
Semantic Dependency Graph Convolution for
Relation Extraction

Koen A. Hanneman
Bachelor Thesis 7.5 ETCS

bachelor Kunstmatige Intelligentie
Utrecht University

02-02-2020

Meaghan Fowlie, Kees van Deemter
Utrecht University

Abstract

Although in relation extraction, dependency
based models are currently outclassed by a
variety of models using different techniques,
these dependency models have shown promis-
ing results. Here syntactic dependency trees
are predominantly employed. However, con-
sequently it is uncertain what performance se-
mantic dependency graphs offer in compari-
son. Therefore we propose a modified graph
convolutional network for relation extraction
to work with semantic dependency graphs in-
stead of syntactic dependency trees. The per-
formance of this model is tested on the TA-
CRED dataset, where for each entry in this
dataset semantic dependency graphs are gen-
erated with a state-of-the-art model. Certain
sentences within the set were not included for
this study, as these could not be parsed. The re-
sults then of this model show increased perfor-
mance when presented less training data, and
equal performance when the amount of data
managed to increase.

1 Introduction

Relation extraction is the task of classifying the
semantic relationship between known entities lo-
cated in a text, for example in the form of a sen-
tence. These, often two or more, entities are of
some general type. (e.g. person, organization,
fruit, city) And the to be extracted semantic re-
lationship, between these entities, is also general-
ized in a category that fits the type (e.g. father-
of, works-at, container-for, lives-in). Extracting
semantic relations is thus a way of translating
text into abstracted structured information which
can be used in a range of applications. For ex-
ample ontology construction (Hearst, 1992; Cara-
ballo, 1999), knowledge base population (Zhang
et al., 2017), question answering (Lin and Pantel,
2001; Lopez et al., 2005), and information collec-
tion (Voorhees, 1994). Achieving relation extrac-

Figure 1: Example parsing on a sentence within the
TACRED database, located above and below respec-
tively. The subject (”He”) and object (”71”) are high-
lighted, as are the disconnected words (”was”, ”in”) in
the graph parsing.

tion can be done through learning relations via ma-
chine learning. For this a variety of models exist.
Some of these models can be roughly categorized
(Ruder, nd) as dependency-based models (Zhang
et al., 2018; Cai et al., 2016; Yan Xu et al., 2016).
This type has shown to have successful implemen-
tations for relation extraction.

Models that are dependency-based derive func-
tionality from some category of directed connec-
tions between words, which are generally repre-
sentative of the relation between word positions in
a text. The strength of dependency-based mod-
els is that it uses as a feature this structure of de-
pendency relations between words, which are not
visible by just examining one sentence. In the
way we arrange words, to for example construct a
sentence, we operate according to numerous com-
plicated rules in a languages syntax and seman-



tics rule set. Thus follows, that these rules create
the relations between words, or the structure of a
sentence. This is obvious to any user of the lan-
guage but is not self-evident from examining just
one sentence for a non-user, or in this case a pro-
gram. So, by providing the dependency relations
between words to a model, there is access to a path
of multiple relations going from word to word that
links two specified entities together. This path of
relations can thus be used in the model as a fea-
ture for learning the classification of a semantic
relation type between two specified entities.

Most dependency-based models (Zhang et al.,
2018; Cai et al., 2016; Yan Xu et al., 2016) use
syntactic dependency trees, which represent the
grammatical relations between words in a sen-
tence. The relations (e.g. prepositional, circum-
stantial, determinative) consist of a head and de-
pendent argument, where the head is the central
organizing word of a larger group of dependent
words (Jurafsky and Martin, 2018). Each word has
exactly one incoming connection, and can have
multiple outgoing connections.

Less used are semantic dependency graphs in
relation extraction, which represents the semantic
relations between words. This can be defined as
the meaning of one word being a predicate and the
meaning of another word being an argument of it
(Meluk, 2003). So, semantic relations (e.g. Argu-
ment, Extension) represent what words in a sen-
tence mean to each other. The difference between
syntactic and semantic dependency type lies thus
in the content of the relations between words.

However, with this difference in content there
comes also difference in dependency graph struc-
tures because of the restrictions each type puts on
the possible relations (Meluk, 2003). In Figure 1
the difference between these dependency types is
illustrated with an example. Here it is clear that
syntactic parsing is able to connect all words in a
tree structure, which is the case with all sentences
this is applied to. With graphs not all words are
connected, and the structure is different because
some words have more than one incoming edge.

With the goal of relation extraction being to
extract the semantic relationships between two
entities, it could be inferred that a model that
uses the semantic relations between words could
be very effective because this data is close to
the semantic relationship the relation extraction
model is already searching for. So, because

the data of a semantic dependency graph is ar-
guably more like the desired output data, of the
relation extraction model, than syntactic depen-
dency it could be hypothesized that a semantic
dependency-based model would perform better
over a syntactic dependency-based model.

To test this hypothesis, we will change the code
of an existing syntactic dependency-based graph
convolutional network model (Zhang et al., 2018)
to work with semantic dependency graphs. The
advantage of this process is that it allows for the
creation of a direct comparison between the re-
sults of both models. And thus, can answer the
question, if in the context of this graph convo-
lutional network model, a semantic dependency
graph in place of a syntactic dependency graph
could improve relation extraction. The examina-
tion of this possibility also creates groundwork for
further pursuing semantic dependency graph im-
plementations in other dependency models. So,
a possible useful contribution for advancement in
the general field of relation extraction.

In this work we will first outline the details of
the model that is used. This is followed by the
method section which explains the experiments
that are done with this model. And after that will
come the results of said experiments and a com-
parison against other related models. The results
will then be evaluated in the discussion section
where it is brought in context of the general field.
And for the final chapter there is the conclusion
section.

2 Model

2.1 GCN

The model (Zhang et al., 2018) that will be mod-
ified uses as its foundation a graph convolutional
network (GCN) (Kipf and Welling, 2017). This
network is an adaptation of the convolutional neu-
ral network (CNN) (LeCun et al., 1998) that is
build to efficiently operate on graphs. A defin-
ing design principle of the CNN is compressing,
or convolving, some provided input with diverse
techniques to an output that can be used in classi-
fication. This also translates to the GCN. In this
network the input structure of a graph G = (V, E)
with n nodes i ∈ V is encoded within an adjacency
matrix A ∈ Rn×n, where Aij = 1 if there exists
an edge (i, j) ∈ E between the nodes, else follows
Aij = 0. Below is an example adjacency matrix
of the PSD semantic graph parsing in Figure 1:

2



A =



0 1 0 0 1 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0


It follows that self-loops for each node is repre-

sented by a n× n identity matrix I . Which can be
added in Ã = A + I to include every node in V
not already in E , that allows multiplication with A
to also sum up all feature vectors of these nodes.

The diagonal node degree matrix D shows on
the diagonal the amount of outgoing connections,
or degree, of each node. Which is the row-sum of
the adjacency matrix Di =

∑n
j=1Aij . This ma-

trix used to normalize in A the bias towards high-
degree nodes. Below is the example diagonal node
degree matrix of the same sentence earlier:

D =



2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1


For each node i at layer l in an L-layer GCN

(Figure 2) with the input vector h(l−1)
i and the out-

put vector h(l)i the layer-wise propagation rule is:

h
(l)
i = σ(

n∑
j=1

ÃijW
(l)h

(l−1)
j /Di + b(l)), (1)

where W (l) is the n × n layer-specific trainable
weight matrix and b(l) is the bias term. And σ
is the rectified linear unit (ReLU) activation func-
tion. This activation has a linear output value for
every positive input, and has the output value 0 for
a negative input.

2.2 Dependency Graph Implementation
Originally the GCN model was adapted to work
with syntactic dependency trees. The dependency
trees were therefore encoded in a representational
object that would aid translation to the model. De-
pendency trees are by definition a type of graph
and therefore translate directly to the adjacency
matrix. Later when bi-directionality was added in

Figure 2: Relation extraction architecture. Inside the
GCN module shows graph convolution computation for
the example sentence with PSD parsing.

this matrix the trees become graphs, instead of a
type of graph. For semantic dependency graphs
the translation to the adjacency matrix is just as di-
rect. The difference was that the representational
object was changed to accommodate for multi-
ple incoming connections per node possible in a
graph, as supposed to trees which only have ex-
actly one incoming connection.

2.3 Relation Extraction

Relation extraction is intuitively defined as given
some sentence X and two parts of X , yield the re-
lation between these parts. In the previously used
example sentence ”He was 71 and lived in Man-
hattan”, these two parts were shown to be the sub-
ject ”He” and object ”71”. The extraction goal for
this sentence was a ‘per:age’ relation.

Formally defined, given some sentence X =
[x1, ..., xn] and spans Xs = [xs1 , ..., xsn ], Xo =
[xo1 , ..., xon ] return relation r ∈ R finite set of re-
lations, and return ‘no-relation’ otherwise. Noted
are separate span lengths n where on position i to-
ken xi is represented.

Span X is for the L-layer GCN translated to an
equal span of GloVe (Pennington et al., 2014) in-
put vectors h(0). At layer L the output vectors
h(L) are the collective token hidden representa-
tions (Figure 2). Each token has a connection to-
wards every token it has a direct connection with.
So after L layers there is a hidden representation
for every token connection to L distance. The sen-
tence is then represented as:

hsent = f(h(L)) = f(GCN(h(0))), (2)

where the max pooling function f : Rd×n → Rd

with a max filter of 1 × n selects the maximum
value of row di in h(l) within that window and fi-
nally returns the d × 1 vector. This pooling func-
tion is used another two times on Xs, and Xo for

3



the subject and object representations:

hs = ho = f(h(L)
e1:en), (3)

where selected from h(L) are the n output vec-
tors that are within the entity start tag e1 to entity
end tag en range for the respective entity. The en-
tity and sentence representations are then concate-
nated and then fed through a feed-forward neural
network (FFNN) (Santoro et al., 2017; Lee et al.,
2017) for the final representation:

hfinal = FFNN([hsent;hs;ho]). (4)

This hfinal representation is then fed into a lin-
ear layer followed by a 1-dimension softmax func-
tion that results in a probability distribution over
all relations r ∈ R with finally and argmax func-
tion for the relation predictions.

3 Method

3.1 Data

Experiments are run on the TAC Relation Extrac-
tion Dataset (TACRED) (Zhang et al., 2017), as
this is the dataset the original model is built for. It
contains 106k entity pairs that are drawn from the
yearly TAC Knowledge Base Population (Getman
et al., 2018) challenge. Each classified relation
type between entities is part of a set of 41 relations,
or is a ‘no-relation’ type for when the relation be-
tween entities is not part of the relation set and
possibly does not even exist. Entities in TACRED
are categorized as subject and object. Here sub-
jects can be of a person or organization type, and
objects are divided over 16 different types (e.g.,
date and location).

Also present in this dataset is information such
as part of speech tagging, and syntactic depen-
dency relations for each sentence. However, the
dataset does not contain the necessary information
that is needed for the semantic dependency graphs
of these sentences. Instead these graphs are con-
structed by a separate program and added to the
TACRED dataset in order for the graph data to be
used in the GCN model.

3.2 Dependency Graphs

The semantic dependency graphs are constructed
with the ACL 2019 parser (Lindemann et al.,
2019). These graphs come in three distinct
representations named DELPH-IN MRS-Derived

Semantic Dependencies (DM), Enju Predicae-
Argument Structures (PAS), and Prague Seman-
tic Dependencies (PSD). The representations dif-
fer from each other in labeling scheme, direction-
ality of edges, and in general the edges placed be-
tween words. This is result of the different de-
sign decisions and techniques that are responsible
for the creation of these annotations, and between
them there is currently no obvious answer which
one is truly better (Oepen et al., 2015). So, to test
if semantic dependency graphs are effective in a
GCN model all three representations are used to
sufficiently explore this subject.

However, at this time, it was unfortunately not
possible for us to effectively parse all sentences of
the TACRED dataset. For longer sentences cur-
rent the parser will hit a run-time limit because of
the fixed-tree decoder that is used, which takes ex-
ponential time with the number of children of any
node. Graphs of longer sentences have by defini-
tion the opportunity for a larger amount of inter-
connected words, which enables parsing to reach
its maximum time limit. As a result these sen-
tences are paired with empty graphs with no se-
mantic dependency data available. And because
these graphs are essential our model to work this
means that long sentences could not be used in
training and evaluating, so these were removed
from the set.

The original TACRED training, development,
and test datasets consist of 68124, 22631, and
15509 sentences respectively. The semantic de-
pendency graph parsing was successful for 98.5%,
99.5%, and 99.8% sentences respectively, a total
decrease of 1.1% sentences. After this a new pars-
ing model was constructed for specifically PSD-
type graphs as these were at the time expected to
be the best performing type. This parser was able
to result success for 99.0%, 99.7%, and 99.8%
sentences respectively, a total decrease of 0.8%
sentences. Because of the partial set it follows that
the performance results of following experiments
will in some way be impacted, positive or nega-
tive. It is hard to say if this performance shift will
be significant, but is to be noted going forward.

3.3 Evaluation

As is standard, the model will be evaluated with
micro-averaged F1 scores on the TACRED dataset.
This is calculated with the precision P and re-
call R of the model in the harmonic average F1.

4



Model Dev F1 P R F1

Tree:B/S 61.9 64.5 42.1 50.9
DM:B/S 61.4 71.7 40.7 51.9
PAS:B/S 61.1 68.5 44.9 54.2
PSD:B/S 60.3 65.7 46.2 54.2
DM:B 63.2 67.6 56.0 61.2
PAS:B 62.4 65.8 56.0 60.5
PSD:B 62.3 67.3 53.8 59.8

Table 1: Results of the first experiment on TACRED.
Bold marks the highest number among current mod-
els. Letters B and S indicate if bidirectional relations
or self-loops are active.

Our GCN model has no graph pruning so there-
fore we compare results to the baseline no prun-
ing tree-based GCN model for a balanced analysis.
This is chosen as comparing to results without tree
pruning can be an approximation of performance
where pruning to be implemented. Additionally
when pruning is enabled training takes an amount
of time that is not possible to currently be feasible.
The time cost occurs from the pruning algorithm
which is activated with each instance of loading
a syntactic dependency tree, instead pruning be-
forehand and referencing already pruned trees. It
should be noted however that with no pruning the
models are not performing as optimally as with
K = 1 pruning.

4 Results

4.1 Experiment 1
The first tasks goal is to compare each grammar
type to the performance given when using trees on
a level playing field. For this experiment the GCN
model parameters are set to be equal with the set-
tings provided with the original model; with self-
loops, and bi-directionality. In early parameter
configuration testing with semantic dependency
graphs, promising results without self-loops active
seemed to appear. These are also included in the
experiment. As with the initially expected under
performance of graph based models, and the in-
clusion of self-loops being based on aiming for an
optimal tree based model.

The results in Table 1 show that each graph
model outperformed the baseline tree model, re-
gardless of the setting variations. Shown are the
development set F1 and test set precision, recall,
and F1. With the DM-type graph without self-
loops reaching the best score by 0.7 F1. And

Model Dev F1 P R F1

1:Tree:B/S 61.9 64.5 42.1 50.9
1:PSD:B/S 60.3 65.7 46.2 54.2
1:PSD:B 62.3 67.3 53.8 59.8
2:Tree:B/S 63.0 64.1 54.9 59.1
2:PSD:B/S 60.7 68.8 48.6 56.9
2:PSD:B 63.2 67.2 52.9 59.2

Table 2: Results on different size TACRED datasets.
Numbers 1 and 2 show experiment numbers. Bold
marks the highest number amongst the respective set.
Letters B and S indicate if bidirectional relations or
self-loops are active.

widely shown is that the graphs without self-loops
exceed their self-loops included counterparts. Hy-
pothetically considered this could be because of
the words that were initially ignored by the se-
mantic dependency graph parsing (Figure 1). In-
cluding these words through self-loops could then
have lowered prediction accuracy. Increasing pre-
diction accuracy for syntactic dependency trees by
implementing pruning, also comes from the same
principle of trimming irrelevant words.

The tree-based model was previously reported
to have an estimated score of around 63.5 F1 on
the development set; the score was not provided
in exact terms and only appeared in a graph. This
is a decrease of 1.6 F1 score to the current result
of 61.9. Because the only variable changed in re-
spect to the tree-based model is the amount of sen-
tences, it can be concluded that this change must
have been the cause. Evaluation score of the tree
model without pruning was unfortunately not re-
ported, so the full impact of sentence removal can
not be measured. As the development set score
roughly indicated performance on the evaluation
set, the unknown score on this set is also expected
to increase with an increase in development set
score.

4.2 Experiment 2

For the second experiment we were able to in-
crease the amount of sentences of the TACRED
database that we were able to parse PSD-type se-
mantic dependency graphs for. The goal here is
to see what effect unavoidable database filtering
had on comparable models results in the previous
experiment. In Table 2 the all results of this ex-
periment can be seen together. Compared to the
previous experiment the model with PSD graphs

5



presented similar results; the new sentences seem
to have had no effect on performance.

The tree based model raised previous perfor-
mance with an increase of 1.1 F1 development
set score to 63.0 F1. Following an inequality of
0.5 F1 with the original reported 63.5 F1 score.
The remaining relatively slight difference is pos-
sibly the consequence of the last absent sentences
in the database, assuming the score discrepancy
would decrease at a similar rate to what these re-
sults present. As a result the hypothesized eval-
uation score increase proved to be 8.1 to 59.1
F1. Performance growth, in this case of syntac-
tic dependency trees, then suggests to be related
to the amount of long sentences in the collective
database.

5 Analysis

5.1 Discussion

Shown in the results section, the use of semantic
dependency graphs in place of syntactic depen-
dency trees does see a form of change in perfor-
mance on the relation extraction task. But if this
change is positive or negative seems to be condi-
tional, evident by the variation of results between
both previous experiments. When the average sen-
tence length is reduced equal graph models out-
performed the tree based model with a difference
of 8.1 F1 score. But when the average was in-
creased the difference between the two reduced to
an equal score, with graphs remaining consistent
in task performance. This is however not currently
proven to reflect every semantic dependency graph
based model from the first experiment, just the
PSD-type graph, but or ease of comparison con-
sistency among semantic dependency graphs per-
formance will be assumed.

The improvements gained by syntactic depen-
dency trees by increasing the average sentence
length can not be fully encompassed by the to-
tal 0.05% more sentences that were added to the
test dataset, were trees to get a perfect score on
all these entries. Therefore, the hypothesis could
be that trees learn better from longer sentences
because with relative large word counts there are
more opportunities to learn connection patterns.
Syntactic dependency trees have been shown to
reliably connect every word in sentences together
within their tree structure, these patterns seem then
to actually improve classification on shorter sen-
tences. Or it could be that the 0.47% sentences

added to the training set in the second experiment
happened to be crucial for learning, regardless of
sentence length.

Semantic dependency graphs stay consistent re-
gardless of the average sentence length in the
database. The difficulty of classifying relations
of longer sentences seems intuitively harder than
shorter sentences, because fewer words should
present less points of failure. Which in this case
would be connections between words that distract
from critical connections. This also follows from
the fact that pruning words had a positive im-
pact on syntactic dependency trees. The hypoth-
esis for this consistency is that semantic depen-
dency graphs, as shown earlier in Figure 1, already
does not connect irrelevant words. This would
mean that longer sentences do not give nearly
as much distracting words, thus semantic depen-
dency graphs remain consistent.

5.2 Future Work

For future studies a possible exploration of the
topic could be to compare the behaviour of syn-
tactic dependency trees and semantic dependency
graphs in different models. The current effec-
tiveness of semantic dependency graphs are only
tested with the current GCN implementation. This
could be to change it for a Simple Graph Convo-
lution (SGC), or an entirely different model that
could learn from graphs. Another change could be
made to the semantic dependency parser. A parser
that could efficiently parse all TACRED sentences
can definitely give better insight into the current
findings of this study.

Pruning on graphs could also be considered. Se-
mantic dependency graphs already have shown to
inherently prune words. And while there are less
words to prune, a stronger pruning has the pos-
sibility for performance improvements. Imple-
menting a minimum spanning tree algorithm to
semantic dependency graphs as the replacement
for pruning is then a further option. For this
to work connection weights should be introduced
with some sort of defined heuristic, but this is then
a reasonably experimental option.

6 Conclusion

Shown was that semantic dependency graphs pro-
vide a consistent performance with data con-
structed of varied sentence length. And that syn-
tactic dependency trees without pruning decrease

6



in performance when sentence length is decreased.
This does not confirm the initial proposed hypoth-
esis of semantic dependency graphs being strictly
superior. Thus follows the implication that, de-
pending on the application, the consistent per-
formance of semantic dependency graphs could
be considered an improvement or a deterioration
over syntactic dependency trees. Or more broadly,
there is promising data for semantic dependency
graphs but further research must follow to fully
encompass the potential.

References
Cai, R., Zhang, X., and Wang, H. (2016). Bidirectional

recurrent convolutional neural network for relation
classification. Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 756–765.

Caraballo, S. A. (1999). Automatic construction of a
hypernym-labeled noun hierarchy from text. Pro-
ceedings of the 37th Annual Meeting of the Associa-
tion for Computational Linguistics.

Getman, J., Ellis, J., Strassel, S., Song, Z., and Tracey,
J. (2018). Laying the groundwork for knowledge
base population: Nine years of linguistic resources
for tac kbp. Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC-2018).

Hearst, M. A. (1992). Automatic acquisition of hy-
ponyms from large text corpora. Proceedings of
COLING-92, pages 539–545.

Jurafsky, D. and Martin, J. H. (2018). Speech and Lan-
guage Processing. An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall, New Jersey.

Kipf, T. N. and Welling, M. (2017). Semi-supervised
classification with graph convolutional networks.
International Conference on Learning Representa-
tions (ICLR 2017).

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
(1998). Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE,
86(11):22782324.

Lee, K., He, L., Lewis, M., and Zettlemoyer, L. (2017).
End-to-end neural coreference resolution. Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing.

Lin, D. and Pantel, P. (2001). Discovery of inference
rules for question answering. Natural Language En-
gineering, 7(4):343-360.

Lindemann, M., Groschwitz, J., and Koller, A. (2019).
Compositional semantic parsing across graphbanks.

In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4576–4585, Florence, Italy. Association for Compu-
tational Linguistics.

Lopez, V., Uren, V., Motta, E., and Pasin, M. (2005).
Aqualog: An ontology-driven question answering
system of organizational semantic intranets. Pro-
ceedings of the 2nd European Semantic Web Con-
ference.

Meluk, I. A. (2003). Dependency in linguistic descrip-
tion. unknown.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D.,
Cinkov, S., Flickinger, D., Haji, J., and Ureov, Z.
(2015). Semeval 2015 task 18: Broad-coverage
semantic dependency parsing. Proceedings of the
9th International Workshop on Semantic Evaluation,
pages 915–926.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Ruder, S. (n.d.). Relationship extraction. Retrieved
from http://nlpprogress.com/english/
relationship_extraction.html.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski,
M., Pascanu, R., Battaglia, P., and Lillicrap, T.
(2017). A simple neural network module for rela-
tional reasoning. Advances in neural information
processing systems, page 4974 4983.

Voorhees, E. M. (1994). Query expansion using
lexical-semantic relations. The seventeenth Annual
International ACM/SIGIR Conference on Research
and Development in Information Retrieval, pages
61–69.

Yan Xu, R. J., Lili Mou, G. L., Chen, Y., Lu, Y., and Jin,
Z. (2016). Improved relation classification by deep
recurrent neural networks with data augmentation.
arXiv preprint, arXiv:1601.03651.

Zhang, Y., Qi, P., and Manning, C. D. (2018). Graph
convolution over pruned dependency trees improves
relation extraction. Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2205–2215.

Zhang, Y., Zhong, V., Chen, D., Angeli, G., and Man-
ning, C. D. (2017). Position-aware attention and su-
pervised data improve slot filling. Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 35–45.

7

http://nlpprogress.com/english/relationship_extraction.html
http://nlpprogress.com/english/relationship_extraction.html

