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Possible influences on the reliability of methods used in the demonstration of cortical predictive coding
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Abstract

While not being empirically confirmed, cortical predictive coding is a theory of human cognition that has already been used as an explanation for multiple previously unexplained phenomena. In order to empirically demonstrate the physiological implications of predictive coding we would need reliable and corresponding data. The current literature study examines which methodologies could be used for the acquiring of corresponding data and whether acquired data could be interpreted in a different way. This study does this by: 1. describing the physiological implications of cortical predictive coding; 2. examining the strengths and weaknesses of methods that are currently being used in the demonstration of cortical predictive coding and; 3. examining broader influences on data without a one-to-one correlation to a specific measuring tool. The results suggest that there exist multiple difficulties when using any of the discussed methods of research, as some lack spatial resolution (functional magnetic resonance imaging, mismatch negativity) or temporal resolution (single-cell recordings), are sparsely available (invasive electroencephalography), are in development (stimulus specific adaptation, laminar functional magnetic resonance imaging), or are difficult to interpret because of difficulties in substantiating their relevance (mismatch negativity, stimulus specific adaptation). Data seems to be dependent on the used methodology as well as attentional levels, arousal, neuromodulators and the use of animal subjects. Further research should take the methodological weaknesses into account, preferably using multiple methodologies simultaneously to cover for the weaknesses of each individual method. Further research is also encouraged to look into multiple predictive coding properties within one study, thus making it possible to discriminate between the multiple properties. 	Comment by anastasia v: fd
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I. Introduction

Since its introduction to the field of cognitive modelling, predictive coding (PC) has been a very lively area of exploration. In 1999, Rao and Ballard introduced a multi-layered model in which model-neurons could be trained to function as a receptive field (Rao & Ballard, 1999). Their demonstration of predictive coding was able to replicate well-established receptive field effects, as well as less understood extra-classical receptive field effects such as end-stopping. Similar research provided a functional explanation for center–surround response properties and biphasic temporal antagonism of cells in the retina and lateral geniculate nucleus (Huang & Rao, 2011). Providing a theoretical explanation for several properties of visual cortex, PC became vastly popular in Artificial Intelligence (AI) for its trainability and accurate representations. To this day, PC has been used in AI for either video prediction (Lotter et al., 2017), image recognition (Dora et al., 2018) or even technology-assisted reviews (Thomson Reuters), the algorithms seem successful for multiple purposes.
Since recently there has been a growing support for the idea that the human brain acts like an inference machine, optimising its connectivity and dynamics to efficiently function in the (noisy) world. Karl Friston proposed that the human neocortex works by the rules of PC as this inference machine, avoiding surprise and optimizing its use of energy (Friston, 2010). In this scheme, the brain is assumed to make predictions about the state of the world that are based on previously experienced events, and when predictions fail to explain sensory information, the model gets updated. Friston’s theory of cortical PC can readily explain phenomena like amodal completion, in which humans perceive a whole occluded object as opposed to a mosaic of fragments (Alexander & Zelinsky, 2018), schizophrenia, particularly with regard to positive symptoms like hallucinations and delusions (Sterzer et al., 2018), autism (Gonzalez-Gadea et al., 2015), depression (Chekroud, 2015) and psychosomatic disorders including pain and placebo effects (Buchel et al., 2014). Thus, PC has been recently able to provide an explanation for a wide variety of phenomena in the healthy and disordered brain.
Currently, there exist multiple variants of the PC theory. In near to all versions of the theory inference is created from prediction, sensation and neural connections that update an individual model of the world (the generative model) and keep it faithful (Rao & Ballard, 1999). The generative model is supposedly represented by one or more (neo)cortical areas of the brain. Within the cortex, prediction is compared to sensory data, which in turn may give a prediction error (PE) if these signals do not correspond with each other. This comparison which leads to PE is supposedly made by the rules of Bayesian statistics, that is why PC is sometimes called the hypothesis of a Bayesian brain (Friston, 2006). Most variants of cortical PC believe that the brain works by a strict hierarchy which is based on cognitive functioning and the order of information flow. Early sensory areas are known as “lower levelled” whereas executive or deeper areas are known as “higher levelled”. This concept is based on physiological principles initiated by Hubel and Wiesel (1965): As one ascends down the hierarchy, the receptive fields of neurons become larger, the retinotopic organization becomes less precise and the effective visual stimuli become more complex. Neurons of a higher level predict properties at a larger scale by combining the responses of several lower level units. Thus, neurons at the highest level of cortical hierarchy could have a receptive field size of the entire input (Huang & Rao, 2011). PC further suggests that there are cortical feedback connections, which are used to convey a prediction to neuronal units of lower level (Friston, 2010). These units compare the prediction to a current representation, which may produce a PE. This PE is then sent back to higher levels through feedforward connections, to adjust the neuronal representation of sensory causes, which will in turn change the prediction. Conveying PE through feedforward connections is the only way for sensory data to reach higher levels of cortical hierarchy, creating an efficient path of information. The exchange of predictions and PEs continues until the PE is minimised and the most likely cause of the input has been generated.
Another feature of PC is that PE may be affected by another variable: the precision of sensory and predictive data. If precision of sensory data is high, the precision-weighted PE in case of a mismatch will be greater. When sensory precision is low, PE is down-weighted and may go unnoticed (Friston, 2006). When vision is limited, for example, less weight is put on sensory data, which makes inference more driven by prediction. Furthermore, the degree to which a prior belief in the generative model will change in response to PE is also determined by its own precision: an imprecise prior will update more than a precise one will. It is therefore important that precisions of belief and sensory data are accurately represented, as inaccuracies will lead to false inferences. An example of false inferences as a result of decreased precision of beliefs may be psychosis (Sterzer et al., 2018). This imbalance in precisions shifts the posterior towards the sensory data and away from the prior belief, thus making inference more driven by sensory data. 
Friston introduced the idea that the brain Is constantly trying to minimize PE. There are two ways in which the brain could do that according to the theory (Friston 2010). First, the cognitive system selects a most likely hypothesis (prediction), which is as effective as possible in minimizing PE. This is called perceptual inference. Second, the cognitive system will act in a way that leads to a better fit between sensory data and prior belief. This could be achieved by actually engaging in an action that makes a hypothesis come true. This is called active inference. Furthermore, there are two definite expectations that come with Friston’s cognitive model: an unexpected stimulus should elicit PE, and an unexpected absence should elicit PE (Friston, 2010). 
Although very explicitly explained, cortical predictive coding has yet to be empirically confirmed (Friston 2018). While it is hard to locate all of the involved processes using currently available measuring techniques, it may be most challenging to correctly interpret their results. Friston argues that electrophysiological measures of brain activity are mainly an expression of PE (Friston, 2010), but that is hard to confirm, mainly because it is not clear how to manipulate PE while keeping clear of other variables in signal (Stephan et al. 2017). Currently, no direct distinction is known between prediction and PE when it comes to any type of measuring technique. Besides this, feedback and feedforward connections do exist within the mammalian cortex, but a reliable correlation between these connections and PE/predictions has not been found (Stephan et al. 2017). Furthermore, there are many factors that can lead to less reliable data. Many studies focussing on PC use invasive monitoring techniques as these may be used to examine different layers of cortex. Most of these techniques are only used with animal subjects as they are not approved for human testing. Unfortunately, there exist many differences between humans and animals that complicate the comparison between data of these different species. Some examples are: different cortical structures (Barbas & Pandya, 1989) and increased stress in animals during experiments and handling (Balcombe et al., 2004). 
In the current literature study, we will examine the methods which have previously been used in the demonstration of cortical PC and look at their qualities and weaknesses. This study aims to answer the following question: what currently available methods of measurement can be used to analyse predictive coding in the cortex and could their measurements be interpreted differently? First, we will examine what predictive coding in the cortex implies for cortical physiology. Second, we will look at all available, promising methods: what are they measuring, what should they be measuring for the demonstration of PC, what has been measured before and finally a review of their qualities and weaknesses. The third (numbered as fourth) chapter will quickly look over other reasons for why some demonstrations of PC may become less reliable. Finally, we will discuss all findings and combine these in a review. The conclusion will be a summary of findings, with directions for further research.


II. Predictive coding in the cortex

Basic anatomy of Predictive Coding

The human neocortex is composed of multiple systems that act on different stimuli: visual, auditory, somatosensory, prefrontal, etc., and each system is composed of areas that vary systematically in laminar structure. These structures are called laminar types (Barbas et al. 2018a) and may contain up to six histologically-defined layers of neurons (Fig. 1). The thickness, density and number of layers defines the type and ultimately its connections to other areas (Barbas et al., 2018a). Laminar types are not exclusive to one area of cortex; the same laminar type may appear in different cortical systems. Primary sensory areas (e.g., visual, auditory), for example, all have similar laminar types. These areas have a thick and well-delineated layer IV and the most elaborate laminar stucture within their respective cortical system (Barbas et al. 2018b). Systematic laminar variation is a universal property of mammalian cortices. Yet, there are differences between species, like the less pronounced laminar differentiation in rodents in comparison to primates. The most differentiated areas of a rodent’s cortex have a poorly developed layer IV and very thin layers II and III in comparison to primates (Goulas et al. 2018).
 [image: ]
Figure 1. Four different types of laminar structure found in primates. A. Agranular type (without layer IV); B. Dysgranular type (thin layer IV); C. Eulaminate I type; D. Eulaminate II type (Barbas et al. 2018a).

Since the relationship of cortical type and the pattern of neural connections was discovered (Barbas, 1986) research has been suggesting that the pattern of connections between areas depends on the laminar typing of the areas involved (Barbas et al. 2018a). Three types of connections have been discovered as until today.
The first type is the feedforward connection, which was originally thought to carry excitatory signals to other neurons. This connection is formed when an area of an “elaborate” type (e.g., eulaminate) projects to an area of more "simple” type (e.g., agranular/dysgranular). Its projection neurons originate in supragranular layers II/III and its axons terminate in the middle-deep layers, mostly layer IV. According to PC, the feedforward connection targets higher regions in cortical hierarchy. 
The Second type is the feedback connection, which was originally thought to carry modulatory signals to other neurons. This connection is formed when an area of a simple type projects to an area of more elaborate type. Its projection neurons originate in the deep, infragranular layers V/VI and its axons terminate in the upper cortical layers. Layer I is mostly targeted, followed by layer II and the upper part of layer III. Some researchers claim that layer IV is also sometimes targeted (Stephan et al. 2017). According to PC, this connection projects to a hierarchically lower target region. 
The final connection type is called the lateral connection, and it only connects similar laminar types. Its projection neurons originate in supragranular layers II–III and in infragranular layers V–VI, while their axons terminate in all layers (Barbas et al. 2018a, Stephan et al. 2017). According to PC, laminar connections would connect cortical areas of the same level in cortical hierarchy. 
These three types of connections may be intrinsic, meaning that they connect the neurons within one area, or extrinsic, connecting neurons of different areas. The majority of presynaptic inputs arise from intrinsic connections. In a study by Markov et al. (2011) 95% of all neurons labelled with a retrograde tracer lied within about 2 mm of the injection site, meaning that they are of intrinsic nature. The remaining 5% represent cells connecting with neurons which lied further away. Although they may be long, extrinsic connections can be extremely effective in driving their targets. An example is the LGN to V1 connection: although it is only the sixth strongest connection to V1, LGN afferents have a substantial effect on V1 responses (Markov et al., 2011). In primates, cortical inhibitory neurons are exclusively intrinsic (Tomioka & Rockland, 2007). Excitatory and laminar neurons may have long as well as short axons, leading to intrinsic and extrinsic connections. in rodents, cortical inhibitory neurons account for approximately 5% of all cortical neurons, as opposed to around 25% in primates (Barbas et al., 2018b). Cortical short-axon neurons are also more simplistic in rodents and other mammals, as only primates are found to have double bouquet interneurons.
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Figure 2. An overview of cortical PC. Here, level k is a cortical column somewhere in the neocortex. The granular layer represents layer IV, the supragranular layer represents layers I –III, the infragranular represents layers V-VI. The triangles represent pyramidal neurons (Stephan et al., 2017). 

Friston’s theory of cortical PC is much based on the possible implications of feedforward, feedback and lateral connections. Building on the “canonical microcircuit” model by Douglas and Martin (Douglas and Martin, 1991) with the hierarchical structure of Felleman and Van Essen (1991), a model was proposed by Friston that essentially describes a prototypical cortical column with nodes and dynamics throughout different hierarchical levels (Fig. 2) (Bastos et al., 2012). This model assigns different types of (pyramidal) neurons to cortical layers, which may communicate through feedforward and feedback connections. The predictions descending through feedback connections are thought to being able to suppress PE in lower areas, thus their polysynaptic connectivity is generally assumed to be inhibitory. It is assumed that feedback connections are also context sensitive, as because, for example, occluded objects are seen as whole objects instead of distinct pieces (amodal completion). Feedforward connections are less sensitive to context and generally excitatory as they carry PEs. Notably, there are alternative formulations of predictive coding that propose different neuronal implementations, like the PC/BC (predictive coding/biased competition) model by Spratling (2010) which proposes that feedback connections convey predictions and feedfoward connections convey PEs. Nonetheless, the more common model of Friston is seen as a “default” theory of PC in the cortex. We will stay with Friston’s model for this study. 
In the demonstration of cortical PC, feedforward and feedback connections are obviously important. Lateral connections seem to be of less interest in PC literature, while this may change in the future. We will go over some of the empirically acquired data of the three types of connections, PE and predictions.
First of all, it is important to be able to distinguish modulatory connections from excitatory connections. In 1998, Sherman and Guillery found several properties that distinguish excitatory from modulating connections. Excitatory (driving) connections tend to show a strong ionotropic component in their synaptic response, evoking large excitatory postsynaptic potentials (EPSPs) and respond to multiple EPSPs with depressing synaptic effects. Modulatory connections seem to produce metabotropic and ionotropic responses when stimulated, evoke weak EPSPs, and show paired-pulse facilitation (Sherman and Guillery, 1998). 
For long it has been thought that feedback connections are weak and modulatory (Sherman and Guillery, 1998), while now it is known that feedback connections are able to exert strong and excitatory effects. A study by Mignard and Malpeli (1991) found data consistent with a driving effect of feedback connections from the prestriate cortex (V2) to the primary visual cortex (V1) in the absence of geniculate input. More recent evidence confirms this in other sensory areas: Sherman et al. recorded cells in (mouse) areas V1/V2 and A1/A2, while stimulating feedforward or feedback afferents. In both feedback and feedforward afferents, driving-like responses as well as modulatory-like responses were observed (Covic and Sherman, 2011). Their studies suggest that feedback and feedforward connections can drive as well as modulate. Other studies suggest that lateral connections may also exert both excitatory and modulatory effects (Angelucci et al., 2002).
There may exist measurable differences between the three types of connections. Recent findings suggest that superficial layers of cortex show neuronal synchronization and spike-field coherence predominantly in the gamma frequencies, while deep layers prefer lower (alpha or beta) frequencies (Buffalo et al.,2011). Yet, some other studies suggest more complex patterns in cortical rhythms (Haegens et al. 2015). It has been demonstrated before that oscillation frequencies seem to depend on populations of inhibitory neurons and their (binding) type [e.g., Le Van Quyen et al. (2016); Teleńczuk et al. (2017)], although more evidence is needed to support this claim. Interestingly, inhibitory neuron typing seems to correlate to connection typing. In macaque monkeys and humans, inhibitory neurons are classified by their expression of one of three calcium binding proteins: PV, CB, and calretinin (CR). Feedback connections come in contact with excitatory neurons as well as populations of CB and CR inhibitory neurons. CB neurons in primates innervate intermediate and distal dendrites of pyramidal neurons, suggesting a modulatory role (DeFelipe 1997). They are most densely distributed in layer II and upper layer III, and to a lesser extent in the deep layers (DeFelipe, 1997). CR neurons are known to innervate other inhibitory neurons in the upper layers in the visual cortex of monkeys, and thus are thought to have a disinhibitory role (Meskenaite 1997), as also seen in mice and rats (Tremblay et al. 2016). Feedforward connections are mostly in contact with PV inhibitory neurons, known for their perisomatic innervation of neighbouring pyramidal neurons and strong inhibition (DeFelipe et al. 1989b; Mikkonen et al. 1997). PV inhibitory neurons are often found in the middle-deep cortical layers, which receive robust pathways from the thalamus. These neurons are the most distinguishable, as they are easily identified by their fast-spiking activity (Zaitsev et al. 2009). In the future properties like these may be used to differentiate between connection types using EEG.
Finally, there are some neuroanatomical studies that point to a more complicated layout of hierarchy-defining connections than previously assumed (Markov et al., 2013, 2014). These studies suggested the existence of “cortical counter streams”: pathways consisting of forward and backward connections that run in parallel to each other within supragranular and infragranular layers, respectively. The functional significance of these pathways is still unknown, but as they may be significant, the theory of PC may be challenged by these findings (Shipp, 2016).
Concluding, any research that wants to demonstrate (the by Friston proposed) PC activity in the cortex should look into the interplay of feedforward and feedback connections, and what it results in within the neurons and laminae in which they terminate. Supposedly, feedforward connections carry PEs and feedback connections carry predictions. 


III. Methods for analysing predictive coding

The several aspects of predictive coding could theoretically be demonstrated at different levels of spatial and temporal resolution and with different degrees of conceptual depth. Predictions, precision and PEs could be examined at the level of areas, columns, laminae or single neurons (Stephan et al., 2007) while the different connection types are typically examined within one or multiple cortical columns or within areas. 
PEs are thought to originate after perception of unexpected (deviant) stimuli, or an absence of stimuli. Therefore, it is generally assumed that PEs can be derived from the manipulation of the probability of a particular event or stimulus, or manipulation of the precision by which a prediction can be made. Some event related potentials (ERPs) are thought to be highly related to PEs, as they are evoked by certain stimuli or their absence. As we will see in this chapter, mismatch negativity (MMN) is an ERP that is often used in this regard. In oddball tasks, subjects are presented with a continuous stream of uninteresting, frequently repeated (standard) stimuli, which could be either images or sounds. Occasionally, deviant stimuli may occur that do not match a given dimension (e.g., color) which may exert a deviance detection (in the form of an ERP). Notably, standard stimuli seem to evoke a repetition suppression (Auksztulewicz & Friston, 2016 ), which is the attenuation of the evoked response to a certain repeated stimulus feature, and namely to a certain repeated frequency in the case of auditory stimulation (Duque et al., 2016). Oddball tasks can be used in a wide variety of paradigms, ranging from simple to as complex as associative novelty paradigms. While classically an EEG paradigm, MMN is increasingly used in fMRI as well (Gaebler et al., 2015).
In the following sub-chapters, we will further examine the most frequently used measuring tools and paradigms in the demonstration of cortical PC. 

 Single-cell recording

Single-cell recordings record action potentials of single neurons in-vivo. Single-cell recordings have a long history of experimental use in PC, starting at the beginning with the research of Hubel and Wiesel (1962). In this study laminar processing was examined using single metal electrodes that were slowly advanced through the layers to record spiking-activity from single cells sequentially in different layers (Hubel and Wiesel, 1962). These studies demonstrated the similarities and differences in tuning properties across the different laminae, leading to the concept of the cortical column (Self et al., 2019). This method of measurement using multiple electrodes became popular for usage in the demonstration of PC in animals. It is, however, difficult to construct profiles of activity using a single electrode, as the activity of neurons in different layers is recorded at different points in time and the depth of an electrode has to be assessed ex vivo (Self et al., 2019).
There are multiple types of single-cell measuring techniques which can be utilized for different purposes (Cid & de la Prida, 2019). The region and the question of interest will determine the preparation and the preferred technique. Research in primary sensory cortices typically focus on receptive field characterization, while recordings of hippocampal activities are evaluated with respect to the local field potential (LFP). Overall, all studies using single-cell recordings focus on the functional characterization of individual cell types; either spontaneously, or in response to different types of stimulations (Cid & de la Prida, 2019). 

Notable studies using single-cell recording

When viewing a Kanizsa figure as the one shown in fig. 3., we perceive a square in the center of the figure, even in the regions where there is no border between the square and background. This is an example of the phenomenon of illusory or subjective contours. In a study by Lee and Nguyen (2001) multiple monkeys were positioned in front of Kanizsa figures in such a way that the illusory contours were located in the receptive fields of V1 and V2 neurons which they recorded. Interestingly, both V1 and V2 neurons responded to these illusory contours, and V2 neurons responded consistently         Figure 3. A Kanizsa figure (square)      earlier in time, suggesting a feedback mechanism from V2 to V1. This can be understood to result from inferences about the presence of a white square occluding the black circles within higher-order visual regions with receptive fields that encompass the whole figure. These inferences are subsequently sent as top-down predictions to those lower-order neurons that are expected to detect the (illusory) s[image: ]ides of the square.
Noteably, similar studies have observed illusory contour responses in V2 of rhesus monkeys, but not in V1 (Von Der Heydt et al., 1984; Bakin et al., 2000). This suggests that the presence of predictive feedback to V1 may depend on other factors as conditions did slightly differ from this study. The authors note that their stimulus might have activated attentional mechanisms, while the other study required their monkeys to discriminate a subtle change in a fixation spot. This manipulation might have drawn attention away from the illusory contours.
It has been demonstrated with paired associations that some neuronal populations have predictive qualities. A study using paired associations showed that neurons that normally respond to a second stimulus of a pair can already start firing upon presentation of a first member of a pair. This firing increases until the second stimulus appears (Sakai & Miyashita, 1991). Furthermore, Erickson and Desimone (1999) found that the firing delay period between two stimuli correlated less strongly with the response to the first stimulus, and more with the response to the second (upcoming) stimulus, which suggests prediction. In a similar recent study, Meyer and Olson (2011) showed that when such a prediction is violated by showing a non-related second stimulus, neural activity to the second stimulus increases. This seems to be in line with a PE response. Moreover, single-cell recordings have also demonstrated neuronal responses to absent but predicted input in the PFC (Merten & Nieder, 2012).
Finally, one study used a single-electrode that was lowered through a cortical column of V1 making a series of recordings from cells at different depths, suggested that non-evoked, or “spontaneous” activity was highest in layer 4c, 4A and layer 6 (Snodderly and Gur, 1995).

Review Single-cell recording
There are a couple of methodological complications when using single-cell recordings. Single-cell recordings are typically invasive and therefore reserved for animal research. Most often, animals are trained, restrained, given drugs and given rewards for the task, which may complicate interpretation of the results (see next chapter for influence of stress on animals). Furthermore, the recordings are limited to a small number of cells at a time, so much of the work has relied on compiling population statistics across many recording sessions (Kelly et al., 2007). When using only one electrode for mapping laminar activity, it may be difficult to construct a profile of the activity in cells within the laminar column as their activity is recorded at different points in time and the depth of an electrode has to be assessed ex vivo (Self et al., 2019). Yet, the excellent spatial and temporal resolution makes that single-cell recordings may be interesting for the demonstration of PC, especially in combination with a measuring technique that measures on a larger scale (e.g., laminae).
Multi-contact electrodes
Multi-contact electrode recordings resemble multiple single-cell recordings, providing a more efficient technique for measuring laminar activity. This method increases the number of neurons per recording session and could benefit pairwise or larger-population analyses. Multi-contact electrodes can be used to record activity from each layer of the cortical column simultaneously, and some electrodes may be implanted and used for several months, which permits the study of learning in cell populations. Multi-contact electrodes that are used in laminae are called laminar electrodes (Van Kerkoerle, Self, & Roelfsema, 2017), and their contact points are typically spaced 100 micrometers apart.
When acquiring data from multiple contact points, one can sample these into LFPs. LFPs are complex signals which comprise the summation of electric activity over a volume of neural tissue. The contribution of local and remote sources to the signal is still a matter of debate (Self et al., 2019). There are techniques to remove signals from remote sources like computing the one-dimensional current source density profile (CSD). These computations are only valid if certain assumptions are met, like the laminar electrode being oriented orthogonally to the cortical layers, and the activation of the cortical layers being uniform in the plane of the layers.

Notable research using multi-contact electrodes

Some of the first studies using multi-contact electrodes in V1 found that the strongest multi-unit spiking activity was located in layer IVc (Kajikawa et al., 2017). However, the stimulus was diffuse, which would bias the non-orientation tuned cells of layer IVc while orientation-tuned cells in the extragranular layers may become less activated than usual. A later study using a drifting sine-wave grating as a stimulus (Xing et al., 2012) revealed a much flatter profile of spiking activity with few differences between the layers: only layers II and III showed a slightly higher number of spikes in comparison to the other layers. This study used a method of recording that counts all spikes above a certain threshold, which may have biased these recordings towards large spikes. In a similar, recent study in which this bias was corrected for with MUAe (see review multi-contact electrodes) it was demonstrated that the highest activity can be found around the boundary of layer IVc to V, while spiking activity became weaker when measuring further away from this boundary. Furthermore, the measured activity was weakest in the superficial layers, which were among the strongest activated layers in the study by Xing et al. (2012). This difference may be due to the use of full-screen stimuli which induce stronger levels of surround suppression in the superficial layers; however, a similar laminar profile was also observed in monkeys viewing different, high-contrast stimuli (van Kerkoerle et al., 2017). 
According to recent studies, strongly driving visual stimuli (e.g., a full-screen checkerboard) often elicit a characteristic CSD computed spatiotemporal profile across the layers of V1. Initially, the presentation of the driving stimulus triggers a current sink in layer IVc, which after some time returns to base after which layers II/III and V/VI show a longer sink of current (van Kerkoerle et al.,2014). 
In a set of studies by Lamme (1995) and Poort et al. (2012; 2016), several monkeys performed a texture segmentation task in which they had to report the location of a texture-defined figure located on a similar textured image composed of thousands of oriented lines. The smaller image was either placed within- or outside of the RF, to examine the reaction of the involved neurons in V1. There were two distinct phases of neural activity during the task: the early phase, and the late phase. During the early phase (50–100 ms after stimulus onset) neural response was driven by the feedforward input from the LGN and corresponded with the orientation of the lines in the RF. There were no differences between the neuronal responses elicited by the figure and the background. During the late phase (>100 ms) responses became modulated by the visual context (Lamme, 1995), as additional spiking activity was elicited by the figure whereas activity was suppressed if elicited by the background (Poort et al., 2016). This phenomenon is known as figure-ground modulation and is thought to arise through feedback connections as FGM is weaker if the animal does not attend the figure (Poort et al., 2012) and it is suppressed by anesthesia (Lamme et al., 1998). The laminar profile of FGM suggests that activity is weakest in layer IV and higher in the superficial and deep layers (Poort et al., 2016; Self et al., 2013). Interestingly, a recent study of the laminar profile of attentional modulation in V4 found that the strongest effects of attention on spiking activity occur in layer IV (Nandy et al., 2017), which may suggest a difference in laminar preference across visual areas.
Some studies using multiple electrodes suggest that some of the physiological activity thought to be characteristic of higher levelled areas can also be found in early visual areas (Super et al., 2001). It is shown that a late (> 100-ms) component of the neural activity in V1 of the monkey is selectively suppressed when stimuli are not seen, suggesting a different role than just early recognition (Super et al., 2001). A study by Schmolesky et al. demonstrated that there seems to be no difference in latency among neurons in the dorsal stream in response to certain visual stimuli whereas significant latency differences have been measured between areas V1, V2 and V4 (Schmolesky et al., 1998). Moreover, all dorsal activations occurred with much shorter latencies than ventral activations. Findings like these suggest that cortical hierarchy may be more difficult to define than is previously thought.

Review multi-contact electrodes
The primary methodological challenge of multi-contact electrodes is that the interpretation of the acquired data seems to be complex (Self et al., 2019). It is difficult to isolate single neurons in all layers simultaneously; outside sources seem to contribute to the signal and larger spikes seem to make the largest contribution to the signal while spikes with small amplitudes are largely ignored. CSD seems a valuable technique to reduce the noise produced by outside sources, but it may not always be suitable for measuring activity as it requires specific operations. Another technique called multi-unit activity (MUAe) measures the signal power in the high-frequency spiking range (typically 500 Hz–5000 Hz) (Super & Roelfsema,2005) and constitutes an average of the local spiking activity within 50–150 microns of the electrode contact. MUAe may give a better estimate of the overall level of spiking in a particular layer. 
Overall, this method has an excellent spatial and temporal resolution, suitable for the demonstration of PC. Yet, the invasive nature of this method has made it only suitable for research in animals. 

Invasive electroencephalography monitoring

Invasive recording has been mostly limited to animals. Interestingly, Invasive electroencephalography (iEEG) gives researchers a chance for invasive recording in humans while not harming any subjects in the process. IEEG monitoring can be defined as electroencephalography (EEG) using invasive intracranial electrodes, which are inserted surgically into the brain (Shah & Mittal, 2014). These electrodes are often used to localize an area that is causing seizures in patients suffering from epilepsy. Intracranial EEG recording can be performed either using electrodes placed directly on the exposed surface of the brain (subdural grid and strip electrodes) or by electrodes inserted into the brain parenchyma or within a lesion (depth electrodes). Both can be used to measure and locate oscillation frequencies in different areas of the brain, with the possibility of examining subcortical areas (Parvizi & Kastner, 2018).
IEEG has a typically more refined spatial and therefore temporal resolution than EEG. During invasive monitoring, often a large number of electrodes (100–200 per patient) are implanted across lobes or hemispheres to ensure that the source of seizures is not missed. As a result, intracranial electrodes often cover a large extent of the brain and offer information with millisecond resolution. The sampling rate of human iEEG data is typically in the range of 1000–3000Hz (Parvizi & Kastner, 2018). 
Research using iEEG could focus on defining the differences between feedback, feedforward and laminar connections in terms of local field potential (LFP) frequency bands. 

Notable research using Invasive electroencephalography recording

To this day, not many PC directed experiments have been performed using iEEG. Notably, a difference in frequency bands between feedforward and feedback connections has been found using iEEG (Fontolan et al., 2014): the subjects had to listen passively to 110 repetitions of 2.5-s long sentences, while feedforward and feedback connections in A1 and association auditory cortex (AAC) were recorded. Similar results have been reported by other studies, while also different results have been reported.  
Interestingly, a recent study by Sedley et al. (2016) has been one of the first studies to involve three of the most important variables of PC in one study: surprise (which should be closely related to PE), prediction and precision. Using an auditory stimulus whose pitch value changed according to certain rules, they found that surprise is correlated to LFP oscillations in the gamma band, while changes of predictions related to the beta band, and the precision of predictions appears to be related to alpha and possibly delta/theta oscillations.  
It has been previously shown that both theta and alpha oscillations seem to correlate with prediction of when a stimulus will occur, with theta aligning to the expected stimulus onset (Arnal and Giraud, 2012), and alpha correlating with the probability of a change in stimulus (Bauer et al., 2014). Interestingly, in the study by Sedley et al., precision was not time-locked to the stimuli despite the period of the stimulus segments (300 ms) falling within the delta-theta range. It is argued by the authors that this may be due to an evoked correlate being closely shared by both surprise and precision, which iEEG may be unable to disambiguate. Another reason could be that time-locking of low-frequency oscillations could be initiated by low-level stimulus features as opposed to the higher-level feature of temporal pitch employed in this study.
Furthermore, earlier studies (Spaak et al., 2012) have argued that there exists an antagonism between theta/alpha and beta/gamma oscillation magnitudes which might indicate that over time, neuronal populations alternate between states of precise predictions (with theta/alpha predominating) and states of prediction violation (with beta/gamma predominating). However, results by Sedley et al. (2016) would suggest that each oscillation type represents a different variable of PC. 
Other iEEG studies seems to show particular interest in theta oscillations, which show some correlation to hippocampal activity. The hippocampus has long been known to play a central role in episodic memory (Eichenbaum & Cohen, 2001), being particularly important for learning and remembering novel events (Kirchhoff et al., 2000). Hippocampal detection of a mismatch between past and present is thought to initiate responses in salience and reward processing regions that in turn project back to hippocampus, enhancing memory encoding of the present ‘unexpected’ event (Lisman & Grace, 2005) which is of interest for PC.
Some studies imply that theta rhythm may be considered an electrophysiological marker of hippocampal activity (Rutishauser et al., 2010), both during awake behavior and REM sleep (Klimesch 1996). Theta activity modulates neuronal changes in hippocampal conformation and in neocortical structures (Mitchell et al., 2008). Some authors have suggested that cortical theta oscillations may be induced via connections between the hippocampus and neocortex, described as “hippocampo-cortical feedback loops” ( Klimesch, 1996). It also seems that associative memory is stronger connected to the slow-theta range than to fast theta (Chen et al. 2014). One study showed that an optimal memory performance could be predicted by a tight coordination between spike timing in correspondence of the local theta oscillations. In addition, higher theta hippocampal-cortical phase-coupling was related to successful retrieval in a memory task (Lega et al. 2012). Another study showed that an increase of theta activity in temporal and right frontal lobes could correlate with successful recall of lists of words (Sederberg et al., 2003). 
iEEG studies have revealed that certain visual stimuli in oddball paradigms evoke a negative potential in human hippocampus that onsets around 300 ms (e.g., Axmacher et al., 2010). Studies suggest that this mismatch effect reflects direct hippocampal computations rather than re-entrant processes, as differences emerged within a few hundred milliseconds after stimulus onset, which is as early as stimulus-selective firing in individual hippocampal neurons (Quiroga et al., 2005), and comparable to activity linked to novel stimuli measured with EEG (Chen et al. 2014). Furthermore, there was no associated firing in the perirhinal cortex (PrC), a region known to project visual-object inputs to hippocampus via entorhinal cortex, further supporting the idea that mismatch signals originate in hippocampus. 
Review Invasive electroencephalography recording

The most important methodological challenge of iEEG is arguably the sparsely availability of subjects. iEEG research is near to only possible in patients suffering from epilepsy, and research is only allowed in clinical settings at few hospitals and by specially trained teams of clinicians and investigators (Parvizi & Kastner, 2018). As a consequence, most studies use only a small number of subjects. In the study of feedforward/feedback connections and their corresponding oscillation frequency bands only three participants have been used, of which one had electrodes on both sides of the brain and two had only one electrode implant on one side of their brain (Fontolan et al. 2014).
The fact that most research with iEEG uses patients suffering from epilepsy is also problematic when it comes to the reliability of the data. There are many comorbidities affecting patients of epilepsy, including learning disabilities, fixed neurological deficits, progressive conditions, psychological and psychiatric problems, and, particularly in the older age group, concomitant medical conditions (Duncan et al., 2006). Schizophrenia, often studied in PC because of increased chance of anomalies in inference (Friston et al., 2016; Stephan et al., 2006), is one of the many comorbidities. Overall, even patients not suffering from any notable comorbidities still suffer from enduring predisposition to generate epileptic seizures and development of a neuronal network in which spontaneous seizures occur. This cannot be seen as a default brain mechanism which is important to note when studying PC.  
Interestingly, a deficit of γ‐aminobutyric acid‐ergic (GABAergic) inhibition is hypothesized to underlie most forms of epilepsy (Bernard et al., 2005), while we also know that oscillation frequency may be strongly correlated to populations of inhibitory neurons (e.g., Le Van Quyen et al. 2016; Teleńczuk et al. 2017). Deficits in GABAergic functions commonly result in a hyperexcitable epileptic state, and a blockade of GABAergic inhibition results in acute epileptic discharges in healthy human subjects. Blockers of GABA receptors, including penicillin, bicuculline and pentylenetetrazole are widely used as experimental epilepsy models (Curtis et al. 1970). Additionally, many of the currently used antiepileptic drugs act through enhancement of GABAergic functions. (Lerche et al. 2013). While researchers cannot be sure about the correlation at this point in time, it is important to mind this before drawing conclusions about PC with the use of iEEG recordings.

Laminar functional magnetic resonance imaging

The only non-invasive in vivo method currently capable of mapping brain activity at submillimeter resolution and having the potential to detect layer-dependent physiological changes, is functional magnetic resonance imaging (fMRI). While there have been computational methods for inferring the laminar contributions to non-invasive electrophysiological measurements under development (Bonaiuto et al., 2018), these are less advanced and require more a priori knowledge (Stephan et al., 2017). Laminar fMRI may therefore be one of the first methods to provide researchers with a tool for distinguishing PE from prediction and examining the interactions between bottom-up and top-down connections.
There are several methods available to acquire data for laminar fMRI. Blood oxygenation level-dependent (BOLD) fMRI is the most applied method of (laminar) fMRI. Gradient echo (GE) BOLD is often used as it offers the highest spatial resolution. However, the BOLD-relevant oxygenation is different in draining veins (Turner, 2002) and is more biased towards thicker veins, which results in data that is harder to interpret. Depending on the research question it may therefore be preferred to use ‘non-BOLD fMRI’ types which are sensitive to changes in cerebral blood flow (CBF), cerebral blood volume (CBV) or cerebral metabolic rate of oxygen (CMRO2). There are also types of fMRI which measure multiple signals, like vascular space occupancy (VASO), measuring both BOLD and CBV signals (Yu et al., 2019).
At present, the spatial resolution of laminar fMRI is insufficient for imaging of individual cortical laminae (Lawrence et al. 2017). To combat this problem some studies that are using laminar fMRI divide gray matter into several evenly spaced “bins”, to form an approximation of the underlying layers. Other researchers choose to remove the voxels in which layers overlap which also helps with other problems like bias in BOLD signals (Muckli et al., 2015). 

Notable research using laminar functional magnetic resonance imaging

Not many studies have used laminar fMRI as a method for demonstrating PC as the technique is still being developed. Many studies are focussing on testing the reliability of the method and improving its resolution. In 2012, Goense et al. examined neurovascular coupling across cortical depths using laminar fMRI measurements of changes in BOLD, CBV and CBF in stimulated and unstimulated regions of macaque V1. Neurovascular coupling was found to vary both depending on whether the cortex is stimulated and across cortical depths. 
Multiple laminar fMRI studies have been trying to replicate results from single and laminar electrodes. Studies which have masked out the signals from pial veins (Chen et al., 2013) or that have used spin-echo (SE) weighted (Goense and Logothetis, 2006) or combined GE/SE sequences (De Martino et al., 2013) to increase the sensitivity for smaller vessels have observed greater amplitude BOLD signals in layer IV, which would be expected from single-cell recordings in animal V1 (Hubel & Wiesel, 1972). Other studies (Fracasso, Petridou, and Dumoulin, 2016) identified smaller population receptive field sizes in middle layers of visual cortex compared to deeper and superficial layers, consistent with invasive measurements of animals for receptive field size and orientation tuning width (Self et al., 2013). Moreover, during a task with predictable and unpredictable touching sequences Yu et al. (2019) demonstrated that sensory input from thalamic projects preferentially activates the middle layer of somatosensory cortex (S1), while feedback primarily activates superficial and deep layers, which seems consistent with PC.
The spatial resolution of laminar fMRI does allow for in-vivo measurements of human columnar cortical structures. Columns for occular dominance (Yacoub et al., 2007) and orientation (Yacoub, Harel, & Ugurbil, 2008) have already been demonstrated using fMRI. Dumoulin et al. (2017) demonstrated columnar structures in the stripes of V2 and V3 and De Martino et al. (2015) successfully imaged columnar structures exhibiting frequency tuning in the primary auditory cortex. These findings are consistent with earlier studies of the architecture of the cortical column. These studies also report strong feedback responses in the deep and superficial cortical layers (De Martino et al., 2015).
Two recent studies have examined the laminar profile of activity patterns in V1 when confronted with expected but absent bottom-up input. One research by Muckli et al. (2015) used laminar fMRI to measure contextual influences on visual cortex responses to a visual scene where part of the image was occluded (amodal completion). The content of the surrounding visual scene was successfully decoded from patterns of activity in regions of visual cortex whose receptive fields fell on the occluded part of the image. However, decoding was only successful in the superficial layers of these cortical regions. This suggested that information about the surrounding scene was represented in areas of visual cortex that received no bottom-up input, via feedback mechanisms terminating in the supragranular layers. Another research by Kok et al. (2016) measured laminar activity in V1 with GE BOLD fMRI during the perception of a Kanizsa triangle illusion. The results suggest that only the deeper layers were activated during the perception of the illusion, while a physical stimulus activated all layers in control trials. Therefore, the perception of these shapes may result from higher-level processing. 

Review of laminar functional magnetic resonance imaging

Using laminar fMRI in the demonstration of PC may pose a number of methodological challenges. Firstly, fMRI signals are biased when it comes to vascular architecture (Lawrence et al., 2017).  GE BOLD signals are particularly affected by the larger veins on the pial surface while smaller veins are less taken into account. Furthermore, BOLD signals in upper cortical layers are affected by blooddraining effects: as the blood drains from the lower to higher layers, the signal in the upper layers may contain a mix of signals from lower layers. This is because descending arterioles penetrate the cortex in a perpendicular fashion, with capillaries branching off to supply individual cortical layers, and venous blood returns to the pial surface in ascending venules (Self et al., 2017). This leads to a general increase in the amplitude of GE BOLD signals towards the superficial layers, and a reduction in the specificity of the response in these layers, which may obscure the underlying laminar profiles. 
Previous studies have combatted this issue either by masking out the signal from the pial veins (e.g., Chen et al., 2013) or by using a spatial general linear model approach to estimate the unique contribution of each layer (Kok et al.,2016). Similarly, Muckli et al. (2015) excluded voxels with larger receptive fields including those believed to be from larger veins. Different methods of data acquisition can also be used to mitigate the effects of venous blood draining on laminar fMRI responses. For example, cerebral blood volume (CBV) based fMRI (e.g., Goense et al., 2012) and spin echo and 3D GRASE sequences (De Martino et al., 2013; Muckli et al., 2015) are less susceptible than GE-BOLD to vein artifacts, however they offer less sensitivity than GE-BOLD (Moerel et al., 2017). In addition, progress has been made towards incorporating blood draining effects across cortical layers in hemodynamic models, which could help to determine the spatial origin of laminar BOLD responses more accurately (Heinzle et al., 2016).
In addition, the density of the microvasculature is not uniform across the different layers, with the highest capillary densities in V1 being found in layer 4c (Self et al., 2017). This factor could act to bias the BOLD signal towards the middle layers. 
The second challenge is the spatial resolution of laminar fMRI: it is not as high as preferred for the identification of PC processes. The spatial resolution of GE-BOLD is approximately 0.8 mm3. At this resolution, the size of an individual voxel is larger than the size of some layers, which leads to some voxels containing signals from multiple layers. Moreover, cortical thickness varies in primates according to the folding of cortex; cortex is thinner in the fundus of a sulcus and thicker at the crown of a gyrus. The thickness of the different layers also varies with the curvature of cortex: the supragranular layers are thicker in the fundi of sulci and the infragranular layers are thicker on the crowns of gyri. This makes averaging across voxels sitting in sulci and gyri much more complex (Kemper et al., 2018).
These complications in producing laminar profiles of BOLD responses mean that it is important to compare study results to existing laminar profiles from literature (Self et al., 2017). There are also strict differences in laminar profile for different neural activities that need to be minded: spontaneous activity, visually driven activity and sustained visual activity all have different laminar profiles. Stimuli that strongly recruit feedback projections from higher visual areas also produce different laminar profiles of neural activity in V1. Comparing laminar BOLD data is thus a complicated procedure in which one has to be mindful of many processes. 
In contrast, the BOLD signal and synaptic activity seem to be strongly correlated, which could make laminar fMRI more sensitive to the signals carried by feedback connections than techniques measuring electrophysiological signal (Self et al., 2017). This has been observed in multiple studies (e.g., Maier et al., 2008). Hence, laminar fMRI may become a powerful tool to study the functions of the three types of connections.


Mismatch Negativity



The PC theory is since recently being used to explain the mismatch negativity (MMN), an event-related potential (ERP) recorded with EEG from the human scalp. MMN potentials have been widely reproduced using oddball paradigms peaking at 150 to 250 ms from change onset. MMN can be elicited by almost any auditory and visual stimulus deviation such as frequency, probability, intensity, duration, interstimulus interval, location in free-field condition, location when manipulated via interaural time and level differences in ear-phone stimulation, timing of stimulus presentation and different sequences (Schröger 1998). It is measured by subtracting the averaged response to a set of standard stimuli from the averaged response to deviant stimuli, and taking the amplitude of this difference wave in a given time window (Bishop & Hardiman 2010). MMN seems persistent during sleep (Strauss et al., 2015), anaesthesia (Quaedflieg et al., 2014), coma (Rodríguez, Bussière, Froeschl, & Nathan, 2014), and present before birth (Draganova et al., 2007). The classical notion of MMN has widened in the past decades, proving its capacity to identify deviances inserted in more complex sequences organized by abstract rules ( Paavilainen, Kaukinen, Koskinen, Kylmälä, & Rehn, 2018). The computational feature behind deviance detection is currently thought to be a foundation and trigger of higher order cognitive functions (Näätänen, Astikainen, Ruusuvirta, & Huotilainen, 2010) such as attention (Fritz et al., 2007 ) and memory (Bartha-Doering et al., 2015). MMN is often disrupted in patients suffering from neurodevelopmental and psychiatric conditions, with a prominent reduction in schizophrenia ( Fisher et al., 2018), but also altered in other pathologies such as Parkinson’s disease (Heldmann et al., 2017), Alzheimer’s disease (Jiang et al., 2017), autism spectrum disorders (Goris et al., 2018), and language impairments (Kujala & Leminen, 2017). It has been argued that PC must be impaired in persons with psychological disorders, which does suggest a stronger link between MMN and PC. However; it should be noted that MMN is empirically measurable, while PC is still theoretically involved with these disorders.


Notable research using Mismatch Negativity


While its purpose remains unclear, there exists multiple accounts as to explain MMN. The adaptation hypothesis suggests that MMN could be a result of neuronal adaptation, sometimes called ‘neural fatigue’ (Carbajal & Malmierca, 2018). It suggests that the contrast between deviant and standard detection could be due to attenuation of the response to the repetitive sound, while a deviant sound could produce a non-adapted response (May & Tiitinen, 2010). This hypothesis seems to be unsuited to explain all aspects of MMN, as, for example, a standard tone played softer also triggers MMN (Shestopalova, Petropavlovskaia, Semenova, & Nikitin, 2018) and so does an absence of an expected tone (Berlot, Formisano, & DeMartino, 2018). Some authors have argued that an omission of tone could yield an abrupt release of adaptation that would provoke a rebound of neuronal activity (May & Tiitinen, 2010). Another hypothesis of the purpose of the MMN proposes that the MMN potential is an enhancement of the response to a deviant sound, as its appearance represents a violation of a previously established regularity (Carbajal & Malmierca, 2018). According to the model-adjustment hypothesis (also called online-comparison hypothesis), a difference between the expected and the actual auditory input would prompt an update of the established perceptual model, resulting in an increased response to the deviant sound (Garrido, Kilner, Stephan, et al., 2009). Finally, the memory-based hypothesis (Winkler and Czigler, 1998) proposes that MMN is generated by a system comparing auditory inputs with a memory template. When a difference between the two is detected, the system signals the MMN potential and adjusts the template. PC takes a middle ground position between these hypotheses. PC interprets MMN as a mismatch signal between the input and prediction, and considers MMN not as a separate evoked response, but as an amplified contrast between an expected and a surprising response. 
The two-tone pattern/alternation sequences and the local/global paradigm evoke MMN potentials that could be explained with the PC hypothesis (Heilbron & Chait, 2018). During the two-tone pattern/alternation sequence paradigm the participant is trained to hear sequences of two tones repeating each other (ABABABAB..) after which he or she hears a single repetition of a tone in between (ABABABBA..). The MMN has been recorded after hearing the deviant tone in the sequence (Heilbron & Chait, 2018). Furthermore, the local/global paradigm uses two tones in sequences such that these could either be “local standards”, that is, where the fifth tone’s frequency is identical to the previous four (AAAAA and BBBBB); “local deviants”, where the last tone differs in frequency (AAAAB and BBBBA); or “omissions”, where the last tone is not presented. Rare presentations of local deviants and omissions seem to elicit MMN. The results from these two paradigms are very much in line with the theory behind PC, as PC suggests the existence of higher order neurons that could be activated by complex patterns (Heilbron & Chait, 2018).
Some MMN studies (Näätänen et al., 2007) seem to indicate that the amplitude and shortened latency of the resultant deviance-detection signal are also proportional to the magnitude of deviance, as well as the precision of prediction, which is very promising.

Review Mismatch Negativity

The biggest methodological challenge of using the MMN for PC is the uncertainty of what MMN actually represents. To demonstrate PC, the possibility of other hypotheses must first be excluded. It is suggested that the many-standards control and the cascade control could control for repetition suppression effects that could be accounted for by the adaptation hypothesis. Cascade control has just recently been developed, and seems to be the most refined of the two in the use of PC (Carbajal & Malmierca, 2018).
Stimulus-specific adaptation
Most research of PC in auditory areas focusses on Stimulus Specific Adaptation (SSA) (Heilbron & Chait, 2018). SSA is similar to MMN in that it is an ERP that is elicited by certain neurons after the perception of unpredicted stimuli (Ulanovsky et al., 2003). It is not known whether SSA and MMN are related - it seems that the differences between the two are too severe, like the difference in latency, NMDA-dependence of SSA and their sensitivities to certain regularities (Khouri and Nelken, 2015). It is also unclear whether SSA is caused by mere adaptation or something more complex like PC. Ulanovsky et al. (2004) showed that SSA depends on a long stimulus history, beyond the order of seconds at which habituation processes like synaptic depression are thought to occur. SSA is also observable for tones with frequency differences smaller than typical tuning curves, which also cannot be explained by models of synaptic habituation (Yaron & Nelken, 2012). 
Neurons exerting SSA are located subcortically within the non-lemniscal divisions of the auditory midbrain (Parras et al., 2017), thalamus, and are widely spread over A1 and A2. The non-lemniscal divisions of subcortical nuclei encompassed most of the neurons showing complete SSA, while lemniscal neurons seem to display fewer and lower levels of SSA (Malmierca et al., 2009). 

Notable research using Stimulus-Specific Adaptation 
As SSA potentials are exerted subcortically, it has been suggested that, if SSA represent PEs, PC may not only be located in the cortex but also subcortically. In a recent study by Parras et al. (2017) two vectors of increasing SSA were identified in the auditory hierarchy of anesthetized rats and awake mice: from lemniscal to non-lemniscal subdivisions, and from subcortical toward cortical structures (Parras et al., 2017). The larger proportion of SSAs detected in awake rodents suggests that the state of consciousness, alertness, and attention may play an important role in its modulation. Interestingly, there was an unexpected enhancement of SSA when the intensity of the stimulation was low. 
Another study by Szymanski et al. (2009) studied the laminar profile of SSA in rat auditory cortex using an oddball paradigm. The results seemed opposite to what one could expect from PC: there were no differences between the different layers. Neurons responded more strongly to deviants than to the same stimulus within all layers. However, the rats in this study were anesthetized with ketamine, which is an NMDA-antagonist known to impair MMN. If SSA and MMN are related, it is evident that ketamine would impair SSA in rats.
A more recent study by Rummell et al. (2016) did find laminar-specific effects in awake mice. The mice were trained to press a lever that generated noise bursts. Responses to expected, self-generated sounds were attenuated more strongly. Multi-site recordings from the auditory thalamus, auditory cortex and hippocampus revealed increasing attenuation, often near-silencing in the hippocampus. However, the attenuation seemed to be much stronger in the deep layers, which are suggested to be driven by predictions. These results seem counter intuitive to PC. However, the authors note that motor-specific events could trigger other processes that may confuse the layer-specific processes of PC. 
 
Review of Stimulus-Specific Adaptation

While an interesting technique, SSA is understudied when it comes to its connection to MMN and PC. It is clear that if these effects are connected that this has great implications for PC as a theory, as it suggests sub-cortical PC. However, because of the scarcity of SSA cells within the cortex, it seems unlikely that SSA is the main process behind cortical, or even auditory PE. Thus, while interesting, perhaps not too much weight has to be put on the importance of SSA in the PC scheme.

IV. Other influences on the results of each method

Attention
Attention is one of the most important ways that we can influence our processing of sensory stimuli. Attention results in an enhanced neural representation of the attended location or feature, optimizing the allocation of neural resources. Spatial and feature-based attention have been shown many times to modulate responses throughout the visual cortex (Buracas & Boynton, 2007), though reports of attentional modulations in V1 are mixed (Boynton, 2011). Because of its importance, some models of PC have used attention as a variable in their design. For example, in the model by Friston (2010) attention is a variable used in optimising estimates of precision. According to Friston, attention may increase the “precision weight” that PEs carry (this is a weight used to determine how reliable a PE is). By increasing the precision of specific PEs, attention increases the weight these errors carry in perceptual inference. (Friston, 2010). It is also suggested that prediction may be associated with reduced sensory signals when stimuli are unattended, but enhanced responses when stimuli are attended.
Several studies have reported that attention to stimuli has marked effects on neural firing and LFPs. In V1, attention seems to increase neural activity and BOLD signal (Buracas & Boynton, 2007). One study found that layer IV of macaque V4 was especially susceptible to spatial attention as neural firing was mostly enhanced in IV (Nandy et al, 2017). Another study showed that human A1 frequency tuning curves sharpen towards an attended tone, and that this sharpening is more pronounced in superficial layers (De Martino et al., 2015). 
Attention can be allocated automatically to surprising or unexpected stimuli via bottom-up mechanisms (Nakayama & Mackeben, 1989). Some may argue that bottom-up attention is controlled by a visual saliency map in the brain, which reports the saliency of all locations in the visual field (Koch & Ullman, 1985). Li (1999, 2002) proposed that V1 forms a bottom-up saliency map that is propagated through the visual hierarchy.  Zhang et al. (2012) have provided results seemingly in line with this hypothesis. Their study found that BOLD responses in V1-V4 increased with the salience (determined by a behavioural attentional cueing effect) of a stimulus rendered invisible by rapid presentation and backward masking. 
Furthermore, the pulvinar seems to be important in attentional responses, and shares feedforward and feedback connections with many regions throughout the cortex (Shipp, 2003). This led Gouws et al. to the hypothesis that the pulvinar is the source of an attentional field (Reynolds & Heeger, 2009) that modulates responses in visual cortex. Gouws et al. (2014) showed that directing attention towards one visual hemifield elicited positive BOLD responses in contralateral visual cortex. Interestingly, positive and negative BOLD responses in V1 were mirrored by positive responses in the dorsolateral pulvinar and negative responses in the dorsomedial pulvinar, respectively, suggesting some kind of influence of the pulvinar.

Precision
According to Friston, precision is co-dependent on the expected states of the world, as certain neurons get activated by prediction while precision (modulated by attention) enhances a select group of these activated (or non-activated) neurons (Friston, 2010). 
Two recent studies examined the interaction between prediction and attention with a moving trajectory task. In a study by Doherty et al. (2005) participants had to follow a red ball moving across the screen in either a regular (and thus predictable) or irregular (unpredictable) fashion. At some point in time the ball disappeared behind an occluding object, and when it reappeared participants were required to locate a black dot on the surface of the ball as soon as possible. Using EEG, the authors found that predictability enhanced the neural response in early sensory regions. A similar study by Alink et al. (2010) found a reduced neural response in V1 in response to a predictable trajectory compared to an unpredictable trajectory. This study used BOLD fMRI, and not EEG, which could explain the difference. Otherwise, it has been previously found that attention may not influence V1 LFP while many studies agree on the influence of attention on other visual areas. Both reasons may play a role for why these results seem contradictory.
Some studies seem to suggest that the amplitude of BOLD signals in V1, V2 and V3 is correlated to subjective perception rather than performance accuracy (Ress & Heeger 2003) while other studies seem to suggest it the other way around. In a study by Ress et al. (2000) with a similar experimental design, the results suggested that the amplitude of BOLD signals may be correlated to whether a person correctly detects or rejects the stimulus, rather than missing it or incorrectly reporting it. This has also been confirmed in another study (Hesselman et al., 2010) showing pre-stimulus correlation. Thus, more studies on this matter are needed for more conclusive results.
A recent fMRI study (Kok et al., 2012) showed that task-irrelevant (unattended) predicted stimuli evoke a reduced neural response in V1 compared to unpredicted and unattended stimuli, while task-relevant (attended) predicted stimuli evoke an enhanced neural response compared to unpredicted stimuli. Furthermore, after a stimulus was predicted, an increased response was observed in V1. This suggests that attention is able to override surprise.
Moreover, another study presented rats with short tones containing a frequency-modulated target. The target could either appear “early” (450 ms) or “late” (1500 ms) and signalled whether the correct response was left or right from the rat. The expectation was also manipulated. For both the preceding stimulus and the target itself, expectation increased the neural response (Jaramillo and Zador 2011), again, overriding surprise. 


Arousal and neuromodulators

The level of arousal may affect experimental measurements, especially measurements acquired with BOLD fMRI. The BOLD signal is thought to be driven by vasodilatory signals which arise primarily through synaptic activity and the release of neuromodulators (Attwell & Iadecola, 2002). An increase in synaptic activity, and hence vasodilation, is strongly related to an increase of spiking activity. It is generally found that the strength of the LFP, multi-unit spiking and the BOLD signals show significant correlation (Goense and Logothetis, 2008). 
Keeping this in mind, a study by Balcombe et al. (2004) showed that animals experience significant stress when handled and experimented on. Eighty published studies were appraised to document the potential stress associated with three routine laboratory procedures: handling, blood collection, and orogastric gavage. They defined handling as any non-invasive manipulation occurring as part of a routine, including lifting an animal, cleaning them or moving a cage. The results show significant change in physiologic parameters correlated with stress (e.g., serum or plasma concentrations of corticosterone, glucose, growth hormone or prolactin, heart rate, blood pressure, and behaviour) during all three procedures, in all species of animal. Changes from baseline measures typically ranged from 20% to 100% or more and lasted at least 30 minutes. The authors note that animals do not readily habituate to these procedures.
Some studies suggest that NMDA-dependent plasticity is crucial for PC processes. NMDA-antagonists like ketamine seem to impair MMN (Umbricht et al.,2002) and abolish global mismatch responses (Uhriget al., 2016) leading to effects that may harm the processes behind PC (Strauss et al., 2015). 

V. Discussion

This literature study shows that cortical predictive coding (Friston, 2010) has thus far not been demonstrated, while also not been rejected. Most of the studies that examine PC-related processes seem to report somewhat similar results in line with the theory, while few studies report results that seem to contradict PC. Interestingly, all studies that report results contradicting PC could provide an explanation for the contradiction; whether it be impairment, attention or other causes. Future studies should reproduce these studies, while also controlling for the explanatory variable. It is results like these that could provide us with more information on the existence of cortical PC processes in the near future, as a complete demonstration of PC seems temporally far away with the measuring techniques and knowledge of today.
Interestingly, most laminar profiles of activity seem to be similar in most of the studies which we examined, as most studies report layer IV as having the highest activity (BOLD, action potential, LFP, etc.) in early visual areas when corrected for the most obvious noise. Some studies reported the infragranular layers to be most active, while these were also the studies examining feedback connections (thus, from higher cortical areas to lower areas). This is interesting, as feedforward connections terminate mostly in layer IV while feedback connections do not modulate layer IV. Overall, layer IV has the highest capillary density, thus it is not surprising that is activity in this layer is highest, even when stimulation was not high. But this information - as do earlier studies - seems to suggest that laminar activity profiles depend highly on the stimulus (Olman et al., 2012). It would be interesting to examine the laminar profile of early visual areas of humans or animals looking at seemingly “nothing interesting” (for example, blind folded), as this would, theoretically, slow down activity in layer IV. It would be interesting to see whether activity in layer IV still would be highest. If that would be the case, this activity may be induced by lateral connections. In any case, examining laminar profiles under different (stimulatory) circumstances would be of great value for PC studies, as it could provide us eventually with an idea of the feasibility of the theory of PC, as the purpose of feedback, feedforward and lateral connections becomes clearer.
Furthermore, it still could be possible that inference is not as easy as PC argues it to be. Some studies show results that go against a strictly hierarchical profile of cortical processes, like an absence of activation of early regions while higher regions show clear activation after stimulus (Super et al., 2001). This has been seen before in studies where attentional mechanisms are thought to have played a role (Von Der Heydt et al., 1984; Bakin et al., 2000). Attention seems to be a very important variable in PC and hierarchy, seemingly overriding default results which could follow from PC. However, the influence of attention and precision are understudied when it comes to PC studies. The reason for this could be that PC could almost not have been studied in humans before; now, laminar fMRI is being developed, giving researchers a chance at studying complex tasks in humans which could otherwise not have been studied in animals.  
Finally, it may be crucial for more studies to examine multiple PC-related variables simultaneously, like PE, prediction, precision and the connection types. Very little is known about how these processes relate to each other, and whether these processes are different from each other. Hopefully, more studies will fixate on the greater picture in the future, examining as many processes as possible. 
VI. Conclusion

There are some clear difficulties in the interpretation of PC-related data acquired with the measuring techniques of today. MMN and SSA potentials seem to be related to the PEs from PC, but could also be elicited due to an attenuation of related neurons. Not much is known yet about both the relation of SSA to MNN, as well as to PE. If SSA is related to PE, PC could be extended to sub-cortical areas. Laminar fMRI seems very promising for differentiating between different laminar processes in the human cortex, while it still has to be improved to be more readily usable, with less room for interpretive mistakes and for a better spatial resolution. IEEG is an interesting technique which could give insight in human subcortical processes, although it must be minded that it may be difficult to compare data from people suffering from epilepsy to healthy subjects. Single-cell recordings are very useful for purposes outside of laminar research, as the different points in time would not allow for a fair comparison between two datapoints. Single-cell recordings seem to be quite reliable, with excellent spatial and temporal resolution. Laminar electrodes seem to be one of the more currently adequate techniques for PC, although one must be cautious to compare this (animal) data to humans, as primate laminar structures differ greatly from that of other animals like rodents. Besides the laminar structure, animal studies seem to evoke much stress in animals, possibly evoking more synaptic activity and modulating vasodilation. Attention and arousal seem to play a great role in interpretation of data, and should not be forgotten to taken into account when experimenting on animals or humans. It seems apparent from this research that more studies should use multiple measuring techniques at once, as none of the current techniques are free of bias or noise. Most techniques would benefit from another measuring technique on the side, either measuring laminae or on a smaller/greater scale. Furthermore, more studies should focus on the effects of attention and precision in general, as well as combining PEs, prediction and precision in one study. 
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