
Clustering soccer players: investigating
unsupervised learning on player positions

Gijs Wijngaard

5671833

Bachelor Thesis Artificial Intelligence
7.5 ECTS

Thesis Supervisor: Tejaswini Deoskar



Contents

1 Introduction 1
1.1 Difference between supervised and unsupervised learning . . . 2
1.2 Unsupervised learning methods used . . . . . . . . . . . . . . 3
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data 5
2.1 StatsBomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fifa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Methodology 8
3.1 Unsupervised clustering methods . . . . . . . . . . . . . . . . 8
3.2 Cluster evaluation methods . . . . . . . . . . . . . . . . . . . 9
3.3 Feature selection methods . . . . . . . . . . . . . . . . . . . . 10
3.4 Software Implementation . . . . . . . . . . . . . . . . . . . . . 11

4 Results 12
4.1 Clustering using 4 clusters . . . . . . . . . . . . . . . . . . . . 12
4.2 Clustering using 11 clusters . . . . . . . . . . . . . . . . . . . 14
4.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Discussion and Conclusions 19

References 21

6 Appendix A: Event types - StatsBomb data 24

7 Appendix B: Conversion of positions 27

1



Abstract

In this study, we investigate the clustering capability of two unsupervised
learning clustering methods: K-means and Expectation Maximization (EM).
We train the methods on soccer match data of the Spanish competition La
Liga, which contains matches from 2004 to 2019. We classify both cluster-
ing methods with soccer player positions to visualize a correlation between
player positions using Principal Component Analysis (PCA). In these visu-
alizations, we use 4 and 11 clusters that correspond to player positions in
the field. To interpret K-means and EM, we use purity and the silhouette
score. Results show that K-means classifies the data better than EM. With
the use of feature selection methods Laplacian score and correlation mean,
we increase the performance of K-means by 37%. We see that a cluster
size of 8 clusters has the best separability, which suggests that there are 8
different types of soccer players on the field during a match.



Chapter 1

Introduction

As more and more computer power became available in the past decades,
computing statistics using large amounts of data became more mainstream.
This rise influenced the use of data science within the field of artificial in-
telligence as one of the strategies in optimizing data variables.

Over the past years, we also see more and more machine learning tech-
niques have been applied to sports data. Clubs started analyzing their
players using statistics and use machine learning techniques to maximize
player performance. Sports data analysis can vastly improve team perfor-
mance and help coaches make the right decisions. A famous example of this
is the book and Oscar-nominated movie adaptation Moneyball [11]. This
book is based on real events and tells the story of a coach that uses statistics
to optimize team performance, even with a small budget. That team then
continues to win various competitions.

In this thesis, we will compare two machine learning clustering tech-
niques on soccer data: K-means and Expectation Maximization. We will
determine which technique clusters the data the best using 2 cluster evalu-
ation methods: purity and the silhouette score. We conclude that K-means
fits the data better. Next to that, we calculate the best cluster size and see
that the best way to separate the data is into 8 clusters. At last, we will
determine the best and worst features in our data for these clusters using
the silhouette score, Laplacian score and the correlation mean. From this,
we see that we can increase our cluster performance by 37%.

With this thesis, we gain insightful results on how each player does dif-
fer from another player and what important attributes they can have in
doing so are. More specifically, this thesis contributes to the knowledge of
comparison of two unsupervised algorithms, two evaluation methods and
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two unsupervised feature selection methods, based on soccer data. In short,
we have answered how we can use unsupervised algorithms to predict and
analyze player positions.

We first start with explaining about the data we used and how we cleaned
it. We will talk about some preliminary analysis we have done and state
the size of data. Then, in the subsection Methodology, we talk about the
specific details of all the methods and algorithms we used. We go more
in-depth in on the math and its use-cases and why we have used it for our
thesis. After that, we will talk about our outcomes and what we have found
in the data. We will state and visualize interesting results and put down all
the calculations we have done. At last, we will conclude our thesis and state
interesting insights we got.

The data we will be using for the results in this thesis is open-sourced
data from StatsBomb.com. The data contains events that happen within a
match, such as passes, shots on goal and throw-ins. Next to that, we use
data from the game of FIFA for preliminary analysis and conclude that good
soccer players do not get more passes than worse players in a match.

Next we will focus on the difference between supervised and unsupervised
learning. This is because our thesis is primarily focussed on unsupervised
learning methods and scores, and to gain understanding of the aforemen-
tioned methods used in the thesis some understanding of the difference is
needed. After that, we introduce the methods we will be using in this thesis.

1.1 Difference between supervised and unsuper-
vised learning

A commonly used technique in finding correlations in data is the use of
supervised learning. Methods include, for example, linear regression, where
we fit a linear line onto the data such that we can infer an average of the
data. Then, with the use of new data, new outcomes can be predicted. Quite
some research has been done with supervised learning on soccer analysis, as
will be explained in the related work subsection.

Next to supervised learning, a large field within the domain of machine
learning is unsupervised learning. This field is about algorithms to recognize
patterns without the use of outputs of the data. A subfield of unsupervised
learning is clustering methods. Clustering methods can separate the data
by calculating several mean values within the data and label each data
accordingly.

When working on supervised machine learning algorithms, we can use
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unsupervised learning to explore the data beforehand. An example of this
is Principal Component Analysis (PCA) [20], which we can use for visual-
ization of the data. We will use PCA in this thesis for the same purpose.
Another example is that for some supervised algorithms, data can be too
large to compute in a given timeframe. In such situations, feature selec-
tion is needed. Unsupervised techniques that help supervised learning with
preprocessing include removing features based on similarity [18] and low-
variance [2]. In our thesis, we will use 2 unsupervised learning methods that
also focus on detecting and removing bad features.

1.2 Unsupervised learning methods used

2 clustering methods we will use in this paper are K-means [14] and Ex-
pectation Maximization [6]. K-means focusses on calculating clusters that
are on average the same size, while also classifying each data point as either
belonging to the cluster or not. This binarity results in clusters that are
visually clearly separable, as each cluster tends to have its own boundaries
in a vector space.

On the other hand, silhouette analysis tends to separate clusters using
a normal (gaussian) distribution. This distribution means that every data
point has a chance of belonging to a cluster. Here, the data point belongs to
the cluster with the highest percentage. This results in cluster boundaries
that are much less defined, as for every dimension the cluster distribution is
different. Visualizing such clusters in 2 dimensions do result labels all over
the place, as we will see in the results section.

To compare both clustering techniques, we will be using the cluster eval-
uation methods purity and silhouette analysis to define which method per-
forms best on the data. Purity can be classified as a supervised cluster
method, as it defines its score based on real data. We use it for telling
which cluster outcome of machine learning methods correlates to which ac-
tual label. The score is then the calculation for each cluster which cluster
has the most similarity with the actual label.

Next to that, we will also assess the features of the data based on feature
selection methods. In particular, we will use Laplacian scores and correla-
tion means to define how good each feature contributes to an unsupervised
learning method. From this analysis, we can deduce what features make
that we can separate player positions.
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1.3 Related work

Previous work within the field of soccer analysis dominantly contains papers
with supervised learning methods. Some notable examples include predic-
tion of soccer outcomes using Monte Carlo [24], pass analysis [28] using spa-
tial reasoning and summarizing soccer matches using SVM and neural nets
[30], amongst others. Interestingly, some research has been done focussing
on prediction of games for profit, by competing against betting offices [25]
[4].

Studies that are closely related to the subject of player classification,
is work by Decroos et al. [5], Liu et al. [13] and Mahfuz et al. [15]. In
Decroos’ work, individual players are analysed using a similar event dataset
in comparison to ours to determine the overall strategy the coach imposes on
the team. Instead of single events, it calculates event streams and deduces
phases during a soccer game.

Work by Liu et al. focusses on classifying players from a video stream
of the match. It also uses Expectation Maximization (EM) clustering. Liu
uses EM on the different types of player images and overcome the problem
that in the dataset not every player cluster has the same size.

The study by Mahfuz et al. focussed on unsupervised learning tech-
niques used in this paper. Mahfuz primarily used K-means and Expectation
Maximalization to do overall analysis of player performance. The analysis
was focussed on training data and drills and did not include any matches.
The study however fails to draw any notable conclusions.

Overall, we can conclude that the related work is dominantly based on
supervised learning. This thesis will fill the gap here and contributes the re-
search on applying unsupervised learning techniques on event data of soccer
matches.
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Chapter 2

Data

In this section, we elaborate on the 2 different datasets we use in our re-
search. For both datasets, we state the size of the data and explain some
general information about the dataset. We will also briefly touch on what
preliminary particularities we noticed in the data. Both datasets are open-
source, and we can download them freely. The first dataset from StatsBomb
we have used for the unsupervised models and other methods. The Fifa
dataset we used only for preliminary analysis.

2.1 StatsBomb

The data of StatsBomb Open Data [26] contains a sample of 809 matches,
all of which are from the Spanish soccer competition La Liga. For each
match, it defines what sort of events happened in a match. Some events, for
example, are passes, shots and dribbles. A full list of all events is in appendix
A. The events in this dataset we end up using for the unsupervised learning
methods. The data initially contains data from the following competitions:
FA Women’s Super League, FIFA World Cup, La Liga, NWSL and Women’s
World Cup. The vast majority of the data consists of matches of the Spanish
competition La Liga, which is why we focus on that competition.

Within that data, we have matches that happened in 2004 until 2019.
Not every match within every year of La Liga is made available by Stats-
Bomb. From the 809 matches, we continue with 452 matches that we use.
In those 452 matches, 1626804 events have happened, on average 3559 per
match. We again cleaned the data such that the columns we are using in
the end consists of player, position, location, type and related events (see
table 2.1).
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Type Player Position Location x Location y

Pass Iniésta Left Center Midfield 58.7 7.9

Dribble Fernando Torres Right Center Forward 77.1 42.1

Ball receipt* Adrián González Right Defensive Midfield 60.6 24.2

Dribble Paulinho Left Center Midfield 77.0 49.0

Carry ter Stegen Goalkeeper 13.4 35.8

Table 2.1: Sample of StatsBomb data.

To obtain datasets for the use of clustering player positions, we defined
the favourite position of each player based on what position would appear
most in the matches he played. To get 4 clusters, we would convert each
position of the player to an unspecific label, namely goalkeeper, defender,
midfielder or attacker. The same we would do when clustering with 11
clusters (see appendix B for the specific classification).

For clustering, each event contains data about the player that did the
event. For each event, we counted the occurrences to gather the attributes,
which are equal to the type of event. We averaged the attributes out over
the sum of all attributes per player to gather a percentage for each attribute.
All empty attributes were assigned 0. We also converted the location to a
mean x and y coordinate. We standardized the data by removing the mean
and scale it to unit variance. We ended up with 1847 players (rows) each
having 25 attributes (columns). In this dataset, there are 635 midfielders,
589 defenders, 498 forwards and 125 goalkeepers.

2.2 Fifa

This data [22] is on the online video game of FIFA. The data originates from
the EA sports game FIFA19. The data is received from a Kaggle dataset [8],
initially containing 89 columns and 18206 rows. For the preliminary analysis,
we use the columns overall and position (see table 2.2). The overall column
states the players’ overall score. This score is defined as a weighted average
of all scores in the data that define how good a player performs [3]. The
position column states the players’ most used position.

First, we analyzed ways in how we could correlate both datasets to dis-
cover what insights we could receive. One insight we tried to discover was
how passes of soccer players would correlate with its overall score on Fifa.
With the help of network visualizations, it is possible to map how often
each player passes to another player within a match (figure 2.1) and within
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Player name Overall statistic Position

Lionel Messi 94 Forward

Cristiano Ronaldo 94 Forward

Virgil van Dijk 86 Defender

Frenkie de Jong 81 Midfielder

Table 2.2: Sample of Fifa data.

a team during the year (figure 2.2). We did this by calculating for each
pass if the related events contain a ball receipt from another player. If true,
there is an out-degree between them. Edges size is equal to the number of
passes; node size is its FIFA overall score. There was almost no correlation,
so interestingly good players do not get the ball more often.

Figure 2.1: Network visualization of
a single match. Red is Real Madrid,
Blue is FC Barcelona

Figure 2.2: Network visualization of
a whole team within a year. Blue =
goalkeepers, green = defenders, pink
= midfielders, orange = attackers
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Chapter 3

Methodology

In this thesis, we have used several machine learning and statistical methods
to gain insights. In this section, we explain some of these methods, its uses
and go more in-depth on the math behind it. We also explain what its use
case is and why.

In total, we have used 2 unsupervised clustering methods, namely K-
means and Gaussian Expectation Maximization. We also used Principal
Component Analysis for visualizing the data. At last, we used 4 scoring
methods for evaluating purposes: purity, silhouette score, Laplacian score
and correlation mean. We start by explaining the unsupervised clustering
methods.

3.1 Unsupervised clustering methods

K-means [14] and Expectation Maximization Algorithm (EM) [6] are both
clustering methods, capable of separating large amounts of data in separate
clusters. Apart from separation, they help with understanding the data,
detecting the outliers and fine-graining the features, amongst others.

Both algorithms try to separate the data to the nearest centroid defined
by that cluster. First, you specify the number of clusters. Then, on the first
iteration, the mean of centroids are defined randomly. Afterwards, they are
defined based on the mean of all the points classified as that cluster. With
k-means, we minify the sum of squared errors for the sum of clusters, for
each iteration:

m∑
j=1

n∑
i=1

∥∥xi − cj∥∥2 (3.1)
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K-means and EM, however, differ in how clusters overlap or not. K-
means is a hard clustering method; each data point belongs 100% to a
single cluster. With EM, clusters can overlap; data points can be in multiple
clusters. In EM, each cluster has a multivariate normal distribution 〈µ, cov〉
(Gaussian mixture) instead of the centroids location. These are defined
randomly on the first iteration. Each point’s i probability is then calculated
based on the Bayes rule and the data points location in the distribution:

P (cj | xi) =
P (xi | cj)P (cj)∑m

k=1 P (xki | ck)P (ck)
P (xi | cj) =

1√
2πcovj

exp
(
−(xi − µj)2

2 covj

)
P (cj) =

∑n
k=1 P (cj |xki)

n
This is called the Expectation step. Next to this step we have the Maxi-
mization step. In this step we have the µ and cov, which will be recomputed
for each iteration:

µj =

n∑
i=1

n∑
k=1

P (cj | xi)∑n
m=1 P (cj | xmki)

xki

covj =
n∑

i=1

n∑
k=1

P (cj | xi)∑n
m=1 P (cj | xmki)

m∏
l=1

(xki − µlj) (3.2)

Again, we continue until a maximum number of iterations, which we decide
beforehand. In this case, we settled with 30000 iterations. Since we are
recomputing the P (cj) on each iteration as well, clusters do not tend to
keep the same size, where K-means clusters do. This difference in size leads
to different size clusters for each cluster in EM.

Next we will shortly touch on Principal Component Analysis (PCA)
[20]. In the thesis we used PCA to visualize the data from 23 dimensions
into 2 dimensions, to plot it in a scatterplot. In PCA, we first calculate
the covariance matrix cov(a, b) =

∑n
i=1

xai·xbi
n , then we solve in the determi-

nant det(cov − λI) = 0 to get eigenvalues λ, then we find the eigenvectors
by solving cov ei = λi ei for every eigenvector i and eigenvalue (principal
component). We have 2 dimensions, thus 2 eigenvalues, and we center the
original data and project it to each dimension:

∏d
i=1(x− µ)T ei. The result

is x′ in 2 dimensions.

3.2 Cluster evaluation methods

To evaluate the k-means and EM clusters we used two statistics: purity [16]
and silhouette analysis [23]. Both are used as cluster statistics and evaluate
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the performance of a cluster. They differ, however, in the way we use them.
We use purity for knowing how good a cluster performs and uses the

actual labels to calculate the correlation between the predicted and actual
labels. In this way, purity is a supervised learning statistic since the actual
labels of the data are needed. Because cluster algorithms do not use the
actual data to create clusters, purity calculates for every actual label the
most classified corresponding label and divides that by the total amount:∑k

i=1maxj | ci ∩ tj |
N

(3.3)

In this way, the algorithm with the best purity is the best in classifying the
actual data correctly.

Next to this classification, we use silhouette analysis for predicting the
best algorithm as well as calculating the best size of clusters. Silhouette
analysis calculates how similar data is to data in their cluster in comparison
to data in other clusters. No actual labels are needed, and thus silhouette
can be applied to unsupervised clustering algorithms. For each point xi
belonging to cluster c and closest cluster d we calculate:(∑m

k=1‖xi − xdk‖
2
)
−
(∑m

j=1

∥∥xi − xcj∥∥2 )
max

(∑m
j=1

∥∥xi − xcj∥∥2 ,∑m
k=1‖xi − xdk‖

2
) (3.4)

We then take its mean and get the silhouette coefficient (score) for all the
clusters. The silhouette score is a value between -1 and 1, where values > 0
mean the data fits the best within the current cluster.

3.3 Feature selection methods

To verify the results of column and feature selection we have done with the
silhouette score, we use a method that focusses on identifying good and bad
features in unsupervised data, named the Laplacian score [9]. Laplacian
scores score features based on how they preserve each cluster. They seek
which features are best in containing two close data points close.

Laplacian scores use a graph where nodes are data points, and edges
of each node are its 5 nearest neighbours based on the euclidean distance
between the two. We define a weight matrix based on this graph, measuring
the similarity between each neighbour if two nodes are connected. The

similarity is calculated for every xi and xj based on e−
‖xi−xj‖2

1 if they are
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connected, otherwise 0. We also calculate the degree-matrix of each node to
other nodes. The result is a matrix where the diagonal contains the degree
of the node, and the rest equals 0. We then calculate the graph Laplacian
(L), which is degree-matrix (D) minus the weight matrix, for each feature.
With the graph Laplacian we can calculate the Laplacian score (LS) for each
feature f based on its normalized feature g (mean removed), where 1 equals
a vector of 1’s:

g = f − fTD 1

1TD 1
1 LS =

gTLg

gTDg
(3.5)

The result is that features that contribute to a small distance between data
points have a small Laplacian score, and thus are useful features. Nodes
that have a small distance to others have a higher degree and thus a higher
degree matrix.

At last, we used the correlation mean. Correlation mean is a method
where we cross-correlate two matrices of cluster centres and take the mean
to see how much the clusters differ we remove a feature. The hypothesis is
that useful features do change the positions of a cluster a lot, while with
bad features removed, the cluster tend to keep the same position. Since
two matrices are not the same dimension, the removed-feature clusters get
an added column of values of 0. Correlation is based on the dot product
between the rows of the matrices and summed up. Lastly, we calculate a
mean based on all features.

3.4 Software Implementation

For the software implementation of PCA, K-means, Expectation Maximiza-
tion and the silhouette score, we use the Scikit-learn python library [21].
For the implementation of the Laplacian score, we use the Scikit-feature
python library [12]. For the purity score, we define a custom function using
Numpy [19] and Scikit-learn’s contingency matrix. We base the correlation
mean method by using SciPy’s function correlation2d [29] and taking the
mean. For all the plots in this thesis, we use Matplotlib [10]. For the data
preparation and preliminary analysis, we rely on Pandas’ data frames [17].
Also, we did some preliminary analysis with R. Lastly, we built the net-
work visualizations in the preliminary analysis with Gephi [1] and used the
Fruchterman-Reingold Algorithm [7] for the layout.
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Chapter 4

Results

In this section, we put all results we found during analysis of the data.
Specifically, we analyze and talk about the results we found and why it is
the case we found it. We also state some preliminary conclusions.

4.1 Clustering using 4 clusters

The data we analyzed is 25-dimensional (see appendix A). To visualize this
data, we used PCA to reduce the dimensionality to 2 dimensions. For the
first clustering task, we set the number of clusters to 4. The number 4
corresponds to the different group of positions in a soccer field, namely the
positions of goalkeeper, defender, midfield and forward.
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Figure 4.1: Dataset dimensionality reduction using PCA

In Figure 4.1, we can see that the data clusters do overlap, except for
the goalkeepers. An explanation for this is that goalkeepers tend to stay on
one location, and tend to have quite different actions in comparison to other
players on the field. We also see some outliers at y > 4 and x < −4. Since
it is a dimensionality reduction, it is a reduced image of the actual dataset,
and variables may be more widespread.

We now visualize K-means and Expectation Maximization (EM) algo-
rithms. In both methods, we used 4 clusters, as we try to model the clusters
of the 4 global positions on the field. We trained both methods on all the
data with 30000 iterations. The outcome is displayed in figure 4.2 and figure
4.3.
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Figure 4.2: K-means clustering with
4 clusters

Figure 4.3: Expectation Maximiza-
tion clustering with 4 clusters

We see that the k-means algorithm tends to keep the cluster size the
same, as expected. The EM-algorithm, however, tends to cluster most of
the data in 1 group, as explained in the methodology section. Next to that,
the variance of all clusters is much more significant, as all players belong to
one cluster is much more widespread.

The evaluation gives the results displayed in table 4.1.

purity silhouette score

K-means 0.6621 0.1347

EM 0.4277 0.2950

Table 4.1: Results of K-means and EM on 4 clusters

We see that k-means does a better job at classifying the right clusters in
comparison to EM, according to the purity score. However, the silhouette
score is close to 0 and suggests it might be better to take a different number
of clusters.

4.2 Clustering using 11 clusters

Next up, we use a high number of clustering, namely 11. This number of
clustering corresponds to the number of positions of players on the field.
The goal is if it is possible to separate all player positions using these two
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algorithms. We separate the clusters with the most common soccer player
setting: 1 goalkeeper, 4 defenders, 4 midfielders and 2 attackers [27]. We
train the models on the data and again use 30000 iterations. We visualize
the data in 2 dimensions using PCA first, see figure 4.4.

Figure 4.4: Dataset dimensionality reduction using PCA

We see that there is almost no separable data, except for the goalkeepers
which again do have their cluster. When performing our two algorithms, K-
means and EM, we get the results in figure 4.5 and figure 4.6.
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Figure 4.5: K-means clustering with
11 clusters

Figure 4.6: Expectation Maximiza-
tion clustering with 11 clusters

Now, we can see that Expectation Maximization tend to cluster the data
somewhat better than with 4 clusters, as we did previously. Next to that, we
again see in EM that some clusters are way more extensive than others. We
compute the purity and silhouette scores given these algorithms and show
results in table 4.2.

purity silhouette score

K-means 0.3649 0.1161

EM 0.3037 -0.0398

Table 4.2: Results of K-means and EM on 11 clusters

Both the purity and silhouette scores are in all cases way worse than
using only 4 clusters. We can see that the individual player’s positions are
not clusterable at all. The data does not differ enough between the different
clusters to separate the players into position categories.

We now know that K-means is a better algorithm. We also know that
4 clusters work better than 11 clusters. For every number of clusters, we
train the model and calculate the silhouette scores. We display the result in
table 4.3.

We see that a cluster size of 8 has the highest silhouette score, meaning
8 clusters does create the best clusters where each cluster is the most apart
from other clusters. When applied to our dataset, this means that we can
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Clusters 5 6 7 8 9 10

Silhouette score 0.1302 0.1415 0.1334 0.1485 0.1464 0.1261

Table 4.3: Results of K-means on 5-10 clusters

separate players on a soccer field best in 8 different positions. We continue
with 8 clusters and try to use some feature analysis to increase the silhouette
score. Also, we continue using K-means, as it gives better purity scores than
Expectation Maximization does.

4.3 Feature selection

We now calculate the least and most important features based on two ap-
proaches. First, for every feature in the dataset, we run the K-means algo-
rithm without the feature to determine its importance. Next, we pick the
highest K-means silhouette score and use that score as a dataset for the next
run. We do that iteratively until convergence. Iteratively until convergence
means that when it has converged, it is not possible to get a higher silhou-
ette score by removing yet another column from the dataset. We get table
4.4.

Removed columns - 9 9, 4 9, 4, 0

Silhouette score 0.1485 0.1550 0.1662 0.2046

Table 4.4: Results of silhouette score on least important columns

Thus, by removing features in columns 9, 4 and 0, we can increase the
separability of the clusters to a score of 0,2046. This score indicates that we
should drop the columns of Duel (indicates a duel in a game) Carry (a player
controls the ball) and 50/50 (2 players challenge to recover a ball) as they
do not contribute to any cluster separability. The range of least importance
is as in the order above. In the same way we can track important features
by lowering the silhouette score. We get table 4.5.

Removed columns - 16 16, 18 16, 18, 17 16, 18, 17, 20

Silhouette score 0.1485 0.1118 0.1074 0.0929 0.0921

Table 4.5: Results of silhouette score on interesting columns
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This indicates that columns Offside, (offside infringement) Own Goal
For (own goal is scored by the opponent), Own Goal Against (own goal
is scored), Pressure (pressure is applied to opposing player) are the most
important columns (in that order). Moreover, these columns divide a player
from being a defender instead of a midfielder.

Another approach that we use is the Laplacian score to verify the most
and least interesting columns. We get table 4.6.

Columns 16 10 18 13 17

Laplacian score 7.9120e-09 1.0960e-05 0.0023 0.0032 0.0043

Table 4.6: Results of Laplacian score on interesting columns

Thus Offside, Own Goal For and Own Goal Against are again amongst
the most important columns. Lastly, with the least important columns given
by Laplace, we compare the dot product (correlation) between a K-means
with the full dataset and a K-means with a dataset where we discard where
1 least important feature. We get table 4.7.

Columns 0 11 3 8 5

Laplacian score 0.0386 0.0331 0.0313 0.0302 0.0294

Correlation mean 0.0971 0.1090 0.0990 0.1006 0.1002

Table 4.7: Results of Laplacian score on least important columns
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Chapter 5

Discussion and Conclusions

The main findings of this study were that the amount of 8 clusters best sepa-
rate player types. With the use of silhouette analysis on K-means clustering,
we saw that all other cluster sizes scored worse separability of different types
of players. From this, we can say that given a soccer match, we classify each
player performance as either one of the 8 types. Thus, there are only 8
types of players in a soccer game, in contrast to 11 or 4 player positions.
We conclude that some positions within soccer are redundant or perhaps
versatile.

From our Principal Component Analytics (PCA) visualizations, we see
that goalkeepers are uniquely defined and do not correlate with other players
in the field. PCA makes visual that the location of players tends to correlate
with places of players in the clustering. However, we do not see this result
back in the feature selection.

Some essential features we got from the Laplacian score and correlation
mean that most define each cluster separability and deviance of player po-
sitions, are offside infringement and own goals scored. Offside infringement,
on the other hand, is often associated with attackers that are too far for-
ward. There is a smaller chance that any other position in the field is that
much forward during a phase to perform an offside infringement. Own goals
scored is a statistic that is often more attributed to defenders and goal-
keepers. These positions tend to stay near their own goal and have more
possibility in scoring an own goal. We can not directly attribute other no-
table features, such as own goal against and pressure, to any player position.
This attribution might be interesting for further research.

On the contrary, columns such as duel, carry, and 50/50 are not crucial
in defining cluster separability. This cruciality seems logical; any player can
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perform these 3 features in the game: players can control the ball or try to
recover the ball with another player. Each player tends to have some duels
with other players in the game, however usually goalkeepers tend to have
the least amount of duels and 50/50’s. Interestingly, we can deduce that
goalkeepers do have some events that are classified as such in the game.
Otherwise, these columns would not be classified as not relevant.

We see that cluster sizes have about the same size according to the labels.
Expectation Maximization tends to neglect evenly sized clusters, and this
might have influenced why we saw that K-means outperformed Expectation
Maximization. K-means was able to classify 66% of the data correctly when
using 4 labels.

With the use of feature selection, we see that we can increase the perfor-
mance of the K-means algorithm by 37%. This score indicates that feature
selection is essential when fine-tuning a model, whether supervised or un-
supervised. Prior studies also tell us this. The scientific conclusion is that
fine-tuning parameters and feature selection play a significant role in chang-
ing machine learning algorithms to adapt to specific problem domains.

Another valuable insight is the one we saw in our preliminary data anal-
ysis in the data section: why is it the case that the best players do not get
the ball more. You could argue that since they are defined as better based
on their skills, having the ball more would benefit the team performance.

Further research includes inspecting outliers within each cluster. These
outliers correspond to players that clustering models labelled as playing in 1
position when the data suggest they are playing in a different position. Soc-
cer teams and coaches might benefit from placing these players in different
positions to accommodate their behaviour more. Or, coaches can instruct
these players to focus on performing more as their allocated position to
streamline the performance of the team better.
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Chapter 6

Appendix A: Event types -
StatsBomb data
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Event type Event description

50/50 2 players challenging to recover a loose ball.

Bad Behaviour When a player receives a card due to an infringement outside of play.

Ball Receipt The receipt or intended receipt of a pass.

Ball Recovery An attempt to recover a loose ball

Block Blocking the ball by standing in its path.

Camera On Signals the stop of the camera to capture gameplay for a replay/video cut.

Carry A player controls the ball at their feet while moving or standing still.

Clearance
Action by a defending player to clear the danger
without an intention to deliver it to a teammate.

Dispossessed
Player loses ball to an opponent as a result of being tackled
by a defender without attempting a dribble

Dribble An attempt by a player to beat an opponent

Dribbled Past Player is dribbled past by an opponent.

Duel A duel is an 50-50 contest between two players of opposing sides in the match.

Error
When a player is judged to make an on-the-ball
mistake that leads to a shot on goal.

Foul Committed Any infringement that is penalised as foul play by a referee.

Foul Won
A foul won is defined as where a player wins a free-kick or
penalty for their team after being fouled by an opposing player.

Goal Keeper Actions that can be done by the goalkeeper.

Half End Signals the referee whistle to finish a match part.

Half Start Signals referee whistle to start a match period.

Injury Stoppage A stop in play due to an injury.

Interception
Preventing an opponent’s pass from reaching their teammates
by moving to the passing lane/reacting to intercept it.
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Miscontrol Player loses ball due to bad touch

Offside Offside infringement. Cases resulting from a shot or clearance (non-pass).

Own Goal Against An own goal scored against the team.

Own Goal For An own goal scored for the team.

Pass Ball is passed between teammates.

Player Off A player goes/ is carried out of the pitch without a substitution.

Player On A player returns to the pitch after a Player Off event.

Pressure
Applying pressure to an opposing player who is receiving,
carrying or releasing the ball.

Referee Ball-Drop Referee drops the ball to continue the game after an injury stoppage.

Shield Player shields ball going out of bounds to prevent opponent from keeping it in play.

Shot An attempt to score a goal, made with any (legal) part of the body.

Starting XI Indicates the players in the starting 11, their position and the team’s formation.

Substitution Change of players in the game

Tactical Shift
Indicates a tactical shift made by the team shows
the players’ new positions and the team’s new formation.
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Chapter 7

Appendix B: Conversion of
positions

General position Specific position

Forwards
Center Forward, Right Center Forward, Left Center Forward,
Secondary Striker, Right Wing, Left Wing

Midfielders

Center Defensive Midfield, Right Center Midfield, Left Center Midfield,
Center Attacking Midfield, Right Defensive Midfield, Left Defensive Midfield,
Left Midfield, Right Midfield Center, Midfield, Right Attacking Midfield,
Left Attacking Midfield

Defenders
Left Center Back, Left Back, Right Center Back, Right Back, Center Back,
Right Wing Back, Left Wing Back

Goalkeepers Goalkeeper
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General position Specific position

Right Center Forward Right Center Forward, Right Wing, Secondary Striker

Left Center Forward Left Center Forward, Left Wing, Center Forward

Left Midfield Left Midfield, Left Attacking Midfield, Left Defensive Midfield

Left Center Midfield
Left Center Midfield, Center Defensive Midfield,
Center Attacking Midfield

Right Center Midfield Right Center Midfield, Center Midfield

Right Midfield Right Midfield, Right Defensive Midfield, Right Attacking Midfield

Left Back Left Back, Left Wing Back

Left Center Back Left Center Back, Center Back

Right Center Back Right Center Back

Right Back Right Back, Right Wing Back

Goalkeeper Goalkeeper
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