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Abstract

Over the years the sports industry has grown into a multi-billion dollar industry in
which technology plays an essential role. As the industry started collecting more
data, the research into analyzing that data advanced simultaneously. This thesis will
focus on developing a model that is going to be used by several learning algorithms
to predict the game outcome of future games. The model will extend upon the re-
sults of Singh [16] to measure the effect of adding personalized statistics for each
player and use team-compositions to predict the outcome of each game. Research
shows that Machine learning algorithms perform better than traditional statistical
models when trying to capture a latent context or in this case team-composition.
Therefore, the learning is done by a set of supervised learning algorithms which con-
sist of Logistic Regression, Neural Networks and Linear Support Vector Machines.
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1 Introduction

Over the last decade, we shifted to a so-called “Data-Driven Society”. Back in 2017,
The Economist published a story titled, “The world’s most valuable resource is no
longer oil, but data.” Many companies have realized this and are trying to profit
from it in every way. The use of Artificial Intelligence (AI) is playing an essential
role in this development and has been gaining a lot of attention over the years. One
of the industries that is fully taking advantage of this field is the sports industry.
George William James, a famous baseball statistician, founded a system called “saber-
metrics” back in 1977. The system is based on an empirical analysis of baseball
statistics that measure in-game activity. For long he was ridiculed for looking at a
sport from a mathematician’s point of view. However, this system revolutionized
the way we look at baseball today and ignited several other sports to do the same.
The NBA is one of these organizations and developed a similar system in the early
90s called “APBRmetrics”, which takes its name from the acronym APBR (Associa-
tion for Professional Basketball Research). This lead to an outburst of quantitative
analytics research in basketball. This thesis is inspired by these developments and
will combine the APBRmetrics system with current AI techniques to predict game
outcomes for the NBA competition.

The next part of this introduction will start with explaining the relevance of this
research, subsequently, the related work done in this field and lastly quantify the
research questions of this thesis in more detail.

1.1 Problem Context

The aim for every NBA team is to win as many as games as possible. To achieve this
goal, several elements play a role from the team-budget to the strategy a team plays
on the field. The performance of each team and player is quantified by using a set of
metrics specific to the player and team. Besides measuring the performance, these
statistics can have several other purposes. One of the less mature areas in which this
data is being applied is the predictive analytics field. The predictive analytics field
tries to make predictions based on historical data. Machine Learning, a subgroup
within AI, uses this same approach. The data availability and quality are crucial for
these techniques to succeed. The NBA, which will be focusing on in this research
provides a readily available database dating as far as 60 years back. Consisting of
accurate metrics specific to each team and player making the data quality of a high
standard. With databases of this magnitude, you need inventive ways to organize
the data so that the learning can happen within acceptable time limits.

The predictions that result from these models, can be used to alter team strategy
and optimize player selection beforehand to maximize the win probability through
these models. The sports gambling industry highly profits from these findings by
adjusting the odds ratios based on forecasted results to maximize the profit for each
game.
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As shown, the confidence in predictive models has increased excessively and
many NBA-teams nowadays employ full-time data scientist as part of their core
staff. Something that 15 years ago would be considered absurd. As this is still a
rather new research area there is still a lot of value to be gained within the field and
other sections of the data mining process.

1.2 Related work

NBA games are known for their difficulty to predict due to the relatively high level
of entropy and average score difference of only eight points per game. In a high
pace sport like basketball, where scores usually end up above a hundred points, an
eight-point difference is not considered high. However, many still ventured into the
field of building models based on historical data to predict the outcome of a game.

Cao [2] built a model based on a Naive Bayes Classifier resulting in an accu-
racy of 65.8% per season. He used multiple consecutive seasons as the training set
and singles seasons as the test set. As Artificial Neural Networks (ANN’s) become
more accessible over the years, they became the subject of many researchers. ANN’s
were also used to try and predict NBA games in an article written by Bernard Lo-
effelholz and Earl Bednar [11]. They used a set of 620 games to train a selection of
neural networks consisting of feed-forward, radial basis, probabilistic and general-
ized regression neural networks. They compared the results to the predictions of
expert NBA journalists and had significantly better results. The best ANN’s were
able to predict the correct winner of 74.3% of the games, where the journalist had
an average prediction accuracy of 68.7%. Compared to the NFL (National Football
League), one of the most analyzed professional sports out there, these are relatively
high accuracy’s. A research done by Purucker [14] for the NFL, using similar neu-
ral structures resulted in accuracy’s around 61% compared to an experts score of
72%. Most of these models relied on the box-score statistics of each game to serve as
feature-data to train their models.

Bunker and Thabtah [1] took a more general approach and developed a data min-
ing framework using Machine Learning techniques to predict sports results. They
determined that the data preparation and feature extraction can have a significant ef-
fect on the actual result. Instead of mostly relying on the team identity and box-score
statistics they compared work that used expert-selected features [7], to work that
used several different subsets of feature-combinations to reach and optimal model
[12]. Bunker and Thabtah [1] clearly showed that machine learning models highly
depend on the quality of their features, feature-combinations used and the granular-
ity level of the training data.

1.3 Research Questions

The motivation and related work discussed in the previous paragraph is what led
to finding an interesting project done by two master students at Stanford University
[16]. Sing and Wang developed an interesting way of prepossessing the data before
inserting the data into the learning algorithms. The technique is based on using the
identity of the players present in each game to serve as the features for the Machine
Learning models. This thesis will use the same prepossessing technique and extend
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it by adding personalized player-statistics for each player. In this thesis, the tech-
nique will be referred to as the team-composition modelling technique. The goal is
to give a more accurate description of the player’s strengths and weaknesses, and
use that to model the win probability.

The feature set used by Sing and Wang [16] was relatively large and no feature
selection algorithm was applied on this set. Bunker and Thabtah [1] clearly showed
the relevance of this step, especially in the case of large feature sets. Therefore, this
thesis will apply selection algorithms on the feature sets created and select the opti-
mal models. The following research questions resulted from these findings and led
to this research:

• Does the addition of player-statistics to the team composition modelling tech-
nique improve the predictive performance in comparison to only using the
player identity?

• Which classification algorithm achieves the highest performance with the team
modelling technique out of Multivariate Logistic Regression, Neural Networks
and Support Vector Machines?

The techniques selected in the second question were selected on the bases of our
problem description and the related work discussed in the previous section. All
three techniques differ in their approach but perform well on binary classification
problems. Since we are trying to predict the game-outcome (win/lose) of NBA-
games these techniques fitted well with the goal of this research.

1.4 Outline

The outline of this thesis will be as follows. Chapter 2 will start by discussing the
data mining approach and will include the theoretical basis of the learning tech-
niques used for training. In chapter 3, the data that is collected and preprocessed into
the right format will be discussed extensively. Chapter 4 will continue by explaining
the experimental setup and methodology used to perform each analysis. Subse-
quently, chapter 5 will discuss and analyse the results of our experiments. Lastly,
chapter 6 will contain the discussion and conclusion, which will answer the research
questions, and discuss potential improvements for future work.
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2 Theory

In this chapter, an overview of the theory used in this research is given and elabo-
rated. We will start by giving a brief overview of the data mining process. After-
wards, we will continue by discussing the theory behind the learning algorithms
used for training. And lastly, we will present the measures used to evaluate and
compare the several models in this research.

2.1 Data Mining Process

“The objective of data mining is to identify valid novel, potentially useful, and un-
derstandable correlations and patterns in existing data” [3]. It is a process of knowl-
edge discovery in data that is not telling in its raw form. The data mining process
can be roughly divided into two high-level steps: the data preparation and the ac-
tual data mining.

In the Algorithms that were discussed in chapter 2.1, training-data was mentioned
several times. Training-data can have many different forms and rarely is equal to the
raw data that you import. This restructuring is done according to rules that you de-
fine beforehand. These rules are defined within your feature definitions. A feature
is an input column for your model to use for training. The generation of a feature
definition is mainly done by using domain knowledge. The goal is to develop fea-
tures that have a positive impact on your model performance. This information is
not known beforehand and therefore it is a discovery process to whether a feature
has a positive effect in the model.

In order to avoid that our final model has to process a large number of irrelevant
features, we apply some form of feature selection. Feature selection is done accord-
ing to metrics that give an accurate description of the model’s performance. This
area alone is an extensive research field from which complex techniques resulted to
efficiently select the best features [4]. In this research, we will use a relatively simple
technique called: recursive feature elimination. This technique recursively combines
and eliminates features according to a feature-importance metric which can be man-
ually defined. The metric has to indicate the predictive performance of the feature
in question. The set of features that result from the selection will then be used in the
final model and the irrelevant ones will be deleted.

2.2 Machine Learning

Machine learning algorithms get a lot of attention nowadays. An interesting project
that Google started in 2007, is the Scikit-learn project [13]. The Scikit-learn project
consists of a large library of several AI-techniques and other statistical approaches
implemented and optimized for your hardware. The library also leaves a lot of room
for parameter customization and optimization, which makes the library generally
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applicable for several use-cases. In our case, we are looking at a binary classification
problem for which we chose the following algorithms. The choice was mainly based
on the wide use of the algorithms by the scientific community in related problem
contexts.

2.2.1 Multivariate Logistic Regression

Logistic regression is part of the supervised learning techniques which rely on la-
belled data to fit the sample points in a data-set. To fully understand logistic re-
gression, we will give a brief overview of linear regression. Linear regression is the
simplest and most extensively used statistical technique for predictive modelling. In
short, the goal is to fit a line that is as close as possible to the given sample points.
The most common method for fitting this line is the Ordinary Least Squares(OLS)
approach. The goal of this approach is to minimize the sum of squared errors (SSE)
between the real value (yi) and the predicted value (ŷi). Figure 2.1 shows an example
of a fitted line with the errors visualized.

FIGURE 2.1: Simple Linear Regression

A variation of the regression model explained above is the logistic regression
model. This model predicts the probability that a given value belongs to a certain
category. In the case of binomial logistic regression, the point can belong to two
categories, either a "1" or a "0". The main difference with linear regression is that
instead of fitting a line to the given sample points, logistic regression tries to fit the
sigmoid function (2.1).

g(x) =
1

1 + e−x (2.1)

For the function to become applicable in classification problems a threshold between
0 and 1 must be specified. This threshold is determined according to the goal of the
classification. A trade-off between precision and recall is often made to optimize the
ideal threshold for a specific problem context. In our case, the threshold is set to
P = 0.5 since we are looking at a win or lose scenario in a basketball match. If we
were using linear regression the function would look like (2.2) in which h denotes
the hypothesis function which is the same as the predicted variable. The β variables
are the regression coefficients, which we will want to estimate.

h(xi) = β0 + β1xi1 + β2xi2 + ...... + βpxip = βTxi (2.2)
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The result of the following equation would likely consist of continues values.
Therefore we modify the sigmoid function (2.1) to the following:

p(xi) = g(βTxi) =
1

1 + e−βT xi
(2.3)

As the x-term approaches infinity g approaches 1, likewise as x gets smaller g ap-
proaches zero, creating the odds function contained between zero and one. Equation
2.3 can be manipulated to:

log(
p(xi)

1− p(xi)
) = βTxi (2.4)

This value is called the log-odds which has a linear relation to xi. As with a linear
model the βT gives a representation of the y-change when increasing xi by a certain
amount. However, with logistic regression p(xi) is not linearly related to xi. The
amount of change to p(xi) will depend on the values of xi. There is still a positive
dependence between these variables, only not linear. The coefficient vector is still
unknown and needs to be estimated. The general method used in this case is the
maximum likelihood technique. The conditional probabilities in case of binomial
logistic regression will be given by:

P(yi = 1|xi; β) = p(xi) (2.5)

P(yi = 0|xi; β) = 1− p(xi) (2.6)

P(yi|xi; β) = (p(xi))
yi(1− p(xi))

1−yi (2.7)

The likelihood will be a product of all samples in the data-set resulting in the follow-
ing definition:

L(β) =
n

∏
i=1

P(yi|xi; β) (2.8)

The likelihood function can be defined as the likelihood that our model will correctly
predict the desired y value. Therefore, the goal is to maximize this likelihood by es-
timating β. For computational reasons we use the following log-likelihood function
for the maximization:

l(β) = log(L(β)) =
n

∑
i=1

yilog(p(xi)) + (1− yi)log(1− p(xi)) (2.9)

The maximizing can be done with several techniques. The Scikit-learn library
offers a selection of iterative solvers with their built-in logistic regression algorithm.
The most commonly used solver is stochastic gradient descent (SGD). The solver we
will be using this research is based on Newton’s method for parameter estimation
[9]. This method maximizes function (2.9) by finding the partial derivatives of l(β)
and setting them equal to 0. At this point, we are looking for the critical point of the
partial derivatives. This critical point will be the maximum of our log-likelihood.

2.2.2 Feedforward Neural Networks

An artificial neural network (ANN) consists of multiple nodes named perceptrons.
The perceptron was invented in 1957 by Frank Rosenblatt [15] at Cornell University.
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The perceptron is formally defined by the following equation:

y = sign(
N

∑
i=1

wixi − θ) = sign(wTx− θ) (2.10)

where w is the weight vector and θ the bias-term/threshold. The input is defined
by the x vector which is multiplied by the weights. This produces the output y. In
a binary classification problem, this single perceptron is initiated by randomly allo-
cating the weight values. The perceptron accepts the input-data (x) and multiplies
it by the weights and confirms whether the y-label is similar to the predicted y. The
prediction is done according to the activation threshold, which is defined by θ. For
example, if θ is zero the weighted output must produce a positive value to classify as
a 1 and a negative value to classify as a zero. If the prediction is correct the weights
are considered satisfactory and no changes are made. In the event of mislabeling the
input data, the weights get adjusted to reduce the error. This process continues until
the function reaches a point where every point is classified correctly. This algorithm
is often used to classify linear separable classes.

FIGURE 2.2: Multilayer Perceptron Schematic

The neural network we are using in this research is a multi-layer perceptron
(MLP), with instead of a linear threshold we will use a sigmoid activation func-
tion. This model consists of at least 3 nodes. The nodes are arranged in layers which
consist of the input, hidden and output-layer (figure 2.2). Each node in the hidden-
layer(s) is a single perceptron which connect to the next perceptron or output-node.
The training process of an MLP is done through the backpropagation algorithm. This
algorithm consist of two phases named the forward phase and backward phase. In
the forward phase, the desired output corresponding to the given inputs are eval-
uated. In the backward phase, partial derivatives of a cost function with respects
to the different parameters are propagated back through the network. This process
continues until the error is at the lowest value (convergence).
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2.2.3 Support Vector Machines

Support vector machines (SVM’s) are responsible for finding the hyper-plane that
separate different kind of classes and maximize the margin. The margins are the
perpendicular distances of the points closes to the line. Figure (2.3) illustrates an
example of a linear separable data-set in a 2-dimensional space. The two main req-
uisites that any SVM must follow are the following:

1. Only look into lines (hyperplanes) that classify the classes correctly.

2. Pick the line that maximizes the margin

FIGURE 2.3: Support Vector Machine with visualized decision boundary and
margin ||w||.

In the example of figure 2.3, the data is linearly separable and the margin can be
found by mathematically finding the perpendicular distance from each point to the
median (red line). The smallest distances on both sides form your margin-points,
which determine your decision boundaries (dotted lines). This all works fine with
the example of figure 2.3. In data where that is not linearly separable, we apply the
so-called kernel-trick. The idea behind the kernel-trick is to model data that is not
linearly separable in the n’th dimension your working, to a higher dimension where
that is the case. To intuitively grasp this figure 2.4 shows an example of a data-set
that is not linearly separable in the second dimension but is in the third dimension.
Te make this mathematically feasible we do not compute the exact transformation of
each point to a higher dimension. Like with figure 2.3, we only need to find the inner
product in that higher dimension [6]. This makes it computationally more scalable
and a good candidate for complex data-sets.
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FIGURE 2.4: Kernel trick applied for transformation from 2D-space to
3D-space

2.3 Measures

As discussed in paragraph 2.1 the evaluation of each model is done according to
performance measures. Each problem context has its own set of customized perfor-
mance measures. For example, a regression problem uses different measures than
a classification problem. Since we are dealing with a binary (win/lose) classifica-
tion problem in this research, our focus will be on measures relevant for that specific
category.

Predicted Class
True False

Correct Class
True True Positive (TN) False Negative (FN)
False False Positive (FP) True Negative (TN)

TABLE 2.1: Confusion matrix binary classification

The confusion matrix of a binary classification problem is shown in table (2.1).
From this table, you can deduct several more refined measures that can be used in
the performance evaluation of a model. The metrics that will be used in his research
are listed below:

• Accuracy: One of the most intuitive metrics is the accuracy. The metric is
defined as: (TP + TN)/(TP + TN + FN + FN) which informally means that
the accuracy describes the number of points that were correctly classified as a
ratio of the total points that were classified. The accuracy is only effective in a
balanced data-set. For example, in a data-set where the majority of the samples
is classified as one of the classes the accuracy can give you an imprecise display
of your model’s performance.

• Recall: The recall is a metric that measures the amount of correctly classified
positive points. So in a data-set where you have to classify if someone has
cancer. The recall tells us the proportion of patients that have cancer and were
classified by the model as having cancer. The formal definition is: TP/(TP +
FN).
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• Precision: Using the same cancer diagnostic example as before. The precision
tells us what ratio of patients that we’re diagnosed by the model as having
cancer, actually have cancer. So the amount of positives that were predicted
correctly. The formal definition is therefore: TP/(TP + FP).

• F1-score: The F1-score was introduced with the idea of capturing both the
precision and recall into one defining measure. Since some cases require the
precision and other recall, the F1-score solves this problem by combining those.
The F1-score has, therefore no intuitive definition. The formal definition is the
following:2 ∗ ((Precision ∗ Recall)/(Precision + Recall)). A model that makes
perfect predictions will have an F1-score of 1 and a poor classifier will be closer
to zero.

• AUC-score: AUC stands for Area Under ROC Curve. The ROC curve shows
the performance of the classifier at various thresholds. The horizontal and
vertical axes in the ROC function are represented by the true-positive rate
(precision) and the false-positive rate respectively. An ideal ROC-curve pulls
towards the left corner, which means that the larger the AUC the better the
classifying performance. The AUC can be interpreted as the probability that
the model classifies a random positive point more highly than a random nega-
tive sample point. An ideal AUC is close to 1, meaning that the model almost
makes perfect classification. The AUC is insensitive to unbalanced data-sets,
making the AUC a highly effective metric to use.

Model comparison can then be done using one of the aforementioned metrics. The
statistical significance between these scores, however, is not always clear. Thomas
Dietterich [5] wrote a paper on using statistical hypothesis tests to compare super-
vised classifiers. The recommendation for paired nominal data was a fairly new
statistic called McNemar. The McNemar test uses the contingency table 2.2 of two
binary classifiers to calculate the p-values. It is reporting on how many correct and
incorrect predictions the classifiers made with regards to the label values. By setting
an alpha boundary, the McNemar statistic can then be used to compare models for
statistical significance.

Classifier 2
Correct Incorrect

Classifier 1
Correct Correct/Correct Correct/Incorrect
Incorrect Incorrect/Correct Incorrect/Incorrect

TABLE 2.2: Contingency table of two binary classifiers
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3 Data

This chapter will discuss the steps relevant for converting the raw data we import to
the structured feature data that is being used by the learning models. We will start
by showing the unstructured data we import and subsequently the preprocessing
will be discussed in paragraph 3.2.

3.1 Data Import

The data that is being used in this research consists of game-data and player-data.
The game-data consists of the home-team, away-team, the score and the date at
which the game took place (Appendix A.1). The game data was filtered out to
only include regular-season games since players often play and behave differently
during the playoffs. The player-data consists of advanced statistics specific to each
player aggregated over a specific season. In Appendix A.2 an overview of the ad-
vanced statistics for a random is player presented. The statistics are based on a
one-season data-set and are generated by the NBA. As an addition to the advanced
statistics of each player, we also imported the season totals for each player (A.3).
These are the total scores for a set of metrics aggregated over one season. From
these total scores, two additional statistics were computed and used in the model
training. The data was aggregated utilising a web-scraper that uses https://www.
basketball-reference.com/ as its source. The complete set of data that was im-
ported consisted of the seasons 2013/2014 till 2017/2018 for both the game and
player data.

The advanced player statistics data and the game data ware mostly ready to
use and only needed to be structured in the right way. The highlighted statistics
(appendix A.2) are part of the final set that was used to train our models. The se-
lection was made based on expert-knowledge, to prevent the models from getting
too much irrelevant data. A more comprehensive explanation will be given in the
methodology. The final set of statistics that were computed and used in the models
are described down below:

• minutes_played: the number of minutes played in a season for a specific team

• points_scored: an average of the amount of points scored per game over the
course of one season in specific team

• usage_percentage: usage percentage is an estimate of the percentage of team
plays used by a player while he was on the floor

• player_efficiency_rating (PER): PER strives to measure a per-minute perfor-
mance of each player based on a detailed formula derived by John Hollinger
in 1971. The league-average PER is always 15.00, which allows a performance
comparison for each player over multiple seasons.

https://www.basketball-reference.com/
https://www.basketball-reference.com/
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• win_shares: an estimate of the percentage of team plays used by a player while
he was on the floor (for a specific team over the course of one season)

• assist_percentage: an estimate of the percentage of teammate field goals a
player assisted while he was on the floor (for a specific team over the course of
one season)

• block_percentage: an estimate of the percentage of opponent two-point field
goals attempts blocker by the player while he was on the floor (for a specific
team over the course of one season)

• effective_field_goal_percentage (eFG%): The eFG% was introduced to give
an accurate measure to account for the fact that three-point field goals way
heavier than normal field goals. It is calculated by the following formula:

eFG% =
f ield_goals_made + (0.5 ∗ 3point_ f ield_goals_made)

f ield_goal_attempts
(3.1)

These metrics are imported and calculated for each player and each team that the
player played for in a specific season.

3.2 Preprocessing

All the necessary data is imported at this point and will be restructured according
to the team-composition technique described by Sing [16]. A few additional adjust-
ments will be made to improve the quality of the training data.

3.2.1 Data Restructuring

The input data for the models in the sci-kit learn library need to be in the form of a
2-dimensional array. Each row has to have at least one column and depending on
the amount features more. In this array, each column forms a feature for the model
to train with. The y-labels (actual values) will consist of one column where each
entity is a single binary value. The team-composition technique represents a team
by making one large horizontal array of all the players in the NBA. Each player has
it designated location in that array and will be used to indicate the presence of that
player in a game. This is done by setting all values to zero except for the players that
are present in that game. In a game where team A plays against team B, both teams
have their array which describes their team. The concatenated arrays of both teams
form the input for one sample in our training data (figure 3.1).

Figure 3.1 represents the data if we only model the identity of the players. This
is represented by the ones in the arrays. One of the main objectives of this research
to add player-statistics to the model. Our approach will be to replace the ones in the
array by a personal metric of the player. The metrics that were discussed in 3.1 will
be used for this purpose. The results will be a set of matrices X like in figure 3.1.
Every matrix will be represented by a different statistic. The hypothesis function 3.2
in our regression model will then be a concatenation of these matrices multiplied by
their regression coefficient vector. Each statistic has its input-array which is equal to
the amount of players times two.

y(xstat) = βTxstat1 + βTxstat2 + .... + βTxstatn (3.2)
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

f1 f2 f3 ... fp

x0
i 0 1 0 ... 1

x1
i 0 1 0 ... 0

x2
i 0 0 1 ... 0

... ... ... ... ... ...
xn

i 0 0 0 ... 1




yi

y0 0
y1 1
y2 1
... ...
yn 0


FIGURE 3.1: The input-matrix X and the y-labels which represent win(1) or
lose(0). The length of xi, p is the length of the player-array times two. The
number of training samples is equal to the number of rows (n).

3.2.2 Data Cleaning and Transformation

The goal is to get a representation of the team-players and their statistics for each
unique game. During the data exploration phase, we discovered that a large chunk
of the players switch teams during each season. This can even happen multiple
times in one season for some players. Since the data is imported per season, you can
get duplicate player files since our statistics are always calculated for each team over
the course of one season. Sing [16] did not account for this problem, which can lead
to inaccurate predictions later on. In the final data set we used, this problem is re-
solved by retrieving the player-roster of each unique game and defining the identity
array with that information.

Since we are trying to predict the outcome of games according to historical data,
the use of current season player-statistics is not an option. The statistics that are
being used to describe the performance of the players are the statistics of the last
known season. Which means that for new players in a season, we do not have any
known statistics. According to the official NBA website, a team makes an average of
9 player transaction per season. These are not all rookies(new players in the NBA),
so for most of these players there is some historical data available. However, the av-
erage of rookies per season in our data-set is around 88. This about 1/10 of the total
amount of players in the NBA for a specific season. In the statistic arrays, this will
lead to around 1/10 of statistics missing over the entire player-set. To overcome this
potential problem we tested two methods to fill the missing data and see whether
the missing data influences the eventual results at all. This was done by training all
three learning algorithms for each feature (player-statistic) on our development set.
The first method we tried was a simple team-average approach, in which the miss-
ing values are filled by the team average of the metric in question. The McNemar
test was used to evaluate whether the models with filled averages had a signifi-
cantly higher performance. The models with the filled averages had no significant
improvements on our development-set, which lead us to discard this method.

The second approach was inspired by Koren [10] who used a matrix factorization
technique for recommender systems. In figure 3.2 an example is shown of a prob-
lem where we are trying to fill the missing values of each user/rating relation. As
described in Koren’s article [10], matrix factorization performs relatively well in this
problem context. The idea for our approach was to replace the user and item vari-
ables by team-players and calculate a ratio between each combination in the table
to represent a score. You would end with some ratio’s missing and we would able
to solve that by applying this technique. Computationally this would lead to no
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problems and the result would be a filled table with all the missing values resolved.
However, the essence of matrix factorization in this context, is that tries to model
some latent features that a user has with the item in question. In our case, both the x
and y variables are the same. Meaning you are trying to model features that players
have with themselves, which theoretically is not possible. This led us to abandon
this approach as it requires more research to make it functional. At this point, we
allowed the missing in the final set to exist and accept the potential inaccuracies.

FIGURE 3.2: Matrix factorization example on Netflix user rating problem

Finally, the data is now organized and structured in the arrays as described. In
a multi-feature data set like ours, machine learning models tend to weigh certain
features heavier in case of range differences [8]. For example, if all features consist
of percentages, the range would be the same. However, in cases where one feature
is ranged between 0 and 1000, this feature would get an unfair advantage. In some
cases where features are dependent on each other, this allowed. However, this is not
the case in our context. To prevent this from happening normalization is applied.
The normalization technique we used is called min-max (3.3) and is one of the most
commonly used normalization techniques. This was done for every player-metric
used, therefore eliminating the unfair advantage a feature might have.

xnorm =
x−min(x)

max(x)−min(x)
(3.3)
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4 Methodology

This chapter will describe the procedures taken to perform the experiments in this
research. All experiments were conducted in Python 3.7 with the use of some addi-
tional packages. The sci-kit learn package provided the machine learning algorithms
which then were customized to our problem context. The importing of the raw data
was done using a scraper which uses https://www.basketball-reference.com/ as
its source. All other steps were done manually and can be found in appendix A.2.

4.1 Training and testing

Before training and testing can begin we must split up the data and define a domain
in which both can take place. Since we are dealing with NBA-competition data, the
complete data-set will be split into separate seasons to keep that domain boundary
intact, as opposed to Sing [16] who shuffled the complete data-set and split it into
training and testing. This can lead to biased predictions based on the use of future
data which is not available in a realistic scenario. The training data must consist of
historical games with regards to the test data. Therefore, testing will be done on com-
plete seasons using one or more preceding season for training. For example, if we
are trying to predict the 2017/2018 season, one measurement will use the 2016/2017
season for training and the other measurement will be based on all preceding sea-
sons available. This allows us to compare whether a larger historical training set
performs better than a smaller both more recent training set.

4.2 Feature selection and parameter tuning

The preprocessed data contains a set of features consisting of 8 player-statistic based
features and 1 identity-feature. Each of these features is organized with the same
technique, which means they all have the length of the player-array (867) times two.
The learning algorithms technically view each feature as 1734 single features. In
the combined 9-feature data, this results in an excessively large data-set, which can
significantly degrade your model [4]. The essence of the modelling technique we
are using lies in the representation of the full player-array filled with a variety of
metrics. Therefore the decision was made to keep the low-level feature columns in-
tact and select only from the 9 high-level features. We applied a recursive feature
elimination technique, simultaneously combined with a grid search parameter tun-
ing technique. This allows us to keep the 9 high-level features intact and only select
between them. The idea behind this approach is to optimize the parameters for each
combination of features we test. To make this computationally feasible we used lo-
gistic regression for this process. Since we are dealing with a balanced data-set the
accuracy was used as the ranking metric in this selection process. The fitting time of
the logistic regression model was significantly lower allowing us to use this model
to run an exhaustive grid search with each combination of features.

https://www.basketball-reference.com/
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The best performing feature-combination that resulted from the elimination pro-
cess, was used to grid-search optimize the parameters for the neural network and
the support vector machine. The parameters used in the grid searches are selected
by trying out a few sample parameters to see which range would be best to run
the grid-search on. The grid-search technique we used, exhaustively generates can-
didates from the grid of parameter values we determined (table 4.1) and runs the
model. To prevent us from picking an overfitted candidate a 5-fold cross-validation
is applied with every iteration. The models that resulted from this process were used
to fit and predict the scores on the complete data set. The baseline measurements
which only include the identity-feature used the same parameter optimization as
the best performing feature model. A comparison between those models can then
be made to answer the research questions of this paper.

Algorithm Grid

Neural Network

hidden_layer_sizes: (100,100),(100,80),(100,50),(100,20),
(50,50),(50,40),(50,20),(100,1),(50,1)
alpha: 0.0001,0.001
activation: ’logistic’, ’identity’, ’tanh’
solver : ’adam’, ’sgd’

Logistic Regression
C: 1, 0.5, 0.1
solver : ’newton-cg’, ’lbfgs’, ’sag’, ’saga’, ’liblinear’

Support Vector Machine C: 0.1, 0.3, 0.7, 1, 1.2, 1.5

TABLE 4.1: Parameter grids used in the grid search with C and alpha as the
regularization parameters
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5 Analysis

In this chapter, we will analyze the results accumulated from applying the steps dis-
cussed in the methodology chapter. We will start by showing the results of the fea-
ture selection and parameter optimization process, which lead to our final models.
Next, we will continue by using the optimized parameters to perform our baseline
measurements and compare those to the best feature model scores. The last step will
be to determine which learning algorithm had the highest performance on our data.

5.1 Feature selection and parameter optimization

The parameter optimization was done on a subset of the complete data-set. As dis-
cussed in the methodology, our goal is to make predictions using complete seasons
for training and testing. The development set we used, therefore, consisted of the
complete 2014/2015 season of which the feature selection was based on the scores
for the 2015/2016 season. The result of the feature elimination is shown in the first
row of table 5.1. From the 9 features, 511 permutations were generated in which
the identity array is included. For all 511 permutations, an exhaustive grid-search
was executed with the parameter grid from table 4.1. The result was a set of 511 dif-
ferent feature models optimized and cross-validated on the 2014/2015 season data
(see score-logs appendix A.2). These models were used to predict the 2015/2016
season from which the best performing model is shown in table 5.1. The feature-
set of this final model was reduced to three features consisting of usage_percentage,
win_shares and the assists_percentage.

Algorithm Best parameters Score 2015/2016 season

Logistic Regression
solver : newton-cg
C: 0.1

0.656

Neural Network
alpha : 0.0001
activation : logistic
hidden_layer_sizes : (50,40)

0.650

Support Vector Machine C : 0.1 0.658

TABLE 5.1: Accuracy Results of grid-search parameter tuning using the
2014/2015 for fitting with the following feature-set:
[usage_percentage, win_shares, assists_percentage]

The best performing feature combination was used to run an exhaustive grid-
search for the neural network and support vector machine (table 5.1). As with our
logistic regression model fitting, was done on the 2014/2015 season with a 5-fold
cross-validation. The 2015/2016 season was used to measure the predictive perfor-
mance of these optimized models. A comparison between these models for signifi-
cance will be done in paragraph 5.2 and 5.3.
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5.2 Feature performance

In table 5.2 till 5.7 a comparison between the baseline models and the best scoring
feature models is shown on the complete data-set. This data-set set consists of five
seasons starting at the 2013/2014 season. The model performance is illustrated using
three metrics discussed in paragraph 2.3. The metrics were determined using the
confusion-matrix of each classifier. As the performance of the model is measured
by using the test-cores, the training-scores will be shown in the extended results
(appendix A.1). The p-value between each pair of models is calculated with the use
of the McNemar test statistic. The alpha-value (significance level) was set to 0.05.

Baseline scores Feature scores
Season Accuracy F1-score AUC Accuracy F1-score AUC p-value
2014/2015 0.609 0.708 0.571 0.606 0.707 0.566 0.683
2015/2016 0.640 0.730 0.600 0.659 0.741 0.617 0.024*
2016/2017 0.625 0.729 0.577 0.623 0.733 0.569 0.752
2017/2018 0.605 0.723 0.551 0.613 0.729 0.560 0.235

TABLE 5.2: Logistic Regression scores using one preceding season for
training. The p-values with an * depict a significant difference between the
base-model and the feature-model.

Baseline scores Feature scores
Season Accuracy F1-score AUC Accuracy F1-score AUC p-value
2015/2016 0.646 0.729 0.612 0.659 0.735 0.627 0.060
2016/2017 0.622 0.722 0.578 0.631 0.727 0.589 0.508
2017/2018 0.604 0.715 0.556 0.599 0.704 0.558 0.805

TABLE 5.3: Logistic Regression scores using all preceding seasons available
for training. The p-values with an * depict a significant difference between the
base-model and the feature-model.

Table 5.2 displays that the logistic regression models using the composition tech-
nique perform better than a random model. However, the additional features that
were implemented show no significant improvement to the model. The only model
that showed a significant improvement by adding the features was the one tested on
the 2015/2016 season. Table 5.3 shows the results of using a multi-season training-
set to fit the models. Like with the single-season training, there are no significant
improvements by using the feature data.

Baseline scores Feature scores
Season Accuracy F1-score AUC Accuracy F1-score AUC p-value
2014/2015 0.615 0.714 0.577 0.617 0.701 0.589 0.807
2015/2016 0.642 0.711 0.620 0.650 0.716 0.629 0.368
2016/2017 0.615 0.698 0.586 0.628 0.712 0.596 0.275
2017/2018 0.609 0.715 0.565 0.626 0.726 0.583 0.010*

TABLE 5.4: Feedforward neural network scores using one preceding season
for training. The p-values with an * depict a significant difference between the
base-model and the feature-model.
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Baseline scores Feature scores
Season Accuracy F1-score AUC Accuracy F1-score AUC p-value
2015/2016 0.659 0.732 0.631 0.666 0.728 0.646 0.396
2016/2017 0.624 0.715 0.586 0.621 0.713 0.584 0.922
2017/2018 0.597 0.707 0.551 0.594 0.693 0.558 0.888

TABLE 5.5: Feedforward neural network scores using all preceding seasons
available for training. The p-values with an * depict a significant difference
between the base-model and the feature-model.

Table 5.4 depicts the results of our neural network performance. By only assessing
the accuracy, F1-score and the AUC-score the feature seems to consistently perform
better. However, after applying the McNemar test the only model that a significant
improvement was the 2016/2017 trained model. The models that were trained on
multiple season in table 5.5 showed almost identical performance scores. Between
the baseline models and the feature models, there are no significant improvements
present.

Baseline scores Feature scores
Season Accuracy F1-score AUC Accuracy F1-score AUC p-value
2014/2015 0.614 0.703 0.582 0.616 0.703 0.584 0.784
2015/2016 0.660 0.737 0.628 0.658 0.730 0.630 0.740
2016/2017 0.631 0.720 0.594 0.625 0.720 0.585 0.403
2017/2018 0.604 0.716 0.555 0.621 0.726 0.575 0.055

TABLE 5.6: Support vector machine scores using one preceding season for
training. The p-values with an * depict a significant difference between the
base-model and the feature-model.

Baseline scores Feature scores
Season Accuracy F1-score AUC Accuracy F1-score AUC p-value
2015/2016 0.647 0.723 0.618 0.663 0.730 0.640 0.335
2016/2017 0.623 0.718 0.582 0.633 0.718 0.593 0.246
2017/2018 0.609 0.712 0.567 0.588 0.682 0.555 0.195

TABLE 5.7: Support vector machine scores using all preceding seasons
available for training. The p-values with an * depict a significant difference
between the base-model and the feature-model.

The results of our support vector machine classifier are shown in table 5.6 and 5.7.
Like with the previous models, the feature models showed no significant improve-
ment in comparison to the baseline models. The scores are almost identical to each
other with both the single-season trained models and the multi-season trained mod-
els.

Overall, the models performed better than a random model which would have
an accuracy of around 0.5 with a large enough sample size. The models consistently
showed accuracy’s higher than 0.6 However, our feature models which included
player-statistics to enhance the performance did not yield any positive results. Of
the complete set of measurements we did, only two models yielded a statistically
significant improvement. The inclusion of player-statistic features, therefore, did
not perform consistently over the full data-set. A potential justification for this result
could be based on the idea behind the team-compositing technique. The values for
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each feature are put in an array which largely consists of zeros. As explained in
paragraph 4.2, each feature technically consists of 1734 feature-columns during the
actual training phase. Around 96% of those columns are zeros. With a ratio this
shifted, the values of the 4% of data that is filled in can be saturated by the overflow
of zero’s. Suggesting that the actual value is not more important than the presence
of a value in that location. For player-identity modelling, this can be ideal. However,
when adding more expressive values instead of just ones, this technique can lead to
a saturation of that value. The two models that did have a significant effect, can be
seen as fluctuations. The p-values of these two models were moderately close to our
0.05 threshold, implying that the statistical significance is not irrefutable.

5.3 Model comparison

The results discussed in paragraph 5.2 are visualized in figure 5.1 and 5.2 to com-
pare the learning algorithms used in this research. According to the McNemar-test,
the three algorithms did not show any significant differences and performed consis-
tently over the different data-samples. Therefore, the type of learning algorithm had
no impact on the performance of the classification.

FIGURE 5.1: Accuracy scores
for all learning algorithms,
using a single preceding
season for fitting

FIGURE 5.2: Accuracy scores
for all learning algorithms,
using multiple seasons for
fitting
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6 Conclusion and Discussion

In this thesis we applied the team-composition model to NBA game-data to answer
the following main research questions:

• Does the addition of player-statistics to the team composition modelling tech-
nique improve the prediction performance in comparison to only using the
player identity?

• Which classification algorithm achieves the highest performance with the team
modelling technique out of Multivariate Logistic Regression, Neural Networks
and Support Vector Machines?

For the first question, we implemented 8 additional features based on the player
statistics to improve the prediction accuracy. The feature selection process resulted
in an elimination of 6 of those features, making the final data-set considerably smaller.
However, the results were rather disappointing as the final model did not show any
significant improvements in comparison to only using the player identity. Neglect-
ing a few fluctuations which were on the boundary, this led to the conclusion that
the addition of player-statistics did not result in a higher predictive performance.
The second question is based on using the results of our final model and comparing
the different learning algorithms to each other. The results showed that the learning
algorithms performed similarly on different data-sets. The variation in our results
was mostly accredited to the data used for training and testing and not the algo-
rithms used. This was the case for the best performing feature model and the base-
line identity model. Therefore leading us to the conclusion that the type of learning
algorithm used in this context did not affect the performance in a significant way.

This thesis clearly showed the obstacles a machine learning research, in gen-
eral, might have. The importance of preprocessing and the quality of the data was
highlighted in chapter 3 where several steps were taken to improve this quality.
Nonetheless, there is still room for improvement. One of the steps could be to find
an accurate method to fill the missing data in the player-statistics. A first step was
taken in this research by using averages and matrix factorization to fill these missing
values. We did not succeed in applying the second approach and several arguments
can be made against the accuracy of using averages.

During the analysis of the results, potential flaws of the team-composition tech-
nique came forward. The technique can be seen as reliable in the case of only rep-
resenting the identity of players. However, when player-statistics are added the
dimension of the training-data grows excessively and can lead to saturation of the
player-statistic values. In future work, this potential problem can be resolved by
applying some form of dimensionality reduction on the feature-level, whereas we
only selected between the high-level features in this research. Additionally, with
feature-sets this large, models are more susceptible to overfitting. In this research,
some measures were taken by applying techniques like cross-validation to counter-
act this development. However, several more sophisticated approaches were left
unexplored.
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Lastly, the technique itself may have to be altered at its fundamentals to allow
for a more compact representation of player-data in each game. Since the goal of the
technique is to represent the data in an uncomplicated manner, it does not offer an
adequate approach to the addition of personalized statistics as Sing [16] suggested.
Future work may include defining a new approach to representing the statistics of
each player for each game. An approach that should be able to represent the player
identity and personalized statistics in a more condensed sapce.
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A Appendix

A.1 Tables

start_time away_team away_team_score home_team home_team_score

0 2013-10-29 23:00:00+00:00 ORLANDO MAGIC 87 INDIANA PACERS 97
1 2013-10-30 00:00:00+00:00 CHICAGO BULLS 95 MIAMI HEAT 107
2 2013-10-30 02:30:00+00:00 LOS ANGELES CLIPPERS 103 LOS ANGELES LAKERS 116
3 2013-10-30 23:00:00+00:00 BROOKLYN NETS 94 CLEVELAND CAVALIERS 98
4 2013-10-30 23:00:00+00:00 BOSTON CELTICS 87 TORONTO RAPTORS 93
5 2013-10-30 23:00:00+00:00 MIAMI HEAT 110 PHILADELPHIA 76ERS 114
6 2013-10-30 23:30:00+00:00 WASHINGTON WIZARDS 102 DETROIT PISTONS 113
7 2013-10-30 23:30:00+00:00 MILWAUKEE BUCKS 83 NEW YORK KNICKS 90
8 2013-10-31 00:00:00+00:00 INDIANA PACERS 95 NEW ORLEANS PELICANS 90
9 2013-10-31 00:00:00+00:00 ORLANDO MAGIC 115 MINNESOTA TIMBERWOLVES 120
10 2013-10-31 00:00:00+00:00 CHARLOTTE BOBCATS 83 HOUSTON ROCKETS 96
11 2013-10-31 00:30:00+00:00 MEMPHIS GRIZZLIES 94 SAN ANTONIO SPURS 101
12 2013-10-31 00:30:00+00:00 ATLANTA HAWKS 109 DALLAS MAVERICKS 118
13 2013-10-31 01:00:00+00:00 OKLAHOMA CITY THUNDER 101 UTAH JAZZ 98
14 2013-10-31 02:00:00+00:00 PORTLAND TRAIL BLAZERS 91 PHOENIX SUNS 104
15 2013-10-31 02:00:00+00:00 DENVER NUGGETS 88 SACRAMENTO KINGS 90
16 2013-10-31 02:30:00+00:00 LOS ANGELES LAKERS 94 GOLDEN STATE WARRIORS 125
17 2013-11-01 00:00:00+00:00 NEW YORK KNICKS 81 CHICAGO BULLS 82
18 2013-11-01 02:30:00+00:00 GOLDEN STATE WARRIORS 115 LOS ANGELES CLIPPERS 126
19 2013-11-01 23:00:00+00:00 CLEVELAND CAVALIERS 84 CHARLOTTE BOBCATS 90

TABLE A.1: Sample of Game-data 2013/2014 season
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age 23
assist_percentage 10.1
block_percentage 3.9
box_plus_minus 5
defensive_box_plus_minus 3.7
defensive_rebound_percentage 19.2
defensive_win_shares 0.1
free_throw_attempt_rate 0.571
games_played 7
minutes_played 61
name Quincy Acy
offensive_box_plus_minus 1.2
offensive_rebound_percentage 9.5
offensive_win_shares 0.1
player_efficiency_rating 17.2
positions [SMALL FORWARD]
slug acyqu01
steal_percentage 3.4
team TORONTO RAPTORS
three_point_attempt_rate 0.357
total_rebound_percentage 14.3
true_shooting_percentage 0.542
turnover_percentage 10.2
usage_percentage 14.5
value_over_replacement_player 0.1
win_shares 0.2
win_shares_per_48_minutes 0.188

TABLE A.2: Advanced player statistics of Quincy Acy for the 2013/2014
season
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age 23
assists 4
attempted_field_goals 14
attempted_free_throws 8
attempted_three_point_field_goals 5
blocks 3
defensive_rebounds 10
games_played 7
games_started 0
made_field_goals 6
made_free_throws 5
made_three_point_field_goals 2
minutes_played 61
name Quincy Acy
offensive_rebounds 5
personal_fouls 8
positions [SMALL FORWARD]
slug acyqu01
steals 4
team TORONTO RAPTORS
turnovers 2

TABLE A.3: Season totals Quincy Acy for season 2013/2014

A.2 Code

Link to all the code and score-logs used in this research:
https://github.com/brahimeg/NBA-thesis.git

https://github.com/brahimeg/NBA-thesis.git
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FIGURE A.1: Extended final scores of the baseline model and best feature
model
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