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Abstract
Daan Luca DI SCALA

How to Solve a Sudoku

Sudokus are widely popular logical combinatorial puzzles. From the Sunday news-
paper to World Championships, many people like to take a crack at the world-
famous puzzle. Many sudoku solvers exist, often based on efficiency and therefore
not taking human thinking steps and strategies into account. Consequently, there is
currently not a solver which can logically explain its steps. Something which would
be useful to aid human players in their own solving process.

Therefore the aim of this thesis is to answer whether it is possible to build a
transparent logical algorithm which solves sudoku’s based on human strategies, by
analysing the logic behind these strategies. And if this is the case, what would such
a solver look like? Because of this the aim of the thesis is twofold, consisting of
a logical analysis and an algorithmic implementation. The Sudoku puzzle is for-
malized as a Modal Logic Problem. To approximate how human puzzlers complete
Sudokus, thirteen of the most popular Sudoku solving strategies are gathered and
formalized as Alethic Natural Deduction rules and their dependency and complex-
ity is analysed. Based on this Helping HAND, a Heuristic Alethic Natural Deduction
based Sudoku solver, is proposed. Helping HAND searches for optimal strategies by
Weighted Graph Search and can solve Sudokus while being able to explain each step
along the way. This algorithm proves to be a valuable step in the field of explainable
AI.
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Chapter 1

Introduction

Sūdoku: Suuji wa dokushin ni kagiru
”The digits must remain single”36

Sudokus are incredibly popular puzzles with a seemingly easy goal: fill in the
cells in a 9×9 grid such that in each row, column and block of 9 squares the digits
1 through 9 only appear once. But looks can be deceiving! Since the difficulty of
the puzzle is caused by a combination of the amount of clues and their placement, it
can be tough to evaluate its solvability at first glance. Sometimes one simple solving
strategy is enough to solve a sudoku while other sudokus require a lot more thought.
The challenge of solving sudoku’s is what attracts me and many people1. The wide
range of difficulty in which sudokus exist makes them a fun Sunday morning pas-
time for newspaper readers as well as a tough challenge for World Championship
contestants33, 34. Besides the fun, puzzling purpose, sudokus also make for a fasci-
nating research subject.

Because of the logical nature of the problem, there has been a lot of research done
on efficient logical sudoku solver algorithms. One factor as to why this is an inter-
esting research topic for some logicians, is because the generalized form of sudoku
puzzles, being puzzles of size n×n, is NP-complete35. However, because of its sheer
amount of possible configurations – there are approximately 7 · 1021 possible dif-
ferent Sudoku grids6 of Classic Sudokus – simple search algorithms, such as naı̈ve
backtracking9, tend to be lacking the necessary speed and strength. Ultimately, it is
a very difficult task to solve sudokus, both for humans and computers.

Because of this, proposed solvers offer some kind of clever search heuristic in addi-
tion to backtracking. There have been papers proposing efficient searching solvers
such as Forward Checking and Limited Discrepancy searches3, Chaotic Harmony
search2, SAT-based search32, Minigrid based backtracking12 and more11, 13, 14, 18, 20.
While many of these approaches are quite successful at efficiently solving many su-
doku puzzles by a computer, they don’t tend to grant us insight into how humans
tackle these problems.

However, the aim of this paper is to investigate how we as human players solve
sudoku puzzles. Because in comparison to computers, humans have to approach
these puzzle differently. This is, among other reasons, because humans are not great
at keeping track of everything that is going on, they lack certain omniscience about
the puzzles. Yet, many skilled players can solve the toughest of sudoku puzzles. The
way algorithms find a solution is too different from how humans do, which makes
it useless in helping humans solve these problems.
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Therefore, my goal is not to tackle the sudoku problem as efficiently as possible, but
based on a logically sound, yet understandable manner. This way I attempt to create
a useful and transparent system which could help someone understand how to solve
a sudoku. In other words, I will be trying to answer the research question whether it
is possible to build a transparent logical algorithm which solves sudoku’s based on
human strategies, by analysing the logic behind these strategies. And if this is the
case, what would such a solver look like?

In this thesis I will propose a new algorithm, based on human puzzle solving strate-
gies. I will formalize the puzzle as an Alethic Modal Logic problem. I will gather
the sudoku solving strategies from popular forums where people come together to
write about and introduce new steps to tackle these puzzles and from earlier set
theoretical research. From these sources I will extract and formalise strategies with
increasing levels of difficulty. I will analyse how these strategies relate to each other
and from this I will write an algorithm that not only solves a given sudoku, but can
show its work in such a way it can be understood and replicated by humans.

1.1 Artificial Intelligence and Societal Relevance

While other proposed algorithms are merely efficient in finding a solution, the solver
this paper proposes can actually explain the steps it takes. The research in explain-
able AI and transparent algorithms, which can explain taken steps is an important
topic right now in the field of AI. Many “Black Box” techniques do deliver great
results but have both practical and ethical limitations8. As this paper attempts to
combine human reasoning strategies, logic and computer science for this purpose, it
can be a stepping stone for further research on Explainable AI.

Furthermore, as this research is based on analysing the structure of logical reasoning,
it includes useful societal applications. This process of making a solver and creating
a program which exists to support a person achieve their goal can be applied to
other fields. From work schedule planning to deduction in the court of law, in all
fields where logical reasoning is used to support important decision making, this
principle of logical analysis and algorithmic implementation could be useful. This
is why investigating whether a logical helper can be manufactured could be helpful
and applicable to many other fields where thinking rationally and strategically is
required.

1.2 Structure of this Paper

In Chapter 2 the sudoku problem and its rules are formalized in such a way that
the strategies can be efficiently defined. Then, the sudoku solving strategies are for-
malized and from them Natural Deduction7 rules are deduced. In Chapter 3 it is
discussed how from this a Solver is written and its capabilities are tested. After-
wards, the results are discussed in Chapter 4. It will also be reflected upon whether
such system can be classified as explainable Artificial Intelligence and its societal
relevance in the AI field and other fields is discussed.
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Chapter 2

Formalisation
2.1 Theoretical Background

This section provides some background information on Sudoku Terminology (2.1.1),
Alethic Modal Logic (2.1.2) and Natural Deduction (2.1.3), which will all be used
throughout the rest of the thesis.

2.1.1 Sudoku Terminology

Before I can start with formally defining a Sudoku, some definitions on Sudoku are
required. A General Sudoku is a n×n grid of squares, called cells. For a Classic/Original
Sudoku, this n equals 9. Each Proper Sudoku only has one solution. From now on the
term Sudoku is used to indicate a Classic, Proper Sudoku, unless otherwise stated.
There will also sometimes be referred to the Sudoku as ’the puzzle’ or ’the problem’.

4 8 7 9

5 8 2 7

7 5 4 1 6 8

3 8 5 2 1 9 4 7 6

7 6 2 3 5 4 8 9 1

4 1 9 6 7 8 5

8 7 6 4 3 5

4 6 2 8 7

8 7 6

FIGURE 2.1: Classic Sudoku Grid with highlighted Row, Column and Block

The grid of cells consists of n rows/horizontals, n columns/verticals and n b×b boxes of
cells, with b =

√
n. These three different structures are called houses/groups. When

generally talking about a column or row, line is used. In Classic Sudoku this means
there are nine rows, nine columns and nine boxes (of size 3 by 3). See Figure 2.1.

There are n symbols which can be filled in the cells, called digits/candidates1. Each cell
can contain only one digit. In the start state of the puzzle there is a certain amount
of filled cells, which are called the clues/givens. Empty cells can be marked with the n
optional digits to fill in. These markings are called pencil marks, often abbreviated to
PM’s. A completely filled Sudoku is called a solution/goal, when each house contains
all digits exactly once.17, 24, 29

1As no calculation is involved in Sudokus, the usually used digits could be swapped with other
symbols, such as letters or pictures.
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2.1.2 Alethic Modal Logic
There are different ways of interpreting Modal Logic, which adds two unary modal
operators to propositional logic: 2 and ♦.16 One of these interpretations is Alethic
Logic, the logic of necessity and possibility5, 7. In this logic the 2 stands for ’neces-
sarily’ and the ♦ stands for ’possibly’, respectively. From now on the terms Alethic
(Modal) Logic and Modal Logic are used interchangeably, as this is the interpretation
of modality used in the thesis. In Modal Logic, Kripke models are used to represent
modality in terms of possible worlds10. A Kripke model is formally defined16 as
shown in Definition 2.1.1.

Definition 2.1.1 (Kripke Model).
A Kripke model is a tuple M = 〈W, R, V〉 such that

• W is a non-empty set of possible worlds,

• R ⊆ (W ×W) is a binary relation on W
If wRv we say that v is accessible from w.

• V : W → Pow(var) is a valuation for the set of atomic propositions var
Proposition p is true in world w if p ∈ V(w), and false in w if p 6∈ V(w).

When it concerns such models, “M, w � p” means “in model M, a certain propo-
sition p is true in world w”. As for the modal operators, “M, w � 2p” means that
in model M, for all the worlds v reachable from w, a certain proposition p is true in
world v. Or, in the Alethic interpretation, it is necessary that p. A similar rule applies
to ♦, with “M, w � ♦p” meaning that for at least one world v reachable from w, a
certain proposition p is true in world v. Its Alethic interpretation is that it is possible
that p.

2.1.3 Natural Deduction

I will be using Fitch style Natural Deduction7, 16, often shortened to ND, which is
a deduction system for (modal) logic. These ND-rules are used to deduct a logical
proof and usually look like what is shown in 2.2a. For the purpose of this thesis,
the ND-rules I use will have a slightly different form, looking like the one in 2.2b.
Both of these rules shown in 2.2 show a Natural Deduction rule, called Conjunction
Introduction. While their meaning and use are similar, the form of 2.2b is used to
state information about worlds in the model, which is useful when talking about
the sudoku. The ND-rules used in the thesis differ from the original ND-rules in
a second way, as they will often include accessibility relations –such as wRv– in its
premises. This is to express information about the relation between worlds in the
model.

ϕ

ψ

· · ·

ϕ ∧ ψ

(A) Propositional ∧I

M, w � ϕ

M, w � ψ

· · ·

M, w � ϕ ∧ ψ

(B) Modal ∧I

FIGURE 2.2: ∧I: Conjunction Introduction ND-rules. In 2.2a usual
way. In 2.2b the modal way.
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2.2 Formalisation of the Sudoku puzzle

To properly talk about the sudoku in a formal matter, I will now define an Alethic
Kripke Model in such a way that it represents a Sudoku structure. This Model is
pragmatically crafted in such a way that it correctly corresponds to the puzzle, which
makes it an unusual Kripke Model, but a Kripke Model nonetheless. The formal
definition of the Sudoku model, like in 2.1.1, is shown in Definition 2.2.12.

Definition 2.2.1 (Sudoku Kripke Model).
Our Sudoku model is a Kripke model S = 〈W, R, D〉 such that

• W = C ∪ P = {c1, ..., c81} ∪ {p1, ..., p9}, a union of C, the set of worlds
representing Sudoku cells, and P, the set of possible pencil marks.

• R = G ∪ P = H ∪V ∪ B ∪ P, a union of sets of different accessibility
relations between these worlds, as defined in Definition 2.2.2.

• D = {1, ..., 9} being a set of Digit valuations.
Proposition d is true in world p if d ∈ D(p), and false in p if d 6∈ D(p).

The set of accessibility relations of this Kripke Model, R, is made up of four different
sets of accessibility relations, which are called H, V, B, and P. These accessibility
relations are explained in Definition 2.2.2.

Definition 2.2.2 (Accessibility Relations).

• cxGcy marks a relation between two cells which are in the same Group,
so either in the same Horizontal, Vertical or Block.

• cxLcy marks a relation between two cells which are in the same Line,
so either in the same Horizontal or in the same Vertical.

• cx Hcy marks a relation between two cells which are in the same Horizontal.

• cxVcy marks a relation between two cells which are in the same Vertical.

• cxBcy marks a relation between two cells which are in the same Block.

• cxPpy marks a relation between a cell and a pencil mark.

Note that contrary to regular Kripke Models, where it would be required to have a
powerset of valuations, now only the numbers 1 through 9 are needed as valuations.
This is because –as by the rules of Sudoku– no world can contain more than one
valuation. Because of this, instead of using ∨ (or),⊗ (xor) is used. This is defined in
2.2.3.

Definition 2.2.3 (XOR).
ϕ⊗ψ means: either ϕ or ψ, but not both ϕ and ψ.

2Note that S is used instead of M, cx/px instead of w, D instead of V and d instead of p. This is just
to make it more clearly correspond to the terms Sudoku, cells/PM’s, digits and digit respectively, but do
not have any other impact.



Chapter 2. Formalisation 6

Figure 2.3 shows a visual representation of the main part of the Kripke Model 2.2.1
of the sudoku. There are 81 worlds connected to each other through different ac-
cessibility relations. Each world corresponds to a cell in a sudoku. The different
accessibility relations correspond to the horizontals (H), verticals (V) and blocks (B).
Note that the accessibility relations shown in 2.3 are displayed in a transitive mat-
ter, which means that any cell that can access any other cell through one or multiple
Group relations can also access each other through this group relation. For example,
cell c1 can reach c21 through a Block relation.

In logical terms, cxBcy means that cy is accessible from cx by a Block relation, so
cx and cy are in the same block. Also, S, cx � 2V ϕ means that for all the worlds
accessible from cx by a V-relation, a formula ϕ holds, so in each of the cells in the
same vertical a certain ϕ would be the case.

c73

c64

c55

c46

c37

c28

c19

c10

c1

c74

c65

c56

c47

c38

c29

c20

c11

c2

c75

c66

c57

c48

c39

c30

c21

c12

c3

c76

c67

c58

c49

c40

c31

c22

c13

c4

c77

c68

c59

c50

c41

c32

c23

c14

c5

c78

c69

c60

c51

c42

c33

c24

c15

c6

c79

c70

c61

c52

c43

c34

c25

c16

c7

c80

c71

c62

c53

c44

c35

c26

c17

c8

c81

c72

c63

c54

c45

c36

c27

c18

c9

FIGURE 2.3: Sudoku represented as a Kripke Model. Blue lines represent
transitive Block-relations, B. Red lines represent transitive Horizontal rela-

tions, H. Green lines represent transitive Vertical relations, V.

None of these cells contain any valuations, as filling in the cells works through Pencil
Marks. Instead of considering each Pencil Mark as a direct proposition of each cell
world, there will be referred to other worlds that contain these pencil marks valua-
tions. This will be expressed through the use of another set of worlds, called Pencil
mark worlds. This way of talking about it in terms of possibility and necessity is
introduced.
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Figure 2.4 shows how filling in the cells with Pencil Marks works. Note that, for
clarity’s sake, only one of the 81 cell worlds is shown. Not only can the sudoku cell
worlds access each other, each cell world in the framework can potentially access
one or multiple Pencil Mark worlds. As multiple options for a digit in a cell are con-
sidered, multiple accessibility relations between the two layers exist. Throughout
the solving process, more and more pencil mark relations are being removed, until
each cell only considers one pencil mark. In logical terms, when a certain PM, say 3,
is considered to not be possible in a certain cell c, it would look like ”S, c � ¬♦P3”.
This is because there is a direct correspondence between accessibility relation and
possibility, as c6Ppd ↔ S, c � ¬♦Pd. When there is no accessibility relation between
cell c and pencil mark pd (which holds proposition d) then it is not possible to find a
d through a P-relation, and vice versa.

p1

{1}
p2

{2}
p3

{3}
p4

{4}
p5

{5}
p6

{6}
p7

{7}
p8

{8}
p9

{9}

cx

(A) PM relations of empty cell

p1

{1}
p2

{2}
p3

{3}
p4

{4}
p5

{5}
p6

{6}
p7

{7}
p8

{8}
p9

{9}

cy

(B) PM relations of non-empty cell

FIGURE 2.4: PM accessibility relations. 2.4a corresponds to a cell cx where
all digits are still considered possible. 2.4b corresponds to a cell cy where only

the digits 1 and 6 are being considered possible.

This leaves us with a proper way to discuss Sudoku’s Pencil Marks. For example, it
is now possible to say “S, c21 � 2P(3⊗5)”, meaning “In our Sudoku Model S cell c21
necessarily contains either a 3 or a 5.” or ”S, c81 � 2H(♦P6∧♦P8)”, meaning “In our
Sudoku Model S, all the cells horizontally reachable from cell c81 possibly contain a
6 and possibly contain an 8”.

The only thing left is to formally define the goal, which is done in Definition 2.2.4.
This means that ultimately all the cells necessarily only contain one of the possible
digits, which corresponds directly with the goal of Sudoku as described in 2.1.1.

Definition 2.2.4 (Sudoku Goal).
In our Model S, given its clues, eliminate as much possible pencil marks as
possible, in such a way that: ∀x ∈ {1, . . . , 81}(S, cx � 2Pd), with d ∈ D.
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2.3 Formalisation of the Sudoku strategies

I have compiled 13 of the most popular strategies, from previous papers4, 23 and
websites25–28. While there are many more strategies, I have made a selection based
on which I deem to be the most useful and varied strategies, ranging in difficulty
from implicit to hard. Many strategies are Tuple-based strategies, meaning that they
exist for singles, pairs, triples, quads, etc. As shown in earlier research23, anything
above triples rarely shows up. Because of this, all of the strategies are either about
singles, pairs or triples.

The compiled list of strategies can be seen in Table 2.1. Here, the strategies are sorted
by their difficulty. In this paper, I assume previous research on sudoku difficulty is
accurate. It is subjective whether a strategy is hard to perform, but it gives a good
measure to base a categorisation on. Implicit strategies are strategies that are so
easy that human players would perform them without thinking about it explicitly.
One could even question whether these steps are even strategies at all, but as they
are crucial to the strategy-based solving process, I deemed it necessary to include
them into the list of strategies. Beginner strategies are your typical Sunday morning
puzzler strategies (often well-known), while Intermediate and Advanced strategies
are lesser known and more complicated. Strategy difficulty is, though, different than
strategy complexity, which will be analysed in Section 2.4.1.

Difficulty Strategy Abbreviation(s) Subsection
Implicit Cell Based Elimination CBE (2.3.1)
Implicit Pencil Mark Duality PMD1, PMD2, PMD3 (2.3.2)
Beginner House Based Elimination HBE (2.3.3)
Beginner Last Remaining Cell LRC (2.3.4)
Beginner Pencil Mark Introduction PMI (2.3.5)
Intermediate Naked Tuples Elimination N2E, N3E (2.3.6)
Intermediate Pointing Tuples Elimination P2E, P3E (2.3.7)
Advanced Hidden Pairs Elimination H2E (2.3.8)
Advanced X-Wing Elimination XWE (2.3.9)

TABLE 2.1: Strategies ordered by difficulty

In the following subsections (2.3.1 - 2.3.9) each strategy will be discussed. The way in
which they work will be explained and ND-rules will be derived from them, based
on earlier definitions (2.1 - 2.2). The strategies can get complicated rather quickly,
so some of the more difficult formalizations will be accompanied by explanatory
Figures.

Note that these ND-rules stand for the strategies, which are about cells and their
digits. When a strategy concerns only one cell, this cell is called c. If it concerns
multiple cells, they are referred to as c1, c2, c3 etc. This is just to indicate that the
strategy concerns multiple cells. It is left implicitly that c1 6= c2, c2 6= c3, etc. The
same principle is used for the digits, only then with d instead of c.
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2.3.1 Cell Based Elimination (Implicit)

S, c � 2Pd1

· · ·

S, c � ¬♦Pd2

FIGURE 2.5: CBE: Cell Based Elimination ND-Rule

According to the rules of sudoku, each cell can only contain one digit (2.1.1). From
this, an implicit strategy named Cell Based Elimination (CBE) follows directly: ”If
a cell already contains a certain digit, it cannot contain another digit”. From this, a
simple ND-rule follows, as shown in Figure 2.5. If d1 must be the case in cell c, then
it is not possible that d2 in c.

2.3.2 Pencil Mark Duality (Implicit)

S, c � ♦Pd1

S, c � ¬♦Pd2 ∧ . . . ∧ ¬♦Pd9

· · ·

S, c � 2Pd1

(A) PMD1

S, c � ♦Pd1 ∧♦Pd2

S, c � ¬♦Pd3 ∧ . . . ∧ ¬♦Pd9

· · ·

S, c � 2P(d1⊗d2)

(B) PMD2

S, c � ♦Pd1 ∧♦Pd2 ∧♦Pd3

S, c � ¬♦Pd4 ∧ . . . ∧ ¬♦Pd9

· · ·

S, c � 2P(d1⊗d2⊗d3)

(C) PMD3

FIGURE 2.6: PMD: Pencil Mark Duality ND-Rules

A strategy less obvious than Cell Based Elimination is the duality of Pencil Marks.
Generally speaking, with a total of n digits, if in a certain cell there are m PM’s
possible and n − m PM’s not possible, this means that the digit to fill in must be
either one of the m Pencil Marks. One could see this as a matter of rephrasing, or as
a way of describing the 2P/♦P-duality. In Figure 2.6 the ND-rules for PMD1 through
PMD3 are shown. If a certain amount of dx’s are possibly the case in cell c and all
the other dy’s are not possible in c, then either one of these dx must be the case. It is
evident that PMD1 is an edge case, where if only one PM is possible, this must be
the digit to fill in this cell.
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2.3.3 House Based Elimination (Beginner)

S, c1 � 2Pd

c1Gc2

· · ·

S, c2 � ¬♦Pd

FIGURE 2.7: HBE: House Based Elimination ND-Rule

Also, according to the rules of sudoku, each house can contain all digits exactly once
(2.1.1). From this, an easy strategy named House Based Elimination (HBE) follows
directly: ”If a cell in a house already contains a digit, another cell in the same house
cannot contain the same digit”. From this, a simple ND-rule follows, as shown in
Figure 2.7. If d must be the case in cell c1 and c1 is in the same house as c2, then it is
not possible that d in c2. This is the first rule that contains an accessibility relation, as
one of the premisses is that the cells can access each other through a House (Group)
relation.

Note the similarity between this rule and Cell Based Elimination (2.3.1), the only
difference being that this strategy adds a second cell in the same house. CBE could
therefore also have been achieved by making each house relation not only transitive,
but also reflexive. Then HBE would have sufficed to also find the same steps as CBE.
This way is chosen, as it is deemed more intuitive that CBE would be its own rule.

2.3.4 Last Remaining Cell (Beginner)

S, c � 2G¬♦Pd

S, c � ♦Pd

· · ·

S, c � 2Pd

FIGURE 2.8: LRC: Last Remaining Cell ND-Rule

Consequently, if each house must contain all digits exactly once (2.1.1), another easy
strategy, named Last Remaining Cell (LRC), can be derived: ”If all the other cells in
the same house cannot possibly contain a certain digit, then this cell must contain
that digit”. From this, an ND-rule follows, as show in 2.8. If for every cell reachable
from cell c through a house relation d is not possible, yet and for c it is the case that
d is possible, then c must contain d. Note that S, c � 2G . . . is used as short-hand to
state that “For every cell in a certain house reachable from cell c, . . . must hold”.



Chapter 2. Formalisation 11

2.3.5 Pencil Mark Introduction (Beginner)

S, c � 2H¬2Pd

S, c � 2V¬2Pd

S, c � 2B¬2Pd

· · ·

S, c � ♦Pd

FIGURE 2.9: PMI: Pencil Mark Introduction ND-Rule

To be able to place a new Pencil Mark in a cell, one must use the Pencil Mark Intro-
duction (PMI) strategy. If each house can contain all digits only once (2.1.1), it must
be so that ”If in none of the three houses of a cell another cell must contain a digit,
this cell can possibly contain this digit”. From this, an ND-rule follows, as shown in
2.9. The rule is that if for every cell reachable from cell c through each of its house
relations (horizontals, verticals and blocks) it is not the case that it must contain d,
then it is possible for c to contain d.

2.3.6 Naked Tuples Elimination (Intermediate)

S, c1 � 2P(d1⊗d2)

S, c2 � 2P(d1⊗d2)

c1Gc2 ∧ c1Gc3

· · ·

S, c3 � ¬♦Pd1

(A) N2E

S, c1 � 2P(d1⊗d2⊗d3) ∨2P(d1⊗d2)

S, c2 � 2P(d1⊗d2⊗d3) ∨2P(d2⊗d3)

S, c3 � 2P(d1⊗d2⊗d3) ∨2P(d1⊗d3)

c1Gc2 ∧ c1Gc3 ∧ c1Gc4

· · ·

S, c4 � ¬♦Pd1

(B) N3E

FIGURE 2.10: NTE: Naked Tuples Elimination ND-Rules

The Naked Pairs Elimination (N2E) strategy works as follows: ”When two cells
in the same house contain the exact same two pencil marks and only these pencil
marks, these pencil marks can be removed from other cells in this house”27. The
intuition is that when there are just two digits possible in two cells, it is not possible
for other cells in this house to contain these digits. The corresponding ND-rule is
2.10a If there are two cells c1 and c2 that must contain either d1 or d2, a third cell c3 in
the same house cannot possibly contain d1 (or d2, for that matter, which is achieved
by switching the d1 and d2 when using the rule).

This strategy is not as easily generalizable as other strategies, as the Naked Triples
Elimination (N3E) deviates slightly from its Pairs variant. It is described as follows:
“When three cells in the same house each contain a different subset of these three



Chapter 2. Formalisation 12

pencil marks, it is not possible for other cells in this house to contain these num-
bers”27. This means that it is either possible that these three cells contain either the
exact same three pencil marks or only a couple of these pencil marks. An explana-
tory example of this can be seen in Figure 2.11.
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In Row E, in the centre Block, are the
cells cE4, cE5 and cE6 containing the
PM’s 5 ∧ 8 ∧ 9, 5 ∧ 8 and 5 ∧ 9 respec-
tively. Together, those three cells con-
tain three different subsets of 5∧ 8∧ 9.
All premises for a Naked Triple Elim-
ination are found! This allows us to
remove those numbers from the rest
of the cells in the house this Triple is
aligned on, Row E. This means that
in cE1 PM 5 can be removed, in cE3
PM 5 can be removed, in cE7 PM’s
5 ∧ 8 ∧ 9 can be removed and in cE8
PM 5∧ 8∧ 9 can be removed.

FIGURE 2.11: Explained example of Naked Triple Elimination27

The corresponding ND-rule is 2.10b. If there are three cells c1, c2 and c3 that must
contain either d1, d2 or d3 or must contain a different pair of d1, d2 or d3, a fourth
cell c4 in the same house cannot possibly contain d1 (or d2/d3, for that matter, which
is achieved by switching the d1, d2 and d3 when using the rule). Note that this rule
explicitly leaves out subsets of size one (S, cx � 2Pd1), as this would mean that such
a cell cx must contain that digit, which leaves the two other considered cells with
only two optional digits, so this would then be a case for Naked Pairs Elimination.

2.3.7 Pointing Tuples Elimination (Intermediate)

Where the Naked Tuples Elimination does not generalise well, the Pointing Tuples
Elimination (PTE) scales pretty easily. This rule is defined as follows: “If any one
pencil mark occurs twice or three times in just one block, then we can remove that
pencil mark from the intersection of a line”26. This means that if two or three cells in
the same row/column and same block contain the same PM, this PM can be removed
from all other cells in this row/column. An explanatory example of this can be seen
in Figure 2.12. Note that this example contains only two horizontal P2E’s, but it
should be evident, as Sudokus can be rotated, that this rule works on verticals too.
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Here are two Pointing Pairs at the
same time. In the upper right Block
only two cells, cB7 and cB9 contain PM
3. These cells are both in the same
Row, Row B. All premises for a Point-
ing Pair Elimination are found! This
allows us to remove the 3 from all
other cells in Row B. This means that
in cB1, cB2 and cB3 PM 3 can be re-
moved. The same rule applies in Row
G, with only two cells, cG4 and cG5
in the lower Block containing PM 2.
This means that in cG2 PM 2 can be re-
moved.

FIGURE 2.12: Explained example of Pointing Pairs Eliminations26

From this, two ND-rules are derived, as shown in 2.13. As far as P2E goes (2.13a),
if two cells c1 and c2 in the same box and line can possibly contain d and if all other
cells in this box cannot possibly contain d, then for all cells on that same line it is
also not possible that d. In this case, P3E (2.13b) has almost exactly the same rule,
with the only difference with P2E being that an additional cell c3 on the same line
also has to potentially contain d. Note that a Triple is the largest Tuple possible for
this rule, as there can only be three cells in the same line and the same block, as the
intersection of blocks and lines consists of a small line of three cells.

S, c1, c2 � ♦Pd

S, c3, . . . , c9 � ¬♦Pd

c1Bc2 ∧ . . . ∧ c1Bc9

c1Lc2 ∧ c1Lc10

· · ·

S, c10 � ¬♦Pd

(A) P2E

S, c1, c2, c3 � ♦Pd

S, c4, . . . , c9 � ¬♦Pd

c1Bc2 ∧ . . . ∧ c1Bc9

c1Lc2 ∧ c1Lc3 ∧ c1Lc10

· · ·

S, c10 � ¬♦Pd

(B) P3E

FIGURE 2.13: PTE: Pointing Tuples Elimination ND-Rules
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2.3.8 Hidden Pair Elimination (Advanced)

S, c1 � ♦Pd1 ∧♦Pd2 ∧♦Pd3

S, c2 � ♦Pd1 ∧♦Pd2

S, c3, . . . , c9 � ¬♦Pd1 ∧ ¬♦Pd2

c1Gc2 ∧ . . . ∧ c1Gc9

· · ·

S, c1 � ¬♦Pd3

FIGURE 2.14: H2E: Hidden Pairs Elimination ND-Rule

As its name implies, Hidden Pair Elimination (H2E) is all about finding a pair of
hidden candidates. It is defined as follows: ”If two cells in the same house contain
two of the same pencil marks, and it is known that all other cells in this house cannot
contain these digits, this must be a pair and thus every other pencil mark in these two
worlds can be removed”25. The fact that this concerns candidates who are often very
well hidden between other candidates is what makes this strategy so difficult. For
such a long and maybe convoluted definition, an explanatory example is in place.
This can be seen in Figure 2.15.
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In this Sudoku there are Hidden Pairs
in the Block in the upper right corner.
Of this Block, only cells cA8 and cA9
can possibly contain the PM’s 6 ∧ 7.
This is because all the other possi-
bilities in this Block are restricted by
the cells cB4, cB6, cC2, cC3, cF7 and
cG6, containing either a 6 or 7. All
premises for a Hidden Pairs Elimina-
tion are found! This allows us to re-
move all other PM’s from cells cA8
and cA9. This means that in cA8 PM’s
2∧ 3∧ 4∧ 5∧ 9 can be removed and in
cA9 PM’s 3∧ 4∧ 5∧ 9 can be removed.

FIGURE 2.15: Explained example of Hidden Pairs Elimination25

From the given definition, the corresponding ND-Rule is defined in 2.14. If two cells
c1 and c2 in the same house can possibly contain two digits, d1 and d2, and if these
digits are not possible in any other cell in the house, if one of the cells could possibly
contain another digit d3, this cell cannot possibly contain d3 any more.

While Hidden Triple Elimination (H3E) exists as well, it scales extremely poorly
from H2E because it has side clauses similar to N3E (2.10b) and previous research
has deemed it as rather useless23, which is why it is chosen not to formally define
this strategy.
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2.3.9 X-Wing Elimination (Advanced)

S, c1, c2 � ♦Pd

S, c3, . . . , c9 � ¬♦Pd

c1Hc2 ∧ . . . ∧ c1Hc9

S, c10, c11 � ♦Pd

S, c12, . . . , c18 � ¬♦Pd

c10Hc11 ∧ . . . ∧ c10Hc18

S, c19 � ♦Pd

c1Vc19 ∨ c10V19

· · ·

S, c19 � ¬♦Pd

(A) Horizontal XWE

S, c1, c2 � ♦Pd

S, c3, . . . , c9 � ¬♦Pd

c1Vc2 ∧ . . . ∧ c1Vc9

S, c10, c11 � ♦Pd

S, c12, . . . , c18 � ¬♦Pd

c10Vc11 ∧ . . . ∧ c10Vc18

S, c19 � ♦Pd

c1Hc19 ∨ c10H19

· · ·

S, c19 � ¬♦Pd

(B) Vertical XWE

FIGURE 2.16: XWE: X-Wing Elimination ND-Rules

The most difficult strategy concludes this list of strategies. X-Wing Elimination
(XWE) is defined as follows: ”When there are only two possible cells for a certain
candidate in each of two different rows and these candidates also lie in the same
columns, then all other candidates for this value in the columns can be eliminated.
The reverse is also true for two columns with two common rows”28. This definition
shows that XWE can be done both horizontally and vertically, which is why this
strategy is split into Horizontal XWE (HXWE) and Vertical XWE (VXWE). This is a
very complicated strategy to grasp without a visual example. To clear things up,
such an explanatory example is shown in Figure 2.17.

From the given definition, two corresponding ND-Rules are defined, as shown in
2.16. This is by far the longest Rule of all of the strategies, as many premisses have
to be checked. For rule 2.16a to work, there must be two pairs of cells – the first pair
being c1 and c2 and the second pair being c10 and c11 – that are the only potential
holders of digit d of their horizontal. These horizontal pairs must also be divided
into two Verticals, so c1 and c10 must be in the same vertical and c2 and c11 too.
Then, if none of the other cells in one of the rows can potentially contain d, it must
be that any cell in either one of the Verticals cannot contain d either. This can be
understood in a way that d is in either one of the cells of the pairs in the Vertical, so
it cannot show up anywhere else in the Vertical. Rule 2.16b works exactly the same,
only difference being that all the vertical and horizontal relations are swapped.



Chapter 2. Formalisation 16

A

1

B

2

C

3

D

4

E

5

F

6

G

7

H

8

I

9

4 8 7 9

5 8 2 7

7 5 4 1 6 8

3 8 5 2 1 9 4 7 6

7 6 2 3 5 4 8 9 1

4 1 9 6 7 8 5

8 7 6 4 3 5

4 6 2 8 7

8 7 6

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

In this sudoku there is a Vertical X-
Wing Elimination to be found. Row
C and Row H both contain a pair of
cells, in which there can potentially be
a 3 (cC2 and cC7 form one pair, cH2 and
cH7 form the other). All of the other
cells in these Rows cannot contain a
3. These two cells are also in the same
Columns, namely Column 2 and Col-
umn 7. All premises for a Vertical X-
Wing Elimination are found! This al-
lows us to remove all other 3’s from
the cells in both Columns. This means
that in the cells cA7, cF7 and cI2 PM 3
can be removed.

FIGURE 2.17: Explained example of X-Wing Elimination4

For clarity’s sake, the different rows are stated in the ND-rule on multiple lines. So,
while not recommended, this rule can be shortened by merging its first three lines
with its second three lines, losing clarity in the process. So, to conclude, the tricky bit
of this strategy is that it is not applicable often23 and that it needs a lot of premises
to eliminate very little information, which makes it a strategy that is only useful on
specific occasions.

2.3.10 Guessing

Guessing is defined as “placing a digit in a cell without logical reasoning29”. This
definition is debatable, as there can be some thought about how one would guess
and if one could tactically guess. If all strategies fail, an educated guess could be
made by filling a cell with an allowed digit and see whether a solution can be gen-
erated from this point. Even if that fails, knowledge is gained: this cell digit cannot
contain this digit. This is how many backtracking algorithms work and what one
would logically do when getting stuck. The use of guessing could therefore be seen
as a last resort.

For the purpose of this thesis, though, this definition is used and guessing will not be
allowed by the algorithm and therefore by the helper. This is because I am interested
in the performance of these strategies, while with enough guessing someone can
eventually solve any problem.



Chapter 2. Formalisation 17

2.4 Complexity and Structural Analysis

In this final Section the logical Chapter will be concluded by Analysing the complex-
ity of the gained ND-ruleset (2.4.1) and their structural coherence (2.4.2).

2.4.1 Complexity Analysis

Complexity Difficulty Strategy Abbr. Subsection
Classic General

1 1 Implicit Cell Based Elimination CBE (2.3.1)
1 1 Easy House Based Elimination HBE (2.3.3)
2 2 Implicit Conjunction Introduction ∧I (2.1.3)
2 2 Medium Naked Pairs Elimination N2E (2.3.6)
6 6 Medium Naked Triples Elimination N3E (2.3.6)
9 n Implicit Pencil Mark Duality (Single) PMD1 (2.3.2)
9 n Implicit Pencil Mark Duality (Pair) PMD2 (2.3.2)
9 n Implicit Pencil Mark Duality (Triple) PMD3 (2.3.2)
9 n Easy Last Remaining Cell LRC (2.3.4)
9 n Medium Pointing Pairs Elimination P2E (2.3.7)
9 n Medium Pointing Pairs Elimination P3E (2.3.7)
19 2·n+1 Hard Hidden Pairs Elimination H2E (2.3.8)
19 2·n+1 Hard X-Wing Elimination XWE (2.3.9)
24 3·(n-1) Easy Pencil Mark Introduction PMI (2.3.5)

TABLE 2.2: Strategies ordered by analysed complexity

As stated before, strategy difficulty and strategy complexity are not the same. A
strategy could be very easy to understand, but complex to perform. While difficulty
can be subjective – a human player could have their preferred strategies – complexity
can be an objective and thus useful measure. The strategy complexity is defined in
Definition 2.4.1. Each strategy’s complexity is analysed and shown in 2.23.

Definition 2.4.1 (Strategy Complexity).
the complexity of a strategy is the amount of cells × the amount of PM’s to consider

Comparing the complexity and difficulty in Table 2.2 shows that some easy strate-
gies are indeed much more complex than others. It is noticeable in strategies with
Tuples that as the Tuples grow larger, the more complex the strategies become. Also,
it is evident that Pencil Mark Introduction is a great example of an easy strategy (to
grasp and to perform), but the most complex of all to execute as a player would have
to check the contents of 24 cells.

This complexity analysis is a great finding, to be used in the algorithm, as one would
logically prefer searching for less complex strategies. Instead of just trying to per-
form any found strategy, also keeping its complexity into account is therefore a step
in making the algorithm more like a human solving process.

3Note that its analysed complexity is split into Proper Sudoku (left column) and General Sudoku
(right column). This works because all the
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2.4.2 Structural Analysis

When analysing all of these rules created in Section 2.3 , I notice that all of the pre-
misses and conclusions are ultimately linked with each other in a coherent structure.
This makes sense, as Sudoku is a puzzle of eliminating possibilities and gaining
knowledge about what digits must be filled in. Every bit of new knowledge the
player gains leads to gaining more new knowledge until the puzzle is solved. Each
breakthrough by the use of a rule leads to new potential breakthroughs. But how
are these rules related, exactly? Extensive analysis of the form4 of the premisses and
conclusions of each ND-rule, results in the following Strategy Graph, Figure 2.185.

Note that Kripke Models and graphs like the Strategy Graph are different structures.
From now on, when discussing graphs instead of worlds and accessibility relations,
the terms nodes/vertices and edges are used.

2Pd

¬2Pd

¬♦Pd

♦Pd

2P(d⊗d) 2P(d⊗d⊗d)

End

Start ♦Pd ∧ ¬♦Pd

PMI

XWE

∧I

∧I

PMD2

PMD3

N3E

N2E,
N3E

CBE, HBE

HPE,
P2E,
P3E

PMD1

LRC

FIGURE 2.18: Strategy Graph of how all strategies relate to each other.
Its nodes contain the form of the formulas used by the strategies. Its

edges are labelled with strategies.

The workings of this Strategy Graph need some explanation. As shown in the Fig-
ure, each Sudoku starts with the digits that are necessary and those that aren’t nec-
essary in each cell (2Pd and ¬2Pd). From these nodes, different strategy edges can
be traversed to reach other nodes. PMI, for example, has ¬2Pd as premise and some-
thing in the form of ♦Pd as conclusion. This graph can be traversed until a solution
is found and the End node is reached. This happens when 2Pd holds for every cell,
directly corresponding to Sudokus goal as defined in 2.2.4.

4Note that because this Graph is about the form of the formulas and not their specific meaning,
everything in Figure 2.18 is called d.

5Note that Conjunction Introduction, as seen before (2.2) is added to the Strategy Graph as a four-
teenth strategy. This is because when a cell is updated with a ♦Pd or ¬♦Pd, there needs to be checked
if it now contains formulas of the form ♦Pd ∧ ¬♦Pd.
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It is evident from the Graph that to solve the easiest sudoku no strategies are re-
quired, as one can get from the start node to the end node without travelling over
any strategy edges. This is because the easiest sudoku to solve is an already com-
plete sudoku! In the edge case where the Sudoku is already entirely filled in at the
start, all cells would contain formulas of the form 2Pd and the End node would be
reached immediately. While its shortest path is easy to find, it is not possible to find
a longest path in the Graph. This is because the Graph is a cyclic graph; it contains
loops. It is not possible to analyse a longest path, but a lot of information on how
these strategies relate to each other can be extracted.

This coherence of strategies is interesting for multiple reasons, because it provides us
more insights on the order of these strategies. It is evident that most of the strategies
(8 out of 14) end up at ¬♦Pd, these all eliminate some digit possibility. Sudoku truly
is a game of removing possibilities. It can also be seen that some strategies need
other strategies to be useful. For example, LRC and XWE can only be performed if
PMI can be performed. And the other way around too, as PMD3 is only useful when
N3E can be performed as well. The Graph also shows how XWE is only useful in
specific situations, but that there are other, easier ways to end up in the ¬♦Pd-node.
These insights are useful for this research, as well as for puzzlers learning how to
solve Sudoku as they could derive from this Graph what would be useful strategies
to learn in addition to their current skill set.

This structure is a direct improvement to earlier research, where topological order-
ings are made based on linearly checking each strategy in a row15. Instead of this, a
topological ordering can be made based on gained logic based knowledge about the
coherence of these rules. For this purpose, the strategy graph will be used as a data
structure for our algorithm.

Basing a data structure on logical coherence seems like a good plan for an efficient
algorithm, because unnecessary steps can be filtered out. There is no need to check
if the puzzle is finished after each step, only if you are in the 2Pd-node. This cor-
responds to human behaviour as well, as trivially humans do not ponder whether
they are done after each performed strategy, only when they feel they have filled in
the last cell. There is also no need to check each strategy for each cell, as they can be
checked for only the updated cell. Improvements like this make it very useful to use
such a logical data structure when creating a good solving algorithm, because these
side clauses do not need to be incorporated into the search algorithm itself. In other
words, an intelligent data structure makes a simple search to be effective enough.

It is a very flexible data structure, as it gives an excellent overview on the strategies.
If one would want to solve a sudoku without the use of a certain strategy, all that
needs to be done is to remove its strategy edge from the Graph. This works the other
way around too as when new strategies are needed, these can be added to the struc-
ture. Also, the beauty of this is that because all the rules work for a General Sudoku,
this structure does too. The solving steps for a larger Sudoku would remain the
same. Even in Sudoku variants with extra houses, such as Diagonals, this structure
would still work. If sudoku variants contain extra rules, their corresponding strate-
gies could be added to the Graph! Therefore, this structure works for all Sudokus
and various variants. Even so, due to the logical nature of the rules, such a structure
could also be deducted for other logical puzzles that require the same kind of logical
eliminative thinking. Therefore, this logical analysis could be done not only for all
Sudoku variants, but also for multiple other logical puzzles, like Nonograms30 and
Logic Grids19. More on this flexibility will be discussed in Chapter 4.



20

Chapter 3

Algorithmic Implementation
In this Chapter I will introduce a Sudoku solving system. This system heuristically
searches for a next best strategy, based on the complexity deduced and stated in Ta-
ble 2.2, in combination with the graph consisting of all the strategy ND-rules (Graph
2.18). Because of this, the system is called the ‘Helping Heuristic Alethic Natural De-
duction’-system, or ‘Helping HAND’, for short.

This Chapter consists of three Sections in which I will talk about the code of the
weighted graph search algorithm (3.1), testing the algorithm (3.2), and the visual
application (3.3).

Both the search algorithm and the visual application are programmed in the pro-
gramming language C#. While I made it a goal to code as efficiently as possible, the
program still counts over 1500 lines of code. As a lot of this code is used to make
the application look visually appealing and is therefore not semantically relevant, I
did not include the entire program in the Appendix. The full program is available
on Github (see link in Chapter 4). In Appendix A, the code for each of the strategy
methods can be found.

3.1 Weighted Graph Search Algorithm

The algorithm behind the Helping HAND-system is a weighted graph search based
algorithm. To explain how the program works, I wrote the algorithm in pseudocode
as well, which can be found in Algorithm 1. The algorithm takes four inputs: a
Sudoku, a Graph and two of its vertices. The Graph is created by adding weights
based on the found Strategy Complexity of Table 2.2 to the corresponding edges of
Strategy Graph 2.18. The starting vertices v0 and v1 correspond to the starting nodes
in Strategy Graph 2.18 that hold ¬2Pd and 2Pd respectively.

The algorithm works in two parts. In the first part, it assigns a starting vertex for
each cell in the sudoku (see lines 4 - 8 in Algorithm 1), based on whether the cell
holds a given or not. This can be seen as the initialization part of the algorithm.
In the second part –the iteration part– it will keep considering new pairs of cells
and vertices and their outgoing edges, which are new strategies to perform, until no
more steps can be taken.

This algorithm is heavily based on Depth-first Search31 in the sense that it uses a
Stack as data structure to keep track of the vertices. Consequently, it searches for
a strategy to perform and it will continue with the updated cell in the next step.
Because the graph it searches through is weighted with strategy complexity, it will
pick the least complex strategy in every step it takes. The graph’s weighted edges
are sorted beforehand, so the first strategy in the list of outcomes (see line 13, 14 and
18 in Algorithm 1) will always be the least complex at that point in the graph.
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Algorithm 1 Sudoku Solver Search Pseudocode

1: input: Sudoku S, graph G, starting vertices v0 and v1
2: procedure SUDOKUSOLVESEARCH(S, G, v0, v1)
3: let St be a Stack . of vertex,cell-tuples 〈v, c〉
4: for all c ∈ S do . push each cell to the stack
5: if c.boxlist is not empty then
6: St.push(〈v0, c〉)
7: else
8: St.push(〈v1, c〉)
9: while St is not empty do

10: 〈v, c〉 ← St.pop() . consider next vertex,cell-tuple
11: for all directed edges e in G from v to w do
12: if e.IsAllowed then
13: let L be a List . of strategy outcomes (〈cu, ϕ〉-tuples)
14: L← e.strategy(c) . try strategy and return outcomes
15: if L.Length > 1 then . more than one update possible
16: St.push(〈v, c〉) . save this strategy for later
17: if L is not empty then
18: apply first strategy of L to cell cu . Update Cell in Sudoku
19: St.push(〈w, cu〉)

3.2 Testing

The algorithm is tested for multiple reasons, of which the first is simple; testing is
necessary to see if the algorithm works as intended. The second reason is more
complex, as it is interesting to find out which strategies are needed to solve Sudokus
of different difficulties. The latter can then be used in the Visual Application, as
Helping HAND can use this data to offer its user advice on the strategies. For testing
purposes, a dataset is created. This dataset is explained (3.2.1) and analysed (3.2.2).

3.2.1 Dataset Choices

While multiple extensive Sudoku datasets exist21, 22, none of these include grading
on its puzzle difficulty. This is why I decided to create a dataset on my own. Multiple
websites exist that generate free-to-use graded sudokus. I chose to use a simple
website, which generates multiple graded sudokus and their solution. This website
can be found in the Links section in Chapter 4.

Sudokus are often found online as visual two-dimensional puzzles in PDF-format, as
are the sudokus from this website, but the algorithm does not have a way of visually
recognising and importing these kinds of puzzles. As such, a non-visual dataset is
required. For this, I converted each sudoku into a string of digits, with each digit in
the string corresponding to the given in each cell. For empty cells the corresponding
digit is 0. Each sudoku is then tagged with its difficulty and given a unique index.
This dataset can be found in Appendix B.

The dataset consists of ten Easy sudokus, ten Medium sudokus and ten Hard su-
dokus, as graded by the website. I chose for a total of 30 sudokus, as this test is
intended to show what kind of sudokus can be solved. With this purpose in mind,
the dataset does not need to be large at all, it merely needs to reflect the range in
difficulty between different sudokus.
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3.2.2 Data Analysis

Four subsets of strategies are tested against the dataset of three graded categories.
These subsets consists of all strategies up to the Implicit (Implicit), up to Beginner
(≤Beginner), up to Intermediate (≤Intermediate) and up to Advanced (≤Advanced)
strategies. The results are shown in Figure 3.1.
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FIGURE 3.1: Grouped Bar Chart of amount of graded Sudokus solved
by different subsets of Strategies.

First of all, Figure 3.1 confirms that the algorithm can solve sudokus! This confirms
that the C# implementation of the Weighted Graph Search and the C# implementa-
tion of all the strategies (Appendix A) work as intended. The Figure also gives us a
good grasp of what kind of sudokus can be solved by which strategies.

As discussed earlier on, Implicit strategies merely have an assisting purpose to other
strategies. It is therefore unsurprising to see in Figure 3.1 that the Algorithm can-
not solve any sudokus by using just the Implicit strategies. By using the Implicit
and Beginner strategies, the algorithm can solve some Easy sudokus, but no oth-
ers. Adding the use of Intermediate strategies results in a spike in amount of Easy,
Medium and Hard sudokus solved. The addition of the two Advanced strategies
slightly increases the amount of sudokus solved even further.

The clear incline of the mean of amount of Sudokus solved (blue line in the Figure) is
exactly the desired outcome. This means that as more advanced strategies are used,
more sudokus can be solved, which implies the categorisation of strategy difficulty
is pretty good. It is also apparent that not all of the sudokus can be solved by the
solver. This means that more strategies would be needed to accomplish this. It can
be said that this selection performs really well, but not perfectly. More on this will
be discussed in Chapter 4.
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A selection is made of the sudokus that can be solved. This selection consists of
Easy sudokus that can be solved by ≤Beginner strategies, Medium sudokus that
can be solved by ≤Intermediate strategies and Hard sudokus that can be solved by
≤Advanced difficulty strategies. This selection of sudokus will be used by the Visual
Application, which makes it so the solver can give advice based on the data. More
on this advice is discussed in the next section.

3.3 Visual Application
In this final section, the Algorithmic Chapter is concluded by discussing the visual
design choices and workings of the Visual Application.

I’ve created a Visual Application, Helping HAND, as shown in Figure 3.2. For read-
ability purposes, certain parts from the program are highlighted in the Figures 3.3,
3.4, 3.5 and 3.6. The interface contains a visual Sudoku grid, an input and output
field for Sudokus in string form above and below the grid, multiple strategy selec-
tion buttons on the right of the grid, sudoku puzzle selection buttons and a Solve
and Help button in the upper right corner and informatory labels.

In short, the program works as follows: A user can either input a sudoku in string
form or select a sudoku of difficulty of choice. Then the user can either decide to let
Helping HAND solve the sudoku for them in one go or make Helping HAND help the
user step by step.

FIGURE 3.2: The Visual Application Helping HAND’s interface

Figure 3.3 shows four buttons that let the user choose what kind of Sudoku to show.
When the FROM INPUT button is pressed, Helping HAND will convert the Sudoku
in string form into a visual Sudoku, which will be shown on screen. When either the
EASY, MEDIUM or HARD button is pressed, Helping HAND will select one of the
graded sudokus from the dataset (Appendix B). This way Helping HAND does not
have to generate any sudokus with validated grading itself, because at this point in
the research, this is not a relevant goal. See Chapter 4 for potential future researches.
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FIGURE 3.3: The FROM INPUT, EASY, MEDIUM and HARD buttons
are for sudoku selection purposes. The SOLVE and HELP buttons
will let Helping HAND solve the selected Sudoku, either in one go or

explaining along the way.

Before solving a sudoku, a user can toggle the Strategy Buttons as shown in Figure
3.4. Helping HAND will only use the selected strategies in its search algorithm when
solving a sudoku, so this way a user can choose whichever strategies they want the
program to use, as these can be the strategies the user know how to use.

FIGURE 3.4: An example of toggled Strategy buttons, with the Begin-
ner and Advanced strategies turned off. When solving, helping HAND

will now only use the Implicit and Intermediate strategies.

When the SOLVE button is pressed, as shown in Figure 3.3, Helping HAND will
run the search Algorithm (Algorithm 1) on the Sudoku shown on its screen and will
visually solve each step on the sudoku, as seen in Figure 3.5. It will solve the sudoku
as much as possible, with the strategies given.

When the HELP button is pressed, as shown in Figure 3.3, Helping HAND will first
try to apply the search Algorithm without showing it to the user. It then reports
whether or not the sudoku can be solved with the given strategies. If the sudoku
cannot be solved, Helping HAND will give advice on how to improve its solving by
selecting more strategies, based on the data analysis in 3.2.2.
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FIGURE 3.5: A sudoku in the middle of being solved by Helping
HAND. Givens are black digits while cells filled by the algorithm
are green digits. PM’s considered possible are small green digits and

PM’s considered impossible are red small strike-through digits.

If the selected sudoku can be solved when HELP is pressed, Helping HAND will
explain for each step why the next strategy is chosen and how it can be applied.
Such an explanation is shown in Figure 3.6. A STEP button appears, which the user
can press to continue with the next step. A SKIP button also appears, which the user
can press to skip any of the same strategies for the rest of the solving process. This
way, the Helping HAND does its job as a transparent logical helper algorithm. More
on this will be discussed in Chapter 4.

FIGURE 3.6: Advice given by Helping HAND during one of its solving
steps.
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Chapter 4

Discussion
In this final Chapter I will discuss the strengths and shortcomings of the logical
analysis and the algorithmic implementation. Furthermore, I will explore sugges-
tions for further research and elaborate on the implications of the results for the AI
community, possibly even for our daily life.

General Discussion: The Logic
Regarding the Alethic formalisation of the sudoku, there are no concerns. The entire
logic framework is built with the Classic Sudoku in mind, but it needs little adjust-
ment to work for General Sudokus as well. The formalisation of the sudoku puzzle
itself works great, but the Natural Deduction rules get more convoluted the more
complicated the strategies get. This problem occurs because ND does not have a
way to concisely talk about things such as amounts of cells. For example, 2G is used
when referring to all reachable cells in a house, but referring to things like “two cells
and none of the other in a row” (See Rule 2.13a), for each of the cells there needs to
exist a separate pattern match, which makes the process of the rules cumbersome.
Additional strategies should not become much more complex, as many more Ad-
vanced strategies exist and the Alethic formalisation might fall short.

General discussion: The Strategies
When choosing 13 of the most popular strategies, I assumed their difficulty level was
correct. From the data it shows that these strategies are indeed categorised correctly
and also sufficient to solve many sudokus of various difficulties. The test results also
show that I added the right strategies. All strategy subsets were needed to solve the
different sudokus. This shows that besides a good test, and apt logical formalisation
of the rules, I also chose the right amount and the right difficulty of strategies. Yet,
as concluded earlier, it would be a welcome addition to add more strategies to solve
more or even all sudokus.

A lot has already been discussed in the Structural Analysis (2.4.2) about the logical
coherence of the strategies. As concluded there, the Strategy Graph is a flexible
data structure, which gives a great overview of the logical coherence. Because of
its flexibility, this structure would also work for other Sudoku variants. While this
structure works specifically for sudokus, I believe it says something in general about
how people solve logic puzzles. I believe that such a logical structure in terms of
Alethic Logic can be made for other (eliminative) logic puzzles, because many other
logical puzzles contain similar solving steps, which can be analysed in similar ways.

To assist human puzzlers, the algorithm needed solve puzzles like a human. I think
I succeeded in this by implementing the human strategies. It is not without reason
that the largest part of this thesis is spent on the logical analysis. This extensive re-
search on sound logic behind the strategies makes for a simple yet sound algorithm.
Thus, prioritising the strategies really paid off for creating the algorithm.
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General Discussion: The Algorithm
The logical structure makes that the Algorithm, albeit based on a very simple way of
searching, is actually a very clever way of solving Sudokus. This because, to reiterate
what has been concluded in Chapter 2, an intelligent data structure makes a simple
search to be effective enough. The generalisability of the algorithm is therefore great
as well, as no adjustments to the algorithm are needed to add more strategies to the
weighted graph. This means that the Algorithm in its current state would work for
other sudoku variants as well, as well as other logic puzzles.

One thing that could be looked at is the weight analysis for the weighted graph.
I have now merely based the weights on what is logically the best step in terms
of strategy complexity, but factors such as strategy frequency could potentially in-
cluded in the weights. A more extensive research could be conducted on how often
these strategies actually occur when solving different types of sudoku.

Something else that could be researched in regards of the algorithm is its choice
of programming language. Because of the algorithm and the visual solver I chose
to write the code in the imperative language C#, but it would be interesting to see
the strategies implemented in a declarative language such as Haskell, because that
would suit the logical nature of the rules better. Some strategies where rather diffi-
cult to implement in C#, like N3E (2.10b), because it matches on so many different
specific patterns of propositions.

General Discussion: The Visual Application
While the Visual Application Helping HAND works successfully, some additions
could be made which would take too much time or did not fit the purpose of this
thesis research. For instance, as the logic behind the strategies could work for gen-
eral sudokus and therefore the algorithm too, Helping HAND could be expanded to
include solving larger Sudokus.

Another expansion that would improve the system would be to include interactivity
with the sudoku grid, by letting a user fill in cells on their own. This would turn
the Visual Application into more of a helper playing alongside the user and thus a
slightly better training program. Though, having the system be able to pick up from
any point instead of just the start would need a minor adjustment in the algorithm,
as the starting vertices would also have to hold filled PM’s into account.

A final possible addition would be error detection. This would involve detecting
whether a user makes any mistakes and offering them advice to go a few steps back
and retry. This could be done by keeping track whether a potential solution still
exists.

With these additions in mind, I think the biggest improvement on the Solver –and
therefore the most interesting possible follow up research– could be to let the pro-
gram figure out which strategies are used by human puzzlers. As of right now, users
have to select their strategies in the program themselves. Instead of this, it would be
interesting to have the program learn what kind of strategies are known by the user
and which strategies it can assist with. To achieve this, Helping HAND could be used
as a tool to let people solve Sudokus in a controlled environment. When test subjects
get stuck they can ask Helping HAND for a next step/strategy. This way one would
be able to map the usefulness of the strategies, which yields a way more objective
way of grading. Such a database could then be used to learn what kind of strategy
is useful, by the use of some kind of Machine Learning. The result of this would be
a program in which users can solve sudokus and the program could find out their
patterns and frequencies on its own, being able to assist where necessary.
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Conclusion
The question remains whether the Helping HAND system can be classified as Ex-
plainable Artificial Intelligence. I think the system in its current state is too heavily
based on user input to be able to do so. The system does however involve a form
of solving like human players, as it performs human strategies. If some form of
learning was added as proposed earlier, one could let a system learn which human
strategies are used instead of user selecting them themselves. I believe that this
would be the crucial step to the system becoming XAI.

In conclusion, –to answer the research question– it is possible to build a transparent
logical algorithm, which solves sudoku’s based on human strategies. This can be
done by basing a logical framework on how we consider sudoku strategies in terms
of necessity and possibility and extracting a structure of how these strategies relate
to each other logically. Then creating a search algorithm based on that structure,
which can therefore explain each step taken, which means it can help people based
on this Heuristic Alethic Natural Deduction.

I believe this research proves to be a valuable next step in the field of AI, but also in
other fields, as logic is all around us. While this research explicitly focusses on su-
doku solving, many more logical challenges are to be found. The same logical and
algorithmic approach is useful to support many more important decision making
tasks. Because no matter what kind of work is done, if just with puzzles or compli-
cated logic based jobs, people could always use a helping hand.

Links
Github with full C# code of the Helping HAND-system can be found at:
https://github.com/DiScala/BachelorThesis

Website used to generate graded sudokus can be found at:
https://sudoku.cba.si/en/

Figures
All figures have been made in LATEX with the use of the Tikz package, except for:

University Utrecht Logo (Page i)
https://www.uu.nl/en/organisation/corporate-identity/downloads/logo

Screenshots from Helping HAND (Figure 3.2)
https://github.com/DiScala/BachelorThesis

https://github.com/DiScala/BachelorThesis
https://sudoku.cba.si/en/
https://www.uu.nl/en/organisation/corporate-identity/downloads/logo
https://github.com/DiScala/BachelorThesis
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Appendix A

C# Implementation Strategies

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> CBE( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
C e l l c e l l = updated ce l l ;
i n t [ ] candidates = sudoku . PMs ;

i f ( c e l l . box se t . Count == 1) / / i f c e n t a i l s box p h i
{

i n t phi = c e l l . b o x l i s t [ 0 ] ;
foreach ( i n t ps i in candidates ) / / t h en f o r a l l o t h e r p s i
{

/ / p s i i s not p h i and not y e t upda t ed
i f ( ps i != phi && ! c e l l . negdiamond set . Contains ( ps i ) )
{

moves .Add(new Move( c e l l . name , ”−d” , psi , CBEskip , ” C e l l Based El iminat ion ” ,
”CBE, because c e l l c ” + c e l l . name + ” must conta in d i g i t ” + phi +
” , so i t cannot conta in d i g i t ” + ps i ) ) ;

}
i f ( moves . Count == 2) break ;

}
}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> PMD( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
C e l l c e l l = updated ce l l ;
/ / i f c c o n t a i n s d i p h i 1 ,2 ,3 t i m e s & c c o n t a i n s neg d i p h i 8 ,7 ,6 t i m e s & not y e t upda t ed
i f ( c e l l . diamond set . Count==n && c e l l . negdiamond set . Count==(9−n ) && c e l l . box se t . Count !=n )
{

Lis t<int> PMs = new Lis t<int > ( ) ;
for ( i n t i = 0 ; i < n ; i ++) / / t h en c e n t a i l s p h i ( o r p h i ( o r p h i ) )
{

PMs .Add( c e l l . d iamond l is t [ i ] ) ;
}
moves .Add(new Move( c e l l . name , ”b” , PMs, PMDskip , ” P e n c i l Mark Dual i ty ” ,
”PMD” + n + ” , because c e l l c ” + c e l l . name + ” conta ins ” + n + ” PM’ s and the other ”
+ (9 − n ) + ” PM’ s are not p o s s i b l e in c e l l c ” + c e l l . name +
” , so i t must conta in e i t h e r one of these ” + n + ” PM’ s ” ) ) ;

}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> HBE( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
foreach ( i n t i in updated ce l l . whichgroup )
{

C e l l [ ] group = sudoku . groups [ i ] ;
foreach ( C e l l c e l l in group )
{
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i f ( c e l l . box se t . Count == 1) / / i f c e n t a i l s box p h i
{

i n t phi = c e l l . b o x l i s t [ 0 ] ;
foreach ( C e l l neighbor in group ) / / t h en f o r a l l c e l l s in same house
{

i f ( c e l l . name != neighbor . name && ! neighbor . negdiamond set . Contains ( phi ) )
{ / / i f o t h e r c e l l and not y e t upda t ed

moves .Add(new Move( neighbor . name , ”−d” , phi , HBEskip , ”House Based El iminat ion ” ,
”HBE, because c e l l c ” + c e l l . name + ” must conta in ” + phi + ” , so c e l l c ”
+ neighbor . name + ” cannot conta in ” + phi ) ) ;

}
}

}
}
i f ( moves . Count == 2) break ;

}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.4−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> LRC( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
i n t [ ] PMs = sudoku . PMs ;
foreach ( i n t option in sudoku . PMs)
{

foreach ( i n t i in updated ce l l . whichgroup )
{

C e l l [ ] group = sudoku . groups [ i ] ;
foreach ( C e l l c e l l in group )
{

i n t optionCount = 0 ;
foreach ( C e l l neighbor in group )
{ / / i f a l l o t h e r c e l l s in same house e n t a i l neg d i p h i

i f ( neighbor . name != c e l l . name && neighbor . negdiamond set . Contains ( option ) )
optionCount ++;

}
i f ( optionCount == 8 && c e l l . f i l l e d == f a l s e ) / / t h en c e l l c e n t a i l s box p h i
{

Lis t<int> options = new Lis t<int > ( ) ;
opt ions .Add( option ) ;
moves .Add(new Move( c e l l . name , ”b” , options , LRCskip , ” Last Remaining C e l l ” ,
”LRC, because c e l l c ” + c e l l . name + ” i s the l a s t remaining c e l l in i t s house ” +
” t h a t could conta in ” + option + ” , so i t must hold” + option ) ) ;

}
}

}
}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.5−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> PMI( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
i n t [ ] opt ions = sudoku . PMs ; / / f o r a l l p o s s i b l e p h i
foreach ( i n t option in opt ions )
{

Lis t<Cell> c o n s i d e r e d c e l l s l i s t = new Lis t<Cell > ( ) ;
HashSet<Cell> c o n s i d e r e d c e l l s s e t = new HashSet<Cell > ( ) ;
foreach ( i n t i in updated ce l l . whichgroup )
{

C e l l [ ] group = sudoku . groups [ i ] ;
foreach ( C e l l c e l l in group )
{

i f ( ! c o n s i d e r e d c e l l s s e t . Contains ( c e l l ) )
{

c o n s i d e r e d c e l l s l i s t .Add( c e l l ) ;
c o n s i d e r e d c e l l s s e t .Add( c e l l ) ;

}
i n t optionCount = 0 ;
foreach ( C e l l neighbor in group )
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{
/ / i f a l l o t h e r c e l l s in same house e n t a i l neg box p h i
i f ( neighbor . name != c e l l . name && neighbor . negbox set . Contains ( option ) )

optionCount ++;
}
/ / i f no t y e t upda t ed and c d o e s not e n t a i l diamond or i s a l r e a d y f i l l e d
i f ( optionCount == 8 && ! c e l l . diamond set . Contains ( option ) &&

! c e l l . negdiamond set . Contains ( option ) && c e l l . f i l l e d == f a l s e )
c e l l . p o s s i b i l i t y c o u n t += 1 ; / / count t h i s house as p o s s i b l e

}
}
foreach ( C e l l c e l l in c o n s i d e r e d c e l l s l i s t )
{

i f ( c e l l . p o s s i b i l i t y c o u n t == 3) / / i f f o r a l l 3 h o u s e s c e l l c i s in
{

moves .Add(new Move( c e l l . name , ”d” , option , PMIskip , ” P e n c i l Mark Int roduct ion ” ,
”PMI , because there i s no c e l l in e i t h e r on of the 3 houses t h a t n e c e s s a r i l y must ” +
”hold ” + option + ” , so c e l l c ” + c e l l . name + ” could poss ib ly conta in ” + option ) ) ;

}
c e l l . p o s s i b i l i t y c o u n t = 0 ; / / r e s e t c o u n t e r
i f ( moves . Count == 2) break ;

}
i f ( moves . Count == 2) break ;

}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.6−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> N2E( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
foreach ( i n t i in updated ce l l . whichgroup )
{

C e l l [ ] group = sudoku . groups [ i ] ;
foreach ( C e l l c e l l in group )
{

i f ( c e l l . box se t . Count == 2) / / i f c c o n t a i n s p h i o r p h i
{

Lis t<Cell> same neighbors = new Lis t<Cell > ( ) ;
L i s t<Cell> other ne ighbors = new Lis t<Cell > ( ) ;
foreach ( C e l l neighbor in group )
{
/ / f o r a l l o t h e r c e l l s c in same house , k e e p t r a c k which do and don ’ t c o n t a i n p h i o r p h i

i f ( c e l l . name != neighbor . name && c e l l . box se t . SetEquals ( neighbor . box se t ) )
same neighbors .Add( neighbor ) ;

e lse i f ( c e l l . name != neighbor . name && neighbor . f i l l e d == f a l s e )
o ther ne ighbors .Add( neighbor ) ;

}
/ / f o r a l l o t h e r c e l l s c in same house , i f 1 o f them e n t a i l p h i o r p h i
i f ( same neighbors . Count == 1)
{

foreach ( i n t candidate in c e l l . b o x l i s t )
{

foreach ( C e l l neighbor in other ne ighbors ) / / t h en f o r a l l o t h e r c in same house
{

i f ( ! neighbor . negdiamond set . Contains ( candidate ) ) / / i f no t a l r e a d y upda t ed
{

moves .Add(new Move( neighbor . name , ”−d” , candidate , N2Eskip ,
”Naked P a i r s El iminat ion ” , ”N2E, because c e l l c ” + c e l l . name + ” and c e l l c ”
+ same neighbors [ 0 ] . name +” form a Naked Pai r of which e i t h e r one of the ” +
”two must hold d i g i t ” + candidate +” , so in c e l l c ” + neighbor . name +
” there cannot be PM ” + candidate ) ) ;

}
}

}
}

}
}

}
return moves ;

}
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Lis t<Move> N3E( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
foreach ( i n t i in updated ce l l . whichgroup )
{

C e l l [ ] group = sudoku . groups [ i ] ;
foreach ( C e l l c e l l 1 in group )
{

i n t phi = 0 ;
i n t ps i = 0 ;
i n t ch i = 0 ;
i n t [ ] ps = new i n t [ 3 ] ;
i f ( c e l l 1 . box se t . Count == 2) / / i f f i r s t p o t e n t i a l t r i p l e found

{
phi = c e l l 1 . b o x l i s t [ 0 ] ;
ps i = c e l l 1 . b o x l i s t [ 1 ] ;
foreach ( C e l l c e l l 2 in group )
{

ch i = 0 ;
/ / i f s e c o n d p o t e n t i a l t r i p l e found
i f ( c e l l 1 . name != c e l l 2 . name && c e l l 2 . box se t . Count < 4)
{

/ / c h e c k whe the r i t has 2 or 3 p h i s
i f ( c e l l 2 . box se t . Count == 2)
{

i f ( c e l l 2 . b o x l i s t [ 0 ] == ps i && c e l l 2 . b o x l i s t [ 1 ] != phi )
ch i = c e l l 2 . b o x l i s t [ 1 ] ;

e lse i f ( c e l l 2 . b o x l i s t [ 1 ] == ps i && c e l l 2 . b o x l i s t [ 0 ] != phi )
ch i = c e l l 2 . b o x l i s t [ 0 ] ;

foreach ( C e l l c e l l 3 in group )
{

/ / i f t h i r d p o t e n t i a l t r i p l e found
i f ( c e l l 1 . name != c e l l 3 . name && c e l l 2 . name != c e l l 3 . name

&& c e l l 3 . box se t . Count < 4)
{

i f ( c e l l 3 . box se t . Count == 2)
{

i f ( ( c e l l 3 . b o x l i s t [ 0 ] == phi && c e l l 3 . b o x l i s t [ 1 ] == chi ) | |
( c e l l 3 . b o x l i s t [ 1 ] == phi && c e l l 3 . b o x l i s t [ 0 ] == chi ) )

{
ps = new i n t [ 3 ] { phi , psi , ch i } ; / / We found a t r i p l e !
moves = N3Ehelper ( moves , group , ps , c e l l 1 , c e l l 2 , c e l l 3 ) ;

}
}
e lse i f ( c e l l 3 . box se t . Count == 3)
{

i f ( c e l l 3 . box se t . Contains ( phi ) && c e l l 3 . box se t . Contains ( ps i )
&& c e l l 3 . box se t . Contains ( ch i ) )

{
ps = new i n t [ 3 ] { phi , psi , ch i } ; / / We found a t r i p l e !
moves = N3Ehelper ( moves , group , ps , c e l l 1 , c e l l 2 , c e l l 3 ) ;

}
}

}
}

}
e lse i f ( c e l l 2 . box se t . Count == 3)
{

i f ( c e l l 2 . box se t . Contains ( phi ) && c e l l 2 . box se t . Contains ( ps i ) )
{

foreach ( i n t p in c e l l 2 . b o x l i s t )
i f ( p != phi && p != ps i )

ch i = p ;
foreach ( C e l l c e l l 3 in group )
{

/ / i f t h i r d p o t e n t i a l t r i p l e found
i f ( c e l l 1 . name != c e l l 3 . name && c e l l 2 . name != c e l l 3 . name &&

c e l l 3 . box se t . Count < 4)
{

i f ( c e l l 3 . box se t . Count == 2)
{

i f ( ( c e l l 3 . b o x l i s t [ 0 ] == phi && c e l l 3 . b o x l i s t [ 1 ] == chi ) | |
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( c e l l 3 . b o x l i s t [ 1 ] == phi && c e l l 3 . b o x l i s t [ 0 ] == chi ) )
{

ps = new i n t [ 3 ] { phi , psi , ch i } ; / / We found a t r i p l e !
moves = N3Ehelper ( moves , group , ps , c e l l 1 , c e l l 2 , c e l l 3 ) ;

}
}
e lse i f ( c e l l 3 . box se t . Count == 3)
{

i f ( c e l l 3 . box se t . Contains ( phi ) && c e l l 3 . box se t . Contains ( ps i )
&& c e l l 3 . box se t . Contains ( ch i ) )

{
ps = new i n t [ 3 ] { phi , psi , ch i } ; / / We found a t r i p l e !
moves = N3Ehelper ( moves , group , ps , c e l l 1 , c e l l 2 , c e l l 3 ) ;

}
}

}
}

}
}

}
}

}
e lse i f ( c e l l 1 . box se t . Count == 3)
{

phi = c e l l 1 . b o x l i s t [ 0 ] ;
ps i = c e l l 1 . b o x l i s t [ 1 ] ;
ch i = c e l l 1 . b o x l i s t [ 2 ] ;
foreach ( C e l l c e l l 2 in group )
{

/ / i f s e c o n d p o t e n t i a l t r i p l e found
i f ( c e l l 1 . name != c e l l 2 . name && c e l l 2 . box se t . Count < 4)
{

/ / c h e c k whe the r i t has 3 p h i s
i f ( c e l l 2 . box se t . Count == 3)
{

i f ( c e l l 2 . box se t . Contains ( phi ) && c e l l 2 . box se t . Contains ( ps i )
&& c e l l 2 . box se t . Contains ( ch i ) )

{
foreach ( C e l l c e l l 3 in group )
{

i f ( c e l l 1 . name != c e l l 3 . name && c e l l 2 . name != c e l l 3 . name
&& c e l l 3 . box se t . Count < 4)

{
i f ( c e l l 3 . box se t . Count == 2)
{

i f ( ( c e l l 3 . b o x l i s t [ 0 ] == phi && c e l l 3 . b o x l i s t [ 1 ] == chi ) | |
( c e l l 3 . b o x l i s t [ 1 ] == phi && c e l l 3 . b o x l i s t [ 0 ] == chi ) )
{

ps = new i n t [ 3 ] { phi , psi , ch i } ; / / We found a t r i p l e !
moves = N3Ehelper ( moves , group , ps , c e l l 1 , c e l l 2 , c e l l 3 ) ;

}
}
e lse i f ( c e l l 3 . box se t . Count == 3)
{

i f ( c e l l 3 . box se t . Contains ( phi ) && c e l l 3 . box se t . Contains ( ps i )
&& c e l l 3 . box se t . Contains ( ch i ) )

{
ps = new i n t [ 3 ] { phi , psi , ch i } ; / / We found a t r i p l e !
moves = N3Ehelper ( moves , group , ps , c e l l 1 , c e l l 2 , c e l l 3 ) ;

}
}

}
}

}
}

}
}

}
}

}
return moves ;

}
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Lis t<Move> N3Ehelper ( L i s t<Move> moves , C e l l [ ] group , i n t [ ] ps , C e l l c e l l 1 , C e l l c e l l 2 , C e l l c e l l 3 )
{

foreach ( C e l l c e l l 4 in group )
{

i f ( c e l l 4 . name != c e l l 1 . name && c e l l 4 . name != c e l l 2 . name && c e l l 4 . name != c e l l 3 . name)
{

foreach ( i n t p in ps )
{

i f ( ! c e l l 4 . negdiamond set . Contains ( p ) && ! c e l l 4 . f i l l e d )
{

moves .Add(new Move( c e l l 4 . name , ”−d” , p , N3Eskip , ”Naked T r i p l e s El iminat ion ” ,
”N3E, because c e l l s c ” + c e l l 1 . name + ” , c ” + c e l l 2 . name + ” and c ” +
c e l l 3 . name+” form a Naked T r i p l e of which e i t h e r one of the Three must ” +
”hold d i g i t ”+p+” , so in c e l l c ” + c e l l 4 . name + ” there cannot be PM ” + p ) ) ;

}
}

}
}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> PTE ( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
foreach ( i n t phi in sudoku . PMs) / / f o r a l l p o s s i b l e p h i
{

C e l l [ ] block = sudoku . blocks [ updated ce l l . whichblock ] ;
L i s t<Cell> diamonds = new Lis t<Cell > ( ) ; / / k e e p t r a c k o f which c e l l s c o n t a i n diamond p h i
Lis t<Cell> negdiamonds = new Lis t<Cell > ( ) ;
foreach ( C e l l c e l l in block )
{

i f ( c e l l . diamond set . Contains ( phi ) )
diamonds .Add( c e l l ) ;

i f ( c e l l . negdiamond set . Contains ( phi ) )
negdiamonds .Add( c e l l ) ;

}
/ / i f 2 / 3 c e l l s in t h e same house c o n t a i n d i a p h i and t h e o t h e r 7 / 6 c o n t a i n neg d i p h i
i f ( diamonds . Count == n && negdiamonds . Count == (9 − n ) )
{

/ / k e e p t r a c k i f t h e s e c e l l s a r e in t h e same h o r i z o n t a l o r v e r t i c a l
bool samehorizontal = true ;
bool samever t i ca l = true ;
i n t h o r i z o n t a l = diamonds [ 0 ] . whichhorizontal ;
i n t v e r t i c a l = diamonds [ 0 ] . w h i c h v e r t i c a l ;
i n t b l o c k i = diamonds [ 0 ] . whichblock ;
foreach ( C e l l c e l l in diamonds )
{

i f ( c e l l . whichhorizontal != h o r i z o n t a l )
samehorizontal = f a l s e ;

i f ( c e l l . w h i c h v e r t i c a l != v e r t i c a l )
samever t i ca l = f a l s e ;

}
/ / i f t h e s e c e l l s a r e in t h e same h o r i z o n t a l
i f ( samehorizontal )
{

foreach ( C e l l c e l l in sudoku . h o r i z o n t a l s [ diamonds [ 0 ] . whichhorizontal ] )
{ / / t h en f o r a l l o t h e r c in t h i s h o r i z o n t a l

i f ( ! c e l l . negdiamond set . Contains ( phi ) && c e l l . whichblock !=
b l o c k i && c e l l . f i l l e d == f a l s e ) / / i f no t y e t updated , not og c e l l s & not done
{

moves .Add(new Move( c e l l . name , ”−d” , phi , PTEskip , ” Point ing Tuples El iminat ion ” ,
”P”+n+”E , because there i s a Point ing Tuple of c e l l s conta in ing PM ”
+phi+” , which prevents t h a t c e l l c ”+ c e l l . name+” can conta in PM ”+phi ) ) ;

}
}

}
/ / i f t h e s e c e l l s a r e in t h e same v e r t i c a l
i f ( samever t i ca l )
{ / / t h en f o r a l l o t h e r c in t h i s v e r t i c a l

foreach ( C e l l c e l l in sudoku . v e r t i c a l s [ diamonds [ 0 ] . w h i c h v e r t i c a l ] )
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i f ( ! c e l l . negdiamond set . Contains ( phi)&& c e l l . whichblock != b l o c k i&&c e l l . f i l l e d == f a l s e )
{ / / i f no t y e t upda t ed and not o r i g i n a l c e l l s and not done

moves .Add(new Move( c e l l . name , ”−d” , phi , PTEskip , ” Point ing Tuples El iminat ion ” ,
”P”+n+”E , because there i s a Point ing Tuple of c e l l s conta in ing PM ”+phi+
” , which prevents t h a t c e l l c ” + c e l l . name + ” can conta in PM ” + phi ) ) ; ;

/ / c e l l . NegdiamondAdd ( p h i ) ; / / c e n t a i l s neg diamond
}

}
}
i f ( moves . Count >= 2) break ;

}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.8−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> H2E( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
i n t [ ] candidates = sudoku . PMs ;
L i s t<Tuple<Cell , Cel l , int>> p a i r c e l l s = new Lis t<Tuple<Cell , Cel l , int >>();
foreach ( i n t phi in candidates )
{

foreach ( i n t i in updated ce l l . whichgroup )
{

C e l l [ ] group = sudoku . groups [ i ] ;

/ / k e e p t r a c k o f which c e l l e n t a i l s diamond p h i
Lis t<int> phis = new Lis t<int > ( ) ;
L i s t<int> negphis = new Lis t<int > ( ) ;
L i s t<Cell> p h i c e l l s = new Lis t<Cell > ( ) ;

foreach ( C e l l c e l l in group )
{

i f ( c e l l . diamond set . Contains ( phi ) )
{

phis .Add( phi ) ;
p h i c e l l s .Add( c e l l ) ;

}
e lse i f ( c e l l . negdiamond set . Contains ( phi ) )
{

negphis .Add( phi ) ;
}

}

/ / i f t h e r e i s a p a i r o f c e l l s t h a t e n t a i l s a c e r t a i n diamond p h i
i f ( phis . Count == 2 && negphis . Count == 7)
{

p a i r c e l l s .Add(new Tuple<Cell , Cel l , int >( p h i c e l l s [ 0 ] , p h i c e l l s [ 1 ] , phi ) ) ;
}

}
}

foreach ( Tuple<Cell , Cel l , int> c e l l p a i r in p a i r c e l l s )
{

foreach ( Tuple<Cell , Cel l , int> neighbor in p a i r c e l l s )
{

/ / I f we f i n d a p a i r o f c e l l s which b o t h c o n t a i n d i p h i and d i p s i
i f ( c e l l p a i r . Item1 == neighbor . Item1 && c e l l p a i r . Item2 == neighbor . Item2

&& c e l l p a i r . Item3 != neighbor . Item3 )
{

/ / we found a h id den p a i r ! / / f o r b o t h o f t h e s e c e l l s :
foreach ( C e l l c e l l in new C e l l [ 2 ] { c e l l p a i r . Item1 , c e l l p a i r . Item2 } )
{

foreach ( i n t ch i in c e l l . diamond set )
{

/ / i f t h e r was a c h i p o s s i b l e in t h i s c e l l , i t i s no t p o s s i b l e anymore
i f ( ch i != c e l l p a i r . Item3&&chi != neighbor . Item3 && ! c e l l . negdiamond set . Contains ( ch i ) )
{

moves .Add(new Move( c e l l . name , ”−d” , chi , H2Eskip , ”Hidden P a i r s El iminat ion ” ,
”H2E, because c e l l s c ” + c e l l p a i r . Item1 . name + ” and c ” + c e l l p a i r . Item2 . name
+ ” form a Hidden pai r ” +” , as they are the l a s t in t h e i r group t h a t can ” +
” conta in e i t h e r PM ” + c e l l p a i r . Item3 + ” or ” + neighbor . Item3 +
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” , so c e l l c ” + c e l l . name + ” cannot conta in PM ” + chi ) ) ;
}

}
}

}
}

}
return moves ;

}

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2.3.9−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /
Lis t<Move> XWE( C e l l updated cel l , i n t n )
{

Lis t<Move> moves = new Lis t<Move> ( ) ;
moves = XWEhelper ( moves , sudoku . hor izonta l s , sudoku . v e r t i c a l s , 1 ) ;
moves = XWEhelper ( moves , sudoku . v e r t i c a l s , sudoku . hor izonta l s , 0 ) ;
return moves ;

}

Lis t<Move> XWEhelper ( L i s t<Move> moves , C e l l [ ] [ ] l i n e s 1 , C e l l [ ] [ ] l i n e s 2 , i n t hv )
{

i n t [ ] candidates = sudoku . PMs ;
foreach ( i n t phi in candidates )
{

Lis t<Tuple<Cell , Cel l , int>> p a i r c e l l s = new Lis t<Tuple<Cell , Cel l , int >>();
foreach ( C e l l [ ] l i n e 1 in l i n e s 1 )
{

Lis t<int> phis = new Lis t<int > ( ) ;
L i s t<int> negphis = new Lis t<int > ( ) ;
L i s t<Cell> p h i c e l l s = new Lis t<Cell > ( ) ;
foreach ( C e l l c e l l in l i n e 1 )
{

i f ( c e l l . diamond set . Contains ( phi ) )
{

phis .Add( phi ) ;
p h i c e l l s .Add( c e l l ) ;

}
e lse i f ( c e l l . negdiamond set . Contains ( phi ) )
{

negphis .Add( phi ) ;
}

}
i f ( phis . Count == 2 && negphis . Count == 7)
{

p a i r c e l l s .Add(new Tuple<Cell , Cel l , int >( p h i c e l l s [ 0 ] , p h i c e l l s [ 1 ] , phi ) ) ;
}

}
foreach ( Tuple<Cell , Cel l , int> c e l l p a i r in p a i r c e l l s )
{

foreach ( Tuple<Cell , Cel l , int> neighbor in p a i r c e l l s )
{

i f ( c e l l p a i r != neighbor&&c e l l p a i r . Item1 . whichline [ hv]== neighbor . Item1 . whichline [ hv ]
&& c e l l p a i r . Item2 . whichline [ hv ] == neighbor . Item2 . whichline [ hv ] )

{
/ / we hebben een xwing !
C e l l [ ] [ ] x v e r t i c a l s = CombineArray (new C e l l [ 1 ] [ ]
{ l i n e s 2 [ c e l l p a i r . Item1 . whichline [ hv ] ]} , new C e l l [ 1 ] [ ] { l i n e s 2 [ c e l l p a i r . Item2 . whichline [ hv ] ] } ) ;
foreach ( C e l l [ ] x v e r t i c a l in x v e r t i c a l s )

foreach ( C e l l c e l l in x v e r t i c a l )
i f ( c e l l != c e l l p a i r . Item1 && c e l l != c e l l p a i r . Item2 && c e l l != neighbor . Item1

&& c e l l != neighbor . Item2 && ! c e l l . negdiamond set . Contains ( phi ) )
moves .Add(new Move( c e l l . name , ”−d” , phi , XWEskip , ”X−Wing El iminat ion ” ,

”XWE, because the c e l l s c ” + c e l l p a i r . Item1 . name + ” , c ” +
c e l l p a i r . Item2 . name + ” , c ” + neighbor . Item1 . name + ” and c ” +
+neighbor . Item2 . name + ” form an X−Wing . They a l l hold ” +
phi + ” , t h e r e f o r e c e l l c ” + c e l l . name + ” cannot hold ” + phi ) ) ;

}
}

}
}
return moves ;

}
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Dataset Sudoku’s

#364 , easy , nnyy
760000450000001080100200060204070300070000600008302000000100000000000025430007000
762983451945761283183254967254679318379815642618342579526198734897436125431527896

# 13725 , easy , nnny
050010020000942000370000000560000001000805000000090080106000000000003400004000706
459317628681942375372568149568724931917835264243196587126479853795683412834251796

# 25791 , easy , nnnn
051000000000809300000000421803200000000000260007400000060004009000070000500080017
351642798274819356986357421893265174415798263627431985768124539139576842542983617

# 96157 , easy , nyyy
090600000060000804100000000002030700000072000080000000000840001037090020008050043
895624137263715894174389265642538719351972486789461352526843971437196528918257643

# 100857 , easy , nnny
000000470000040000070010008060205901003000000709006000206100700000603020100800000
851362479692748513374519268468275931523981647719436852236194785987653124145827396

# 116130 , easy , nyyy
000080000025000030300001200003600000800230010647000008470000000000020600100000045
961382754725469831384751269213648597859237416647915328476593182598124673132876945

# 117003 , easy , nnyy
000007000400200060600000093000070000502800000009000030004059020020003057380006040
253967814498231765617548293146372589532894176879615432764159328921483657385726941

# 152843 , easy , nyyy
000030000400010000008000040000000076000060000012003005260009430070000060093500080
951834627436217958728695143349158276587962314612473895265789431874321569193546782

# 181679 , easy , nnyy
000010093008400000046090005001080060070009050000000000107530000000700204000000000
752816493918453627346297815491385762273649158865172349127534986589761234634928571

# 223051 , easy , nnyy
050600000800000000000090360000001000001027400008060930530000000000470026670000040
953642817816735294247198365495381672361927458728564931534216789189473526672859143

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 1844 , medium , nnnn
050400060081000000200300080000001900000087200320000000000070005000020109460000000
953418762681752493274369581748231956516987234329546817192873645835624179467195328

# 28507 , medium , nnyy
920000000300000790000008200740000000030160000000000051070200304006700005000005800
928476513364512798157938246741859632532164987689327451875291364496783125213645879

# 31745 , medium , nnyy
000002003700500060009000804940000000500030000000800007000680095006007000000450170
685942713734518962219376854948765321527134689361829547473681295156297438892453176
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# 43387 , medium , nnny
003000080040005060602700000135608000090301000004000000000900100500106000000000208
953264781741895362682713549135628974897341625264579813478932156529186437316457298

# 59467 , medium , nnny
000008090000600000300000004800063100230500000704000005050320001000010800006000700
612748593547639218389152674895263147231574986764891325958327461473916852126485739

# 66325 , medium , nnyy
200007081000000670500040000001003000002600800008204005470000900000890000005000006
234967581819325674567148392651783249742659813398214765476531928123896457985472136

# 78353 , medium , nnyy
000082000007000003080019005001040000203000010000006900005430700000600408100000050
536782149917564283482319675791843562263975814854126937625438791379651428148297356

# 79327 , medium , nnyy
000008090900020030804700000000036000009000060045000270060001009000200000280000500
372658194956124738814793652728536941139472865645819273567381429491265387283947516

# 111085 , medium , nnyy
009000030600000504040080000080000060000060009210000400000004781100070006000095000
759426138628317594341589627983741265475263819216958473592634781134872956867195342

# 195964 , medium , nnyy
010400200000000000000500437080310000003084060000000004090000000070006590000900703
719463258534872619862591437486315972923784165157629384295137846378246591641958723

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 1467 , hard , nnyy
004000000000006052001003700082000400300910000000000520003000286690000000000504000
534279861879146352261853794782635419345912678916487523453791286697328145128564937

# 4074 , hard , nnyy
030590100000000780060000040700008500900300000300002000001040096000010004002000001
438597162159426783267831945724168539915374628386952417571243896893615274642789351

# 13987 , hard , nnyy
000009560004001000600000080420000005007680000000030009000400208371000000000500000
283749561754861923619352784428197635937685142165234879596473218371928456842516397

# 18161 , hard , nnny
000570000920000000000000938014000000050800014000600050200000700800000600000103000
183579426926438175547216938714352869652897314398641257261985743835724691479163582

# 51116 , hard , nnyy
900001040000600030080090007006000003000000090050174000000710004004002000067803005
975231846421687539683495127716928453842356791359174682538719264194562378267843915

# 87130 , hard , nnnn
089060000300001000600009040500300900000000002410006000000000820904700005005000700
289463157347851296651279348562347981793185462418926573176534829924718635835692714

# 88563 , hard , nnnn
000003600071000002040020380000008400030000001086000070720010000010950000003070000
298743615371685942645129387157298436932467851486531279729314568814956723563872194

# 98234 , hard , nnnn
007430000100006000000500008000800700000061802001000005009000040600002307010000290
567438129198276453342519678936825714475961832281347965729683541654192387813754296

# 114032 , hard , nnyy
600000070005900000090204100002000009050600000000000041000060800040028000039400050
684135972215976483793284165472851639951643728368792541527369814146528397839417256

# 169585 , hard , nnny
320000041600009000910000037004580009000037000000000004000000000030042000000060850
325678941647319285918254637764581329192437568853926174286795413531842796479163852
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