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Abstract

We compare multiple methods for real time outlier detection in time series data of water sensors. We
present an outlier detection pipeline for this purpose. Multivariate models as well as univariate mod-
els are compared empirically by adding simulated outliers to the data to assess model performance.
Quantile regression performed by the multi layer perceptron model using the tilted loss function is
apt to model time series in a multivariate approach, provided we have access to reliable, correlated
time series. Univariate models like auto-regressive models can be useful for detecting specific kinds
of outliers such as extreme values. We show that the models are able to detect realistic, real life
outliers.
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Chapter 1

Introduction

Outlier detection is an important application of machine learning, which can improve data quality and
thus improve data-driven analysis and decision making. Simply put, an outlier is a fundamentally de-
viating observation. Outlier detection can be applied more specifically to sensors. In this application,
domain experts can be warned about possible misbehaving sensors or about an adjusted sensor envi-
ronment. Then, action can be undertaken. For example, sensor technicians could be sent to investigate
equipment errors or investigate the local environment of the sensor. This could be a great improvement
compared to the times before outlier detection was used, since data faults were only detected after a
prolonged period of time, which could render much data unusable. Also, a manual process to detect
outliers is much more time-consuming and possibly less well-defined and consistent than an automated
approach.

Data validation is an important area for water authorities in the Netherlands. These regional government
bodies are responsible for among others sewage treatment, dyke management and the management of
water levels in waterways. A validation pipeline along with implementation advice for water authorities
has been proposed by Versteeg and de Graaff [48]. It is stated there that the main value that can be
added by validation is that policy advice can be made more reliable. Data is often the basis of such kind
of advice, which can be improved in quality by using more correct data. Other advantages like better
operational management and enhanced assessment and reporting of current management practices can
also be realised. Moreover, dimensioning of measures (for example, in determining the size of needed
water storage) can be improved.

Our focus is on real-time outlier detection where multivariate time series of water sensor data are taken
into account. The sensor data consists of time series, which means that data is obtained at successive
times, with fixed intervals between measurements. Usually, multivariate indicates that multiple variables
are measured, which might be very distinct in nature. Besides that, it is also possible to simultaneously
use values of the same variable of multiple sensors to determine whether outliers occur in a certain sensor.
Different sensors can output time series that are closely correlated with each other. In such cases, we can
use time series from one or multiple sensors to predict other sensor values. If a big difference between
the predicted and observed value occurs, the value may be classified as an outlier[1]. It is important
that outliers are detected in real-time, because it enables taking immediate action to resolve possible
issues. This might be crucial in crisis situations. The real-time aspect can be achieved by using scalable
models, which might be necessary as the existing data stream is continuous. This possibility to take
immediate action is an improvement over only being able to historically clean data.

We will examine and perform experiments with water data from Waterschap Aa en Maas. This is one
of the 21 water authorities in the Netherlands. Aa en Maas can provide water data that is not available
to the public, which is a major contribution to our work.
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The remainder of our work is organised in the following manner. First, we define our research questions
and describe our research methodology. A survey of relevant literature on both a fundamental view of
outlier detection and specific outlier detection methods follows. Then we describe the available data
of Aa en Maas. Afterwards, we depict the inner workings of the proposed outlier detection pipeline.
Next, we describe the used modelling algorithms in more detail. This includes descriptions of how these
algorithms are tailored to and to what extent the algorithms are suitable for handling the available data.
Results and model evaluation follow. Afterwards, we discuss our findings and finally we conclude our
work by answering the research questions and describing avenues for future research.
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Chapter 2

Research questions and methodology

2.1 Research questions

We address the following research questions in this project:

1. Which methods can be applied to detect outliers in an unlabelled, unvalidated data set of multivari-
ate time series in a real-time setting?

The main research question in this project is about discovering and comparing outlier detection
methods. This will be done in a real-time setting with multivariate time series data, which is a
natural setting in which water authorities could use such kind of models. The data is unvalidated,
which means that it is raw sensor data that has not gone through any processing steps to check or
improve quality. The data is also unlabelled, which means that domain experts have not indicated
whether (and if so, where) outliers occur.

2. Can approaches based on multivariate time series improve results compared to approaches using
univariate time series?

Intuitively, one would think that using more related (sensor) data improves performance. It is
interesting to see whether this line of thought is actually true. The univariate setting might be
less difficult to implement in practice, which is why it could be very interesting if this approach
functions well. This setting can also be effective in areas with low sensor density.

2.2 Research methodology

For our research, we will use the data as described in Chapter 4. The data set will be divided into training
(60% of the data), validation (20%) and testing (20%) sets. The training data will be used to fit different
models which are described in Chapter 3. The validation data is used to perform hyper-parameter
tuning. The test data is used to assess model performance. Studied outlier detection methods will not
be implemented from scratch, but implementations from different software packages will be combined
in an evaluation suite. Model evaluation will be performed by using synthetic outliers. Section 7.2
elaborates on this. The main idea is that we create outliers ourselves and superimpose them on the real
data. Then we test how well we can detect these outliers.
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Chapter 3

Literature survey

Loosely speaking, an outlier is a fundamentally deviating observation. In previous work, different authors
have given different definitions of what an outlier is. Even the terminology of the term ”outlier” differs.
Many times, outlier detection will be called anomaly detection [10, 27, 33, 44] or event detection [36, 50],
although the latter may indicate more impactful occurrences. The term which we use is a question of
definition and is not crucial, but should be used consistently. We will follow Aggarwal [1] and Hawkins
[16] and call this phenomenon outliers. Hawkins [16] defines the term in the following way: “An outlier
is an observation which deviates so much from the other observations as to arouse suspicions that it was
generated by a different mechanism.” This definition is very broad, which is a desirable attribute given
the fact that outliers can occur on account of very different underlying reasons. Note that this definition
is also open to many different kinds of water sensor abnormalities.

3.1 Fundamental view of this research problem

Before we dive any further into specific algorithms and implementation pipelines which have been pre-
viously introduced, we look at the research issue in a more fundamental way.

3.1.1 Categorisation of outlier detection

Gupta et al. [14] created a very wide overview of different categories of temporal data which each require
specific techniques for outlier detection. This overview can be seen in Figure 3.1. First, we look at their
categorisation and afterwards try to position our research problem into this framework. The last step
could be useful to narrow down the very wide field of outlier detection to specific interesting parts for
our research.

Their first and most simple category is time series data. In this setting, it can be relevant to look
at outliers in a single time series, but detecting outlying time series (sub)sequences in a database of
multiple time series could be relevant too. The second category is data streams. Unlike regular time
series, streaming data does not have a fixed length and does not need to be finite. This needs to be
approached in a different way than regular time series. For example, it could work to update some model
parameters (and not refit the entire model) as new data arrives, to better capture trends in the data.
The next category is distributed data. This category implies that multiple sensors need to work together.
Each sensor has its own stream of data and the goal is to find outliers based on the joint global data.
When sensor position is also important, the setting will become distributed spatio-temporal. Then,
spatio-temporal data is considered to detect spatio-temporal outliers. These outliers consider not only
the temporal neighbours (as in regular time series), but also neighbours based on sensor location. To
conclude, temporal network data is viewed. Streams of graphs are described within this category. These
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different temporal graphs can be structured differently and have different node distributions, which can
change over time.

Figure 3.1: Overview of outlier detection for temporal data. This is Figure 1 from Gupta et al. [14].

When we try to position our research issue into this framework, one could say that it fits in the category
of time series data. More specifically, it could be narrowed down into both the subcategories of time
series database and single time series, depending on how we approach the issue. If we look at univariate
cases consisting of just one time series, then the single time series approach would make sense. When
considering the multivariate case, the time series database subcategory is needed, as we have multiple
time series. In the single time series case, both point outliers and subsequence outliers are of interest in
our research problem. In the time series database subcategory, trends which are only visible when taking
multiple time series into consideration are very interesting. The multiple means of detection showed in
the end nodes of this part of the overview could all be applied to our research issue. Moreover, it could
be interesting to determine if a certain time series as a whole should be categorised as an outlier (in
the sense of determining whether the total history of a certain sensor should be classified as an outlier).
This could be useful to detect when the physical reference level of a sensor is incorrect. But, seeing how
this is a whole different kind of error, it will be out of scope for our work.

This approach of bounded time series data can hold if we are interested in validating old, static data
sets. However, an online streaming approach might be necessary in some use cases. More and more data
will be accumulated over time, which can result in ever-changing models. These models can not always
be trained on the entire data set, since the amount of data will keep on growing. However, since the
data of Aa en Maas is not that big and observation intervals are not small, this approach might not be
necessary. If we still consider it necessary, multiple subcategories of the data stream category, such as
evolving prediction models and distance based outliers could be interesting. When considering distance
based outliers, global (with respect to bounds of the whole data set) as well as local (with respect to the
neighbourhood) outliers can occur and should be detected. High dimensional data streams are probably
less applicable to this project, since the data will most probably not be extraordinarily high dimensional.

Since we use multiple sensors, one could think our research issue resides in the distributed data setting.
However, since we are not treating the joint data of multiple sensors in the same way, this is not really the
case. Joint data could be of a similar variable (e.g. water height), but could have different characteristics
at different sensors. The spatio-temporal category is also not of much use. The spatial aspect is still
somewhat useful, as we can look at sensors close to each other. There is some meta-information available
regarding the relationships between locations, which can be used to determine useful predictors. But,
we are not aiming to use location indices or x and y coordinates as predictor variables. Also, certain
close by spatial neighbours are not necessarily more important than further away sensors (assuming
those further away sensors still have influence). Furthermore, sensor density varies greatly over the total
region, which might not work well in a spatio-temporal model. To finish this perspective, we deem the
network data approach not useful, since we are not looking at graphs or structuring our situation as a
graph.
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3.1.2 Research issues in outlier detection

Aside from looking at a general overview of data categories, we look more formally at research issues
which we can encounter. Sadik and Gruenwald [42] looked at which research issues need to be solved
during the creation of an outlier detection technique for data streams. We will not look at developing
extensive techniques ourselves, but existing techniques will be used and possibly combined. These
research questions can improve the evaluation and judgement of these techniques. Some of the issues
seem trivial and others might be problem-specific, but nevertheless, many interesting insights can be
derived. A few of these are that outlier detection techniques can not hold the entire data set forever
and that data points should be compared against the summary of other data points instead of the whole
population. Moreover, concept drift, which is the occurrence of changes in the sensor environment and/or
in trends which will change the data distribution over time, can happen and can hinder an algorithm.
Gama et al. [11] describe ’real’ concept drift as changes in the conditional distribution of the output
given the input, while the distribution of the input may stay unchanged. They have done a broad survey
on concept drift in online supervised learning scenario’s. It is also stated that concept drift goes further
than only the supervised scenario with labelled data. It is also interesting for unsupervised learning,
but this is claimed to be a novel research topic. As such, concept drift adaptation methods fall out of
scope for our project, since we are working in the unsupervised learning setting. This is the case, as we
do not have labelled training examples.

Research issues in multiple streams [42] are also relevant in this project, since multiple correlating
sensors can be used to detect outliers. An important issue is that correlations between streams should
be monitored and data points should only be compared against correlated data points.

3.2 Building blocks in outlier detection

Before examining implemented approaches of outlier detection systems, we will identify different building
blocks of these systems. Many papers propose new approaches and build on previous work, but in essence
all of these papers contain similar building blocks. We will identify many of these in the following sections.
There are multiple ways to approach outlier detection. One approach is to model the normal behaviour
of the data, and then determine whether there is a big difference between observed and modelled normal
behaviour. Another approach reverses this idea: model the abnormal behaviour and determine whether
observed behaviour matches this. Most of the methods described below belong to the first category. The
only building blocks we looked at which focus on describing abnormal behaviour are isolation forests
(explained in Section 3.2.2) and the density-based approaches of Section 3.2.6.

3.2.1 Autoregressive models

Chatfield [5] describes many autoregressive models. These models are relatively simple ones that we
might be able to use as a baseline for the more advanced models. They model the normal behaviour
observed in the data. The simplest of these are univariate models, which we can extend to multivariate
models. Normally, these models are used for forecasting time series, but they can be used in such a way
that (user-specified) prediction intervals can be calculated as well. These prediction intervals can be
used to see if an observed value is rather unlikely, and can consequently be classified as an outlier. The
use of these kinds of models for outlier detection in time series is also described by Aggarwal [1].

One of the simplest of these models is the autoregressive (AR) model. An AR(p) model is defined as:

Xt = c+ φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt (3.1)

In this equation, c and φi (i ∈ 1, . . . , p) are constant parameters and εt is white noise (generated by
a random process with mean zero and variance σ2). An AR(p) model has order p, which means that
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values up to p steps back will be taken into consideration. Xt is predicted from its own past values
instead of from other variables, which puts the term ’auto’ into autoregression.

Another model is the moving average (MA) model. This model does not incorporate previous values
of Xt, but uses prediction errors, which are alike to the previously used error term εt. A MA(q) model
(with order q) is defined as:

Xt = c+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt (3.2)

Again, c and θi (i ∈ 1, . . . , q) are constant parameters and εt is white noise. Combining these two models
(with possibly different orders) results in the ARMA model. These models, however, assume stationary
time series, whereas most time series in practice are not. To alleviate this problem, the series can be
differenced. This means that instead of using Xt, a ∆-term is used, which is the difference between
successive values of X. All this can be combined into the ARIMA(p, d, q) (autoregressive integrated
moving average) model. The order d of integration denotes how many times the series is differenced.

These univariate models can be extended to the multivariate setting. The model names will now start
with the term ’vector’, denoting the multivariate setting. The equations remain more or less similar,
with the difference that single coefficients and parameters now change to matrices and vectors. An
example for a bivariate VAR(1) model (which still uses scalar values) is the following:

X1,t = c+ φ1,1X1,t−1 + φ1,2X2,t−1 + ε1,t

X2,t = c+ φ2,1X1,t−1 + φ2,2X2,t−1 + ε2,t (3.3)

It can be generalised to the VAR(p) model, consisting of K variables and using vector notation:

Xt = c + A1Xt−1 + A2Xt−2 + . . .+ ApXt−p + εt (3.4)

where Xt is a K × 1 vector of variables, c a K × 1 vector of parameters, Ai (i ∈ 1 . . . p) are matrices of
size K ×K and εt are K × 1 error values, which are defined similarly to εt in Equation 3.1.

Lütkepohl [31] describes how to compute prediction intervals when forecasting VAR processes. For
Gaussian VAR processes, the prediction errors are (multivariately) normal distributed and can be cal-
culated with relative ease [30]. When describing non-Gaussian time series with unknown distribution,
other methods, like bootstrapping methods, may be needed to calculate the prediction intervals.

3.2.2 Isolation Forests

Isolation forests (IF) is an interesting tree-based technique [29]. As the name suggests, ensembles
(forests) of trees are built to detect outliers in data sets. The approach focuses on the concept of
isolation, instead of constructing a profile of normal data instances. When building a tree, a random
split between minimum and maximum feature value on a random feature is performed. Then, all data
points are on one side of the split, and further splitting on the two subsets ensues. When testing data
arrives, it is calculated how many splits are necessary to isolate that data point from other data. Since
outliers are rare by definition, they will need relatively few splits, whereas inliers need many splits to
isolate them from other data. Since the tree building process happens in a random fashion, results from
multiple trees are averaged.

IF overcome issues like swamping (wrongly identifying normal instances as outliers) and masking (the
existence of too many outliers concealing their own presence). This is done by sub-sampling, which
controls data size, to better isolate examples of outliers. Also, every isolation tree can be specialised
due to the aforementioned sub-sampling. Liu et al. [29] compare the algorithm against other methods
like Local Outlier Factor (LOF) and Random Forests (RF). IF outperforms these other algorithms
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with respect to AUC as well as computing time. These properties of accuracy and efficiency make IF
worthwhile for high volume databases in real-life applications. IF works well both in training data where
outliers occur commonly as in outlier-free data.

IF is not without issues, however. Just like distance-based methods, it suffers from the curse of di-
mensionality when using high dimensional data. This could be overcome by using attribute selectors
(which can select variables to use based on attributes like kurtosis, which measures ’peakness’) to reduce
dimensionality of the data sets. Still, this might pose some problems in the data sets when using large
numbers of relevant sensors.

IF has been implemented for streaming data by Ding and Fei [10]. They implemented a sliding window
approach to ensure that the model can handle infinite amounts of streaming data, as storing and scanning
the whole data set will not be feasible. A method to handle concept drift was also given. To do this, a
rough estimation of the outlier rate is necessary. This rate will be used as a threshold after scoring and
ranking (batches of) input data. If the observed outlier rate is higher than the threshold, concept drift
is detected and the model is retrained on a more recent sliding window. To set this parameter, prior or
domain knowledge about the data should be known. This may be problematic in real-life approaches.
Another issue is the width of the sliding window. According to Ding and Fei [10], the most common
method in literature is to use trial and error to set the width. The width is fixed manually in this
approach, but an automatic or varying self-adaptive width could improve results.

3.2.3 Long Short Term Memory (LSTM)

The LSTM model is a specific recurrent neural network (RNN) class, which has a more complicated
structure to handle retaining information in a better way. It was invented in 1995, with the original paper
about it published in 1997 by Hochreiter and Schmidhuber [18]. This model was invented to overcome
the vanishing gradients problem often found when training RNN models. LSTM’s have a widespread
use and are also applied in outlier detection. Like an AR model, they are able to model the normal
behaviour of the data. LSTM’s can be really useful for outlier detection, since they do not need time
windows as they can learn long term correlations [33]. As a result, complex multivariate sequences can
be modelled accurately. However, this might not necessarily hold if we take concept drift into account.

Jozefowicz et al. [19] make an empirical comparison of multiple RNN architectures to find out if the
LSTM model can be improved upon. It is concluded that LSTM’s perform really well, but are not the
best models for every kind of problem specification. One recent and promising alternative is the Gated
Recurrent Unit (GRU), introduced by Cho et al. [7]. This is a similar but somewhat simpler approach
than the LSTM and could be useful for us as well.

Malhotra et al. [33] use an architecture of stacked LSTM’s. This network is trained on normal, outlier-
free behaviour. To detect outliers, the model predicts multiple time steps into the future. When the
actual value is observed, multiple error values can be calculated by using all these predictions. A
multivariate Gaussian distribution is fitted on the error values. The likelihood of the observed value
on this distribution is compared against a threshold (which is calculated by maximising the F-score
on a validation set), to determine whether it is an outlier or not. Is it shown that the stacked LSTM
network is suited to model normal time series behaviour. This might prove problematic in our case, since
outlier-free training data cannot be guaranteed. Also, short-term as well as long-term dependencies can
be learned by this model. The model is shown to have considerably low recall, but it is claimed this
is the case because not all data points in an anomalous section will be classified as outliers. Instead,
only some data points are classified as such which may suffice to detect that deviating behaviour has
occurred. Another problematic issue that might arise is that this model does not focus on streaming
data, which may be necessary in our case.

Laptev et al. [26] focus more on the forecasting problem. Although this is different from our approach, it
might still be relevant if we can determine whether the forecasted values are actually outliers. A multi-
layer LSTM model is used as an autoencoder to be able to extract features. These are then plugged
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into a LSTM forecaster. Before all this is done, data is first normalised and de-trended, which might be
interesting for us as well.

There are some methods that can be used for calculating prediction intervals when using neural networks.
Section 3.2.4 goes into more detail in how these intervals can be used. Zhu and Laptev [53] explain a
method where dropout is used. Dropout is a neural network technique where nodes can be “dropped
out” and removed from the network, normally during the training phase. Afterwards, the network is kept
intact. This is a technique invented to reduce overfitting, but also works well to provide an uncertainty
estimation when used during the test phase.

Another well known method to calculate these intervals is bootstrapping [20, 26]. By using this method,
an ensemble of neural network models is needed, similar to how vanilla random forests use ensembles for
classification. Like using dropout, this can not only be used to decrease overfitting, but also to turn the
multiple estimations of the ensemble into prediction intervals. The downside of this approach, however,
is that large ensembles of neural networks can require a long training time.

3.2.4 Quantile regression

Quantiles, or percentiles, are the general case of for example the median and quartiles, and divide the
population in segments. Quantile regression is relevant to our research problem, since values calcu-
lated for extreme quantiles can be used as thresholds to classify data as outliers or not. As explained
by Koenker and Hallock [21], quantile regression extends the ideas of quantiles to the estimation of
conditional quantile function-models. In these models, quantiles of the conditional distribution of the
response variable are expressed as functions of observed predictor variables. In other words, instead
of just inferring the conditional mean of a response variable, we are able to estimate the conditional
distribution by using quantile regression. Quantile regression can describe the normal behaviour seen in
the data. Extreme quantiles can be viewed as the boundary between normal and outlier data.

Quantile regression can be implemented in multiple ways. One way to do this is by using the quantile
regression forests algorithm introduced by Meinshausen [35]. This technique builds upon the well known
random forests algorithm, which is suitable for regression problems. The fitting procedure is more or less
the same as in regular random forests, except that all observations are saved in nodes, instead of only
the mean. During the prediction phase, the observations are dropped down all the trees and weights of
each observation from every tree are computed and then averaged. Finally, these weights are used to
compute the estimate of the distribution function.

By using this method, prediction intervals can be built to detect outliers in the data. The width of the
prediction intervals is not fixed, but depends on the observed data. A downside of this method seems
to be that it is relatively slow and does not scale that well to bigger data sets.

A much different way to calculate these quantiles is by using neural networks. Different quantiles can
be set as output nodes by using specific loss functions, as shown by Rodrigues and Pereira [41]. In
this approach, a tilted loss function (also known as pinball loss) is used, as defined in [21]. By using
this function, multiple quantiles as well as the mean can be calculated by propagating the predictor
variables through the neural network. It is shown that this approach works in simpler univariate time
series forecasting problems and in more complex spatio-temporal models too. In the more complex
models, convolutional LSTM’s [51] are used to address redundancy for spatial data, which is normally
encountered in vanilla LSTM’s. Another beneficial effect of this method is that the quantile crossings
problem, which occurs when quantiles overlap, is alleviated. This crossings problems occurs when time
series of different quantile values are crossing, instead of having one series consistently higher than
another series. The calculated quantiles can be used as thresholds for the outlier detection problem.
We are also able to use this method and possibly extend it to the method using convolutional LSTM’s,
although the setting of the data of Rodrigues and Pereira [41] is different than ours, since the grid-like
spatio-temporal aggregation they performed might not be possible for us.
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3.2.5 Autoencoders

The autoencoder is a specific neural network architecture, which was originally invented to be able to
perform principal component analysis (PCA) in a non-linear way by Kramer [23]. PCA can be used to
perform dimensionality reduction in a data set, which might remove insignificant dimensions of the data.
Autoencoders can extend this approach to a non-linear fashion, which can be achieved by involving deep
neural networks. Autoencoders work by compressing the input to a much smaller dimensional latent
space with user-specified dimensions and then trying to reconstruct the original signal. This means that
the number of output dimensions will be the same as the number of input dimensions. The latent space
representation is a compressed view of the original data and can be used as a feature extraction method,
as shown in practice by Laptev et al. [26] and described more generally by Aggarwal [1].

Aside from applying autoencoders to dimension reduction, it can also be used for outlier detection, as
explained conceptually by Aggarwal [1] and shown in real-world sensor data by Reunanen et al. [40]. The
neural network architecture used is identical to the architecture used when performing dimensionality
reduction. A key difference, however, is that the output of the autoencoder is now vital, instead of
the latent space. The concept behind using autoencoders in this way, is that the network should be
able to learn what normal, or outlier-free data is. This is based on the assumption that the network
is fed outlier-free data. When it tries to reconstruct such data, it should be able to do well and create
a reconstruction which differs not too much from the original data. The reconstruction error, which is
the squared difference between the reconstruction and the original data, is expected to be low. When
the network is fed outlying data, the network should not be able to reconstruct this well, as it did not
encounter such data during the training phase. As a result, the reconstruction error will be high. So,
by examining the reconstruction error, one might be able to detect outliers.

Generally, this technique is applied on data sets of machines and of manufacturing processes like the
data set of Ranjan et al. [39]. High-dimensional data of one process or machine can be inputted in the
network and then reconstructed. As a result, reconstruction error can be used to define when a process
or machine malfunction has happened.

3.2.6 Distance-based methods: Nearest neighbour and density-based ap-
proaches

There are many different kinds of methods which attempt to capture regular patterns in data by using
clustering or density-based methods. The idea behind using the concept of clustering for outlier detection
is that inliers are assumed to be somewhat clustered. So, observations which are far from (one of) the
main clusters could be said to be outlying.

Pimentel et al. [37] and Talagala et al. [43] describe many different methods based on this concept.
These methods are fundamentally different than regression-based methods. In regression-based outlier
detection methods, we will claim that an observed value is an outlier because its predicted value is
too far off from the actually observed value. Here, we will not work with predicted values, but with
data distributions instead. A possible downside, however, is that ”correct” values can not be estimated
with these methods if we see that a certain value is an outlier. We need to resort to regression-based
methods or other kinds of imputation for that. Moreover, one could argue that by using this method, the
temporal aspect of time series gets lost. If, for example, a sensor has a regular error that occurs every
once in a while, all these observations could be clustered together, making it hard to actually find that
these values are outliers. The use of lag features could alleviate this issue to some extent. Nevertheless,
Talagala et al. [43] and Leigh et al. [27] managed to get decent results with these kinds of techniques
applied on time series.

Some of the described methods in [43] are based on k-nearest neighbour distances. They operate under
the assumption that outliers are isolated in data space. As a result, points with the largest k-nearest
neighbour distances can be said to be outliers. One of these methods is the HDoutliers algorithm. This
unsupervised outlier detection algorithm looks for outliers in high dimensional data and assumes that
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there is a large distance between outliers and regular data. This method utilises nearest neighbour
(Euclidean) distances between data points. The data is normalised first to prevent variables with high
variance to have a disproportional high influence on the calculations. A big amount of data can be
handled by using the leader algorithm, which forms several clusters. A typical member is selected from
each cluster and nearest neighbour distances are calculated. A calculated threshold is then used to
determine whether a data point is an outlier or not. The calculation of this threshold is based on
extreme value theory.

An improvement on the HDoutliers algorithm was presented by Talagala et al. [44]. This algorithm
called ”stray” solves problems such as only using nearest neighbour distance, encountered issues due
to clustering via the leader algorithm and issues with threshold calculation. These two methods look
promising, but have not seen that much use yet in practice. Other alike methods are aggregated k-
nearest neighbour distance (KNN-AGG) and sum of distance of k-nearest neighbours (KNN-SUM). A
difference between these two methods and HDoutliers is that they are robust to outliers with outlying
neighbours. If two outliers are near to each other, HDoutliers will not detect them. This is the masking
issue, just as described in 3.2.2. That might make HDoutliers inappropriate for our setting. These
two KNN algorithms take k points into account and behave similarly. Their difference lies in a different
weighting of these points: KNN-SUM calculates the sum of distances to these points whereas KNN-AGG
calculates a weighted sum with nearer neighbours having a higher weight.

Other methods can be density-based. They calculate outliers based on the isolation of points compared
to surrounding neighbours. Then, observations with low densities can be labelled as outliers. These
approaches are not extremely different, but have a subtle distinction. This approach is more or less the
same as used in isolation forests in 3.2.2. One of the most well known of these kind of algorithms is Local
Outlier Factor (LOF) [37, 43]. LOF calculates outlier scores based on isolation compared to surrounding
neighbours. Points with lower density than their neighbourhood are classified as outliers. This density
is computed by looking at the average reachability distance of k nearest neighbours. This algorithm is
also affected by the masking issue, however. Other algorithms, like Connectivity-based Outlier Factor
(COF), try to alleviate this [43].

3.2.7 One-class SVM

Support vector machines (SVM’s) are a well known method in data science. Traditionally, SVM’s were
used to classify data into two classes. This is done by calculating an optimal separating hyperplane,
which maximises the margin of the classifier. Less formally, this indicates that the hyperplane is placed in
such a way that the distance to the nearest training samples is maximised. The goal of the maximisation
is to improve the confidence in the predictions.

Aside from general classification, SVM’s can also be used for outlier detection. This can be done by
using one-class SVM’s (OC-SVM’s) to separate data of one specific class from all the other data [37].
Applying this to outlier detection, all the regular data is modelled in one class, and the rest will be
outliers. Although most research focus seems not to be on time series data, some uses of SVM in time
series data have been seen [25, 32]. However, there are some major issues in outlier detection by using
OC-SVM’s. Aggarwal [1] and Lamrini et al. [25] state that OC-SVM’s are only trained on the positive
class, or otherwise put that there are only examples from a normal class instead of outliers as well. We
can not possibly assume that the training data is outlier free. This makes it not an apt approach for us.

If we do have outliers in the training data, the SVM will be very sensitive to these outliers, as outliers can
have much effect on the decision boundary. This is a characteristic which may be very detrimental for
us. Some solutions of this issue have been introduced by Amer et al. [2]. Nevertheless, these approaches
are not readily available in code, it is unsure whether this also works for time series and the issues of
sensitivity to outliers may still remain. To conclude, SVM’s will not be pursued in our research.
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3.3 Implemented approaches of real-life outlier detection sys-
tems

In previous work, many different approaches for handling outlier detection in online time series data
have been introduced. For example, in Leigh et al. [27], a ten-step outlier detection framework for high
frequency water-quality data was introduced. This framework states the importance of collaborating
with end-users to improve model and recommendation quality. They suggest using multiple kinds of
outlier detection algorithms to provide optimal performance. Feature-based methods like KNN-based
methods and HDoutliers as well as (auto)regression based methods such as ARIMA are used. They do,
however, assume that a training set without outliers is available (or can be made available by validation
by domain experts), which is a bold assumption. In their study this worked, since very few sensors
were available. In a setting with a relatively high sensor density, like in our case, this is probably not
feasible. Moreover, because of the low sensor density here, it was not possible to use sensors values to
make predictions for other sensors values. This is possible in our data set, which may require a different
approach. Furthermore, they define outliers as faulty data due to a technical error in a sensor. In our
approach, we might encounter other cases of outliers (such as sludge in front of sensors or the presence
of beaver dams) as well.

Talagala et al. [43] performed similar research on the same data set, where HDoutliers as well as KNN-
based methods were used. They seem to have outperformed density-based algorithms such as LOF,
COF, Influenced Outlierness and Robust Kernel-based Outlier Factor. To achieve decent results, they
required carefully selected data transformation methods to adjust their data. This was due to only
seeing a clear separation between outliers and typical data points after these transformations had been
performed.

Reunanen et al. [40] presented another idea. They described a system to detect as well as predict outliers
in streams of sensor data. The outlier detection relies on an autoencoder with some extra parameters
to adapt to an evolving inlier data distribution. It also utilises a count-based sliding window. The
reconstruction cost of new data is used to determine whether it should be classified as an outlier. The
system does not need outlier-free training data or labelled training examples. Outlier prediction uses
logistic regression, stochastic gradient descent and also the hidden representation that is outputted by
the autoencoder.

A process for water data measured by ultrasonic sensors was introduced by Bae and Ji [3]. In this work,
ultrasonic sensors detect water levels at a really small time interval (2.5s). This is different from our
data set, where measurements are made every 15 minutes or hourly. Their system uses median absolute
deviation (MAD), exponentially weighted moving average (EWMA) and can automatically detect the
best windowing size. It does need some user-specified parameters, such as the initial cutoff range, the
minimum and maximum window size, the rejection criterion β, a smoothing constant factor and sensor
resolution. First, they use domain information to determine an initial cutoff range, which can detect
the majority of the outliers. Then, by using MAD, modified Z-scores and a cutoff range β, outliers are
detected and removed from the data set. Afterwards, the data is smoothed by using the EWMA. Their
approach seems valid, although it is unsure if it generalises to lower frequency water height data with
much fewer outliers. In their data many outliers are present due to their ultrasonic way of measuring
water heights as well as due to occurring water waves.

A more general water sensor platform was introduced by Whittle et al. [50]. This platform manages and
analyses sensor data for many different ends, such as water demand prediction. More relevant to our
research, online event detection for events such as pipe bursts or leaks is also implemented. The system
incorporates a lot of domain knowledge, including a real-time hydraulic model of a water distribution
system. Event detection is among others based on wavelet decomposition. In this way, suddenly changing
pressure levels can be detected. Another used technique is time-domain statistical analysis. By doing
that, fast and large changes can be detected, after filtering noise. Although this system is applied in
practice in Singapore, it is of less use to us, since it is not focused on modelling available data, but more
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on domain knowledge models. The detection is also not explained well enough to be replicable.

Perelman et al. [36] created an event detection system in multivariate water quality data by using
ANN’s and Bayesian sequential analysis. ANN’s (relatively simple MLP’s in this case) were trained on
the training data, after which the residuals were calculated. Based on these residuals, a bandwidth was
created so that 96-99% of the residuals are in this range. When classifying new data, these bandwidths
(which exist per predictor variable) are used to determine if a data point is an outlier for a certain
variable. Then, probability of events are updated by using sequential Bayesian analysis. Eventually,
actual events are declared when multiple of these probabilities exceed some user-specified threshold
value. For our work, the Bayesian step might not be needed, since we are not looking at system-wide
outliers. What is also interesting in this research, is that water contamination events were simulated in
the data to ensure a sufficient number of outliers. This could also be applicable to our work.

As previously stated, Zhu and Laptev [53] used dropout to calculate prediction intervals. More specif-
ically, a deep neural network was used to calculate confident predictions on univariate data. Their
proposed model described prediction uncertainty as a combination of model uncertainty, model misspec-
ification and inherent noise. They tried to capture the misspecification by using a LSTM encoder-decoder
which enables representative feature extraction in a later stage. Model uncertainty was captured by us-
ing dropout and the noise was estimated by using an independent validation set. This model was used
in practice for outlier detection at Uber. When observations fell outside the 95% prediction interval,
they were marked as outliers. This model was shown to be scalable and resulted in high performance.

Hill and Minsker [17] created an outlier detection system for univariate wind speed sensor time series
data. They used univariate autoregression methods and then calculated prediction intervals. Naive
prediction (also known as the persistence model), nearest cluster (a modification of KNN), single-layer
linear network and MLP were compared. For all these methods, prediction intervals were calculated by
using mean and variance which were estimated on 10-fold cross-validation. Cleaning of training data was
done by using the naive prediction. A downside of this approach is that the interval width is fixed until
models are retrained. Varying interval widths (as in Section 3.2.4) can be useful in outlier detection,
since knowledge about the certainty of predictions can be helpful in the classification of possible outlying
behaviour. Also, models need to be retrained relatively often to update these intervals. Interestingly,
their naive predictor model, which is a very simple model which predicts the last observed value, actually
worked well. This naive predictor method might be useful for us as a baseline model to compare more
complex models against.
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Chapter 4

Data overview

In our research, we analyse data from a Dutch water authority (Aa en Maas). Their sensor data is either
measured every hour or every 15 minutes. A measurement frequency of 15 minutes will be assumed unless
specified otherwise. We use this high frequency data, as it will lead to more data overall and to the
possibility for model improvements, as models might learn more detailed patterns. Multiple variables
measured by sensors can be queried. For example, we can query water heights on the upper and lower
part of a weir as well as water flow rates. Combining these variables leads to multivariate data sets.

We chose 4 weir locations for the analysis and model evaluation. These weir locations are 102BFS,
103HOE, 104OYE and 201D and are shown in Figure 4.1. At these locations, we have access to water
height on the upper part and the lower part of the weir, and also to water flow rate and weir shutter
height. We used water heights on the upper part of the weirs for the analysis, which will be indicated
in many of our figures as boven. The advantages of these specific combinations is that domain experts
have flagged this data for possible outliers. These sensors have no flagged outliers in them, which makes
the analysis in Chapter 7 more straightforward. We did not use multiple variables of these sensors, as
this did not improve performance. Section 5.2 will go into more detail on this topic.

We gathered all data between 05-06-2015 and 01-07-2019. According to the 60% - 20% - 20% split
explained in Section 2.2, this means that the training data is in the range of 05-06-2015 - 13-11-2017,
the validation data ends at 06-09-2018 and the testing data ends at 01-07-2019. Some coarse pre-
processing steps were applied before we retrieved the data. Namely, flatlines are non-existent in water
height data, as values are not allowed to be the same for a period of longer than 3 hours. Also, hard-
coded rules for detecting impossible and out-of-range sensor values were already applied previously on
most sensors, which removed the need to implement sensor-specific rules ourselves.

4.1 Weir connectivity

Our research will focus on water data from weirs. To get a better sense of what we are dealing with, we
show images of the weirs used in the analysis in Figure 4.1.

It is interesting to know how weirs are connected via waterways. This might give use useful information
in deciding at what sensor sets we want to look and can be helpful when determining if models make any
sense. In Figure 4.2, we see a zoom of an area with many weirs. Aside from interesting automatic weirs,
manual weirs also exist. We notice that there are many more weirs in total (Figure 4.2a) than there are
automatic weirs (Figure 4.2b). Nevertheless, we can still notice some automatic ones relatively close to
each other, which could be beneficial to the models. This is the case, as we would expect the time series
of the geographically close sensors to be correlated. This insight eventually led us to a method of sensor
selection by examining their correlation. Section 5.2 will explain this in detail.

19



(a) Weir 102BFS, viewed from the lower part of the weir. (b) Weir 103HOE, viewed from the upper part of the
weir.

(c) Weir 104OYE, viewed from the upper part of the
weir.

(d) 201D, viewed from the lower part of the weir.

Figure 4.1: The 4 weirs used throughout our work. Images taken from Aa en Maas.

(a) Zoom in on a specific view, showing all weirs in the
area, with connectivity information (where available) be-
ing used to draw arrows in the direction of the waterway.

(b) Zoom in on the same view, but now only showing all
automatically controlled weirs and excluding all manual
ones.

Figure 4.2: Weir locations and connectivity. The automatic weirs of Figure 4.2b transmit high frequency sensor data and
are the kind of weirs that are used throughout our research.
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4.2 Time series examples

An example of water height data on the upper part of a specific set of weirs is shown in Figure 4.3.

Figure 4.3: An example of available water height data. These six sensors are all on the same body of water and are
relatively close to each other (about 6km as biggest distance).

When looking at this data, we see that it is not without errors. For example, the ”108HOL boven”
time series (bottom line) has a very strange swing (with respect to the other sensors) around October
2018. When looking at this same series, some other minor spikes can also be encountered. Furthermore,
missing values can occur, as seen in the ”108IJZ boven” time series at the right. This data set has
relatively few missing values (approximately 2500); other sensor sets have more.

Figure 4.4: Another example of available water height data. Again, these six sensors are all on the same body of water
and are relatively close to each other (about 7 km as biggest distance). The bar at the bottom indicates whether all time
series have observed values at that point in time. If that is the case, the bar will be filled grey at that time step. As can
be seen, there are many time periods where there is missing data.
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One of those sensor sets with more missing values is visible in Figure 4.4. This figure describes water
height values gathered by 6 sensors, but also shows a bar at the bottom of the figure signalling whether
all time series have data at that point. As we can derive from this picture, it is probably not doable to
only look at time periods of sensor sets where no missing values occur. Thus, we must find a smart way
to deal with this missing data. Imputation of missing data is a possibility. Also, many easily discernible
outliers are present in this data. Many sudden jumps of a few time steps are present. Moreover, it
sometimes occurs that the water level of a certain sensor is higher than the water level of another sensor
located upstream, which is physically impossible.

Some quick initial data analysis has now shown that not all sensor sets are of equal data quality. The
data of Figure 4.3 is relatively high quality, for example. However, when looking at other sensor sets,
like Figure 4.4, these time series seem more noisy. In addition, there are many time intervals at which
data is missing for one or more sensors, as shown by a white value in the bar below the graph. Some
sensors might not have any data for a significant period of time. Thus, it is interesting to experiment
with multiple sensor sets of different qualities, to see how data quality affects the results.
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Chapter 5

Outlier detection pipeline

To go from raw data to outlier classification output, many different steps need to be performed. This
sequential procedure will be called the outlier detection pipeline. The pipeline will be specified and
thoroughly explained at every step. We will also explain why we have or have not used specific approaches
and have or have not explored interesting avenues along the way. The proposed pipeline consists of the
following steps:

1. Data gathering

2. Sensor selection

3. Imputation

4. Feature engineering

5. Feature scaling

6. Modelling (normal) behaviour

7. Predicting behaviour

8. Outlier classification

It is interesting to note that we did not implement pre-processing of training data in the pipeline. One
could argue for applying this step to improve the data, as we have seen in Chapter 4 that the data has
its flaws. A downside of these flaws is that we may train the models on flawed data, which might be
detrimental when modelling normal behaviour of the data. Leigh et al. [27] detected impossible and
out-of-range sensor values with automated, hard-coded rules and classified them as outliers. We could
apply this idea to the training data. A downside, however, is that these rules are highly sensor-specific.
Other pre-processing avenues might be detecting flatlines and jumps in the data. Extreme values could
be removed automatically as well.

We have to be very cautious when applying these methods. It is vital to do this carefully, since we do
not want to discard useful data. Also, these pre-processing methods could require different parameter
values for different kinds of water variables. For example, a water height time series could have very
different characteristics than a water flow rate time series.

Due to the aforementioned previously applied database pre-processing steps, flatline removal is not
necessary in water height data. Moreover, flatlines are considered normal in water flow rate data,
as water flow in some minor water passageways can easily be 0 during the summer. A method for
removing more subtle jumps and extreme values in the training data was experimented with. Some data
exploration gave us the insight that many sensor value movements that can be considered as extreme
values or jumps can actually be normal behaviour. If the behaviour of weirs is adjusted, water height
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can rise or fall very quickly. When examining sensor time series, we found that multiple sensors can
have these movements in the same, highly correlated way. There are also extremes values which do not
fall under this category. But, when removing these, we have a high chance to also remove the previously
explained normal behaviour. Since this is an extremely sensitive issue, we decided against implementing
pre-processing of data in the pipeline.

Figure 5.1: Cleaning of training data is a sensitive issue. Outliers circled in red should be removed, but green circled
values should definitely remain.

5.1 Data gathering

It was fairly easy to access vast quantities of water data. We could access water height on the lower
and upper part of the weir, weir height and water flow rates of the sensors. We could collect data of
multiple sensors at once. Multiple variable kinds can be combined in one data set, so that the entire
set of information of the automatic sensors is available. After this step, time series of all desired sensors
and variables are available and can be used in subsequent pipeline steps.

5.2 Sensor selection

Since Aa en Maas has many different sensors, we may retrieve a large data set of which much data
might be irrelevant for predicting outliers of one specific time series. This does not apply to univariate
modelling; it is only relevant to the multivariate case. Moreover, having many irrelevant time series
incorporated in the data set might lead to the inability of models to detect actual and useful relations
in the data. This may worsen model performance and also model run-time.

It is sensible to perform the sensor selection at this stage of the pipeline instead of combining it with
the feature engineering described in Section 5.4, because the amount of data may decrease significantly
after this step. This is important for a run-time acceleration of the imputation step of Section 5.3.

It is possible to use multiple variable types of a certain sensor. For example, we might use a combined
data set of water flow rate, weir shutter height and water height on the upper and lower part of the weir.
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This can lead to a vast amount of data. After some initial experiments in testing whether using multiple
variable types helps performance, it turned out that adding multiple variable types of a certain sensor
could actually be detrimental. Domain experts from Aa en Maas explained to us that there is a very
specific relation between weir shutter height and water height, for example. In some time series, this
relation is nicely captured in a certain time span. However, it often happens that this relation only holds
for a short period of time, after which the (cor)relation falls of, which worsens modelling performance.
If we force a model to incorporate this information, then it can happen that the predictions of a model
actually look less likely and realistic.

We removed all sensor time series with too many missing values. For time series with a low or moderate
number of missing values, we will present a solution in Section 5.3. The rationale behind removing time
series with too many missing values is that the models may not be able to learn the actual relations
between the different series well enough and thus may have a negative effect in the modelling. Also,
performing imputation on these series might be problematic, both in regard to run-time as to accurate
reconstruction. For our aims, a balance between keeping enough relevant information and discarding
non-sensical information is vital. Therefore, we decided to discard all time series with at least 10% of
their values missing. This value seemed to work well for the time series and still keeps the possibility of
keeping series with relatively many missing values.

To get a sense of the usefulness of the now remaining sensors, we examined the correlation between
different series. We only kept time series which were (highly) correlated with the time series in which
we wanted to detect outliers. It was a possibility to impose a threshold on these correlation values for
sensor selection. However, this could lead to a necessity of a variable threshold, since correlation values
can differ to large extent. Also, it could then happen that some predictions take different numbers of
other sensors into account than others. This hinders the model hyper-parameter decision process and
the feature engineering step. We did not opt for a correlation threshold. Instead, we kept the 4 most
correlated sensors to the sensor of interest to circumvent these issues. Nevertheless, it is the case that
the value of the lowest correlated sensor of these 4 can differ strongly among different sensors.

As an addition to this procedure, we experimented with an approach which not only examines correla-
tions between two time series, but also correlations with one of the series shifted back in the past. This
could be relevant, since it might be possible that time series are more highly correlated if one of them
is shifted. This makes sense intuitively, since the stream of water is not instant and the same water
needs some time to pass by sensors further downstream. Although this first seemed to be an interesting
addition, it turned out that it does not really improve the selection. When we looked at shifted series
(shifted by 1, 2, 4, 6 and 12 hours, by 1 and 2 days and by 1 week), we noticed that the maximum
correlation of a sensor against all those shifted series did not differ substantially from the correlation of
the sensor against the original series. The correlation values varied a little bit, but this was not nearly
enough to impact the sensor selection. As a result, we decided against the addition of using shifted
correlations in the selection procedure.

The correlation selection step is an example of applying the filter method for feature selection. Filter
methods analyse properties of available data to limit the number of features and do not make any
assumptions about models used further on in the process, as noted by Hall [15]. A different method
of feature selection is the wrapper method, as explained by Kohavi and John [22]. This method wraps
the feature selection around the to be used modelling method. An optimal feature subset is tailored to
a specific algorithm and can use cross-validation accuracy to decide on removing or adding a specific
feature. An advantage of applying this approach to our case, is that smart decisions can be made
regarding mutually correlated features. The correlation selection will result in a set of time series which
are highly correlated to the time series that we are modelling, which is desired. However, the multiple
time series in this feature set might be too alike to one another and it is possible that they do not all
contribute to the modelling. A wrapper approach might add one feature in a forward selection sense,
and then see that another feature will not have any added contribution (meaning that the addition of
this feature does not increase cross-validation accuracy) and then decide not to add that one.
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A study of a combined filter and wrapper approach for neural networks has been performed by Crone
and Kourentzes [8]. They note that wrapper approaches are often inefficient and are computationally
expensive because of the large number of possible feature combinations. Since running and evaluating
all the different models will probably already be quite computationally expensive, we consider using a
wrapper method and performing related experiments out of scope.

5.3 Imputation

Just like in most real-life scenarios, it was often the case that some data points were missing in the
available data. In our research setting where we are dealing with many different sensors, missing data
can have many causes. Examples of such causes are network or connection issues, sensor malfunctioning
and a switched-off logging computer. Many models will have serious issues when confronted with missing
data. Some models are even unable to deal with this at all. Thus, we needed an alleviation for this
issue.

Missing data can be handled in multiple ways. For example, we can discard all values of multiple time
series at a certain time step, if one of the time series has missing data at that time. For us, however,
this is undesirable, as we would like consistency between successive time steps. If we have large gaps in
the data and we remove all these missing time steps, we might see spurious relations in data which do
not correspond with reality. For example, it is possible that three days are skipped after removing gaps.
Two successive values can now have a time gap of three days, whereas this normally is 15 minutes. This
might lead to false assumptions and erroneous models.

Another way to deal with missing data is by using imputation. This means that we fill in the missing
data. There are many ways to perform imputation. For instance, it can be done simplistically by using
the mean value of a certain sensor for all missing values. More complicated methods, which might follow
the trends in the data better, have also been invented. Since we are often modelling relations by using
time series of multiple sensors, we might be able to exploit the correlation between these sensors in
imputation methods. When a sensor value is missing, it might be sensible to try and use available values
of other sensors to help in the reconstruction of the missing value.

We created an imputation benchmark to compare different imputation methods and decide which method
we wanted to use.

5.3.1 Imputation benchmark: A comparison of imputation methods

When filling in missing values, it is hard to quantify how well this has been done. A qualitative visual
inspection is possible, but we desire quantified and objective measures for comparison between different
methods. To be able to see if the used imputation functions perform decently, we created a benchmark.
We used data sets without missing values and artificially created gaps in these sets to see how well
different imputation methods can recreate the missing values.

We created gaps of different widths. In order to create a realistic benchmark, we used widths that were
observed in other data sets where gaps were present. Moreover, some really large gaps were sometimes
added to check if the models can handle them as well, as they were also present in some data sets.
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Figure 5.2: Example of a benchmark data set.

The gap creation process was repeated 10 times. We did this, since gaps with different characteristics
(like a gap in a relatively constant part of a time series, or a gap which includes a previously present
peak or period of high variability) can often be filled in with different rates of success. One example of
such a graph with artificial gaps in the data is presented in Figure 5.3.

We used 11 different algorithms to fill up these gaps. A short explanation is given below:

• Mean: Univariate algorithm which predicts the mean value for all missing values.

• Median: Univariate algorithm which predicts the median value for all missing values.

• Backfill: Univariate algorithm which uses the first valid observed value after a period of missing
values to fill in the gap.

• Forwardfill: Univariate algorithm which propagates the last known value of a time series for all
the subsequent missing values.

• Matrix Factorization: Multivariate algorithm which factorises the incomplete matrix into low-
rank matrices and uses gradient descent to fill in missing values.1

The next imputation methods all use the multivariate iterative imputer algorithm2. In this multivariate
method, missing values are calculated from all other variables which do not have missing values. Features
with missing values are modelled as a function of other features. What kind of function should be used
can be user-specified. A specific general regression model can be used to this end. This approach is based
on the well-known MICE (Multiple Imputation by Chained Equations) approach by Van Buuren and
Groothuis-Oudshoorn [46]. A difference between MICE and this idea, is that MICE performs multiple
imputations which are returned to the user. Here, only a single imputation is returned.

1Uses the implementation of https://github.com/iskandr/fancyimpute
2Uses the implementation of https://scikit-learn.org/stable/modules/impute.html
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Figure 5.3: Example of gaps we artificially created.

• Extra trees: Iterative imputer approach which uses the extra trees model (which are extremely
random forests that use random values for the split point) as its estimator.

• Linear regression: Iterative imputer approach which uses linear regression as its estimator.

• Bayesian ridge: Iterative imputer approach which uses Bayesian ridge (a specific variant of linear
ridge regression which also models uncertainty) as its estimator.

• KNN: Iterative imputer approach which uses k Nearest Neighbours as its estimator.

• Random forests: Iterative imputer approach which uses random forests as its estimator.

• MTSDI: Multivariate imputation algorithm in R, especially applicable for time series which are
related to each other in a spatial sense.3

Two examples of imputed time series based on the gaps of Figure 5.3 can be seen in Figures 5.4 and 5.5.

3Uses the implementation of https://cran.r-project.org/web/packages/mtsdi/index.html
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Figure 5.4: Example of the forward fill method applied on a data set with gaps.

Figure 5.5: Example of the linear regression method in an iterative imputer applied on a data set with gaps.

To quantify the results, we calculated the R2 scores of the imputated series, given their original series.
This score (Equation 5.1), compares the imputation results against a baseline model, which predicts the
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mean value of y at every time step. This value normally ranges between 0.0 and 1.0, where a higher
value is better. As multiple randomised runs could have different results for the various algorithms, we
used bar plots to summarise these results. This procedure was performed on several data sets, a result
of one specific set is shown in Figure 5.6.

R2 = 1− SSRES
SSTOT

= 1−
∑
i(yi − ŷi)2∑
i(yi − ȳ)2

(5.1)

Figure 5.6: Results of the imputation on water height data, using the same sensors as in Figures 5.2 to 5.5. Height of the
bar gives the average R2 for a specific model. The error bars within each bar denote the uncertainty.

5.3.2 Imputation used in the pipeline

As we can derive from Figure 5.6, many algorithms look like they perform decently. Linear regression
(in an iterative imputer setting) is one of the best performing algorithms and also has the advantage
that it’s relatively simple, easily explainable and fast. As a result, we will use linear regression in an
iterative imputer for imputation in the pipeline and will use this throughout the whole project.

5.4 Feature engineering

First, we explain the feature engineering step in general and how it is applied to the multivariate
modelling experiments. Afterwards we describe how it is used in the univariate experiments.

5.4.1 Feature engineering for multivariate modelling

As of yet, we have only spoken of the values of sensor variables at a specific instant. This is the basis of
our approach and is crucial, but can be extended to let models incorporate more information.

One logical extension of raw values often used in time series data is the use of rolling features. These
features use a rolling window over past values of an original feature, and calculate a specific function on
the values, like the mean or maximum. It is also possible to use rolling lag features. These features use
values that were present at previous time steps. This can be useful if there is a relation between two
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sensors, but not instantaneously. Since sensors are some distance away from each other, this is likely
and thus makes this a good feature candidate.

Experiments were performed to arrive at the ideal features and lag step values. The rolling features
we used throughout the experiments were the lag, min, max and mean of lag steps corresponding to
15 and 30 minutes and 1, 2, 4, 8 and 16 hours. Initially it was thought that the models would benefit
from having more information to be able to capture underlying relations in a better way. It turned out
that the difference between these values and not using history at all was not that big. There still was a
difference in most sensors, so giving the models all these features and letting them learn by themselves
how they should be used and combined seemed like a sensical approach. By not using too many steps
and features, there was a well-balanced trade-off between feature complexity and relevant information
encapsulated in the features.

Moreover, historical rain data could be of aid. We used data from Nationale Regenradar and KNMI and
incorporated these secondary data sources into the feature engineering step. Then, we tested whether
the incorporation of these values was useful. A hypothesis that rain information might help the models
could make sense theoretically. Large quantities of rainfall could coincide with a peak in water flow rate,
for example. After performing some experiments, we noticed that in water height data this is actually
not the case. Even in water flow rate this was not at all prominent. The correlation between the rainfall,
even when averaged over a longer time span, and the time series was too low to be able to contribute in
the modelling.

5.4.2 Feature engineering for univariate modelling

In the univariate setting, we noticed that most of the features from Section 5.4.1 were not very interesting.
An issue of using relatively small window values was that most models tend to behave like persistence
models, instead of taking longer history into account. We performed experiments to see if this procedure
could be improved. It turned out that the lag, min and max functions were not that useful. On the
other hand, mean values over a prolonged period of time were. We experimented with different window
sizes. Multiple sensors had slightly different optimal window sizes, and different categories of outliers
required different window sizes to be detected in an optimal way. In the end, we selected one feature
engineering approach for all univariate models, namely using the mean values of window sizes [256, 512,
. . . , 4192].

5.5 Feature scaling

After all the features of Section 5.4 have been created, it is considered wise to scale this data. Instead
of using the raw values, standardisation is used to improve algorithm performance. The used standard-
isation operates on every data column and scales it in such a way that the mean is removed and the
data is scaled to unit variance. This kind of feature normalisation can improve the performance of many
machine learning algorithms. This step is applied to all the data in the use of every algorithm to enforce
consistency between the model runs.

We have to note that the transformations we use to scale the data are fitted to the training data only.
So, only the training data is used to calculate the transformation functions. These same transformations
are then also applied to the validation and test data. It is vital not to fit these transformations on the
validation and test data as well, since this will lead to leaking of feature information, which will lead to
an unrealistic setting.

We also tried some other, possibly more powerful transformations. We experimented with Box-Cox
[4] and Yeo-Johnson [52] transformations, to make data more Gaussian-like. This could have been
beneficial for modelling, but turned out not to be the case. Some initial experiments led us to believe
that modelling performance actually worsened by applying these more complex transformations.
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5.6 Modelling (ab)normal behaviour

We subdivided the data into a train, validation and test set. All created models were trained on the
train set, which consisted of 60% of the available data. The validation set, which was made up of 20% of
the data, was used for hyper-parameter selection and/or to prevent overfitting, depending on the used
model. The remaining 20% was used as the test set, which we used to compare model performance on.

The models should be able to learn the underlying relations between different variables by training on
a large set of data. Ideally, this large set only includes clean data so these relations can be learned as
well as possible. That is not always the case, so we have a need for models that are robust with respect
to outliers.

The models used can be divided into two subcategories. The first one is regression-based models. In this
category, a prediction for a target variable is made. We can compare this against the actual value and
then calculate residuals, which are the differences between the predictions and the actual values. It is
paramount here that a model should be able to capture the behaviour of a target variable really well. If
this is not the case, outlier classification will deteriorate. More specifically, it might be of interest to look
exactly how well models should perform to be able to perform decent outlier detection. We could look
at some statistical model evaluation measures, which can describe its modelling power. For example,
it might be interesting to see what kind of minimum R2 values we need to have to perform well in the
outlier detection procedure.

The other category is more like a direct classification. The direct classification approach looks at data
and then directly classifies whether it is considered as an outlier or not. It is now not so easy to calculate
something like R2 to examine model performance.

5.7 Predicting behaviour

When the model has been trained, the test set will be used to make predictions. The different kind
of models may predict behaviour in a different way. All the regression-based models (including the
neural network-based approaches) work by calculating an expected value for a sensor based on the input
variables (possibly accompanied by quantile values). This is different from other models such as isolation
forests, which determine directly whether a value should be classified as an outlier.

5.8 Outlier classification

The outlier classification procedure is based on thresholds or quantiles, which is again depending on the
specific modelling technique used (and more specifically under which category of Section 5.6 the model
can be placed).

To perform outlier detection when using quantile regression, we used the Western Electric rules, made
by Western Electric Company [49]. These rules are decision rules which were invented for detecting
process instability. We can apply them to outlier detection as well. These rules work by comparing data
points against zone limits, which are based on a certain number of standard deviations. We used these
same values for the quantiles. We did not apply every Western Electric rule, but we used Rule 1, which
classifies each point out of the 3σ zone as an outlier. Moreover, we applied a variation of Rule 2, which
states that two out of three consecutive points beyond the 2σ boundary, on the same side of the centre,
should be considered very strange.

We were not completely satisfied with the results from Western Electric Rule 2. In many times, this led
to a high number of false positives. We tried two other approaches to replace this rule. This was mostly
done with the aim to detect drifts, as their gradual change can be hard to detect with Rule 1. The
first alternative was to look at consecutive residuals of a series of predictions. When drift is present, we
might expect that the residuals are gradually growing in either the positive or negative direction. This
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was not of much use to us. This approach is too susceptible to minor inaccuracies in modelling, which
results in the inability to efficiently detect drift or other outliers. Even when smoothing residuals over
longer periods of time, this was not helpful.

The second alternative is one that we actually used. The main concept is to look at predictions averaged
over the span of a day, and check whether this exceeds the averaged values of the 2nd quantile. This
idea is described in Algorithm 1. In this manner, minor short-lived errors get smoothed out, but we get
a more accurate way of describing a gradual change. A minor disadvantage of this idea, is that there
might be some false positives near the beginning and end of the day on which the average was made.
Luckily, this does not hinder us to a great extent. When this method was compared to the Western
Electric Rule 2, it was performing slightly better.

Algorithm 1 Drift detection by downsampling.

1: function Drift detection(yin, q2upper, q2lower)
2: yresampled ← resample to day(yin) . Resample input series to daily values.
3:

4: q2upper ← resample to day(q2upper)
5: q2lower ← resample to day(q2lower) . Similar for the previously calculated quantiles.
6:

7: outliers daily ← (yresampled > q2upper) ∪ (yresampled < q2lower) . Drift classification step.
8:

9: outliers predicted← upsample to 15min(outliers daily)
10:

11: return outliers predicted . Outliers classified per 15 minutes.
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Chapter 6

Modelling techniques

In this chapter, we describe the different modelling techniques that will be evaluated in the experiments.
The aim of this chapter is to describe the way in which we use these models well enough, so that the
experiments are replicable. A general introduction to the modelling approaches will be given as well.
This chapter will describe what (hyper-)parameters will be used for the models. Also, some models
might be discarded if initial experiments show that they are not suitable for our problem. Afterwards,
Chapter 7 will build upon these descriptions, these initial experiments and (hyper-)parameter tuning
and use these models on actual data sets to assess their performance.

There are 4 sensors that we will put emphasis on in this chapter. These are the sensors that will be used
during the synthetic evaluation of Section 7.2 and are sensors 102BFS, 103HOE, 104OYE and 201D. Of
these sensors, we will model the water height on the upper part of the weir. By looking at the test sets
of the 4 data sets, which have been validated by Aa en Maas, we could determine that no outliers were
present in the test data. This is beneficial for the synthetic evaluation, as already present outliers might
interfere with our own created ones.

6.1 General modelling approaches

To convert our extensive literature survey of Chapter 3 into a more succinct collection of used modelling
techniques, we will distinguish certain models that we will put focus on. The quantile regression method
with a tilted loss function is important to experiment with. More general (V)AR models will be used
to see if this can give us some sort of a baseline. These autoregression-based models can be gradually
extended to models with increasing complexity, which will result in (quantile) linear regression and
random forest approaches. Eventually, other neural networks-based models such as RNNs will be used.
Afterwards, the isolation forest method will be used to see if it works well in the data.

We can use the history of a sensor itself to detect outliers in its sensor values. If we use a multivariate
approach, we are also able to ignore its own values and base the detection on other sensor time series.
An advantage of the first approach is that it is always applicable as no other time series are needed and
that large sudden changes in values might be easy to track. An advantage of the multivariate approach
is that we can detect changes which happen in one sensor only. Slow, gradual changes over time might
be detected well in this manner. For this to function well, we probably need correlated time series.

We discern univariate and multivariate outliers. Univariate outliers concern one specific sensor and
could be caused by a sensor defect. Multivariate outliers can be more systematic since more sensors are
behaving weirdly. For example, large rainfall could cause this, as this can have effect on multiple sensors
and locations.

34



6.2 Regression-based models with gradually increasing model
complexity

Before starting this project, the preferred method for outlier detection at Ynformed was quantile re-
gression by using neural networks. To determine if this method is sensible and is not over-complicating
things, we started building models with low model complexity and gradually created more sophisticated
ones. Eventually, we will also arrive at such kind of quantile regression models and afterwards we will
be able to compare the characteristics of these models.

6.2.1 Autoregressive models

As explained in Section 3.2.1, autoregressive models are often used in practice, but in most cases for
regular time-series modelling and possibly prediction instead of outlier detection (although they are used
by Leigh et al. [27], for example). It was unsure whether the data and the environment would be suitable
for these kinds of models, so experiments needed to be done.

We implemented autoregressive (AR) models as well as vector AR (VAR) models, to compare univariate
and multivariate modelling. Intuitively, one might think the multivariate model will be better and more
sophisticated, since relations with other sensor data could be modelled, as well as auto-correlation of
the sensor itself.

For these kind of models, we needed to use the values of the sensor that we are predicting as well.
(V)AR models require the history of these values to calculate next ones. This is different from most
other approaches in this chapter, where it is possible to omit the variable that we want to predict from
the input variables. Whether this might pose a problem here needs to be seen.

When experimenting with AR and VAR models, we noticed their results actually resembled each other
to a large extent. Big sudden jumps could be detected as outliers; other values could not. It turned
out that the VAR and AR model were almost doing the same thing. The VAR model used almost the
same coefficient values for its own variable that the AR model learned, as is shown in Table 6.1. For
variables which the VAR model is not predicting, really small coefficient values were learned. Thus,
these other variables had almost no influence. Since the data is sampled at a relatively small interval,
data is not changing a lot in successive measurements. Therefore, the models learn coefficients which
favour predicting a similar value as currently present. The result of this is that (large) deviations only
occur when there is a sudden jump in values. We have more or less emulated a (smart) persistence
benchmark at this stage.

Feature VAR coefficient AR coefficient
Intercept 0.000 0.000
t-1 1.662 1.666
t-2 -0.658 -0.662
t-3 -0.056 -0.055
t-4 0.055 0.062
t-5 -0.005 -0.011

Table 6.1: Coefficients calculated by VAR and AR.

It was interesting to see that Leigh et al. [27] used similar models and claimed to achieve decent per-
formance. Since we were not really satisfied with the models, their approach was given a closer look.
After an inspection of Figure 6.1, it turned out that their performance actually was not that great after
all. As can be seen, their multivariate RegARIMA model had similar issues as we had. Just like in
our models, we see that many outliers are claimed to occur at data points where the relative difference
to neighbouring points is high. This gives many false positives here, but also misses many more subtle
outliers (like in the conductivity time series around July/August 2017).
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Figure 6.1: Excerpt of figure S5 by Leigh et al. [27]. A RegARIMA model (a model in multivariate ARIMA fashion) is
used here to predict outliers, by using a certain threshold on the residuals.

In the end, we conclude that the VAR model will not be used in the multivariate experiments. The AR
approach will still be used in the univariate experiments. In the univariate outlier detection, we used
the AR model to predict the next value, based on its previous values inside of a certain window. As we
can see in Table 6.1, most time steps outside of the first two have little influence. We experimented with
larger window sizes than the value of 5 that is shown here, but this did not change much. So, we used
a window size of 5 in the experiments. If a predicted value deviated too much from the observed value,
it was classified as an outlier. Threshold selection is another important aspect. After we performed
some initial experiments, we ended up with a threshold of 0.04. Lower values gave us too many outliers,
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higher values gave us too little predictive power. This value is relatively low; Section 7.4.4 will show the
implications of this.

6.2.2 Linear regression

A model slightly more complex than a VAR model is linear regression. A slightly higher complexity
comes from the fact that we can now use the feature engineering step of Section 5.4 as it is no longer
mandatory to use the plain time series as-is. A first assumption about this model, is that it might be
too simple to capture the relations in the data well. It could be the case that the correlation between
different sensors is unlikely to modelled well by linear regression.

An issue of interest when using linear regression for such kind of an outlier detection problem, is in
defining the threshold that is necessary for determining what an outlier is. An approach may be to use
the mean and standard deviation of the training data of the sensor of interest to base quantiles on. A
problem of this idea, however, is that this will lead to a fixed quantile width for the whole model. This
might cause issues, since varying quantile width seems desirable, as uncertainty about the prediction
can differ throughout the data.

Instead of just using plain linear regression, we used the Lasso model introduced by Tibshirani [45].
In this algorithm, an α-value can be used to punish overfitting models. This algorithm uses a l1-error
instead of an l2-error, which entails that coefficient size is punished linearly instead of quadratically.
The Lasso function to be minimised is shown in Equation 6.1, where coefficients are denoted as β.

N∑
i=1

yi −∑
j

βjxij

2

+ λ
∑
j

βj (6.1)

A main advantage of this approach is that coefficients can actually be zeroed out, which a l2-approach
like ridge regression is unable to do. Since the feature engineering step of Section 5.4 provides us with
104 features in total, this is useful. For example, when applying this on sensor 104OYE, only 11 of the
104 calculated coefficients were non-zero. One of the 4 underlying time series was not used at all, all
mean values were discarded and only one lag value was kept.

We used the validation set on the 4 used sensors to determine the ideal value for α. Figure 6.2 describes
the results of this tuning procedure. Validation loss for α-values in [3.0, 1.0, 0.3, 0.1, ..., 0.001, 0.0003]
were reported. To display this, a logarithmic scale seems wise. It is useful to use an α-value which scores
well, but also is relatively large. This is the case, as it will punish overfitting, while still keeping decent
performance. In Figure 6.2, we notice that different sensors have different α-values corresponding to a
minimisation of the validation loss. Still, we do see that they are all in proximity to each other. Based
on this graph and on the actual modelling ability of the resulting values (which indicated that a straight
line could perform okay in some cases, but is certainly not desired behaviour), we conclude by using an
α-value of 0.03 throughout the experiments.

We could have used the linear regression in a non-quantile way. Then, for each data point, we need to
calculate the residual and use a threshold to decide whether it will be classified as an outlier. Instead, we
opted for a quantile approach so we could use the same classification rules as in Section 5.8. To calculate
the quantiles, we first calculated the standard deviation of the to be modelled time series. Then, we
added or subtracted this quantity times a scalar value to the mean prediction to create the quantiles.
This procedure to calculate the different quantiles qi is shown in Equation 6.2. This ad-hoc like approach
somewhat mimics the quantile results that the algorithms of Section 6.3 are able to achieve.

qi = ŷ ± i

2
∗ σ(ytrain) | i ∈ {1, 2, 3} (6.2)
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Figure 6.2: Validation loss (mean squared error) for different α-values tested on the 4 sensors in linear regression.

6.2.3 Quantile regression forests

The quantile regression forests algorithm from the scikit-garden package1 was used, with some additions
to make it more like the code from the package in R, created by the inventor of the algorithm Mein-
shausen2. This was done, as it greatly improves prediction times, which is almost a necessity for the
broad experiment setup.

Initial experiments indicated the need for a long run-time to perform outlier detection, both the case
in the Python and in the R implementation. It seems probable that these speed issues are due to the
algorithmic complexity of quantile regression forests. This approach could still be applicable to our
project, but we need to keep in mind that scaling to large data sets (in number of training examples as
well as in number of predictor variables) could be infeasible, especially if models need to be retrained
often.

Some parameter values of the algorithm were experimented with. It was not possible to do this in an
exhaustive way, as the program is relatively slow (in training as well as in prediction, even with the
previously mentioned speed improvements). To achieve a large enough variability and decent enough
performance, multiple trees need to be combined. We used 1000 different trees in total. For each tree, we
used the same parameter settings: A node needs to have at least 40 samples in it for it to be considered
for a split, a resulting leaf node must have at least 20 samples and the maximum number of considered
features per split is one third of the total number of features. All of these steps are done to ensure a
plausible and realistic running time, while still keeping the model performant.

6.3 Neural network-based approaches

In the simpler models of Section 6.2, we encountered some practical issues. In real-life scenarios and
use cases, the standard quantile regression approach for outlier detection often used by data scientists
from Ynformed is neural network-based. To alleviate the problems of the simpler models, it seems like

1https://scikit-garden.github.io/examples/QuantileRegressionForests/
2https://cran.r-project.org/web/packages/quantregForest/quantregForest.pdf
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this more complex idea might be wise to apply to our case as well. After applying a default method for
neural networks, it is also interesting to see if we can improve on this with additional, possibly more
complex models.

When creating a neural network, it is not at all trivial to decide what hyper-parameter values to use. In
the case of neural networks, the tuning of the architecture of the network is a fine craft. Exploring all
different possibilities is impossible, as the possible size of such a network is limitless. However, for our
modelling tasks, it is probably not needed to create very complex networks, since we are not dealing with
huge amounts of data. This can be the case in image or video classification, for example. In practice,
it is often the case that some architectural varieties are tried out in a non-structured, trial-and-error,
fashion. This is sometimes comically referred to as ”grad student descent” [13].

In an effort to do neural network architecture tuning in a more advanced and systematic way, we used
the Hyperband algorithm, which was introduced by Li et al. [28]. This algorithm is more sophisticated
than a random search process over the possible hyper-parameters. The main idea is that many different
hyper-parameter combinations are tried out to see which works the best. Just like in a random search
process, these combinations are selected randomly, initially. A great contrast, however, is that these
models are initially only trained in just a few epochs. After many models have been trained, the best
ones are selected and will be trained for further epochs. This process is continued until only one model
remains.

Then, a next round is started. Just like in the previous round, some random configurations are tried out,
but now they are trained for more epochs. Also, fewer configurations are tried then in the previous round.
Again, this will eventually lead to one winning model. Some further rounds may ensue, depending on
some model settings. In the end, many different model architectures have been evaluated, where some
will have had more epochs to be fitted than others.

We repeat this whole process three times, to be sure that many different network architectures are
evaluated. Also, for each configuration, five models with different initial weights are trained and their
individual performance scores are averaged. This is done, as random initial configurations do have
a non-negligible effect on the model performance. As a result, we have a thorough hyper-parameter
selection procedure, which can improve on a standard random search approach.

In each of the following neural network sections, we will elaborate further what specific architecture
parameter settings will be explored by the Hyperband algorithm, as this is not the same for all models.
Results of this tuning step will also be reported, so Chapter 7 can focus on the results retrieved by using
a high-performing hyper-parameter configuration.

In the multivariate experiments of Chapter 7 we averaged the predictions of 10 different neural networks.
This ensemble approach is done as random weight initialisation has noticable influence over the created
model. In the univariate experiments this number is lowered to 5, to still keep running times plausible
as many more predictions need to be done. These extra predictions are needed because the input of the
testing data changes per outlier time series, which was not the case in the multivariate modelling.

6.3.1 Quantile regression: Multi layer perceptron with multiple outputs

For the first quantile regression model using neural networks, we will focus on using a multi layer
perceptron (MLP). This is a neural network with possibly multiple hidden layers, that only uses dense
neural network layers.

In applying the Hyperband algorithm, we used 5 executions per trial. This means that per setting, 5
models are trained and their results are averaged. The models were trained on the train set and were
scored on the validation set. The whole Hyperband algorithm was run 3 times, with the maximum
number of epochs set to 30 and the scaling factor to 3. This resulted in initial models being trained for
2 iterations. This is a small number, but due to the Hyperband approach, models could also be trained
for longer durations in subsequent rounds or when the selection in a current round is narrowed down.
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In the end, 270 trials were run. Some of these trials have the same hyper-parameters. This could occur
by chance in multiple runs, but a more common cause is that well-performing configurations are trained
further. We looked at the best runs and filtered out runs with the same parameters, so we only looked
at the best one of them.

In this MLP setting, we let the Hyperband algorithm select the number of layers (1, 2, 4 or 8), number
of units per layer (which could differ per layer, 16, 32, 64, 128 or 256), dropout (0.0, 0.1, 0.2, 0.3 or 0.4)
and learning rate of the network (0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001). As one can easily
calculate, trying all different combinations of these parameters is infeasible.

In the algorithm runs, we used early stopping with a patience value of 5. This means that model training
is stopped, after the performance (scored on the validation data) has not increased after 5 full iterations.
The training loss will still decrease, but the validation loss might not. This approach of early stopping
combats overfitting. Moreover, we used a batch size of 128. This means that we are not using default
gradient descent in the neural network, but are using mini-batch training, as explained by Masters and
Luschi [34].

We assumed that it was possible to run this for every sensor, and get some kind of a general network
architecture that works for each sensor. In theory, this could work, as the amount of data being fed
to the network is equal in all the cases. As a way of ranking, we ordered the models, descending, by
validation loss. This is the pinball loss where all the quantiles are taken into account, as explained in
Rodrigues and Pereira [41]. The results for the four different sensors are shown in Table C.1.

Whereas we initially thought we could find one general network architecture that works in all cases, this
is clearly not the case. There seems to be some correlation between the validation loss and the network
complexity. For example, sensor 104OYE can be modelled relatively well. All of the best networks only
use one layer. On the other end of the spectrum we see 102BFS (a sensor which was selected especially
because of the low correlation with other sensors, so we could see if this (severely) impacts results),
which has high validation loss and needs more complex models.

On account of these results, we decided to use a different architecture for the different sensors. The best
dropout, learning rate and number of layers was picked. One value for the number of neurons was used,
to be able to generalise a bit more. The concluding architectures are shown in Table 6.2.

Sensor Dropout Learning rate Number
of layers

Neurons
per layer

Average validation
loss of final model

104OYE 0.4 0.0005 1 128 0.1820
103HOE 0.0 0.005 1 256 0.8790
201D 0.4 0.005 2 128 0.9580
102BFS 0.4 0.00005 8 128 1.5330

Table 6.2: Final MLP model architectures per sensor

6.3.2 Quantile regression: Perceptron model

A baseline neural network model in the form of a perceptron model was created. We created a neural
network without any hidden layers. There are only direct connections between the input nodes and the
output nodes. Since the hidden layers disappear, we also do not have a possibility for applying dropout
and differing the neurons per layer anymore. Thus, the only thing that can be tuned is the learning
rate. Again, we use a batch size of 128. In the tuning process, we did not use the Hyperband algorithm.
Since we are only tuning 6 different learning rates, an exhaustive search is now possible.
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Sensor
Learning rate

0.005 0.001 0.0005 0.0001 0.00005 0.00001

104OYE 0.2194 0.2220 0.2247 0.2248 0.2273 0.2261
103HOE 1.1747 1.2159 1.2969 1.3123 1.4993 1.9265
201D 1.6964 1.7734 1.7738 1.8762 1.8783 3.0741
102BFS 1.1660 1.2191 1.2326 1.2569 1.2695 1.3049

Table 6.3: Learning rate parameter tuning for the perceptron model. Average validation loss of 10 runs. Best value marked
in bold.

As we can see in Table 6.3, is seems that a large learning rate works best for this kind of model.
Consequently, it is a logical choice to just use a learning rate of 0.005 for all the perceptron models.
Moreover, we see that the validation loss is (much) higher than in the models of Table 6.2, with a notable
exception of sensor 102BFS.

6.3.3 Quantile regression: RNNs

In this section, LSTMs and RNNs will be experimented with. Instead of using normal dense layers in
the network, we now used RNN layers. Again, a tuner approach was used. We let the tuner decide if a
GRU or LSTM kind of RNN layer should be used. A difference between the tuning of Section 6.3.1 is
that we now use at most 4 layers, because of the large run times needed when tuning these models. Also,
we use a batch size of 2048 instead of 128. This speeds up run times dramatically, which was needed
to run these experiments in a doable time. This will surely have an impact on the ideal learning rate,
but since we are still tuning this in a broad range, no problems regarding this should arise. The last
big difference is that we now only use a window size of 32, instead of a maximum window of 64 as was
explained in Section 5.4. So, we now use the previous 8 hours of data, instead of the previous 16 hours.
This was also done for run time improvements and did not seem to impact the model quality. A main
difference, however, is that since we have a RNN, all these 32 values are used in every step. This is the
case, as RNNs need time series in their original form. Also, this disallows us from explicitly modelling
features like the minimum and mean features. The model should be able to learn these relations from
the data. The results of the evaluation runs are shown in Table C.2.

Again, it seems to be the case that there is no general, best overall network architecture. Moreover, it
seems that neither LSTM-layers nor RNN-layers work best for every network. Like in Section 6.3.1, we
will use a different network architecture per sensor. Similarly, for each different sensor, we picked one
value for the number of neurons, to generalise a bit more. The final used models are shown in Table 6.4.

Sensor RNN type Dropout Learning rate Number
of layers

Neurons
per layer

Average validation
loss of final model

104OYE GRU 0.1 0.0005 1 256 0.2060
103HOE LSTM 0.0 0.005 1 256 0.9401
201D LSTM 0.4 0.001 4 64 1.3292
102BFS LSTM 0.2 0.0001 4 64 1.2330

Table 6.4: Final RNN model architectures per sensor

6.3.4 Discarded model: Quantile regression: Dropout during prediction

In Section 3.2.3 and Section 3.3, a method to derive quantiles by using the neural network technique
dropout is described. This method is similar to the previously described models of Section 6.3 in the
sense that neural networks are used, but dissimilar in the sense that now the tilted loss function is not
used anymore and quantiles can be calculated by making predictions multiple times.
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Two different methods to implement this approach have been tried. The first used all the different
predictions (we used 1000) and creates quantiles based on picking a sample corresponding to a specific
quantile of the ordering of these predictions. The second method uses the standard deviation of all these
predictions and adds them multiplied by a multiplier to the average predicted value to calculate the
quantiles. For different quantiles, a different multiplier (1, 2 or 3) was used. We have used the second
method, as the first method was relatively noisy. This could have been circumvented by using many
more than 1000 predictions, but a large downside of this is that experiments would have been very slow.

There are two main problems in this approach. Aside from the model being relatively slow, there is a more
fundamental issue. In this model, we are hugely relying on the dropout to create an uncertainty interval.
To do this accurately, the choice of the dropout parameter is paramount. The higher the dropout
parameter, the more wide the distribution of calculated values can get. Thus, to create reasonable
intervals, the dropout parameter needs to be set to a right value. A major issue of this, is that the
dropout parameter might also be very important for creating an accurate model. As we have seen in
the previous sections, a specific dropout value might be required for modelling a certain sensor.

Some experiments to tune this dropout value have been performed. We trained a neural network on
outlier-free testing data of a sensor set which is known to behave normally during the span of this data.
Then, prediction is done on this same test data, with dropout used during prediction. The idea behind
this, is that we may now model the data distribution by varying the dropout parameter. This was done
on two data sets and the results can be seen in Figure 6.3.

(a) 104OYE (b) 201D

Figure 6.3: Dropout tuner results. Average over 3 runs with 1000 predictions each.

In this figure, we experimented with 9 dropout values. For each value, we trained 3 neural networks
and calculated 1000 predictions using each network. Based on the quantiles corresponding to all these
predictions, we took note how many values fell outside of the quantiles corresponding to the 1st, 2nd

and 3rd standard deviation (both on the upper and lower boundaries). This yields us percentages
observed at the expected percentages 0.26%, 4.56% and 31.74%3 for respectively the 3rd, 2nd and 1st

standard deviation. The graph is constrained between 0% and 10% to be able to depict this clearly.
In an ideal scenario, we would have a straight line, as that would indicate neither overestimation nor
underestimation of the underlying distribution. In both images, there is no straight line. The green line
corresponding to a dropout value of 0.20 seems to fit the best on average, but in Figure 6.3b, this model

3These values are the sum of expected percentages beneath and above respectively the lower and upper boundary,
which correspond to (0.13, 99.87) (2.28, 97.72) and (15.87, 84.13) for the 3rd, 2nd and 1st quantile.
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has a relatively large average loss.4. Also, it is expected that lines corresponding to low dropout values
are leaning more to the upper left, whereas high dropout values are expected to lean to the bottom
right. This is expected, due to higher dropout values leading to more variation in the predictions. We
can see that this ordering from upper left to bottom right is not strictly ascending as expected. This
could be problematic, although the big variation in created networks makes it hard to make any solid
claims about this issue.

We see that making a correct decision which dropout value to use is not really doable. Thus, we
concluded that this method will not be used in the further experiments.

6.3.5 Discarded model: Autoencoder

In Section 3.2.5, we described a general approach of using autoencoders for outlier detection. This
general approach may be a bit dissimilar from what we aim to solve. Like in a manufacturing process
or in a sewage pumping station, our data may be high-dimensional because time series of multiple
sensors might be used in an outlier classification. Contrary to this manufacturing process, however,
these sensors are all different mechanical entities which do not belong to the same system. When we
input multivariate data like this in an autoencoder, it will try to reconstruct the sensor values for all of
these sensors, instead of just focusing on one sensor which might be of interest to us. We have to note
that we cannot retrieve the root cause of this outlier. Domain experts who would use a system like this
in practice still need to perform a lot of manual analysis to determine and resolve the actual underlying
issue. The fact that autoencoders for outlier detection should be trained on outlier-free data might also
prove troublesome.

It is also possible to calculate the reconstruction error of a single series. This can be done both in
the multivariate and in the univariate sense, if we only look at the reconstruction error of a sensor
value and discard the reconstruction of the derived features. This is not really a proven method for
outlier detection, but is a novel approach. During the feature engineering step of Section 5.4, we use
lag variables. So, the reconstruction phase of the autoencoder will also recreate the time series of these
lag variables. In this novel approach, the reconstruction error will only be based on the reconstructed
original time series, not taking the reconstruction of the lagged time series into account. Whether this
holds theoretically and mathematically is unsure, which makes it a questionable method.

Another downside of using multivariate autoencoder modelling is that it is mandatory to incorporate the
own history of a sensor, as the reconstruction error can not be measured if the own history is removed.
This kind of modelling has some issues, just as we have seen in the autoregressive methods of Section
6.2.1.

Another option is to perform outlier detection in an univariate setting only. Then, a specific target
sensor is considered as the whole system. Again, we can reconstruct the whole system of lagged time
series. Now, it is possible and sensible to calculate the reconstruction error of this entire system. This
approach is more alike to the usual practice of performing outlier detection by using autoencoders, since
we returned to the whole system setting. On account of this, we are now more sure to have an approach
with higher validity.

Although we first deemed the autoencoder approach to be promising, we must note that some of these
approaches are dubious. The multivariate approach with focus on one time series as well as the approach
based on the reconstruction error of the whole system is questionable both theoretically and practically.
In the end, it is probably not advisable to use autoencoders for multivariate outlier detection in our
project. We can still use the univariate idea, however. But, since some initial experiments showed
relatively poor performance, we discarded this method.

4These losses cannot be directly compared with tilted losses from before, as we are now using the mean squared error
for each model.
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6.4 Miscellaneous models

Some techniques dissimilar to the previously discussed regression-based and neural network-based ap-
proaches were also used. They are discussed in the following sections.

6.4.1 Isolation Forests

At first, we thought the isolation forest model to be promising. After some initial experiments, we en-
countered some issues. When considering multivariate feature sets, we will encounter the same problems
as when using autoencoders and VAR-models. This means that we can only look at outliers of a whole
system. It is not possible to only predict outliers for a specific sensor, since we will only get an outlier
label for the total system. This caused us to only know if there are outliers in the combined feature
set, which is problematic when trying to determine which sensor is causing the outlier. Also, it is again
mandatory to incorporate the own history of a sensor.

So, like in the autoregression Section of 6.2.1 and the autoencoder Section of 6.3.5 we conclude that we
should not use this approach in a multivariate setting and should only apply it to the univariate one.

We have done some hyper-parameter tuning to determine the ideal value of the contamination parameter.
This value indicates the proportion of outliers in the data set and is used to determine the threshold
during the learning phase. If we set the contamination value too low, we will detect few outliers. If it
is set too high, the precision of our model will drop. Our experiments suggested a value of 0.07, which
seems like a decent trade-off between precision and recall. These experiments have been performed using
jump and drift data sets; extreme value outlier detection performed poorly regardless of the parameter
choice.

6.4.2 Discarded model: Distance-based methods: K-Nearest neighbour ap-
proaches

As we have seen in Section 3.2.6, there are numerous distance-based methods for outlier detection.
Performing experiments on all these mentioned methods is too extensive and time-consuming for this
project, which is why we consider it out of scope. Instead, we decided to focus on the most promising
approaches, which include the KNN-based approaches. These methods were also covered by Leigh
et al. [27] and Talagala et al. [43]. They note that the KNN-methods are preferred if outlier clusters
are present in feature-space. An example of this is the recurrent spiking of a time series by the same
value. This is exactly something which can occur in our data, as there could be technical issues with
sensor machinery, for example. For that reason, we implemented both the KNN-SUM and KNN-AGG
algorithms. Some minor experiments with KNN-based regression were also performed, but since obtained
results were clearly inferior compared to the neural network-based methods, we decided not to pursue
that avenue. Similar to Section 6.2.1, 6.3.5 and 6.4.1, we have the issue of only examining outliers of a
total multivariate system.

When we experimented with these implementations, we noticed that the initial results were not very
promising. Therefore, we discarded this method.
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Chapter 7

Results and evaluation

In this chapter, we describe the results and evaluation of the models. First, we give a general overview
of the metrics that we use. The multivariate modelling results of the synthetic evaluation will follow.
We then use statistical tests to compare the model results for statistical significance. Afterwards, we
describe the univariate modelling results. Next, we compare the univariate and the multivariate models
by testing for significant differences. We conclude the chapter by looking at the practical performance
and impact of our models.

7.1 Metrics

Before we discuss the results of the experiments, it is first important to describe the performance metrics
which we will use to compare all the model results. These metrics describe model performance based
on the number of occurrences of true and false positives and negatives the model has classified. These
values can be organised as in Table 7.1. In the context of our research, a true positive is an (added)
outlier that is correctly identified. A false positive wrongly indicates that an outlier is present. A false
negative is a missed outlier and a true negative is a normal or expected data point which was classified
as such.

Predicted
Positive Negative

A
ct

u
al Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

Table 7.1: Confusion matrix layout.

Some general and interesting metrics are defined in the following manner:

• Accuracy is the proportion of correctly classified cases to the total number of cases.

Accuracy =
TP + TN

TP + TN + FP + FN
(7.1)

• Positive Predictive Value (PPV), also known as precision, measures the probability that a
case predicted to be positive indeed is positive [43].

PPV =
TP

TP + FP
(7.2)
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• Negative Predictive Value (NPV) indicates the probability that cases predicted to be negative
are indeed negative.

NPV =
TN

TN + FN
(7.3)

• Sensitivity (Sn), also known as recall, is the proportion of positive patterns being correctly
recognised.

Sensitivity =
TP

TP + FN
(7.4)

• Specificity (Sp) is the proportion of negative patterns being correctly recognised.

Specificity =
TN

TN + FP
(7.5)

• Fβ-score is a combination of recall and precision, where β indicates how many times recall is
considered as important as precision [6].

Fβ = (1 + β2)× precision× recall
(β2 × precision) + recall

(7.6)

It is probably not useful to look at accuracy, since true negatives will dominate the data set. This is
intuitive, since outliers are by definition rare. Metrics like the PPV and NPV might be better indicators,
although NPV still has the same issue. On the other hand, when using synthetic evaluation, we may
have many outliers.

Which metric we will put the most focus on depends on whether we deem minimising false positives, or
minimising false negatives more important. In our setting, minimising false negatives and thus putting
more emphasis on correctly recognising positives (outliers) is more important. This is the case, since
in an implemented real-life scenario of this system, outlier detection will lead to triggers for database
maintainers and data specialists. They need to verify whether outliers are correctly detected. Since this
flagging of data will be validated by domain experts, it is probably better to have a false alarm, than
to miss an outlier. Thus, a metric like recall might be more important than precision. As we do not
want to overload domain experts with false positives, precision is still of some importance and it might
be wise to consider the Fβ-score, where we can combine these two values in the manner we prefer. A
value of 2 for β is fairly common and seems like a valid approach for the experiments. Nevertheless, we
will list all these metrics for the test runs.

Aside from these conventional metrics, we will also show some we created ourselves for the synthetic
evaluation. They are dependent on the specific kind of outlier superimposed. For outliers which occur
over a period of time, such as drifts or jumps, we will record if the whole period of outliers is missed
(so, not a single value in the period has been marked as an outlier). On top of that, we will record in
how many time steps (or after what drift value) a specific drift is detected.

The fitted models are used on the test set to assess model performance. Evaluation of the results will
be done by using simulation.

7.2 Synthetic evaluation: Multivariate results

The synthetic simulation evaluation method entails that we altered the data ourselves to simulate outliers
that might happen in reality. Such a method is also used by Perelman et al. [36]. They superimposed
(parametrized) simulated events on existing patterns, to handle the issue that certain events were hard
to prespecify. This is also an interesting method for us, since it enables evaluating to what extent the
used algorithms can handle certain outliers. Also, since our approach is in the unsupervised setting, we
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do not have much labelled data to validate or evaluate model performance. By using simulation, we
are able to generate exactly those outliers that we want in an easily reproducible and controlled setting,
which can be used on multiple data sets and used for multiple algorithms that we wish to compare.

7.2.1 Synthetic outlier classes

We manually introduced multiple kinds of outliers in the data. We perused the outlier definitions of
Versteeg and de Graaff [48] and Leigh et al. [27] to get an idea for outlier categories that are used in
literature on water time series data.

The synthetic outlier categories we created and used in the synthetic simulation are:

• Jumps: A period of data which is increased or decreased by a constant value. After the period
has ended, the data values return back to the original range.

• Extreme values: Isolated data points which are increased or decreased by a constant value. This
category is alike to jumps, but is fundamentally different, in the sense that the window is greatly
reduced to only one value.

• Linear drift: The occurrence of a series which has a gradual linear trend upwards or downwards.
Unlike jumps, drift occurs over time and is not instantaneous.

We implemented some other categories that were not used in the experiments. Flatlines, extra liveliness
and two techniques for lowered liveliness were created. In discussion with domain experts, we decided
which categories are the most important and will thus be the ones that we will focus on. Apparently,
unnatural flatlines in actual water height and nonzero flow rate data are not possible, since the data
storage system already has checks to prevent this from occurring. Also, the liveliness categories are
deemed less important. Thus, we focused on jumps, extreme values and linear drift because these were
deemed to be important by the domain experts. These categories will be the ones used for the synthetic
model evaluation approach.

At first, we attempted a method where the same outlier type was superimposed multiple times on one
time series that we were checking for outliers. Each outlier was similarly parameterised in terms of
width and value. Depending on the outlier type, this approach may yield problems. Suppose we are
currently interested in modelling drift. To enable meaningful comparisons between models, we need a
large enough set of outliers. But, if we want to create many drifts which are not trivially small in the
data, we may encounter overlapping drifts, which will result in very unnatural behaviour. The same
might be said for jumps. For extreme values, however, this is far less of an issue, because these data
points are by definition isolated, with a width of 1. Thus, they will not overlap and this approach is
valid for this outlier category.

To perform synthetic evaluation for jumps and linear drift in a smarter way, we created multiple test
series with different outliers in it. To be more specific, we used one specific drift or jump and then moved
this outlier throughout the data, with each movement yielding us a new series. We alternated between
outliers oriented upwards and downwards. In this way, we can create a model and create predictions
in the usual way, but we do need to compare each of the created test series against the predictions.
Since this is computationally inexpensive, it is not an issue. For each test case, we created 100 of these
series. We used multiple outlier generation settings and will show results for multiple outlier values.
These values (in meters) were 0.02, 0.05, 0.1, 0.2, 0.3, 0.5 and 1.0. Also, jumps had the duration of
approximately 1.5 months, whereas drifts were approximately 6 months wide. Examples of these outliers
are given in Figure 7.1 and this idea is described more formally in Algorithm 2.
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Algorithm 2 Synthetic outlier generation

1: function Create outlier scenario(ytest, value, duration, number of series, type)
2: num timesteps← count timesteps(ytest)
3:

4: if type is extremes then . number of series is interpreted as num outliers here.

5: timesteps between extremes← num timesteps

num outliers
6: outlier times← range(0, num timesteps, timesteps between extremes)
7: extreme series← repeat(value, num outliers) . Create num outliers of size value.
8:

9: for i in length(number of series) do
10: if is uneven(i) then
11: extreme series[i] *= -1 . Alternate outlier direction.

12: y test[outlier times]+ = extreme series . Extreme value is added at distinct timesteps.
13: return y test . Only one time series is returned.
14:

15: else . Jumps or drift category. First calculate begin and end time per outlier.

16: timesteps between starts← num timesteps− duration
number of series

. Evenly space starts.

17: begin times← range(0, num timesteps− duration, timesteps between starts)
18: end times← range(duration− 1, num timesteps, timesteps between starts)
19:

20: list of series← [] . Initialize list of adjusted series.
21:

22: for i in length(number of series) do
23: if is uneven(i) then
24: value∗ = −1 . Alternate outlier direction.

25:

26: if type is jump then
27: curr y test[begin times[i] : end times[i]]+ = value
28:

29: else . Apply a linear drift to the time series.

30: shift per timestep← value

duration
31: drift← [0, . . . , duration]× shift per timestep
32: curr y test[begin times[i] : end times[i]]+ = drift

33:

34: Append(list of series, curr y test) . Add current series to collection.

35:

36: return list of series . List of all adjusted series are returned.

Results of all the experiments are shown in the next sections. First, we display some visual results of a
specific series. Afterwards, we will summarise these findings in Section 7.3. Moreover, results are shown
in tabular form in Appendix B.1.
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(a) Original time series without added outliers.

(b) Added drift.

(c) Added jump.

(d) Added extremes.

Figure 7.1: Outlier examples in sensor 104OYE for outlier value 0.2. For jump and drift, this is 1 of the 100 created series.
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7.2.2 Results multi layer perceptron

For each of the different modelling techniques, we will show the visual results of one specific sensor,
one specific outlier category, one specific outlier generation setting and one of the simulated 100 series.
Showing all these series is clearly not feasible. Nevertheless, one visual result can already show how the
model can function and how realistic quantile boundaries can look.

In Figure 7.2, we display the quantiles and detected outliers of one time series of sensor 104OYE. We
added a jump from February 2019 to the middle of March 2019. As we can see, this jump can be easily
detected, but some false positives are also present. It is interesting to note that there could actually
be some unannotated outliers in this data. This could be the case for the short-lived jump around
November 2018, for example. In all successive figures of these plots in the future sections, the same
outlier is displayed.

Figure 7.2: Quantile plot of sensor 104OYE, with added jump using the MLP model.

7.2.3 Results perceptron model

The perceptron model shows some decent results in Figure 7.3. It looks similar to the plot of the multi
layer perceptron model of Figure 7.2. A difference is that predictions and quantile boundaries look a bit
more jagged here. There also seem to be more false alarms.
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Figure 7.3: Quantile plot of sensor 104OYE, with added jump and perceptron model.

7.2.4 Results RNNs

In Figure 7.4, we see a major issue that apparently can occur when using RNNs. As is clearly visible,
the quantiles are very wide. This specific jump could be detected, but it is evident that more subtle
outliers (or outliers oriented otherwise) might be harder, or even impossible, to detect.

Figure 7.4: Quantile plot of sensor 104OYE, with added jump using the RNN model.

7.2.5 Results quantile regression forests

The quantile regression forest model has major issues, as can be seen in Figure 7.5. The quantile
boundaries are very jagged. As a result, many data points are misclassified, even though the added
outlier is detected as a whole.
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Figure 7.5: Quantile plot of sensor 104OYE, with added jump using the quantile regression forests model.

7.2.6 Results linear regression

The linear regression results depicted in Figure 7.6 look decent. When compared to the other models,
though, we clearly see the disadvantage of only having one fixed width for the quantiles throughout the
whole data set. Nevertheless, we see that the predicted value for the time series is closely following the
actual value most of the time.

Figure 7.6: Quantile plot of sensor 104OYE, with added jump using the linear regression model.
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7.3 Comparison of multivariate modelling techniques

Having gathered and shown all the results of the previous sections, it is yet unclear what conclusions we
can draw. To make any claims, we first need to decide which metric we will base the comparisons on.
This will be the F2.00-score, as it strikes the right balance between precision and recall for our goals.
Recall is more important than precision in our scenario, since the potential impact of a missed outlier
will probably be higher than the impact of a false alarm which is sent to a domain expert.

In Figure 7.7, an overview of the F2.00-score results of all models, evaluated on all sensors with all
outlier types is presented. Only values for one outlier generation setting are described. This value of
0.2m is realistic for jumps and extremes, according to domain experts. For drift, 0.05m is a more realistic
value. Figures 7.8 and 7.9 show the results for values 0.1m and 0.05m. It looks a bit strange that the
F2.00-score for extremes is low in all cases. What is key here, is that fewer outliers are added here than
in the other categories. In the drift category, 17520 outlier points are added. In the jump category
this number is 4320 and when using extremes, 100 different ones are superimposed on the data. The
number of total true positives differs greatly per method, which can severely impact precision and thus
F2.00-score eventually, as false positives can have a different impact.

(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Figure 7.7: Bar plots of model performance on all data sets for outlier value 0.2.
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(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Figure 7.8: Bar plots of model performance on all data sets for outlier value 0.1.

(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Figure 7.9: Bar plots of model performance on all data sets for outlier value 0.05.
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We see some big differences between the models, but we also note that model performance differs greatly
per sensor. To be able to compare these different models statistically, we followed the two-step approach
as described by Demšar [9]. First, a Friedman test needs to be performed to check whether there are
statistically significant differences between the distributions of the results of the different models. The
Friedman test is based on the relative ranking of models on different data sets. The original Friedman
test looks at the average ranking when multiple data sets are used. Instead of applying this directly,
we used the Friedman Aligned Ranks test, because this is deemed better when few models are being
compared, as stated by Garćıa et al. [12]. The major difference between these tests is that the Friedman
Aligned Ranks tests does not directly combine and average the rankings on multiple data sets, but looks
at the ranks of all observations. For each data set, the mean or median classification value (of the
different models) is first subtracted from the individual values of the different models. This leads us to
the aligned observations. All these observations are ranked, and these ranks are used to determine the
outcomes for the different models.

If the Friedman Aligned Ranks test yields a statistically significant difference between the models, we
use the Nemenyi test to compare all models pairwise. Demšar [9] recommend this test for the pairwise
comparison between models. This enables us to conclude which models perform significantly better than
others.

For the multivariate models, we used the Friedman Aligned Ranks test in 8 scenarios. One of them
consisted of all data sets, with all added outlier categories. Then, we also divided the data on a sensor
basis, which resulted in 4 data sets. The same approach was done to the outlier category, which led us
to 3 more data sets. For every outlier, we looked at the specific outlier values to compare: (0.02, 0.05,
0.1, 0.2, 0.3). We did not take the two highest outlier values into account, as they are not realistic.

We define our hypotheses for the Friedman Aligned Ranks test as:

H0: There is no difference in the distributions of the outcomes of the different models.
H1: There is a difference in the distributions of the outcomes of the different models.

Sensors All All All All 102BFS 103HOE 104OYE 201D
Outliers All Drift Jump Extremes All All All All

χ2 14.947 10.556 8.399 4.384 3.287 4.273 11.549 22.646
p-value 0.005 0.032 0.078 0.357 0.511 0.370 0.021 0.000
Conclusion
(α=0.05)
Reject H0?

Yes Yes No No No No Yes Yes

Table 7.2: Results of the Friedman Aligned Ranks test in multivariate modelling.

As we can see, there were four cases where we could reject H0, which means that there was a statistically
significant difference between the model results. We further analysed these cases with the Nemenyi test,
to see what models are statistically significant different from one another. Similar to the visualisations
created by Demšar [9], we plot the result of this test to get a quick overview of the differences.

As we can see in Figure 7.10, some algorithm types have a significantly different performance. On the
horizontal axis, the average ranking of the different algorithms is shown. Algorithms which are connected
by a bold line are not differing statistically significantly from each other. The further a model is to the
left on the x-axis, the better it is scoring on average. One might expect that a score of 1 is the best,
but the rankings are reversed in these results, so that a higher score is better. In all these plots, MLP
is significantly different from RNN. In three of them, the perceptron model is also significantly different
from RNN.
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(a) All, all (b) All, drift ’

(c) 104OYE, all (d) 201D, all

Figure 7.10: Nemenyi test results for all cases with a significant difference found by the Friedman Aligned Ranks test.

One note has to be made regarding these graphs. The width of the critical difference (CD) is mainly
impacted by the number of data sets n. If the distance on the x-axis between two models ≥ CD, there
is a statistically significant difference. The higher n, the lower CD will be. All of these tests are with
relatively few data sets (where n = #sensors ×#outliertypes ×#outlier values, which is at highest
60, in the case where all sensors and all outlier types are compared.) As a result, CD will be relatively
wide in general.

Although there are not many statistically significant differences between most models, there seems to
be a pattern in their ordering. In all 4 cases, MLP or the perceptron model is scoring the best, with
the other algorithm as second best. Also, in all cases, RNN scores the worst or the second worst. It is
interesting to see if this ordering is also present in the cases where the differences were not statistically
significant. These orderings are shown in Figure 7.11.

(a) All, extremes (b) All, jump

(c) 103HOE, all (d) 102BFS, all

Figure 7.11: Nemenyi test results for all cases with no significance difference found by the Friedman Aligned Ranks test.

In these plots, it is logical that there is one bold line connecting all models, as there are no statistically
significant differences between them. We do not always see the same pattern as observed before. Al-
though MLP and the perceptron model are most of the times among the best performing, this is not
always the case. Also, there are some cases where neither of these two models was the best scoring
model. We still think, however, that since MLP and the perceptron model are performing decently most
of the time, these could be go-to algorithms.
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7.4 Synthetic simulation: Univariate results

We now perform the previously described analysis for the univariate models. First, we show the detection
performance of the same specific outlier as in 7.2. This was an added jump between February 2019 and
the middle of March 2019. In most images, we will now see that this jump does not stand out as much
as before, since we are only using the sensor history in these univariate models.

The RNN and quantile regression forests have not been applied to the univariate data, since this became
really slow. These models already were relatively slow, but this is especially problematic now, as many
more predictions need to be done. These extra predictions are needed because the input of the testing
data changes per outlier time series, which was not the case in the multivariate modelling.

The features used for these models were described in Section 5.4.2.

7.4.1 Results multi layer perceptron

For the MLP models, we no longer used a different architecture per sensor. As we do not have to factor
in higher or lower correlated time series in anymore and only use the sensor time series itself, it seems
like a decent approach to use one basis architecture. This was the same architecture that was used for
104OYE in multivariate MLP modelling, which is a relatively simple architecture, as described in Table
6.2. Figure 7.12 shows that some parts of the added jump can be detected, but this is certainly not the
case for the oultier as a whole.

Figure 7.12: Quantile plot of sensor 104OYE, with added jump using the univariate MLP model.

7.4.2 Results perceptron model

The results of this model, displayed in Figure 7.13 look very similar to those of Figure 7.12.
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Figure 7.13: Quantile plot of sensor 104OYE, with added jump using the univariate perceptron model.

7.4.3 Results linear regression

The univariate linear regression model shows results which are different from the previous univariate
models. This is depicted in Figure 7.14. Just as in the multivariate case, we notice the fixed quantile
width. Moreover, we see that the models fails to classify the outlier.

Figure 7.14: Quantile plot of sensor 104OYE, with added jump using the univariate LinReg model.
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7.4.4 Results AR

Contrary to all previous models, the AR model does not model quantiles. It only compares the residuals
against a threshold to detect outliers. This is seen in Figure 7.15. We see here that the begin and end
points of the added outlier can be detected. The period in between can not, though. Also, some other
sudden changes in the time series have been classified as outliers.

Figure 7.15: Plot of sensor 104OYE, with added jump using the AR model.

7.4.5 Results isolation forest

Similar to the AR model of Section 7.4.4, the isolation forest model does not model quantiles. In Figure
7.16 we see that almost the whole outlier is detected. However, we see that many parts of the time series
have been classified as an outlier, which has a huge negative impact on the performance. The detection
threshold could be altered, but then we noticed many problems when trying to detect outliers in the
extreme values category. It seems that it is not possible to deploy a well-functioning universal threshold
for this model.
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Figure 7.16: Plot of sensor 104OYE, with added jump using the IF model.

7.5 Comparison of univariate and multivariate modelling tech-
niques

To compare the univariate and multivariate modelling techniques, we first show the F2.00-score results
of all models of outlier value 0.2. These results give us much insight in how the different models perform.
A visualisation of these results is shown in Figure 7.7.

(a) 104OYE

(b) 103HOE
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(c) 102BFS

(d) 201D

Figure 7.17: Bar plots of model performance on all data sets, univariate and multivariate combined for outlier value 0.2.

In these bar plots, we see some clear differences. To make solid claims about the observed differences,
we use the Friedman Aligned Ranks test again. We now include both the univariate and multivariate
results to test if there are statistically significant differences in the distributions.

Sensors All All All All 102BFS 103HOE 104OYE 201D
Outliers All Drift Jump Extremes All All All All

χ2 118.936 100.000 115.084 60.752 38.274 36.949 39.365 51.748
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Conclusion
(α=0.05)
Reject H0?

Yes Yes Yes Yes Yes Yes Yes Yes

Table 7.3: Results of the Friedman Aligned Ranks test of multivariate and univariate modelling experiments.

We notice that all these distributions are statistically significantly different from each other. This is
expected, as we compare many models which have very different performances as is clearly visible in
Figure 7.17.

We now perform the Nemenyi test to see which models are differing statistically significantly from one
another. The results are shown in Figure 7.18. In almost all cases, a multivariate model is outperforming
univariate ones. A notable exception is the extreme outlier category, where AR seems to perform
exceptionally well. This is due to the fact that AR almost works like a persistence model, as explained
in 6.2.1. Since this is the case, a large sudden change (like the way in which we implemented extremes)
is easily detected.

It is notable that in Figure 7.18a we see that the 5 best scoring models are all the multivariate models.
This is because they score better in drift and jump detection scenarios. If we want one model to detect
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(a) All, all (b) All, extremes

(c) All, drift (d) All, jump

(e) 102BFS, all (f) 103HOE, all

(g) 104OYE, all (h) 201D, all

Figure 7.18: Nemenyi test results for all cases: univariate and multivariate combined. In all results, significance difference
was found by the Friedman Aligned Ranks test.

all these outlier types, then a multivariate model like one of the MLP models is probably the best choice.
Depending on the kind of extremes that are possible in practice, however, univariate approaches might
also be very interesting. The AR approach might be too simple in most cases, but in practice it can
turn out to be beneficial as shown here. It might also be the case that our added extreme values are too
simplistic, but that depends on the specific kind of outlier that is to be detected.

7.6 Practical impact

In this section, we will assess the practical impact of our models and make some practical suggestions.
In previous sections we have shown the multivariate MLP algorithm to be very interesting for our aims.
An advantage of this model is that it should generalise to many different kinds of outliers, not only to
the synthetic outlier categories we created. We will show this in a time series (sensor 108HOL) which
we know to have outliers in it. These outliers were annotated by domain experts. In Figure 7.19, we
can see an outlier is present around October 2018 and is detected nicely. This is a different outlier than
our synthetic ones but can still be detected.
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Figure 7.19: Outlier detection plot of 108HOL modelled by the multivariate MLP model. No outliers were added. Although
the already present outlier around October 2018 can not be detected fully, it still can be detected well.

It is also interesting to look at the validation loss of the trained model and the correlation between
the different underlying time series. Validation loss is a measure of model performance and takes the
quantiles into account. This makes it more useful here than an R2-score, for example, as this only takes
the mean prediction into account. We examine results from only the MLP model to keep this section
more succinct. We also examine the correlation of the underlying time series, to see if we can find a
relation between correlation and validation loss. These results are shown in Table 7.4. There seems to
be a trend here. The lower the least correlated time series value, the higher the validation loss. This
makes sense intuitively, as correlated time series are likely to improve model performance. If we look at
the plots from Appendix A, we see a similar result. 104OYE seems to be modelled very well whereas
102BFS has some obvious problems, resulting in (almost) straight lines. It thus seems to be the case
that correlated time series are a requirement for performant outlier detection.

Sensor Validation loss Least correlation
102BFS 1.5267 0.357
103HOE 0.8703 0.691
104OYE 0.1796 0.816
201D 0.9459 0.682

Table 7.4: Validation loss in multivariate MLP experiments and correlation for sensors. Least correlation indicates the
correlation of lowest correlated sensor of the 4 selected (highest) ones, as described in Section 5.2.

Another interesting practical result is the number of time steps needed to find drifts. The data used for
these findings is described in Section B.1.1. We can see that almost no drifts were missed at all, even
in the 0.05m outlier generation setting. We do see, however, that the number of false positives is lower
there than in the easier generation settings. False positives could also contribute to this. Furthermore,
we see that we generally need about 3000 time steps, which corresponds to approximately one month,
before a drift is detected. Domain experts stated that periodical checks for the occurrence of drift are
normally performed yearly, so improvements seem possible by using our models. Moreover, jump and
extremes values of 0.2m are detected nicely, as we see in Section B.1.1.
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Chapter 8

Discussion

Chapter 7 has shown that some outlier types can be detected better than others. Domain experts stated
that jump values and extreme values of 0.20m are reasonable in real life. We can derive from Figure
7.17 that the performance of the best performing models seems satisfactory in many cases. The domain
experts also stated that a drift is generally in between 0.05m-0.10m throughout a year. This roughly
corresponds to our two categories of outlier values 0.02 and 0.05, since we apply drift with a duration
of half a year. When examining the results of Figure 7.9, we see that outliers for these values can not
really be found well. Based on the F2.00 values, it seems the case that our models are not performing
that well. However, this judgement is (too) harsh, because every value in the range of an added outlier
is labelled as such. This even counts for the beginning of drifts. Thus, the F2.00 values underestimate
our results and it was not surprising that Section 7.6 could show practical impact and possibilities for
drift detection by using our models. Drift can be detected in approximately one month, which leads to
improvements over a manual periodical check.

Examining the results of the extreme value scenarios a bit closer, it seems that the F2.00-scores for the
multivariate models are relatively low. If we inspect the recall measures more closely, however, we see
that the multivariate MLP, perceptron and quantile linear regression model have high recall in most of
these cases. The precision is low on the contrary. This is due to the occurrence of a combination of some
false positives and a relatively low number of true positives. In practice, it might not be problematic if
some false alarms are sent to domain experts. So, our performance is still satisfactory.

Another remark is that visual results and F2.00 scores do not always result in similar conclusions. It
can be the case that a F2.00 score may not indicate many problems, but a visual look at the quantile
plot raises some concerns. An example is the quantile regression forest plot of Figure 7.5. This result
does not look convincing, but the F2.00 scores of QRF in Figures 7.7a, 7.8a and 7.9a are decent. This
is also visible in the collection of plots of Appendix A, which can be compared with the F2.00 scores of
Appendix B. This leads us to believe that it is paramount that the F2.00 scores should always be viewed
alongside with quantile plots to ensure decent performance.

We discovered that the tuning of models is not always straightforward. It was assumed that for a certain
model type, like MLP, one general model specification should be enough. It turned out that this was not
the case. This is problematic for applying these approaches in practice, as a model needs to be tuned
for every sensor. On the other hand, when we take the perceptron method which has a constant model
architecture, we still see decent performance. So, this might not be that problematic. The size of the
issue depends on the specific application and on how many different time series are present.

Our unsupervised models have a key advantage that they can detect multiple kinds of outliers. Every-
thing that is different from what is expected, is classified as an outlier. This did not only work for our
synthetic outlier categories, but also for the already present outlier in Section 7.6.
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Chapter 9

Conclusion and future work

9.1 Conclusion

In this work, we applied multivariate and univariate real-time outlier detection models in unlabelled
water height time series.

This work has a number of contributions. The largest one is the systematic comparison of algorithms
and the easily parametrisable synthetic validation scenarios which were constructed in cooperation with
domain experts. This results in the comparison of multivariate models between themselves, and also in
the comparison of multivariate and univariate models. Another contribution is the imputation bench-
mark for systematically comparing imputation methods. Also, we established a thoroughly researched
pipeline approach to detect outliers.

The multivariate modelling approach is not applicable for all sensors (like 102BFS). Some sensor predic-
tions clearly work better than others. The correlation between sensors need to be high enough to create
an accurate model, as was shown in Section 7.6.

An interesting discovery was that there is a whole category of models which can work for outlier detection
in general, but are not helpful in this multivariate case. These were described in Section 6.2.1, 6.3.5 and
6.4. We did not find previous indications that these models would not really work in our multivariate
experiments, so we think this insight is fairly interesting. In the univariate case these outlier detection
models still work. A notable finding was the result of the AR model of Section 6.2.1, which worked
exceptionally well for the extremes outlier category. This category has some issues, however. It is an
artificial scenario in which the univariate models like AR score relatively high. Since only sudden changes
in values are detected, we can detect extremes here, but can not generalise to realistic behaviour. As
shown, it fails to detect jumps and drifts efficiently.

We now return to the research questions of Section 2.1. The first one concerned the comparison of
multivariate modelling approaches for real-time outlier detection in unlabelled and unvalidated time
series data. Chapter 7 (and more specifically the results of the Friedman Aligned Ranks tests and
Nemenyi tests from Sections 7.3 and 7.5) helps us in answering these questions. The quantile regression
forest approach is relatively slow, does not perform well and gives us poor visual results. The RNN
models performed worse than expected. Linear regression performed relatively decently, although the
fixed quantile width remains an issue. In the end, we can state that the MLP and the perceptron models
performed the best overall. The results of the latter were alike to the results of the MLP.

Another aim of our research was to determine whether multivariate modelling approaches improve
performance compared to univariate approaches. Multivariate models perform better in most of the
cases, as was shown in Section 7.5. Multivariate modelling behaviour looks better visually as well.
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Extreme values are a notable exception, however. Univariate modelling performed better in that outlier
category, although our added extreme values are slightly simplistic. An advantage of the univariate
modelling is that it is always applicable and does not depend on the availability of correlated time
series, which was one of the reasons why the comparison with multivariate methods was made.

9.2 Future work

Our research was aimed at comparing different models in realistic outlier generation settings. To get
a better overview how well these different models work in practice, however, it is recommended that a
pilot program is carried out to test the performance in a more practical setting. For example, different
models can be assessed in a production environment for the period of one year on a large set of sensors.
Interesting insights could be derived in this practical pilot program, such as how quickly different kinds
of outliers can be detected in practice.

It is an interesting idea to use different models to approach different outlier categories. For example,
combining the results of an AR model and a multivariate MLP model could work to detect extreme
values, jumps, and drifts.

Furthermore, there were some candidate research questions which remain open for future research. An
interesting research subtopic regards determining outlier causes. This was declared to be out of scope
for our work. An outlier can be caused by multiple factors (i.e. an erroneous measurement, drift, noise,
technical equipment failure, etc.). Different kinds of outliers might require different means of alleviation.
It is of interest to determine these different causes with additional techniques.

Another interesting subtopic concerns propagating sensor errors. If a sensor malfunctions, this will not
only affect its own predictions, but will affect all other sensor predictions that make use of the values
of this malfunctioning sensor as a predictor variable as well. Since we have many sensors which are
relatively close to one another, it makes sense to use values from other sensors as predictor variables.
But, when one sensor is used in multiple other predictions, many predicted values can be wrong because
just one sensor is not behaving correctly. This might be detected by examining the correlations between
the underlying time series in a multivariate case. It could be the case that, in a propagating error
scenario, the time series with the actual outlier itself will have the lowest correlation with the others.
Further research is needed to make accurate claims about this phenomenon.

Another venue of future work is related to sensor selection. In our work, there were no (hydrological)
checks in place to see if it makes sense that multiple sensor time series are correlated. So, it could be
the case that some models are based on sensors which would not be described as logical or sensible
by domain experts. This can lead to a less convincing and understandable modelling procedure in the
eyes of domain experts. It is possible to create extra checks, which can be based on catchment areas,
on physical distance between sensors or on the graph structure of the connectivity tree of the weir, for
example.

A similar idea is to perform more experiments in feature selection, which was mentioned in Section
5.2. More specifically, it can be very interesting to compare (or even combine) a filter and a wrapper
approach for sensor selection.

An insight was derived in discussion with the domain experts. If a multivariate model is performing
poorly, it can be the case that the underlying time series that are being used for predictions have issues.
In this sense, a poorly performing model can also be used for a manner of detection. More research into
this avenue is needed.

Moreover, it is interesting to see how well these models will perform on other data sets. Other data sets
in possibly other domains can have other (cor)relations in the data. The models should probably still
be applied to a multivariate case with multiple sources of correlated data, just like is the case in our
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work. We can see many cases where this could be useful. These models can improve data validation in
a large factory or industry terrain, for example.

Currently, many novel algorithms and algorithm variations get introduced in the field of machine learning
and data science. It is infeasible to create models with all these virtually unlimited algorithm variations.
One interesting recent contribution to the field of neural networks is the Transformer model by Vaswani
et al. [47], which is a deep learning model invented for the use in natural language processing. This model
makes use of an attention mechanism, which uses weights in such a way that long-term dependencies
can be easily modelled. Although this model was not created for time series modelling purposes, the
concept has been adapted to time series by Qin et al. [38] and Lai et al. [24] among others. Nevertheless,
standardisation of this algorithm approach and standard implementation in neural network libraries has
not yet been done. Research into this highly interesting area was considered out of scope of this project
and could be carried out in future work.
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Appendix A

Multivariate MLP quantile plots

To give more insight into the (visual) results of our multivariate MLP algorithm, we show the results of
this algorithm on all sensors with outlier generation setting of 0.2 of all different outliers in Figure A.1,
A.2 and A.3. It is clearly visible that some sensors (104OYE, 103HOE) are modelled much better than
some others (102BFS, 201D).

(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Figure A.1: Quantile detection plots of drift outliers on all data sets.
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(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Figure A.2: Quantile detection plots of jump outliers on all data sets.

(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Figure A.3: Quantile detection plots of extreme outliers on all data sets.

Figure A.4 shows how well different outliers types are detected for different outlier generation settings.
The bigger the synthetic outlier value, the more easily the outlier is detected. The range of depicted
values is bigger than in figures of the main sections, which focused on the most important values.
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(a) Drifts.

(b) Jumps.

(c) Extremes.

Figure A.4: 104OYE barplots for all outliers values.
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Appendix B

Synthetic evaluation results

In the following sections, the results of the most interesting outlier parameters of the synthetic evaluation
results are shown. For brevity, we abbreviated the columns in the following way: C: outlier category, V:
outlier value, TP: true positive, FP: false positive, TN: true negative, FN: false negative, Acc: accuracy,
Prec: precision, Rec: Recall, OP: Optimised precision, F2: F2.00-score, PTM: proportion totally missed,
DNT: drift detected in n time steps.

In the outlier category column, we denote drift as D, extremes as E and jumps as J.

To keep the results concise, we only report the data for outlier values 0.05, 0.1 and 0.2. These outlier
values are the most interesting ones. This means that we do not show the results of values 0.02, 0.3, 0.5
and 1.0 here.
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B.1 Multivariate model results

B.1.1 Tables multi layer perceptron

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 10289 3004 8840 7231 0.651 0.769 0.587 0.478 0.613 0 683.18
D 0.1 12362 3009 8835 5158 0.722 0.813 0.706 0.609 0.722 0 669.63
D 0.2 14278 3024 8820 3242 0.787 0.832 0.815 0.656 0.814 0 512.96
E 0.05 68 11351 17913 32 0.612 0.006 0.68 0.56 0.029
E 0.1 98 11351 17913 2 0.613 0.009 0.98 0.382 0.041
E 0.2 100 11541 17723 0 0.607 0.009 1 0.361 0.042
J 0.05 2516 9424 15620 1804 0.618 0.2 0.582 0.295 0.419 0
J 0.1 3742 9432 15612 578 0.659 0.278 0.866 0.409 0.606 0
J 0.2 4312 9444 15600 8 0.678 0.316 0.998 0.445 0.696 0

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 10289 3004 8840 7231 0.651 0.769 0.587 0.478 0.613 0 683.18
D 0.1 12362 3009 8835 5158 0.722 0.813 0.706 0.609 0.722 0 669.63
D 0.2 14278 3024 8820 3242 0.787 0.832 0.815 0.656 0.814 0 512.96
E 0.05 68 11351 17913 32 0.612 0.006 0.68 0.56 0.029
E 0.1 98 11351 17913 2 0.613 0.009 0.98 0.382 0.041
E 0.2 100 11541 17723 0 0.607 0.009 1 0.361 0.042
J 0.05 2516 9424 15620 1804 0.618 0.2 0.582 0.295 0.419 0
J 0.1 3742 9432 15612 578 0.659 0.278 0.866 0.409 0.606 0
J 0.2 4312 9444 15600 8 0.678 0.316 0.998 0.445 0.696 0

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 3430 607 11237 14090 0.499 0.658 0.196 -0.199 0.223 0 2981.19
D 0.1 6992 614 11230 10528 0.621 0.882 0.399 0.162 0.435 0 3607.11
D 0.2 12226 626 11218 5294 0.798 0.951 0.698 0.639 0.733 0 2724.87
E 0.05 4 1628 27636 96 0.941 0.002 0.04 0.023 0.01
E 0.1 18 1628 27636 82 0.942 0.011 0.18 0.262 0.044
E 0.2 92 1628 27636 8 0.944 0.053 0.92 0.931 0.217
J 0.05 2008 1380 23664 2312 0.874 0.441 0.465 0.41 0.453 0.13
J 0.1 3749 1392 23652 571 0.933 0.725 0.868 0.856 0.832 0
J 0.2 4292 1416 23628 28 0.951 0.753 0.993 0.924 0.933 0

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 2660 382 11462 14860 0.481 0.803 0.152 -0.268 0.178 0 1554.04
D 0.1 4341 386 11458 13179 0.538 0.753 0.248 -0.112 0.277 0.02 1810.78
D 0.2 7212 390 11454 10308 0.636 0.837 0.412 0.127 0.433 0.01 3026.98
E 0.05 8 2585 26679 92 0.909 0.003 0.08 0.07 0.013
E 0.1 8 2585 26679 92 0.909 0.003 0.08 0.07 0.013
E 0.2 9 2490 26774 91 0.912 0.004 0.09 0.091 0.016
J 0.05 1111 2089 22955 3209 0.82 0.238 0.257 0.14 0.25 0.38
J 0.1 1886 2093 22951 2434 0.846 0.321 0.437 0.304 0.405 0.48
J 0.2 2797 2103 22941 1523 0.877 0.489 0.647 0.564 0.602 0.18

(d) 201D

Table B.1: Multivariate MLP results.
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B.1.2 Tables perceptron model

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 1814 487 11357 15706 0.449 0.711 0.104 -0.369 0.125 0.06 4293.82
D 0.1 5875 490 11354 11645 0.587 0.92 0.335 0.096 0.382 0 3021.88
D 0.2 11118 505 11339 6402 0.765 0.961 0.635 0.557 0.678 0 2918.89
E 0.05 14 1447 27817 86 0.948 0.01 0.14 0.205 0.038
E 0.1 49 1447 27817 51 0.949 0.033 0.49 0.629 0.129
E 0.2 100 1447 27817 0 0.951 0.065 1 0.925 0.257
J 0.05 1102 1208 23836 3218 0.849 0.33 0.255 0.191 0.264 0.24
J 0.1 2885 1216 23828 1435 0.91 0.686 0.668 0.677 0.657 0
J 0.2 4291 1237 23807 29 0.957 0.785 0.993 0.929 0.941 0

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 2844 312 11532 14676 0.490 0.901 0.162 -0.236 0.191 0.000 3770.950
D 0.1 3978 318 11526 13542 0.528 0.904 0.227 -0.114 0.263 0.000 3580.840
D 0.2 8284 323 11521 9236 0.674 0.952 0.473 0.307 0.520 0.000 3294.180
E 0.05 16 1963 27301 84 0.930 0.008 0.160 0.223 0.034
E 0.1 27 1963 27301 73 0.931 0.014 0.270 0.380 0.056
E 0.2 79 1963 27301 21 0.932 0.039 0.790 0.849 0.162
J 0.05 927 1633 23411 3393 0.829 0.286 0.215 0.125 0.219 0.230
J 0.1 1819 1639 23405 2501 0.859 0.433 0.421 0.381 0.415 0.090
J 0.2 4049 1654 23390 271 0.934 0.715 0.937 0.890 0.879 0.000

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 7778 1283 10561 9742 0.625 0.734 0.444 0.186 0.463 0.000 617.670
D 0.1 9914 1287 10557 7606 0.697 0.832 0.566 0.375 0.584 0.000 911.970
D 0.2 13630 1295 10549 3890 0.823 0.909 0.778 0.706 0.796 0.000 1132.780
E 0.05 21 7374 21890 79 0.746 0.003 0.210 0.185 0.013
E 0.1 55 7469 21795 45 0.744 0.007 0.550 0.594 0.035
E 0.2 93 7564 21700 7 0.742 0.012 0.930 0.629 0.058
J 0.05 2423 6159 18885 1897 0.726 0.251 0.561 0.315 0.447 0.120
J 0.1 3231 6167 18877 1089 0.753 0.332 0.748 0.541 0.596 0.000
J 0.2 4277 6182 18862 43 0.788 0.411 0.990 0.652 0.771 0.000

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 8768 6664 5180 8752 0.475 0.567 0.500 0.353 0.512 0.000 14.370
D 0.1 11142 6670 5174 6378 0.556 0.627 0.636 0.296 0.631 0.000 14.160
D 0.2 13483 6678 5166 4037 0.635 0.673 0.770 0.298 0.743 0.000 14.150
E 0.05 51 13821 15443 49 0.528 0.004 0.510 0.511 0.018
E 0.1 67 13821 15443 33 0.528 0.005 0.670 0.409 0.023
E 0.2 92 13821 15443 8 0.529 0.007 0.920 0.258 0.032
J 0.05 2413 11955 13089 1907 0.528 0.165 0.559 0.240 0.377 0.030
J 0.1 2958 11966 13078 1362 0.546 0.193 0.685 0.274 0.452 0.010
J 0.2 4236 11978 13066 84 0.589 0.264 0.980 0.282 0.634 0.000

(d) 201D

Table B.2: Multivariate perceptron results.
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B.1.3 Tables RNNs

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 6509 1709 10117 11011 0.567 0.770 0.371 0.137 0.409 0.000 811.900
D 0.1 9243 1716 10110 8277 0.659 0.843 0.528 0.382 0.562 0.000 807.680
D 0.2 12581 1726 10099 4939 0.773 0.896 0.718 0.645 0.740 0.000 1397.240
E 0.05 28 5487 23759 71 0.811 0.005 0.283 0.327 0.024
E 0.1 64 5487 23759 35 0.812 0.012 0.646 0.698 0.054
E 0.2 96 5392 23854 3 0.816 0.017 0.970 0.730 0.082
J 0.05 1748 4564 20461 2571 0.757 0.243 0.405 0.287 0.354 0.180
J 0.1 3134 4571 20454 1186 0.804 0.377 0.725 0.597 0.609 0.060
J 0.2 4236 4587 20439 84 0.841 0.488 0.981 0.741 0.812 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 3189 811 11014 14331 0.484 0.754 0.182 -0.206 0.212 0.000 3130.130
D 0.1 5022 817 11009 12497 0.546 0.813 0.287 -0.008 0.325 0.000 2976.870
D 0.2 9317 822 11003 8203 0.692 0.905 0.532 0.404 0.576 0.000 2583.420
E 0.05 9 2781 26465 90 0.902 0.003 0.091 0.085 0.014
E 0.1 25 2781 26465 74 0.903 0.009 0.253 0.339 0.039
E 0.2 59 2781 26465 40 0.904 0.021 0.596 0.698 0.091
J 0.05 1280 2337 22688 3040 0.817 0.289 0.296 0.222 0.291 0.230
J 0.1 2250 2343 22682 2070 0.850 0.415 0.521 0.467 0.490 0.070
J 0.2 4061 2358 22667 259 0.911 0.635 0.940 0.865 0.856 0.000

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 601 14 11812 16918 0.423 0.963 0.034 -0.511 0.042 0.000 2819.050
D 0.1 3195 15 11810 14325 0.511 0.994 0.182 -0.186 0.216 0.000 3885.680
D 0.2 9528 26 11799 7991 0.727 0.997 0.544 0.429 0.597 0.000 3413.280
E 0.05 1 310 28936 98 0.986 0.003 0.010 0.006 0.007
E 0.1 11 310 28936 88 0.986 0.034 0.111 0.188 0.077
E 0.2 52 310 28936 47 0.988 0.144 0.525 0.681 0.343
J 0.05 624 261 24764 3696 0.865 0.482 0.144 0.092 0.166 0.280
J 0.1 2239 268 24757 2081 0.920 0.829 0.518 0.552 0.547 0.030
J 0.2 4275 290 24736 45 0.989 0.937 0.990 0.981 0.978 0.000

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 0 0 11825 17520 0.403 0.000 0.000 -0.597 0.000 1.000 17519.680
D 0.1 2 0 11825 17518 0.403 0.350 0.000 -0.597 0.000 0.650 16093.800
D 0.2 76 0 11825 17443 0.406 0.500 0.004 -0.586 0.005 0.500 13261.840
E 0.05 0 0 29246 99 0.997 0.000 0.000 -0.003 0.000
E 0.1 0 0 29246 99 0.997 0.000 0.000 -0.003 0.000
E 0.2 1 0 29246 98 0.997 1.000 0.010 0.017 0.013
J 0.05 0 0 25025 4319 0.853 0.080 0.000 -0.147 0.000 0.920
J 0.1 6 0 25025 4314 0.853 0.180 0.001 -0.144 0.002 0.820
J 0.2 91 0 25025 4229 0.856 0.360 0.021 -0.107 0.026 0.640

(d) 201D

Table B.3: Multivariate RNN results.
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B.1.4 Tables quantile regression forests

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 4758 1143 10701 12762 0.526 0.804 0.272 -0.013 0.313 0.000 1035.450
D 0.1 8121 1151 10693 9399 0.641 0.874 0.464 0.315 0.510 0.000 1443.970
D 0.2 11897 1161 10683 5623 0.769 0.910 0.679 0.624 0.714 0.000 1672.830
E 0.05 27 4097 25167 73 0.858 0.007 0.270 0.336 0.030
E 0.1 58 4002 25262 42 0.862 0.014 0.580 0.666 0.065
E 0.2 100 4002 25262 0 0.864 0.024 1.000 0.790 0.111
J 0.05 1699 3285 21759 2621 0.799 0.309 0.393 0.359 0.371 0.100
J 0.1 3344 3297 21747 976 0.854 0.494 0.774 0.720 0.692 0.000
J 0.2 4319 3319 21725 1 0.887 0.568 1.000 0.816 0.867 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 3908 5651 6193 13612 0.344 0.393 0.223 -0.068 0.243 0.000 1274.930
D 0.1 4916 5652 6192 12604 0.378 0.444 0.281 0.063 0.301 0.000 1270.470
D 0.2 9955 5653 6191 7565 0.550 0.642 0.568 0.395 0.579 0.000 1248.640
E 0.05 38 10043 19221 62 0.656 0.004 0.380 0.389 0.018
E 0.1 60 10138 19126 40 0.653 0.006 0.600 0.611 0.028
E 0.2 94 10138 19126 6 0.655 0.009 0.940 0.475 0.044
J 0.05 1414 8646 16398 2906 0.607 0.132 0.327 0.135 0.252 0.040
J 0.1 2781 8650 16394 1539 0.653 0.232 0.644 0.389 0.472 0.000
J 0.2 4068 8667 16378 252 0.696 0.323 0.942 0.517 0.678 0.000

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 6209 1824 10020 11311 0.553 0.675 0.354 0.084 0.384 0.000 421.800
D 0.1 8426 1829 10015 9094 0.628 0.763 0.481 0.291 0.507 0.000 398.180
D 0.2 11332 1839 10005 6188 0.727 0.844 0.647 0.536 0.669 0.000 595.230
E 0.05 39 6904 22360 61 0.763 0.006 0.390 0.439 0.027
E 0.1 53 6809 22455 47 0.767 0.008 0.530 0.584 0.036
E 0.2 83 6975 22289 17 0.762 0.012 0.830 0.719 0.056
J 0.05 2027 5873 19171 2293 0.722 0.230 0.469 0.342 0.387 0.070
J 0.1 3035 5880 19164 1285 0.756 0.320 0.703 0.535 0.565 0.020
J 0.2 4248 5892 19152 72 0.797 0.421 0.983 0.672 0.775 0.000

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 167 0 11844 17353 0.409 0.510 0.010 -0.573 0.012 0.490 13148.940
D 0.1 3354 4 11840 14166 0.517 0.729 0.191 -0.207 0.218 0.270 9842.860
D 0.2 4625 9 11835 12895 0.561 0.909 0.264 -0.101 0.289 0.090 8824.700
E 0.05 0 0 29264 100 0.997 0.000 0.000 -0.003 0.000
E 0.1 0 0 29264 100 0.997 0.000 0.000 -0.003 0.000
E 0.2 17 0 29264 83 0.997 1.000 0.170 0.288 0.204
J 0.05 337 0 25044 3983 0.864 0.320 0.078 -0.023 0.089 0.680
J 0.1 1039 5 25039 3281 0.888 0.487 0.241 0.155 0.249 0.510
J 0.2 2071 15 25029 2249 0.923 0.896 0.480 0.437 0.490 0.100

(d) 201D

Table B.4: Multivariate QRF results
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B.1.5 Tables linear regression

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 5476 909 10935 12044 0.559 0.854 0.313 0.060 0.357 0.000 1450.790
D 0.1 9890 918 10926 7630 0.709 0.917 0.564 0.465 0.610 0.000 1355.180
D 0.2 12905 930 10914 4615 0.811 0.936 0.737 0.695 0.768 0.000 1192.910
E 0.05 35 5250 24014 65 0.819 0.007 0.350 0.417 0.031
E 0.1 73 5250 24014 27 0.820 0.014 0.730 0.762 0.064
E 0.2 100 5250 24014 0 0.821 0.019 1.000 0.723 0.087
J 0.05 1991 4408 20636 2329 0.771 0.295 0.461 0.422 0.411 0.000
J 0.1 3811 4419 20625 509 0.832 0.461 0.882 0.707 0.740 0.000
J 0.2 4320 4441 20603 0 0.849 0.500 1.000 0.751 0.831 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 6574 3856 7988 10946 0.496 0.608 0.375 0.186 0.403 0.000 1490.860
D 0.1 8443 3856 7988 9077 0.560 0.665 0.482 0.340 0.506 0.000 1763.920
D 0.2 11713 3862 7982 5807 0.671 0.741 0.669 0.548 0.678 0.000 1636.290
E 0.05 38 8617 20647 62 0.704 0.004 0.380 0.405 0.021
E 0.1 60 8617 20647 40 0.705 0.007 0.600 0.624 0.033
E 0.2 100 8807 20457 0 0.700 0.011 1.000 0.523 0.054
J 0.05 1932 7426 17618 2388 0.666 0.189 0.447 0.266 0.350 0.060
J 0.1 2853 7433 17611 1467 0.697 0.258 0.661 0.411 0.502 0.030
J 0.2 4159 7445 17599 161 0.741 0.359 0.963 0.586 0.720 0.000

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 0 0 11844 17520 0.403 0.000 0.000 -0.597 0.000 1.000 17520.000
D 0.1 92 0 11844 17428 0.406 0.380 0.005 -0.583 0.007 0.620 15856.240
D 0.2 2741 3 11841 14779 0.497 0.978 0.156 -0.246 0.185 0.020 10462.490
E 0.05 0 0 29264 100 0.997 0.000 0.000 -0.003 0.000
E 0.1 1 0 29264 99 0.997 1.000 0.010 0.016 0.012
E 0.2 9 0 29264 91 0.997 1.000 0.090 0.162 0.110
J 0.05 1 0 25044 4319 0.853 0.080 0.000 -0.147 0.000 0.920
J 0.1 185 0 25044 4135 0.859 0.429 0.043 -0.066 0.052 0.570
J 0.2 3078 5 25039 1242 0.958 0.969 0.713 0.737 0.735 0.030

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 11 7 11837 17509 0.403 0.592 0.001 -0.595 0.001 0.130 5511.140
D 0.1 95 7 11837 17425 0.406 0.729 0.005 -0.583 0.007 0.130 5576.590
D 0.2 4554 10 11834 12966 0.558 0.997 0.260 -0.037 0.303 0.000 4551.080
E 0.05 0 16 29248 100 0.996 0.000 0.000 -0.004 0.000
E 0.1 0 16 29248 100 0.996 0.000 0.000 -0.004 0.000
E 0.2 25 16 29248 75 0.997 0.610 0.250 0.397 0.283
J 0.05 10 13 25031 4310 0.853 0.205 0.002 -0.142 0.003 0.600
J 0.1 433 14 25030 3887 0.867 0.609 0.100 0.012 0.113 0.300
J 0.2 3457 24 25020 863 0.970 0.992 0.800 0.833 0.821 0.000

(d) 201D

Table B.5: Multivariate linear regression results.
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B.2 Univariate model results

B.2.1 Tables multi layer perceptron

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 829 733 10285 16691 0.389 0.529 0.047 -0.514 0.058 0.000 1316.930
D 0.1 787 926 10092 16733 0.381 0.460 0.045 -0.525 0.055 0.000 1354.370
D 0.2 837 1423 9595 16683 0.366 0.383 0.048 -0.529 0.057 0.000 1443.650
E 0.05 8 1531 26910 89 0.943 0.005 0.082 0.104 0.021
E 0.1 78 1531 26910 19 0.946 0.048 0.804 0.865 0.195
E 0.2 96 1722 26719 1 0.940 0.053 0.990 0.914 0.218
J 0.05 245 1472 22746 4075 0.806 0.140 0.057 -0.084 0.064 0.150
J 0.1 328 1781 22437 3992 0.798 0.154 0.076 -0.057 0.084 0.010
J 0.2 751 2305 21913 3569 0.794 0.258 0.174 0.089 0.184 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 711 182 10836 16809 0.405 0.796 0.041 -0.516 0.050 0.000 2103.170
D 0.1 641 214 10804 16879 0.401 0.756 0.037 -0.527 0.045 0.000 2103.170
D 0.2 522 217 10801 16998 0.397 0.709 0.030 -0.544 0.037 0.000 2123.330
E 0.05 2 862 27579 95 0.966 0.002 0.021 0.008 0.008
E 0.1 6 862 27579 91 0.967 0.007 0.062 0.087 0.024
E 0.2 74 862 27579 23 0.969 0.079 0.763 0.850 0.279
J 0.05 141 717 23501 4179 0.828 0.160 0.033 -0.108 0.039 0.190
J 0.1 194 736 23482 4126 0.830 0.200 0.045 -0.084 0.053 0.100
J 0.2 187 733 23485 4133 0.829 0.198 0.043 -0.086 0.051 0.020

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 405 150 10868 17115 0.395 0.724 0.023 -0.560 0.029 0.000 2916.670
D 0.1 447 198 10820 17073 0.395 0.704 0.026 -0.555 0.032 0.000 2834.920
D 0.2 491 283 10735 17029 0.393 0.634 0.028 -0.551 0.035 0.000 2824.540
E 0.05 4 506 27935 93 0.979 0.008 0.041 0.060 0.022
E 0.1 20 506 27935 77 0.980 0.038 0.206 0.327 0.109
E 0.2 87 509 27932 10 0.982 0.146 0.897 0.936 0.442
J 0.05 117 427 23791 4203 0.838 0.206 0.027 -0.110 0.033 0.210
J 0.1 185 484 23734 4135 0.838 0.261 0.043 -0.080 0.051 0.090
J 0.2 285 589 23629 4035 0.838 0.322 0.066 -0.037 0.078 0.000

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 45 51 10967 17475 0.386 0.470 0.003 -0.609 0.003 0.530 10489.270
D 0.1 46 72 10946 17474 0.385 0.415 0.003 -0.610 0.003 0.500 10489.090
D 0.2 60 109 10909 17460 0.384 0.385 0.003 -0.609 0.004 0.310 10393.060
E 0.05 0 96 28345 97 0.993 0.000 0.000 -0.007 0.000
E 0.1 0 96 28345 97 0.993 0.000 0.000 -0.007 0.000
E 0.2 0 96 28345 97 0.993 0.000 0.000 -0.007 0.000
J 0.05 15 77 24141 4305 0.846 0.160 0.004 -0.147 0.004 0.840
J 0.1 12 95 24123 4308 0.846 0.110 0.003 -0.149 0.004 0.810
J 0.2 89 141 24077 4231 0.847 0.400 0.021 -0.113 0.025 0.130

(d) 201D

Table B.6: Univariate MLP results.
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B.2.2 Tables perceptron model

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 1564 806 10212 15956 0.413 0.654 0.089 -0.418 0.108 0.000 1181.510
D 0.1 2882 898 10120 14638 0.456 0.695 0.164 -0.263 0.192 0.000 1267.910
D 0.2 5914 1074 9944 11606 0.556 0.688 0.338 0.013 0.364 0.000 1276.550
E 0.05 11 2295 26146 86 0.917 0.005 0.113 0.136 0.020
E 0.1 66 2295 26146 31 0.918 0.028 0.680 0.769 0.120
E 0.2 97 2295 26146 0 0.920 0.041 1.000 0.878 0.174
J 0.05 680 1880 22338 3640 0.807 0.226 0.157 0.053 0.166 0.130
J 0.1 1438 1989 22229 2882 0.829 0.334 0.333 0.273 0.328 0.010
J 0.2 2235 2172 22046 2085 0.851 0.382 0.517 0.385 0.476 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 1118 426 10592 16402 0.410 0.734 0.064 -0.466 0.078 0.000 2095.450
D 0.1 1859 669 10349 15661 0.428 0.710 0.106 -0.381 0.126 0.000 2106.010
D 0.2 2444 1268 9750 15076 0.427 0.613 0.140 -0.328 0.163 0.000 2125.900
E 0.05 12 1245 27196 85 0.953 0.010 0.124 0.183 0.036
E 0.1 17 1150 27291 80 0.957 0.015 0.175 0.266 0.055
E 0.2 87 1245 27196 10 0.956 0.065 0.897 0.924 0.253
J 0.05 423 1113 23105 3897 0.824 0.235 0.098 -0.009 0.109 0.100
J 0.1 812 1283 22935 3508 0.832 0.306 0.188 0.101 0.197 0.050
J 0.2 1688 1787 22431 2632 0.845 0.428 0.391 0.330 0.390 0.000

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 973 296 10722 16547 0.410 0.769 0.056 -0.483 0.068 0.000 2608.140
D 0.1 929 400 10618 16591 0.405 0.703 0.053 -0.491 0.065 0.000 2608.170
D 0.2 945 726 10292 16575 0.394 0.585 0.054 -0.497 0.066 0.000 2608.190
E 0.05 6 1261 27180 91 0.953 0.005 0.062 0.074 0.018
E 0.1 14 1261 27180 83 0.953 0.011 0.144 0.215 0.042
E 0.2 86 1261 27180 11 0.955 0.064 0.887 0.918 0.248
J 0.05 207 1033 23185 4113 0.820 0.165 0.048 -0.089 0.056 0.210
J 0.1 287 1122 23096 4033 0.819 0.202 0.066 -0.054 0.077 0.050
J 0.2 430 1419 22799 3890 0.814 0.234 0.100 0.001 0.112 0.000

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 6695 3934 7084 10825 0.483 0.628 0.382 0.223 0.414 0.000 72.090
D 0.1 8773 4056 6962 8747 0.551 0.646 0.501 0.284 0.515 0.000 108.710
D 0.2 9454 4439 6579 8066 0.562 0.578 0.540 0.159 0.533 0.000 133.670
E 0.05 35 10557 17884 62 0.628 0.003 0.361 0.357 0.016
E 0.1 35 10557 17884 62 0.628 0.003 0.361 0.357 0.016
E 0.2 57 10366 18075 40 0.635 0.005 0.588 0.596 0.026
J 0.05 1727 8909 15309 2593 0.597 0.157 0.400 0.132 0.303 0.190
J 0.1 2308 8968 15250 2012 0.615 0.186 0.534 0.103 0.385 0.010
J 0.2 2292 9254 14964 2028 0.605 0.180 0.531 0.077 0.378 0.000

(d) 201D

Table B.7: Univariate perceptron results.
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B.2.3 Tables linear regression

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 450 155 10863 17070 0.396 0.743 0.026 -0.553 0.032 0.000 2187.800
D 0.1 430 246 10772 17090 0.393 0.634 0.025 -0.559 0.030 0.000 2180.980
D 0.2 437 335 10683 17083 0.390 0.561 0.025 -0.560 0.031 0.000 2180.360
E 0.05 3 632 27806 97 0.974 0.005 0.030 0.034 0.014
E 0.1 90 632 27806 10 0.978 0.125 0.900 0.936 0.401
E 0.2 100 631 27807 0 0.978 0.137 1.000 0.967 0.442
J 0.05 104 475 23743 4216 0.836 0.176 0.024 -0.117 0.029 0.300
J 0.1 218 581 23637 4102 0.836 0.271 0.051 -0.067 0.060 0.010
J 0.2 299 675 23543 4021 0.835 0.304 0.069 -0.033 0.082 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 560 174 10844 16960 0.400 0.761 0.032 -0.538 0.040 0.000 1706.270
D 0.1 572 204 10814 16948 0.399 0.737 0.033 -0.537 0.040 0.000 1706.270
D 0.2 620 325 10693 16900 0.396 0.654 0.035 -0.533 0.044 0.000 1706.850
E 0.05 5 767 27671 95 0.970 0.006 0.050 0.068 0.021
E 0.1 31 766 27672 69 0.971 0.039 0.310 0.454 0.129
E 0.2 100 766 27672 0 0.973 0.115 1.000 0.960 0.395
J 0.05 126 635 23583 4194 0.831 0.165 0.029 -0.113 0.035 0.150
J 0.1 162 665 23553 4158 0.831 0.191 0.038 -0.097 0.045 0.080
J 0.2 323 797 23421 3997 0.832 0.285 0.075 -0.026 0.088 0.000

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 0 0 11018 17520 0.386 0.000 0.000 -0.614 0.000 1.000 17520.000
D 0.1 0 0 11018 17520 0.386 0.000 0.000 -0.614 0.000 1.000 17520.000
D 0.2 0 4 11014 17520 0.386 0.000 0.000 -0.614 0.000 0.990 17519.990
E 0.05 0 0 28438 100 0.996 0.000 0.000 -0.004 0.000
E 0.1 0 0 28438 100 0.996 0.000 0.000 -0.004 0.000
E 0.2 2 0 28438 98 0.997 1.000 0.020 0.036 0.025
J 0.05 0 0 24218 4320 0.849 0.010 0.000 -0.151 0.000 0.990
J 0.1 1 0 24218 4319 0.849 0.020 0.000 -0.151 0.000 0.980
J 0.2 6 6 24212 4314 0.849 0.048 0.001 -0.149 0.002 0.930

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 7 7 11011 17513 0.386 0.470 0.000 -0.613 0.000 0.530 10509.480
D 0.1 7 8 11010 17513 0.386 0.468 0.000 -0.613 0.000 0.530 10509.480
D 0.2 8 19 10999 17512 0.386 0.476 0.000 -0.613 0.001 0.300 7943.210
E 0.05 0 14 28424 100 0.996 0.000 0.000 -0.004 0.000
E 0.1 0 14 28424 100 0.996 0.000 0.000 -0.004 0.000
E 0.2 6 14 28424 94 0.996 0.300 0.060 0.109 0.071
J 0.05 3 12 24207 4317 0.848 0.182 0.001 -0.150 0.001 0.790
J 0.1 5 11 24207 4315 0.848 0.195 0.001 -0.150 0.001 0.720
J 0.2 29 27 24191 4291 0.849 0.347 0.007 -0.138 0.008 0.490

(d) 201D

Table B.8: Univariate linear regression results.
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B.2.4 Tables auto-regression

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 3 5 11013 17517 0.386 0.319 0.000 -0.614 0.000 0.000 3545.520
D 0.1 3 5 11013 17517 0.386 0.319 0.000 -0.614 0.000 0.000 3545.520
D 0.2 3 5 11013 17517 0.386 0.319 0.000 -0.614 0.000 0.000 3545.520
E 0.05 96 102 28339 1 0.996 0.485 0.990 0.993 0.819
E 0.1 97 104 28337 0 0.996 0.483 1.000 0.995 0.823
E 0.2 97 104 28337 0 0.996 0.483 1.000 0.995 0.823
J 0.05 2 7 24211 4318 0.848 0.191 0.000 -0.151 0.000 0.000
J 0.1 2 7 24211 4318 0.848 0.190 0.000 -0.151 0.000 0.010
J 0.2 2 7 24211 4318 0.848 0.191 0.000 -0.151 0.000 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 8 7 11011 17512 0.386 0.532 0.000 -0.613 0.001 0.000 4138.150
D 0.1 8 7 11011 17512 0.386 0.538 0.000 -0.613 0.001 0.000 4138.150
D 0.2 8 7 11011 17512 0.386 0.544 0.000 -0.613 0.001 0.000 3617.050
E 0.05 96 111 28330 1 0.996 0.464 0.990 0.993 0.807
E 0.1 97 111 28330 0 0.996 0.466 1.000 0.994 0.814
E 0.2 97 112 28329 0 0.996 0.464 1.000 0.994 0.812
J 0.05 3 13 24205 4317 0.848 0.193 0.001 -0.150 0.001 0.000
J 0.1 3 13 24205 4317 0.848 0.193 0.001 -0.150 0.001 0.000
J 0.2 3 13 24205 4317 0.848 0.193 0.001 -0.150 0.001 0.000

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 1 12 11006 17519 0.386 0.086 0.000 -0.614 0.000 0.520 9646.190
D 0.1 1 12 11006 17519 0.386 0.086 0.000 -0.614 0.000 0.520 9646.190
D 0.2 1 13 11005 17519 0.386 0.082 0.000 -0.614 0.000 0.520 9646.190
E 0.05 97 109 28332 0 0.996 0.471 1.000 0.994 0.816
E 0.1 97 109 28332 0 0.996 0.471 1.000 0.994 0.816
E 0.2 97 109 28332 0 0.996 0.471 1.000 0.994 0.816
J 0.05 1 12 24206 4319 0.848 0.107 0.000 -0.151 0.000 0.010
J 0.1 2 12 24206 4319 0.848 0.108 0.000 -0.151 0.000 0.000
J 0.2 2 13 24205 4318 0.848 0.139 0.000 -0.151 0.001 0.000

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 8 11 11041 17478 0.387 0.416 0.000 -0.612 0.001 0.000 2167.240
D 0.1 8 11 11041 17478 0.387 0.414 0.000 -0.612 0.001 0.000 2167.240
D 0.2 8 12 11040 17478 0.387 0.394 0.000 -0.612 0.001 0.000 2167.240
E 0.05 95 115 28326 2 0.996 0.452 0.979 0.988 0.794
E 0.1 97 117 28324 0 0.996 0.453 1.000 0.994 0.806
E 0.2 97 212 28229 0 0.993 0.314 1.000 0.989 0.696
J 0.05 2 17 24201 4318 0.848 0.123 0.001 -0.151 0.001 0.010
J 0.1 3 18 24200 4317 0.848 0.126 0.001 -0.151 0.001 0.000
J 0.2 3 19 24199 4317 0.848 0.158 0.001 -0.150 0.001 0.000

(d) 201D

Table B.9: Univariate AR results.
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B.2.5 Tables isolation forest

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 6775 1723 9295 10745 0.563 0.806 0.387 0.173 0.426 0.000 1037.160
D 0.1 9569 2363 8655 7951 0.639 0.790 0.546 0.358 0.571 0.000 1143.280
D 0.2 13310 3137 7881 4210 0.743 0.811 0.760 0.599 0.764 0.000 1632.750
E 0.05 25 7503 20938 72 0.735 0.003 0.258 0.253 0.016
E 0.1 26 7525 20916 71 0.734 0.003 0.268 0.268 0.016
E 0.2 26 7539 20902 71 0.733 0.003 0.268 0.268 0.016
J 0.05 1939 6301 17917 2381 0.696 0.232 0.449 0.270 0.369 0.250
J 0.1 2906 6797 17421 1414 0.712 0.291 0.673 0.459 0.523 0.040
J 0.2 4191 7495 16723 129 0.733 0.372 0.970 0.558 0.726 0.000

(a) 102BFS

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 4153 5398 5620 13367 0.342 0.434 0.237 -0.026 0.260 0.000 2362.390
D 0.1 5790 5437 5581 11730 0.398 0.488 0.330 0.030 0.347 0.000 2328.220
D 0.2 9011 5712 5306 8509 0.502 0.604 0.514 0.285 0.524 0.000 2082.370
E 0.05 35 10217 18224 62 0.640 0.003 0.361 0.360 0.016
E 0.1 35 10220 18221 62 0.640 0.003 0.361 0.360 0.016
E 0.2 35 10219 18222 62 0.640 0.003 0.361 0.360 0.016
J 0.05 1488 8892 15326 2832 0.589 0.133 0.344 0.088 0.260 0.190
J 0.1 2246 8992 15226 2074 0.612 0.180 0.520 0.182 0.375 0.100
J 0.2 3644 9375 14843 676 0.648 0.273 0.843 0.398 0.592 0.010

(b) 103HOE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 5148 3023 7995 12372 0.461 0.607 0.294 0.018 0.326 0.000 3481.990
D 0.1 6584 3129 7889 10936 0.507 0.649 0.376 0.167 0.407 0.000 2440.650
D 0.2 9394 3412 7606 8126 0.596 0.709 0.536 0.409 0.559 0.000 2141.660
E 0.05 20 6017 22424 77 0.786 0.003 0.206 0.201 0.016
E 0.1 20 6037 22404 77 0.786 0.003 0.206 0.201 0.016
E 0.2 20 6060 22381 77 0.785 0.003 0.206 0.200 0.015
J 0.05 2039 5178 19040 2281 0.739 0.256 0.472 0.319 0.401 0.170
J 0.1 2215 5293 18925 2105 0.741 0.276 0.513 0.396 0.434 0.060
J 0.2 2468 5652 18566 1852 0.737 0.291 0.571 0.452 0.476 0.000

(c) 104OYE

C V TP FP TN FN Acc Prec Rec OP F2 PTM DNT
D 0.05 0 0 11018 17520 0.386 0.000 0.000 -0.614 0.000 1.000 17520.000
D 0.1 0 1 11017 17520 0.386 0.000 0.000 -0.614 0.000 1.000 17520.000
D 0.2 1086 992 10026 16434 0.389 0.265 0.062 -0.480 0.073 0.500 13802.180
E 0.05 0 0 28441 97 0.997 0.000 0.000 -0.003 0.000
E 0.1 0 0 28441 97 0.997 0.000 0.000 -0.003 0.000
E 0.2 0 0 28441 97 0.997 0.000 0.000 -0.003 0.000
J 0.05 0 0 24218 4320 0.849 0.000 0.000 -0.151 0.000 1.000
J 0.1 173 61 24157 4147 0.853 0.236 0.040 -0.078 0.047 0.690
J 0.2 818 755 23463 3502 0.851 0.291 0.189 0.132 0.199 0.500

(d) 201D

Table B.10: Univariate IF results.

84



Appendix C

Hyperband tuner results

In this section, we show the best 10 runs of the Hyperband tuner per used sensor.
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C.1 Quantile regression: MLP in multivariate setting

µ(loss) d lr l units
0.1750 0.4 0.0005 1 128
0.1805 0.2 0.0005 1 64
0.1808 0.4 0.0001 1 256
0.1809 0.1 0.005 1 128
0.1818 0.3 0.0005 1 64
0.1858 0.0 0.005 1 256
0.1872 0.1 0.0005 1 32
0.1875 0.2 0.0001 1 128
0.1904 0.1 0.001 1 64
0.1912 0.2 0.005 1 256

(a) 104OYE

µ(loss) d lr l units
0.8205 0 0.00001 8 32,16,32,128,

16,64,32,256
0.8375 0 0.005 1 256
0.8607 0.2 0.005 1 128
0.8642 0 0.00001 8 32,32,256,256,

32,64,128,64
0.8657 0.1 0.001 1 256
0.8709 0 0.00005 8 128,256,256,16,

32,64,16,64
0.8833 0 0.00001 8 16,32,32,64,

64,32,64,64
0.8939 0 0.0001 4 32,16,32,256
0.8991 0.2 0.005 1 256
0.9058 0.2 0.0005 1 128

(b) 103HOE

µ(loss) d lr l units
0.9438 0.4 0.0001 8 16,16,128,256,

256,128,32,32
0.9473 0.4 0.005 2 64,256
0.9697 0.3 0.005 2 32,16
0.9750 0.4 0.005 2 256,128
1.0348 0.4 0.005 2 32,64
1.0495 0.4 0.005 2 32,128
1.0653 0.3 0.005 2 32,128
1.0737 0.4 0.001 2 32,32
1.0818 0.4 0.005 8 32,64,64,32,

128,128,32,128
1.0927 0.3 0.005 4 256,16,32,64

(c) 201D

µ(loss) d lr l units
1.3433 0.4 0.00005 8 64,256,32,32,

256,16,32,64
1.4334 0.4 0.0001 8 16,128,256,256,

64,256,64,16
1.5015 0.4 0.0001 4 16,64,16,16
1.5318 0.4 0.001 8 16,16,128,16,

16,256,128,128
1.5346 0.4 0.0001 8 32,256,128,64,

64,256,32,256
1.5786 0.4 0.00005 4 32,32,64,64
1.5955 0.3 0.00005 8 128,128,256,16,

128,16,16,256
1.6408 0.3 0.00005 8 64,128,256,128,

32,16,32,64
1.6452 0.3 0.00005 8 64,128,256,32,

32,128,16,256
1.6523 0.3 0.00001 8 128,32,16,128,

256,32,256,32

(d) 102BFS

Table C.1: MLP tuner results (dropout abbreviated as d, learning rate as lr and number of layers as l). Best 10 runs are
shown. All runs are averages of 5 different models.
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µ(loss) T d lr l units
0.1996 G 0.1 0.0005 1 256
0.2017 G 0.1 0.005 1 64
0.2081 G 0.1 0.005 2 128,256
0.2112 G 0 0.001 1 256
0.2130 G 0.1 0.005 1 32
0.2178 G 0.1 0.0001 1 64
0.2180 G 0.1 0.00005 2 256, 128
0.2182 G 0.1 0.005 1 32
0.2232 G 0.1 0.0005 1 32
0.2240 G 0.1 0.00005 4 128, 128, 128, 256

(a) 104OYE

µ(loss) T d lr l units
0.8506 L 0 0.005 1 256
0.8820 L 0 0.005 4 128, 32, 64, 256
0.9204 L 0 0.001 4 64, 64, 128, 128
0.9241 L 0 0.0005 4 128, 16, 16, 64
0.9279 L 0 0.005 4 16, 16, 128, 32
0.9304 L 0 0.0005 4 256, 16, 256, 64
0.9514 L 0 0.0005 2 32, 64
0.9547 G 0.3 0.005 4 64, 256, 256, 16
0.9726 G 0 0.0005 4 256, 32, 16, 128
0.9733 G 0.2 0.001 4 256, 64, 128, 128

(b) 103HOE

µ(loss) T d lr l units
1.2741 L 0.4 0.001 4 64, 64, 64, 128
1.2755 L 0.3 0.001 4 32, 128, 32, 256
1.3064 L 0.4 0.001 4 128, 16, 64, 256
1.3563 L 0.3 0.001 4 64, 128, 16, 256
1.3641 L 0.1 0.005 4 64, 256, 128, 32
1.4079 L 0.3 0.001 4 64, 128, 16, 256
1.4101 L 0.2 0.005 4 16, 16, 32, 64
1.4211 L 0.3 0.0001 4 128, 256, 32, 128
1.4215 L 0.2 0.0005 4 32, 256, 32, 128
1.4250 L 0.1 0.005 4 128, 16, 128, 128

(c) 201D

µ(loss) T d lr l units
1.0163 L 0.2 0.0001 4 32, 32, 128, 256
1.0259 L 0.3 0.0001 4 64, 32, 256, 128
1.0435 L 0.2 0.005 4 16, 256, 128, 128
1.0458 L 0.3 0.0005 4 128, 64, 64, 128
1.0572 G 0 0.005 4 64, 16, 256, 16
1.0635 L 0.3 0.0001 4 32, 32, 64, 256
1.0684 L 0.2 0.0005 4 32, 16, 64, 32
1.1015 L 0.2 0.001 4 64, 128, 128, 128
1.1102 G 0.3 0.0005 4 64, 64, 32, 128
1.1084 G 0.3 0.005 4 256, 32, 16, 16

(d) 102BFS

Table C.2: RNN tuner results (dropout abbreviated as d, learning rate as lr and number of layers as l, RNN type as T ,
with values L for LSTM and G for GRU). Best 10 runs are shown. All runs are averages of 5 different models.
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