
Utrecht University
Faculty of Science
Department of Information
and Computing Sciences

The Path Explosion Problem in
Symbolic Execution

An Approach to the Effects
of Concurrency and Aliasing

Author
S. (Stefan) Koppier

Supervisor
dr. S.W.B. (Wishnu) Prasetya

Second Examiner
prof. dr. G.K. (Gabriele) Keller

ICA-6002978

May 24, 2020

Abstract

Symbolic Execution is a technique used for the formal verification of software. A notorious
problem with formal verification is the path explosion problem: the exponentially increasing
requirement of computing power to verify more complex software. Common contributors to
the path explosion problem are: (1) loops and recursion; (2) exceptions; (3) pointer aliasing;
and (4) concurrency. In this thesis, we present an intermediate verification language: the OOX
language. OOX is intended as a core language for object-oriented languages with support for
concurrency, such as Java and C#. We developed a symbolic execution engine for OOX, which
aims to limit the effects of the path explosion problem resulting from the first, third and fourth
contributors. To achieve this, we applied three main optimizations: partial order reduction,
formula caching and expression evaluation. Furthermore, the logic to handle references is defined
in the front-end of our approach. We use a SMT solver as a back-end to give a definitive answer
when the front-end does not give a definitive answer. The results of this approach show a positive
image. The optimizations drastically reduce the runtime and our approach can compete with
existing tools like CBMC and CIVL.

Keywords: Formal verification, symbolic execution, software testing, partial order reduction.

Definitions

1 Definition (Mapping) . 3

2 Definition (The Stack) . 6
3 Definition (A Stack Frame) . 6
4 Definition (The Heap) . 6
5 Definition (The Type Environment) . 8

6 Definition (Control Flow Graph) . 39
7 Definition (Action) . 40
8 Definition (The Symbolic State) . 44
9 Definition (Independence Relation) . 64
10 Definition (Guarded Independence Relation) . 64

i

Acronyms

AST Abstract Syntax Tree. 9, 36, 37, 41

CFA Control Flow Analysis. 39

CFG Control Flow Graph. 36, 39–41, 43, 49, 81

CSL Concurrent Separation Logic. 80

IVL Intermediate Verification Language. 78, 79, 81

POR Partial Order Reduction. 63–66, 74, 82, 83

SE Symbolic Execution. 35, 65

SEE Symbolic Execution Engine. 35–37, 39, 40, 44, 45, 55, 60, 61, 67, 70, 75, 82

SS Symbolic State. 35, 36, 44, 46–49, 51, 65, 66

ii

Contents

1 Introduction 1

2 Preliminary 3

3 The OOX Language 5
3.1 The Memory . 6

3.1.1 The Stack . 6
3.1.2 The Heap . 6

3.2 The Semantics . 6
3.2.1 The Static Semantics . 7
3.2.2 The Dynamic Semantics . 7

3.3 The Abstract Syntax . 8
3.4 Types . 8

3.4.1 Primitive and Reference Types . 9
3.4.2 Subtyping . 9

3.5 Compilation Units . 9
3.5.1 Threads and Scheduling . 9
3.5.2 The Semantics . 10

3.6 Classes . 12
3.6.1 Methods and Constructors . 12
3.6.2 Fields . 13

3.7 Statements . 14
3.7.1 Variable Declarations . 14
3.7.2 Assignment Statements . 15
3.7.3 Method Call Statements . 20
3.7.4 Skip Statements . 23
3.7.5 Assert Statements . 23
3.7.6 Assume Statements . 23
3.7.7 While Statements . 24
3.7.8 If-Then-Else Statements . 24
3.7.9 Continue and Break Statements . 25
3.7.10 Return Statements . 25
3.7.11 Throw Statements . 26
3.7.12 Try Statements . 26
3.7.13 Block Statements . 27
3.7.14 Lock- and Unlock Statements . 27
3.7.15 Join Statements . 27

iii

CONTENTS iv

3.7.16 Fork Statements . 28
3.7.17 Sequence Statements . 28
3.7.18 Pop Statements . 28

3.8 Expressions . 29
3.8.1 Literals . 29
3.8.2 References . 30
3.8.3 Variable Access . 31
3.8.4 Unary Operators . 31
3.8.5 Binary Operators . 31
3.8.6 Sizeof Operator . 32
3.8.7 If-Then-Else Operator . 32
3.8.8 Quantifiers . 33
3.8.9 The Dynamic Semantics . 33

4 Symbolic Execution of OOX Programs 35
4.1 Parsing . 37
4.2 Static Analysis . 39

4.2.1 Control Flow Analysis . 39
4.3 The Symbolic Execution Engine . 44

4.3.1 The Threads . 44
4.3.2 The Memory . 45
4.3.3 The Path Constraints . 48
4.3.4 The Alias Map . 48
4.3.5 The Locks . 49
4.3.6 The Interleaving Constraints . 49

4.4 The Symbolic Execution Algorithm . 49
4.4.1 Symbolic Execution of Actions . 51
4.4.2 Formula Caching . 60
4.4.3 Expression Evaluation . 61
4.4.4 Partial Order Reduction . 63

5 Results 67
5.1 The Completeness, Soundness and Efficacy of the Optimizations 70
5.2 Scalability . 73
5.3 A Comparison with CBMC and CIVL . 75

6 Related Work 78
6.1 Intermediate Verification Languages . 78
6.2 Formal Software Verification . 79

7 Conclusions and Future Work 82
7.1 Future Work . 83

A The Concrete Syntax of the OOX language 87
A.1 Lexical Structure . 87
A.2 Syntactical Structure . 88

B Experimental Data 93
B.1 Bubblesort . 93
B.2 Minimum element in Linked List . 94

CONTENTS v

B.3 Concurrent Mergesort . 95
B.4 Dining Philosophers . 106

Chapter 1

Introduction

The importance in our society is ever increasing. A major aspect of the software engineering field
is that the software that is developed works as expected. All software that is developed is verified
for correctness to some degree. The IEEE defines verification as “The evaluation of whether or
not a system complies with a regulation, requirement, specification, or imposed condition. It is
often an internal process, in contrast to validation, which aims to assure that the system meets
the needs of the stakeholders” [1].

There exist several approaches to verify the correctness of software, ranging from manual testing
to automated exhaustive approaches, such as (symbolic) model checking and symbolic execution.
In manual approaches, specific test instances are created to execute the program, whether or
not with the help of existing tools, checking that for those specific instances the program is
correct. Automated approaches aim to verify that for all possible inputs, all possible executions
are correct. In model checking, a transition system is constructed, which represents the program
under verification. It is common for the specification to be described in some temporal logic. The
transition system is regularly described using Kripke structures. In symbolic model checking, the
transition system is modelled with logical formulas, in contrast to an explicit transition system.
Symbolic execution is a technique where the program under verification is executed in a symbolic
manner, in contrast to concrete execution. Some values are represented as symbolic values, which
can take on different concrete values.

To select the appropriate verification approach, one can take several factors into account. The
impact of a bug, the likelihood that a bug occurs, and the available budget are common consider-
ations. Comparing two extremes, it is non-problematic to have an image on a website misaligned
by a pixel opposed to the crash of the Ariana 5 Flight 501, costing hundreds of millions of dollars
[19].

The main problem with automated approaches is that some constructs regularly found in pro-
gramming languages increase the number of possible inputs and the search space by an extreme
amount, known as the state explosion problem and the path explosion problem.1 Major contrib-
utors to the path explosion problem are: iteration structures and recursion, concurrency [26],
exceptions and reference aliasing. Ongoing research on automated approaches, a part of the

1The variant that is used depends on the context of the automated approach. The state explosion problem is
regularly used in the context of model checking and the path explosion problem is regularly used in the context
of symbolic execution. In this thesis, the path explosion problem definition will be used.

1

CHAPTER 1. INTRODUCTION 2

field of formal methods, aims to reduce the effects caused by the path explosion problem while
maintaining the capability to find as many bugs as possible.

We designed and implemented an automated verification approach based on symbolic execution,
including several optimizations. It aims to reduce the effects caused by the path explosion as a
result of: branching statements, concurrency and reference aliasing. The target language of our
approach is the OOX language, a language we designed for the purpose of this thesis. OOX is
an intermediate verification language that is used as a core language to model object-oriented
languages with support for concurrency, such as Java and C#.

The main contributions of this thesis are:

1. The OOX language: a new intermediate verification language, including its formal static-
and dynamic semantics;

2. A generalization of symbolic execution to concurrent programs;

3. A formalization of applying partial order reduction to this generalized approach of symbolic
execution; and

4. The implementation of our symbolic execution engine, including several promising opti-
mization techniques.

Thesis Outline. We begin this thesis with the preliminaries in Chapter 2. We present the
OOX language in Chapter 3 and continue with the formalization of symbolic execution and the
optimizations in Chapter 4. Its effectiveness will be evaluated in Chapter 5. We will then present
the related work in Chapter 6 and conclude and present future work in Chapter 7.

Chapter 2

Preliminary

Sets, Sequences and Mappings. We assume that the reader is familiar with the notion of
sets and sequences. We use P(A) to denote the power set of the set A. We use the binary set
operator A ·∪ B to denote an update of B inside A. That is, the union of A and B where B is
first subtracted

A ·∪B = (A−B) ∪B

We use the notion of a mapping for key-value pairs.

Definition 1 (Mapping). Let a mapping M be defined as

M [k 7→ v](x) =

{
M(x) if x 6= k

v if x = k

Let [] denote an empty mapping.

Formal Verification. A program path is an unique sequence of statements of a program.
A program can be represented as a set of program paths, which is of size at least one and
is potentially infinite. Any non-trivial program has statements which cause branching be-
haviour. One of such statements is the if-then-else statement. For example, the statement
if E then ... else ... has two program paths. One in which E holds true and one in which
not E holds true. Such conditions are expressed using assume E; statements, which instruct
the verification back-end to assume that the rest of the program paths can only be executed, or
are feasible, when the assumption is true. assert E; statements are used to verify whether the
assertion E is valid.

Pseudocode Notation. We use the pseudocode notation that is common in the literature.
We introduce one new operation: "inner access", which is denoted by a.b. We use this operation
in the context of state update. For example, when we update the call stack σ of the thread Ttid to
some σ′, we write Ttid.σ ← σ′. We let an update of a thread Ttid ∈ T include the update inside
T , meaning that when executing the update from above, the statement T ← (T −{Ttid})∪{Ttid}
is implicit. We use – to denote a comment.

3

CHAPTER 2. PRELIMINARY 4

Auxiliary Notation. We use ⊥ to denote that some operation is undefined. For example, in
the dynamic semantics of expression evaluation, when evaluating division by zero

EJbinop(E1, /, E2)K(σ) =

{
⊥ if EJE2K(σ, h) = 0

EJE1K(σ, h)/EJE2K(σ, h) otherwise

We sometimes use an annotated variant ⊥h. We let f◦n(x) denote n function compositions of f .
For example

f◦2(x) = (f ◦ f)(x)

When defining an explicit example, we use � to denote the end of an example.

Chapter 3

The OOX Language

OOX is a language designed to be an intermediate verification language that can represent object-
oriented programming languages like Java and C#. The language has support for classes and
objects as first-class citizens, and has a strong type system. Another main feature is the support
for concurrency via a fork-join model, including synchronization using a lock mechanism.

In its current state, the object-oriented language features are limited to declaring classes and
using objects. The three main features associated with object-oriented languages: inheritance,
encapsulation and polymorphism are outside the scope of this thesis. As such, the language can
be viewed, not as object-oriented, but as a language with structs. However, the current design
lays the foundation to extend the language with such features.

Example 1 (Concurrent Counting). Suppose a Counter class is defined, which supports incre-
menting its internal counter count safely in a concurrent setting and suppose a count method
is defined. This count method takes an initial value and increments the counter N times, each
in a separate thread. Finally, the aim is to verify that count is equal to initial + N.

1 class Counter
2 {
3 int current;
4 Counter(int initial) { this.current := initial; }
5 static void count(int initial)
6 requires(initial >= 0)
7 exceptional(false)
8 {
9 Counter counter := new Counter(initial);

10 int i := 0;
11 while (i < N) {
12 fork counter.increment ();
13 i := i + 1;
14 }
15 join;
16 int value := counter.current;
17 assert value == initial + N;
18 }
19 void increment ()
20 {
21 lock (this)
22 {
23 int value := this.count;
24 this.current := value + 1;
25 }
26 }
27 }

5

CHAPTER 3. THE OOX LANGUAGE 6

3.1 The Memory

The memory of an OOX program consists of two distinct parts: the stack and the heap. The
stack contains the arguments and the local variable declarations, each living in a stack frame
corresponding to the scope they live in. The stack frames are allocated and deallocated automat-
ically when a new scope is entered or exited. The heap contains the variables that are created
using the new operator. Object structures on the are accesses via references. A variable on the
stack can be reference, allowing it to access object structures in the heap. The state of a program
is defined as a pair containing both a stack and a heap.

3.1.1 The Stack

Definition 2 (The Stack). The stack, denoted by σ, is a sequence of stack frames where the
top-most stack frame is the stack frame of the current scope.

Four operations are defined on stacks: reading from a stack, writing to a stack, pushing a stack
frame on a stack and popping a stack frame from a stack. Let σ(x) denote reading from the
stack, defined as

σ(x) = σ1(x) where σ = [σ1, . . . , σn]

and let σ[x 7→ v] denote writing to the stack, defined as

σ[x 7→ v] = σ1[x 7→ v] where σ = [σ1, . . . , σn]

Let push(σ) and pop(σ) be the two operations that allow for stack frame management. That is,

push(σ) = [[], σ1, . . . , σn] where σ = [σ1, . . . , σn]

pop(σ) = (σ1, . . . , σn] where σ = [σ1, . . . , σn]

Definition 3 (A Stack Frame). Let a stack frame be defined as a mapping from identifiers to
values.

3.1.2 The Heap

Definition 4 (The Heap). The heap, denoted by h, is a mapping from references to object
structures. An object structure, denoted by O, is a mapping from fields to values.

The heap has support for three operations, allocation, reading and writing, where the latter two
are inherited from the mapping structure. Allocation is defined by alloc(h), which returns a
fresh unique reference. Reading from a heap, denoted by h(ref x), retrieves the object structure
of the reference ref x in h iff x is defined h and not null. When ref x is either not defined in h or
is null, ⊥h is returned. Writing to a heap, denoted by h[ref x 7→ O], returns an updated heap
in which the reference ref x maps to the object structure O.

3.2 The Semantics

The semantics of OOX is defined by both the static- and dynamic semantics.

CHAPTER 3. THE OOX LANGUAGE 7

3.2.1 The Static Semantics

The static semantics are defined using inference rules. They describe the well-formedness, using
the ok and ok in operators, and type judgements, as described in Section 3.4.

3.2.2 The Dynamic Semantics

The dynamic semantics are defined using a big-step operational semantics for the execution of
the program, and a small-step operational semantics for the execution of statements and methods
calls. The execution of expressions is described using a denotational semantics, see Section 3.8.9
for more details.

Program Transitions. Program transitions denote a reduction step in the execution of a
program.

(−−−→
prog

) : CompilationUnit × Locks × Threads ×Heap → Locks × Threads ×Heap

Statement Transitions. Statement transitions denote a reduction step in the execution of a
statement.

(−−→
stat

) : Statement × (Stack ×Heap)→ Statement × (Stack ×Heap)

Left-Hand Side Transitions. Left-hand side transitions denote a reduction step in the exe-
cution of the left-hand side of an assignment.

(−−→
lhs

) : Lhs ×Value × (Stack ×Heap)→ (Stack ×Heap)

Right-Hand Side Transitions. Right-hand side transitions denote a reduction step in the
execution of the right-hand side of an assignment.

(−−→
rhs

) : Rhs × (Stack ×Heap)→ Value ×Heap

Invocation Transitions. Invocation transitions denote a reduction step in the execution of a
method or constructor invocation.

(−−→
inv

) : Invocation × (Stack ×Heap)→ Statement × (Stack ×Heap)

CHAPTER 3. THE OOX LANGUAGE 8

3.3 The Abstract Syntax

Below is the complete list of the various syntactical categories that make the abstract syntax of
OOX.

U ∈ CompilationUnit n ∈ Nat

M ∈ Method z ∈ Int

K ∈ Constructor r ∈ Real

ϕ ∈ Specification b ∈ Bool

P ∈ FormalParameter s ∈ String

F ∈ Field c ∈ Char

S ∈ Statement ⊕ ∈ UnaryOperator

t ∈ Lhs ⊗ ∈ BinaryOperator

v ∈ Rhs ω ∈ Type

I ∈ Invocation τ ∈ NonVoidType

E ∈ Expression i ∈ Identifier

3.4 Types

OOX has a strong static type system where every expression, assignment target, assignment
value and parameter has a type. The type rules of OOX are enforced in the static semantics of
the language.

Definition 5 (The Type Environment). The type environment, denoted by Γ, contains the
types of the variables in the current context.

The following three operations are defined on type environments

Type Judgement. Let Γ ` E : ω denote type judgment, which expresses that E has type ω
when evaluated under the type environment Γ.

Type Existence. Let x : ω ∈ Γ denote type existence, which expresses that there exists a
variable x in Γ and is of type ω. Let x : ω 6∈ Γ denote that there does not exist a variable x of
type ω in Γ.

Type Insertion. Let Γ ` x : ω ok in X denote type insertion, which expresses that the
variable x has type ω in the type environment Γ when evaluated within X.

There are two kind of types defined: types and non-void types.

ω ∈ Type ::= type(τ) | void

τ ∈ NonVoidType ::= uint | int | float | bool | string | char | ref (C) | array(τ)

CHAPTER 3. THE OOX LANGUAGE 9

Each non-void type has an associated default value, defined by

default : NonVoidType → Expression

where

default(uint) = 0 default(string) = null

default(int) = 0 default(ref (C)) = null

default(float) = 0.0 default(array(τ)) = null

default(bool) = false

3.4.1 Primitive and Reference Types

There are two categories of types: primitive types and reference types. Primitive types are values
which do not point to some something allocated on the heap. Let uint, int, float, bool and
char be the primitive types. Reference types are references to a value allocated on the heap. Let
string, ref (C) and array(τ) be the reference types.

3.4.2 Subtyping

OOX limited support for subtyping. Subtyping in the form of inheritance cannot be defined by
the user. Some (sub)expressions have support for subtyping, more specifically operations with
numbers and references. Let τ ≺ τ ′ denote the subtype relation where τ ′ is a subtype of τ .

There are two subtypes defined: REF , of which every reference type is a subtype, and NUM
of which every numerical type is a subtype. These subtypes cannot be used directly by the
user. The subtype REF allows null to be polymorphic. For example, to allow that the expres-
sion null == x is type correct. The subtype NUM serves a similar purpose for expressions of
numerical types, e.g. 0.0 + 1 where 0.0 is of type float and 1 is type int.

3.5 Compilation Units

A compilation unit is the root node of the Abstract Syntax Tree (AST). It defines a complete
OOX program.

U ∈ CompilationUnit ::= program(C)

3.5.1 Threads and Scheduling

A program consists of one or more threads. Each thread executes a part of the program and
has its own stack. New threads can be created using fork statements, and can be synchronized
using both join statements and lock statements. All threads share the same heap, the heap of
the program. The threads are represented as a set, denoted by T . Let Ttid denote a thread with
thread id tid ∈ N, defined as a pair (S, σ), consisting of the next statement to be executed and
the stack of that thread.

Let Σ : P(Thread) → N denote a scheduling function that chooses the next thread id to be
executed from T . No fairness assumptions are made about Σ.

CHAPTER 3. THE OOX LANGUAGE 10

3.5.2 The Semantics

A program is valid in the static semantics when a static main function is defined. This function
is required to have return type void and have no formal parameters.

∃class(M,_,_) ∈ C : ∃method(b, ω, i,_,_,_) ∈M : b = true ∧ ω = void ∧ i = main
Γ ` program(C) ok

(SSEM - program)

Program Initialization and Termination. The execution of the program begins at the
main method. Let running’ be a special reference in the lock set to denote that the program
has started the execution.

∃C = class(M,_,_) ∈ C : ∃M = method(_,_, i,_,_,_) ∈M : i = main

Ttid = (call(invoke(C,M, [])), [])

〈program(C), ∅, ∅, []〉 −−−→
prog

〈{running’}, {Ttid}, h〉
(DSEM - program: initialization)

The execution of the program has finished when it has started and there are no more threads to
be executed.

running’ ∈ L
〈U,L, ∅, h〉 −−−→

prog
〈L, ∅, h〉

(DSEM - program: termination)

Thread Spawning and Termination. When the next statement to be executed is a fork
statement, a new thread is spawned and the forking thread continues its execution.

tid = Σ(T)

Ttid = (seq(fork(I), S2), σ) ∈ T
Tfresh = (call(I), σ)

T ′tid = (S2, σ)

〈U,L, T , h〉 −−−→
prog

〈L, T ·∪ {T ′tid , Tfresh}, h〉
(DSEM - program: fork statement)

A thread will terminate when the single remaining statement of that thread is a skip statement.
This will results in the thread being removed from the set of threads.

tid = Σ(T)

Ttid = (skip, σ) ∈ T
〈U,L, T , h〉 −−−→

prog
〈L, T − {Ttid}, h〉

(DSEM - program: thread termination)

Lock Acquisition and Releasing. When the next statement to be executed is a lock state-
ment, there are two options: the value of variable i is in the lock set L or it is not in the lock set.
When the value of variable i is not in the lock set, the reference is added to the lock set and the

CHAPTER 3. THE OOX LANGUAGE 11

execution continues. When the value of i is in the lock set, the thread performs no operation.

tid = Σ(T)

Ttid = (seq(lock(i), S2), σ) ∈ T
σ(i) = ref n 6∈ L
T ′tid = (S2, σ)

〈U,L, T , h〉 −−−→
prog

〈L ∪ {ref n}, T ·∪ {T ′tid}, h〉
(DSEM - program: lock statement (unlocked))

tid = Σ(T)

Ttid = (seq(lock(i), S2), σ) ∈ T
σ(i) = ref n ∈ L

〈U,L, T , h〉 −−−→
prog

〈L, T , h〉
(DSEM - program: lock statement (locked))

tid = Σ(T)

Ttid = (seq(lock(i), S2), σ) ∈ T
null = σ(i)

〈U,L, T , h〉 −−−→
prog

〈⊥h〉
(DSEM - program: lock statement (null dereference))

When the next statement to be executed is an unlock statement, the value of the variable i is
removed from the lock set L and the thread continues its execution.

tid = Σ(T)

Ttid = (seq(unlock(i), S2), σ) ∈ T
ref n = σ(i)

T ′tid = (S2, σ)

〈U,L, T , h〉 −−−→
prog

〈L − {ref n}, T ·∪ {T ′tid}, h〉
(DSEM - program: unlock statement)

Thread Joining. When the next statement to be executed is a join statement, there are two
options: the first option is that there exists a child thread of the current thread, meaning that
no operation will be performed. The second option is that there does not exist a child thread of
the current thread, meaning that the execution continues.

tid = Σ(T)

Ttid = (seq(join, S2), σ) ∈ T
∃Ttid′ ∈ T : parent(Ttid′) = tid

〈U,L, T , h〉 −−−→
prog

〈L, T , h〉
(DSEM - program: join statement (wait))

tid = Σ(T)

Ttid = (seq(join, S2), σ) ∈ T
∀Ttid′ ∈ T : parent(Ttid′) 6= tid

T ′tid = (S2, σ)

〈U,L, T , h〉 −−−→
prog

〈L, T ·∪ {T ′tid}, h〉
(DSEM - program: join statement (continue))

CHAPTER 3. THE OOX LANGUAGE 12

Exceptional Termination. When a thread results in an exceptional state, the program halts
and terminates in the same exceptional state.

tid = Σ(T)

Ttid = (S, σ) ∈ T
〈S, (σ, h)〉 −−→

stat
〈⊥h′〉

〈U,L, T , h〉 −−−→
prog

〈⊥h′〉
(DSEM - program: exceptional execution)

Statement Execution. When none of the above cases match, the thread executes the next
statement.

tid = Σ(T)

Ttid = (S, σ) ∈ T
〈S, (σ, h)〉 −−→

stat

1 〈S′, (σ′, h′)〉

T ′tid = (S′, σ′)

〈U,L, T , h〉 −−−→
prog

〈L, T ·∪ {T ′tid}, h′〉
(DSEM - program: normal execution)

3.6 Classes

A class is a structure containing members. There are three kind of members: methods, construc-
tors and fields.

C ∈ Class ::= class(M,K,F)

3.6.1 Methods and Constructors

A method is an executable part of a program, defined within a class. It consists of a sequence of
statements which can be invoked via a method call.

The type definition of a method consists of both the return type and zero or more formal
parameters. When the return type of a method is not void, a call to the method results in a
value. The type of the return value must match the return type of the method.

A method can be either static or non-static. The difference between the two is that a non-static
method is invoked on an object, which is passed on to the method body as an implicit formal
parameter. This implicit formal parameter is named this and refers to the object on which the
method is invoked.

Constructors are a special kind of static methods. They are used to create a new instance of
a class. Constructors, unlike regular static methods, have an implicit this formal parameter.
This formal parameter refers to a newly allocated object.

M ∈ Method ::= method(b, ω, i, ϕ, P , S)

K ∈ Constructor ::= constructor(C,ϕ, P , S)

CHAPTER 3. THE OOX LANGUAGE 13

Specifications. Methods and constructors can be annotated with a specification. Specifica-
tions consist of a pre-condition, a post-condition and an exceptional post-condition. Such spec-
ifications can be used by the verification back-end to verify whether the method or constructor
satisfies its specification.

ϕ ∈ Specification ::= specification(E1, E2, E3)

Γ ` E1 : bool Γ ` E2 : bool Γ ` E3 : bool
Γ ` specification(E1, E2, E3) ok

(SSEM - specification)

Formal Parameters. Formal parameters are a part of the type definition of methods and
constructors. They define which arguments must be passed to the method or constructor when
invoked. The formal parameters can be used as local variables inside the body of the method or
constructor.

P ∈ FormalParameter ::= param(τ, i)

3.6.2 Fields

Fields are members of a class which make up the data of classes and objects. Fields can be
either static or non-static. Static fields are global variables and non-static fields are variables of
a specific object.

F ∈ Field ::= field(b, τ, i)

CHAPTER 3. THE OOX LANGUAGE 14

3.7 Statements

Below is the complete list of statements in the abstract syntax of OOX.

S ∈ Statement ::= declare(τ, i)

| assign(t, v)

| call(I)

| skip

| assert(E)

| assume(E)

| while(E,S)

| ite(E,S1, S2)

| continue

| break

| return

| return(E)

| throw

| try(S1, S2)

| block(S)

| lock(i)

| unlock(i)

| join

| fork(I)

| seq(S1, S2)

| pop

3.7.1 Variable Declarations

Variable declarations introduce a new variable, which are declared in the stack. The default
value of the corresponding type will be assigned to the variable.

declare : NonVoidType × Identifier → Statement

Variable declaration are valid in the static semantics if there exist no variable with the same
name, i.e. variable shadowing is not allowed.

i : τ 6∈ Γ

Γ ` declare(τ, i) ok
(SSEM - variable declaration)

〈declare(τ, i), (σ, h)〉 −−→
stat

〈skip, (σ[i 7→ default(τ)], h)〉
(DSEM - variable declaration)

CHAPTER 3. THE OOX LANGUAGE 15

3.7.2 Assignment Statements

Assignment statements update the value of a variable, field or array element. An assignment
consists of two parts: the left-hand side and the right-hand side.

assign : Lhs × Rhs → Statement

Assignment statements are valid in the static semantics if the types of the left-hand side and the
right-hand side match.

Γ ` t : τ Γ ` v : τ

Γ ` assign(t, v) ok
(SSEM - assignment)

v = rhscall(I)

v′ = rhsexpr (var(retval ′))

S′ = seq(call(I), assign(t, v′))

〈assign(t, v), (σ, h)〉 −−→
stat

〈S′, (σ, h)〉
(DSEM - assignment: invocation rhs)

〈v, (σ, h)〉 −−→
rhs
〈v′, h′〉

〈t, v′, (σ, h′)〉 −−→
lhs
〈(σ′′, h′′)〉

〈assign(t, v), (σ, h)〉 −−→
stat

〈skip, (σ′′, h′′)〉
(DSEM - assignment: non-invocation rhs)

〈v, (σ, h)〉 −−→
rhs
〈⊥h′〉

〈assign(t, v), (σ, h)〉 −−→
stat

〈⊥h′〉
(DSEM - assignment: exception rhs)

〈v, (σ, h)〉 −−→
rhs
〈v′, h′〉

〈t, v′, (σ, h′)〉 −−→
lhs
〈⊥h′′〉

〈assign(t, v), (σ, h)〉 −−→
stat

〈⊥h′′〉
(DSEM - assignment: exception lhs)

Left-Hand Side

The left-hand side of an assignment determines the memory location in which the value will be
written. The left-hand side can be either: a variable, a field of an object or an element of an
array.

t ∈ Lhs ::= lhsvar (i)

| lhsfield(i, F)

| lhselem(i, E)

CHAPTER 3. THE OOX LANGUAGE 16

Variable Target. Variable targets allow for writing a value to a variable declared on the stack.
For example, in the assignment x := e;, the expression e is written to the variable target x.

lhsvar : Identifier → Lhs

A variable target is valid in the static semantics when the variable is declared.

i : τ ∈ Γ

Γ ` lhsvar (i) : τ
(SSEM - variable target)

〈lhsvar (i), v, (σ, h)〉 −−→
lhs
〈(σ[i 7→ v], h)〉

(DSEM - variable target)

Object Field Target. Object field targets allow for targeting a field of an object. For example,
in the assignment x.f := e;, the expression e is written to the object field target x.f of which
f is the field and x is the variable.

lhsfield : Identifier × Field → Lhs

An object field target is valid in the static semantics when the variable is declared and its type
is a class. This class must contain the field that is targeted.

i : τ ∈ Γ

τ = ref (class(_,_, F))

F = field(τ ′,_) ∈ F
Γ ` lhsfield(i, F) : τ ′

(SSEM - field target)

σ(i) = ref x h(ref x) = O F = field(_, i′)
〈lhsfield(i, F), v, (σ, h)〉 −−→

lhs
〈(σ, h[ref x 7→ O[i′ 7→ v]])〉

(DSEM - field target)

σ(i) = null
〈lhsfield(i, F), v, (σ, h)〉 −−→

lhs
〈⊥h〉

(DSEM - field target: null dereference)

Array Element Target. Array element targets allow for targeting an element of an array.
For example, in the assignment a[i] := e;, the expression e is written to the array element
target a[i] of which a is the variable and [i] is the specific element that is targeted.

lhselem : Identifier × Expression → Lhs

An array element target is valid in the static semantics when the index is of type int and the
variable is a declared variable of type array .

Γ ` E : int

i : array(τ) ∈ Γ

Γ ` lhselem(i, E) : τ
(SSEM - element target)

CHAPTER 3. THE OOX LANGUAGE 17

EJEK(σ, h) = e 6= ⊥
σ(i) = ref x

h(ref x) = O = [elem0 7→ v0, . . . , elemn 7→ vn)

0 ≤ e < n

〈lhselem(i, E), v, (σ, h)〉 −−→
lhs
〈(σ, h[ref x 7→ O[eleme 7→ v]])〉

(DSEM - element target)

EJEK(σ, h) = e 6= ⊥
σ(i) = ref x

h(ref x) = O = [elem0 7→ v0, . . . , elemn 7→ vn)

e < 0 ∨ e ≥ n
〈lhselem(i, E), v, (σ, h)〉 −−→

lhs
〈⊥h〉

(DSEM - element target: outside bounds)

EJEK(σ, h) = ⊥
〈lhselem(i, E), v, (σ, h)〉 −−→

lhs
〈⊥h〉

(DSEM - element target: evaluation exception)

EJEK(σ, h) = e 6= ⊥
σ(i) = null

〈lhselem(i, E), v, (σ, h)〉 −−→
lhs
〈⊥h〉

(DSEM - element target: null dereference)

Right-Hand Side

The right-hand side of an assignment determines the value that will be assigned to the left-
hand side. The right-hand side can be either: an expression, a field of an object, a method- or
constructor call, an array element or the instantiation of a new array.

v ∈ Rhs ::= rhsexpr (E)

| rhsfield(i, F)

| rhscall(I)

| rhselem(i, E)

| rhsarray(τ, E)

Expression Values. Expression values are used to assign the evaluated expression to the left-
hand side. For example, in the assignment x := y + 1;, the evaluated expression y + 1 will be
assigned to the left-hand side.

rhsexpr : Expression → Rhs

Γ ` E : τ

Γ ` rhsexpr (E) : τ
(SSEM - expression value)

CHAPTER 3. THE OOX LANGUAGE 18

EJEK(σ, h) = v 6= ⊥
〈rhsexpr (E), (σ, h)〉 −−→

lhs
〈v, h〉

(DSEM - expression value)

EJEK(σ, h) = ⊥
〈rhsexpr (E), (σ, h)〉 −−→

lhs
〈⊥h〉

(DSEM - expression value: evaluation exception)

Field Values. Field values are used to assign the value of a field of an object to the left-hand
side. For example, in the assignment x := y.f;, the evaluated field value y.f of field f of
variable y will be assigned to the left-hand side.

rhsfield : Identifier × Field → Rhs

A field value is valid in the static semantics when the variable is declared and its type is a class.
This class must contain the field that is targeted.

i : ref (class(_,_, F)) ∈ Γ

F = field(τ,_) ∈ F
Γ ` rhsfield(i, F) : τ

(SSEM - field value)

σ(i) = ref x h(ref x) = O O(i′) = v

〈rhsfield(i, field(_, i′)), (σ, h)〉 −−→
rhs
〈v, h〉

(DSEM - field value)

σ(i) = null
〈rhsfield(i, F), (σ, h)〉 −−→

rhs
〈⊥h〉

(DSEM - field value: null dereference)

Call Result Values. Call result values are used to assign the return value of the method or
constructor call to the left-hand side. For example, in the assignment x := Math.min(a, b);,
the return value of the method call Math.min(a, b) will be assigned to the left-hand side.

rhscall : Invocation → Rhs

A call result value is valid in the static semantics when the invocation I is valid in the static
semantics. See Subsection 3.7.3 for more information.

Γ ` I : type(τ)

Γ ` rhscall(I) : τ
(Static semantics of call result value)

Note that the dynamic semantics of call result values are handled in the dynamic semantics of
assignment itself. See Subsection 3.7.2 for more information.

CHAPTER 3. THE OOX LANGUAGE 19

Array Element Values. Array element values are used to assign an element of an array to
the left-hand side. For example, in the assignment x := a[i];, the evaluated array element
a[i] of element i of array a will be assigned to the left-hand side.

rhselem : Identifier × Expression → Rhs

An array element value is valid in the static semantics when the index expression is of type int
and the variable is an existing variable of array type.

Γ ` E : int

i : array(τ) ∈ Γ

Γ ` rhselem(i, E) : τ
(SSEM - array element value)

EJEK(σ, h) = e 6= ⊥
σ(i) = ref x

h(ref x) = O = [elem0 7→ v0, . . . , elemn 7→ vn)

0 ≤ e < n

〈rhselem(i, E), (σ, h)〉 −−→
rhs
〈ve, h〉

(DSEM - array element value)

EJEK(σ, h) = e 6= ⊥
σ(i) = ref x

h(ref x) = [elem0 7→ v0, . . . , elemn 7→ vn)

e < 0 ∨ e ≥ n
〈rhselem(i, E), (σ, h)〉 −−→

rhs
〈⊥h〉

(DSEM - array element value: outside bounds)

EJEK(σ, h) = ⊥
〈rhselem(i, E), (σ, h)〉 −−→

rhs
〈⊥h〉

(DSEM - array element value: evaluation exception)

EJEK(σ, h) = e 6= ⊥
σ(i) = null

〈rhselem(i, E), (σ, h)〉 −−→
rhs
〈⊥h〉

(DSEM - array element value: null dereference)

Array Instantiation. Array instantiation can be used to assign a newly allocated array to
the left-hand side. For example, in the assignment x := new int[3];, a new array of size 3
containing elements of type int will be assigned to the left-hand side. There is support for both
single- and multidimensional arrays.

rhsarray : NonVoidType × [Expression]→ Rhs

An array instantiation is valid in the static semantics when each size is of type int and is at
least one-dimensional.

|E| ≥ 1

Γ ` E1 : int . . . Γ ` En : int
Γ ` rhsarray(τ, E) : array◦n(τ)

(SSEM - array instantiation)

CHAPTER 3. THE OOX LANGUAGE 20

|E| > 1

alloc(h) = ref fresh

0 < s = EJE1K(σ, h) 6= ⊥
E′ = [E2, . . . , En]

τ = array(τ ′)

〈rhsarray(τ ′, E′), (σ, h)〉 −−→
rhs
〈ref 0, h0〉 . . . 〈rhsarray(τ ′, E′), (σ, h)〉 −−→

rhs
〈ref s−1, hs−1〉

h′ = ∪s−1i=0hi

O = [elem0 7→ ref 0, . . . , elems 7→ ref s)

〈rhsarray(τ, E), (σ, h)〉 −−→
rhs
〈ref fresh , h

′[ref fresh 7→ O]〉
(DSEM - array instantiation: multi-dimensional)

|E| = 1

alloc(h) = ref fresh

0 < s = EJE1K(σ, h) 6= ⊥
O = [elem0 7→ default(τ), . . . , elems−1 7→ default(τ)]

〈rhsarray(τ, E), (σ, h)〉 −−→
rhs
〈ref fresh , h[ref fresh 7→ O]〉
(DSEM - array instantiation: one dimension)

EJE1K(σ, h) = ⊥
〈rhsarray(τ, E), (σ, h)〉 −−→

rhs
〈⊥h〉

(DSEM - array instantiation: evaluation exception)

∃E ∈ E : EJEK(σ, h) ≤ 0

〈rhsarray(τ, E), (σ, h)〉 −−→
rhs
〈⊥h〉

(DSEM - array instantiation: non-positive size)

3.7.3 Method Call Statements

Method call statements provide a way to execute the statements of a static or non-static method
with the formal parameters set the arguments.

call : Invocation → Statement

Γ ` I : ω

Γ ` call(I) ok
(SSEM - method call)

〈I, (σ, h)〉 −−→
inv
〈S, (σ′, h′)〉

〈call(I), (σ, h)〉 −−→
stat

〈seq(S, pop), (σ′, h′)〉
(DSEM - method call)

〈I, (σ, h)〉 −−→
inv
〈⊥h′〉

〈call(I), (σ, h)〉 −−→
stat

〈⊥h′〉
(DSEM - method call: exception)

CHAPTER 3. THE OOX LANGUAGE 21

Invocations

An invocation is the process of executing the body of a constructor or method, and assigning
the arguments to the formal parameters.

I ∈ Invocation ::= invoke(i,M,E)

| invoke(C,M,E)

| invoke(K,E)

Non-Static Method Invocations. Non-static method invocations execute the body of a
non-static method.

invoke : Identifier ×Method × [Expression]→ Invocation

Non-static invocations are valid in the static semantics when the variable on which the method
is called is a class type that contains the method that is called, and when the types of the formal
parameters match that of the arguments.

M = method(false, ω,_,_, P , S)

|P | = |E|
i : ref (C) ∈ Γ

C = class(M,_,_)

M ∈M
τ = [τ | param(τ,_) ∈ P]

∀j ∈ {1, . . . , |E|} : Γ ` Ej : τ j

Γ ` this : ref (C) ok in S

∀param(τp, xp) ∈ P : Γ ` xp : τp ok in S

Γ ` invoke(i,M,E) : ω
(SSEM - non-static invocation)

σ(i) 6= null

M = method(_,_,_,_, P , S)

v1 6= ⊥ = EJE1K(σ, h) . . . vn 6= ⊥ = EJEnK(σ, h)

P = [param(_, x1), . . . , param(_, xn)]

σ′ = push(σ)[this 7→ i, x1 7→ v1, . . . , xn 7→ vn]

〈invoke(i,M,E), (σ, h)〉 −−→
inv
〈S, (σ′, h)〉

(DSEM - non-static invocation)

σ(i) = null
〈invoke(i,M,E), (σ, h)〉 −−→

inv
〈⊥h〉

(DSEM - non-static invocation: null dereference)

∃E ∈ E : EJEK(σ, h) = ⊥
〈invoke(i,M,E), (σ, h)〉 −−→

inv
〈⊥h〉

(DSEM - non-static invocation: evaluation exception)

CHAPTER 3. THE OOX LANGUAGE 22

Static Method Invocations. Static method invocations execute the body of a static method.

invoke : Class ×Method × [Expression]→ Invocation

Static invocations are valid in the static semantics when the class the method is called on exists
and contains the method that is called. The types of the formal parameters must match that of
the arguments.

M = method(true, ω,_,_, P , S)

|P | = |E|
C = class(M,_,_)

M ∈M
τ = [τ | param(τ,_) ∈ P]

∀j ∈ {1, . . . , |E|} : Γ ` Ej : τ j

∀param(τp, xp) ∈ P : Γ ` xp : τp ok in S

Γ ` invoke(C,M,E) : ω
(SSEM - static invocation)

M = method(_,_,_,_, P , S)

v1 6= ⊥ = EJE1K(σ, h) . . . vn 6= ⊥ = EJEnK(σ, h)

P = [param(_, x1), . . . , param(_, xn)]

σ′ = push(σ)[x1 7→ v1, . . . , xn 7→ vn]

〈invoke(C,M,E), (σ, h)〉 −−→
inv
〈S, (σ′, h)〉

(DSEM - static invocation)

∃E ∈ E : EJEK(σ, h) = ⊥
〈invoke(C,M,E), (σ, h)〉 −−→

inv
〈⊥h〉

(DSEM - static invocation: evaluation exception)

Constructor Invocations. Constructor invocations execute the body of a constructor after
which it returns a newly allocated object.

invoke : Constructor × [Expression]→ Invocation

Constructor invocations are valid in the static semantics when the class the constructor is called
on exists and contains the constructor that is called. The types of the formal parameters must
match that of the arguments.

K = constructor(C,_, P , S)

|P | = |E|
τ = [τ | param(τ,_) ∈ P]

∀j ∈ {1, . . . , |E|} : Γ ` Ej : τ j

Γ ` this : ref (C) ok in S

∀param(τp, xp) ∈ P : Γ ` xp : τp ok in S

Γ ` invoke(K,E) : type(ref (C))
(SSEM - constructor invocation)

CHAPTER 3. THE OOX LANGUAGE 23

alloc(h) = ref fresh

K = constructor(C,_, P , S)

C = class(_,_, F)

O = [x 7→ default(τ) | field(τ, x) ∈ F]

v1 6= ⊥ = EJE1K(σ, h) . . . vn 6= ⊥ = EJEnK(σ, h)

P = [param(_, x1), . . . , param(_, xn)]

σ′ = push(σ)[this 7→ ref fresh , x1 7→ v1, . . . , xn 7→ vn]

〈invoke(K,E), (σ, h)〉 −−→
inv
〈S, (σ′, h[ref fresh 7→ O])〉

(DSEM - constructor invocation)

∃E ∈ E : EJEK(σ, h) = ⊥
〈invoke(K,E), (σ, h)〉 −−→

inv
〈⊥h〉

(DSEM - constructor invocation: evaluation exception)

3.7.4 Skip Statements

A skip statement performs no operation.

skip : Statement

The dynamic semantics of skip statements is handled in the program execution. When a skip
statement is single last statement of a thread, the thread is terminated. See Section 3.5 for more
information.

3.7.5 Assert Statements

An assert statement instructs the verification back-end to verify whether the given expression
is valid or not. If this is the case, the execution continues as normal, otherwise, the execution
halts.

assert : Expression → Statement

An assert statement is valid in the static semantics if the assertion is of type bool.

Γ ` E : bool
Γ ` assert(E) ok

(SSEM - assert)

〈assert(E), (σ, h)〉 −−→
stat

〈skip, (σ, h)〉
(DSEM - assert)

3.7.6 Assume Statements

An assume statement instructs the verification back-end to assume that the given expression
holds in the rest of the execution.

assume : Expression → Statement

CHAPTER 3. THE OOX LANGUAGE 24

An assume statement is valid in the static semantics if the assumption is of type bool.

Γ ` E : bool
Γ ` assume(E) ok

(SSEM - assume)

〈assume(E), (σ, h)〉 −−→
stat

〈skip, (σ, h)〉
(DSEM - assume)

3.7.7 While Statements

A while statement executes the body of the loop as long as the guard evaluates to true.

while : Expression × Statement → Statement

A while statement is valid in the static semantics when the guard is of type bool.

Γ ` E : bool
Γ ` while(E,S) ok

(SSEM - while)

EJEK(σ, h) = true
〈while(E,S), (σ, h)〉 −−→

stat
〈seq(S,while(E,S)), (σ, h)〉

(DSEM - while: true case)

EJEK(σ, h) = false
〈while(E,S), (σ, h)〉 −−→

stat
〈skip, (σ, h)〉

(DSEM - while: false case)

EJEK(σ, h) = ⊥
〈while(E,S), (σ, h)〉 −−→

stat
〈⊥h〉

(DSEM - while: guard evaluation exception)

3.7.8 If-Then-Else Statements

An if-then-else statement allows for conditional execution of statements.

ite : Expression × Statement × Statement → Statement

A if-then-else statement is valid in the static semantics when the guard is of type bool.

Γ ` E : bool
Γ ` ite(E,S1, S2) ok

(SSEM - if-then-else)

EJEK(σ, h) = true
〈ite(E,S1, S2), (σ, h)〉 −−→

stat
〈S1, (σ, h)〉

(DSEM - if-then-else: true case)

EJEK(σ, h) = false
〈ite(E,S1, S2), (σ, h)〉 −−→

stat
〈S2, (σ, h)〉

(DSEM - if-then-else: false case)

EJEK(σ, h) = ⊥
〈ite(E,S1, S2), (σ, h)〉 −−→

stat
〈⊥h′〉

(DSEM - if-then-else: guard evaluation exception)

CHAPTER 3. THE OOX LANGUAGE 25

3.7.9 Continue and Break Statements

The continue and break statements affect the control flow when placed inside a while loop. Both
statements can only be placed within the body of a while loop.

Continue Statements. A continue statement transfers the control flow to the guard of the
loop in which it is embedded.

continue : Statement

Γ ` continue ok in S of while(E,S)
(SSEM - continue)

Break Statements. A break statement transfers the control flow to the statement that comes
after the loop in which it is embedded. For example, in the program while(e) break; x := 1;,
the break statement transfers the control flow to the statement x := 1;.

break : Statement

Γ ` break ok in S of while(E,S)
(SSEM - break)

3.7.10 Return Statements

Return statements allow for the returning of values inside methods and constructors. A return
statement transfers the control flow back to the statement that contained the method call. There
are two kind of return statements: one that only terminates the current method, and one that
terminates the current method and returns a value.

The first kind of return statement is defined as

return : Statement

The first kind of return statement is valid in the static semantics when the return type of the
method call the return statement is contained in is of type void.

ω = void
Γ ` return ok in S of method(ω, i, P , S)

(SSEM - return)

〈return, (σ, h)〉 −−→
stat

〈skip, (σ, h)〉
(DSEM - return)

The second kind of return statement is defined as

return : Expression → Statement

CHAPTER 3. THE OOX LANGUAGE 26

The second kind of return statement is valid in the static semantics when the return type of the
method call the return statement is contained in matches that of the supplied expression.

ω = type(τ) Γ ` E : τ

Γ ` return(E) ok in S of method(ω, i, P , S)
(SSEM - return)

EJEK(σ, h) = v 6= ⊥
〈return(E), (σ, h)〉 −−→

stat
〈skip, (σ[retval′ 7→ v], h)〉

(DSEM - return)

EJEK(σ, h) = ⊥
〈return(E), (σ, h)〉 −−→

stat
〈⊥h〉

(DSEM - return: evaluation exception)

3.7.11 Throw Statements

Throw statements are used to transfer the control flow to the exceptional state. When this
exceptional state is encapsulated within a try-catch statement, the control flow is transferred to
the corresponding catch block.

throw : Statement

〈throw, (σ, h)〉 −−→
stat

〈⊥h〉
(DSEM - throw)

3.7.12 Try Statements

Try statements allow for handling exceptional states.

try : Statement × Statement → Statement

〈S1, (σ, h)〉 −−→
stat

〈S′1, (σ′, h′)〉 S′1 6= skip

〈try(S1, S2), (σ, h)〉 −−→
stat

〈try(S′1, S2), (σ′, h′)〉
(DSEM - try: normal execution)

〈S1, (σ, h)〉 −−→
stat

〈skip, (σ′, h′)〉

〈try(S1, S2), (σ, h)〉 −−→
stat

〈skip, (σ′, h′)〉
(DSEM - try: finished execution)

〈S1, (σ, h)〉 −−→
stat

〈⊥h′〉

〈try(S1, S2), (σ, h)〉 −−→
stat

〈S2, (σ, h′)〉
(DSEM - try: exceptional execution)

CHAPTER 3. THE OOX LANGUAGE 27

3.7.13 Block Statements

Block statements allow for the grouping of statements and introducing new scopes. Variables
declared in this new scope are no longer available when the control flow is transferred to the
statement that follows the block statement.

block : Statement → Statement

A block statement is always valid in the static semantics.

Γ ` block(S) ok
(SSEM - block)

σ′ = push(σ)

〈block(S), (σ, h)〉 −−→
stat

〈seq(S, pop), (σ′, h)〉
(DSEM - block)

3.7.14 Lock- and Unlock Statements

Lock and unlock statements allow for locking and unlocking a reference to the heap. When
another thread tries to lock this reference, this thread waits until the reference is freed. This
type of lock is regularly named a monitor.

lock : Identifier → Statement

unlock : Identifier → Statement

The lock and unlock statements are valid in the static semantics when the variable they aim to
lock is a reference type.

i : τ ∈ Γ τ ≺ REF

Γ ` lock(i) ok
(SSEM - lock)

i : τ ∈ Γ τ ≺ REF

Γ ` unlock(i) ok
(SSEM - unlock)

The dynamic semantics of lock- and unlock statements is handled in the program execution. See
Section 3.5 for more information.

3.7.15 Join Statements

A join statement lets the current thread wait if and until all child threads have terminated. The
dynamic semantics of the join statement is handled in the program execution. See Section 3.5
for more information.

A join statement is always valid in the static semantics.

Γ ` join ok
(SSEM - join)

CHAPTER 3. THE OOX LANGUAGE 28

3.7.16 Fork Statements

A fork statement spawns a new thread starting at the given method invocation.

fork : Invocation → Statement

Γ ` I : ω

Γ ` fork(I) ok
(SSEM - fork)

The dynamic semantics of fork statements is handled in the program execution. See Section 3.5
for more information.

3.7.17 Sequence Statements

Sequence statements are implicit statements which are used to define two statements one executed
after the other.

seq : Statement × Statement → Statement

S1 = declare(τ, i) Γ ` i : τ ok in S2

Γ ` seq(S1, S2) ok
(SSEM - sequence: declaration)

S1 6= declare(τ, i)

Γ ` seq(S1, S2) ok
(SSEM - sequence: non-declaration)

〈S1, (σ, h)〉 −−→
stat

〈S′1, (σ′, h′)〉 S′1 6= skip

〈seq(S1, S2), (σ, h)〉 −−→
stat

〈seq(S′1, S2), (σ′, h′)〉
(DSEM - sequence: statement)

〈S1, (σ, h)〉 −−→
stat

〈skip, (σ′, h′)〉

〈seq(S1, S2), (σ, h)〉 −−→
stat

〈S2, (σ′, h′)〉
(DSEM - sequence: skip statement)

〈S1, (σ, h)〉 −−→
stat

〈⊥h〉

〈seq(S1, S2), (σ, h)〉 −−→
stat

〈⊥h〉
(DSEM - sequence: exception)

3.7.18 Pop Statements

Pop statements are implicit statements that pop the top-most stack frame from the stack.

pop : Statement

A pop statement is always valid in the static semantics.

Γ ` pop ok
(SSEM - pop)

σ′ = pop(σ)[retval′ 7→ σ(retval′)]

〈pop, (σ, h)〉 −−→
stat

〈skip, (σ′, h)〉
(DSEM - pop)

CHAPTER 3. THE OOX LANGUAGE 29

3.8 Expressions

An expression is a sequence of operators and operands which result in a value when evaluated.
The complete list of expressions in the abstract syntax of OOX is defined as

E ∈ Expression ::= lit(n) | lit(z) | lit(r) | lit(b) | lit(s) | lit(c)

| ref n

| null

| var(i)

| unop(E,⊕)

| binop(E1,⊗, E2)

| sizeof (i)

| ite(E1, E2, E3)

| forall(i1, i2, i3, E)

| exists(i1, i2, i3, E)

n ∈ Nat ::= N0

z ∈ Int ::= Z
r ∈ Real ::= R
b ∈ Bool ::= true | false

s ∈ String

c ∈ Char

⊕ ∈ UnaryOperator ::= ! | -

⊗ ∈ BinaryOperator ::= * | / | % | + | -

| < | <= | > | >= | ==

| != | && | || | ==>

3.8.1 Literals

OOX defines seven different literals. Below is a complete list of the literals in OOX.

Unsigned Integer Literals. The unsigned integer literals are the constant values that can
represent the numbers in N0 up to but not including 232.

lit : Nat → Expression

Γ ` lit(n) : uint
(SSEM - unsigned integer literals)

Signed Integer Literals. The signed integer literals are the constant values that can represent
the numbers in Z from −231 up to but not including 231.

lit : Int → Expression

CHAPTER 3. THE OOX LANGUAGE 30

Γ ` lit(z) : int
(SSEM - signed integer literals)

Floating Point Literals. The floating point literals are the constant values that can represent
a subset of the numbers in R.

lit : Real → Expression

Γ ` lit(r) : float
(SSEM - floating point literals)

Boolean Literals. The boolean literals are the constant values that represent truth values.
That is, they can be either true or false.

lit : Bool → Expression

Γ ` lit(b) : bool
(SSEM - boolean literals)

String Literals. The string literals are the constant values that can represent human readable
text.

lit : String → Expression

Γ ` lit(s) : string
(SSEM - string literals)

Character Literals. The character literals are the constant values that can represent a single
human readable character.

lit : Char → Expression

Γ ` lit(c) : char
(SSEM - character literals)

3.8.2 References

A reference, also named pointers in some languages, represents an abstract memory address on
the heap.

ref : Nat → Expression

τ ≺ REF

Γ ` ref (n) : τ
(SSEM - references)

CHAPTER 3. THE OOX LANGUAGE 31

The Null Literal. The null literal is a special kind of reference representing a reference that
points to nothing on the heap. In other words, an unallocated value.

null : Expression

τ ≺ REF

Γ ` null : τ
(SSEM - the null literal)

3.8.3 Variable Access

Variable access allows for the reading of a variable on the stack. For example, the variable x is
read in the expression x + 1.

var : Identifier → Expression

i : τ ∈ Γ

Γ ` var(i) : τ
(SSEM - variable access)

3.8.4 Unary Operators

OOX defines two unary operators: numerical negation, written using the - operator, and boolean
negation, written using the ! operator.

unop : Expression ×UnaryOperator → Expression

Γ ` E : τ τ ≺ NUM

Γ ` unop(E, -) : τ
(SSEM - numeric negation)

Γ ` E : bool
Γ ` unop(E, !) : bool

(SSEM - boolean negation)

3.8.5 Binary Operators

OOX defines four categories of binary operators: arithmetic-, comparison-, equality- and boolean
operators.

binop : Expression × BinaryOperator × Expression → Expression

Arithmetic Operators. The arithmetic operators take two numerical operands and when
evaluated result in a numerical value. The operators that are defined are: multiplication, division,
remainder, addition and subtraction, written using *, /, %, + and - respectively.

� ∈ {*, /, %, +, -}
Γ ` E1 : τ1 τ1 ≺ NUM

Γ ` E2 : τ2 τ2 ≺ NUM

Γ ` binop(E1,�, E2) : τ1
(SSEM - arithmetic operators)

CHAPTER 3. THE OOX LANGUAGE 32

Comparison Operators. The comparison operators take two numerical operands and when
evaluated result in a boolean value. The comparison operators that are defined are: less than, less
than or equal, greater than and greater than or equal, written using <, <=, > and >= respectively.

� ∈ {<, <=, >, >=}
Γ ` E1 : τ1 τ1 ≺ NUM

Γ ` E2 : τ2 τ2 ≺ NUM

Γ ` binop(E1,�, E2) : bool
(SSEM - comparison operators)

Equality Operators. The equality operators take two operands that are of equal type and
when evaluated result in a boolean value. The equality operators that are defined are: equality,
written using ==, and inequality, written using !=.

Γ ` E1 : τ Γ ` E2 : τ � ∈ {==, !=}
Γ ` binop(E1,�, E2) : bool

(SSEM - equality operators)

Boolean Operators. The boolean take two boolean operands and when evaluated result in
a boolean value. The boolean operators that are defined are: conjunction, disjunction and
implication, written using &&, || and ==> respectively.

Γ ` E1 : bool Γ ` E2 : bool � ∈ {&&, ||, ==>}
Γ ` binop(E1,�, E2) : bool

(SSEM - boolean operators)

3.8.6 Sizeof Operator

OOX defines a sizeof operator that takes a variable of array type as an operand and results in
an integer value. The sizeof operator is written using #.

sizeof : Identifier → Expression

i : array(τ) ∈ Γ

Γ ` sizeof (i) : int
(SSEM - sizeof operator)

3.8.7 If-Then-Else Operator

OOX defines an if-then-else operator which results either the evaluated second or third expression,
depending on the value of the first expression.

ite : Expression × Expression × Expression → Expression

Γ ` E1 : bool Γ ` E2 : τ Γ ` E3 : τ

Γ ` ite(E1, E2, E3) : τ
(SSEM - ite operator)

CHAPTER 3. THE OOX LANGUAGE 33

3.8.8 Quantifiers

OOX defines the two quantifiers from first-order logic: forall and exists. These quantifiers can
be used to quantify over the elements and indices of an array.

forall : Identifier × Identifier × Identifier × Expression → Expression

i3 : array(τ) ∈ Γ

Γ ` i1 : τ, i2 : int ok in E

Γ ` E : bool
Γ ` forall(i1, i2, i3, E) : bool

(SSEM - forall quantifiers)

exists : Identifier × Identifier × Identifier × Expression → Expression

i3 : array(τ) ∈ Γ

Γ ` i1 : τ, i2 : int ok in E

Γ ` E : bool
Γ ` exists(i1, i2, i3, E) : bool

(SSEM - exists quantifiers)

3.8.9 The Dynamic Semantics

The dynamic semantics of expressions are defined using a denotational semantics. Let E be the
valuation function

EJEK : Expression × (Stack ×Heap)→ Value

where

EJlit(x)K(σ, h) = x

EJvar(i)K(σ, h) = σ(i)

EJunop(E, -)K(σ, h) = −EJEK(σ, h)

EJunop(E, !)K(σ, h) = ¬EJEK(σ, h)

EJbinop(E1, *, E2)K(σ, h) = EJE1K(σ, h) · EJE2K(σ, h)

EJbinop(E1, /, E2)K(σ) =

{
⊥ if EJE2K(σ, h) = 0

EJE1K(σ, h)/EJE2K(σ, h) otherwise

EJbinop(E1, %, E2)K(σ, h) =

{
⊥ if EJE2K(σ, h) = 0

EJE1K(σ, h)(mod EJE2K(σ), h) otherwise

EJbinop(E1, +, E2)K(σ, h) = EJE1K(σ, h) + EJE2K(σ, h)

EJbinop(E1, -, E2)K(σ, h) = EJE1K(σ, h)− EJE2K(σ, h)

CHAPTER 3. THE OOX LANGUAGE 34

EJbinop(E1, <, E2)K(σ, h) = EJE1K(σ, h) < EJE2K(σ, h)

EJbinop(E1, <=, E2)K(σ, h) = EJE1K(σ, h) ≤ EJE2K(σ, h)

EJbinop(E1, >, E2)K(σ, h) = EJE1K(σ, h) > EJE2K(σ, h)

EJbinop(E1, >=, E2)K(σ, h) = EJE1K(σ, h) ≥ EJE2K(σ, h)

EJbinop(E1, ==, E2)K(σ, h) = EJE1K(σ, h) = EJE2K(σ, h)

EJbinop(E1, !=, E2)K(σ, h) = EJE1K(σ, h) 6= EJE2K(σ, h)

EJbinop(E1, &&, E2)K(σ, h) = EJE1K(σ, h) ∧ EJE2K(σ, h)

EJbinop(E1, ||, E2)K(σ, h) = EJE1K(σ, h) ∨ EJE2K(σ, h)

EJbinop(E1, ==>, E2)K(σ) = EJE1K(σ, h)⇒ EJE2K(σ, h)

EJsizeof (i)K(σ, h) =

{
⊥ if σ(i) = null
size(h(σ(i))) otherwise

EJite(E1, E2, E3)K(σ, h) =

{
EJE2K(σ, h) if EJE1K(σ, h) = true
EJE3K(σ, h) if EJE1K(σ, h) = false

EJforall(i1, i2, i3, E)K(σ, h) =

{
⊥ if σ(i3) = null
∧n−1j=0 EJEK(σ[i1 7→ vj , i2 7→ j], h) otherwise

EJexists(i1, i2, i3, E)K(σ, h) =

{
⊥ if σ(i3) = null
∨n−1j=0 EJEK(σ[i1 7→ vj , i2 7→ j], h) otherwise

where h(σ(i3)) = O = [elem0 7→ v0, . . . , elemn 7→ vn)

Chapter 4

Symbolic Execution of OOX
Programs

Symbolic Execution (SE) was introduced by James C. King [25] as a means of executing a
program where some variables are left symbolically, in contrast to concrete values. Symbolic
execution has multiple use cases, but in the context of this thesis, symbolic execution is used
to verify program correctness. Symbol execution is driven by the Symbolic Execution Engine
(SEE), which operates on the Symbolic State (SS).

The Symbolic Execution Engine consists of three main phases, as presented in Figure 4.1. These
three phases are: (1) parsing; (2) static analysis; and (3) symbolic execution. In the first two
phases, the OOX program is preprocessed to be handled safely during the symbolic execution.
That is, the exceptions are inserted as explicit if-then-else statements, the guards if-then-else
statements and loops are inserted as explicit assume statements, and the program is verified
to be free of syntactical- and (static) semantical errors. The SEE terminates with either a
syntactical- or (static) semantical error, or with a verification result, which can be either that
the program is considered invalid, valid, will result in a deadlock or that it is unknown.

Figure 4.1: The global architecture of the Symbolic Execution Engine.

Parsing

Lexing

Parsing

Syntactical
Transformations

OOX file

Static Analysis

Type Checking

Control Flow Analysis

Syntactical Error
Semantical

Error

AST

Symbolic Execution

Symbolic Execution

CachingPOR Evaluation

CFG

Invalid, Valid,
Deadlock or Unknown

35

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 36

Example 2 (A quick overview of the SEE.). Suppose we have the method as presented in Listing
4.1 and suppose that this method is contained in the class Math. This function takes two int
arguments, x and y, and returns the maximum of the two. Its specification describes that the
return value must be greater than both x and y, and that te method will not terminate with an
exception.

The first step of the SEE is to parse the source code into the AST and apply the syntactical
transformations that yield the method as presented in Listing 4.2. See Section 4.1 for more
details on the syntactical transformations that are applied.

Listing 4.1: The original max method.

1 static int max(int x, int y)
2 ensures(retval >= x && retval >= y)
3 exceptional(false)
4 {
5 if (x >= y) {
6 return x;
7 } else {
8 return y;
9 }

10 }

Listing 4.2: The max method with the syntac-
tical transformations applied.

1 static int max(int x, int y)
2 ensures(retval >= x && retval >= y)
3 exceptional(false)
4 {
5 if (x >= y) {
6 assume x >= y;
7 return x;
8 } else {
9 assume !(x >= y);

10 return y;
11 }
12 }

The next step is to verify the static semantics of the transformed program and if this succeeds,
construct CFG from the AST. This yields the CFG as presented in Figure 4.2.

Figure 4.2: The CFG of the max method.

l1 | Entry of ’Math.max’

l2 | if(x >= y)

l3 | assume x >= y;

l4 | return x;

l5 | assume !(x >= y);

l6 | return y;

l7 | Exit of ’Math.max’

The third step is to execute the SEE algorithm, as presented in Section 4.3. The SEE algorithm,
among other functionality, explores the search space, updates the Symbolic State and queries Z3
when necessary.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 37

The search space consists of two program paths

p1 = l1; l2; l3; l4; l7; p2 = l1; l2; l5; l6; l7;

as presented in Figure 4.3. We begin with an initial state state0 in which only the main thread,
T1 , exists. The local variable of the call stack of T1 consists of two variables: x and y, which
map to the symbolic variables α and β respectively. Let us exemplify the case in which the
SEE verifies program path p1. It starts with the actions corresponding to vertex l1 and l2,
which are treated as skip statements in this particular example. It becomes interesting at the
action corresponding to vertex l3. This statement modifies the path constraints π from ∅ to the
evaluated expression α ≥ β. The action at vertex l4 assigns α to the variable retval . Finally
the action at vertex l7 will trigger the verification of the ensures specification. The ensures
specification will combine the path constraints with the assertion to the formula

α ≥ β ∧ ¬(α ≥ α ∧ α ≥ β)

The SEE queries Z3 to check whether this formula is satisfiable. When the formula is satisfiable,
there exists a counter example and the specification does not hold. The same process is executed
for program path p2. Both these program paths yield an unsatisfiable specification which implies
that the program satisfies its specification.

Figure 4.3: The search space of the max method.

l1 | Entry of ’Math.max’

l2 | if(x >= y)

l3 | assume x >= y;

l4 | return x;

l7 | Exit of ’Math.max’

l5 | assume !(x >= y);

l6 | return y;

l7 | Exit of ’Math.max’

4.1 Parsing

During the first phase of the Symbolic Execution Engine, the input file is lexed and parsed
according to the concrete syntax, as defined in Appendix A. This will result into an AST, on
which two syntactical transformations are applied: (1) every program point that can throw
an exception, which is not an explicit throw statement, will be guarded with an if-then-else

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 38

statement; and (2) the guards of each if-then-else and while statement will be inserted explicitly
as assume statements at their appropriate positions.

The first kind of transformation is that every program point that can throw an exception and is
not an throw statement is embedded within an if-then-else statement. The guard of this if-then-
else statement represents the condition for the exception to be thrown, the true branch contains
a throw statement and the false branch contains the original statement.

Example 3. Suppose we have the statement x := a[e];. This statement throws an exception if
either a == null or if the index is outside the bounds of the array. The statement is transformed
into

if (a == null || e < 0 || e >= #a) throw; else x := a[e];

The condition for some exception to occur in statement S is defined by the function exceptions.
The statement S is transformed using transform : Statement → Statement . The transform func-
tion is applied to every statement in which an exception might occur. That is, every statement
S in the program is transformed using:

transform(S) =

{
S if exceptional(S) = ∅
ite(E1 || . . . || En, throw, S) if exceptional(S) = {E1, . . . , En}

Where the exceptions function is defined as

exceptions(assign(t, v)) = exceptions(t) ∪ exceptions(v)

exceptions(call(I)) = exceptions(I)

exceptions(assert(E)) = exceptions(E)

exceptions(assume(E)) = exceptions(E)

exceptions(while(E,S)) = exceptions(E)

exceptions(ite(E,S1, S2)) = exceptions(E)

exceptions(return(E)) = exceptions(E)

exceptions(lock(i)) = {i== null}
exceptions(unlock(i)) = {i== null}

exceptions(fork(I)) = exceptions(I)

exceptions(S) = ∅

exceptions(lhsvar (i)) = ∅
exceptions(lhsfield(i, F)) = {i== null}
exceptions(lhselem(i, E)) = {i== null, !(0<= E <#i)} ∪ exceptions(E)

exceptions(rhsexpr (E)) = exceptions(E)

exceptions(rhsfield(i, F)) = {i== null}
exceptions(rhscall(I)) = exceptions(I)

exceptions(rhselem(i, E)) = {i== null, !(0<= E <#i)} ∪ exceptions(E)

exceptions(rhsarray(τ, E)) =
⋃
E∈E
{!(0<= E)} ∪ exceptions(E)

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 39

exceptions(invoke(i,M,E)) =
⋃
E∈E

exceptions(E) ∪ {i== null}

exceptions(invoke(C,M,E)) =
⋃
E∈E

exceptions(E)

exceptions(invoke(K,E)) =
⋃
E∈E

exceptions(E)

exceptions(E1 / E2) = {E2 == 0} ∪ exceptions(E1) ∪ exceptions(Ee)

exceptions(E1 % E2) = {E2 == 0} ∪ exceptions(E1) ∪ exceptions(Ee)

The second kind of transformation is that for each if-then-else- and while statement in the
program, the guard is inserted explicitly as an assume statement.

Example 4. Suppose we have the statement while(e) { x := x + 1; }. This statement will
be transformed into the statements

while (e) { assume e; x := x + 1; } assume !e;

That is, every branching statement S in the program is transformed using

transform(ite(E,S1, S2)) = ite(E, seq(assume(E), S1), seq(assume(!E), S2))

transform(while(E,S)) = seq(while(E, seq(assume(E), S)), assume(!E))

4.2 Static Analysis

The static analysis consists of two parts: the verification of the static semantics and the control
flow analysis. The verification of the static semantics includes type checking, as defined through-
out Chapter 3. This type information is available during the symbolic execution and is, among
other things, used to limit the effects of the path explosion problem arising from aliasing.

4.2.1 Control Flow Analysis

Control Flow Analysis (CFA) is a static analysis to determine the control flow of a program.
Different kinds of control flow can be defined. For example: the intraprocedural control flow
and the interprocedural control flow. The difference between the two being that the second
captures the control flow of method calls to their respective methods. The CFA opted for is an
intraprocedural procedural control flow. The invocations and their callbacks are managed in the
SEE. The control flow is described using the Control Flow Graph (CFG).

Definition 6 (Control Flow Graph). The CFG is a directed graph G = (V,E) where each node
v ∈ V represents a program point and each edge (v, w) ∈ E represents the possible control flow
between those program points. Let action : V → Action be a total function to retrieve the
corresponding action of a vertex.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 40

Example 5 (The CFG representation of methods and method calls.). Suppose we have the
program in Listing 4.3, which increments the value 1 via a method call. The CFG of the whole
program is shown in Figure 4.4. The control flow between the different methods are disconnected.
The Symbolic Execution Engine is responsible to find which method is called and it transfers
the control flow to the correct method.

Listing 4.3: A main method with an inc function.

1 class Main {
2 static int main() {
3 int x;
4 x := Main.inc (1);
5 assert x == 2;
6 }
7
8 static int inc(int x) {
9 return x + 1;

10 }
11 }

Figure 4.4: The CFG of the program in Listing 4.3.

l1 | Entry of ’Main.main’

l2 | int x;

l3 | x := Main.inc(1);

l4 | Call of ’Main.inc’;

l5 | assert x == 2;

l6 | Exit of ’Main.main’

l7 | Entry of ’Main.inc’

l8 | return x + 1;

l9 | Exit of ’Main.inc’

Each program point represents an executable position of the program, which is named an action.

Definition 7 (Action). An action a = action(v) of a vertex v ∈ V is either: (1) a statement;
(2) the entry point of a method or constructor; (3) the exit point of a method or constructor;
(4) the call of a method or constructor; (5) the fork of a new thread; (6) the entry point of a try
block; (7) the exit point of a try block; (8) the entry point of a catch block; (9) the exit point of
a catch block; or (10) the exceptional state.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 41

The CFG is constructed using the approach taken by Nielson et al. [30], adapted for the OOX
language and extended with support for the control flow breaking statements break, continue,
return and throw.

Let us first give an introduction to the approach taken by Nielson et al. Suppose that each
node in the AST has an unique integer label l and suppose that each try-catch node has four
unique integer (l1, l2, l3, l4).1 Let these labels be ordered in increasing order from top to bottom
and left to right, as appearing in the original source code. Then, three functions are defined:
init : Statement → V , final : Statement → P(V) and flow : Statement → P(E), where init
defines the initial label of a statement, final defines the final labels of a statement and flow
defines the control flow of a statement.

Let the init function be defined as the entry point of each statement, that is

init(declare(τ, i)l) = l init(returnl) = l

init(assign(t, v)l) = l init(return(E)l) = l

init(call(I)l) = l init(throwl) = l

init(skipl) = l init(try(S1, S2)(l1,l2,l3,l4)) = l1

init(assert(E)l) = l init(block(S)l) = init(S)

init(assume(E)l) = l init(lock(i)l) = l

init(while(E,S)l) = l init(unlock(i)l) = l

init(ite(E,S1, S2)l) = l init(joinl) = l

init(continuel) = l init(fork(I)l) = l

init(breakl) = l init(seq(S1, S2)l) = init(S1)

The approach is extended with the fallthrough : Statement → P(Statement) function which
defines the control flow breaking statements contained in the statement. The function generates
a singleton for the control flow breaking statements

fallthrough(breakl) = {breakl}
fallthrough(continuel) = {continuel}

fallthrough(returnl) = {returnl}
fallthrough(return(E)l) = {return(E)l}

which are removed in their respective targets

fallthrough(while(E,S)l) = {S′ | S′ 6= continuel
′
∈ fallthrough(S)}

fallthrough(seq(while(E ,S)l ,S2)) = {S′ | S′ 6= breakl
′
∈ fallthrough(S)} ∪ fallthrough(S2)

Let the final function be defined as the exit point of each statement. It is defined as the singleton
1try-catch statements are a special case. They do not appear explicitly in the CFG, but four nodes are

inserted: the entry and exit of both the try and catch block.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 42

label for the statements that do not contain nested statements.

final(declare(τ, i)l) = {l} final(assert(E)l) = {l}

final(assign(t, rhscall(I
l′)l) = {l′} final(assume(E)l) = {l}

final(assign(t, v)l) = {l} final(lock(i)l) = {l}

final(call(I l
′
)l) = {l′} final(unlock(i)l) = {l}

final(fork(I l
′
)l) = {l′} final(joinl) = {l}

final(skipl) = {l}

For the control flow breaking statements, the final function is defined as the empty set. Their
induced control flow is captured in their respective targets.

final(continuel) = ∅ final(return(E)l) = ∅
final(breakl) = ∅ final(throwl) = ∅

final(returnl) = ∅

The final function for statements that contain statements themselves is defined as

final(while(E,S)l) = {l} ∪ {l′ | breakl
′
∈ fallthrough(S)}

final(ite(E,S1, S2)l) = final(S1) ∪ final(S2)

final(try(S1, S2)(l1,l2,l3,l4)) = {l2, l4}
final(block(S)l) = final(S)

Finally, for the seq statements, the final function is defined as

final(seq(continue, S2)l) = ∅ final(seq(return(E), S2)l)) = ∅

final(seq(break, S2)l) = ∅ final(seq(throwl
′
, S2)l) = ∅

final(seq(return, S2)l) = ∅ final(seq(S1, S2)l) = final(S2)

Let the flow function be defined as the control flow induced by the statements. For statements
that do not contain nested statements it is defined as

flow(declare(τ, i)l) = ∅ flow(breakl) = ∅

flow(assign(t, rhscall(I
l′)l) = {(l, l′)} flow(returnl) = ∅

flow(assign(t, v)l) = ∅ flow(return(E)l) = ∅

flow(call(I l
′
)l) = {(l, l′)} flow(throwl) = {(l, l⊥)}

flow(skipl) = ∅ flow(lock(i)l) = ∅
flow(assert(E)l) = ∅ flow(unlock(i)l) = ∅

flow(assume(E)l) = ∅ flow(joinl) = ∅

flow(continuel) = ∅ flow(fork(I l
′
)l) = {(l, l′)}

where l⊥ is a special label that denotes the label of the exceptional state.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 43

For the statements that contain nested statements, the flow function is defined as

flow(while(E,S)l) = flow(S) ∪ {(l, init(S))}
∪ {(lf , l) | lf ∈ final(S)}

∪ {(l′, l) | continuel
′
∈ fallthrough(S)}

flow(ite(E,S1, S2)l) = flow(S1) ∪ flow(S2) ∪ {(l, init(S1)), (l, init(S2))}
flow(try(S1, S2)(l1,l2,l3,l4)) = flow(S1) ∪ flow(S2)

∪ {(l1, init(S1)), (l3, init(S2))}
∪ {(lf , l2) | lf ∈ final(S1)}
∪ {(lf , l4) | lf ∈ final(S2)}

flow(block(S)l) = flow(S)

Finally, for the seq statements, the flow function is defined as

flow(seq(continue, S2)l) = ∅
flow(seq(break, S2)l) = ∅

flow(seq(return, S2)l) = ∅
flow(seq(return(E), S2)l) = ∅

flow(seq(throwl
′
, S2)l) = flow(throwl

′
)

flow(seq(S1, S2)l) = flow(S1) ∪ flow(S2) ∪ {(lf , init(S2)) | lf ∈ final(S1)}

Let flowU define the control flow of a compilation unit, let flowC define the control flow of a
class, and let flowM and flowK define the control flow of a method and constructor respectively.
We then define their control flow as

flowU (program(C)) =
⋃
C∈C

flowC(C)

flowC(class(M,K,F)) =
⋃

M∈M
flowM (M) ∪

⋃
K∈K

flowK(K))

flowM (method(b, ω, i, ϕ, P , S)(li,lf)) = flow(S) ∪ {(li, init(S))}
∪ {(l, lf) | l ∈ final(S)}
∪ {(l, lf) | Sl ∈ fallthrough(S)}

flowK(constructor(C,ϕ, P , S)(li,lf)) = flow(S) ∪ {(li, init(S))}
∪ {(l, lf) | l ∈ final(S)}
∪ {(l, lf) | Sl ∈ fallthrough(S)}

The complete Control Flow Graph of the program U = program(C) is then defined in terms of
the flow E = flowU (program(C))

CFG = (∪(v,w)∈E{v, w}, E)

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 44

4.3 The Symbolic Execution Engine

The Symbolic Execution Engine is the main process that drives the verification. There are a wide
variety of design choices [3]. For example: is the exploration forward [20, 28], from the starting
point of the program towards the end point of the program, or backward [22], from the end
point of the program towards the starting point of the program. Another major design choice
is in what way to explore the search space. Common considerations are breadth-first search,
depth-first search, a heuristic, or a combination of these.

Our Symbolic Execution Engine uses a forward, depth-first path exploration approach. The logic
to handle references to objects on the heap is handled in the SEE and the formula solving is trans-
ferred to Z3 [13], a SMT solver. This allows for greater flexibility of handling references, like lazy
reference initialization and symbolic reference concretization. Four main optimization techniques
are implemented: (1) lazy symbolic reference initialization; (2) formula caching; (3) expression
evaluation; and (4) partial-order reduction. Each of these optimizations will be explained in
detail in the coming sections.

The main structure of the Symbolic Execution Engine is the Symbolic State, which is defined
as:

Definition 8 (The Symbolic State). The SS is a 6-tuple state = (T , h, π,A,L, I) where

• T is the set of threads;

• h is the heap, a mapping from references object structures. An object structure is a
mapping from fields (or indices) to expressions;

• π is the set of path constraints that must be satisfiable for the current program path to be
reachable;

• A is the mapping from symbolic references to their possible concrete references;

• L is the mapping from reference to thread id, representing the references that are currently
locked by which threads; and

• I is the set of interleaving constraints.

4.3.1 The Threads

The basis of the executable program are the threads. Each thread is a three-tuple Ttid = (pc, σ, η)
consisting of:

• a program counter pc ∈ V ;

• the call stack σ consisting of stack frames; and

• the exception handler stack η.

A thread is disabled if it is waiting for a lock to be freed, or the current action is a join
statement and there exists a child thread of this thread. A thread is enabled if it is not disabled.
Let parent(tid) be a function that returns the thread id of the parent of the thread with thread
id tid .

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 45

The Call Stack. The call stack consists of the data necessary to keep track of the method
calls that are made. Tt contains the local variables, each in their respective stack frame. Each
method call is represented as a stack frame on the call stack. The call stack is defined as a
sequence of stack frames, and is denoted by σ. New stack frames can be pushed and popped
from the stack using

pushstack (σ, pc, t) = [(pc, t, []), σ1, . . . , σn] where σ = [σ1, . . . , σn]

popstack (σ) = (σ1, . . . , σn] where σ = [σ1, . . . , σn]

Each stack frame is a triple (pc, t,M) where pc represents the program counter to return to when
the method has finished its execution, t is the left-hand side the return value of the method will
be assigned to andM are the local variables.

The Exception Handler Stack. The exception handler stack manages the data necessary
to know whether or not the current statement is within a try block and where to return to if
an exception occurs. The exception handler stack is defined as a sequence of 2-tuples, denoted
by η. The first element of the tuple defines the program point of the catch entry that belongs
to the current try block. The second element of the tuple defines the current depth of the call
stack relative to when the try block point was entered. Exception handlers can be inserted and
removed using

inserthandler (η, (pc, n)) = [(pc, n), η1, . . . , ηn] where η = [η1, . . . , ηn]

removehandler (η) = (η1, . . . , ηn] where η = [η1, . . . , ηn]

4.3.2 The Memory

The memory consists of two distinct parts: the local variables, contained in the stack frames,
and the heap. The values of the local variables are represented using the expression language of
the OOX language. The objects on the heap are represented via an object structure, which is
defined as a mapping from fields or indices to expressions.

The main difference between the expression language of OOX and the expression language of the
SEE is that literals and references can be symbolic. A symbolic reference or value can represent
multiple concrete values, possibly constrained by the path constraints π. The symbolic values
and references that can exist are the arguments of the method under verification and the inner
data of those arguments. Let α, β, . . . denote symbolic values and references, e.g. lit(α) instead
of lit(z) and ref α instead of ref n.

The Local Variables

The local variables are defined as a mappingM whereM[x 7→ e] returns a new mapping with
x 7→ e inserted as a new entry andM(x) returns the latest inserted expression e for variable x.
Let writing to and reading from the stack be defined as

writestack (σ, i, E) = [(pc, t,M[i 7→ E]), . . . , σn] where σ = [σ1 = (pc, t,M), . . . , σn]

read stack (σ, i) =M(i) where σ = [σ1 = (pc, t,M), . . . , σn]

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 46

The Heap

The heap is defined as a mapping h from concrete reference to object structure. An object
structure itself is again a mapping from each element in the object structure to the values of
those elements. That is, the object structure of an instance of a class consists of its fields to their
values and the object structure of an array consists of all indices to their values.

Reading from a Field A field of an object can be read from both a concrete and a symbolic
reference. When reading a field from a concrete reference, the value enclosed in the field of the
object structure of the corresponding concrete reference is retrieved. When reading the field
of a symbolic reference, a chained if-then-else expression is returned, which accounts for every
possible concrete reference the symbolic reference can be in A.

Example 6 (Reading a field of a symbolic reference). Suppose we have a SS (T , h, π,A,L, I)
and the statement value := x.f is to be executed where the variable x is the symbolic reference
ref α in the SS. Suppose that the symbolic reference ref α is mapped to the concrete references
{ref 1, ref 2} in A.

Two reads will occur: one for the ref 1 case and one for the ref 2 case. Both cases are merged
into one expression, leading to the expression

ite(ref α == ref 1, readfield(h, ∅, ref 1, i), readfield(h, ∅, ref 2, i))

Reading from a field is formalized as follows. Let A be the set of concrete references of ref α
retrieved from the alias map A. Reading from a field is defined as

readfield(h,A, ref n, i) = h(ref n)(i)

readfield(h,A, ref α, i) =

{
h(ref n)(i) if A = {ref n}
ite(ref α == ref n, h(ref n)(i), tail) if A = {ref n, . . . }

where tail contains the read of the other possibilities, i.e.

tail = readfield(h,A− {ref n}, ref α, i)

Writing to a Field. A field of an object can be written to on both concrete and symbolic
references. When writing to a concrete reference, the value enclosed in the field of the object
structure of the corresponding concrete reference is updated. On the contrary, when writing to a
symbolic reference, one must account for every possible concrete reference the symbolic reference
could be and thus, a write to every possible concrete reference will occur.

Example 7 (Writing to a field of a symbolic reference). Suppose we have a SS (T , h, π,A,L, I)
and the statement x.f := 1; is to be executed where the variable x is the symbolic reference
ref α in the SS. Suppose that the symbolic reference ref α is mapped to the concrete references
{ref 1, ref 2} in A.

Two writes will be executed: one to the concrete reference ref 1 and one to the concrete reference
ref 2. For both writes, the value to be assigned is changed from the right-hand side, 1, to a
conditional which constraints the write to include that the symbolic reference must be equal to

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 47

the concrete reference. The true case of this conditional contains the right-hand side and the
false case contains the original value, as if no write occurs. That is, the value written to field f
of ref 1 will be

ite(ref α == ref 1, 1, readfield(h, ∅, ref n, i))

Writing to a field is formalized as follows. Let A be the set of concrete references of ref α retrieved
from the alias map A. Writing to a field is defined as

writefield(h,A, ref n, i, E) = h[ref n 7→ h(ref n)[i 7→ E]]

writefield(h,A, ref α, i, E) =

{
writefield(h,A, ref n, i, E) if A = {ref n}
writefield(h′, A− {ref n}, E) if A = {ref n, . . . }

where h′ contains the write to the current concrete possibility ref n of ref α. I.e.

h′ = writefield(h, ∅, ref n, i, ite(ref α == ref n, E, readfield(h, ∅, ref n, i)))

Reading an Array Element. A array element can only be read from a array pointed to by a
concrete reference. However, the index may be symbolic. When reading an element from an array,
the element corresponding to the index is retrieved from the object structure, similar to reading
from a field. The difference between the two being that the element in the object structure may
not exist, in other words, the given index is out of range. If this is the case, the function returns
infeasible. If the given index contains a symbolic variable, all possible concrete cases must be
accounted for. A chained if-then-else is constructed that contains a conditional for each possible
concrete index.

Example 8 (Reading an array element with a symbolic index from a concrete array). Suppose
we have a SS (T , h, π,A,L, I) and the statement x := a[i]; is to be executed, where a is a
concrete array with object structure O = [elem0 7→ 10, elem1 7→ 20, elem2 7→ 30] of size 3 and i
is a symbolic value.

The value that is assigned to x will be

ite(i== 0, 10, ite(i== 1, 20, 30))

Reading an array element is formalized as follows. Let s = size(h(ref n)) be the size of the array
pointed to by reference ref n. Note that the size of an array is always a concrete value. Let
I = {0, . . . , s − 1} be the set of all indices and let E′ = evalJEK(σ, h) be the evaluated value of
expression E. Then reading an array element is defined as

readelem(σ, h, ref n, E) =

read selem(h, I, ref n, E) if E is a symbolic expr.
h(ref n)(elemE′) if 0 ≤ E′ < s

infeasible otherwise

where reading a symbolic array element is defined as

read selem(σ, h, I, ref n, E) =

{
readelem(σ, h, ref n, i) if I = {i}
ite(eE == i, readelem(σ, h, ref n, E), tail) if I = {i, . . . , }

where tail = read selem(σ, h, I − {i}, ref n, E).

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 48

Writing to an Array Element. An array element can only be written to when performed
on a concrete reference. Similar to reading an array element, the index may be symbolic. When
writing to a symbolic array index, an if-then-else is written to each possible index. The if-then-
else represents that the write only occurs when the symbolic reference is equal to the concrete
reference.

Example 9 (Writing to an array element with a symbolic index of a concrete array). Suppose
we have a SS (T , h, π,A,L, I) and the statement a[i] := x; is to be executed, where a is a
concrete array O = [elem0 7→ 10, elem1 7→ 20] of size 2 and i is a symbolic value.

Two writes will occur: one to elem0 and one to elem1. The values assigned to each element will
be an if-then-else expression that represents that the index i must match the concrete index. We
have that the expression ite(0 == i, x, 10) will be assigned to elem0.

Writing to an array element is defined as follows

writeelem(σ, h, ref n, E1, E2) =

writeselem(σ, h, I, ref n, E1, E2) if E1 is a symbolic expr.
h[ref n 7→ h(ref n)[elemE′

1
7→ E′2]] if 0 ≤ E′1 < s

infeasible otherwise

where writing to a symbolic array element is defined as

writeselem(σ, h, I, ref n, E1, E2) =

{
writeelem(σ, h, ref n, i, v) if I = {i}
writeselem(σ, h′, I − {i}, ref n, E1, E2) if I = {i, . . . }

where v = ite(i == E1, E2, readelem(σ, h, ref n, i)) is the expression containing the conditional
write for when index i equals the symbolic index E1 and h′ = writeselem(σ, h, {i}, ref n, E1, E2)
is the updated heap containing the write to index i.

4.3.3 The Path Constraints

The path constraints, denoted by π, is the set of assumptions that must hold for the current
program path to be reached. The path constraints are accumulated during the exploration.
When an assume E; statement is executed, the boolean expression E is evaluated into one of
three cases: (1) into a simplified expression E′; (2) into the constant true; and (3) into the
constant false. When the evaluation results in E′, the path constraints are updated to include
the new assumption π = π∪{E′}. When the evaluation results in true, meaning that E is valid,
and thus will always hold, the exploration of this program path will continue. Finally, when the
evaluation results in false the exploration of this program path will halt as there exists no input
such that this program path will be executed.

4.3.4 The Alias Map

The alias map, denoted by A, is a mapping from symbolic references to sets of concrete references.
The alias map has several purposes. Its primary purpose is to keep track of the concrete references
a symbolic reference can point to. Its secondary purpose is to determine which aliases a symbolic
reference can point to when it is first initialized, as described in more detail in Section 4.4.1.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 49

The alias map and its inhabitants are initialized lazily, inspired by [24]. The aim of lazy initial-
ization is twofold: (1) to avoid the issues arising from cyclic data structures, e.g. a linked list;
and (2) to reduce the runtime of the symbolic execution engine.

A symbolic reference is inserted in the alias map the first time it is either: (1) dereferenced via
a read or write to an element or field; (2) dereferenced via the array size operator; or (3) used in
a lock. When an alias map entry is initialized, the concrete reference set will be inhabited by:
(1) a new concrete reference allocated on the heap with all elements of its object structure set
to fresh symbolic values- and references; (2) null; and (3) all other concrete references pointed
to by other symbolic references in A that are of the same type.

4.3.5 The Locks

The lock set, denoted by L, is a mapping from references to thread ids. Each entry represents a
lock being held on a reference by the thread with the corresponding thread id.

4.3.6 The Interleaving Constraints

The interleaving constraints, denoted by I, is a set of binary relations a∼G b and a 6∼G b, denoting
that the actions a and b are independent and not independent respectively. When two actions
a and b are independent, no (sub)path in which a is executed before b will be explored. The
interleaving constraints are generated using partial order reduction, which is described in Section
4.4.4 in more detail.

4.4 The Symbolic Execution Algorithm

The main tasks of the algorithm are to: (1) explore the search space up to some predefined
maximum program path length k, based on the structure of the CFG; (2) update the Symbolic
State during the exploration; (3) add the path constraints when an assumption is encountered
and try to deduce if an assumption makes a path infeasible; and (4) verify an assertion when one
is encountered.

There are two modes to explore the search space. The default mode, which explores the search
space by prioritizing the actions by lowest vertex label, as described in Section 4.2.1, and in-
terleaving by lowest thread id. The random mode explores the search space randomly for the
different interleavings.

The main algorithm is presented in Algorithm 1 and the execution of specific actions is presented
in Subsection 4.4.1. The algorithm explores the search space until either k = 0 or all threads
have terminated. It explores the program paths in which threads are enabled and the differ-
ent interleavings which are not constrained by the interleaving constraints in I. In the main
algorithm, let trace denote the actions previously executed by this branch.

The algorithm is executed with the initial symbolic state:

• T is a singleton consisting of the main thread. In this thread, pc is set to the method
entry of the method under verification, σ is set to a single stack frame where the program

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 50

counter to return to and the left-hand side are undefined, and the local variables are set to
an unique symbolic- value or reference for each parameter;

• h is an empty mapping;

• π is the evaluated pre-condition of the method under verification;

• A is an empty mapping;

• L is an empty mapping; and

• I is an empty set.

Algorithm 1 The main symbolic execution algorithm
Input: The symbolic state state and some integer k
Output: valid, invalid, deadlock or unknown
procedure Execute((T , h, π,A,L, I), k)

if k = 0 ∨ T = ∅ then
return valid

else
Tenabled ← enabled(T)
if Tenabled = ∅ then

return deadlock
else

– Construct the set of threads Tunique that need to be explored.
Tunique ← ∅
for all Threads Ttid = (pc, σ, η) ∈ Tenabled do

a← action(pc)
if ¬∃ai ∼G aj ∈ I : aj ∈ trace ∧ a = ai then
Tunique ← Tunique ∪ Ttid

end if
end for
– Construct the set of new interleavings.
A← the actions of all a unordered pairs of Tenabled

Inew ← por(state, A)
I ← filterconflicts(Inew , I) ∪ Inew

– Branch and continue the exploration for each thread that needs to be explored.
for all Threads Ttid = (pc, σ, η) ∈ Tunique do

result ← ExecuteAction(state, tid , k)
if result ∈ {invalid, deadlock, unknown} then

return result
end if

end for
end if

end if
end procedure

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 51

Input: The symbolic state state, the current thread id tid and some integer k
Output: valid, invalid, deadlock or unknown
procedure Branch((T , h, π,A,L, I), tid , k)

(pc, σ, η)← Ttid ∈ T
neighbours ← NCFG(pc)
for all Neighbours pc′ ∈ neighbours do
Ttid.pc ← pc′

result ← Execute((T , h, π,A,L, I), k − 1)
if result 6= valid then

return result
end if

end for
end procedure

4.4.1 Symbolic Execution of Actions

Let ExecuteAction be the procedure that selects the procedure corresponding to the given
action. The actions are divided into two categories: the ones that affect the Symbolic State and
those that do not. The actions that affect the SS are described in more detail below. The actions
that are not described are treated as a skip statement, and only execute the Branch procedure.

Declare Statements. A declare statement defines a new variable in the current stack frame of
the call stack. The value assigned to the new variable i is the default value of the corresponding
type τ .

Input: The symbolic state state, the current thread id tid , the type of the variable τ , the name
of the variable i and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteDeclare((T , h, π,A,L, I), tid , τ , i, k)

(pc, σ, η)← Ttid ∈ T
Ttid.σ ← writestack (σ, i, default(τ))
return Branch((T , h, π,A,L, I), tid , k)

end procedure

Assignment Statements. An assignment statement modifies the value on the left-hand side
to the value on the right-hand side. The left-hand side can be either a variable, a field or an
element of an array. The right-hand side can be either an expression, a field, an array element,
or the instantiation of a new array. Method calls on the right-hand side are handled by first
executing the method body followed by an assignment statement in which the original left-hand
side is assigned to the expression right-hand side retval.

Assignment statements consists of three parts: (1) the (potential) initialization of symbolic
reference(s); (2) the determination of the memory location of the left-hand side; and (3) the
evaluation of the right-hand side.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 52

Let us begin with the initialization of symbolic reference(s). Let init define the function that
initializes a symbolic reference if it has not been initialized already. A symbolic reference ref α
is initialized iff the alias map A contains ref α. Let init be defined as

init : Heap ×AliasMap × SymbolicReference → Heap ×AliasMap

where

init(h,A, ref α) =

{
(h,A) if ref α ∈ A
(h[ref n 7→ O],A[ref α 7→ A]) otherwise

where ref n is a fresh concrete reference, O is the object structure of the newly allocated object,
each field is set to a symbolic reference or symbolic value, and

A = Aexisting ∪ {null, ref fresh}

is the set of possible concrete references ref α can point to. Let Aexisting be the union of the sets
of concrete references of all other symbolic references of the same type in A.

Let assign be the function that defines the assignment of the value resulting from the right-hand
side to the left-hand side and initializing a symbolic reference, when applicable. It is defined as

assign : Stack ×Heap ×AliasMap × Lhs × Expression → Stack ×Heap ×AliasMap

where

assign(σ, h,A, lhsvar (i), Ev) = (writestack (σ, i, Ev), h,A)

assign(σ, h,A, lhsfield(i1, i2), Ev) =

(σ,writefield(h, ∅, ref n, i2, Ev),A)

if read stack (σ, i1) = ref n
infeasible
if read stack (σ, i1) = null

(σ,writefield(h′,A′(ref α), i2, Ev),A′)
if read stack (σ, i1) = ref α, init(h,A, ref α) = (h′,A′)

assign(σ, h,A, lhselem(i, E), Ev) =

(σ,writeindex (h, ref n, E,Ev),A)

if read stack (σ, i) = ref n
infeasible
if read stack (σ, i) = null

Let evaluate be the function that evaluates the right-hand side of the assignment, defined as

evaluate : Stack ×Heap ×AliasMap × Rhs → Expression ×Heap ×AliasMap

where

evaluate(σ, h,A, rhsexpr (E)) = (evalJEK(σ, h), h,A)

evaluate(σ, h,A, rhsfield(i, i2)) =

(readfield(σ, h, ∅, ref n, i2), h,A)

if read stack (σ, i1) = ref n
infeasible
if read stack (σ, i1) = null

(readfield(σ, h′,A(ref α), ref α, i2), h′,A′)
if read stack (σ, i1) = ref α, init(h,A, ref α) = (h′,A′)

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 53

evaluate(σ, h,A, rhselem(i, E)) =

{
(readelem(h, ref n, E), h′,A) if read stack (σ, i) = ref n
infeasible if read stack (σ, i) = null

evaluate(σ, h,A, rhsarray(τ, E)) =

{
(ref n, h[ref n 7→ O],A) if E = [E1]

(ref n, h[ref n 7→ O],A) if E = [E1, . . . , En], τ = array(τ ′)

For the base case of ref array we have that ref n is a fresh reference, and we have the object
structure of the new array O = [elem0 7→ default(τ), . . . , elemE′

1
7→ default(τ)) For the recursive

case, we again have that ref n is a fresh reference, and we have the objeect structureO = [elem0 7→
ref 1, . . . , elemE′

1
7→ ref n), where each ref 1 . . . ref n are fresh references that result from recursive

evaluations
evaluate(σ, hj ,A, rhsarray(τ ′, (E1, . . . , En)))

Finally, hj is the heap from the previous allocated fresh reference ref j−1.

Input: The symbolic state state, the current thread id tid , the left-hand side t, the right-hand
side v and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteAssign((T , h, π,A,L, I), tid , t, v, k)

(pc, σ, η)← Ttid ∈ T
if v 6= rhscall(I) then

if t or v contains a read or write from an symbolic reference ref α which is an array
then

for all Concrete references ref n ∈ A(ref α) do
A′ ← A[ref α 7→ {ref n}]
π′ ← π ∪ {ref α == ref n}
result ← ExecuteAssign((T , h, π′,A′,L, I), tid , t, v, k)
if result ∈ {invalid, deadlock, unknown} then

return result
end if

end for
else

value ← evaluate(σ, h,A, v)
if value = infeasible then

return infeasible
else if value = (Ev, h

′,A′) then
result ← assign(σ, h′,A′, t, Ev)
if result = infeasible then

return infeasible
else if result = (σ′′, h′′,A′′) then
Ttid.σ ← σ′′

return Branch((T , h′′, π,A′′,L, I), tid , k)
end if

end if
end if

else
return Branch((T , h, π,A,L, I), tid , k)

end if
end procedure

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 54

Assert Statements. An assert statement triggers the verification of the assertion. The asser-
tion E is combined with the path constraints π to form the formula

ϕ =
∧
ψ∈π

ψ ∧ ¬E

which is first evaluated. If the result is true, the assertion is incorrect, if it is false, the assertion
is correct. Otherwise, if the result is a simplified formula E′, the formula E′ is processed further.
When the formula E′ contains at least one symbolic reference, a formula will be generated for
each of the concrete cases. When E′ contains multiple symbolic references, a formula for each
combination of concrete references will be generated. Each formula will then be solved using Z3.

Input: The symbolic state state, the current thread id tid , the assertion E and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteAssert((T , h, π,A,L, I), tid , E, k)

E′ ← evalJ∧ψ∈πψ ∧ ¬EK(σ, h)
if E′ = lit(true) then return invalid
else if E′ = lit(false) then return Branch((T , h, π,A,L, I), tid , k)
else

result ← Z3(E′)
if result 6= unsatisfiable then

return result
else

return Branch((T , h, π,A,L, I), tid , k)
end if

end if
end procedure

Assume Statements. An assume statement asserts that the assumption must be satisfiable to
continue the exploration of this branch. The first step is to try solve the formula using evaluation.
If the formula evaluates to true, the assumption always holds and the exploration of this branch
continues, if it evaluates to false, the assumption never holds, halting further exploration of
this branch. Otherwise, the simplified expression E′ is added to the path constraints.

Input: The symbolic state state, the current thread id tid , the assumption E and some integer
k
Output: valid, invalid, deadlock or unknown
procedure ExecuteAssume((T , h, π,A,L, I), tid , E, k)

(pc, σ, η)← Ttid

E′ ← evalJEK(σ, h)
if E′ = lit(false) then

return infeasible
else if E′ 6= lit(true) then

π ← π ∪ E′
end if
return Branch((T , h, π,A,L, I), k)

end procedure

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 55

Return Statements. A return statement assigns the evaluated value of the expression to the
special variable retval.

Input: The symbolic state state, the current thread id tid , the return value E and some integer
k
Output: valid, invalid, deadlock or unknown
procedure ExecuteReturn((T , h, π,A,L, I), tid , E, k)

(pc, σ, η)← Ttid

Ttid.σ ← writestack (σ, retval, evalJEK(σ, h))
return Branch((T , h, π,A,L, I), k)

end procedure

Lock Statements. A lock statement aims to acquire the lock of a reference pointed to by the
variable i. This reference can be either concrete and symbolic. We need to consider three cases:
(1) the reference is a symbolic reference ref α. The SEE branches for each concrete reference of
ref α in the alias map A. The path constraints π are updated accordingly; (2) the reference is
a concrete reference ref n. Then, if the lock reference is locked by another thread, the path is
considered infeasible. If the lock is not held by another thread, the reference is added to the lock
set; and (3) the reference is null. The program path is considered infeasible.

Input: The symbolic state state, the current thread id tid , the variable to lock i and some
integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteLock((T , h, π,A,L, I), tid , i, k)

(pc, σ, η)← Ttid

switch read stack (σ, i) do
case Concrete reference ref n:

if L(ref n) 6= tid then
return infeasible

else
L ← L[ref n 7→ tid]
return Branch((T , h, π,A,L, I), k)

end if
case Symbolic reference ref α:

for all Concrete reference ref n ∈ A(ref α) do
π′ ← π ∪ {ref n == ref α}
A′ ← A[ref α 7→ {ref n}]
Ttid.σ ← σ[var ← ref i]
result ← ExecuteLock((T , h, π′,A′,L, I), tid , i, k)
if result ∈ {invalid, deadlock, unknown} then

return result
end if

end for
case null:

return infeasible
end procedure

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 56

Unlock Statements. An unlock statement removes the lock of the reference ref n pointed to
by variable i from the lock set L.

Input: The symbolic state state, the current thread id tid , the variable to unlock i and some
integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteUnlock((T , h, π,A,L, I), tid , i, k)

(pc, σ, η)← Ttid

ref n ← read stack (σ, i)
L ← remove lock (L, ref n)
return Branch((T , h, π,A,L, I), k)

end procedure

The Entry of a Method or Constructor. The entry of a method or constructor defines its
entry point. The control flow is transferred from the calling method to the method body and
the pre-condition of the method is verified as if it is an assert statement.

Input: The symbolic state state, the current thread id tid and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteMethodEntry((T , h, π,A,L, I), tid , k)

if The method has a pre-condition E then
Verify E in the same way as an assert statement.

end if
return Branch((T , h, π,A,L, I), tid , k)

end procedure

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 57

The Exit of a Method or Constructor. The exit of a method or constructor defines its
exit point. The top-most stack frame is popped from the call stack and post-condition of the
method is verified as if it is an assert statement.

Input: The symbolic state state, the current thread id tid , the left-hand side to assign the return
value to t and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteMethodExit((T , h, π,A,L, I), tid , t, k)

(pc, σ, η)← Ttid

if The method has a post-condition E then
Verify E in the same way as an assert statement.

end if
if |σ| = 1 then
T ← T − {Ttid}
h′ ← h

else
retval ← read stack (σ, retval)
Ttid.σ ← writestack (popstack (σ), retval, retval)
if η = [(pc′, n)1, . . .] then
Ttid.η ← [(pc′, n− 1)1, . . .]

end if
end if
return Branch((T , h′, π,A,L, I), k)

end procedure

The Call of a Method or Constructor. The call of a method or constructor defines that
a method or constructor needs to be executed. A new stack frame is pushed on the call stack,
containing the parameters P of the method or constructor assigned to the arguments E. When
the current statements is inside a try block, the call depth of the exception handler stack η is
increased by one. For constructors, the same algorithm is executed, with some modifications. A
fresh reference ref fresh is created. This reference is inserted on the call stack as an implicit this
argument, similar to the other arguments supplied to the constructor. A new object structure
O is created, which is allocated on the heap, pointed to by ref fresh . The fields in the object
structure O are set to the default values of their corresponding types.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 58

Input: The symbolic state state, the current thread id tid , the entry point of the method pc′,
the parameters P , the arguments E, the left-hand side to assign the return value to t and some
integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteMethodCall((T , h, π,A,L, I), tid , pc′, P , E, t, k)

(pc, σ, η)← Ttid

– Create a new stack frame consisting of the arguments.
{pc′′} ← NCFG(pc)
Ttid.σ ← pushstack (σ, pc′′, t)
for j ← 1 to |P | do

param(τ, i)← P j
Ttid.σ ← writestack (σ, i, evalJEjK(σ, h))

end for
– Update the exception handler stack, if it exists.
if η = [(pc′′, n)1, . . .] then
Ttid.η ← [(pc′′, n+ 1)1, . . .]

end if
– Update the program counter manually and continue the exploration.
T.pc ← pc′

return Execute((T , h, π,A,L, I), k − 1)
end procedure

Fork Statements. The fork of a method spawn a new thread starting with at the program
counter pc′ with parameters P and arguments E. This new thread is assigned a fresh thread id,
tid fresh .

Input: The symbolic state state, the current thread id tid , the entry point of the method pc′,
the parameters P , the arguments E and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteFork((T , h, π,A,L, I), tid , pc′, P , E, k)

(pc, σ, η)← Ttid

tid fresh ← a fresh thread id
σ′ ← pushstack ([], undefined, undefined)
for j ← 1 to |P | do

param(τ, i)← P j
σ′ ← writestack (σ′, i, evalJEjK(σ, h))

end for
Ttidfresh

← (pc′, tid , σ′, [])
T ← T ∪ {Ttidfresh

}
return Branch((T , h, π,A,L, I), tid , k)

end procedure

The Entry of a Try Block. The entry point of a try block will be executed when a try block
will be entered. It inserts a new exception handler as the top-most exception handler to the η
of the current thread.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 59

Input: The symbolic state state, the current thread id tid , the catch entry block program
counter pc′, and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteTryEntry((T , h, π,A,L, I), tid , pc′, k)

(pc, σ, η)← Ttid

Ttid.η ← inserthandler (η, (pc′, 0))
return Branch((T , h, π,A,L, I), tid , k)

end procedure

The Exit of a Try Block. The exit point of a try block will be executed when a try block
will be exited. It removes the top-most exception handler from the exception handler stack η of
the current thread.

Input: The symbolic state state, the current thread id tid , and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteTryExit((T , h, π,A,L, I), tid , k)

(pc, σ, η)← Ttid

Ttid.η ← removehandler (η)
return Branch((T , h, π,A,L, I), tid , k)

end procedure

The Entry of a Catch Block. The entry of a catch block will be executed after an exception
has occurred within a try block. The top-most exception handler will be removed from the
exception handler stack η of the current thread. The control flow continues in the body of the
catch block.

Input: The symbolic state state, the current thread id tid , and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteCatchEntry((T , h, π,A,L, I), tid , k)

(pc, σ, η)← Ttid

Ttid.η ← removehandler (η)
return Branch((T , h, π,A,L, I), tid , k)

end procedure

The Exceptional State. The exceptional state is a special action that is reached after a throw
has been executed. The exceptional state The exceptional state considers two cases: (1) there
is a corresponding catch block the control flow will be transferred to. In this case, the stack
frames of the calls made will be popped and their exceptional post-conditions will be verified;
and (2) there is no corresponding catch block. In this case, the exceptional post-condition of all
methods in the call stack will be verified and the exploration of this branch stops.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 60

Input: The symbolic state state, the current thread id tid , and some integer k
Output: valid, invalid, deadlock or unknown
procedure ExecuteExceptional((T , h, π,A,L, I), tid , k)

(pc, σ, η)← Ttid

if |η| = 0 then
while |σ| > 0 do

if The method on top of the call stack has an exceptional post-condition E then
Verify E in the same way as an assert statement.

end if
σ ← popstack (σ)

end while
else

(pc′, n)← η1
while n > 0 do

if The method in which pc′ resides has an exceptional post-condition E then
Verify E in the same way as an assert statement.

end if
Ttid.σ ← popstack (σ)
n← n− 1

end while
if The method has an exceptional post-condition E then

Verify E in the same way as an assert statement.
end if
Ttid.pc ← pc′

return Branch((T , h, π,A,L, I), tid , k)
end if

end procedure

4.4.2 Formula Caching

One fairly trivial optimization is to store formulas that are sent to the SMT solver in a cache.
When a formula is verified, the first step is to check if the cache contains that formula. If this is
the case, the formula is valid, otherwise the SEE will have returned that the formula is invalid
the first time it is sent to the SMT solver and the SEE will have terminated.

The main problem with implementing a caching approach is to control the runtime overhead.
Comparing two expressions can become quite expensive, especially when expressions grow bigger.

Initial experiments showed that a set data structure based on a binary search tree [2] with
O(log n) lookup time and O(log n) insert time actually reduces the overall performance of the
SEE. The main reason being that it requires an ordering of expressions, which implies compar-
isons between different expressions.

The data structure we chose is a hash array mapped trie with O(log n) average lookup time and
O(log n) average insert time. In practice, these operations are performed in O(1) time. Another
advantage is that the expressions are hashed, which removes the need for expensive comparisons
between expressions.

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 61

4.4.3 Expression Evaluation

The Symbolic Execution Engine includes an expression evaluator. This expression evaluator
aims to simplify expressions to a constant, which is possible iff the expression does not contain
a symbolic reference or symbolic value. The aim of expression evaluation is threefold: (1) to
determine the outcome of assume statements. If the outcome is a literal, the path can be pruned
or the path constraint does not have to be included in the path constraints; (2) to determine the
outcome of assert statements, which can remove the need to invoke Z3; and (3) to reduce the
size of expressions in general.

The expression evaluator is defined as

evalJEK : Expression × (Stack ,Heap)→ Expression

In the following definitions, let some primed expression E′ be the evaluated expression of E.
That is, E′ = evalJEK(σ, h).

Literals and References. Let the expression evaluator be the identity function for the literals
and the references.

evalJlit(z)K(σ, h) = lit(z)

evalJlit(b)K(σ, h) = lit(b)

evalJlit(α)K(σ, h) = lit(α)

evalJref nK(σ, h) = ref n

evalJref αK(σ, h) = ref α

evalJnullK(σ, h) = null

Variable Access. Let the expression evaluator read the variable i from the stack σ when
reading a variable.

evalJvar(i)K(σ, h) = readstack(σ, i)

Unary Operators. Let the expression evaluator apply the unary operator when the operand
is a literal.

evalJunop(E, !)K(σ, h) =

{
lit(¬b) if E′ = lit(b)

unop(E′, !) otherwise

evalJunop(E, -)K(σ, h) =

{
lit(−z) if E′ = liz (z)

unop(E′, -) otherwise

Arithmetic Operators. Let the expression evaluator apply the binary arithmatic operator
when both operands are literals.

evalJbinop(E1,�, E2)K(σ, h) =

{
lit(z1 � z2) if E′1 = lit(z1) and E′2 = lit(z2)

binop(E′1,�, E′2) otherwise

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 62

Logical Operators. Let all binary logical operators be defined in terms of logical conjunction.
Let the expression evaluator apply the logical conjunction operator be when both operands are
literals. Otherwise, if either operand results in true the expression evaluator results in the
simplified expression of the other operand.

evalJbinop(E1, &&, E2)K(σ, h) =

lit(b1 ∧ b2) if E′1 = lit(b1) and E′2 = lit(b2)

E′2 if E′1 = lit(true)

E′1 if E′2 = lit(true)

lit(false) if E′1 = lit(false) or E′2 = lit(false)

binop(E′1, &&, E
′
2) otherwise

evalJbinop(E1, ||, E2K(σ, h) = evalJunop(binop(unop(E1, !), &&, unop(E2, !)), !)K(σ, h)

evalJbinop(E1, ==>, E2K(σ, h) = evalJbinop(unop(E1, !), ||, E2)K(σ, h)

Equality and Inequality Operators. Let inequality be defined in terms of equality. Let the
expression evaluator apply the the equality operator when both operands are either literals or
references.

evalJbinop(E1, ==, E2)K(σ, h) =

lit(z1 = z2) if E′1 = lit(z1) and E′2 = lit(z2)

lit(b1 = b2) if E′1 = lit(b1) and E′2 = lit(b2)

lit(ref a = ref b) if E′1 = ref a and E′2 = ref b
binop(E′1, ==, E

′
2) otherwise

evalJbinop(E1, !=, E2)K(σ, h) = evalJunop(binop(E1, ==, E2), !)K(σ, h)

Comparison Operators. Let all comparison operators be defined in terms of <. Let the
expression evaluator apply the comparison operator when both operands are literals.

evalJbinop(E1, <, E2)K(σ, h) =

{
lit(z1 < z2) if E′1 = lit(z1) and E′2 = lit(z2)

binop(E′1, <, E
′
2) otherwise

evalJbinop(E1, <=, E2)K(σ, h) = evalJunop(binop(E2, <, E1), !)K(σ, h)

evalJbinop(E1, >, E2)K(σ, h) = evalJbinop(E2 , <,E1)K(σ, h)

evalJbinop(E1, >=, E2)K(σ, h) = evalJunop(binop(E1, <, E2), !)K(σ, h)

Sizeof Operator. Let the expression evaluator return the size of the array pointed to by the
variable i.

evalJsizeof (i)K(σ, h) = lit(size(h(read stack (σ, i))))

If-Then-Else Operator. Let the expression evaluator return the true expression E′2 when the
guard E′1 evaluates to true and let the false expression E′3 be returned when the guard evaluates
to false.

evalJite(E1, E2, E3)K(σ, h) =

E′2 if E′1 = lit(true)

E′3 if E′1 = lit(false)

ite(E′1, E
′
2, E

′
3) otherwise

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 63

Quantifiers. Let the expression evaluator return an evaluated chain of the respective logical
operators.

evalJforall(i1, i2, i3, E)K(σ, h) = evalJ
n−1
&&
j=0

evalJEK(σj , h)K(σ, h)

evalJexists(i1, i2, i3, E)K(σ, h) = evalJ
n−1
||
j=0

evalJEK(σj , h)K(σ, h)

where j represents the indices [0, . . . , n) of the array retrieved from the object structure

read stack (σ, i3)) = O = [elem0 7→ E0, . . . , elemn 7→ En)

and
σj = writestack (writestack (σ, i1, Ej), i2, j)

represents the stack with the current index j and element at index j written to the stack.

4.4.4 Partial Order Reduction

Partial Order Reduction (POR) is a technique to reduce the number of different interleavings
and thus aims to limit the effects of the path explosion problem as a result of concurrency. POR
exploits the fact that the interleaving of actions of different threads is a partial order, in which
some orders result in the same state as others.

Suppose we have a simple program, as shown in Figure 4.5, consisting of two methods foo and
bar, which are executed concurrently. Suppose Num is a class that contains the field value. The
complete interleaving forms the partial order as shown in Figure 4.6. The partial order consists
of three paths: p1, p2 and p3, each corresponding to an unique interleaving.

p1 = 1; 2; a; p2 = 1; a; 2; p3 = a; 1; 2;

Paths p2 and p3 always lead to the same state, while p1 and p2 lead to the same state iff num
points to a different reference. POR aims to identify these equivalences and prune those paths
that lead to the same state.

Figure 4.5: A program consisting of two threads.

Listing 4.4: Thread 1

void foo(Num num) {
1. int y := 1;
2. num.value := y;

}

Listing 4.5: Thread 2

void bar(Num num) {
a. num.value := 2;

}

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 64

Figure 4.6: The partial order of interleavings of the two threads in Figure 4.5. Each path from
top to bottom represents an unique interleaving.

∅

{1} {a}

{1, 2} {1, a}

{1, 2, a}

1 a

2 a 1

a 2

Conventional Partial Order Reduction uses the notion of an independence relation [18].

Definition 9 (Independence Relation). ∼ ⊆ Action ×Action is an independence relation iff for
each (a1, a2) ∈ ∼ the following two properties hold for all states state ∈ SymbolicState:

1. if a1 is enabled in state and state
a1−→ state ′, then a2 is enabled in state iff a2 is enabled in

state ′; and

2. if a1, a2 are enabled in state, there is a unique state state ′ such that state
a1;a2−−−→ state ′ and

state
a2;a1−−−→ state ′.

These two properties formalize that (1) two independent actions cannot enable or disable each
other and that (2) the order in which these two actions are executed is irrelevant, i.e. they are
commutative.

Our approach to Partial Order Reduction, inspired by [36], uses the notion of guarded indepen-
dence.

Definition 10 (Guarded Independence Relation). ∼G ⊆ Action × Action is a guarded inde-
pendence relation with respect to a condition cG iff cG implies that the following two properties
hold:

1. if a1 is enabled in state and state
a1−→ state ′, then a2 is enabled in state iff a2 is enabled in

state ′; and

2. if a1, a2 are enabled in state, there is a unique state state ′ such that state
a1;a2−−−→ state ′ and

state
a2;a1−−−→ state ′.

stating that, instead of defining the independence relation in terms of all possible states, the
independence relation is defined in terms of a formula cG.

The formula cG of two actions a1 and a2 is defined using the following two functions

RJaK : Action × SymbolicState → P(Reference)

and
W JaK : Action × SymbolicState → P(Reference)

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 65

which define the set of references read from and written to by the action respectively. The
formula cG is defined as the conjunction of the following three equalities

W Ja1K(state) ∩W Ja2K(state) = ∅
RJa1K(state) ∩W Ja2K(state) = ∅
RJa2K(state) ∩W Ja1K(state) = ∅

in other words, do actions a1 and a2 both write, or read and write, to the same region of the
heap in the Symbolic State.

Implementation in Symbolic Execution

Partial Order Reduction is typically used in the context of symbolic- and explicit model checking
[36, 37, 18], but it also appears in Symbolic Execution [20]; which uses an approach where they
keep track of the independence using a backtracking set.

The guarded indepdence relation a1 ∼G a2 can be viewed from two perspectives:

1. from the POR perspective, where we construct the actual independence relations: the
guarded independence relation is a symmetric binary relation denoting that two actions a1
and a2 are independent; and

2. from the interleaving perspective, where we choose which interleaving to explore and which
not to explore: the guarded independence relation is a binary relation denoting that any
interleaving containing the (sub)path a1; . . . a2; will not be explored. This implies that the
guarded independence relation is no longer symmetric.

Let por be the function that constructs the interleaving constraints from the symbolic state state
and all unordered pairs of actions of all threads A.

por(state, A) =
⋃

{ai,aj}∈A

independent(state, ai, aj)

Then let independent determine whether two actions are independent, using the definition of cG
as described above.

independent(state, ai, aj) =

{
{ai ∼G aj} if cG holds for ai and aj

{ai 6∼G aj} otherwise

We say two interleaving constraints ai∼G aj and ap 6∼G aq are in conflict when their intersection
is not empty. That is, {ai, aj} ∩ {ap, aq} 6= ∅. The filterconflicts function filters such conflicts
from an interleaving constraint set I given some new interleaving constraints Inew .

filterconflicts(Inew , I) = {ai ∼G aj ∈ I | ¬conflict(Inew , ai ∼G aj)} ∪ {ai 6∼G aj ∈ I}

where the conflict between two independence relations is given by

conflict(Inew , ai ∼G aj) = ∃ap 6∼G aq ∈ Inew : {ai, aj} ∩ {ap, aq} 6= ∅

Example 10 (POR applied to the example in Figure 4.5.). Suppose we have the program as
shown in Figure 4.5, where ref 1 is supplied as an argument to num in both threads. The Symbolic
Execution can be seen in Figure 4.7, where states with a dashed border will be pruned due to

CHAPTER 4. SYMBOLIC EXECUTION OF OOX PROGRAMS 66

POR. Simplified versions of the states will be presented; thread only consists of a program counter
and its local variables and the path constraints, alias map and lock set are omitted.

Suppose that the symbolic execution starts with the symbolic state state0. Both threads need to
be explored, as there are no interleaving constraints at this point. The first step is to compute
the new interleaving constraints of all unordered pairs of actions. That is, actions 1 and action a.
They do not write to the same part to the heap, i.e. cG holds for a and 1. Thus, the interleaving
constraint 1∼G a is generated and is added to I.

When branching from state1, the first step is to check if there exists an interleaving constraint
1∼G a ∈ I that implies that action 2 does not have to be explored. This interleaving constraint
does not exist, so the interleaving will be explored. The formula cG does not hold for 2 and a,
as they both write to ref 1, meaning that the independence relation 2 6∼G a will be added to the
interleaving constraints.

When branching from state2, the first step is to check if there exists and interleaving constraint
1 ∼G a ∈ I. This relation exists, implying that this branch does not have to be explored, as it
will lead to the same state as another interleaving.

Figure 4.7: The search space of the program in Figure 4.5, including the Symbolic State. A state
with a dashed border denotes that the branch will not be explored.

state0
h = {ref1 7→ [value 7→ 0]}

I = ∅
T = {T1 = (1, [num 7→ ref 1]), T2 = (a, [num 7→ ref 1])}

state1
h = {ref1 7→ [value 7→ 0]}

I = {1∼G a}
T = {T1 = (2, [num 7→ ref 1, y 7→ 0]), T2 = (a, [num 7→ ref 1])}

state2
h = {ref1 7→ [value 7→ 2]}

I = {1∼G a}
T = {T1 = (1, [num 7→ ref 1])}

state3
h = {ref1 7→ [value 7→ 1]}
I = {1∼G a, 2 6∼G a}

T = {T2 = (a, [num 7→ ref 1])}

state4
h = {ref1 7→ [value 7→ 0]}
I = {1∼G a, 2 6∼G a}

T = {T1 = (2, [num 7→ ref 1, y 7→ 2])}

state5

state6
h = {ref1 7→ [value 7→ 2]}
I = {1∼G a, 2 6∼G a}

T = ∅

state7
h = {ref1 7→ [value 7→ 1]}
I = {1∼G a, 2 6∼G a}

T = ∅

1 a

2 a
1

a 2

Chapter 5

Results

To evaluate our approach, we developed a prototype of the Symbolic Execution Engine based
on the description in Chapter 4. This prototype supports all of the features as described, except
for:

• Non-static methods, these can be modelled using static methods;1

• Any primitive typed variable other than booleans and integers; and

• Assigning a new array of symbolic size to a variable.

The goal of the experiments are to verify the completeness, the soundness and to measure the
performance. These goals has been split into seven categories, as described in Table 5.1.

We performed all experiments on a Hyper-V virtual machine with a 64-bit Ubuntu 19.10 operat-
ing system. The machine used an Intel Core i5-4670 processor and was allocated with 7 gigabyte
of memory.

Table 5.1: An overview of the goals of individual experiments.

EX
P-
1

EX
P-
2

EX
P-
3

EX
P-
4

EX
P-
5

EX
P-
6

EX
P-
7

EX
P-
8

Soundness X X
Completeness X X X X
Soundness of Optimizations X X X X
Completeness of Optimizations X X X X
Efficacy of Optimizations X X X X
Scalability X X
Relative Performance X X

To verify the soundness and completeness of the approach and optimizations, a mutation operator
1Static methods can model non-static methods due to the fact that OOX does not have dynamic dispatch.

Suppose that inheritence will be supported. Then dynamic dispatch will be required and static methods can no
longer model non-static methods.

67

CHAPTER 5. RESULTS 68

scheme is designed, which is presented in Table 5.3. A mutant is generated for each point in the
program where a mutation operator can be applied.

To compare the effect of individual optimizations, all possible combinations of optimizations will
be compared. These combinations are presented in Table 5.2.

Table 5.2: The following scenarios will be compared. Note that when the test case is a non-
concurrent program, partial order reduction is irrelevant and different cases collapse. That is
A=/rand=A/def=SC, PS=S, PC=C and P=N.

A/
ra
nd

A/
de
f

PS PC SC P S C N

Partial Order Reduction (P) X X X X X
Expression Evaluation (S) X X X X X X
Formula Caching (C) X X X X X
Interleaving Exploration (ran/def) R D D D D D D D D

CHAPTER 5. RESULTS 69

Table 5.3: Mutation operator scheme. When a point in the program matches the pattern in the
second column of the table, a mutant is generated for each option in the third column. Let ε
denote the removal of that specific point in the program.

Mutation operators of statements
DEL S; ε Statement removal.

FLOW continue;
break;

break;
continue;

Mutation of control flow breaking
statements.

Mutation of concurrency statements [7]

FORK fork f(a, b); f(a, b)
Mutation of a fork into a regular
call.

LOCK lock(x) { S; } lock(y) { S; } { S; } Mutation of a lock to lock a differ-
ent (existing) reference or the re-
moval of the lock.

Mutation operators of variables

VAR
x
x.f
x[e]

y
y.f
y[e]

Mutation of a variable to a differ-
ent (existing) variable of the same
type.

Mutation operators of literals

LIT
n
true
false

n+1 n-1
false
true

Mutation of an integer or boolean
literal.

Mutation operators of binary operators

EQ ==
!=

!=
==

Mutation of the equality operators.

CMP

<
<=
>
>=

<= > >=
< > >=
< <= >=
< <= >

Mutation of the comparison oper-
ators.

ARITH

+
-
*
/
%

- * / %
+ * / %
+ - / %
+ - * %
+ - * /

Mutation of the arithmetic opera-
tors.

BOOL
||
&&
==>

&& ==>
|| ==>
|| &&

Mutation of the boolean operators.

Mutation operators of the unary operators

UN !
-

ε
ε

Unary operator removal.

CHAPTER 5. RESULTS 70

5.1 The Completeness, Soundness and Efficacy of the Opti-
mizations

The first part of the experiments aims to evaluate the completeness of the Symbolic Execution
Engine, and the completeness, soundness and efficacy of the optimizations.

EXP-1: Bubblesort. The first experiment consists of the verification of a bubblesort algo-
rithm. The algorithm is described in Listing B.1. The algorithm is checked to be valid with
respect to its specification, that is: given a non-null array of integers, the return value of the
method is an array of integers in ascending order and the method will not terminate with an
exception. The maximum program depth we used is 80 and the maximum size of the symbolic
arrays is limited to 3.

The mutation test generator created 61 mutants of which 20 resulted in a valid specification
of which 8 were non-terminating and 12 were due to a specification that is not strong enough,
these were verified by hand; 21 resulted in an invalid ensures specification; and 20 resulted in an
invalid exceptional specification.

The results clearly show that the optimizations can drastically reduce the runtime. Formula
caching decreases the runtime by a factor of 5 and in some cases about 25% of the formulas
are duplicate, and can be retrieved from the cache. The expression evaluation also greatly
contributes, in some cases decreasing the runtime by a factor of 7.

SC S C N

0.1

1

10

Optimizations

T
im

e
in

se
co
nd

s

Runtime of the mutants that resulted
in an invalid ensures specification.

SC S C N

0.16

0.25

Optimizations

T
im

e
in

se
co
nd

s

Runtime of the mutants that resulted
in an invalid exceptional specification.

CHAPTER 5. RESULTS 71

0 100 200 300 400 500 600 700 800 900 1,000

ORIG, VAR9/8
VAR7/6
VAR5/4

VAR3/21/20
VAR2

VAR19/18
VAR17/16/15/14

VAR13/12
VAR11/10

VAR1
VAR0
UN0
LIT9
LIT8
LIT7
LIT6
LIT5
LIT4
LIT3
LIT2

LIT10
LIT1
LIT0

DEL8
DEL7

DEL6/5
DEL4
DEL3
DEL2
DEL1
DEL0

CMP5/3
CMP4

CMP2/1
CMP0

ARITH9
ARITH8
ARITH7

ARITH6/5
ARITH4
ARITH3

ARITH2/1
ARITH11
ARITH10
ARITH0

Accumulative number of Z3 invocations

SC
S
C
N

CHAPTER 5. RESULTS 72

EXP-2: Finding the Minimum Element in a Linked List. The second experiment aims
to verify an algorithm that finds the minimum element stored in a linked list data structure. The
algorithm, as described in Listing B.4, contains some auxiliary verification code: the variable N
to determine the maximum depth of the linked list, the array values to keep track of all values in
the linked list, and the final assertion to verify if the minimum element actually is the minimum
element. The maximum program depth we used is 85.

The mutation test generator created 47 mutants of which 18 were valid of which 8 were non-
terminating and 10 were due to an specification that is not strong enough, these were verified
by hand; 18 resulted in an invalid final assertion; and 11 resulted in an invalid exceptional
specification.

The results show that the expression evaluation optimization decreases the runtime by up to a
factor of 10, from 10 seconds to 100 seconds. The formula caching increases the runtime by a
tiny amount, but its effect is negligible.

SC S C N

0.1

1

10

100

Optimizations

T
im

e
in

se
co
nd

s

Runtime of the mutants that resulted
in an invalid final assertion.

SC S C N

0.1

0.32

Optimizations

T
im

e
in

se
co
nd

s

Runtime of the mutants that resulted
in an invalid exceptional specification.

EXP-3: Concurrent Mergesort. The third experiment aims to verify a concurrent merge-
sort algorithm. It is described in Listing B.5. It is a concurrent version of the mergesort algorithm
with a fork-join approach. The algorithm is valid with respect to its specification, that is: given
a non-null array of integers, the return value of the method is an array of integers in ascending
order and the method will not terminate with an exception. The maximum program depth we
used is 125 and the maximum size of the symbolic arrays is limited to 3.

The mutation test generator created 480 mutants of which 278 resulted in a valid specifica-
tion; 139 resulted in an invalid ensures specification; and 63 resulted in an invalid exceptional
specification.

The experiments show that there is a small performance gain in using randomized path selection
over default path selection, but this effect is minimal. There is one outlier (CMP2), which has
a runtime 130 seconds. This mutant has an extreme runtime compared to the others while
terminating with a correct result. This mutant has an extreme runtime because of the order in
which the symbolic array are concretized. A concrete array of size 1 gets explored before size 2.
An array of size 1 causes infinite recursion in which, at every recursive step, a new thread gets

CHAPTER 5. RESULTS 73

spawned. This causes many different interleavings that have to be explored. For an array of size
2, the algorithm terminates immediately with the correct result.

A/def A/rand
0.1

1

10

100

Optimizations

T
im

e
in

se
co
nd

s

Runtime of the mutants that resulted
in an invalid ensures specification.

A/def A/rand

0.16

0.25

0.4

Optimizations
T
im

e
in

se
co
nd

s

Runtime of the mutants that resulted
in an invalid exceptional specification.

EXP-4: The Dining Philosophers Problem. The fourth experiment aims to find the
deadlock in the algorithm for the dining philosophers problem. The algorithm to (incorrectly)
handle the problem is given in Listing B.7. It is expected that the algorithm results in a deadlock.
The program contains an auxiliary variable n which denotes the number of philosophers, and
thus the number of child threads of the main thread. The eating of philosophers is modelled
using locks. The maximum program depth we used is 100.

The program was executed 50 times using two modes: A/rand and A/def. Both modes correctly
found that the program result in a deadlock. The default mode finds the deadlock in an average
time of 0.42 seconds with a standard deviation of 0.045. The random mode finds the deadlock
in 0.701 seconds with a standard deviation of 0.363 seconds.

5.2 Scalability

The second part of the experiments aims to determine the scalability of our approach.

EXP-5: Finding the Minimum Element in a Linked List. The fifth experiment again
uses the algorithm to find the minimum element in a linked list. In this instance to determine
the limits of the maximum program depth k. A maximum runtime of 300 seconds was given and
the runtime for the different linked lists of length 1 up to 5 are compared.

The experiment shows that the length of the linked list does not affect the performance; the
maximum depth does, as expected. The limit of the maximum program depth was 110, after
which the runtime was more than 300 seconds. Most of the runtime is due to the number
invocations of Z3. The number of invocations required increases exponentially relative to the
maximum program depth.

CHAPTER 5. RESULTS 74

0 20 40 60 80 100 120
0.01

0.1

1

10

100

Program depth (k)

T
im

e
in

se
co
nd

s

Scalability using different depths.

1
2
3
4
5

EXP-6: Concurrent Mergesort. The sixth experiment again uses the concurrent mergesort
algorithm. The algorithm is used to check the need and effectivity of Partial Order Reduction.
The results show that when multiple threads exist, POR is a necessity. The runtime is linear
up to program depth 35. After program depth 35, multiple threads begin to exist, drastically
increasing the runtime. When using POR, the runtime does not show this drastic increase.

10 15 20 25 30 35

0

20

40

60

80

100

Program depth (k)

T
im

e
in

se
co
nd

s

Scaliblity using POR and not using POR.

A/def
SC

CHAPTER 5. RESULTS 75

5.3 A Comparison with CBMC and CIVL

We compared our approach with CBMC [11] and CIVL [34]. CBMC is a symbolic model checker
for (non-concurrent) C programs and CIVL is a symbolic execution engine for (concurrent) C
programs. See Section 6.2 for more information about CIVL and CBMC.

A comparison between OOX and C cannot be completely fair. For example, when verifying C
programs, one has to account for low-level pointer arithmetic. To remain sound, the Symbolic
Execution Engine also needs to account that a pointer can point to every possible position in the
memory. The type system of C can not be of much help either, as the C type system is fairly
weak. Our aim is to make the comparison as fair as possible. We tweaked both CBMC and
CIVL to halt on the first specification violation, and only verify user-defined assertions, division
by zero, and array bounds. The commands we used are

cbmc –bounds-check –div-by-zero-check –stop-on-fail –depth <depth> <file>

civl verify -checkMemoryLeak=false -maxDepth=<depth> <file>

where <depth> is the maximum program path length, which we set equal to their OOX counter-
parts and <file> is the file under verification. The default SMT solver of CMBC is MiniSAT
[15]. Early experiments showed that CBMC performed better using MiniSAT than using Z3.
We used Z3 [13] as the SMT solver for CIVL. For each experiment, the original OOX program
and the invalid mutations (or a subset of mutations) were translated to a version for CBMC and
a version for CIVL. The translated programs were implemented to be as similar to their OOX
counterparts as possible. We executed each experiment 5 times, similar to the OOX experiments.

EXP-7: Bubblesort. The seventh experiment consists of comparing our results of the bub-
blesort algorithm with results of CBMC and CIVL. The algorithm is translated to two other
versions: a version in C for CBMC, as presented in Listing B.2 and a version in CIVL-C, as
presented in Listing B.3.

The results show that our approach is sound; the results are the same as that of CBMC and
CIVL. Our approach shows to have a competitive runtime in comparison.

CHAPTER 5. RESULTS 76

Table 5.4: The comparative results of the bubblesort algorithm between OOX, CBMC and CIVL.

OOX CBMC CIVL
File Expec. Time (s) Equiv. Time (s) Equiv. Time (s)

Result Result Result
ORIGINAL VALID 0.342 X 1.460 X 2.96
ARITH0 INVALID 0.130 X 0.541 X 2.15
ARITH1 INVALID 0.205 X 0.560 X 2.16
ARITH2 INVALID 0.178 X 0.559 X 2.17
ARITH3 INVALID 0.327 X 0.666 X 2.49
ARITH4 INVALID 0.178 X 0.578 X 2.18
ARITH8 INVALID 0.155 X 0.677 X 2.28
ARITH11 INVALID 0.143 X 0.633 X 2.34
CMP1 INVALID 0.180 X 0.575 X 2.46
CMP2 INVALID 0.176 X 0.567 X 2.80
CMP3 INVALID 0.174 X 0.578 X 2.09
CMP4 INVALID 0.104 X 0.589 X 2.24
CMP5 INVALID 0.120 X 0.601 X 2.09
DEL2 INVALID 0.113 X 43.098 X 2.06
DEL3 INVALID 0.169 X 0.644 X 2.21
DEL4 INVALID 0.153 X 0.666 X 2.23
DEL7 INVALID 0.218 X 0.272 X 2.42
LIT0 INVALID 0.048 X 0.204 X 2.19
LIT2 INVALID 0.122 X 0.633 X 2.10
LIT3 INVALID 0.162 X 0.570 X 2.30
LIT4 INVALID 0.168 X 0.528 X 2.36
LIT5 INVALID 0.116 X 0.636 X 2.20
LIT7 INVALID 0.143 X 0.660 X 2.26
LIT8 INVALID 0.232 X 0.303 X 2.38
LIT10 INVALID 0.262 X 0.543 X 2.35
UN0 INVALID 0.054 X 0.205 X 2.07
VAR0 INVALID 0.116 X 32.603 X 2.14
VAR1 INVALID 0.175 X 9.543 X 2.14
VAR2 INVALID 0.184 X 0.602 X 2.12
VAR3 INVALID 0.140 X 33.697 X 2.10
VAR4 INVALID 0.120 X 6.517 X 2.29
VAR5 INVALID 0.267 X 6.367 X 2.35
VAR6 INVALID 0.136 X 6.514 X 2.32
VAR7 INVALID 0.141 X 6.733 X 2.19
VAR10 INVALID 0.136 X 6.609 X 2.19
VAR11 INVALID 0.129 X 6.787 X 2.31
VAR14 INVALID 0.189 X 0.185 X 2.34
VAR15 INVALID 0.211 X 0.601 X 3.45
VAR16 INVALID 0.209 X 0.200 X 2.18
VAR17 INVALID 0.188 X 0.573 X 3.30
VAR20 INVALID 0.162 X 9.156 X 2.28
VAR21 INVALID 0.158 X 8.991 X 2.27

CHAPTER 5. RESULTS 77

EXP-8: Concurrent Mergesort. The eight experiments consists of comparing our results of
the concurrent mergesort algorithm with results of CBMC and CIVL. The concurrent mergesort
algorithm is translated to one other version: a version in CIVL-C, as presented in Listing B.6.

The results again show that our approach is sound; the results are the same as that of CIVL.
There is one anomaly: the extreme runtime difference of CMP2. We contacted the researchers of
CIVL, but they could not help in explaining this difference. They mentioned that "CIVL might
be lucky".

Table 5.5: The comparative results of the concurrent mergesort algorithm between OOX and
CIVL.

OOX CIVL
File Expec. Time (s) Equiv. Time (s)

Result Result
ORIGINAL VALID 1.194 X 4.43
CMP2 INVALID 130.765 X 4.06
LIT14 INVALID 0.189 X 3.55
VAR103 INVALID 0.200 X 4.00
VAR155 INVALID 0.254 X 4.26

Chapter 6

Related Work

6.1 Intermediate Verification Languages

Several Intermediate Verification Language (IVL) have been developed. A comparison can be
seen in Table 6.1, where the main features of interest of five languages and the OOX language
are compared.

Table 6.1: A comparison between the key features of different languages.

Language IVL Object-oriented Concurrency

Boogie X
CIVL-MS X X
Why
Silver X
CIVL-C X
OOX X X X

Boogie. Boogie is an IVL developed by the RiSE group at Microsoft Research [27]. It can be
considered low-level as there is no native support for object-oriented concepts, concurrency or a
memory model, but most such things can be modelled. This has the advantage that it is flexible,
but comes at the cost of extra development time and design choices for the user. There exist
several translations into Boogie, for example Spec# [4] and Java bytecode using BML [9].

Boogie has a simple type system which includes user defined types and the following standard
types: (1) booleans; (2) integers (3) bit-vectors of arbitrary size; and (4) a polymorphic map.
There is no native support for subtyping, but this can be modelled using partial orders.

The statements that are part of the Boogie language are those that are expected, that is: (1) as-
signment; (2) while loops; (3) if-then-else statements; (4) control flow statements (goto and
return); (5) method call statements; (6) assertions and assumptions; and (7) havoc statements
that allow for the assignment of non-deterministic values to variables.

78

CHAPTER 6. RELATED WORK 79

Overall, Boogie is flexible enough to model object-oriented languages as C# and Java, but this
flexibility has the downside that low-level aspects need to be modelled explicitly. Boogie has no
native support for concurrency.

Microsoft Research also developed a language on top of Boogie: CIVL [21] (note that this
language differs from the other similarly language, also named CIVL. For clarity, we will refer to
this version of CIVL as CIVL-MS.). It extends Boogie with support for concurrency.

Silver. Silver is an IVL developed at ETH Zürich [29]. It aims to provide an infrastructure to
verify permission based logics and separation logic [33] in particular. One mayor different design
choice between Silver and most other IVLs is that the heap is defined in the language itself, and
need not be explicitly defined, like in Boogie. This choice has been made to accommodate for
the permission based logics.

Silver has no explicit language support for object-oriented concepts or concurrency, although
flexible enough to model both. The downside of this approach is that the every possible inter-
leaving of the target language has to be modelled and thus optimizations such as partial order
reduction are not applied.

The back-end of Silver, named Viper, consists of two verification tools. The first one is a ver-
ification condition generator, which generates formulas which in turn can be passed to a SMT
solver. The second one is based on symbolic execution, which reasons about heap properties
directly and resorts for non-heap related properties to a SMT solver.

Why. Why is a tool for deductive program verification [17]. It specifies a programming and
specification language called WhyML. It is used as an intermediate verification language to verify
C, Java and Ada programs.

WhyML is a dialect of ML, with several modifications. Nested functions and partial function
application are supported, but higher-order functions are not. WhyML does not make explicit
use of a memory model, but instead statically determines the possible aliases. WhyML does not
support concurrency.

CIVL-C. CIVL-C (not to be confused with CIVL from Microsoft Research) is an IVL that is
a superset of ANSI-C with a formal semantics [34]. It adds constructs to simplify the modelling
of concurrency, verification and memory aspects of the original C language. CIVL-C includes a
verification back-end, named CIVL. For more details about CIVL, see Section 6.2.

6.2 Formal Software Verification

Formal software verification is a widely studied field where two approaches are common practice:
symbolic execution and model checking. There exists a variety of mature tools with different
supported language constructs and target languages. A selection can be seen in Table 6.2.

CHAPTER 6. RELATED WORK 80

Table 6.2: A selection of tools for program verification.

Name Approach Concurrency Target languages

KLEE Symbolic execution LLVM bitcode
Cloud9 Symbolic execution (cloud) LLVM bitcode
VerCors Symbolic execution X Java, OpenCL, PVL
CBMC/JBMC Symbolic model checking C, C++ / Java bytecode
CIVL Symbolic execution X CIVL-C

KLEE and Cloud9. KLEE and Cloud9 are tools based on symbolic execution to automatically
generate tests aiming at high test coverage and verify programs in LLVM bitcode [8]. Several
optimizations are built into KLEE:

1. Compact State Representation: a representation of the heap as an immutable map which
allows for the sharing between different states;

2. Query Optimizations: (1) expression rewriting; (2) implied value concretization, for ex-
ample when a constraint has the form x + 1 = 10, x = 9 can be deduced; and (3) a
counter-example cache; and

3. State Scheduling: different techniques to explore the search space, e.g. random path selec-
tion and targeting uncovered code.

Cloud9 is a tool based on KLEE and parallelizes the symbolic execution engine to achieve a
speed-up. Secondly, Cloud9 runs in the cloud, like Amazon EC2 [10].

VerCors. VerCors is a tool developed by the Formal Methods and Tools group at the University
of Twente. It aims to verify concurrent programs, written in either Java, C, OpenCL, OpenMP
and its own prototypical verification language PVL [6]. VerCors allows for the verification of the
absence of data-races, memory safety and functional correctness. It uses Concurrent Separation
Logic (CSL) as its underlying logic [31].

Concurrent Separation Logic, an extension of Hoare logic, is a specialized logic to reason about
properties of the heap in a concurrent setting. Two main concepts of CSL are the notions of
ownership and disjointness. The ownership of a heap property must be made explicit. The notion
of disjointness, described using the operator P ∗Q, denotes that P and Q are disjoint. They are
not allowed to both write to the same location in the heap [31].

CBMC and JBMC. CBMC and JBMC are tools based on (bounded) symbolic model check-
ing, both using the CPROVER back-end [11]. CBMC targets C and C++ where JBMC targets
Java bytecode. CBMC supports verifying pointer safety, array bounds and user-provided asser-
tions. CBMC unwinds and expands all loops, function calls and goto statement until a feasible
depth is reached. This feasibility is verified by generating unwinding assertions, which verify that
enough unwinding has been done. CBMC replaces all assignments such that they have a static-
single assignment form, removing all side-effects from the original program. CBMC generates
formulas in conjunctive normal form, which are verified using a SMT solver.

CHAPTER 6. RELATED WORK 81

JBMC [12] is an extension of CBMC, adding support for Java. JBMC is a front-end for CBMC,
which translates Java bytecode into a CFG representation, suitable for CBMC. JBMC includes
an abstract representation of the standard Java libraries, which they call the operation model.

At this point CBMC and JBMC do not have support for concurrency.

CIVL. CIVL is the verification back-end of the IVL CIVL-C [34], as described in Section 6.1.
It is based on symbolic execution and is able to find, among other things, assertion violations,
deadlocks and memory leaks. Instead of directly using a SMT solver, it uses the Symbolic Algebra
and Reasoning Library, which reasons about the formulas. If this library cannot give a definitive
answer, it invokes a SMT solver to give a conclusive result. CIVL uses a logical model of the
memory, in contrast to a physical memory model, which OOX uses.

CIVL has support for concurrency and optimizes the symbolic execution with partial order
reduction. They describe a generalized version of [14].

Chapter 7

Conclusions and Future Work

We presented the intermediate verification language, OOX, with a formally defined static- and
dynamic syntax, presented our symbolic execution engine for OOX and shown the results of our
experiments.

We have shown that OOX is capable of modelling several algorithms, concurrency and data
structures. OOX currently lacks the convenience of expressive expressions to be used in specifi-
cations, assumptions and assertions, although this problem can be mitigated by integrating the
specifications with the algorithm or logic of the code itself.

We first evaluated the completeness of our Symbolic Execution Engine, the soundness and com-
pleteness of the optimizations and the efficacy of the optimizations. For the first experiment,
we have shown that the SEE found the bugs in all mutants that were invalid according to its
specification and terminated. The same holds true for the second experiment. We have shown
that our approach is also able to find the deadlock in the fourth experiment. Suggesting that
our approach is complete. The optimizations show to have a drastic effect in most cases, being
able to reduce the runtime from 100 seconds to 10 seconds in some extremes. We expected the
random interleaving exploration to have a positive effect on the runtime, but the experiments
suggest that this is not the case. Random interleaving exploration seems to double the runtime
on average for the dining philosophers problem. The verification results of all experiments in
all different configurations yielded were equal, suggesting that the optimizations are sound and
complete.

We evaluated how scalable our Symbolic Execution Engine is. It has been shown that our SEE is
able to completely explore the search space of the algorithm for finding the minimum element in
a linked list, up to a linked list of size 5 with maximum depth 120, which is well above necessary,
in reasonable time. Partial Order Reduction is shown to be a necessity when verifying concurrent
programs, as expected.

Finally, to verify the soundness of our Symbolic Execution Engine, we compared it with CBMC
and CIVL, two established tools for which it is reasonable to assume soundness. All experiments
showed that the verification results were equal. The runtimes show that our SEE is on par with
CBMC and CIVL. There was one outlier in the concurrent mergesort comparison experiment,
the mutant CMP2, for which our SEE needed 130 seconds, while CIVL managed to verify the
same mutant in 4 seconds. Further investigation of this outlier can be helpful to improve our
SEE.

82

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 83

7.1 Future Work

This thesis provides a basis for possible future work. We provide several of such directions.

Extending the OOX Language. It is thinkable that most real-world Java and C# programs
consists of more complex constructs which are not part of this thesis. Extending the OOX
language with support to model such constructs would be beneficial. One possibility is to extend
OOX with user-defined subtyping, allowing for more Java and C# programs to be modelled
using OOX. This will lead to new challenges in the symbolic execution engine as, for example,
dynamic dispatch might be required.

Another interesting direction is to extend the specification language to be more expressive. For
example, extending the specifications to be metamorphic. Research on this subject has already
been done, of which the work by Barnett et al. [5] is a promising starting point.

Exploring Other Approaches to Reduce the Effects of Concurrency on The Path
Explosion Problem. We successfully reduced the effects of concurrency on the path explosion
problem when only a few threads exist. However, it is thinkable that one wants to verify programs
consisting of more threads.

One way to achieve this goal is to explore other approaches to Partial Order Reduction. The
Partial Order Reduction approach we have taken has the advantage that it fits neatly with
symbolic execution, unlike many other partial order approaches. Other approaches are more
suitable for application in model checking. The current technique can be improved by, instead of
defining the independence relation only on the reference level, defining it on the reference, field
and array index level. Another way to optimize is to identify parts of the symbolic execution
engine where one can decrease the possible concrete references that a symbolic reference can
point to. Extensive research has been done on Partial Order Reduction, some claiming to be
optimal. The improved variant [23] of the approach we used claims to be optimal for an arbitrary
number of threads. This is worthwhile to investigate, as the experiments showed that Partial
Order Reduction can drastically improve the scalability of the symbolic execution.

Another way to achieve this goal is to explore how our approach can be combined with approaches
based on compositionality. It would be more efficient if one could verify a component in isolation
of another component [32], like in VerCors [6], where they make use of Concurrent Separation
Logic.

Exploring Other Optimization Techniques. The literature contains a vast collection of
other techniques aiming to reduce the effects of the path explosion problem. The survey by
Baldoni et al. [3] presents a wide variety of optimization techniques, other than described in this
thesis. Other techniques can be explored as well, like the use of program slicing [16, 35].

Bibliography

[1] IEEE Draft Guide: Adoption of the Project Management Institute (PMI) Standard: A
Guide to the Project Management Body of Knowledge (PMBOK Guide)-2008 (4th edition).
IEEE P1490/D1, May 2011, pages 1–505, June 2011.

[2] Stephen Adams. Implementing sets efficiently in a functional language. 1992.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono DâĂŹelia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. ACM Computing Surveys (CSUR),
51(3):1–39, 2018.

[4] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino.
Boogie: A modular reusable verifier for object-oriented programs. In International Sympo-
sium on Formal Methods for Components and Objects, pages 364–387. Springer, 2005.

[5] Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure: Useful ab-
stractions in specifications. In ECOOP workshop on formal techniques for Java-like programs
(FTfJP), 2004.

[6] Stefan Blom and Marieke Huisman. The vercors tool for verification of concurrent programs.
In International Symposium on Formal Methods, pages 127–131. Springer, 2014.

[7] Jeremy S Bradbury, James R Cordy, and Juergen Dingel. Mutation operators for concurrent
java (j2se 5.0). In Second Workshop on Mutation Analysis (Mutation 2006-ISSRE Workshops
2006), pages 11–11. IEEE, 2006.

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDI, volume 8, pages
209–224, 2008.

[9] Jacek Chrzaszcz, Marieke Huisman, and Aleksy Schubert. Bml and related tools. In In-
ternational Symposium on Formal Methods for Components and Objects, pages 278–297.
Springer, 2008.

[10] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George Candea.
Cloud9: A software testing service. ACM SIGOPS Operating Systems Review, 43(4):5–10,
2010.

[11] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c programs.
In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 168–176. Springer, 2004.

84

BIBLIOGRAPHY 85

[12] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek Trtik. Jbmc:
A bounded model checking tool for verifying java bytecode. In International Conference on
Computer Aided Verification, pages 183–190. Springer, 2018.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[14] Matthew B Dwyer, John Hatcliff, Venkatesh Prasad Ranganath, et al. Exploiting object
escape and locking information in partial-order reductions for concurrent object-oriented
programs. Formal Methods in System Design, 25(2-3):199–240, 2004.

[15] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In International conference on
theory and applications of satisfiability testing, pages 502–518. Springer, 2003.

[16] RR Eilers. Fine-grained model slicing for faster verification. Master’s thesis, 2018.

[17] Jean-Christophe Filliâtre and Andrei Paskevich. Why3âĂŤwhere programs meet provers.
In European Symposium on Programming, pages 125–128. Springer, 2013.

[18] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-
ing software. In ACM Sigplan Notices, volume 40, pages 110–121. ACM, 2005.

[19] Simson Garfinkel. History’s worst software bugs. Wired News, Nov, 2005.

[20] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. Assertion
guided symbolic execution of multithreaded programs. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pages 854–865. ACM, 2015.

[21] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and modular
refinement reasoning for concurrent programs. In International Conference on Computer
Aided Verification, pages 449–465. Springer, 2015.

[22] Robert Husák and Filip Zavoral. Source code assertion verification using backward symbolic
execution. In AIP Conference Proceedings, volume 2116, page 350004. AIP Publishing LLC,
2019.

[23] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction: An opti-
mal symbolic partial order reduction technique. In International Conference on Computer
Aided Verification, pages 398–413. Springer, 2009.

[24] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. Generalized symbolic execution
for model checking and testing. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 553–568. Springer, 2003.

[25] James C King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[26] John Lång and ISWB Prasetya. Model checking a c++ software framework: a case study.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 1026–1036,
2019.

[27] K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131):9, 2008.

[28] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks. Directed symbolic
execution. In International Static Analysis Symposium, pages 95–111. Springer, 2011.

BIBLIOGRAPHY 86

[29] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A verification infras-
tructure for permission-based reasoning. In International Conference on Verification, Model
Checking, and Abstract Interpretation, pages 41–62. Springer, 2016.

[30] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis.
Springer, 2015.

[31] Wytse Hendrikus Marinus Oortwijn. Deductive techniques for model-based concurrency ver-
ification. PhD thesis, 2019.

[32] ISWB Prasetya, SD Swierstra, and B Widjaja. Component-wise formal approach to design
distributed systems, 2000.

[33] John C Reynolds. Separation logic: A logic for shared mutable data structures. In Pro-
ceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74. IEEE,
2002.

[34] Stephen F Siegel, Manchun Zheng, Ziqing Luo, Timothy K Zirkel, Andre V Marianiello,
John G Edenhofner, Matthew B Dwyer, and Michael S Rogers. Civl: the concurrency
intermediate verification language. In SC’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–12. IEEE,
2015.

[35] Josep Silva. A vocabulary of program slicing-based techniques. ACM computing surveys
(CSUR), 44(3):1–41, 2012.

[36] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial order re-
duction. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 382–396. Springer, 2008.

[37] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M Kirby. Efficient stateful
dynamic partial order reduction. In International SPIN Workshop on Model Checking of
Software, pages 288–305. Springer, 2008.

Appendix A

The Concrete Syntax of the OOX
language

A.1 Lexical Structure

〈input〉 ::= (〈section〉* 〈“newline character”〉)*

〈section〉 ::= 〈“whitespace”〉
| 〈comment〉
| 〈token〉

〈comment〉 ::= \\ 〈“any character except newline characters”〉

〈token〉 ::= 〈identifier〉
| 〈keyword〉
| 〈literal〉
| 〈punctuator〉

〈identifier〉 ::= 〈“any english alphabet character”〉+

〈keyword〉 ::= assert | assume | bool | break
| catch | char | class | continue
| else | ensures | exceptional | exists
| false | float | forall | fork
| if | int | join | lock
| new | null | requires | return
| static | string | this | throw
| true | try | uint | void
| while

87

APPENDIX A. THE CONCRETE SYNTAX OF THE OOX LANGUAGE 88

〈literal〉 ::= 〈boolean〉
| 〈integer〉
| 〈float〉
| 〈char〉
| 〈string〉
| null

〈boolean〉 ::= true | false

〈integer〉 ::= 〈digit〉+

〈float〉 ::= 〈digit〉+ . 〈digit+〉

〈char〉 ::= ’ 〈“any character except ’ and newline characters”〉 ’

〈string〉 ::= " 〈“any character except " and newline characters”〉 "

〈punctuator〉 ::= + | - | * | / | % | ! | := | <
| > | <= | >= | == | != | && | || | ==>
| { | } | [|] | (|) | . | ,
| ; | : | #

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A.2 Syntactical Structure

〈program〉 ::= 〈class〉*

〈class〉 ::= class 〈identifier〉 { 〈member〉* }

〈member〉 ::= 〈constructor〉 | 〈method〉 | 〈 field〉

〈constructor〉 ::= 〈identifier〉 (〈parameters〉) 〈specification〉 〈body〉

〈method〉 ::= static? 〈type〉 〈identifier〉 (〈parameters〉) 〈specification〉 〈body〉

〈parameters〉 ::= 〈parameter〉 (, 〈parameter〉)* | ε

APPENDIX A. THE CONCRETE SYNTAX OF THE OOX LANGUAGE 89

〈parameter〉 ::= 〈nonvoidtype〉 〈identifier〉

〈specification〉 ::= requires (〈verificationexpression〉)
ensures (〈verificationexpression〉)
exceptional (〈verificationexpression〉)

〈field〉 ::= 〈nonvoidtype〉 〈identifier〉 ;

〈body〉 ::= { 〈statement〉+ }

〈type〉 ::= void | 〈nonvoidtype〉

〈nonvoidtype〉 ::= 〈primitivetype〉 | 〈referencetype〉

〈primitivetype〉 ::= uint | int | bool | float | char

〈referencetype〉 ::= 〈classtype〉 | 〈arraytype〉

〈classtype〉 ::= 〈identifier〉 | string

〈arraytype〉 ::= (〈classtype〉 | 〈primitivetype〉) ([])+

〈statements〉 ::= 〈statement〉*

〈statement〉 ::= 〈declaration〉
| 〈assignment〉
| 〈call〉
| 〈skip〉
| 〈assert〉
| 〈assume〉
| 〈while〉
| 〈ite〉
| 〈continue〉
| 〈break〉
| 〈return〉
| 〈throw〉
| 〈try〉
| 〈block〉
| 〈lock〉
| 〈fork〉
| 〈join〉

APPENDIX A. THE CONCRETE SYNTAX OF THE OOX LANGUAGE 90

〈declaration〉 ::= 〈nonvoidtype〉 〈identifier〉 ;

〈assignment〉 ::= 〈lhs〉 := 〈rhs〉 ;

〈lhs〉 ::= 〈identifier〉
| 〈identifier〉 . 〈identifier〉
| 〈identifier〉 [〈expression〉]

〈rhs〉 ::= 〈expression〉
| 〈identifier〉 . 〈identifier〉
| 〈invocation〉
| 〈identifier〉 [〈expression〉]
| new 〈identifier〉 (〈arguments〉)
| new (〈classtype〉 | 〈primitivetype〉) ([〈integer〉])+

〈call〉 ::= 〈invocation〉 ;

〈invocation〉 ::= 〈identifier〉 . 〈identifier〉 (〈arguments〉)

〈arguments〉 ::= 〈expression〉 (, 〈expression〉)* | ε

〈skip〉 ::= ;

〈assert〉 ::= assert 〈verificationexpression〉 ;

〈assume〉 ::= assume 〈verificationexpression〉 ;

〈while〉 ::= while (〈expression〉) 〈statement〉

〈ite〉 ::= if (〈expression〉) 〈statement〉 else 〈statement〉

〈continue〉 ::= continue ;

〈break〉 ::= break ;

〈return〉 ::= return 〈expression〉? ;

〈throw〉 ::= throw ;

〈try〉 ::= try { 〈statements〉 } catch { 〈statements〉 }

APPENDIX A. THE CONCRETE SYNTAX OF THE OOX LANGUAGE 91

〈block〉 ::= { 〈statements〉 }

〈lock〉 ::= lock (〈identifier〉) { 〈statements〉 }

〈fork〉 ::= fork 〈invocation〉 ;

〈join〉 ::= join ;

〈expression〉 ::= 〈expression2 〉

〈verificationexpression〉 ::= 〈expression1 〉

〈expression1 〉 ::= forall 〈identifier〉 , 〈identifier〉 : 〈identifier〉 : 〈expression1 〉
| exists 〈identifier〉 , 〈identifier〉 : 〈identifier〉 : 〈expression1 〉
| 〈expression2 〉

〈expression2 〉 ::= 〈expression3 〉 ==> 〈expression2 〉
| 〈expression3 〉

〈expression3 〉 ::= 〈expression4 〉 && 〈expression3 〉
| 〈expression4 〉 || 〈expression3 〉
| 〈expression4 〉

〈expression4 〉 ::= 〈expression5 〉 == 〈expression4 〉
| 〈expression5 〉 != 〈expression4 〉
| 〈expression5 〉

〈expression5 〉 ::= 〈expression6 〉 < 〈expression5 〉
| 〈expression6 〉 > 〈expression5 〉
| 〈expression6 〉 <= 〈expression5 〉
| 〈expression6 〉 >= 〈expression5 〉
| 〈expression6 〉

〈expression6 〉 ::= 〈expression7 〉 + 〈expression6 〉
| 〈expression7 〉 - 〈expression6 〉
| 〈expression7 〉

〈expression7 〉 ::= 〈expression8 〉 * 〈expression7 〉
| 〈expression8 〉 / 〈expression7 〉
| 〈expression8 〉 % 〈expression7 〉
| 〈expression8 〉

APPENDIX A. THE CONCRETE SYNTAX OF THE OOX LANGUAGE 92

〈expression8 〉 ::= - 〈expression8 〉
| ! 〈expression8 〉
| 〈expression9 〉

〈expression9 〉 ::= 〈identifier〉
| # 〈identifier〉
| (〈expression〉)
| 〈literal〉

Appendix B

Experimental Data

B.1 Bubblesort

Name Result SC (s) S (s) C (s) N (s)
ORIGINAL VALID 0.342 0.644 4.888 10.600
ARITH5 VALID 0.315 0.538 4.457 10.504
ARITH6 VALID 0.320 0.541 4.396 10.449
ARITH7 VALID 0.328 0.557 4.582 10.351
ARITH9 VALID 0.456 0.859 6.774 13.607
ARITH10 VALID 0.429 0.812 6.113 11.524
CMP0 VALID 0.350 0.536 4.536 10.389
DEL0 VALID 0.337 0.538 4.494 10.418
DEL1 VALID 0.432 0.848 4.391 10.606
DEL5 VALID 0.337 0.526 4.654 10.825
DEL6 VALID 0.344 0.514 4.558 10.781
DEL8 VALID 0.476 0.872 4.358 13.801
LIT1 VALID 0.438 0.844 4.451 10.386
LIT6 VALID 0.345 0.583 4.682 10.533
LIT9 VALID 0.467 0.859 6.753 13.528
VAR8 VALID 0.330 0.550 4.613 10.432
VAR9 VALID 0.338 0.535 4.582 10.496
VAR12 VALID 0.322 0.539 4.483 10.416
VAR13 VALID 0.354 0.558 4.524 10.481
VAR18 VALID 0.469 0.854 4.367 13.397
VAR19 VALID 0.449 0.860 4.337 13.508
ARITH1 INVALID (ensures) 0.205 0.244 0.993 1.662
ARITH2 INVALID (ensures) 0.178 0.248 1.007 1.670
ARITH3 INVALID (ensures) 0.327 0.559 2.304 3.148
CMP1 INVALID (ensures) 0.180 0.222 0.402 0.440
CMP2 INVALID (ensures) 0.176 0.231 0.425 0.424
CMP4 INVALID (ensures) 0.104 0.098 3.523 6.973
DEL3 INVALID (ensures) 0.169 0.201 2.940 4.829

93

APPENDIX B. EXPERIMENTAL DATA 94

DEL4 INVALID (ensures) 0.153 0.162 1.257 2.524
DEL7 INVALID (ensures) 0.218 0.299 1.281 1.909
LIT0 INVALID (ensures) 0.048 0.057 4.455 10.619
LIT10 INVALID (ensures) 0.262 0.401 1.336 1.972
LIT3 INVALID (ensures) 0.162 0.236 0.431 0.483
LIT4 INVALID (ensures) 0.168 0.243 1.028 1.675
LIT8 INVALID (ensures) 0.232 0.303 1.283 1.950
UN0 INVALID (ensures) 0.054 0.064 4.546 10.320
VAR1 INVALID (ensures) 0.175 0.233 2.002 3.332
VAR2 INVALID (ensures) 0.184 0.258 0.986 1.635
VAR14 INVALID (ensures) 0.189 0.249 1.030 1.634
VAR16 INVALID (ensures) 0.209 0.301 1.194 1.707
VAR15 INVALID (ensures) 0.211 0.247 1.047 1.682
VAR17 INVALID (ensures) 0.188 0.253 1.028 1.632
ARITH0 INVALID (exceptional) 0.130 0.124 0.168 0.173
ARITH4 INVALID (exceptional) 0.178 0.149 0.208 0.233
ARITH8 INVALID (exceptional) 0.155 0.182 0.259 0.281
ARITH11 INVALID (exceptional) 0.143 0.192 0.260 0.298
CMP3 INVALID (exceptional) 0.174 0.236 0.176 0.195
CMP5 INVALID (exceptional) 0.120 0.290 0.281 0.272
DEL2 INVALID (exceptional) 0.113 0.124 0.149 0.141
LIT2 INVALID (exceptional) 0.122 0.124 0.132 0.163
LIT5 INVALID (exceptional) 0.116 0.122 0.182 0.163
LIT7 INVALID (exceptional) 0.143 0.143 0.223 0.203
VAR0 INVALID (exceptional) 0.116 0.130 0.186 0.183
VAR3 INVALID (exceptional) 0.140 0.139 0.201 0.179
VAR4 INVALID (exceptional) 0.120 0.131 0.169 0.175
VAR5 INVALID (exceptional) 0.267 0.244 0.199 0.193
VAR6 INVALID (exceptional) 0.136 0.146 0.193 0.186
VAR7 INVALID (exceptional) 0.141 0.134 0.189 0.203
VAR10 INVALID (exceptional) 0.136 0.162 0.211 0.217
VAR11 INVALID (exceptional) 0.129 0.150 0.234 0.230
VAR20 INVALID (exceptional) 0.162 0.161 0.253 0.238
VAR21 INVALID (exceptional) 0.158 0.161 0.248 0.234

B.2 Minimum element in Linked List

Name Result SC (s) S (s) C (s) N (s)
ORIGINAL VALID 8.125 7.797 76.218 76.728
ARITH3 VALID 61.242 58.983 80.835 80.844
ARITH4 VALID 29.939 30.531 52.165 53.957
ARITH5 VALID 29.700 29.613 51.703 51.971
CMP2 VALID 7.714 7.736 77.599 77.512
DEL4 VALID 8.166 8.164 79.384 79.352
DEL5 VALID 7.746 7.767 103.350 103.098

APPENDIX B. EXPERIMENTAL DATA 95

DEL7 VALID 1.864 2.145 66.456 106.410
DEL9 VALID 0.628 0.701 2.265 2.686
DEL11 VALID 56.278 56.503 79.915 82.629
LIT6 VALID 58.517 57.949 78.601 78.659
VAR9 VALID 5.851 5.847 75.989 76.761
VAR10 VALID 4.209 7.573 24.306 70.866
VAR23 VALID 0.718 1.003 2.084 2.692
VAR24 VALID 0.902 1.035 2.524 2.876
VAR30 VALID 7.886 7.885 77.293 77.752
VAR32 VALID 54.572 54.673 75.995 74.647
VAR33 VALID 57.309 56.630 76.116 75.924
VAR37 VALID 7.172 7.188 55.967 56.099
CMP3 INVALID (ensures) 1.195 1.203 10.322 10.205
CMP4 INVALID (ensures) 1.177 1.183 9.939 9.832
DEL6 INVALID (ensures) 0.076 0.063 0.107 0.097
DEL8 INVALID (ensures) 1.117 1.105 9.561 9.479
DEL10 INVALID (ensures) 1.174 1.148 76.753 75.652
EQ2 INVALID (ensures) 7.968 8.054 78.971 78.509
LIT5 INVALID (ensures) 0.352 0.311 3.040 3.010
LIT7 INVALID (ensures) 0.337 0.357 3.116 3.078
VAR5 INVALID (ensures) 0.097 0.081 0.123 0.113
VAR13 INVALID (ensures) 1.020 1.056 9.024 9.074
VAR15 INVALID (ensures) 1.020 1.006 8.953 8.972
VAR16 INVALID (ensures) 1.076 1.048 9.371 9.305
VAR17 INVALID (ensures) 0.977 1.011 8.687 8.641
VAR18 INVALID (ensures) 1.028 1.024 8.727 8.645
VAR19 INVALID (ensures) 7.218 7.227 72.054 70.539
VAR21 INVALID (ensures) 1.025 1.002 8.963 9.012
VAR22 INVALID (ensures) 7.582 7.575 79.089 80.521
VAR29 INVALID (ensures) 1.157 1.117 9.721 9.701
ARITH2 INVALID (exceptional) 0.367 0.317 0.495 0.445
DEL3 INVALID (exceptional) 0.152 0.135 0.149 0.151
LIT4 INVALID (exceptional) 0.150 0.137 0.169 0.181
VAR36 INVALID (exceptional) 0.326 0.320 0.469 0.463
VAR4 INVALID (exceptional) 0.157 0.131 0.165 0.161
VAR6 INVALID (exceptional) 0.068 0.067 0.080 0.087
VAR8 INVALID (exceptional) 0.130 0.136 0.160 0.158
VAR12 INVALID (exceptional) 0.177 0.149 0.182 0.178
VAR26 INVALID (exceptional) 0.215 0.132 0.187 0.164
VAR27 INVALID (exceptional) 0.143 0.132 0.181 0.180
VAR35 INVALID (exceptional) 0.369 0.358 0.500 0.507

B.3 Concurrent Mergesort

Name Result A/rand (s) A/def (s)

APPENDIX B. EXPERIMENTAL DATA 96

ORIGINAL VALID 1.163 1.194
ARITH4 VALID 37.034 37.648
ARITH5 VALID 18.708 18.666
ARITH6 VALID 37.258 37.191
ARITH7 VALID 11.311 11.411
ARITH8 VALID 19.977 19.956
ARITH9 VALID 0.436 0.428
ARITH10 VALID 10.326 10.348
ARITH11 VALID 10.498 10.288
ARITH12 VALID 178.864 178.424
ARITH13 VALID 25.063 24.940
ARITH14 VALID 25.525 25.005
ARITH15 VALID 122.039 122.673
ARITH20 VALID 1.150 1.147
ARITH22 VALID 0.319 0.319
ARITH23 VALID 0.319 0.316
ARITH29 VALID 1.164 1.187
ARITH30 VALID 1.168 1.138
ARITH31 VALID 1.165 1.234
ARITH33 VALID 1.404 1.444
ARITH34 VALID 1.350 1.333
ARITH35 VALID 1.342 1.337
ARITH37 VALID 1.198 1.178
ARITH38 VALID 1.206 1.202
ARITH39 VALID 1.170 1.145
ARITH41 VALID 1.475 1.333
ARITH42 VALID 1.314 1.330
ARITH44 VALID 1.140 1.125
ARITH45 VALID 1.136 1.142
ARITH46 VALID 1.147 1.139
ARITH47 VALID 1.184 1.313
ARITH52 VALID 1.140 1.140
ARITH53 VALID 1.157 1.133
ARITH54 VALID 1.128 1.142
ARITH55 VALID 1.234 1.224
ARITH60 VALID 1.191 1.147
ARITH61 VALID 1.213 1.102
ARITH62 VALID 1.004 0.999
ARITH63 VALID 1.012 1.006
ARITH65 VALID 1.166 1.147
ARITH66 VALID 1.150 1.135
ARITH67 VALID 1.144 1.166
CMP0 VALID 42.602 42.966
CMP3 VALID 1.178 1.200
CMP4 VALID 1.157 1.177
CMP5 VALID 1.174 1.164

APPENDIX B. EXPERIMENTAL DATA 97

CMP18 VALID 1.160 1.165
DEL2 VALID 18.910 18.546
DEL3 VALID 0.446 0.453
DEL4 VALID 0.544 0.634
DEL5 VALID 80.056 79.138
DEL8 VALID 1.156 1.172
DEL10 VALID 1.294 1.138
DEL14 VALID 1.164 1.147
DEL15 VALID 1.396 1.363
DEL17 VALID 1.167 1.179
DEL18 VALID 1.381 1.360
DEL20 VALID 1.154 1.136
DEL23 VALID 1.169 1.157
DEL25 VALID 1.147 1.141
DEL27 VALID 1.179 1.145
FORK0 VALID 0.355 0.344
LIT6 VALID 21.951 22.597
LIT7 VALID 0.426 0.430
LIT8 VALID 25.257 24.696
LIT9 VALID 1.173 1.156
LIT11 VALID 1.152 1.153
LIT16 VALID 1.157 1.149
LIT18 VALID 1.372 1.372
LIT19 VALID 1.159 1.164
LIT20 VALID 1.207 1.146
LIT22 VALID 1.376 1.393
LIT23 VALID 1.142 1.145
LIT24 VALID 1.136 1.132
LIT25 VALID 1.189 1.149
LIT27 VALID 1.186 1.170
LIT28 VALID 1.181 1.180
LIT29 VALID 1.185 1.164
LIT31 VALID 1.170 1.175
LIT32 VALID 1.164 1.134
LIT33 VALID 1.146 1.183
VAR0 VALID 10.232 10.289
VAR2 VALID 1.174 1.157
VAR3 VALID 22.114 22.225
VAR4 VALID 0.428 0.415
VAR5 VALID 10.210 10.201
VAR6 VALID 0.431 0.415
VAR7 VALID 0.451 0.425
VAR8 VALID 0.428 0.418
VAR9 VALID 22.128 22.207
VAR10 VALID 4.923 5.020
VAR11 VALID 1.147 1.143

APPENDIX B. EXPERIMENTAL DATA 98

VAR12 VALID 1.150 1.130
VAR13 VALID 1.172 1.154
VAR14 VALID 1.151 1.143
VAR16 VALID 1.133 1.142
VAR25 VALID 1.175 1.163
VAR27 VALID 1.116 1.151
VAR28 VALID 1.160 1.148
VAR30 VALID 1.179 1.168
VAR31 VALID 1.170 1.149
VAR37 VALID 1.157 1.170
VAR38 VALID 1.124 1.139
VAR39 VALID 1.186 1.292
VAR41 VALID 1.143 1.143
VAR43 VALID 1.147 1.205
VAR44 VALID 1.164 1.145
VAR52 VALID 1.168 1.166
VAR53 VALID 1.167 1.160
VAR54 VALID 1.159 1.160
VAR55 VALID 1.145 1.136
VAR56 VALID 1.282 1.118
VAR57 VALID 1.170 1.151
VAR58 VALID 1.199 1.255
VAR59 VALID 1.187 1.155
VAR66 VALID 1.162 1.143
VAR68 VALID 1.149 1.142
VAR69 VALID 1.155 1.173
VAR70 VALID 1.141 1.141
VAR71 VALID 1.181 1.180
VAR72 VALID 1.141 1.148
VAR73 VALID 1.164 1.151
VAR77 VALID 1.164 1.146
VAR78 VALID 1.147 1.133
VAR79 VALID 1.177 1.179
VAR80 VALID 1.190 1.168
VAR81 VALID 1.165 1.177
VAR85 VALID 1.144 1.155
VAR86 VALID 1.179 1.179
VAR87 VALID 1.166 1.151
VAR88 VALID 1.200 1.143
VAR89 VALID 1.192 1.184
VAR90 VALID 1.154 1.145
VAR91 VALID 1.186 1.175
VAR92 VALID 1.157 1.164
VAR93 VALID 1.180 1.218
VAR94 VALID 1.208 1.157
VAR95 VALID 1.362 1.331

APPENDIX B. EXPERIMENTAL DATA 99

VAR96 VALID 1.167 1.156
VAR99 VALID 1.180 1.154
VAR101 VALID 1.154 1.146
VAR102 VALID 1.217 1.172
VAR104 VALID 1.378 1.351
VAR105 VALID 1.422 1.365
VAR106 VALID 1.385 1.374
VAR107 VALID 1.348 1.338
VAR108 VALID 1.377 1.344
VAR109 VALID 1.367 1.358
VAR110 VALID 1.358 1.377
VAR113 VALID 1.155 1.147
VAR114 VALID 1.169 1.148
VAR115 VALID 1.161 1.154
VAR116 VALID 1.173 1.174
VAR117 VALID 1.128 1.131
VAR121 VALID 1.149 1.141
VAR122 VALID 1.153 1.140
VAR123 VALID 1.156 1.146
VAR124 VALID 1.159 1.137
VAR125 VALID 1.154 1.166
VAR129 VALID 1.176 1.158
VAR130 VALID 1.164 1.161
VAR131 VALID 1.273 1.161
VAR132 VALID 1.190 1.162
VAR133 VALID 1.186 1.180
VAR134 VALID 1.170 1.170
VAR135 VALID 1.179 1.155
VAR137 VALID 1.262 1.136
VAR138 VALID 1.213 1.181
VAR139 VALID 1.153 1.174
VAR140 VALID 1.208 1.178
VAR143 VALID 1.151 1.165
VAR145 VALID 1.165 1.181
VAR146 VALID 1.148 1.146
VAR148 VALID 1.367 1.368
VAR149 VALID 1.362 1.376
VAR150 VALID 1.238 1.127
VAR152 VALID 1.364 1.367
VAR153 VALID 1.409 1.388
VAR154 VALID 1.377 1.379
VAR157 VALID 1.432 1.337
VAR158 VALID 1.232 1.152
VAR159 VALID 1.383 1.379
VAR160 VALID 1.382 1.386
VAR161 VALID 1.167 1.150

APPENDIX B. EXPERIMENTAL DATA 100

VAR162 VALID 1.131 1.152
VAR163 VALID 1.153 1.146
VAR164 VALID 1.168 1.161
VAR165 VALID 1.148 1.145
VAR166 VALID 1.158 1.150
VAR167 VALID 1.291 1.155
VAR168 VALID 1.174 1.157
VAR169 VALID 1.160 1.151
VAR170 VALID 1.144 1.157
VAR171 VALID 1.193 1.160
VAR172 VALID 1.154 1.147
VAR173 VALID 1.146 1.140
VAR174 VALID 1.165 1.161
VAR175 VALID 1.263 1.126
VAR177 VALID 1.137 1.141
VAR184 VALID 1.141 1.156
VAR197 VALID 1.140 1.127
VAR199 VALID 1.144 1.149
VAR200 VALID 1.182 1.153
VAR201 VALID 1.186 1.137
VAR202 VALID 1.192 1.283
VAR204 VALID 1.153 1.155
VAR205 VALID 1.140 1.140
VAR206 VALID 1.189 1.169
VAR207 VALID 1.165 1.139
VAR208 VALID 1.171 1.141
VAR209 VALID 1.156 1.134
VAR213 VALID 1.250 1.295
VAR214 VALID 1.143 1.144
VAR215 VALID 1.154 1.147
VAR216 VALID 1.144 1.143
VAR217 VALID 1.158 1.127
VAR219 VALID 1.176 1.187
VAR223 VALID 1.158 1.176
VAR224 VALID 1.176 1.176
VAR225 VALID 1.143 1.143
VAR226 VALID 1.139 1.118
VAR227 VALID 1.271 1.155
VAR236 VALID 1.154 1.145
VAR239 VALID 1.157 1.132
VAR240 VALID 1.135 1.154
VAR241 VALID 1.137 1.130
VAR242 VALID 1.182 1.186
VAR243 VALID 1.166 1.165
VAR245 VALID 1.236 1.216
VAR246 VALID 1.114 1.146

APPENDIX B. EXPERIMENTAL DATA 101

VAR247 VALID 1.162 1.169
VAR248 VALID 1.305 1.140
VAR249 VALID 1.155 1.159
VAR250 VALID 1.191 1.141
VAR251 VALID 1.147 1.138
VAR252 VALID 1.081 1.071
VAR253 VALID 1.180 1.174
VAR255 VALID 1.165 1.141
VAR256 VALID 1.192 1.164
VAR257 VALID 1.152 1.169
VAR258 VALID 1.155 1.159
VAR259 VALID 1.213 1.189
VAR265 VALID 1.180 1.154
VAR266 VALID 1.185 1.161
VAR269 VALID 1.216 1.252
VAR271 VALID 1.160 1.150
VAR275 VALID 1.154 1.148
VAR280 VALID 1.126 1.119
VAR281 VALID 1.141 1.113
VAR282 VALID 1.147 1.144
VAR283 VALID 1.116 1.115
VAR285 VALID 1.133 1.238
VAR288 VALID 1.174 1.182
VAR289 VALID 1.145 1.148
VAR293 VALID 1.129 1.141
VAR294 VALID 1.165 1.138
VAR295 VALID 1.164 1.153
VAR299 VALID 1.196 1.154
VAR300 VALID 1.152 1.146
VAR301 VALID 1.177 1.146
VAR302 VALID 1.161 1.150
VAR305 VALID 1.161 1.148
VAR307 VALID 1.190 1.181
VAR308 VALID 1.163 1.150
VAR310 VALID 1.183 1.170
VAR311 VALID 1.155 1.152
VAR312 VALID 1.140 1.141
VAR313 VALID 1.150 1.122
VAR314 VALID 1.149 1.148
VAR315 VALID 1.183 1.192
VAR316 VALID 1.168 1.146
VAR319 VALID 1.188 1.162
VAR320 VALID 1.192 1.186
VAR321 VALID 1.174 1.144
VAR322 VALID 1.176 1.159
VAR323 VALID 1.201 1.170

APPENDIX B. EXPERIMENTAL DATA 102

VAR324 VALID 1.206 1.151
VAR325 VALID 1.125 1.126
VAR326 VALID 1.131 1.144
ARITH3 INVALID (ensures) 0.142 0.141
CMP1 INVALID (ensures) 0.152 0.131
CMP2 INVALID (ensures) 130.805 130.765
CMP6 INVALID (ensures) 0.203 0.199
CMP7 INVALID (ensures) 0.198 0.194
CMP9 INVALID (ensures) 0.226 0.204
CMP10 INVALID (ensures) 0.196 0.195
CMP12 INVALID (ensures) 0.259 0.263
CMP15 INVALID (ensures) 0.207 0.232
CMP16 INVALID (ensures) 0.219 0.208
CMP19 INVALID (ensures) 0.258 0.255
CMP20 INVALID (ensures) 0.259 0.249
DEL1 INVALID (ensures) 0.125 0.135
DEL6 INVALID (ensures) 0.165 0.154
DEL11 INVALID (ensures) 0.226 0.211
DEL12 INVALID (ensures) 0.217 0.235
DEL13 INVALID (ensures) 0.230 0.205
DEL16 INVALID (ensures) 0.268 0.251
DEL19 INVALID (ensures) 0.257 0.255
DEL22 INVALID (ensures) 0.219 0.217
DEL26 INVALID (ensures) 0.243 0.259
LIT3 INVALID (ensures) 0.136 0.143
LIT5 INVALID (ensures) 0.149 0.133
LIT13 INVALID (ensures) 0.192 0.208
VAR1 INVALID (ensures) 0.194 0.199
VAR15 INVALID (ensures) 0.205 0.193
VAR17 INVALID (ensures) 0.216 0.196
VAR18 INVALID (ensures) 0.183 0.180
VAR19 INVALID (ensures) 0.203 0.205
VAR20 INVALID (ensures) 0.148 0.144
VAR21 INVALID (ensures) 0.147 0.130
VAR29 INVALID (ensures) 0.188 0.190
VAR32 INVALID (ensures) 0.182 0.195
VAR33 INVALID (ensures) 0.219 0.198
VAR40 INVALID (ensures) 0.214 0.196
VAR45 INVALID (ensures) 0.189 0.193
VAR74 INVALID (ensures) 0.229 0.216
VAR82 INVALID (ensures) 0.222 0.216
VAR118 INVALID (ensures) 0.267 0.263
VAR126 INVALID (ensures) 0.256 0.258
VAR136 INVALID (ensures) 0.250 0.258
VAR176 INVALID (ensures) 0.203 0.198
VAR180 INVALID (ensures) 0.216 0.194

APPENDIX B. EXPERIMENTAL DATA 103

VAR191 INVALID (ensures) 0.195 0.206
VAR193 INVALID (ensures) 0.195 0.202
VAR194 INVALID (ensures) 0.204 0.197
VAR195 INVALID (ensures) 0.211 0.204
VAR196 INVALID (ensures) 0.258 0.265
VAR210 INVALID (ensures) 0.270 0.328
VAR228 INVALID (ensures) 0.268 0.256
VAR229 INVALID (ensures) 0.267 0.262
VAR232 INVALID (ensures) 0.267 0.269
VAR238 INVALID (ensures) 0.229 0.224
VAR244 INVALID (ensures) 0.221 0.215
VAR278 INVALID (ensures) 0.221 0.223
VAR279 INVALID (ensures) 0.214 0.222
VAR284 INVALID (ensures) 0.252 0.271
VAR286 INVALID (ensures) 0.249 0.251
VAR287 INVALID (ensures) 0.249 0.240
VAR290 INVALID (ensures) 0.270 0.293
VAR296 INVALID (ensures) 0.287 0.286
VAR317 INVALID (ensures) 0.254 0.258
VAR318 INVALID (ensures) 0.267 0.255
ARITH0 INVALID (exceptional) 0.346 0.428
ARITH1 INVALID (exceptional) 0.189 0.170
ARITH2 INVALID (exceptional) 0.166 0.176
ARITH16 INVALID (exceptional) 0.145 0.160
ARITH17 INVALID (exceptional) 0.199 0.205
ARITH18 INVALID (exceptional) 0.200 0.205
ARITH19 INVALID (exceptional) 0.198 0.196
ARITH21 INVALID (exceptional) 0.205 0.213
ARITH24 INVALID (exceptional) 0.168 0.173
ARITH25 INVALID (exceptional) 0.209 0.205
ARITH26 INVALID (exceptional) 0.209 0.211
ARITH27 INVALID (exceptional) 0.218 0.214
ARITH28 INVALID (exceptional) 0.207 0.202
ARITH32 INVALID (exceptional) 0.209 0.205
ARITH36 INVALID (exceptional) 0.261 0.252
ARITH40 INVALID (exceptional) 0.270 0.295
ARITH43 INVALID (exceptional) 0.274 0.269
ARITH48 INVALID (exceptional) 0.268 0.247
ARITH49 INVALID (exceptional) 0.268 0.254
ARITH50 INVALID (exceptional) 0.254 0.255
ARITH51 INVALID (exceptional) 0.254 0.249
ARITH56 INVALID (exceptional) 0.208 0.195
ARITH57 INVALID (exceptional) 0.218 0.204
ARITH58 INVALID (exceptional) 0.214 0.209
ARITH59 INVALID (exceptional) 0.211 0.207
ARITH64 INVALID (exceptional) 0.207 0.214

APPENDIX B. EXPERIMENTAL DATA 104

BOOL0 INVALID (exceptional) 0.211 0.244
BOOL1 INVALID (exceptional) 0.233 0.225
CMP8 INVALID (exceptional) 0.230 0.234
CMP11 INVALID (exceptional) 0.238 0.238
CMP13 INVALID (exceptional) 0.212 0.210
CMP14 INVALID (exceptional) 0.214 0.201
CMP17 INVALID (exceptional) 0.217 0.202
DEL7 INVALID (exceptional) 0.181 0.193
DEL9 INVALID (exceptional) 0.217 0.203
DEL21 INVALID (exceptional) 0.253 0.251
DEL24 INVALID (exceptional) 0.216 0.209
LIT0 INVALID (exceptional) 0.129 0.122
LIT1 INVALID (exceptional) 0.135 0.122
LIT2 INVALID (exceptional) 0.161 0.169
LIT4 INVALID (exceptional) 0.168 0.166
LIT10 INVALID (exceptional) 0.193 0.195
LIT12 INVALID (exceptional) 0.216 0.207
LIT14 INVALID (exceptional) 0.204 0.189
LIT15 INVALID (exceptional) 0.202 0.216
LIT17 INVALID (exceptional) 0.215 0.197
LIT21 INVALID (exceptional) 0.267 0.244
LIT26 INVALID (exceptional) 0.242 0.261
LIT30 INVALID (exceptional) 0.202 0.205
VAR22 INVALID (exceptional) 0.169 0.162
VAR23 INVALID (exceptional) 0.197 0.202
VAR24 INVALID (exceptional) 0.197 0.202
VAR26 INVALID (exceptional) 0.347 0.180
VAR34 INVALID (exceptional) 0.204 0.212
VAR35 INVALID (exceptional) 0.232 0.223
VAR36 INVALID (exceptional) 0.208 0.206
VAR42 INVALID (exceptional) 0.211 0.203
VAR46 INVALID (exceptional) 0.192 0.192
VAR47 INVALID (exceptional) 0.182 0.174
VAR48 INVALID (exceptional) 0.190 0.192
VAR49 INVALID (exceptional) 0.236 0.223
VAR50 INVALID (exceptional) 0.246 0.232
VAR51 INVALID (exceptional) 0.239 0.226
VAR60 INVALID (exceptional) 0.190 0.195
VAR61 INVALID (exceptional) 0.216 0.213
VAR62 INVALID (exceptional) 0.195 0.200
VAR63 INVALID (exceptional) 0.248 0.233
VAR64 INVALID (exceptional) 0.343 0.344
VAR65 INVALID (exceptional) 0.233 0.226
VAR67 INVALID (exceptional) 0.164 0.175
VAR75 INVALID (exceptional) 0.194 0.203
VAR76 INVALID (exceptional) 0.194 0.200

APPENDIX B. EXPERIMENTAL DATA 105

VAR83 INVALID (exceptional) 0.189 0.197
VAR84 INVALID (exceptional) 0.205 0.196
VAR97 INVALID (exceptional) 0.219 0.202
VAR98 INVALID (exceptional) 0.209 0.196
VAR100 INVALID (exceptional) 0.191 0.212
VAR103 INVALID (exceptional) 0.205 0.200
VAR111 INVALID (exceptional) 0.207 0.209
VAR112 INVALID (exceptional) 0.216 0.209
VAR119 INVALID (exceptional) 0.235 0.235
VAR120 INVALID (exceptional) 0.236 0.231
VAR127 INVALID (exceptional) 0.240 0.249
VAR128 INVALID (exceptional) 0.241 0.238
VAR141 INVALID (exceptional) 0.259 0.353
VAR142 INVALID (exceptional) 0.257 0.242
VAR144 INVALID (exceptional) 0.235 0.244
VAR147 INVALID (exceptional) 0.251 0.243
VAR151 INVALID (exceptional) 0.273 0.282
VAR155 INVALID (exceptional) 0.400 0.254
VAR156 INVALID (exceptional) 0.268 0.257
VAR178 INVALID (exceptional) 0.230 0.221
VAR179 INVALID (exceptional) 0.220 0.221
VAR181 INVALID (exceptional) 0.225 0.227
VAR182 INVALID (exceptional) 0.225 0.223
VAR183 INVALID (exceptional) 0.216 0.220
VAR185 INVALID (exceptional) 0.216 0.222
VAR186 INVALID (exceptional) 0.241 0.246
VAR187 INVALID (exceptional) 0.252 0.241
VAR188 INVALID (exceptional) 0.249 0.238
VAR189 INVALID (exceptional) 0.239 0.240
VAR190 INVALID (exceptional) 0.246 0.253
VAR192 INVALID (exceptional) 0.273 0.244
VAR198 INVALID (exceptional) 0.254 0.240
VAR203 INVALID (exceptional) 0.243 0.237
VAR211 INVALID (exceptional) 0.260 0.254
VAR212 INVALID (exceptional) 0.252 0.255
VAR218 INVALID (exceptional) 0.252 0.249
VAR220 INVALID (exceptional) 0.255 0.250
VAR221 INVALID (exceptional) 0.247 0.253
VAR222 INVALID (exceptional) 0.254 0.239
VAR230 INVALID (exceptional) 0.221 0.204
VAR231 INVALID (exceptional) 0.196 0.212
VAR233 INVALID (exceptional) 0.209 0.213
VAR234 INVALID (exceptional) 0.210 0.221
VAR235 INVALID (exceptional) 0.198 0.201
VAR237 INVALID (exceptional) 0.212 0.206
VAR254 INVALID (exceptional) 0.193 0.205

APPENDIX B. EXPERIMENTAL DATA 106

VAR260 INVALID (exceptional) 0.207 0.205
VAR261 INVALID (exceptional) 0.195 0.209
VAR262 INVALID (exceptional) 0.200 0.208
VAR263 INVALID (exceptional) 0.216 0.208
VAR264 INVALID (exceptional) 0.209 0.208
VAR267 INVALID (exceptional) 0.218 0.208
VAR268 INVALID (exceptional) 0.208 0.220
VAR270 INVALID (exceptional) 0.209 0.205
VAR272 INVALID (exceptional) 0.209 0.202
VAR273 INVALID (exceptional) 0.199 0.224
VAR274 INVALID (exceptional) 0.206 0.206
VAR276 INVALID (exceptional) 0.217 0.209
VAR277 INVALID (exceptional) 0.204 0.219
VAR291 INVALID (exceptional) 0.222 0.216
VAR292 INVALID (exceptional) 0.205 0.211
VAR297 INVALID (exceptional) 0.198 0.205
VAR298 INVALID (exceptional) 0.205 0.209
VAR303 INVALID (exceptional) 0.227 0.212
VAR304 INVALID (exceptional) 0.207 0.207
VAR306 INVALID (exceptional) 0.201 0.210
VAR309 INVALID (exceptional) 0.211 0.235

B.4 Dining Philosophers

Name Result A/rand (s) A/def (s)
ORIGINAL DEADLOCK 0.701 0.420

APPENDIX B. EXPERIMENTAL DATA 107

Listing B.1: The bubblesort algorithm in the OOX language.

1 static int[] sort(int[] array)
2 requires(array != null)
3 ensures(forall v, i : retval : forall w, j : retval : i < j ==> v <= w)
4 exceptional(false)
5 {
6 bool sorted := false;
7 while (! sorted) {
8 sorted := true;
9 int i := 1;

10 while (i < #array) {
11 int a := array[i];
12 int b := array[i - 1];
13 if (a < b) {
14 array[i] := b;
15 array[i - 1] := a;
16 sorted := false;
17 }
18 i := i + 1;
19 }
20 }
21 return array;
22 }

Listing B.2: The bubblesort algorithm in C for CBMC.

1 void sort(int length)
2 {
3 __CPROVER_assume(length >= 0 && length <= 3);
4 int array[length];
5 for (int i = 0; i < length; i++)
6 array[i] = nondet_int ();
7 int sorted = 0;
8 while (! sorted) {
9 sorted = 1;

10 int i = 1;
11 while (i < length) {
12 int a = array[i];
13 int b = array[i-1];
14 if (a < b) {
15 array[i] = b;
16 array[i - 1] = a;
17 sorted = 0;
18 }
19 i = i + 1;
20 }
21 }
22 for (int i = 0; i < length; i++)
23 for (int j = 0; j < length; j++)
24 __CPROVER_assert (!(i < j) || array[i] <= array[j], "postcondition ");
25 }

APPENDIX B. EXPERIMENTAL DATA 108

Listing B.3: The bubblesort algorithm in CIVL-C.

1 $input int length;
2 $assume(length > 0 && length <= 3);
3
4 void sort(int length)
5 {
6 int array[length];
7 $havoc (&array);
8 int sorted = 0;
9 while (! sorted) {

10 sorted = 1;
11 int i = 1;
12 while (i < length) {
13 int a = array[i];
14 int b = array[i-1];
15 if (a < b) {
16 array[i] = b;
17 array[i - 1] = a;
18 sorted = 0;
19 }
20 i = i + 1;
21 }
22 }
23
24 $assert($forall(int i : 0 .. length - 1)
25 $forall(int j : 0 .. length - 1) i < j => array[i] <= array[j]);
26 }
27
28 void main()
29 {
30 sort(length);
31 }

APPENDIX B. EXPERIMENTAL DATA 109

Listing B.4: The minimum element of a linked list in the OOX language.

1 class Node
2 {
3 int value;
4 Node next;
5
6 static int min(Node node)
7 requires(node != null)
8 exceptional(false)
9 {

10 int N := 3;
11 int[] values := new int[N];
12 int i := 0;
13
14 int min := node.value;
15 Node next := node.next;
16 while (next != null && i < N)
17 {
18 int value := next.value;
19 if (value < min) {
20 min := value;
21 }
22 next := next.next;
23 values[i] := value;
24 i := i + 1;
25 }
26 assert forall value , index : values : min <= value;
27 return min;
28 }
29 }

APPENDIX B. EXPERIMENTAL DATA 110

Listing B.5: The concurrent mergesort algorithm in the OOX language.

1 static int[] sort(int[] array)
2 requires(array != null)
3 ensures(forall v, i : retval : forall w, j : retval : i < j ==> v <= w)
4 exceptional(false)
5 {
6 Main.mergesort(array , 0, #array - 1);
7 return array;
8 }
9 static void mergesort(int[] array , int left , int right)

10 exceptional(false)
11 {
12 if (left < right) {
13 int middle := (left + right) / 2;
14 fork Main.mergesort(array , left , middle);
15 Main.mergesort(array , middle + 1, right);
16 join;
17 Main.merge(array , left , middle , right);
18 }
19 }
20 static void merge(int[] array , int left , int middle , int right)
21 exceptional(false)
22 {
23 int[] temp := new int[right - left + 1];
24 int i := left;
25 int j := middle + 1;
26 int k := 0;
27 while (i <= middle && j <= right) {
28 int arrayI := array[i];
29 int arrayJ := array[j];
30 if (arrayI <= arrayJ) {
31 temp[k] := array[i];
32 k := k + 1;
33 i := i + 1;
34 }
35 else {
36 temp[k] := array[j];
37 k := k + 1;
38 j := j + 1;
39 }
40 }
41 while (i <= middle) {
42 temp[k] := array[i];
43 k := k + 1;
44 i := i + 1;
45 }
46 while (j <= right) {
47 temp[k] := array[j];
48 k := k + 1;
49 j := j + 1;
50 }
51 i := left;
52 while (i <= right) {
53 array[i] := temp[i - left];
54 i := i + 1;
55 }
56 }

APPENDIX B. EXPERIMENTAL DATA 111

Listing B.6: The concurrent mergesort algorithm in CIVL-C.

1 #include <civlc.cvh >
2 #include <stdlib.h>
3
4 $input int length;
5 $assume(length > 0 && length <= 3);
6
7 void merge(int *array , int left , int middle , int right)
8 {
9 int *temp = (int *) malloc ((right - left + 1) * sizeof(int));

10 int i = left;
11 int j = middle + 1;
12 int k = 0;
13 while (i <= middle && j <= right) {
14 int arrayI = array[i];
15 int arrayJ = array[j];
16 if (arrayI <= arrayJ)
17 temp[k++] = array[i++];
18 else
19 temp[k++] = array[j++];
20 while (i <= middle)
21 temp[k++] = array[i++];
22 while (j <= right)
23 temp[k++] = array[j++];
24 for (int i = left; i <= right; i++)
25 array[i] = temp[i - left];
26 }
27 }
28
29 void mergesort(int *array , int left , int right)
30 {
31 if (left < right) {
32 int middle = (left + right) / 2;
33 $proc pid = $spawn mergesort(array , left , middle);
34 mergesort(array , middle + 1, right);
35 $wait(pid);
36 merge(array , left , middle , right);
37 }
38 }
39
40 void main()
41 {
42 int *array = (int *) malloc(length * sizeof(int));
43 mergesort(array , 0, length - 1);
44 $assert($forall(int i : 0 .. length - 1)
45 $forall(int j : 0 .. length - 1) i < j => array[i] <= array[j]);
46 }

APPENDIX B. EXPERIMENTAL DATA 112

Listing B.7: The dining philosophers problem in the OOX language.

1 class Main
2 {
3 static void main()
4 exceptional(false)
5 {
6 int n := 2;
7 Fork[] forks := new Fork[n];
8 int i := 0;
9 while (i < n) {

10 forks[i] := new Fork ();
11 i := i + 1;
12 }
13 i := 0;
14 while (i < n) {
15 Fork left := forks[i];
16 Fork right := forks[(i + 1) % n];
17 fork Main.eat(left , right);
18 i := i + 1;
19 }
20 join;
21 }
22 static void eat(Fork left , Fork right)
23 {
24 while (true) {
25 lock (left) {
26 lock (right) {
27 ;
28 }
29 }
30 }
31 }
32 }
33 class Fork {
34 Fork() { ; }
35 }

	Introduction
	Preliminary
	The OOX Language
	The Memory
	The Stack
	The Heap

	The Semantics
	The Static Semantics
	The Dynamic Semantics

	The Abstract Syntax
	Types
	Primitive and Reference Types
	Subtyping

	Compilation Units
	Threads and Scheduling
	The Semantics

	Classes
	Methods and Constructors
	Fields

	Statements
	Variable Declarations
	Assignment Statements
	Method Call Statements
	Skip Statements
	Assert Statements
	Assume Statements
	While Statements
	If-Then-Else Statements
	Continue and Break Statements
	Return Statements
	Throw Statements
	Try Statements
	Block Statements
	Lock- and Unlock Statements
	Join Statements
	Fork Statements
	Sequence Statements
	Pop Statements

	Expressions
	Literals
	References
	Variable Access
	Unary Operators
	Binary Operators
	Sizeof Operator
	If-Then-Else Operator
	Quantifiers
	The Dynamic Semantics

	Symbolic Execution of OOX Programs
	Parsing
	Static Analysis
	Control Flow Analysis

	The Symbolic Execution Engine
	The Threads
	The Memory
	The Path Constraints
	The Alias Map
	The Locks
	The Interleaving Constraints

	The Symbolic Execution Algorithm
	Symbolic Execution of Actions
	Formula Caching
	Expression Evaluation
	Partial Order Reduction

	Results
	The Completeness, Soundness and Efficacy of the Optimizations
	Scalability
	A Comparison with CBMC and CIVL

	Related Work
	Intermediate Verification Languages
	Formal Software Verification

	Conclusions and Future Work
	Future Work

	The Concrete Syntax of the OOX language
	Lexical Structure
	Syntactical Structure

	Experimental Data
	Bubblesort
	Minimum element in Linked List
	Concurrent Mergesort
	Dining Philosophers

