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Abstract

In this master’s thesis we provide a new width measurement definition on graphs. This width
measurement determines the number of different dominating sets on a subgraph of a graph. There-
fore we call it the dominating-set-width. With this width we create a fixed-parameter tractable
dynamic programming algorithm that solves the minimum dominating set problem. Dominating-
set-width is based on another width measurement, called boolean-width, which was introduced by
Bui-Xuan et al. [6] along with an algorithm that solves the minimum dominating set problem.
We will show that our algorithm has a faster run time than the one introduced by Bui-Xuan et al.
[6]. Furthermore, this master’s thesis provides a data structure for this new width, as well as an
upper and lower-bound for the width when a graph is restricted to a graph class.
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1 Introduction

In the study of algorithmic design for NP-hard problems there are many different fields of study that
research fast theoretical ways to solve different NP-hard problems. One of these fields of study is the
study of parameterized algorithms. This will be the focus of this master’s thesis.

1.1 Parameterized Algorithms

Parameterized algorithms looks at other ways to express the complexity for a problem rather than
the classical way. These algorithms add an extra parameter to the complexity, which provides more
information about the difficulty of a problem, which in turn can create much faster algorithms. The
run times of these algorithms can be expressed as O(f(n, k)) with f a computable function, n the
complexity of the input size and k the added parameter. There are many usages for these algorithms.

A subsection or subset of parameterized algorithms are the algorithms for fixed-parameter tractable
problems, also known as FPT problems or just FPT algorithms. Fixed-parameter tractable problems
are problems which can be solved in O(f(k) · p(n)) time with f a computable function and p a
polynomial. These run times are often noted by O∗(f(k)). One of the big differences between FPT
algorithms and general parameterized algorithms is that FPT algorithms exclude run times like O(nk)
or O(kn).

For more information we refer the reader to Cygan et al. [9], Downey and Fellows [11], Fomin and
Kratsch [13] and Flum and Grohe [12].

1.2 Motivation of the Master’s Thesis

We focus on the FPT algorithms which solve graph problems that are NP-hard. In graph problems
the parameter of the FPT algorithm are often properties of a graph. The highest degree of all the
vertices in the graph or the length of the longest shortest path between two vertices. The parameters
that are related to the decomposition of the whole graph are referred to as a width parameter or just
the width of a graph. We shall see that there is a variety of widths and that these are best suited to
solve a variety of different problems.

The power of these widths lies in their size or value. If a width is significantly lower than the input
size, then the FPT algorithm has a runtime that is practically polynomial. This way NP-hard graph
problems become much more manageable.

1.3 Research Questions

The goal of this master’s thesis is to find a good width parameter for solving the minimum dominating
set problem.

Definition 1. Let G be the graph (V,E). A subset D ⊆ V (G) is a dominating set if every vertex
v ∈ V (G) is either in D or is adjacent to a vertex in D. The minimum dominating set problem is
defined as: Given a graph G find the smallest possible set D such that D is a dominating set.

We define a good width as a width that allows for a fast FPT algorithm and has a relatively lower
value compared to other known widths. This width shall be called the dominating-set-width. The
main research question is:

Question: What is the definition of the dominating-set-width?

The following questions will provide the necessary insights and arguments that will result in a
good answer to the main research question:

Question: How fast can algorithms using dominating-set-width be when solving the minimum
dominating set problem?

Question: Given a graph, what is its dominating-set-width?

A Search for the Dominating-Set-Width 1



1.4 Content Description

1.4 Content Description

We start with some preliminaries about the general definition of a width for a FPT algorithm in
section 2. We will also go over some known widths to give a better idea of what a width is.

In section 3 we dive into the details of one of the widths mentioned in section 2 called boolean-width.
We will see that this width will serve as a stepping stone to find a definition for the dominating-set-
width. This definition will be discussed in section 4. In the same section we will provide a new FPT
algorithm that solves the minimum dominating set problem and prove its correctness.

In section 5 we will discuss the data structure necessary for running the new algorithm given in
section 4.

And finally, in section 6 we will go over different graph classes and look for the upper-bound of
the dominating-set-width value for each of these classes.
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2 Preliminaries

In this section we have a look at how widths are defined in a general way and how they are used. We
look at a selection of known width parameters and their relation to each other. After that we look at
two widths in more detail: tree-width and boolean-width.

2.1 The Definition of a Width

Most widths we will mention in this section are formed by some measurement on a cut of a graph.
Generally speaking a cut is nothing more than splitting a graph into two subgraphs. This can be done
for example, by partitioning the edges into two sets. A measurement on these types of cuts can be
almost anything. For example, it can be the number of vertices that are endpoints of edges on both
side of the cut, this is called branch-width (Robertson et al. [17]). Another way to form a cut is by
partitioning all the vertices of the graph into two sets. The measurements on a cut like this can again
be almost anything. A simple measurement, for example, is the size of the maximum matching on
the edges across the cut. This width measurement is called the maximum-matching-width (Vatshelle
[23]). An example of a more complicated measurement is boolean-width (Vatshelle [23]).

Boolean-width uses an equivalence relation on the subsets of the vertices on one side of the cut.
The number of equivalence classes is the measurement on the cut. In section 3 we will show that the
equivalence classes formed by this definition have a relation to the number of different independent
sets on a cut.

In general these different measurements on cuts are used in combination with a decomposition
tree. A decomposition tree (T, δ) for a graph G is a binary tree graph T for which each leaf node
represents a vertex or edge of G depending on what type of cuts are used. This representation is done
by creating a bijection δ from the leaf nodes to the vertices or edges. The tree graphs T can either be
rooted or not; in this thesis we assume every decomposition tree is rooted.

If we remove an edge in T , we split the tree into two parts, creating two trees. This creates two
disjoint sets of leaves and thus two disjoint sets of vertices or edges via the bijection δ, inducing a cut
on which a width measurement can be used. This can be done for any edge in T and with that the
width of T can be defined. The width of T is the maximum width measure value taken over every cut
induced by removing an edge in T . The width of a graph G is the minimum width value over every
possible decomposition tree (T, δ). To formalize this:

Definition 2. Let G be the graph (V,E). A decomposition tree for G is a pair (T, δ) such that:

1. T is a rooted binary tree graph with root r.

2. δ is a bijection from the leaves of T to V (G) (or E(G) depending on the width measurement).

Figure 1: Example of a cut induced by the node w of a decomposition tree.

Definition 3. Let G be the graph (V,E) and (T, δ) a decomposition tree for G. We define W ⊆ V (G)
(E(G)) for any node w as the set of vertices (edges) corresponding to the leaves in the subtree rooted
at w in T . The edge from w to its parent node in T represents a cut, denoted by [W, W̄ ] with W̄ =
V (G) −W (W̄ = E(G) −W ). The width of (T, δ) is the maximum width measure value taken over
all the cuts [W, W̄ ].

A Search for the Dominating-Set-Width 3



2.2 Overview of Known Widths

From now on, for the sake of notation and clarity, when we say "w induces a cut [W, W̄ ]" we mean
the cut induced by the edge from w to its parent node in T as shown in Figure 1 .

Definition 4. Let G be the graph (V,E). For any chosen width measure defined on a cut, we define
the width of G as the minimum width value of every decomposition tree (T, δ) of G.

Decomposition trees with a low width value can be used to get fast dynamic programming algo-
rithms, also known as DP algorithms. This is done by going from the leaf nodes to the root of the
tree moving up one level at a time. The width of a cut will provide insight into which partial solutions
for a subgraph associated to the cut have to be stored and which ones can be discarded. We will see
a clear example of such an application of discarding partial solutions in Section 3 and 4.

One width that does not follow this idea of a decomposition tree is tree-width (Seymour and
Thomas [21]). Tree-width constructs a new graph on which a measurement is defined that forms the
value of the width. These new graphs, which are usually if not always tree graphs, have constraints
limiting the different ways they can be constructed.

With tree-width the additional tree graph, called a tree decomposition - not to be confused with
a decomposition tree - is constructed with something ofter referred to as bags. These bags are the
nodes in the tree decomposition.

Definition 5. Let G be the graph (V,E). A bag is a subset of V (G). A tree decomposition of G is a
tree graph (B,F ) such that B is a collection of bags and F is a collection of edges between the bags
such that:

• For every vertex v ∈ V (G) all bags in B containing v form a connected subgraphs in the tree
decomposition.

• For every edge e ∈ E(G) there is a bag in B such that both endpoints of e or in that bag.

The tree-width of a tree decomposition is the size of the largest bag minus one. The tree-width of a
graph is the minimum tree-width value over all possible tree decompositions.

Although this may seem a bit weird at first glance, the takeaway from this width definition is that
it shows how much a graph looks like a tree graph. The more a graph looks like a tree, the easier it
becomes to run a dynamic programming algorithm on it, creating a faster algorithm.

2.2 Overview of Known Widths

The widths mentioned in the previous subsection are just some of the known widths. There are many
more widths, we will only mention a few by name to give an impression of the landscape of all the
widths. Most of the known widths will fall into one of the following three categories:

1. The width measure is a property of a new tree graph T created with the vertices of G, i.e.
tree-width (Seymour and Thomas [21]) and tree-depth (Iwata et al. [15])

2. The width is defined on a decomposition tree (T, δ) where the leaves of T represent the vertices
of G and the internal nodes represent subsets of V (G) creating cuts where a width measurement
is used, i.e. boolean-width (Vatshelle [23]), clique-width (Courcelle et al. [8]), rank-width (Oum
[16]) and maximal-matching-width (Vatshelle [23]).

3. The width is defined on a decomposition tree (T, δ) where the leaves of T represent the edges of
G and the internal nodes represent subsets of E(G) creating cuts where a width measurement
is used, i.e. branch-width (Robertson et al. [17]).

The relation between widths has been the subject of a lot of research as well as the proofs for
NP-hardness of computing the optimal width value of a graph. Here we show some of these results.
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2.2 Overview of Known Widths

Figure 2 is taken from Bui-Xuan et al. [6] as well as the description beneath it. Both use different
abbreviation notations for the width than in this thesis. Figure 2 shows proven relations between
widths with respect to the upper-bound of each width.

Figure 2: Upper bounds tying parameters tw = tree−width, bw = branch−width, cw = clique−width,
rw = rank − width, and boolw = boolean− width. An arrow from P to Q labeled f(k) means that
any class of graphs having parameter P bounded by k will have parameter Q bounded by f(k) or
O(f(k)), and∞ means that no such upper bound can be shown. The results surrounded by a box are
shown in Bui-Xuan et al. [6] . Most bounds are known to be tight, meaning there is a class of graphs
for which the bound is f(k) or Ω(f(k)), except for the arrows tw → cw where an Ω(2k/2) bound is
proven by Corneil and Rotics [7] , and rw → boolw where an Ω(k) bound is known (Theorem 2 of
Bui-Xuan et al. [6]).

Ahn and Jeong [1] proved that computing the maximum matching width is NP-hard.
Seymour and Thomas [20] proved that solving a problem concerning routing of phone lines is

NP-hard. This problem can be translated to calculating the optimal branch-width by generalizing the
problem to a property of a graph, proving that computing branch-width is NP-hard.

Arnborg et al. [2] proved that computing the tree-width for a given graph is NP-hard. This was
done by looking at a different decision problem: for a given value k, is G a k-tree? If the answer is
yes, then you would know a way to construct G via an ordering on the vertices of G. This order can
be used to make a tree decomposition with tree-width k + 1.

Bodlaender et al. [4] proved the NP-hardness for tree-depth. Although at the time it was known
as the rank of a graph or rank-width and not tree-depth. Not to be confused with rank-width, which
was mentioned above in the three categories and in Figure 2.

Sæther and Vatshelle [19] provide a simple criterium that proves computing a width parameter
defined by a measurement on a cut is NP-hard. With this we can prove that the computation of the
optimal boolean-width, rank-width and clique-width of a graph is NP-hard.

Vatshelle [23] (chapter 6) shows that for some widths, even when the optimal width value of a
graph is known, constructing a decomposition tree that has the correct width value is NP-hard.

A Search for the Dominating-Set-Width 5



3 The Boolean-Width

In this section we will take a more in-depth look at boolean-width. Boolean-width will prove to be a
good stepping stone for the search for the dominating-set-width.

3.1 The Intuition of Boolean-Width

Boolean-width is a width definition on a cut in a graph as mentioned in section 2. The internal nodes
of a decomposition tree represent subsets of the vertices of a graph and induce cuts in the graph.
Boolean-width looks at the different ways vertices make connections across a cut. To be more specific,
boolean-with takes a set of vertices on one side of a cut and looks at the vertices adjacent to this set
across the cut. This set of vertices will be called the neighborhood of a set across the cut or sometimes
just the neighborhood.

Figure 3: Example of a cut splitting graph G into two subgraphs, W and W̄ .

We are only interested in the vertices who have a neighborhood across the cut; that is why the
other vertices and edges of G in Figure 3 are not shown. The vertices u and v are adjacent to the
same set of vertices across the cut in W̄ . We can say that u and v have the same neighborhood. We
can extend this idea to subsets of vertices of the subgraph instead of just single vertices. For example,
the sets of vertices X and Y are adjacent to the same set of vertices across the cut in W̄ . Z, however,
is not adjacent to the same set of vertices across the cut. We can say that X and Y have the same
neighborhood and Z has a different neighborhood.

If we extend the subgraph W shown in the example, every vertex in W̄ adjacent to X will be
adjacent to Y , because they have the same neighborhood. With this observation we can ask ourselves
the question: "How different are the sets of vertices X and Y from each other?". The answer to this
question is the idea behind the definition of boolean-width. This definition will say that X and Y are
not different at all, they are equivalent.

3.2 The Definition of Boolean-Width

Now we will formalize the intuition of boolean-width starting with the relation u and v have in Figure
3. This relation is an equivalence relation, thus it creates equivalence classes for which we can define
a representative.

Definition 6. Let G be the graph (V,E), (T, δ) a decomposition tree for G and let [W, W̄ ] be the cut
induced by a node w in (T, δ). Vertices u and v in W are called twins if N(u) ∩ W̄ = N(v) ∩ W̄ ,
with N(u) the set of vertices adjacent to u. A twin class of W is a subset of W such that all vertices
are twins of each other. The representative of a twin class in [W, W̄ ] is the lexicographically smallest
element in the class.

6 A Search for the Dominating-Set-Width



3.2 The Definition of Boolean-Width

The lexicographically order is basically the formalization of putting vertices and subsets of V (G)
in alphabetical order. This is achieved by labeling every vertex of a graph. The order does not need
to be the alphabetical order. Any order on the labels of the vertices will suffice as long as the order
is a total order.

The twin class where u and v belong to shall be represented by u as there are no other vertices on
the cut which are twins of u and v and u comes before v in the alphabetical order and thus also in
the lexicographically order. Now we move on to the relation X and Y have in Figure 3.

Definition 7. Let G be the graph (V,E) and W ⊆ V . For all X,Y ⊆ W , X and Y are considered
boolean-width equivalent if and only if

N(X) ∩ W̄ = N(Y ) ∩ W̄

Notation: X ≡bw Y

Figure 4 shows the cut in Figure 3 in more detail and shows that the definition of boolean-width
indeed gives us an answer the question: "How different are the sets of vertices X and Y from each
other?". It states that X and Y belong to the same boolean-width equivalence class and just like the
twin classes these boolean-width classes get a representative that uses the lexicographically order.

Figure 4: The cut in Figure 3.

Definition 8. Let G be the graph (V,E) and W ⊆ V . We define a representative of a boolean-width
class in W as a set I such that:

1. X is in the boolean-width class represented by I if and only if X ≡bw I

2. If X ≡bw I then the following two statements are true:

(a) If I ≡bw X, then |I| ≤ |X|.
(b) If I ≡bw X and |I| = |X|, then I is lexicographically smaller than X.

For example, in Figure 4 the boolean-width class where X and Y belong to will be represented
by the set {a, c}. From this point on when we speak about a boolean-width class I we mean the
boolean-width class represented by I.

Now we will formalize the definition of the boolean-width of a graph G. Observe in Figure 4 that
every twin class on its own is also a boolean-width class. Furthermore, the union of the twin classes
represented by c and d does not create a new boolean-width class. The set {c, d} is boolean-width
equivalent to {c}. The union of c and e, however, does form a new boolean-width class represented
by {c, e}. These examples show that the union of any number of twin classes can create a boolean-
width class, but they might not all be different. This means that we get at most two to the power of
number of twin classes in W different boolean-width classes in W . For that reason the definition of
the boolean-width of a cut [W, W̄ ] takes the log2 of the number of boolean-width classes.

Definition 9. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. We define the boolean-
width of a cut [W, W̄ ] induced by a node w in T as the log2 value of the number of boolean-width
classes in the cut.

A Search for the Dominating-Set-Width 7



3.2 The Definition of Boolean-Width

Definition 10. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. We define the boolean-
width of (T, δ), bw(T, δ), as the maximal boolean-width value taken over every cut [W, W̄ ] induced by
a node w in (T, δ).

Definition 11. Let G be the graph (V,E). We define the boolean-width of G, bw(G), as the minimum
boolean-width value taken over every decomposition tree (T, δ) of G.

The representatives of boolean-width classes are very useful in a dynamic programming algorithm
that calculates the maximum independent set, because these representatives have the following very
nice property when it comes to independent sets.

Definition 12. Let G be the graph (V,E). A subset X ⊆ V (G) is an independent set if every vertex
v, w ∈ X are not adjacent to each other. The maximum independent set problem is defined as: Given
a graph G find the largest possible set X such that X is an independent set.

Lemma 1. Let I and Ī be boolean-width classes in W respectively W̄ for a cut [W, W̄ ] in G. If I ∪ Ī
is an independent set on the cut, the bipartite subgraph of G formed by the vertices on the border on
both sides of the cut, then the union of every independent set X ≡bw I with independent set X̄ ≡ Ī is
an independent set in G.

Proof. Say it is not true, thus there are independent sets X ≡bw I and X̄ ≡ Ī such that X ∪ X̄ is not
an independent set in G. Let x̄ ∈ X̄ such that X has a vertex who is adjacent to x̄. X ≡bw I, thus I
is also adjacent to x̄. Let i ∈ I such that x̄ is adjacent to i. X̄ ≡ Ī, thus again Ī is als adjacent to i,
which is a contradiction.

From a dynamic programmer’s point of view this means that the only independent sets that need
to be stored as a partial solution for the subgraphW are the smallest independent sets in each boolean-
width class. In other words, there are at most the same number of boolean-width classes different
independent sets on the cut [W, W̄ ] worth storing. That is why boolean-width can, and should be,
called independent-set-width. For more details on the dynamic programming algorithm we refer the
reader to Section 6 of Bui-Xuan et al. [6].

Further proof that boolean-width should be called independent-set-width is provided by an overview
of the different run times of the algorithms that use different widths to solve the maximum independent
set problem. Both theorems are taken from Chapter 5 of Vatshelle [23].

Theorem 1 ([10] , [14], [22], [6]). Given a graph G and a decomposition of (any of the following)-width
k we can solve the Maximum Independent Set problem by:

tree-width in O∗(2k) module-width in O∗(5k)
branch-width in O∗(2.28k) MM-width in O∗(4k)
clique-width in O∗(2k) rank-width in O∗(1.42k

2
)

boolean-width in O∗(4k) MIM-width in O∗(n2k)

Although the FPT algorithms that uses boolean-width can be slower than those of tree-width,
branch-width, clique-width and rank-width, Vatshelle [23] chapter 4 proves that boolean-width has a
lower value on any graph compared to the other widths. Tree-width, branch-width, clique-width are
all linear in boolean-width and rank-width is polynomial in boolean-width.

Boolean-width can also be used to solve the minimum dominating set problem. This way boolean-
width gives an upper-bound for the run time of the dynamic programming algorithm that uses the
new width. We will look for an equivalence relation on a cut [W, W̄ ] such that we can store the
partial solutions for W side using less equivalence classes than boolean-width without losing any best
solution. With this equivalence relation we will create an FPT DP algorithm that is faster than that
of boolean-width.

Theorem 2 ([18] , [5], [6] ). Given a graph G and a decomposition of (any of the following)-width k
we can solve the Minimum Dominating Set problem by:

tree-width in O∗(3k) module-width in O∗(8k)
branch-width in O∗(3.69k) MM-width in O∗(8k)
clique-width in O∗(4k) rank-width in O∗(1.69k

2
)

boolean-width in O∗(8k) MIM-width in O∗(n3k)

8 A Search for the Dominating-Set-Width



4 The Dominating-Set-Width

In this section we will find the definition of the dominating-set-width. Much like Section 3 we start by
looking at the intuitive idea behind the dominating-set-width before we formalize everything. After
that we introduce a new FPT DP algorithm.

4.1 The Intuition of Dominating-Set-Width

Our FPT DP algorithm should work by storing dominating sets as partial solutions for subgraphs
of G. These subgraphs start out as a single vertex. We combine subgraphs into bigger subgraphs
combining different partial solutions, until we end up with the whole graph. The order in which
these subgraphs are combined play a vital role in how long it takes to run the DP algorithm which
combines the different partial solutions. This order is based on the decomposition tree, just like the
boolean-width.

In order to create this equivalence relation, we start by taking a look at ways vertices in W can
be dominated, illustrated by Figure 5.

Figure 5: Different ways a vertex v can be dominated.

For any vertex in W we say it is on the border of the cut [W, W̄ ] if it is adjacent to a vertex in
W̄ . A vertex in W can either be on the border of the cut [W, W̄ ] or not. A vertex that is not on the
border of W can only be dominated by being inside the dominating set D (red) or by a vertex in W
(green) or both. Vertices on the border of W can be dominated by a vertex in W (blue) or be inside
the dominating set D (yellow) or dominated by a vertex in W̄ (orange) or a combination of the three.

Because of these different ways of dominating vertices in W , we do not just look at subsets of W
but also subsets of W̄ . Thus, a partial solution is a combination of sets, one set X in W and one set
X̄ in W̄ , which we call a pair. The equivalence relation will be on these pairs of sets.

Now we want to answer the question "When do we consider two pairs of sets, and thus two possible
partial solutions, (X, X̄) and (Y, Ȳ ), equivalent?".

Y in W̄ dominates a part ofW , this part can overlap with X inW . When this happens Y provides
useless domination. For example:

Figure 6: The sets Y and Y ′ help X dominate W in the same way.

In Figure 6 we see that Y dominates all the vertices in X, which is unnecessary, and one vertex
outside of X. Y ′ on the other hand dominates only one vertex in X and dominates the same vertex
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outside of X that Y dominates. From the point of view of X there is no distinction between Y and
Y ′ when it comes to the domination of W . Then why store both pairs as a partial solution? The
answer is that we do not. When there is a pair (X,Y ′) such that there is another pair (X,Y ) such
that from the point of view of X there is no distinction between Y and Y ′ we say (X,Y ′) has become
a redundant pair and we only store (X,Y ) as a partial solution. We will use this idea to discard as
many partial solutions as possible.

Because we are interested in the different ways sets in W̄ dominate across the cut we can restrain
ourselves to the boolean-width classes of W̄ that where introduced in Section 3. When we combine
subgraphs we also need to know what sets in W dominate in W̄ . Therefore we do the same with the
sets in W as with the sets in W̄ and we use the boolean-width classes of W .

If we look back at Figure 6, we can see that there are sets boolean-width equivalent toX = {a, b, c},
namely {a, c} and {b, c}. Every set boolean-width equivalent to X contains c. This means that every
set boolean-width equivalent to X does not need any help with dominating c from W̄ . This does not
hold for a and b. Sets boolean-width equivalent to X can contain either a or b or both. This means
that dominating a and b can be useful. However, even though Y and Y ′ do the same for X, they do
not do the same for every set in the boolean-width class of X. Therefore we do not let (X,Y ) be
equivalent to (X,Y ′).

Figure 7: The sets Z and Z ′ help X dominate W in a different way.

In Figure 7, Z and Z ′ are helpful in the exact same way for every set in the boolean-width class
of X. Both Z and Z ′ dominate the fourth vertex in W . Z dominates c which does not help any set
boolean-width equivalent to X, while Z ′ does not. Hence from the sets in the boolean-width class of
X points of view, Z and Z ′ help with dominating W in the exact same way.

Therefore, we consider a width measurement in which (X,Z) and (X,Z ′) are considered equivalent
whereas (X,Y ) and (X,Y ′) are not.

4.2 The Definition of Dominating-Set-Width

With the intuition demonstrated above, we will now formalize the intuition into a definition for the
dominating-set-width as well as a definition for the dominating-set-width classes.

Definition 13. Let G be the graph (V,E), (T, δ) a decomposition tree of G and w is a node in T . Let
W ⊆ V be the set of vertices corresponding to the leaves in the subtree rooted at w in T . For every
boolean-width class in W represented by I, let the center C(I) of I be the set vertices such that for
every set X boolean-width equivalent to I it contains every vertex in the center.

C(I) = { x
∣∣ ∀X ≡bw I : x ∈ X } (1)

In Figure 7 we can see that the center of the boolean-width class {a, c} is {c}. Furthermore, we
can see that the boolean-width class {a, c} and {c} have the same center.

Definition 14. Let G be the graph (V,E), (T, δ) a tree decomposition of G and w is a node in T .
Let W ⊆ V be the set of vertices corresponding to the leaves in the subtree rooted at w in T and
W̄ = V (G) −W . Let Dw be the set containing pairs of sets, one a subset of W and one a subset of
W̄ :

Dw = {(X, X̄)
∣∣ X ⊆W, X̄ ⊆ W̄ }

10 A Search for the Dominating-Set-Width
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(X, X̄) and (Y, Ȳ ) are considered dominating-set-width equivalent if and only if points 1) and 2)
are both true.

1. X ≡bw Y
With I the boolean-width class where X and Y belong to.

2.
(
N(X̄) ∩W

)
− C(I) =

(
N(Ȳ ) ∩W

)
− C(I)

Notation: (X, X̄) ≡ (Y, Ȳ )

Definition 15. Given a graph G and W ⊆ V (G) we define a representative of a dominating-set-width
class in W as a pair (I,O) such that:

1. (X, X̄) is in the dominating-set-width class represented by (I,O) if and only if (X, X̄) ≡ (I,O)

2. If (X, X̄) ≡ (I,O), then the following two points are true:

(a) |I| ≤ |X| and if |I| = |X|, then I is lexicographically smaller than X.

(b) |O| ≤ |X̄| and if |O| = |X̄|, then O is lexicographically smaller than X̄.

The lexicographical order is equal to the one used in boolean-width class representatives.

From this point on, just as the boolean-width representatives, when we speak of a dominating-set-
width class (I,O) we mean the dominating-set-width class represented by (I,O).

Figure 8: The cut from Figure 4, now with every vertex labeled.

The cut in Figure 8 has the following dominating-set-width classes:

For the boolean-width class ∅:
(∅, ∅̄) (∅, {e}) (∅, {f}) (∅, {g}) (∅, {h}) (∅, {e, g})
For the boolean-width class {a}:
({a}, ∅̄) ({a}, {e}) ({a}, {f}) ({a}, {g}) ({a}{h}) ({a}, {e, g})
For the boolean-width class {c}:
({c}, ∅̄) ({c}, {e}) ({c}, {g}) ({c}, {e, g})
For the boolean-width class {a, c}:
({a, c}, ∅̄) ({a, c}, {e}) ({a, c}, {g}) ({a, c}, {e, g})
For the boolean-width class {d}:
({d}, ∅̄) ({d}, {e}) ({d}, {f}) ({d}, {g}) ({d}, {e, g})
For the boolean-width class {a, d}:
({a, d}, ∅̄) ({a, d}, {e}) ({a, d}, {f}) ({a, d}, {g}) ({a, d}, {e, g})

As we can see, we get that (X,Z) and (X,Z ′) from in Figure 7 are equivalent but (X,Y ) and
(X,Y ′) back in Figure 6 are not. We can also see that when two boolean-width classes I and I ′ have
the same center they have the same combinations with respect to the boolean-width classes O.
Now we finalize the formalization of the dominating-set-width for a graph G.
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Definition 16. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. We define the
dominating-set-width of a cut [W, W̄ ] induced by a node w in T as the log2 value of the number of
dominating-set-width classes in the cut.

Definition 17. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. We define the
dominating-set-width of (T, δ), dsw(T, δ), as the maximal dominating-set-width value taken over every
cut [W, W̄ ] induced by a node w in (T, δ).

Definition 18. Let G be the graph (V,E). We define the dominating-set-width of G, dsw(G), as the
minimum dominating-set-width value taken over every decomposition tree (T, δ) of G.

Observe that at most the number of dominating-set-width classes equals the square of the number
of boolean-width classes, thus dsw(G) ≤ 2 · bw(G). Also observe that there are at least the same
number of dominating-set-width classes as there are boolean-width classes, thus bw(G) ≤ dsw(G).

4.3 The New Algorithm

With the definition of the dominating-set-width we create a new DP algorithm that uses a combination
step that looks like the combination step used by Bui-Xuan et al. [6]. For the rest of this section, w
is the parent node of a and b in the decomposition tree (T, δ) and A and B are subsets of V (G) which
are constructed in the same way as W was in Definition 14 but now using a and b respectively. I is
a boolean-width class in A, J in B and K in W . Furthermore, (I,O) is a dominating-set-width class
in A, (J,Q) in B and (K,P ) in W .

Let Tabw be a table where for each dominating-set-width class (I,O) we store the size of a set
X such that (X,O) ≡ (I,O) and (X,O) dominates W . (X,O) dominates W means that W ⊆
N [X]∪N(O) with N [X] = X ∪N(X). Let Taba and Tabb be defined the same way with respect to A
and B. Our DP algorithm will initialize the tables Tabl for each leaf node l in T that minimizes the
size stored at each index of Tabl. Then it will loop over all the nodes w of T going from the bottom
to the top and uses a new combination step to fill the tables Tabw. Finally, it will fill Tabr at the
root node r of T which has a single entry, (∅, ∅̄). This represents the size of a set X such that X
dominates the whole graph G. The new combination step algorithm will minimize the set size stored
at each index of Tabw, thus it will minimize the set size stored at Tabr((∅, ∅̄)) solving the minimum
dominating set problem.

Algorithm 1 Find the minimum dominating set for a graph G given the decomposition tree (T, δ)

1: for all leaf node l in T do
2: Tabl(∅, ∅̄) =∞ (default value)
3: Tabl(v, ∅̄) = 1
4: Tabl(∅, O) = 0 with O 6= ∅̄
5: for all w of T , not a leaf, from bottom to top do
6: Algorithm 2: Combine step at node w with child notes a, b

Algorithm 2 Combine step at node w with child notes a, b
1: for all (K,P ) in W do
2: Tabw(K,P ) =∞ (default value)
3: for all I in A and J in B do
4: Find K such that K ≡bw I ∪ J
5: for all P such that (K,P ) is a dominating-set-width class representative in W do
6: Find (I,O) such that (I, J ∪ P ) ≡ (I,O)
7: Find (J,Q) such that (J, I ∪ P ) ≡ (J,Q)
8: Tabw(K,P ) = min

{
Tabw(K,P ), Taba(I,O) + Tabb(J,Q)

}
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To prove the correctness of Algorithm 1 we first prove two lemmas that will make the proof easier.

Lemma 2. Let K ≡bw I∪J with I a boolean-width class in A and J a boolean-width class in B. Then
for every dominating-set-width class (K,P ) there are two dominating-set-width classes represented by
(I,O) and (J,Q) such that for all X ≡bw I and Y ≡bw J :

1. (X,Y ∪ P ) ≡ (I,O)

2. (Y,X ∪ P ) ≡ (J,Q)

Proof. This proof is done by proving the following claim. The dominating-set-width classes (I,O) and
(J,Q) such that (I, J ∪P ) ≡ (I,O) and (J, I ∪P ) ≡ (J,Q) are the ones we need. Note that these two
classes are independent from X and Y .
For (X,Y ∪ P ) to be in equivalent to (I,O) we need to prove two things:

1. X ≡bw I

2.
(
N(Y ∪ P ) ∩A

)
− C(I) =

(
N(O) ∩A

)
− C(I).

The first point is true by assumption. The second point can be proven by first showing that N(Y ∪
P ) ∩A = N(J ∪ P ) ∩A. By

N(Y ∪ P ) ∩A =
(
N(Y ) ∪N(P )

)
∩A,

=
(
N(Y ) ∩A

)
∪
(
N(P ) ∩A

)
,

=
(
N(J) ∩A

)
∪
(
N(P ) ∩A

) (
using that Y ≡bw J

)
,

=
(
N(J) ∪N(P )

)
∩A,

= N(J ∪ P ) ∩A.

(2)

From this follows
(
N(Y ∪ P ) ∩ A

)
− C(I) =

(
N(J ∪ P ) ∩ A

)
− C(I). By construction of (I,O) we

know
(
N(J ∪ P ) ∩A

)
− C(I) =

(
N(O) ∩A

)
− C(I), proving the second point.

We can do the exact same thing to prove (Y,X ∪ P ) ≡ (J,Q).

Lemma 3. If (X,O) ≡ (I,O) and (X,O) dominates A, then for every X̄ ⊆ Ā such that (X, X̄) ≡
(I,O) the pair (X, X̄) will also dominate A.

Proof. If (X,O) ≡ (I,O) and (X,O) dominates A then A ⊆
(
N(O) ∩ A

)
∪ N [X] with N [X] =

X∪N(X). X ≡bw I which implies C(I) ⊆ N [X], thus we also know A ⊆
(
(N(O)∩A)−C(I)

)
∪N [X].

Let X̄ be an arbitrary set such that (X, X̄) ≡ (I,O). Then
(
N(X̄)∩A

)
−C(I) =

(
N(O)∩A

)
−C(I),

thus A ⊆
(
(N(X̄) ∩ A)− C(I)

)
∪N [X] which implies A ⊆

(
N(X̄) ∩ A

)
∪N [X] proving that (X, X̄)

will also dominate A.

And finally we use one lemma from Bui-Xuan et al. [6] to prove the correctness of Algorithm 1.

Lemma 4 (Lemma 12 of [6]). For a graph G, let A, B, W̄ be a 3-partitioning of V (G), and let
X ⊆ A, Y ⊆ B and P ⊆ W̄ . The pair (X,Y ∪ P ) dominates A and (Y,X ∪ P ) dominates B iff the
pair (X ∪ Y, P ) dominates A ∪B.

Lemma 5. Algorithm 1 solves the minimum dominating set problem.

Proof. To prove the correctness of Algorithm 1 we need to show that for every dominating-set width
class represented by (K,P ) the size of the best partial solution equivalent to (K,P ) is stored at
Tabw(K,P ). This will be done by induction on the combination step done in Algorithm 2 . The
induction hypothesis is:

∀(K,P ) Tabw(K,P ) := min{ |X|
∣∣ (X,P ) ≡ (K,P ) and (X,P ) dominates W}

Starting at the leave nodes of (T, δ), L = {v}. This is the initialization step. Leaves will always
have three classes:

1. (∅, ∅̄) 2. (v, ∅̄) 3.(∅, O)
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O is a boolean-width class such that O is connected to v. Note that (v,O) ≡ (v, ∅̄). The values of
table Tabl are set during the initialization step in Algorithm 1. Tabl(∅, ∅̄) equals the default value,∞,
because v is not dominated. Tabl(v, ∅̄) = 1 because the set {v} is the minimum dominating set of L.
Tabl(∅, O) = 0, because the empty set is the minimum dominating set of L given that v is dominated
by O. All these partial solutions are the optimal partial solutions for each class. Hence the base case
is true.

Assume that the tables of the child nodes a and b of w have been filled correctly with respect to
the induction hypothesis. Say there is a set X such that (X, X̄) dominates W and this pair belongs
to the dominating-set-width class represented by (K,P ).
Define:

• Xa = X ∩A ≡bw I

• Xb = X ∩B ≡bw J

With Lemma 2 we get the two dominating-set-width classes (I,O) in A and (J,Q) in B such that
(Xa, Xb ∪ P ) ≡ (I,O) and (Xb, Xa ∪ P ) ≡ (J,Q). At some point Algorithm 2 will check the value of
Taba(I,O) + Tabb(J,Q), because the construction of (I,O) and (J,Q) in the algorithm is the same
as in Lemma 2. Tables Taba and Tabb have been filled correctly, meaning Taba(I,O) ≤ |Xa| and
Tabb(J,Q) ≤ |Xb|, thus Tabw(K,P ) ≤ |X|.

To finish the proof we need to prove that when Tabw(K,P ) = k there is a set Y such that |Y | = k,
(Y, P ) ≡ (K,P ) and (Y, P ) dominates W . Let (I,O) and (J,Q) be the dominating-set-width classes
such that Tabw(K,P ) = Taba(I,O) + Tabb(J,Q). Let Ya be a set such that |Ya| = Taba(I,O),
(Ya, O) ≡ (I,O) and (Ya, O) dominates A. This set Ya exists, because Taba was filled in correctly.
Let Yb be defined the same way with respect to (J,Q). Ya ∪ Yb is the set Y we are looking for.

• Tabw(K,P ) = Taba(I,O) + Tabb(J,Q), thus |Ya ∪ Yb| = k.

• Ya ≡bw I, Yb ≡bw J and K ≡bw I ∪ J , thus (Ya ∪ Yb, P ) ≡ (K,P ).

• (Ya ∪ Yb, P ) ≡ (K,P ), Ya ≡bw I and Yb ≡bw J , thus (Ya, Yb ∪ P ) ≡ (I,O), because of Lemma
2. (Ya, O) dominates A, thus (Ya, Yb ∪ P ) dominates A, because of Lemma 3. In the same way,
(Yb, Ya ∪ P ) ≡ (J,Q) and (Yb, Ya ∪ P ) dominates B. Thus (Ya ∪ Yb, P ) dominates A ∪ B = W ,
because of Lemma 4.

The algorithm ends at the root node r of T . We just proved that Tabr will be filled in correctly,
thus Tabr(∅, ∅̄) is the size of the smallest set X such that X dominates the whole graph G.

We loop over each dominating-set-width class at least once, because each boolean-width class K
is combined at least once. Say that each boolean-width class K, such that there are less than 2bw(G)

number of dominating-set-width classes (K,P ), is only loped over once. Then the total number of
iterations done in Algorithm 1 will be at most 2dsw(G) + 2bw(G)(22·bw(G) − 2bw(G)). Rewriting this
upper-bound gives 23·bw(T,δ) + 2bw(G) − 22·bw(G) and because 2bw(G) ≤ 22·bw(G) we can conclude that
the number of iterations done in Algorithm 1 is less than or equal to 23·bw(T,δ). Thus if the dominating-
set-width of the decomposition tree we use in Algorithm 1, is less than two times its boolean-width
we will always have less than 23·bw(T,δ) iterations. The rest of the steps can be done in O(p(n)) with
p a polynomial. We will look at these steps in more detail in section 5. Although this does not
prove that Algorithm 1 has an asymptotically smaller run time than the algorithm that uses boolean-
width, which was O∗(23·bw(T,δ)), it does prove that our algorithm is faster than the algorithm that
uses boolean-width, because we loop over less equivalence classes. In section section 6 we will see that
there are decomposition trees which do have an asymptotically faster run time.

14 A Search for the Dominating-Set-Width



5 A Data Structure for Dominating-Set-Width

In this section we will construct a new data structure which is used in Algorithm 2. The new data
structure allows quick access to the dominating-set-width class representative corresponding to a pair
(X, X̄). We start by going over the data structure used with the boolean-width. After that we will
introduce algorithms that construct the final data structure.

5.1 The Data Structure of Boolean-Width

Just as how the definition of the boolean-width was a stepping stone for the definition of the dominating-
set-width, so shall the data structure of the boolean-width be a stepping stone for the data structure
for the dominating-set-width.

In Section 3 it was shown that twin class representatives are the building blocks for the boolean-
width class representatives, so we need to know who they are for each cut of a decomposition tree.
Once we know what the representative for each twin class is, we can move on to constructing the
boolean-width class representatives for each cut of a decomposition tree. Finally, we can construct a
matrix that will grand us quick access to the boolean-width class representative corresponding to a
set X. First we need to formalize the different lists we just described.

Definition 19. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. We define the list of
twin class representatives TCw as the unique family LRw ⊆W satisfying:

∀v ⊆W ∃x ∈ LRw such that v is in the twin class represented by x

Definition 20. For a decomposition tree (T, δ) define ntc(T, δ) as the maximal number of twin classes
|TCw| or |TCw̄| taken over all the cuts induced by nodes in (T, δ).

Definition 21 (Definition 8 of [6]). Let G be the graph (V,E) and (T, δ) a decomposition tree of
G. We define the list of boolean-width class representatives LRw as the unique family LRw ⊆ 2TCw

satisfying:
∀X ⊆W ∃I ∈ LRw such that I ≡bw X

Furthermore, let LNRw be a list represented as a self-balancing binary search tree containing the
neighborhoods of members of LRw in [TCw, TCw̄].

LNRw = {N(I) ∩ TCw̄ | I ∈ LRw} (3)

Bui-Xuan et al. [6] provide algorithms and lemmas which allow us to actually construct these
different lists and search trees. From this point on, let n be the number of vertices of a graph G.

Lemma 6 (Lemma 10 of [6]). Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree of
G. For every cut [W, W̄ ] induced by a node w in (T, δ) we compute the two vertex sets TCw and TCw̄
associated to the cut [W, W̄ ] in O(n(n + ntc2(T, δ))) time. In the same time we compute for every
v ∈ W a pointer to x ∈ TCw for v and x being in the same twin class of W , and similarly for every
v ∈ W̄ .

Lemma 7 (Lemma 7 of [6]). Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree
of G. Assume the pre-processing described in Lemma 6 has been done. Then, for every cut [W, W̄ ]
induces by a node w in (T, δ), we compute the list of representatives LRw, the self-balancing binary
search tree LNRw and pointers such that I ∈ LRw and N ∈ LNRw point to each other if and only if
N = N(I) ∩W in O(n · ntc2(T, δ) · bw(T, δ) · 2bw(T,δ)) time.

Lemma 8 (Lemma 8 of [6]). Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree of G.
Assume the pre-processing described in Lemmas 6 and 7 has been done. Then, for every cut [W, W̄ ]
induced by a node w in (T, δ), we compute a data structure Mw in O(n ·ntc2(T, δ) · bw(T, δ) · 2bw(T,δ))
time, allowing, for any X ⊆W , to access in O(|X|) time the entry I of LRw such that X ≡bw I.

Lemma 9 (Lemma 6 of [6]). Let G be the graph (V,E), W ⊆ V (G) and I ∈ LRw. We have |I| ≤ k,
with k the boolean-width of the cut [W, W̄ ].
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Corollary 1. From Lemma 5.1 we can directly conclude that for all I ∈ LRw, |C(I)| ≤ k with k the
boolean-width of the cut [W, W̄ ], because by definition C(I) ⊆ I.

For more details on the data structure used for boolean-width we refer the reader to Section 5 of
Bui-Xuan et al. [6]. The most important part to take from this paper for this section is: when we
construct the data structure mentioned in Lemma 8, the time it takes to find the correct boolean-
width class representative given a set X ⊆ W is O(|X|). Using Lemma , this query time of Lemma
8 becomes O(bw(T, δ)) if X is a boolean-width class representative or a finite union of boolean-width
class representatives.

5.2 Algorithms for the New Data Structure

With the basis of the data structure of the boolean-width established, we move on to the algorithms
that will produce the data structure of the dominating-set-width. First we need to know the different
centers of each boolean-width class on each cut of a decomposition tree. Once these centers are known
we can combine boolean-width classes to create dominating-set-width classes. Finally, similarly to the
boolean-width, we can construct a matrix that will grant us quick access to the dominating-set-width
class representative corresponding to a pair (X, X̄).

5.2.1 Constructing the Centers

We start by introducing a new definition about twins on a cut, which will help with calculating the
centers of each boolean-width class.

Definition 22. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. A twin class repre-
sented by x ∈ TCw is called a single twin if the corresponding twin class contain a single element.

In Lemma 6, pointers are created for every v ∈ W to the twin class representatives x ∈ TCw for
every w in T . At the moment a pointer is created we can check if a twin class contains more than one
element. Say we create a pointer from v to x. If v 6= x then we know the twin class represented by
x contains more than one element. With this extra step we adjust Lemma 6 to also keep track of all
the single twins in every cut.

Lemma 10. Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree of G. For every cut
[W, W̄ ] induced by a node w in (T, δ) we compute the two vertex sets TCw and TCw̄ associated to the
cut [W, W̄ ] in O(n(n+ ntc2(T, δ))) time. In the same time we compute for every v ∈W a pointer to
x ∈ TCw for v and x being in the same twin class of W , and similarly for every v ∈ W̄ and we know
which elements in TCw and TCw̄ are single twins.

These single twins are the building blocks of the centers of each boolean-width class.

Lemma 11. Let G be the graph (V,E) and W ⊆ V . For every boolean-width class I in W the center
C(I) only contains single twins.

Proof. Say it is not true, then C(I) contains a vertex v who is not a single twin. Let X ≡bw I such
that v ∈ X. We can replace v with a twin u 6= v to get a new set. X ′ = (X − v) ∪ u. Observe that
X ′ ≡bw, thus v 6∈ C(I) which is a contradiction.

Now we can construct a list that contains the center for each boolean width class for every cut
[W, W̄ ] induced by a node w in (T, δ).

Lemma 12. Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree of G. Assume the
pre-processing described in Lemmas 7, 8 and 10 has been done. For every cut [W, W̄ ] induced by a
node w in (T, δ) we compute a list LCw containing for each I ∈ LRw its center C(I) by running
Algorithm 3 in O(n · ntc2(T, δ) · bw(T, δ) · 2bw(T,δ)) time.
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Proof. The idea of the algorithm is that we build the centers incrementally by adding the vertices
in TCw one by one. After the first n vertices v ∈ TCw, denoted by TCnw, have been added, all the
boolean-width classes I ∈ CR are only using the first n twin classes. The centers are the intersection
of sets in I who only use the first n twins denoted by LCnw.

LCnw(I) =
⋂

X⊆2TCn
w

X≡bwI

X = { x
∣∣ ∀X ⊆ 2TC

n
w X ≡bw I : x ∈ X } (4)

Now we will prove the correctness by induction for a single cut. Let TCnw be the first n twin classes
of TCw and let LCnw(I) be defined as in equation 4. At the first iteration, CR = {∅}, and we add the
first twin class t1 resulting in CR = {∅, {t1}} with C(∅) = ∅ and C(t1) = {t1} if and only if t1 is a
single, otherwise C(t1) = ∅. The base case is correct.

Assume everything is correct up to tn. CR consists of boolean-width classes who have a mem-
ber that is a subset of 2TC

n
w . Now we add tn+1. Let X = {ti, · · · , tn+1} ≡bw I ′ for some i ≤ n

such that X = {ti, · · · , tm} ∪ {tn+1} with m ≤ n and {ti, · · · , tm} ≡bw I ∈ CR. At some point
we combine I with tn+1 to get X and we calculate LCn+1

w (I ′) = LCn+1
w (I ′) ∩

(
LCnw(I) ∪ {tn+1}

)
or

LCn+1
w (I ′) = LCn+1

w (I ′) ∩ LCnw(I) depending on if tn+1 is a single twin or not because of Lemma 11.
This is done for every arbitrary set X of the form {ti, · · · , tm} ∪ {tn+1}, thus LCn+1

w is calculated
correctly.

On to the run time analysis. In each iteration in the loop of Algorithm 3 calculating X takes
constant time. Calculating I ′ takes O(k) time, with k the boolean-width value of the cut [W, W̄ ],
because of Lemma 5.1. Checking if I ′ ∈ CR takes O(|TCw|k) time by representing CR as a self-
balancing binary search tree, just like LNRw. Then adding I ′ if necessary takes the same amount of
time, O(|TCw|k). We only need to calculate one intersection in each iteration which takes O(|TCw|)
time, thus each iteration will take O(|TCw|k) time. In the worst case scenario |CR| = 2k, thus at
most there are O(|TCw|2k) number of iterations. We loop over O(n) cuts in (T, δ) giving a total run
time of O(n · ntc2(T, δ) · bw(T, δ) · 2bw(T,δ)).

Algorithm 3 Calculating C(I) for each I ∈ LRw in the list LCw
1: for all I ∈ LRw do
2: LCw(I) = I

3: Let CR = {∅}
4: for all v ∈ TCw do
5: for all I ∈ CR do
6: Let X = I ∪ {v}
7: Let I ′ ≡bw X
8: if I ′ 6∈ CR then
9: Add I ′ to CR

10: if v is a single twin then
11: LCw(I ′) = LCw(I ′) ∩

(
LCw(I) ∪ {v}

)
12: else
13: LCw(I ′) = LCw(I ′) ∩ LCw(I)

5.2.2 Constructing the Dominating-set-width Classes

Now that LCw is constructed, we can continue with the algorithm for constructing the dominating-
set-width class representatives.

Definition 23. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. We define LDRw
as the list of dominating-set-width class representatives as the unique family LDRw ⊆ 2TCw×TCw̄

satisfying:
∀(X, X̄) ∈ Dw ∃(I,O) ∈ LDRw such that (X, X̄) ≡ (I,O)
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Definition 24. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. Let [W, W̄ ] be the cut
induces by a node w in (T, δ) and LDRw the list of dominating-set-width representatives. For every
I ∈ LRw we define LD(I)w as a list represented as a self-balancing binary search tree of unique areas
dominated by sets in W̄ but with the center of I removed:

LD(I)w = { D
∣∣ ∃(I,O) ∈ LDRw : D = N(O) ∩W − C(I) }

Lemma 13. Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree of G. Assume the
pre-processing described in Lemmas 7, 8, 10 and 12 has been done. For every cut [W, W̄ ] induced by
a node w in (T, δ) we compute the lists LDRw and LD(I)w for every I ∈ LRw by running Algorithm
4 in O(n · ntc(T, δ) · bw(T, δ) · 22·bw(T,δ)) time.

Proof. The algorithm creates every possible combination of every boolean-width class in W with ev-
ery boolean-width class in W̄ . Each combination is tested to see if this combination creates a new
dominating-set-width class in line 4. LRw and LRW̄ are sorted according to the lexicographical order
due to the way LRw is constructed which is just like the centers. We fix I before looping over all
possible O, thus the pair (I,O) for which D 6∈ LD(I)w, and thus is added to LD(I)w, is a dominating-
set-width class representative according to Definition 23.

On to the run time analysis. In each iteration in the loops of Algorithm 4 calculating D takes
O(|TCw|) time. Checking if D ∈ LD(I)w takes O(|TCw|k) time, with k the boolean-width value of
the cut [W, W̄ ], because LD(I)w is a self-balancing binary search tree. Adding D if necessary takes
the same amount of time, O(|TCw|k). The rest of the steps take O(1) time, thus each iteration will
take O(|TCw|k) time. We loop over O(22k) boolean-width classes in each cut and O(n) cuts in (T, δ)
giving a total run time of O(n · ntc(T, δ) · bw(T, δ) · 22·bw(T,δ))

Algorithm 4 Calculating LDRw for a node w in T
1: for all I ∈ LRw do
2: for all O ∈ LRw̄ do
3: D = N(O) ∩W − C(I)
4: if D 6∈ LD(I)w then
5: Add D to LD(I)w at the correct place
6: Add (I,O) to LDRw
7: Add a pointers from D to (I,O)

5.2.3 Constructing the Query Matrix

Finally, we can create the data structure that allows for quick access to the dominating-set-width class
representative corresponding to a pair (X, X̄).

Lemma 14. Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree of G. Assume the
pre-processing described in Lemmas 7, 8, 10, 12 and 13 has been done. For every cut [W, W̄ ] induced
by a node w in (T, δ) we compute a data structure MDw by running Algorithm 5 in O(n · ntc2(T, δ) ·
bw(T, δ) ·2bw(T,δ)) time, allowing, for any (X, X̄) ∈ Dw, to access in O(max{|X|, |X̄|}) time the entry
(I,O) of LDRw such that (X, X̄) ≡ (I,O) by running Algorithm 6.

The intuition for the proof of the correctness of Algorithm 5 follows directly from the observation
that there is a bijection between the list LD(I)w and the dominating-set-width classes (I,O).

Proof. We will prove the correctness of both algorithms for a single cut. We build the dominating-
set-width class representative of a pair (X, X̄) ∈ Dw by finding the boolean-width class I such that
I ≡bw X, then much like the data structure created to quickly find the correct boolean-width class we
add the vertices of X̄ one by one. This way the rest of the proof is analogous to Lemma 8 of Bui-Xuan
et al. [6] (Lemma 8 in this section). There is just one thing different.
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The difference is that instead of exploiting the bijection between the elements of LRw and LNRw
we exploit the bijection between the elements of LDRw and the lists LD(I)w for the different I ∈ LRw.
This bijection is created in line 7 of Algorithm 4. An example of a DMw matrix is given in Figure 9

On to the run time analysis. In each iteration in the loop of Algorithm 5 calculating D takes
O(|TCw|) time. This can achieved by finding the boolean-width class of O ∪ {v} in O(k) time, with
k the boolean-width value of cut the [W, W̄ ], then finding N(O ∪ {v}) ∩W ∈ LNRw̄ in O(1) time
and then subtracting C(I) in O(|TCw|) time. Once D is calculated (I,O′) can be found in O(1) time,
because of the bijection mentioned above. The rest of the steps also take O(1) time. We loop over
O(2k) boolean-width classes and (|TCw|) twin classes in each cut and O(n) cuts in (T, δ) giving a
total run time of O(n · ntc2(T, δ) · 2bw(T,δ)).

For the run time analysis of Algorithm 6 we find I in O(|X|) time. Each iteration in the loop of
Algorithm 6 takes O(1) time and there are O(|X̄|) iterations.

Algorithm 5 Calculating MDw for a node w in T
1: for all v ∈ TCw̄ do
2: for all (I,O) ∈ LDRw do
3: Let D = N(O ∪ {v}) ∩W − C(I)
4: Let (I,O′) be the dominating-set-width class D points to in LD(I)w.
5: Add a pointer from MD[(I,O)][v] to (I,O′)

Algorithm 6 Find the dominating-set-width class representative (I,O) for a pair (X, X̄) ∈ Dw
1: Let I be the boolean-width class of X
2: Let O = ∅
3: for all v ∈ X̄ do
4: (I,O) = MD[(I,O)][v]

Figure 9: An example of a MDw matrix, here (I,O′) ≡ (I,O ∪ v).
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We can apply Lemma 5.1 again to show that the run time of line 1 of Algorithm 6 is O(k), with
k the boolean-width value of cut [W, W̄ ], when X is a boolean-width representative. Following the
same reasoning, there are O(k) iterations in the loop of Algorithm 6 when X̄ is a boolean-width
representative, thus we can find the representative of the pair (I,O) when I and O are boolean-width
representatives or finite union of boolean-width representatives in O(k) time.

5.2.4 Summary

We created a data structure for the dominating-set-width that can be used by Algorithm 1. This was
accomplished by creating the temporary lists, TCw, TCw̄, LRw̄, LNRw, LNRw̄, LCw and LD(I)w
and the permanent lists LRw and LDRw as well as two matricesMw andMDw. These matrices allow
quick access to the correct representative in LRw and LDRw when given X and (X, X̄) respectively.

Corollary 2. Let G be the n-vertex graph and (T, δ) a decomposition tree of G. Assume the pre-
processing described in Lemmas 7, 8, 10, 12, 13 and 14 has been done. We can solve the minimum
dominating set problem with Algorithm 1 which has a run time of O(n · bw(T, δ) · 23·bw(T,δ)).

Theorem 3. Let G be the n-vertex graph (V,E) and (T, δ) a decomposition tree of G. By doing the
pre-processing described in Lemmas 7, 8, 10, 12, 13 and 14 we can solve the minimum dominating set
problem in O

(
n(n+ ntc(T, δ) · bw(T, δ) · 22·bw(T,δ) + bw(T, δ) · 23·bw(T,δ))

)
which can also be expressed

as O
(
n2 + n · bw(T, δ) · 23·bw(T,δ)

)
, because ntc(T, δ) ≤ 2bw(T,δ).

Up to this point the run time of every algorithm has been expressed by n, ntc(T, δ) and bw(T, δ).
Obviously, we would like to change this to n, ntc(T, δ) and dsw(T, δ). This is not an easy task,
because we have no relation between bw(T, δ) and dsw(T, δ) other than dsw(T, δ) ≤ 2 · bw(T, δ) and
an observation about the number of iterations done in Algorithm 1. Thus we can’t give an expression
for these run times using only n, ntc(T, δ) and dsw(T, δ) that gives the same run time or a better one
at this point. However, in the next section we will proof that we can change the expression of the run
times for certain graph classes.
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6 Graph Class Analysis

In this section we will prove an upper and lower-bounds for the dominating-set-width. After that, we
will look at the size of the dominating-set-width for graphs restricted to graph classes. We finish the
section with some theory about the upper-bound of the dominating-set-width for general graphs.

6.1 The Bounds of Dominating-Set-Width

Belmonte and Vatshelle [3] proved for a number of different graph classes a upper-bounds for their
boolean-width value, illustrated by Figure 10 which was taken from Belmonte and Vatshelle [3].
From the definition of the dominating-set-width we saw that the dominating-set-width is linear in
boolean-width. Because of this relation all upper-bounds given in Belmonte and Vatshelle [3] are also
upper-bounds for the dominating-set-width.

Figure 10: Inclusion diagram of some well-known graph classes. (I) Graph classes where clique-width
and boolean-width are bounded by a constant. (II) Graph classes having decomposition trees with
boolean-width O(log n). (III) It is unknown whether these classes have boolean-width O(log n). (IV )
Either boolean-width is not O(log n) or it is NP-hard to compute such decompositions.

With the upper-bound done, we move on to a better lower-bound than the one described in Section
4. This lower-bound shall be proven to be a tight bound. But first we will prove a lemma that shows
that all centers are boolean-width class representatives.
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Lemma 15. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. For all boolean-width
classes I ∈ LRw in W , C(I) ∈ LRw.

Proof. Say it is not true. Let S be the boolean-width class such that S ≡bw C(I) and thus S 6= C(I).
Observe that (I − C(I)) ∪ S ≡bw I, thus there is a set equivalent to I such that it does not contain
C(I) which is a contradiction with the definition of C(I).

Now we can prove a lower bound of the dominating-set-width for general graphs, which will be a
tight lower-bound.

Lemma 16. For every graph G we have that 3bw(G) ≤ 2dsw(G).

Proof. We know C(I) is a boolean-width class representative. Let I be a boolean-width class such
that C(I) = I and |I| = 1 on the cut [W, W̄ ]. If we ignore this boolean-width class by removing
I from the border we still have at least 2k−1 boolean-width classes left in W . The same is true for
W̄ , because both sides of a cut have the same amount of boolean-width classes. Therefore we get at
least 2k−1 different neighborhoods in W adjacent to sets in W̄ . This means that the least amount of
different dominating-set-width classes created for I is 2k−1. The same argument can be used to show
that when C(I) = I and |I| = i we get at least 2k−i dominating-set-width classes for I. The total
amount of dominating-set-width classes created in the cut [W, W̄ ] is therefore bounded by:

Σk
i=0 |{ I | |C(I)| = i}| · 2k−i (5)

Observe that a bigger center results in a lower amount of dominating-set-width classes. We create
the least amount of dominating-set-width classes when every center is unique and every possible size
of a center is available. Say two boolean-width classes I and J , with N(I) ∩ W̄ ⊂ N(J) ∩ W̄ , have
the same center then the same amount dominating-set-width classes are created for I and J . This
is more or equal to the scenario when J has a bigger center. The size of each center is bounded by
the corresponding boolean-width class representative, which is bounded by the boolean-width of the
decomposition tree (T, δ). This observation will lower bound given in Equation 5:

Σk
i=0

(
k

i

)
· 2k−i (6)

Applying the Binomium of Newton shows that this equation is equal to 3k.

We will now prove that this lower-bound is tight. This is done by showing that tree graphs and
grid graphs both have a decomposition tree (T, δ) such that 3bw(T,δ) = 2dsw(T,δ).

6.1.1 Tree graphs

Lemma 17. Tree graphs have a dominating-set-width value of log2(3).

Proof. The boolean-width value of a tree graph G is one. Trees have a decomposition tree (T, δ) such
that every cut induced by a node w has two boolean-width classes, ∅ and r, where r is the root of the
subtree W . This is done by starting with an interior node r which only has leaves as child vertices,
then adding these leaf vertices one by one. After this is done, r can been seen as a leaf vertex in G
by compressing all its child notes into itself. This process can be repeated until we have added every
vertex. Figure 11 illustrates this process.

• For the boolean-width class ∅ the dominating-set-width classes are (∅, ∅̄) and (∅, r̄).

• For the boolean-width class r the dominating-set-width class is (r, ∅̄).

We end up with three dominating-set-width classes for each cut in the decomposition tree (T, δ) giving
trees a dominating-set-width value of log2(3).
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Figure 11: Set A is always in red and set B is always in blue. These steps show how we can combine
each leaf node of a single internal node of a tree, steps (a) to (c). The set A in step (c) can be seen
and handled as if it where a leaf node like in image (d). We repeat these steps again one level higher
in the tree as we see in step (d) and (e).

6.1.2 Grid graphs

Lemma 18. All n×m grid graphs G with n < m have a decomposition tree (T, δ) such that 3bw(T,δ) =
2dsw(T,δ).

Proof. Let G be a n×m grid graph (V,E) with n < m. We construct a decomposition tree by creating
columns of size n and add the columns one by one, going from one side to the other. This way we get
at most 2n boolean-width classes in each cut of (T, δ). For every cut [W, W̄ ] each boolean-width class
I in W , C(I) = I. Each vertex in W̄ who is adjacent to I is only adjacent to I and nothing else in
W . Therefore every boolean-width class O in W̄ which is adjacent to a part of I can be replaced by
a boolean-width class Q which is not adjacent to any part of I, thus (N(Q) ∩W )− I = N(Q) ∩W .
Figure 12 shows an example of such O and Q.

Figure 12

For each boolean-width class I in W there are 2n−|I| different boolean-width classes Q in W̄ who
are not adjacent to a part of I. Thus there are 2n−|I| dominating-set-width classes created for this
boolean-width class. The total amount of dominated-set-width classes created for each column can be
calculated by summing over each possible size of I and each possible combination of that size,

(
n
|I|
)
.

Σn
|I|=0

(
n

|I|

)
2n−|I| = Σn

|I|=0

(
n

|I|

)
2n−|I| · 1|I| = 3n (applying the Binomium of Newton) (7)

Adding the columns one by one going from one side to the other results in the same amount of
dominating-set-width classes, because we get the exact same amount of boolean-width classes on each
side of the cut and they are constructed the same way.

A Search for the Dominating-Set-Width 23



6.2 Second Run Time Analysis

6.2 Second Run Time Analysis

At the end of Section 4 it was shown that Algorithm 1 has a run time of O∗(23·bw(T,δ)). With the
analysis done on tree and grid graphs, we can show that for these graphs we can get a run time of
O∗(2bw(T,δ)2dsw(T,δ)).

Lemma 19. Let G be a n-vertex tree graph (V,E) with decomposition tree (T, δ) described in Lemma
17, then Algorithm 1 has a run time of O∗(2bw(T,δ)2dsw(T,δ)).

Proof. The proof is given by showing that there are at most O(2bw(T,δ)2dsw(T,δ)) numbers of iterations
done in Algorithm 2. The rest of the run time analysis remains the same. Let w be the parent node
of a and b in the decomposition tree (T, δ) and A and B are subsets of V (G) who are constructed
in the same way as W was in Definition 14 but now using a respectively b. Both A and B have two
boolean-width classes, ∅a and ra and ∅b and rb respectively. Without loss of generality assume that
the root node of A is a parent node for vertices in B, thus ra = rw, illustrated by Figure 13.

Figure 13: Sets represented by internal nodes of the decomposition tree (T, δ) described in Lemma 17.

∅a and ∅b combined is boolean-width equivalent to ∅w, just like ∅a combined with rb. ra and ∅b
combined is boolean-width equivalent to rw just as ra combined with rb is. This means that we loop
two times over each the dominating-set-width class in W , thus at most O(2bw(T,δ)2dsw(T,δ)) numbers
of iterations are done in Algorithm 2.

Lemma 20. Let G be a n×m grid graph (V,E) with n < m with decomposition tree (T, δ) described
in Lemma 20, then Algorithm 1 has a run time of O∗(2bw(T,δ)2dsw(T,δ)).

Proof. The proof is given the same way as with the tree graphs. Observe that when a column is
created every boolean-width class K is the combination of two unique boolean-width classes of A and
B. Thus we loop over every dominating-set-width class in W exactly once. When we combine two
columns there are 2bw(T,δ) possible combinations to get every boolean-width class K. This means that
we loop over every dominating-set-width class in W a 2bw(T,δ) number of times, thus there are at most
O(2bw(T,δ)2dsw(T,δ)) numbers of iterations done in Algorithm 2.

Grid graphs have a linear boolean-width in n according to Vatshelle [23]. Combined with Lemma
20 we get a nice result.

Corollary 3. Let G be a n×m grid graph (V,E) with n < m we can solve the minimum dominating
set problem in O∗(2bw(G)2dsw(G).
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6.3 The Dominating-Set-Width for General Graphs

There are many more graph classes for which we would like to answer the following question:

Question: For a given graph class C which of the following cases is true:

1. ∀G ∈ C : dsw(G) < 2 · bw(G).

2. ∃G ∈ C : dsw(G) = 2 · bw(G)

Up to this point there are no more graph classes for which we can answer this question. We
did however came up with some theory about the dominating-set-width for general graphs. We have
proven a relation between the number of dominating-set-width classes on a cut and the presence of a
single twin on the same cut.

Lemma 21. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. Let I ∈ LRw be such
that C(I) 6= ∅ and define NI := N(I) ∩ TCw̄. Then there is a vertex y ∈ TCw̄ such that y is only
adjacent to vertices in C(I) and no other vertex in a set equivalent to I. In other words:

∀I ∈ LRw ∃y ∈ TCw̄ : N(y) ∩
⋃
X≡I

X ⊆ C(I) (8)

Proof. Say it is not true. Then for every vertex in NI take an adjacent vertex that is in W and who is
in
⋃
X≡I X but not in C(I). These vertices exists under the assumption that the lemma is not true.

Call the set of all these vertices X ′. N(X ′)∩ TCw̄ = NI , thus X ′ ≡bw I, but X ′ does not contain any
vertex in C(I), which is a contradiction.

Lemma 22. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. Let I ∈ LRw such
that C(I) 6= ∅, define NI := N(I) ∩ TCw̄ and let y be a vertex in NI described in Lemma 21. Then
N(y) ∩W must contain a vertex x such that N(x) ∩ W̄ 6⊆ NI or (N(y) ∩W )− C(I) = ∅.

Proof. If N(y) ∩W does not contain a vertex x such that N(x) ∩ W̄ 6⊆ NI then every x must be in
C(I), because of Lemma 21, thus

(
N(y)∩W

)
−C(I) = ∅. If x 6∈ C(I) and N(x)∩ W̄ ⊆ NI then y is

connected to a vertex in
⋃
X≡I X − C(I) which is a contradiction with the construction of y.

To illustrate these two lemmas Figure 14 shows a cut with and I, NI and C(I) which in this
example is equal to I. y1 is only adjacent to the center of I and y2 is adjacent to the center of I but
also to a vertex x that is not in any set boolean-width equivalent to I. This x is the vertex x described
in Lemma 22.

Figure 14: Illustration of Lemma 21 and 22.

Lemma 23. Let G be the graph (V,E) and (T, δ) a decomposition tree of G. If there is a boolean-width
class I ∈ LRw such that C(I) 6= ∅ then the dominating-set-width value of the cut [W, W̄ ] is less than
two times the boolean-width value of [W, W̄ ].

Proof. Let I be a boolean-width class in W such that C(I) 6= ∅, let y be defined as in Lemma 21 and
X =

⋃
{x} with x defined as in Lemma 22 with respect to y. Observe that X =

(
N(y) ∩W

)
−C(I).

If X = ∅ then (I, y) ≡ (I, ∅̄) and we are done. Let X 6= ∅. We define two boolean-width classes in W̄ :

• O is the boolean-width representative of N(X) ∩ W̄ −NI .

• Q is the boolean-width representative of
(
N(X) ∩ W̄ −NI

)
∪ {y}.
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O is not adjacent to C(I) and Q is, thus we can see that O 6≡bw Q. Figure 15 shows an example
of such a O and Q for the cut on Figure 14 .

Figure 15

We will prove that (I,O) ≡ (I,Q). To prove this we need to prove two points:

1. I ≡bw I

2.
(
N(O) ∩W

)
− C(I) =

(
N(Q) ∩W

)
− C(I).

The first point is true. The second point can be proven by first showing that N(Q) ∩W =
(
N(O) ∩

W
)
∪
(
N(y) ∩W

)
. By

N(Q) ∩W = N
(
(N(X) ∩ W̄ −NI) ∪ {y}

)
∩W

(
because (N(X) ∩ W̄ −NI) ∪ {y} ≡bw Q

)
,

=
(
N(N(X) ∩ W̄ −NI) ∪N(y)

)
∩W,

=
(
N(N(X) ∩ W̄ −NI) ∩W

)
∪
(
N(y) ∩W

)
,

=
(
N(O) ∩W

)
∪
(
N(y) ∩W

) (
because N(X) ∩ W̄ −NI ≡bw O

)
.

(9)

If we remove C(I) from N(Q)∩W and use the equality of X given above we get
(
N(Q)∩W

)
−C(I) =(

(N(O)∩W )−C(I)
)
∪
(
(N(y)∩W )−C(I)

)
=
(
(N(O)∩W )−C(I)

)
∪X. Let x be an element from X

then N(x)∩W̄ 6⊆ NI , thus x is adjacent to vertices in O. And x 6∈ C(I), thus x ∈
(
N(O)∩W

)
−C(I).

We can conclude that
(
(N(O)∩W )−C(I)

)
∪X =

(
N(O)∩W

)
−C(I). This proves the second point

and thus that (I,O) ≡ (I,Q).

With Lemma 23 we can prove the last lemma which shows the relation between the number of
dominating-set-width classes on a cut and the presence of a single twin on the cut.

Lemma 24. Let G be the graph (V,E). If for every tree decomposition (T, δ) of G the list TCw
contains a single twin with non empty center for every w ∈ T , then dsw(G) < 2 · bw(G).

Proof. Let W ⊂ V (G) and TCw has a single twin v such that C(v) 6= ∅. Then because of Lemma 23
we know the dominating-set-width value of the cut [W, W̄ ] is less than two times the boolean-width
value of [W, W̄ ]. If this is true for every w ∈ T for every decomposition tree (T, δ) then it is also true
for the decomposition tree such that bw(T, δ) = bw(G) resulting in dsw(G) < 2 · bw(G).

Corollary 4. Let G be a graph of the graph class C. If for every decomposition tree (T, δ) the list
TCw contains a single twin with a non empty center for every w in T , then we can say that the
dominating-set-width of the class C is strictly less then two times the boolean-width value of the class.
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6.4 Linear Dominating-Set-Width

6.4 Linear Dominating-Set-Width

We might be able to improve the result of the run time analysis by proving that the linear version of
dominating-set-width has a faster run time than that of the linear boolean-width. The linear version
of dominating-set-width and boolean-width is defined exactly the same way as the normal version,
with the only difference being that the only decomposition trees allowed are caterpillar tree graphs.

Definition 25. Let G be the graph (V,E). We define the linear boolean-width of G, lbw(G), as the
minimum boolean-width value taken over every caterpillar decomposition tree (T, δ) of G.

Definition 26. Let G be the graph (V,E). We define the linear dominating-set-width of G, ldsw(G),
as the minimum dominating-set-width value taken over every caterpillar decomposition tree (T, δ) of
G.

Linear boolean-width a run time of O∗(22·lbw(T,δ)). In order to beat this we need a run time of
O∗(2ldsw(T,δ)). In order to prove this run time, we need to show that there is a small enough bound on
the number of combinations of K in Algorithm 2. Unfortunately this is not true in the general case.

Lemma 25. Let G be the graph (V,E). Let A, B and W be defined the same way as in Section 4.
Assume that B is a singleton set and J 6= ∅ is a boolean-width class in B. If J is adjacent to every
other vertex on the border of Ā and no others, then for every boolean-width class I in A we have
J ≡bw I ∪ J in W and the center of the boolean-width class where J belongs to is ∅.

Proof. J is adjacent to every other vertex on the border of Ā. Thus N(J) ∩ W̄ is every vertex on
the border of W̄ . This means that adding I to J will not change a thing with respect to the set of
vertices we are adjacent to across the cut. In other words, for every boolean-width class I in A we
have N(J)∩ W̄ = N(I ∪J)∩ W̄ . Figure 16 shows a cut with such a boolean-width class J . Just as in
previous figures of cuts only the edges across the cut are shown not the rest of the graph. The dotted
line show that this type of cut can be of any size. For the second part, let I be the boolean-width
class in A such that N(I) ∩ Ā is every vertex of the border of Ā. Then I ≡bw J in W , because J is
adjacent to every other vertex on the border of Ā but no other one. Thus we have two disjoint sets in
W who are equivalent, resulting in an empty center.

Figure 16: An example of a boolean-width class J discribed in Lemma 25.

This lemma shows that there exists cuts such that Algorithm 2 will loop over 22k dominating-
set-width classes where k is the boolean-width of the cut. Because there are 2k number of different
combinations of boolean-width classes I and J that result in the same boolean-width classK which has
an empty center, thus there are 2k differents sets P such that (K,P ) is a dominating-set-width class.
This can even happen when all other boolean-width classes do not have empty centers. Resulting in
a run time slower than O∗(2ldsw(T,δ)).
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7 Conclusion

In this master’s thesis we have created a definition for the dominating-set-width and showed that it
solves the minimum dominating set problem faster than boolean-width. It does not solve the minimum
dominating set problem asymptotically faster for general graphs, but we have proven that there are
graph classes for which it does solve the minimum dominating set problem asymptotically faster.

7.1 Discussion and Future Research

We would have liked to have proven more bounds for different graph classes. Unfortunately, analyzing
graph classes proved to be a bigger challenge than originally thought. Every class has its own unique
structure and properties, making it hard to come up with a general approach.
Although we are happy with the current definition of dominating-set-with, there is always room for
improvement. We have some thoughts about improving the width that may lead to an algorithm that
has an asymptotically faster tun time regardless of the graph class.

7.1.1 More Graph Class Analysis

Other graph classes that show potential for benefiting greatly of the dominating-set-width are planar
graphs and k-tree graphs. For planar graphs creating a decomposition tree by using a sweep line
shows that each cut has a number of single twins, which lowers the value of the dominating-set-width
by quite a bit. However, it is unclear at this point how much this is. k-trees are built by adding
vertices to the graph one by one. This order can be used to make a decomposition tree by creating a
caterpillar tree graph that adds the vertices in the reversed order given with the k-tree.

7.1.2 An Improvement For The Dominating Set Widht

During the search for the definition of the dominating-set-width we came up with another defini-
tion that showed potential and which might be an improvement on the current definition. A small
improvement, but an improvement nonetheless. The idea is to extend the centers of boolean-width
classes. Let D(X,O) = N(O) ∩W −X for a subset W of V (G). If for a dominating-set-width class
(I,O) in W we have that for all X ≡bw I there is another dominating-set-width class (I,O′) such that
D(X,O) = D(X,O′) one could argue that the dominating-set-width class (I,O) can be discarded. For
example, Figure 17 shows a simple cut which has a boolean-width value of 7. This cut does contain
single twins who have a non empty center, thus we know by Lemma 23 that the dominating-set-width
value of this cut is less than two times its boolean-width value.

Figure 17

The boolean-width class {a, c} has an empty center, because {a, c} ≡bw {b, d}. This means that
there are 7 dominating-set-width classes of the form ({a, c}, O) with O a boolean-width class in W̄ .
If we look closer to the dominating-set-width class ({a, c}, {f}) we can see that we may have created
a class that would store a partial solution that we don’t need. The elements in ({a, c}, {f}) are:

• ({a, c}, {f})

• ({b, c}, {f})

• ({b, d}, {f})

• ({a, b, c}, {f})

• ({a, b, d}, {f})

• ({a, c, d}, {f})

• ({b, c, d}, {f})

• ({a, b, c, d}, {f})
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7.1 Discussion and Future Research

Now for every pair in this class we look at the help they receive from {f}, by calculating (N(f)∩
W )−X) for every X ≡bw {a, c}. This gives the following results:

• ({a, c}, {f}) receives help dominating b from f

• ({a, c, d}, {f}) receives help dominating b from f

• ({b, d}, {f}) receives help dominating c from f

• ({a, b, d}, {f}) receives help dominating c from f

• ({b, c}, {f}) receives no help from f

• ({a, b, c}, {f}) receives no help from f

• ({b, c, d}, {f}) receives no help from f

• ({a, b, c, d}, {f}) receives no help from f

Every pair that receives receives no help from f could just as well get paired up with the boolean-
width class ∅̄ in W̄ . {a, c} and {a, c, d} both receive help dominating b from f but both could have
gotten that from e. {b, d} and {a, b, d} both receive help dominating c from f but bot could have
gotten that from g. As we can see every pair in the dominating-set-width class ({a, c}, {f}) could get
the exact same help with dominating W from a different boolean-width class in W̄ . With a different
equivalence relation we could get equivalence classes in such a way that:

• ({a, c}, {f}) and ({a, c, d}, {f}) are in the same class as ({a, c}, {e}) and ({a, c, d}, {e})

• ({b, d}, {f}) and ({a, b, d}, {f}) are in the same class as ({b, d}, {g}) and ({a, b, d}, {g})

• ({b, c}, {f}), ({a, b, c}, {f}), ({b, c, d}, {f}) and ({a, b, c, d}, {f}) are in the same class as ({b, c}, ∅̄),
({a, b, c}, ∅̄),({b, c, d}, ∅̄)

This way the dominating-set-width class ({a, c}, {f}) is no longer needed and we do not lose any
partial solution. However, we can not use Algorithm 1. The lemmas that prove the correctness of
the algorithm fail if we use this new equivalence relation to make equivalence classes. It would be
interesting to see if we can create a FPT DP algorithm that uses this new equivalence relation, as it
is clear that this creates less equivalence classes than the current definition of dominating-set-width.
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