptional) & 0.236 & 0.231 \\
\hline VAR127 & INVALID (exceptional) & 0.240 & 0.249 \\
\hline VAR128 & INVALID (exceptional) & 0.241 & 0.238 \\
\hline VAR141 & INVALID (exceptional) & 0.259 & 0.353 \\
\hline VAR142 & INVALID (exceptional) & 0.257 & 0.242 \\
\hline VAR144 & INVALID (exceptional) & 0.235 & 0.244 \\
\hline VAR147 & INVALID (exceptional) & 0.251 & 0.243 \\
\hline VAR151 & INVALID (exceptional) & 0.273 & 0.282 \\
\hline VAR155 & INVALID (exceptional) & 0.400 & 0.254 \\
\hline VAR156 & INVALID (exceptional) & 0.268 & 0.257 \\
\hline VAR178 & INVALID (exceptional) & 0.230 & 0.221 \\
\hline VAR179 & INVALID (exceptional) & 0.220 & 0.221 \\
\hline VAR181 & INVALID (exceptional) & 0.225 & 0.227 \\
\hline VAR182 & INVALID (exceptional) & 0.225 & 0.223 \\
\hline VAR183 & INVALID (exceptional) & 0.216 & 0.220 \\
\hline VAR185 & INVALID (exceptional) & 0.216 & 0.222 \\
\hline VAR186 & INVALID (exceptional) & 0.241 & 0.246 \\
\hline VAR187 & INVALID (exceptional) & 0.252 & 0.241 \\
\hline VAR188 & INVALID (exceptional) & 0.249 & 0.238 \\
\hline VAR189 & INVALID (exceptional) & 0.239 & 0.240 \\
\hline VAR190 & INVALID (exceptional) & 0.246 & 0.253 \\
\hline VAR192 & INVALID (exceptional) & 0.273 & 0.244 \\
\hline VAR198 & INVALID (exceptional) & 0.254 & 0.240 \\
\hline VAR203 & INVALID (exceptional) & 0.243 & 0.237 \\
\hline VAR211 & INVALID (exceptional) & 0.260 & 0.254 \\
\hline VAR212 & INVALID (exceptional) & 0.252 & 0.255 \\
\hline VAR218 & INVALID (exceptional) & 0.252 & 0.249 \\
\hline VAR220 & INVALID (exceptional) & 0.255 & 0.250 \\
\hline VAR221 & INVALID (exceptional) & 0.247 & 0.253 \\
\hline VAR222 & INVALID (exceptional) & 0.254 & 0.239 \\
\hline VAR230 & INVALID (exceptional) & 0.221 & 0.204 \\
\hline VAR231 & INVALID (exceptional) & 0.196 & 0.212 \\
\hline VAR233 & INVALID (exceptional) & 0.209 & 0.213 \\
\hline VAR234 & INVALID (exceptional) & 0.210 & 0.221 \\
\hline VAR235 & INVALID (exceptional) & 0.198 & 0.201 \\
\hline VAR237 & INVALID (exceptional) & 0.212 & 0.206 \\
\hline VAR254 & INVALID (exceptional) & 0.193 & 0.205 \\
\hline & & \\
\hline VNV & & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline VAR260 & INVALID (exceptional) & 0.207 & 0.205 \\
\hline VAR261 & INVALID (exceptional) & 0.195 & 0.209 \\
\hline VAR262 & INVALID (exceptional) & 0.200 & 0.208 \\
\hline VAR263 & INVALID (exceptional) & 0.216 & 0.208 \\
\hline VAR264 & INVALID (exceptional) & 0.209 & 0.208 \\
\hline VAR267 & INVALID (exceptional) & 0.218 & 0.208 \\
\hline VAR268 & INVALID (exceptional) & 0.208 & 0.220 \\
\hline VAR270 & INVALID (exceptional) & 0.209 & 0.205 \\
\hline VAR272 & INVALID (exceptional) & 0.209 & 0.202 \\
\hline VAR273 & INVALID (exceptional) & 0.199 & 0.224 \\
\hline VAR274 & INVALID (exceptional) & 0.206 & 0.206 \\
\hline VAR276 & INVALID (exceptional) & 0.217 & 0.209 \\
\hline VAR277 & INVALID (exceptional) & 0.204 & 0.219 \\
\hline VAR291 & INVALID (exceptional) & 0.222 & 0.216 \\
\hline VAR292 & INVALID (exceptional) & 0.205 & 0.211 \\
\hline VAR297 & INVALID (exceptional) & 0.198 & 0.205 \\
\hline VAR298 & INVALID (exceptional) & 0.205 & 0.209 \\
\hline VAR303 & INVALID (exceptional) & 0.227 & 0.212 \\
\hline VAR304 & INVALID (exceptional) & 0.207 & 0.207 \\
\hline VAR306 & INVALID (exceptional) & 0.201 & 0.210 \\
\hline VAR309 & INVALID (exceptional) & 0.211 & 0.235 \\
\hline
\end{tabular}

\section*{B. 4 Dining Philosophers}
\begin{tabular}{|llrr|}
\hline Name & Result & A/rand (s) & A/def (s) \\
\hline ORIGINAL & DEADLOCK & 0.701 & 0.420 \\
\hline
\end{tabular}

Listing B.1: The bubblesort algorithm in the OOX language.
```

static int[] sort(int[] array)
requires(array != null)
ensures(forall v, i : retval : forall w, j : retval : i < j ==> v <= w)
exceptional(false)
{
bool sorted := false;
while (!sorted) {
sorted := true;
int i := 1.
while (i < \#array) {
int a := array[i];
int b := array[i - 1];
if (a < b) {
array[i] := b;
array[i - 1] := a;
sorted := false;
}
i := i + 1,
}
}
return array;
}

```

Listing B.2: The bubblesort algorithm in C for CBMC.
```

void sort(int length)
{
__CPROVER_assume(length >= 0 \&\& length <= 3);
int array[length];
for (int i = 0; i < length; i++)
array[i] = nondet_int();
int sorted = 0;
while (!sorted) {
sorted = 1;
int i = 1;
while (i < length) {
int a = array[i];
int b = array[i-1];
if (a < b) {
array[i] = b;
array[i - 1] = a;
sorted = 0;
}
i = i + 1;
}
}
for (int i = 0; i < length; i++)
for (int j = 0; j < length; j++)
__CPROVER_assert(!(i < j) || array[i] <= array[j], "postcondition");
}

```

Listing B.3: The bubblesort algorithm in CIVL-C.
```

\$input int length;
\$assume(length > 0 \&\& length <= 3);
void sort(int length)
{
int array[length];
\$havoc(\&array);
int sorted = 0;
while (!sorted)
sorted = 1;
int i = 1;
while (i < length) {
int a = array[i];
int b = array[i-1];
if (a < b) {
array[i] = b;
array[i - 1] = a;
sorted = 0;
}
i = i + 1;
}
}
$assert($forall(int i : 0 .. length - 1)
\$forall(int j : 0 .. length - 1) i < j => array[i] <= array[j]);
}
void main()
{
sort(length);
}

```

Listing B.4: The minimum element of a linked list in the OOX language.
```

class Node
{
int value;
Node next;
static int min(Node node)
requires(node != null)
exceptional(false)
{
int N := 3;
int[] values := new int[N];
int i := 0;
int min := node.value;
Node next := node.next;
while (next != null \&\& i < N)
{
int value := next.value;
if (value < min) {
min := value;
}
next := next.next;
values[i] := value;
i := i + 1.
}
assert forall value, index : values : min <= value;
return min;
}
}

```

Listing B.5: The concurrent mergesort algorithm in the OOX language.
```

static int[] sort(int[] array)
requires(array != null)
ensures(forall v, i : retval : forall w, j : retval : i < j ==> v <= w)
exceptional(false)
{
Main.mergesort(array, 0, \#array - 1);
return array;
}
static void mergesort(int[] array, int left, int right)
{
exceptional(false)
if (left < right) {
int middle := (left + right) / 2;
fork Main.mergesort(array, left, middle);
Main.mergesort(array, middle + 1, right);
join;
Main.merge(array, left, middle, right);
}
}
static void merge(int[] array, int left, int middle, int right)
exceptional(false)
{
int[] temp := new int[right - left + 1];
int i := left;
int j := middle + 1;
int k := 0;
while (i <= middle \&\& j <= right) {
int arrayI := array[i];
int arrayJ := array[j];
if (arrayI <= arrayJ) {
temp[k] := array[i];
k := k + 1;
}
else {
temp[k] := array[j];
k := k + 1;
j := j + 1;
}
}
while (i <= middle) {
temp[k] := array[i];
k := k + 1;
}
while (j <= right) {
temp[k] := array[j];
k := k + 1;
j := j + 1;
}
i := left;
while (i <= right) {
array[i] := temp[i - left];
array[i] :=
}
}

```

Listing B.6: The concurrent mergesort algorithm in CIVL-C.
```

\#include <civlc.cvh>
\#include <stdlib.h>
\$input int length;
\$assume(length > 0 \&\& length <= 3);
void merge(int *array, int left, int middle, int right)
{
int *temp = (int *)malloc((right - left + 1) * sizeof(int));
int i = left;
int j = middle + 1;
int k = 0;
while (i <= middle \&\& j <= right) {
int arrayI = array[i];
int arrayJ = array[j];
if (arrayI <= arrayJ)
temp[k++] = array[i++];
else
temp[k++] = array[j++];
while (i <= middle)
temp[k++] = array[i++];
while (j <= right)
temp[k++] = array[j++];
for (int i = left; i <= right; i++)
array[i] = temp[i - left];
}
}
void mergesort(int *array, int left, int right)
{
if (left < right) {
int middle = (left + right) / 2;
\$proc pid = \$spawn mergesort(array, left, middle);
mergesort(array, middle + 1, right);
\$wait(pid);
merge(array, left, middle, right);
}
}
void main()
{
int *array = (int *) malloc(length * sizeof(int));
mergesort(array, 0, length - 1);
$assert($forall(int i : 0 .. length - 1)
\$forall(int j : 0 .. length - 1) i < j => array[i] <= array[j]);
}

```

Listing B.7: The dining philosophers problem in the OOX language.
```

class Main
static void main()
exceptional(false)
{
int n := 2;
Fork[] forks := new Fork[n];
int i := 0;
while (i < n) {
forks[i] := new Fork();
i := i + 1;
}
i := 0;
while (i < n) {
Fork left := forks[i];
Fork right := forks[(i + 1) % n];
fork Main.eat(left, right);
i}:= i + 1
}
join;
}
static void eat(Fork left, Fork right)
{
while (true) {
lock (left) {
lock (right) {
}
}
}
}
}
class Fork {
Fork() { ; }
}

```
```


[^0]:    ${ }^{1}$ The variant that is used depends on the context of the automated approach. The state explosion problem is regularly used in the context of model checking and the path explosion problem is regularly used in the context of symbolic execution. In this thesis, the path explosion problem definition will be used.

