
Change Impact Analysis for Rebel Specifications
Jordi Wippert 6303013 May 15, 2020

 - Welcome supervisors, readers, ING people - Thesis defense - I am Jordi Wippert - Questions at the end please - Do not push any 'take control buttons' - Keep yourself muted - END WITH TITLE

Title clarification

- Change Impact Analysis:

‘The process of identifying the potential consequences of a change, or estimating what needs
to be modified to accomplish a change.’

- Rebel, a Formal Specification Language

2/28

 - We want to apply changes - To Rebel specifications - As change exists - What is impact, what is a change? What is the impact of a change? - ADDITIONAL EXPLANATION AND EXAMPLES WILL BE GIVEN

Questions and motivation

- Why should one use a formal specification language (FSL)?

FSLs are formal methods which have a mathematical basis, e.g. for proves

- Why Rebel?

Rebel is a DSL by ING, especially for the financial domain

- Current state (of Rebel)

Relatively new and not widely incorporated yet due to open issues such as changeability

How can formal methods be used to compute the impact of a change to a Rebel specification?

3/28

 Before diving into CIA for Rebel: Why Formal specification languages? - Abstract description of system - Is a formal method; mathematically sound, for proves- intentions are unambiguously aligned (between people)- Can be used for automated code derivation etc. - Relate to Live Systems: when rolled out, guarantees must be given - Resulting in continuity, no lossesWhy Rebel? - DSL by ING - Especially for the Financial domain Current state - Relative new; not incorporated widely yet - Nothing is clear: changes (in itself), what impact is- How to define and compute bothBECAUSE: Specifications will change! - Changeability problem- CLICK: research question

Questions and motivation

- Why should one use a formal specification language (FSL)?

FSLs are formal methods which have a mathematical basis, e.g. for proves

- Why Rebel?

Rebel is a DSL by ING, especially for the financial domain

- Current state (of Rebel)

Relatively new and not widely incorporated yet due to open issues such as changeability

How can formal methods be used to compute the impact of a change to a Rebel specification?

3/28

 Before diving into CIA for Rebel: Why Formal specification languages? - Abstract description of system - Is a formal method; mathematically sound, for proves- intentions are unambiguously aligned (between people)- Can be used for automated code derivation etc. - Relate to Live Systems: when rolled out, guarantees must be given - Resulting in continuity, no lossesWhy Rebel? - DSL by ING - Especially for the Financial domain Current state - Relative new; not incorporated widely yet - Nothing is clear: changes (in itself), what impact is- How to define and compute bothBECAUSE: Specifications will change! - Changeability problem- CLICK: research question

Questions and motivation

- Why should one use a formal specification language (FSL)?

FSLs are formal methods which have a mathematical basis, e.g. for proves

- Why Rebel?

Rebel is a DSL by ING, especially for the financial domain

- Current state (of Rebel)

Relatively new and not widely incorporated yet due to open issues such as changeability

How can formal methods be used to compute the impact of a change to a Rebel specification?

3/28

 Before diving into CIA for Rebel: Why Formal specification languages? - Abstract description of system - Is a formal method; mathematically sound, for proves- intentions are unambiguously aligned (between people)- Can be used for automated code derivation etc. - Relate to Live Systems: when rolled out, guarantees must be given - Resulting in continuity, no lossesWhy Rebel? - DSL by ING - Especially for the Financial domain Current state - Relative new; not incorporated widely yet - Nothing is clear: changes (in itself), what impact is- How to define and compute bothBECAUSE: Specifications will change! - Changeability problem- CLICK: research question

Table of contents

Background

Change Impact Analysis

Experiments

Future Work

Conclusion

Questions?

4/28

 Background:- Notion for models - Define impact - Apply changes - Rebel (examples, syntax, semantics) - Formal specification languages - Translation (to B-Method) Change impact analysis:- How? - Show impact Experiments - How can we do this algorithmically? Future work and conclusion

Background
preliminaries for Change Impact Analysis

Extended Finite State Machine

init

prepared

evolved

cheated

prepare cheat

train

evolve win

Figure: State diagram of model Runner

M = (Q, Σ, I , V , Λ)

- Q is a set of states.
- Σ is a finite set of events:

e (p∗)[c∗]/a∗ , where:
eventname, parameters,
conditions and actions.

- I ⊆ Q is the set of initial states.
- V is the set of state variables:

x ∈ Instance → Value

- Λ is a set of transitions:
q

e−→ q′

Figure: EFSM definition

Q = {init, prepared, evolved, cheated}

Σ = {prepare()[]/hp = hp + 1,

train()[hp + 2 ≤ 10]/hp = hp + 2,

evolve()[hp ≥ 5]/pt = pt + 1,

cheat()[]/hp = hp + 3,

win()[]/pt = pt + 2}

I = {init}

V = {hp ∈ Instance → Z, pt ∈ Instance → Z}
Λ = { INITIALISATION−−−−−−−−−−−−→ init,

init
prepare−−−−−→ prepared,

init cheat−−−→ cheated,

prepared train−−−→ prepared,

prepared evolve−−−−→ evolved,

cheated win−−→ evolved }

where INITIALISATION : hp = 0; pt = 0

Figure: EFSM of model Runner

Background 6/28

 - EXAMPLE model Runner - We can visualize an Extended Finite State Machine as GRAPH- Nodes correspond to ABSTRACT states - Edges to transitions - INITIALISATION is a special event that is not part of the set of events ON EFSM: - Notion for models, to argue in general - To explain Rebel, semantics, and translation- Tuple to specify a model - No final states: just states without outgoing transitions - INSTANCES: Relatable to classes (therefore instances)

States and State Spaces

- Concrete state:
concrete_state ⊆ V ×Value

- State space
- Initializations: default and custom

/ ∗ Variables ∗ /

hp = {(Runner1 7→ 3), (Runner2 7→ 1)}
pt = {(Runner1 7→ 2), (Runner2 7→ 0)}
_state = {(Runner1 7→ evolved),(Runner2 7→ prepared)}

Figure: Concrete state in model Runner

Background 7/28

 - The example specifies the values of variables for instances - State space: set of all concrete states- by exhaustively executing transitions from a initial state- Default: same values defined for all variables/instances by Initialization event - Custom: whatever values, reflecting some state (without history): live system

Impact

- Models: M andM ′

- State Spaces: S and S′

- State Space Impact: S \ S′

init

prepared

evolved

cheatedcheated

prepare cheat

train

evolve win

Figure: State diagram of model Runner,
with a change applied that prohibits state cheated

Background 8/28

 - We relate impact to version of model before change, and after (M') - Both have a state space - Impact is defined as the difference between these

Changes (as Invariants) and model checkers

“As Stakeholder we want Runners that cheated always to have a hp of 3 as a minimum.”

- Changes
- Invariants
- Selected constructs
- Consistency checking
- State space exploration

∀ r ∈ Runner : _state(r) 6= cheated

Figure: Change as invariant example (1)

∀ r ∈ Runner : _state(r) = evolved ⇒ hp(r) ≥ 5 ∧ pt(r) ≥ 1

Figure: Change as invariant example (2)

Background 9/28

 Changes:- Example changes: we want an instance to have .. - Origins in the idea of behaviour of something that must change - The change itself is not so important to us Invariant: - Predicate over concrete states - Advantages: only to be constructed once, outside model. - Little internal model knowledge needed - Therefore easy to change, if effect/impact is not as intended - It allows not for all changes, but is sufficient Selected constructs: - Quantification - State variables and values - Can be used to constraint variables, values, states Model checker: - To check invariants Examples: Runner is set of instances, we want to make statements for the whole model

Rebel

- Formal specification language
- For documentation purposes
- To share unambiguously aligned
financial knowledge

- Designed for code derivation
- Syntax and semantics

initialized

opened

openAccount

withdraw ,

deposit

Figure: Account

initialized

booked

book

Figure: Transaction

initialized

opened

openAccount

withdraw ,

deposit

Figure: Account

Figure: Bank state machine

Background 10/28

 General intro - Developed by ING (and CWI) - DSL, Rascal, documentation, derivation of code Short comings - Options to model changes (no quantification in Rebel) - Model checker: - consistency checking - explicit state space exploration

module bank.Library
import bank.Account
import bank.Transaction

@doc { Account and Transaction-events }

event openAccount() {}

event withdraw(amount: Money) {
preconditions {

amount > EUR 0.00;
}
postconditions {

new this.balance == this.balance - amount;
}

}

event deposit(amount: Money) {
preconditions {

amount > EUR 0.00;
}
postconditions {

new this.balance == this.balance + amount;
}

}

// No explicit pre- and postconditions
event book() {

sync {
Account[this.from].withdraw(this.amount);
Account[this.to].deposit(this.amount);

}
}

Figure: Rebel Library ↑ and Rebel Specifications→

module bank.Account
import bank.Library

specification Account {
fields {

accountNumber: IBAN @key
balance: Money

}

events {
openAccount[]
withdraw[]
deposit[]

}

lifeCycle {
initial inititalized -> opened: openAccount
opened -> opened: withdraw, deposit

}
}

module bank.Transaction
import bank.Library
import bank.Account

specification Transaction {
fields {

id: Integer @key
from: IBAN @ref=Account
to: IBAN @ref=Account
amount: Money

}

events {
book[]

}

lifeCycle {
initial inititalized -> booked: book

}
}

Background 11/28

 - Libraries vs Specifications - For entities - Comparable to classes (therefore instances) - Module header, imports (Ref + in Sync) - Fields, events, lifeCycle - EFSM is clear right?

Formal Specification Languages

- Alloy, B-Method, Event-B, TLA+, VDM
- Current state, features and usability
- Best for our needs: B-Method (and ProB)
- Translation/Mapping (to B-Method)
• Specifications become sets
• Fields become functions
• Events in sync-blocks are split

Background 12/28

 Current state: maintenance status, usage: commu- nity, industry and academics. Features: language and tooling options.Usability: configurable options and reusability of components- As said: Rebel does not fit our needs.- But we want to remain sound, for both the change, as the result - Comparison of several formal specification languages- And we performed a translation.

Change Impact Analysis
to identify the potential consequences of a change

Change Impact Analysis

- Collect information as starting point (state space S of modelM)
- Apply a change (toM)
- Collect information for comparison (state space S′ of modelM ′)
- Obtain impact for our property of interest: state space differences

- Changes as invariants do not update models!
- Two methods: iterative and direct

Change Impact Analysis 14/28

 CIA in general: - Obtain insights in some property of interest - that might change as result of a modification of a system- Examples from related work: - Time impact due to dependencies - Network access - Use of invariant as change

Change Impact Analysis

- Collect information as starting point (state space S of modelM)
- Apply a change (toM)
- Collect information for comparison (state space S′ of modelM ′)
- Obtain impact for our property of interest: state space differences

- Changes as invariants do not update models!
- Two methods: iterative and direct

Change Impact Analysis 14/28

 CIA in general: - Obtain insights in some property of interest - that might change as result of a modification of a system- Examples from related work: - Time impact due to dependencies - Network access - Use of invariant as change

Iterative method

- Based on invariant violations:
counterexamples

- Model update:
weakest precondition calculus

∀ r ∈ Runner : _state(r) = evolved ⇒
hp(r) ≥ 5 ∧ pt(r) ≥ 1

Figure: Invariant example (repeated)

/ ∗ Variables ∗ /

hp: [(Runner1 = 3)]
pt: [(Runner1 = 2)]
_state: [(Runner1 = evolved)]

Figure: Counterexample concrete state

extension = violating_terms(counterexample)
invariant' = invariant ∨ (extension)

Figure: Invariant extension definition

∀ r ∈ Runner : _state(r) = evolved ⇒
hp(r) ≥ 5 ∧ pt(r) ≥ 1 ∨ (hp(r) = 3 ∧ pt(r) = 2)

Figure: Extended invariant

Change Impact Analysis 15/28

 - Iteratively extend the invariant - Until no more counterexamples are returned anymore - Than use all found counterexamples (with traces) to update the model

Weakest precondition calculus

- Predicate transformer (Dijkstra)
- Computes a condition that guarantees:
postcondition R w.r.t. a statement x := E

wp(x := E,R) = R[E/x]

Figure: Weakest precondition assignment rule

/ ∗ Variables ∗ /

hp: [(Runner1 = 3)]
pt: [(Runner1 = 2)]
_state: [(Runner1 = evolved)]

Figure: Counterexample concrete state (repeated)

win =
p∗ : r
c∗ : r : Runner ∧ _state(r) = cheated
a∗ : pt(r) := pt(r) + 2;

_state(r) := evolved}

Figure: Event win

wp (x := E) R ⇐⇒ R[E/x]
≡ wp (pt := pt + 2) (pt = 2)
≡ (pt = 2)[(pt + 2)/pt]
≡ (pt + 2) = 2
≡ pt = 0

Figure: WP for pt

Change Impact Analysis 16/28

 - Analogous to strongest post condition transformer - We only deal with assignments - Does a substitution - We use the negation - For all assignments, implication is already true (state is ignored) - Thus: not pt = 0 as condition to event win

Direct method

- Uses the invariant as desired post-condition R in the wp calculus
- All events must be updated, as no counterexample/trace information is available
- Implication: if-then construction
- No negation needed

Change Impact Analysis 17/28

 - Works similar - Although this is a simplification (because of) pre and post events. - We must update based on assignments in post - add conditions (and substitute vars) based on precondition

State Space Impact

- After obtainingM ′ based by updatingM

- S′ can be computed
- The state space is not dependent on the update
method: i.e. the iterative and direct update
method result in the same state space

Impact:
- S \ S′, for constrained state spaces
- S 4 S′, when additions must be shown
- (|S ′| − |S |) /|S | ∗ 100 , for relative decrease/increase

S :
init: [(hp = 0), (pt = 0)]
prepared: [(hp = 1, 3, 4, 5, 7, 9), (pt = 0)]
evolved: [(hp = 3, 4, 5, 7, 9), (pt = 1, 2)]
cheated: [(hp = 3), (pt = 0)]

Figure: Simplified state space (values per variable and
abstract state modulo instances)

Change Impact Analysis 18/28

 - State space example is simplified - Different ways to express impact - Set difference, symmetric difference, of in relative numbers - Can also be applied to the number of transitions

Experiments
to answer our research question

Implementation

- Algorithms
- Models
- Invariants
- Options:

· Model checker mode
· Symmetry mode
· Cardinality of sets (for instances)
· Minimum/maximum integer

Algorithm 1: Change impact analysis
1 Function changeImpactAnalysis(M , I, opts):
2 S ← probcli (M , opts)
3 M′ ← update (M , I , opts) /∗ direct or iterative∗/
4 S′ ← probcli (M ′, opts)
5 return S \ S′

Experiments 20/28

 - Algorithms for iterative and direct are probably clear - PROB (command line tooling), state files (text) - So glued everything together with bash (tools) - Experiments for several models, of several sizes - Using different types of invariants:- (related to abstract states and other state variables/values)OPTIONS:- First experiment: find suitable options for our specific problem (always similar translation)- Explain options - Fight state space explosion problem - MC mode is related to graph exploration - Symmetry classifies some parts of the input as the same - therefore it optimizes on states - That is: we do not care WHICH state has a certain value, just if - Hash mc mode and hash symmetry is not the same

Evaluation of options

2 4

0

100

200

Number of instances

N
um

be
ro
fs
ta
te
s

off
hash
nauty
flood

Figure: Number of states in relation to the number of
instances using symmetry modes and model ABC

symmetry instances states transitions time (ms)
off 1 11 11 43
off 2 121 221 112
off 3 1331 3631 825
off 4 14641 53241 11999
off 5 161051 732051 193107
hash 1 11 11 43
hash 2 66 121 90
hash 3 286 781 246
hash 4 1001 3641 876
hash 5 3003 13651 3014
flood 1 11 11 47
flood 2 66 176 100
flood 3 286 1826 296
flood 4 1001 17281 1405
flood 5 3003 171699 12145
nauty 1 11 11 46
nauty 2 66 121 100
nauty 3 286 781 316
nauty 4 1001 3641 1298
nauty 5 3003 13651 5852

Table: Results of using symmetry modes and model Runner

Experiments 21/28

 - ABC model is not referenced so far. - Left: symmetry modes: make a huge differences on states (instantly) - Right: shows optimizations on transitions as well - Although in general clear:- less states and transitions, is less time. - but hash and nauty are comparable in states/transitions, different in time - MC mode; Hash fastest (but all similiar as result is the same state space) - findings were in line with original research - There is much to be gained by options - translations can be optimized - Explicit state model checker choice might be changed

Evaluation of update methods

10 15 20

2

4

Maximum integer value

N
um

be
ro
fu
pd

at
es

inv1 - it
inv2 - it
inv1 - di
inv2 - di

Figure: Number of updates in relation to the maximum
integer value using model Runner

model invariant method instances updates time (s)
ABC 1 iterative 1 1 6.732
ABC 2 iterative 1 1 7.204
ABC 1 direct 1 2 0.160
ABC 2 direct 1 2 0.169
Runner 1 iterative 1 1 6.934
Runner 2 iterative 1 0 2.325
Runner 1 direct 1 5 0.355
Runner 2 direct 1 5 0.416
Bank 1 iterative 2* 10 550.832
Bank 2 iterative 2* 6 509.880
Bank 1 direct 2* 6 1.287
Bank 2 direct 2* 6 1.302

All data is obtained with MININT -5 and MAXINT 10
*2 Accounts, 1 Transaction

Table: Results for model updates

Experiments 22/28

 - Updates for iterative method is not constant, direct is - Direct is much faster, but gives less information because: - Iterative returns counter examples, which give some indication of impact - Plus traces, also nice - Iterative updates (counter examples) show where updates must be done - Numbers are indication, as also optimizations can be applied

Evaluation of Impact

model invariant maxint |S| |S′| S impact (%) |T | |T ′| T impact (%)
Runner 1 10 11 10 −9,09 11 10 −9,09
Runner 1 12 13 12 −7,69 13 12 −7,69
Runner 1 14 15 14 −6,67 15 14 −6,67
Runner 1 16 17 16 −5,88 17 16 −5,88
Runner 1 18 19 18 −5,26 19 18 −5,26
Runner 1 20 21 20 −4,76 21 20 −4,76
Runner 2 10 11 11 0,00 11 11 0,00
Runner 2 12 13 11 −15,38 13 11 −15,38
Runner 2 14 15 11 −26,67 15 11 −26,67
Runner 2 16 17 11 −35,29 17 11 −35,29
Runner 2 18 19 11 −42,11 19 11 −42,11
Runner 2 20 21 11 −47,62 21 11 −47,62
Bank 1 10 314973 113849 −63,85 1952018 636439 −67,40
Bank 2 10 314973 139336 −55,76 1952018 1293715 −33,72

All data is obtained with MININT -5 and MAXINT 10
S(′) is State Space (Prime) and T (′) is Transitions (Prime) forM(′). Impact is computed by: (|S ′| − |S|)/|S| ∗ 100 . Similar for T .

Table: Results for impact using several models and invariants

Experiments 23/28

 - Integer changes indicate some really logical decrease in impact - Impact is really large for some small changes (more than 60 percent) - Transitions and States are definitely not correlated

Future Work

Future Work

- Changes
- Static approach
- Optimizations
- Solving impacted instances
- Integration

A BB CC

DD

aToB bToC

bToD

Figure: Example model for reversed transitions

A BB
(reversed) aToB

Figure: Example model updated with reverse transition

Future Work 25/28

 - The set of constructions for invariants is limited. - a lot of analyses can be done statically - type of model checker, split models (EILERS) or to optimize current - instances that are at risk: by forward path solutions, or reversed transitions - Integration in production

Conclusion

Conclusion

How can formal methods be used to compute the impact of a change to a Rebel specification?

- Definitions for impact and changes.
- Two methods to update a model with respect to a change encoded as invariant.
- A clear description of the syntax and semantics for Rebel.
- A comparison of formal specification languages for the translation of Rebel.
- A change impact analysis that reveals state space differences algorithmically.
- An conceptual approach to solve impacted instances.

Conclusion 27/28

Conclusion

How can formal methods be used to compute the impact of a change to a Rebel specification?

- Definitions for impact and changes.
- Two methods to update a model with respect to a change encoded as invariant.
- A clear description of the syntax and semantics for Rebel.
- A comparison of formal specification languages for the translation of Rebel.
- A change impact analysis that reveals state space differences algorithmically.
- An conceptual approach to solve impacted instances.

Conclusion 27/28

Questions?

	Background
	Change Impact Analysis
	Experiments
	Future Work
	Conclusion
	Questions?

