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Abstract

Research on the optimal training frequency for highly skilled professionals is not well

established. Finding an optimal training frequency could presumably lower costs, maintain

a higher performance and create a more pleasant work environment. Royal Netherlands

Aerospace Centre (NLR) started doing research on skill retention/decay in highly skilled

professionals such as fighter pilots. By collecting participant data from their version of

the online game Space Fortress (SF) a retention model will be created. Ideally, the final

model can be extrapolated to predict an optimal training schedule for pilots and other

professionals.

In this thesis suitable techniques to create an accurate forecasting model for SF are ex-

plored, by studying machine learning techniques applied in Time Series Forecasting (TSF)

and Knowledge Tracing (KT). After reviewing the literature, the most promising tech-

niques will be discussed. A recommendation regarding many aspects of the challenge will

be given, with the main focus on interpolation and prediction using a Long Short-Term

Memory (LSTM) in combination with feature engineering.
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1 Introduction

Highly skilled professionals, such as fighter pilots, need to keep their skill level constant and on a

high level. This is why fighter pilots spend many hours in recurrent training, with the average US

fighter pilot flying approximately 200 hours each year (Haynes, 2008). Different skills, varying from

situational awareness, memorization or selective attention are trained to keep the pilot’s abilities

proficient (Carretta et al., 1993). Although different methods of training could reduce training hours

(Smith, 1976), no extensive research has been conducted to find the optimal frequency of recurrent

training. Beyond that, the curricula do not differentiate between individual pilots. Why should two

pilots perform the same hours of training flights if one pilot maintains their skills without effort and

the other pilot has significant performance decay without training?

This is why Royal Netherlands Aerospace Centre (NLR), together with Netherlands Organisation

for Applied Scientific Research (TNO), started a research project on the topic of skill acquisition and

retention in complex tasks. The project consists of smaller related studies, with the NLR specifically

focussing on retention: how skilled a person stays after a period of performance decay as a result of

no training. A predictive model of skill retention will be built using different measurements from the

pilots’ training. In the end, the model should be able to differentiate between unique abilities, like

motor skill, memory or procedures. Ideally this model can predict future performance decay – the

measure of skill retention. More optimally timed recurrent trainings could improve the performance

and work environments of the pilots, while cutting costs. In the future, this knowledge could be applied

to different domains such as medical training.

Currently, there is not enough performance data available from pilots to train a predictive model.

Furthermore, data collected in the real world is often distorted or noisy. To represent the different tasks

a pilot has to master - in a smaller, controlled environment - NLR and TNO created their own version

of the game Space Fortress and made it available to the public. Space Fortress is “a game [originally]

developed in the Cognitive Psychophysiology Laboratory (University of Illinois) as an experimental

task for the study of complex skill and its acquisition. The object of the Space Fortress game is to

shoot missiles at and destroy a space fortress. Missiles are fired from a spaceship whose movement

is controlled by the subject. In addition to destroying the fortress, the subject must protect his ship

against damage” (Mané & Donchin, 1989). Anyone with a computer and internet connection can play

the game online (at https://spacefortress.nlr.nl) and contribute to this study. After a training phase

the participant is asked to wait for a determined number of weeks (up to a full year), and asked to

play again (van der Pal & Toubman, 2020). This way, the effect of different retention intervals on

performance can be studied.

Since almost every possible metric from the game is measured the output data has a high-dimensional
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feature space. This is why NLR opted for a machine learning approach to process the obtained data.

The algorithm has to forecast future performance of a participant and needs to handle high-dimensional

and temporal data with variable intervals. Now the main question arises: what is the most suitable

machine learning technique to model skill retention with data from Space Fortress?

In this thesis I will firstly shed light on the background of the research project, the SF game and

the technical challenges that have to be solved (section 2). Then I will compare different approaches

taken by other researchers, broadly grouped by field of research. The papers are divided into two main

domains: Time Series Forecasting (TSF) (section 3.1) and Knowledge Tracing (KT) (section 3.2). In

the end, relevant techniques found in literature are reviewed (section 4). Based on the similarities

and differences between the SF project and the discussed papers, a recommendation is given on which

direction to take (section 5).
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2 Background

2.1 Research project OiT

NLR and TNO started the research project Education & individual Training (OiT) with the goal to

build up knowledge for the Dutch Ministry of Defence about personalizing training schedules. To be

more precise, it is aimed at the retention/continuation training of fighter pilots (and other personnel) to

maintain their combat readiness. These pilots need hours of expensive and intensive retention training

throughout the year to maintain their proficiency. With enough data, a retention model could forecast

future skill decay and therefore be able to predict if and when a pilot needs training. More optimally

timed recurrent trainings could have several advantages, for instance:

• No unneeded trainings have to be carried out, presumably lowering costs;

• A higher average performance can be maintained by detecting the optimal moment a pilot needs

training;

• The work environment may become more pleasant as there will be less overly complex or frus-

trating trainings.

2.2 Skill retention

The OiT project is focussing on skill retention or, alternatively, skill decay. Retention means how

well a learned skill is maintained as time passes. Skill retention is already researched for more than

a century (see e.g. Reed, 1918). A differentiation can be made between short-term retention and

long-term retention. Short-term retention functions were found to be highly variable, although prac-

tice repetitions minimize forgetting. In long-term retention, motor skills are believed to have a high

retention, meaning the skill is well maintained over months or years (Adams, 1987). As complex tasks

in the OiT project require different skills, we could expect to see different retention curves for different

skills.

2.3 Space Fortress

Real world data from fighter pilots is scarce, as there are not many pilots available for research and

data collection is difficult. To create an initial retention model, another manner of generating data of

complex skills was sought and found in the video game Space Fortress (SF). The game was initially

developed as an experimental task for the study of complex skill and its acquisition (Mané & Donchin,

1989). Skills involved in mastering the game are multidimensional: perceptual, cognitive, motor skills

together with specific knowledge of the rules and strategy are required of the player.
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While playing the game, the player controls a spaceship in a rectangular space (Figure 1). The

objective is to weaken the fortress in the middle of the screen by shooting missiles at it, and eventually

destroying it. However, the fortress shoots back at the player. Dodging shots while maneuvering

through space requires motor skills (CNTRL) and the destruction of the fortress requires timing since

shots have to be timed in order to be successful (INTRVL). To make the game challenging, the player

has to remember certain letters at the beginning of the game. In the game mines will appear with a

specific letter showing on screen. The player can tell if the mine is friendly or foe by remembering if

the letter is in the learned letters (IFF). Lastly, power-ups will appear, forcing the player to divide its

attention and make the decision between short-term or long-term rewards. In the end, the aim is to

collect as many points possible.

Figure 1: An in-game snapshot of Space Fortress (SF).

The skills required for SF are similar to the tasks that pilots have to master. The Israeli Air Force

flight school even showed that training in SF can improve certain skills of fighter pilots, such as efficient
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control and management of attention under high task load (Gopher et al., 1994). When a retention

model is created from the SF data, the model can be applied to other projects in the OiT research.

The model could be tested and updated with simulator data and eventually be applied on real life

fighter jet training.

2.4 Design

The SF project is an experimental research, where a group of participants playing the game online

provides the data. Furthermore, the research is exploratory, meaning it seeks to generate a posteriori

hypotheses by examining the data and conclude from the gathered data. A custom environment was

built to facilitate the study, called the Space Fortress Adaptive Instructional System (SF-AIS). The

SF-AIS is an interactive website where participants learn to play SF (van der Pal & Toubman, 2020).

After signing up, the participant is asked to take the initial training.

Initially, the practice sessions are configured to be simpler than the full game and the difficulty

builds up to the point where the participant is able to play the game at a sufficient level. After this

level is reached, the participant enters the ‘retention model’ phase, where the participant is asked to

not play the game for an interval between 1 and 52 weeks. This interval will be randomly decided

in the beginning of the experiment. When more data becomes available the retention interval can be

calculated to provide a more optimally timed training. After the interval is over, participants take the

‘retention test’ and play the game again to determine their current skill level. A refresher training

is given to update the skill level before the participant enters the waiting period again. The whole

process is visualized in Figure 2.
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Figure 2: Workflow of the participants in the SF-AIS (image from van der Pal and Toubman, 2020).

2.5 Output data

Many variables are tracked every game, including the points, control, velocity, interval, speed and the

number of shots fired. These values are displayed while playing (Figure 1). Besides that, secondary

variables are registered, varying from timing of button presses to hits. In total more than 50 different

metrics are stored per playing session. Each row in the data set represents one session of one player.

A player usually has more than one played session, which can be either a training session or the full

game (Figure 3). All these metrics result in high-dimensional data, meaning the output has many

features. The metrics are a combination of discrete and continuous values.
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Figure 3: A simplified visualization of what the data looks like. Columns represent the features, rows

show different sessions grouped by participant (player). The continuous values of the features are

represented by varying colors.

2.6 Challenges to solve

As of now there is not enough data available from the SF-AIS to make accurate predictions on trends in

the output data. However, the data has certain properties that can already be identified. The eventual

solution for modelling the skill retention has to be able to deal with these properties. Therefore, we

can rephrase the properties as challenges that have to be solved by the implementation. Guided by

these challenges we can then look for relevant literature.

The first challenge to solve is the high-dimensionality of the data, meaning many features (mul-

tivariate) are collected per sample and put into the model. Inputting too many features can lead

to overfitting the model. Because of this, feature engineering could help selecting or combining

features. Furthermore, we know the data is temporal: the data is sequentially ordered in time, with

each sample having a timestamp. This comes with another problem, since the samples are not taken
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at regular intervals. Participants can decide themselves when they want to play and besides that,

the retention interval is inherently variable. This results in data with variable intervals with gaps

from hours to weeks or even years: the data is sparse and irregularly sampled. As most learning

algorithms require fixed sample intervals, we will review literature that creates models with missing

values in the data. The main goal of the retention model is to forecast or predict an optimal retention

interval, which could span many time steps in the future (multi-step ahead prediction). The ultimate

objective is to predict the optimal retention interval for SF, which is a form of regression.
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3 Literature study

Taking the challenges in section 2.6 into consideration, we review literature to explore how the authors

solved related challenges. The SF data shares strong similarities with Time Series Forecasting (TSF)

data (section 3.1): the data is temporal in nature and the goal is to forecast future based on trends

in past values. Besides that, it often deals with high-dimensional data. However, most TSF papers

deal with regularly sampled data. For data with missing values, time gaps or irregularly sampled

data points, medical research could be valuable for our model. The medical research shows strong

similarities with TSF as predicting clinical events in the future is often the goal. Unlike time series,

medical data is usually sampled at varying intervals with many missing values or gaps. Therefore, we

also investigate literature on the prediction of clinical data.

Moving away from TSF, overlap is also found between our data and Knowledge Tracing (KT)

(section 3.2) data. KT attempts to predict the skill or knowledge of a student in the future, as is the

objective of the OiT project. However, the time factor is usually less important as the goal is mainly

to predict the next exercise outcome. A form of knowledge tracing using deep neural networks is called

Deep Knowledge Tracing (DKT) and has shown some significant results in the last decade. A specific

variation on knowledge tracing is Second Language Acquisition Modelling (SLAM), which uses data

from online language learning courses to predict student performance.

Sixteen papers, coming from different fields of study, will be discussed below. The papers have been

selected based on three criteria: relevancy, recency and importance. Relevancy was initially judged

by matching the papers to the challenges posed in section 2.6. Moreover, recently published papers

are preferred over older papers. As machine learning techniques improve rapidly, relatively recently

published papers are generally achieving a higher performance compared to older algorithms (see e.g.

section 3.1.2). Lastly, papers with more citations are favored over similar papers with less citations. All

papers are summarized, with their approach and results listed. Similarities and differences between the

SF data and the data from the respective paper will be discussed, with relevant techniques mentioned

and further explained.

3.1 Time Series Forecasting

TSF is one of the many applications of machine learning. The aim is not only to describe or collect

data, but to predict future values such as events or prices based on trends in the data set. Past

samples or observations of the same variable are collected and analysed to create a model describing

the relationship between values and the passing of time. This model can be used to extrapolate the

series into the future, thus predicting upcoming data. Especially when little knowledge is available

on what exactly generates the underlying data and how variables relate to each other, TSF is useful.
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The prediction algorithms have been widely applied in many areas, for example weather forecasting

(Maqsood et al., 2004), medical diagnosis (Jin et al., 2018), financial forecasting (Cao & Tay, 2003)

and more specifically stock price prediction (Pai & Lin, 2005).

Two of the most widely used algorithms to model time series are Autoregressive Moving Average

(ARMA) (Whittle, 1951) and Autoregressive Integrated Moving Average (ARIMA) with the Box-

Jenkins method (Box et al., 2015). Furthermore, linear Support Vector Regression (SVR) (Cao &

Tay, 2003) is also used frequently. Although ARMA, ARIMA and linear SVR proved to be successful

in creating forecasting models, the models usually assume a certain distribution, function form or

linear relationship and may not be able to capture complex underlying relationships with nonlinear

data.

More recently, different forms of an Artificial Neural Network (ANN) have been employed for TSF

in fields such as finance (Kim, 2006) and hydrology (Jain & Kumar, 2007). RNNs have proven to be

especially useful when attempting to model non-linear dependencies on large amounts of data (Qin

et al., 2017). There is, however, a drawback on the use of RNNs when attempting to model long-

term dependencies: vanishing gradients. The vanishing gradient problem is a difficulty in training

a backpropagated network’s weights. In some cases, the gradient will become too small, preventing

the weight from changing again. The opposite, exploding gradients, cause similar problems. This

makes a traditional RNN less suitable for learning long-term time series (Bengio et al., 1994). A

specific memory cell added to a RNN can prevent this problem, as demonstrated in a Long Short-

Term Memory (LSTM) network (Gers et al., 2000). More technical details can be found in Appendix

A.1.

The first four papers discussed use TSF in varying domains and focus more on high-dimensional

data and less on irregularly sampled data. The last five papers do however address the irregularly

sampling better, usually in clinical context.

Contents

3.1.1 A review and comparison of strategies for multi-step ahead time series forecasting

based on the NN5 forecasting competition . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Pre-

diction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 A Memory-Network Based Solution for Multivariate Time-Series Forecasting . . 16

3.1.4 Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature

Selection and Genetic Algorithm: Comparison with Machine Learning Approaches 18

3.1.5 Recurrent Neural Networks for Multivariate Time Series with Missing Values . . 19
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3.1.6 Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate

Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.7 Learning to Diagnose with LSTM Recurrent Neural Networks . . . . . . . . . . . 21

3.1.8 Predicting the Risk of Heart Failure With EHR Sequential Data Modeling . . . . 21

3.1.9 Interpolation-Prediction Networks for Irregularly Sampled Time Series . . . . . . 22

3.1.1 A review and comparison of strategies for multi-step ahead time series forecasting

based on the NN5 forecasting competition

Taieb et al., 2011

Summary The aim of this paper is to show how the choice of forecasting strategy could influence

the performance of the multi-step ahead forecasts. A multi-step ahead forecast consists of predicting

- as the name implies – multiple time steps into the future. Predicting multiple steps at once is a

challenge, since the uncertainty increases when the forecast horizon becomes larger.

Multiple known approaches are tested on the NN5 dataset (111 daily times series drawn from

a homogeneous population of empirical cash money withdrawals at ATMs) as a benchmark. Three

Single-Output strategies are tested: Recursive, Direct and DirRec. Besides that, a Multi-Input Multi-

Output (MIMO) strategy is selected. Finally, the DIRect and miMO (DIRMO) strategy is formed by

combining Direct and MIMO.

Before testing, every configuration is subjected of several preprocessing steps. The first one is the

removal of gaps, as some data contains anomalies: null values and missing observations. The gaps are

replaced with the median of the surrounding data. Next, the data is deseasonalized and the dimension

selection is embedded. After this, a variable selection procedure requires the setting of two elements:

the relevance criterion (estimates quality of selected variable) and the search procedure (describes

policy to explore the input space). Delta Test (Pi & Peterson, 1994) is adopted as the relevance

criterion. Lastly, the winning model is selected. The performance of the forecasting methods over one

times series was assessed by the Symmetric Mean Absolute Percentage of Error (SMAPE) measure.

Based on the results, the most consistent finding is that the Multiple-Output (MIMO and DIRMO)

approaches are invariably better than Single-Output approaches. Also, deseasonalization had a very

considerable positive effect on the performance.

Relevance Multi-step ahead forecasts are the aim for both the SF model and this paper. A large

forecasting horizon, which could be a year ahead for the SF retention model, forms a difficult problem.

The comparison of Taieb et al., 2011 shows that there are good approaches to model many steps

ahead. Multiple-Output approaches are preferred over Single-Output approaches. Unfortunately, the
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SF model has to output only one variable, the retention interval. Besides that, the NN5 data set

consists of regularly sampled data.

Although there are differences between the NN5 data and the SF data, the preprocessing steps deal-

ing with missing values, deseasonalization and dimension selection are useful. Also, variable selection

is used. These steps form a interesting takeaway for our research.

3.1.2 A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Pre-

diction

Qin et al., 2017

Summary Nonlinear Autoregressive Exogenous (NARX) models forecast by making use of exoge-

nous variables: variables whose value affects the model, but the variables themselves are not affected

by the model. For example, when forecasting plant growth, the weather is an exogenous variable. Most

NARX models fail to appropriately capture long-term temporal dependencies and select the relevant

driving series (input features) to make predictions. A Dual-Stage Attention-Based Neural Network

(DA-RNN) is proposed to address these issues. The first stage selects elementary stimulus features at

each time step; the second stage uses categorical information to decode the stimulus (Figure 4). This

is inspired by theories of human attention that behavioural results are best modelled by a two-stage

attention mechanism (Hübner et al., 2010). The first stage selects the elementary stimulus features

while the second stage uses categorical information to decode the stimulus.

Figure 4: Graphical illustration of the DA-RNN. The left part forms the input attention mechanism.

The part on the right is the temporal attention mechanism, consisting of an encoder and decoder

(image from Qin et al., 2017).

First, the input selection mechanism selectively focusses on certain driving series rather than treat-

ing all the input driving series equally. The features then transfer to the temporal attention mechanism,

where the encoder is formed by a RNN that encodes the input sequences into a feature representation
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in machine translation. The input sequence consists of multiple driving (exogenous) series with a

non-linear activation function, that could be an LSTM (Hochreiter & Schmidhuber, 1997) or a Gated

Recurrent Unit (GRU) (Cho, van Merrienboer, Bahdanau, et al., 2014). Qin et al., 2017 choose the

LSTM for its ability to model long-term dependencies.

Since the performance of the encoder-decoder network can deteriorate rapidly as the length of

input sequence increases, a temporal attention mechanism is used to decode the data. The decoder

adaptively selects relevant hidden states in the encoder across all time steps, using another LSTM

network. The decoded information is the predicted output.

Training is carried out with minibatch Stochastic Gradient Descent (SGD) together with the Adam

optimizer. The learning rate is reduced over time and the parameters are learned by standard back-

propagation with Mean Squared Error (MSE) as the objective function. The DA-RNN is implemented

in Tensorflow.

For learning two datasets are used: the SML 2010 dataset for indoor temperature forecasting

(16 relevant driving series, 40 days of monitoring data, with samples every minute) and data from the

NASDAQ 100 stock (81 corporations, 105 days of data with samples every minute). Various evaluation

metrics are used, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE).

The DA-RNN outperformed the benchmark models such as ARIMA, NARX RNN and other neural

networks, achieving lower MAE, MAPE and RMSE.

Relevance The DA-RNN outperforms all the algorithms it is compared with and therefore could

be very useful for the SF model. Especially the two-stage attention mechanism based on human

behaviour is remarkable, since the SF model attempts to model human behaviour. Additionally,

many input features are processed and discussed. An LSTM is used for its ability to capture long

term dependencies without the problem of vanishing gradients and samples are collected at a regular

interval. However, this differs from our data collection as the SF data is not generated at a fixed time

step.

3.1.3 A Memory-Network Based Solution for Multivariate Time-Series Forecasting

Chang et al., 2018

Summary A deep learning based model named Memory Time-Series Network (MTNet) is proposed

to effectively capture extremely long-term patterns and improve explainability. MTNet, as opposed to

the DA-RNN mentioned in section 3.1.2, considers periods of time instead of particular timestamps in

the past. Furthermore, it is extendable to multivariate settings, whereas DA-RNN is better suited for
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univariate applications.

In MTNet model consists of a large memory component and three different embedding feature

maps generated by three different encoders (Figure 5). The encoder consists of three different layers.

A convolutional layer extracts short-term patterns between variables in the time dimension. Next the

attention layer adaptively selects relative time across all time steps. Finally, the data is fed into a

recurrent layer with the GRU and Rectified Linear Unit (ReLU) as hidden activation function.

The non-linearity of the convolutional and recurrent layer in the encoders causes the scale of the

neural network output to be insensitive. To solve this problem, the final prediction is a combination

of the non-linear representation from the encoders together with a linear autoregressive result.

In the training process, the MAE is adopted and all neural models are trained using the Adam

optimizer.

Figure 5: A graphical representation of the encoder architecture (left) and the MTNet architecture

(right) (image from Chang et al., 2018).

Both univariate and multivariate experiments are conducted, with the data sets split into training

(60%), validation (20%) and test (20%) in chronological order. RMSE is used as the metric, in addition

to MAE for univariate tasks and both Root Relative Squared Error (RRSE) and Emperical Correlation

Coefficient (CORR) for multivariate tasks.

The test results are compared with different other methods, including an Autoregressive model,

RNN-GRU and the DA-RNN. Every technique is tested on multiple data sets, comparing the results

per data set. MTNet outperforms these state-of-the-art methods in both univariate and multivariate

time series prediction.

Relevance As the SF model has to deal with long-term patterns and interpretability of the variables

would beneficial for the research, the MTNet could offer insight in the steps to take. It is able to deal

with multivariate inputs and the paper explains well how the experiments are conducted.
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3.1.4 Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature

Selection and Genetic Algorithm: Comparison with Machine Learning Approaches

Bouktif et al., 2018

Summary Electric load forecasting enables utility providers to model and forecast power loads in

different time spans. Bouktif et al., 2018 specifically focussed on short-term (days to two weeks)

and medium-term (weeks to months) forecasting, using the France Metropolitan’s electricity energy

consumption data as a case study. An LSTM is used since these networks are powerful for modelling

sequential data and have the ability for end-to-end modelling, learning complex non-linear patterns

and automatic feature extraction abilities.

The preprocessing of the data consists of checking of null values and outliers, scaling the data

and splitting the data into train and test subsets. The measurements consist of the electric power

consumption in France with thirty-minute sampling. Feature scaling is done by normalizing the data

in the [0, 1] range. After this, the data set is split in 70/30 training/validation data.

To prove the effectiveness of the proposed methodology, other machine learning techniques (Ridge

Regression, k-Nearest Neighbors (k-NN), Random Forests (RF), Gradient Boosting, Neural Network

and Extra Trees Regressor (ETR)) were run on the same data with the complete set of features,

providing a benchmark test. The MSE was used as the loss function and had to be minimized.

From the performance metrics the ensemble approach ETR performed the best; the Neural Network

performed the worst and took a longer time to train. Therefore ETR is used as benchmark to compare

the proposed LSTM.

Bouktif et al., 2018 used wrapper techniques and embedded techniques of feature selection to

validate the importance of the model inputs. This increased performance and helps against overfitting.

To be more precise, recursive feature elimination and extra trees regressor showed the most important

features to be the time lags. After this, hyperparameter tuning was used to improve the performance

of the model. As the time lag features proved to be the most influential, a Genetic Algorithm (GA)

was used to determine the optimal lag.

Generally, when a data set is larger (more samples), more hidden layers and neurons could be used

without overfitting the model. In this case, the number of neurons in the input layer of the LSTM

model matches the number of time lags in the input vector, hidden layers are fully connected and the

output layer has a single neuron for prediction. MSE was used as the loss function between input and

corresponding neurons in the output layer.

Five-fold cross validation was carried out to train five Extra Trees and five LSTM-RNN models.

Multiple methods were applied as error measures, consisting of RMSE, Coefficient of Variation (CV)

and MAE. Results show the GA combined with the LSTM has lower forecasting error than the other
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machine learning algorithms.

Relevance This research shows that an LSTM model is performing well in a forecasting window that

is similar to that of the SF model (weeks to months), with both models having many input features.

To solve the high-dimensionality of the data, feature elimination is applied. Feature elimination is a

solution for reducing the dimensionality of the SF data. However, the energy consumption data is

sampled at an evenly spaced interval with no missing data and the paper focusses specifically on the

time lag determined by the GA.

3.1.5 Recurrent Neural Networks for Multivariate Time Series with Missing Values

Che et al., 2018

Summary Missing values in multivariate time series are often correlated with the target labels:

informative missingness. The missing values and patterns provide rich information about target labels

in supervised learning tasks. In this paper, a novel deep learning based model GRU-D is developed

to exploit two representations of informative missingness: masking (which inputs are observed or

missing) and time interval (encapsulates the input observation patterns). The GRU, closely related

to the LSTM, has strong prediction performance, with the ability to capture long-term temporal

dependencies and variable-length observations.

In the GRU-D model, a decay mechanism is implemented. Each input variable has meaning and

will return to some default value if the last observation is a long time ago. Furthermore, variables will

fade away as time progresses. The decay mechanism will account for this, with each variable having

its own decay rate. The patterns in the missing values could also be useful and informative and will

be considered in training as well.

Different baseline methods for prediction the missing values are selected, with both non-RNN

and RNN approaches. Two datasets are used to train: PhysioNet (hourly samples) and MIMIC-III

(two-hourly samples). Both datasets are multivariate clinical time series with many input variables

consisting of patients levels. All the RNN models are trained using the Adam optimization method

and implemented with Keras and Theano. All the input variables are normalized to be of 0 mean and

1 standard deviation. The results are reported from five-fold cross validation in terms of area under

the Receiver Operating Characteristics (ROC) curve (Area Under ROC Curve (AUC) score). The

predictive tasks are classification problems.

The GRU-D model with trainable decays has similar running time and space complexity to original

RNN models and performs better than both RNNs and non-RNNs.
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Relevance Because of the similarities between the medical data and the SF data, the proposed

GRU-D is an interesting approach. Although the SF data is still sampled less frequently and with

larger time gaps, the approach proposed in this paper could offer insight in how to tackle the problem.

Especially the decay mechanism, with a decay rate for individual variables, could be a solution for

modelling the different features from SF.

3.1.6 Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate

Clinical Data

Liu and Hauskrecht, 2016

Summary An accurate predictive model of clinical multivariate time series could aid in understand-

ing patient condition, the dynamics of the disease and clinical decision making. As many patient data

are sparse and short span the model should be flexible and adaptive. The model learns from the pop-

ulation trend, is able to capture individual-specific short-term multivariate variability and adapts the

prediction accordingly. The objective is to develop a model that can predict future values for a patient

given a history of past observations. However, the time series of past observations for a patient may

be short and patient-to-patient variability may be large. The latter means that it could be difficult to

make individual predictions based on a population.

A two-stage adaptive forecasting model is proposed: AdaptLDS+reMTGP. The first stage learns

a population model from clinical multivariate time series from many different patients using a Linear

Dynamic System (LDS) (Kalman, 1960). In the second stage, the differences between patient and

population are determined and the deviations are modelled using a Multi-Task Gaussian Process

(MTGP) (Bonilla et al., 2008).

The LDS model is trained on clinical multivariate time series data from electronic health records

of 500 post-surgical cardiac patients in the PCP database. The data consists of six individual time

series. The test set is a random sample of 100 patients from the initial 500 selected patients.

As a benchmark, the two-stage model is compared with different common baselines. The perfor-

mance is evaluated using MAPE. AdaptLDS is able to make predictions for one patient, splitting the

prediction in different features. AdaptLDS+reMTGP performs better than all the other methods that

are tested.

Relevance This research shows very strong similarities with the SF research. As there is scarce data

for every participant, accurate predictions can be made by modelling the population. By measuring

deviations from the population, individual predictions can be made. Even single skills can be modelled

individually. Unfortunately, the model is not compared with deep learning methods.

20



3.1.7 Learning to Diagnose with LSTM Recurrent Neural Networks

Lipton et al., 2017

Summary Clinical medical data usually consists of multivariate time series of observations. It is,

however, difficult to use this data effectively since the data is varying in length, is sampled irregu-

larly and could be incomplete. An LSTM is used to model the sequences and capture long range

dependencies with the aim of classification.

The anonymized data from a hospital in Los Angeles contains 10401 episodes, each containing 13

variables. These episodes vary in length from 12 hours to several months and consist of irregularly

samples multivariate time series with missing values and variables. All time series are resampled to

an hourly rate, filling gaps with forward- and back-filling. Missing variables are filled in by clinically

normal values. Finally, all variables are rescaled to [0,1].

Models are trained on 80% of the data and tested on 10%, with the remaining 10% of the data

forming the validation set. Each LSTM is trained for 100 epochs using SGD.

Area Under the ROC curve (AUC) is used as evaluation, with multiple types used. The LSTMs

produce promising results and can successfully classify diagnosis. Lipton et al., 2017 show that an

LSTM network outperforms other benchmark models.

Relevance Multivariate time series with irregularly sampled observations are shared between this

research and the SF research. The solution, using multiple LSTMs, could be useful although their

main aim is to classify medical conditions. Filling in missing values with normal values is harder in

the SF model, since these values are not known. The paper is, however, very descriptive in how the

techniques have been implemented.

3.1.8 Predicting the Risk of Heart Failure With EHR Sequential Data Modeling

Jin et al., 2018

Summary Time-based Electronic Health Records (EHR) containing patient data are analysed in

an attempt to predict when a patient will be diagnosed. This is difficult since the data is sparse and

non-standardized. Early diagnoses and treatments predicted by this model could help patients likely to

have heart failure live longer and more actively. Each patient is treated as a dynamic system, measured

by a set of time series such as lab tests, records and medical indicators. Two methods to process the

diagnostic event sequence into the form of model input are used. The first method is one-hot encoding,

the second is the word vector method. A word vector model provides a method for directly calculating

the similarity between two words, providing an output vector much smaller than the length of the
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dictionary of the language. After this, an LSTM is used to create a predictive model. Real-world

EHRs are used to perform the experiment. The data set contains records of 5000 patients that have

been diagnosed with heart failure and 15000 patients that have not been diagnosed with heart failure.

Records include recording times, diagnostic events, and diagnosis time. Five-fold cross validation was

used and performance was measured by comparing the results with Logistic Regression (LR), RF

and AdaBoost. ROC, Precision-Recall (PR), AUC and F1 score are the metrics used to evaluate the

proposed method. The accuracy of the LSTM disease prediction is higher than the other algorithms in

all metrics. Besides that, word vector embedding processing performs better than one-hot encoding.

Relevance The most interesting aspect of this paper was the sparse and non-standardized data that

was used for prediction. Jin et al., 2018 show that it is possible to predict events in time accurately

using data that is not sampled frequently and could contain missing values. Since the SF data contains

similar data in this regard, employing an LSTM network could be a good direction to take.

3.1.9 Interpolation-Prediction Networks for Irregularly Sampled Time Series

Shukla and Marlin, 2019

Summary Shukla and Marlin, 2019 propose a new model architecture for supervised learning with

multivariate sparse and irregularly sampled data: Interpolation-Prediction Networks (Figure 6). The

first part, the interpolation network, consists of several semi-parametric interpolation layers organized

into an interpolation network. All the information contained in each input time series contributes to

the interpolation of all other time series in the model. After this, the prediction network makes a

prediction by using a deep learning model. Any standard supervised neural network architecture can

be used, with a GRU used in this paper.

Figure 6: The architecture of the Interpolation-Prediction Network (image from Shukla and Marlin,

2019).
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The proposed model is compared to a number of baseline approaches, including off-the-shelf classifi-

cation and regression models and more recent approaches based on customized neural network models.

For non-neural network baselines, LR, Support-Vector Machine (SVM), RF and AdaBoost are evalu-

ated for the classification task. For the prediction tasks (length of stay in hospital) Linear Regression

(LR), SVR, AdaBoost Regression and RF Regression are applied.

For neural network models, six different variants of a GRU are used as benchmark. The variations

are created by differing the manner missing observations are handled and the introduction of decay.

The model framework is tested on two real-world datasets: MIMIC-III (also used in section 3.1.5)

and UWaveGesture. The results are reported of a five-fold cross validation experiment in terms of the

average under the ROC curve (AUC score), Average Area Under the Precision-Recall Curve (AUPRC)

and average cross-entropy loss for the classification task. For regression, Average Median Absolute

Error (MedAE) and average fraction of EV are used as metrics.

For classification the proposed model outperforms all baseline models. In the regression task the

proposed model performs similar to a couple of GRU models when measuring MedAE. However, the

EV score is higher than all baseline models, which is desirable.

Relevance Multivariate sparse and irregularly sampled data form a major challenge to accurately

model with. Since the clinical data in this research resembles the SF data, the Interpolation-Prediction

Network is very relevant for the SF model. The proposed model by Shukla and Marlin, 2019 is able to

deal with sparse and irregular data by interpolating over the entirety of the population first, followed

by a prediction with a deep learning network. However, no specific attention is paid to data with a

large feature space. If the Interpolation-Prediction Network would be used to model the SF retention,

feature engineering has to be carried out first.

3.2 Knowledge Tracing

Similar to skill retention is the field of Knowledge Tracing (KT). KT is “an effort to model students’

changing knowledge state during skill acquisition” (Corbett & Anderson, 1994). The goal of the

research is to create a simple model of the student’s learning process after solving simple exercises.

This model allows the tutor to monitor the student’s knowledge and in the end predict performance

from the current knowledge state. Although KT shares similarities with the SF game, the data in

KT is usually very simple and only statistical analysis is used to create a model. However, the

underlying challenges when trying to model a person’s skill or knowledge show strong similarities

with the challenges of creating the SF retention model. We will look at two papers discussing KT

to get a basic understanding of the possibilities the models offer. The first three papers attempt

to model more complex KT problems. A RNN is employed to allow for models with more features
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and longer prediction windows, reporting substantial improvements in prediction performance. This

variant on KT is called Deep Knowledge Tracing (DKT). Lastly, we will discuss a specific application

of knowledge tracing: Second Language Acquisition Modelling (SLAM). This is specifically focussed

on online second language learning. The online language-learning platform Duolingo held a contest to

find the best technique for predicting learners’ performance. The background and results are explained

in the last two papers.
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3.2.1 Knowledge Tracing and Prediction of Future Trainee Performance

Jastrzembski et al., 2006

Summary In previous research on knowledge tracing, a representation of memory decay in periods

of non-practice is not included. In this paper, a new knowledge tracing equation is proposed, capable of

predicting future trainee performance and the prescription of frequency and timing of optimal learning.

The General Performance Equation (Anderson & Schunn, 2000) is the basis for the predictive and

prescriptive mathematical model. Since learning and forgetting do not linearly improve or degrade

over extended periods of time, a new equation is proposed capturing recency, frequency and spacing

effects too.

Relevance The extended mathematical model can determine when a warfighter has become profi-

cient in a skill, but could also streamline training to optimize learning. The model is able to predict

future performance months in the future. Although this is very relevant, it is a simple model which

does not take into account many input variables.

3.2.2 Knowledge Tracing in Sequential Learning of Inflected Vocabulary

Renduchintala et al., 2017
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Summary A feature-rich knowledge tracing method for capturing the acquisition and retention of

knowledge is proposed. This is applied to students learning and acquisition of a foreign language.

The students translate a short inflected phrase from a new language to English. Students go through

a series of interactive flash cards during a training session, each showing a different kind of exer-

cise. The three types are: example (EX), multiple-choice (MC) and typing (TP). Many features are

tracked (around 4600), forming the knowledge state of the student. The approach is called Parametric

Knowledge Tracing (PKT) because student’s knowledge is taken as a vector of prediction parameters

(feature weights). The approach is very similar to DKT. Learning is carried out by SGD. Different

update schemes are tested: redistribution (RG), negative gradient (NG) and feature vector (FG). For

evaluation, the log-probability under the model of each actual response (cross-entropy) and fraction

of correct responses (accuracy) were measured. The best model consists of a combination of RG and

NG. The model is compared with an LSTM and performs slightly better.

Relevance As with the SF data, many features are tracked. The model performing better than an

LSTM is interesting. However, the proposed model does not attempt to model multi-step ahead data

nor irregularly sampled data.

3.2.3 Modeling Skill Combination Patterns for Deeper Knowledge Tracing

Huang et al., 2016

Summary This paper focusses specifically on student knowledge in complex learning activities where

multiple skills are required at the same time. A known limitation of knowledge tracing is the assumption

of skill independence in problems that involve multiple skills. Huang et al., 2016 assume that a set

of skills is more than the sum of individual skills and skills are related. To model this, a Bayesian

Network (BN) is constructed to model skill combinations. The first layer consists of basic individual

skills, with the intermediate layers of skill combinations for deeper understanding. The last layer

represents the mastery of the individual skills. Using two datasets from SQL and Java programming

learning, different models are compared measuring the knowledge inference quality: mastery accuracy

and mastery effort. Performance prediction accuracy is measured by using RMSE and AUC. The

results demonstrate that incorporating skill combinations can significantly increase mastery assertion

accuracy compared to traditional knowledge tracing models.

Relevance The main focus here lies on accurately modelling mastery of skills rather than forecasting

future performance. Huang et al., 2016 do not focus on individual independent skills, yet show that

skills are related to each other. This result could be useful for analysing the SF data.
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3.2.4 Going Deeper with Deep Knowledge Tracing

Xiong et al., 2016

Summary Xiong et al., 2016 examine DKT and compare it with two other KT models: Performance

Factor Analysis (PFA) and Bayesian Knowledge Tracing (BKT). PFA is a variation on a educational

data mining model called Learning Factor Analysis (LFA), where learning is modelled using a math-

ematical equation with different variables and parameters. PFA tries to solve limitations of LFA by

making it more adaptive (Pavlik et al., 2009). Basically, PFA is a form of a standard LR model

with the student performance as the dependent variable. BKT models student knowledge in a Hidden

Markov Model (HMM), assuming that student knowledge is represented as a set of binary variables

(one per skill). The outcome of the model is also binary: the answer to each exercise is either right or

wrong (Yudelson et al., 2013).

As typical RNNs suffer from vanishing and exploding gradients (see section 3.1), an LSTM model

is introduced to deal with this problem. One-hot encoding is used to convert student performance

into fixed length vectors. The model has 200 fully-connected hidden nodes. Mini-batch SGD was used

to minimize the loss function, with a batch size of 100 (randomly selected students from all data).

Dropout (Srivastava et al., 2014) was applied to the hidden layer to avoid over-fitting. Three different

datasets are used to compare the algorithms. All datasets contain over 500,000 rows of student’s

responses and are gathered from ASSISTments (2009-2010 and 2014-2015) skill builder and the KDD

Cup (2010). Students are learning different skills, with the data set containing 100+ skills. DKT did

not achieve overwhelmingly better compared to PFA on the ASSISTments data set, but did perform

much better on the KDD data set. Xiong et al., 2016 believe this is due to the PFA model being

undermined by inaccurate item difficulty estimation.

Relevance This paper contains very specific information about the techniques applied. Although

the result is not convincing on every data set, Xiong et al., 2016 show that a deep learning technique

yields better results than traditional knowledge tracing models.

3.2.5 Incorporating Rich Features into Deep Knowledge Tracing

Zhang et al., 2017

Summary DKT shows promising results, as seen in section 3.2.4 where DKT outperforms BKT and

PFA on most cases. However, DKT only considers the knowledge components and the correctness

of the inputs. Other features that could be collected on a computer-based learning platform are
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neglected. Zhang et al., 2017 seek to improve DKT by incorporating more features at the problem-

level. More features are incorporated into the model, including exercise tag, correctness, first response

time, attempt count and first action. Features are represented as sparse vector by a one-hot encoding.

Features can be combined into cross features to improve model accuracy, but this leads to a rapid

increase of the dimensionality of the input vector. An Autoencoder (Hinton & Salakhutdinov, 2006)

is able to reduce dimensionality without sacrificing performance. After training the Autoencoder to

reduce the features to half the input size, an LSTM with 200 hidden nodes is used to train. The

loss function used is binary cross entropy and a dropout probability of 0.4 is applied. Two data sets,

ASSISTments (2009-2010) and OLI Statics F2011, are used to train the network. Both are datasets

from online courses containing many students’ exercises. Five-fold student level cross validation is used

and the result is evaluated by AUC and R2. The model incorporating the most features shows the

best results, with the Autoencoder improving the model even further. The ASSISTments (2009-2010)

data set is also used in the paper in section 3.2.4, with the current paper (Zhang et al., 2017) showing

better results. This means that the Autoencoder with LSTM outperforms traditional models as well.

Relevance Although KT and DKT models do not account for time gaps in the model, they could

offer us insight in how to set up knowledge prediction models. Zhang et al., 2017 use an Autoencoder

to reduce dimensionality while maintaining performance. An Autoencoder can be used to solve the

high-dimensionality of the SF data.

3.2.6 Second Language Acquisition Modeling

Settles et al., 2018

Summary Second Language Acquisition Modelling is the task of predicting errors that second lan-

guage learners are likely to make at arbitrary points in the future. A competition is created to predict

these errors with data from Duolingo, the online language-learning platform. The data set contains

many features, with for example the user, the number of days since the learner has started learning

and the current exercise format. A total of 15 teams participated in the competition, with SanaLabs

performing the best, making use of a RNN combined with a Gradient Boosted Decision Tree (GBDT).

RNNs work well for sequence data, while GBDTs are often the best-performing non-neural model for

shared tasks using tabular data. The winning paper is discussed below, in section 3.2.7.

Relevance The task is to predict errors that learners will make in the future, based on current

and past data samples. This resembles the SF skill decay model, even though the SF model is more

complex and should be able to look ahead an arbitrary amount of time steps into the future instead
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of predicting the next exercise.

3.2.7 Second Language Acquisition Modeling: An Ensemble Approach

Osika et al., 2018

Summary As participant in the SLAM challenge (Settles et al., 2018), the aim here is to predict

students’ knowledge gaps. To predict word-level mistakes an ensemble model combining a GBDT)

and a RNN is built. These techniques are chosen since RNNs achieve good results for sequential

prediction tasks (Piech et al., 2015) and GBDTs achieve state of the art results on various benchmarks

for tabular data (Li, 2012). The RNN is implemented as generalization of the LSTM architecture.

The predictions generated by the RNN and the GBDT are combined through a weighted average.

By varying the proportions and measuring the AUC score, the optimal ratio is decided. All datasets

were pre-partitioned into training, development and test subsets (80/10/10). The performance for

this binary classification task is measured by area under the ROC curve (AUC) and F1-score. The

ensemble approach shows better AUC and F1 scores than the RNN and GBDT separated. This

approach outperforms all the other algorithms used in the SLAM challenge.

Relevance Predicting students’ knowledge gaps is similar to predicting a participants skill in the

future in SF. As with the knowledge tracing models, the time factor is not particularly important

in predicting the next exercise. However, the ensemble approach shows promising results on skill

prediction.
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4 Discussion

In this section we discuss how the insights obtained from the literature may be used to develop a

predictive model for performance on the SF game. Guided by the challenges posed in section 2.6, we

can summarize the solutions the papers have for the different challenges (section 4.1).

Although many of the papers reviewed in this thesis solve problems in different fields, there are

a number of techniques and measures that are more frequently used than others. For example, the

approaches that are taken for training, validation and performance measure are listed in section 4.1.1.

These techniques are a logical choice for application in the retention model.

4.1 Challenges

4.1.1 Temporal data/forecasting

All papers discussed deal with temporal data and attempt to forecast based on past observations.

There are many different techniques employed, ranging from mathematical models to deep learning

networks. As knowledge tracing is mainly focussed on predicting the next exercise instead of a specific

moment in time in the future, the forecasting aspect is less relevant. Most TSF papers mentioned

specifically focus on (multi-step ahead) prediction, as accuracy tends to decrease when the prediction

window increases.

Therefore, all papers discussed in section 3.1 offer relevant techniques to forecast data. The most

commonly used technique is a RNN, often an LSTM (see appendix A.1) or a GRU. Both are capable of

dealing with long term dependencies that would cause vanishing or exploding gradients in a traditional

RNN. Since the temporal aspect of the SF data is similar to the TSF data, the techniques proposed

in TSF are most likely to work for the retention model.

Between papers there are similarities found in the implemented techniques to train, validate and

measure the performance of the RNN. For training, most test sets are divided in a train/test/validation

set, usually in the range of 80/10/10 percent. When training, the Adam optimization algorithm (see

appendix A.2) is often mentioned as the preferred solution. Mean Squared Error (MSE) is used

multiple times as loss function, while five-fold cross validation is the most used validation method. For

performance measure, a number of techniques is specifically used for classification, others are applied

to regression tasks. However, ROC (AUC) is the most commonly used. The proposed solution in 4.1.3

is tested using MedAE and EV. These measures are suitable for regression.

Recommendation An Long Short-Term Memory (LSTM) or a Gated Recurrent Unit (GRU) shows

the best performance in modelling long-term temporal dependencies. For training, use an Adam

optimizer.
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4.1.2 High-dimensionality/feature engineering

When using many input features to train a model there will be drawbacks such as overfitting. This

phenomenon is sometimes referred to as the curse of dimensionality. An unfeasible amount of samples

is required to account for all the combinations of the many features. Besides that, it is also compu-

tationally inefficient and there is an increased risk of overfitting a neural network. To scale down the

number of features some form of feature engineering can be applied. Solutions mentioned are:

• Encoder-decoder network with temporal attention mechanism (section 3.1.2);

• Recursive Feature Elimination (section 3.1.4);

• Extra Trees Regressor (ETR) (section 3.1.4);

• Autoencoder (section 3.2.5).

The Autoencoder is able to learn data codings in an unsupervised manner. The dimensionality of

the input space can be reduced while maintaining performance. An Autoencoder showed promising

results with many input features in section 3.2.4. Technical details can be found in appendix A.3.

Recommendation An Autoencoder is recommended, since this is a proven technique for reducing

the input dimensionality while maintaining performance.

4.1.3 Sparse and irregularly sampled data

The presence of gaps in the data, or irregular intervals between samples, poses a challenge. Most

TSF algorithms deal with regularly spaced data. Medical data however is difficult to sample regularly.

The papers in sections 3.1.5, 3.1.6, 3.1.7, 3.1.8 and 3.1.9 offer interesting solutions for the problem.

Especially the AdaptLDS+reMTGP (Liu & Hauskrecht, 2016) in 3.1.9 shares many similarities with

the SF research. In the SF data, there is not enough data available per participant to make individual

predictions. The AdaptLDS algorithm that trains on the whole population could be a possible solution.

Then the reMTGP can be used to make personal predictions. Other papers show that a RNN can

effectively be used to model long-range dependencies with irregularly spaced data. As mentioned in

section 4.1.1, LSTMs or GRUs show promising results.

Recommendation The most relevant paper uses interpolation layers on the population, then a

RNN to make a personal prediction for a participant. This is a good direction to take.
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5 Conclusion

As far as we know, there are no papers written on skill retention forecasting with sparse, irregu-

larly sampled data. However, we can combine solutions from other papers into a new model. High-

dimensionality can be solved using feature engineering (section 4.1.2). Based on the papers reviewed,

the use of an Autoencoder to reduce dimensionality would be a good direction to take. However,

the most important challenge proved to be the irregularly sampled data. Medical forecasting uses

similar data and offers some very interesting approaches (section 4.1.3). The (a) interpolation on the

population combined with (b) personalized prediction using regression in AdaptLDS+reMTGP is a

promising solution. After interpolation, an Long Short-Term Memory (LSTM) or a Gated Recurrent

Unit (GRU) is the best solution for predicting the optimal retention interval for SF.
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A Techniques

A.1 Long Short-Term Memory

Normal RNNs are very powerful, capable of instantiating almost arbitrary dynamics. However, the

backpropagated error signal depends exponentially on the magnitude of the weights, risking either

vanishing or blown up errors. Hence standard RNNs fail to learn when time certain time gaps are in

place between relevant input events and target signals. To solve this problem, the Long Short-Term

Memory (LSTM) (Gers et al., 2000) has a memory block as hidden layer in its network, combined with

a pair of adaptive, multiplicative gating units which gate input and output to all cells in the block

(Figure A.1). Most importantly, LSTMs have forget gates, which learn to reset the memory blocks

once their contents are out of date. Where continuous input streams usually require occasional resets

of the network, LSTM networks learn to reset at appropriate times. This results in a RNN that can

not only model but also predict future values in temporal data.

Figure A.1: The LSTM cell has a linear unit with a recurrent self-connection (image from Gers et al.,

2000).

The Gated Recurrent Unit (GRU) is very similar to the LSTM. Whereas the LSTM has three gates

(input, output, reset), the GRU has two gates (reset, update) (Cho, van Merrienboer, Gulcehre, et al.,

2014).

36



A.2 Adam optimizer

Adam (short for Adaptive Moment Estimation) is a form of SGD, an iterative method for optimizing an

objective function. More specifically, Adam is an algorithm for first-order gradient-based optimization

of stochastic objective functions, based on adaptive estimates of lower-order moments (Kingma &

Ba, 2014). Empirical results demonstrate that the algorithm compares favorably to other stochastic

optimization methods.

A.3 Autoencoder

An Autoencoder is a multi-layer neural network with a small central layer that can convert high-

dimensional data to low-dimensional representative encodings. These encodings can subsequently be

used to reconstruct the high-dimensional input vectors. In this way the dimensionality is reduced

without the loss of important information (Hinton & Salakhutdinov, 2006). If linear activations are

used, the optimal solution to an Autoencoder is strongly related to Principal Component Analysis

(PCA) (Bourlard & Kamp, 1988). An Autoencoder shows good results in reducing dimensionality.

However, compared to a PCA, an Autoencoder loses explainabilty.
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