
Universiteit Utrecht
Faculty of Science
Dept. of Information and Computing Sciences

MMH: High-level programming with the
Mu-Mu-Tilde-calculus

Author
Rik van Toor
ICA-4239776

Supervisors
Dr. Wouter Swierstra

Dr. Alejandro Serrano Mena

March 17, 2020

2

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Contributions . 1
1.2 Structure . 2

2 The 𝜇 ̃𝜇-calculus 3
2.1 Introduction to Gentzen’s sequent calculus . 3

2.1.1 Logical rules . 5
2.2 The 𝜇 ̃𝜇-calculus . 8

2.2.1 The 𝜆-calculus . 8
2.2.2 The 𝜇 ̃𝜇-calculus . 11

2.2.2.1 Typing . 11
2.2.2.2 Evaluation . 12

2.2.3 Adding constructors and types . 13
2.2.4 User-defined (co-)datatypes . 14

2.2.4.1 Evaluation . 18
2.2.4.2 Nested evaluation . 18

2.2.5 Functions in the 𝜇 ̃𝜇-calculus . 19

3 Programming with the 𝜇 ̃𝜇-calculus 25
3.1 Converting 𝜆-terms to 𝜇 ̃𝜇-terms . 25

3.1.1 Typechecking . 29
3.1.2 Evaluation . 33

3.2 Nested (co-)patterns . 34
3.2.1 Expanding (co-)patterns . 36
3.2.2 Adding join points . 39

3.2.2.1 Adding join points to C𝜇 . 41
3.3 Mu-Mu-tilde-Haskell . 42

3.3.1 Conclusion . 46

4 Adding polymorphism 47
4.1 Downen and Ariola’s polymorphism . 47

4.1.1 Type inference . 49
4.2 Hindley-Milner polymorphism . 50

4.2.1 Hindley-Milner in the 𝜇 ̃𝜇-calculus . 51
4.2.2 Conclusion . 53

ii CONTENTS

5 Closing remarks 55
5.1 Conclusions . 55
5.2 Future work . 55

5.2.1 Formalisation . 55
5.2.2 Adding modern features . 55
5.2.3 Code generation . 56
5.2.4 Adding dependent types . 56
5.2.5 Converting 𝜇 ̃𝜇-calculus programs to the 𝜆-calculus 56

Acknowledgements

I would like to thank both my supervisors, Dr. Wouter Swierstra and Dr. Alejandro Serrano Mena, for
their support and invaluable advice they have provided throughout this project. I especially want to
acknowledge Dr. Serrano Mena’s contributions to this work, given that he has done all of it voluntarily
in his spare time, purely out of interest in the subject, for which I am very grateful.

iv

Abstract

The 𝜇 ̃𝜇-calculus is a small core programming language, for which the separation between data and co-
data is essential. To make the power of this separation more accessible, we introduceMMH, a high-level
functional programming language that compiles to the 𝜇 ̃𝜇-calculus. We show how 𝜆-calculus programs
can be converted to 𝜇 ̃𝜇-calculus programs, and extend the calculus with programmer-friendly features,
such as nested (co-)pattern matching. We introduce a polymorphic typing system to the 𝜇 ̃𝜇-calculus for
which type inferencing is decidable, and allowMMH to reap the benefits.

vi

1
Introduction

Since its inception, the 𝜇 ̃𝜇-calculus, pronounced “mu-mu-tilde-calculus”, has long been an interest of
study. The ideas and concepts that over time have been introduced to the calculus, have inspired practical
implementations, such as Sequent Core, an alternative core language toGHCbyDownen et al. [Dow+16].
Unfortunately, these implementations often fail at doing either of two things: fully exposing the power
of the 𝜇 ̃𝜇-calculus, or providing a comfortable programming surface. The Sequent Core compiler plu-
gin allows Haskell programs to be compiled to the 𝜇 ̃𝜇-calculus. However, as its programs are written
in Haskell, not all features of the calculus are exposed to the user. Co-datatypes, for example, are not
supported. Similarly, experimental evaluators and compilers for the 𝜇 ̃𝜇-calculus expose all features of
the calculus, but writing programs for them is not done in a modern programming language, but in raw
𝜇 ̃𝜇-calculus (co-)terms.

1.1 Contributions

This thesis contains detailed descriptions of solutions to numerous shortcomings of the𝜇 ̃𝜇-calculus. The
following solutions are offered and explained:

• A formal way to convert 𝜆-calculus terms to 𝜇 ̃𝜇-calculus terms

• Adding support for nested (co-)patterns in the 𝜇 ̃𝜇-calculus by adapting Augustsson’s algorithm to
include co-data and commands

• Defining syntactical structures to allow 𝜇-terms, co-terms and commands to be written. These
structures, in addition to a large part of Haskell, form a new programming language based on the
𝜇 ̃𝜇-calculus, calledMMH.

• Adding type polymorphism to the 𝜇 ̃𝜇-calculus by implementing a Hindley-Milner typing system.

2 STRUCTURE

1.2 Structure

First, an extensive background section will give an introduction to the 𝜇 ̃𝜇-calculus by explaining the
natural deduction and the sequent calculus, and their relations to the 𝜆-calculus and the 𝜇 ̃𝜇-calculus.

This thesis then introduces a high-level programming language that uses the 𝜇 ̃𝜇-calculus at its core,
and supports advanced datatypes and co-datatypes to be defined and processed in a straightforward way.
To do so, first, a method to convert programs written for the 𝜆-calculus to the 𝜇 ̃𝜇-calculus is proposed,
therefore allowing Haskell programs to be transformed to 𝜇 ̃𝜇-calculus programs. Next, Augustsson’s
pattern expansion is adapted for use in the 𝜇 ̃𝜇-calculus to allow nested pattern matching. Finally, new
syntax is introduced to the language, which is used to define co-terms and commands.

After defining this programming language, this thesis proposes a polymorphic type system for the
𝜇 ̃𝜇-calculus. An existing system for polymorphism is explored, and its advantages and disadvantages are
laid out. Then, a new polymorphic type system that is heavily based on the Hindley-Milner typing system
is formulated.

This thesis ends by listing the conclusions that can be taken from the earlier sections, and suggesting
multiple related questions and topics that can be researched in the future.

2
The 𝜇 ̃𝜇-calculus

The 𝜇 ̃𝜇-calculus, as formalised by Herbelin, is a logical system within which computation can be mod-
eled [Her05]. The calculus can be seen as a minimalistic theoretical programming language, based on
the sequent calculus. In this chapter, the ins and outs of the 𝜇 ̃𝜇-calculus are explored. First, the sequent
calculus and its origins are explained. Next, the𝜇 ̃𝜇-calculus’ relation to the sequent calculus is described.
Finally, the differences between the sequent calculus and natural deduction, as well as the differences
between the 𝜇 ̃𝜇-calculus and the 𝜆-calculus are explained.

2.1 Introduction to Gentzen’s sequent calculus

In 1935, GerhardGentzen invented two separate formal systems of logical reasoning [Gen35]: natural de-
duction and the sequent calculus. Both are very similar in the sense that both are systems for second-order
propositional logic. The two systems work with logical propositions that either consist of an atomic vari-
able (𝑋, 𝑌 , 𝑍), or a proposition constructor. The supported constructors are truth (⊤), falsehood (⊥),
disjunction (∨), conjunction (∧), implication (⊃), universal quantification (∀), and existential quantifi-
cation (∃). The syntax of the propositions that will be used is defined in Figure 2.1.

Both systems support proofs of these propositions using judgements. However, the two systems dif-
fer in the way these judgements are formed. In natural deduction, a judgement simply consists of a
proposition. In the sequent calculus, however, a judgement consists of two sets of propositions. One set
represents the judgement’s hypotheses, while the other set represents its consequences. Figure 2.2 shows
the syntactical definitions of judgements in both natural deduction and the sequent calculus.

𝑋, 𝑌 , 𝑍 ∈ 𝑃𝑟𝑜𝑝𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝐴, 𝐵, 𝐶 ∈ 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∶∶= 𝑋 ∣ ⊤ ∣ ⊥ ∣ 𝐴 ∧ 𝐵 ∣ 𝐴 ∨ 𝐵 ∣ 𝐴 ⊂ 𝐴 ∣ ∀𝑋.𝐴 ∣ ∃𝑋.𝐴

Figure 2.1: Propositions in the sequent calculus and natural deduction

4 INTRODUCTION TO GENTZEN’S SEQUENT CALCULUS

𝐻, 𝐽 ∈ 𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 ∶∶= ⊢ 𝐴

Natural deduction

Γ ∈ 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ∶∶= 𝐴, 𝐵, 𝐶
Δ ∈ 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∶∶= 𝐴, 𝐵, 𝐶

𝐻, 𝐽 ∈ 𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 ∶∶= Γ ⊢ Δ

Sequent calculus

Figure 2.2: Judgements in natural deduction and the sequent calculus

The semantics of both systems are defined by inference rules, which state that zero or more specific
premises lead to a certain conclusion. Premises, as well as conclusions, usually consist of judgements,
and inference rules are denoted as

Premise 1 … Premise 𝑛
Conclusion

In these inference rules, we differentiate between several types of rules over two dimensions. If a rule in-
troduces a constructor in the conclusion that was not present in the premises, we categorise this rule as an
introduction rule. When a rule does the exact oposite - leaving a constructor that is a part of the premises
out of the conclusion - we call this rule an elimination rule. Inference rules often specify introduction
or elimination on either the right side, or the left side of the turnstile (⊢) in judgements. Inference rules
like these are called left-hand rules and right-hand rules accordingly. As Figure 2.2 shows, judgements in
natural deduction only contain propositions on the right-hand side of the turnstile.

Natural deduction therefore consists of only right-hand rules. Judgements in the sequent calculus do
contain propositions on both sides. For this reason, the sequent calculus does contain both left-hand and
right-hand rules. However, unlike natural deduction, the sequent calculus has no need for elimination
rules, but instead solely consists of introduction rules.

In the sequent calculus, judgements consist of two sets of propositions: hypotheses and consequences,
denoted as Γ ⊢ Δ. Semantically, Γ ⊢ Δ means that when every proposition in Γ is true, then at least
one proposition in Δ must be true as well. The absence of hypotheses in natural deduction causes the
key difference between the sequent calculus and natural deduction: the sequent calculus is conditional,
while natural deduction is not.

The distinction between hypotheses and consequences can be used tomodel truth and falsehood into
the sequent calculus. “𝐴 is true” can be encoded as ⊢ 𝐴. There are no hypotheses, which means that, by
default, all hypotheses are true. Since this is the case, at least one proposition in the set of consequences
must be true. Since the set of consequences is a singleton of 𝐴, 𝐴 must always be true. Similarly, “𝐴
is false” can be encoded as 𝐴 ⊢. In this case, the judgement is conditional; the set of hypotheses is a
singleton of 𝐴. Whenever 𝐴 is true, the judgement claims that at least one proposition in the empty set
of consequences must be true. This is, of course, not possible. Therefore, whenever 𝐴 is true, we end up
in a contradiction. Ergo, 𝐴 can never be true, and it must be false.

The sequent calculus consists of two core rules that form the basis of any logical proof in the cal-
culus. Both are defined in Figure 2.3. The first rule, the axiom rule, or 𝐴𝑥, allows any proposition to
be introduced on both sides of the turnstile. The second and more interesting one, the cut rule, allows
intermediate results to be cut out of a proof. For example, if we know a proposition 𝐴 is both true, and
false, we know a contradiction has taken place. We can use the cut rule to prove this:

𝐴 ⊢ ⊢ 𝐴 𝐶𝑢𝑡⊢
In addition to the core rules, the calculus specifies six structural rules. The structural rules - defined

in Figure 2.4 are split into three different kinds that have been implemented for both the left-hand side,
as well as the right-hand side.

THE 𝜇 ̃𝜇-CALCULUS 5

𝐴𝑥𝐴 ⊢ 𝐴
Γ ⊢ 𝐴, Δ Γ′, 𝐴 ⊢ Δ′

𝐶𝑢𝑡Γ′, Γ ⊢ Δ′, Δ

Figure 2.3: The core rules of the sequent calculus

Γ ⊢ Δ 𝑊𝑅Γ ⊢ 𝐴, Δ
Γ ⊢ Δ 𝑊𝐿Γ, 𝐴 ⊢ Δ

Γ ⊢ 𝐴, 𝐴, Δ 𝐶𝑅Γ ⊢ 𝐴, Δ
Γ, 𝐴, 𝐴 ⊢ Δ 𝐶𝐿Γ, 𝐴 ⊢ Δ

Γ ⊢ Δ, 𝐴, 𝐵, Δ′
𝑋𝑅Γ ⊢ Δ, 𝐵, 𝐴, Δ′

Γ′, 𝐵, 𝐴, Γ ⊢ Δ 𝑋𝐿Γ′, 𝐴, 𝐵, Γ ⊢ Δ

Figure 2.4: The structural rules of the sequent calculus

First, there are the weakening rules: 𝑊𝑅 and 𝑊𝐿. The weakening rules allow extra propositions
to be introduced into a judgement. This is allowed, since adding an extra proposition to either side of a
judgement does not compromise its validity. Assume valid judgement 𝐴, 𝐵 ⊢ 𝐶, 𝐷. This judgement
means that at least one proposition out of 𝐶 and 𝐷 must be true whenever 𝐴 and 𝐵 are both true. If we
add proposition 𝐸 to the left-hand side, we get 𝐴, 𝐵, 𝐸 ⊢ 𝐶, 𝐷. This is still valid, since we now claim
that 𝐶 or 𝐷 must be true when 𝐴, 𝐵, and 𝐸 are true. When this is the case, 𝐴 and 𝐵 are still true. If
we add 𝐸 to the right-hand side instead, we get the judgement 𝐴, 𝐵 ⊢ 𝐶, 𝐷, 𝐸. This, too, is a valid
transformation. When 𝐴 and 𝐵 are both true, at least one out of 𝐶 and 𝐷 must be true. Adding 𝐸 does
not change the validity of the judgement.

The contraction rules (𝐶𝑅, 𝐶𝐿) and exchange rules (𝑋𝑅, 𝑋𝐿) are more trivial. The contraction
rules specify that duplicated propositions in both the hypotheses and the consequences can be safely
ignored. Γ, 𝐴, 𝐴 is functionally the exact same set of hypotheses as Γ, 𝐴. The exchange rules formalise
how the order of propositions are irrelevant on both the left-hand and the right-hand sides.

2.1.1 Logical rules
The rules that dictate the behaviour of the different kinds of proposition constructors are called logical
rules. In this section the logical rules for the sequent calculus will be explained, by comparing themwith
their natural deduction counterparts. The full definition of all logical rules in this version of the sequent
calculus is found in Figure 2.5. Figure 2.6 shows the logical rules for the same proposition constructors
for natural deduction.

Let us begin with the very simplest case: truth and falsehood. In the sequent calculus, truth can
always be introduced on the right-hand side of a judgement, while falsehood can always be introduced
on the left-hand side. Introducing truth or falsehood on the opposite ends is not possible, for this would
mean ”true is false”, or ”false is true”. In natural deduction, the introduction rule for truth is effectively
the same: ⊢ ⊤⊤𝐼 . There is no left-hand introduction rule for truth in the sequent calculus. Similarly,
there is no elimination rule for truth in natural deduction. If there had been one, it would imply any
proposition could always be reduced to truth, even false propositions.

Falsehood is the dual of truth, and its rules reflect this relation. In natural deduction, falsehood can
be eliminated using the follwing rule:

⊢ ⊥
⊢ 𝐶 ⊥𝐸. This falsehood elimination rule is effectively a crash-

and-burn tactic. Any proposition can be reduced to falsehood, but doing so halts the proof. Since there
is no introduction rule for ⊥, the ⊥ can never be removed from the judgement.

Disjunction is another example where the implementations of the sequent calculus and natural de-
duction are quite similar. The sequent calculus’ ∧𝑅 rule is virtually identical to natural deduction’s ∧𝐼

6 INTRODUCTION TO GENTZEN’S SEQUENT CALCULUS

⊤𝑅Γ ⊢ ⊤, Δ No ⊤𝐿 rule No ⊥𝑅 rule ⊥𝐿Γ, ⊥ ⊢ Δ
Γ ⊢ 𝐴, Δ Γ ⊢ 𝐵, Δ ∧𝑅Γ ⊢ 𝐴 ∧ 𝐵, Δ

Γ, 𝐴 ⊢ Δ ∧𝐿1Γ, 𝐴 ∧ 𝐵 ⊢ Δ
Γ, 𝐵 ⊢ Δ ∧𝐿2Γ, 𝐴 ∧ 𝐵 ⊢ Δ

Γ ⊢ 𝐴, Δ ∨𝑅1Γ ⊢ 𝐴 ∨ 𝐵, Δ
Γ ⊢ 𝐵, Δ ∨𝑅2Γ ⊢ 𝐴 ∨ 𝐵, Δ

Γ, 𝐴 ⊢ Δ Γ, 𝐵 ⊢ Δ ∨𝐿Γ, 𝐴 ∨ 𝐵 ⊢ Δ
Γ, 𝐴 ⊢ Δ ¬𝑅Γ ⊢ ¬𝐴, Δ

Γ ⊢ 𝐴, Δ ¬𝐿Γ, ¬𝐴 ⊢ Δ

Γ, 𝐴 ⊢ 𝐵, Δ ⊃ 𝑅Γ ⊢ 𝐴 ⊃ 𝐵, Δ
Γ ⊢ 𝐴, Δ Γ′, 𝐵 ⊢ Δ′

⊃ 𝐿Γ′, Γ, 𝐴 ⊃ 𝐵 ⊢ Δ′, Δ

Γ ⊢ 𝐴, Δ 𝑋 ∉ 𝐹𝑉 (Γ ⊢ Δ) ∀𝑅Γ ⊢ ∀𝑋.𝐴, Δ
Γ, 𝐴{𝐵/𝑋} ⊢ Δ

∀𝐿Γ, ∀𝑋.𝐴 ⊢ Δ

Γ ⊢ 𝐴{𝐵/𝑋}, Δ ∃𝑅Γ ⊢ ∃𝑋.𝐴, Δ
Γ, 𝐴 ⊢ Δ 𝑋 ∉ 𝐹𝑉 (Γ ⊢ Δ)

∃𝐿Γ, ∃𝑋.𝐴 ⊢ Δ

Figure 2.5: Logical rules for truth (⊤), falsehood (⊥), conjunction (∧), disjunction (∨), negation (¬),
implication (⊃), universal quantification (∀) and existential quantification (∃) in the sequent calculus.

⊤𝐼⊢ ⊤ No ⊤𝐸 rule No ⊥𝐼 rule ⊢ ⊥ ⊥𝐸⊢ 𝐶
⊢ 𝐴 ⊢ 𝐵 ∧𝐼⊢ 𝐴 ∧ 𝐵

⊢ 𝐴 ∧ 𝐵 ∧𝐸1⊢ 𝐴
⊢ 𝐴 ∧ 𝐵 ∧𝐸2⊢ 𝐵

⊢ 𝐴 ∨𝐼1⊢ 𝐴 ∨ 𝐵
⊢ 𝐵 ∨𝐼2⊢ 𝐴 ∨ 𝐵 ⊢ 𝐴 ∨ 𝐵

𝑥⊢ 𝐴
⋮

⊢ 𝐶

𝑦⊢ 𝐵
⋮

⊢ 𝐶 ∨𝐸𝑥,𝑦⊢ 𝐶
𝑥⊢ 𝐴

⋮
⊢ 𝐵 ⊃ 𝐼𝑥⊢ 𝐴 ⊃ 𝐵

⊢ 𝐴 ⊃ 𝐵 ⊢ 𝐴 ⊃ 𝐸⊢ 𝐵

⋮ (𝑋 ∉ 𝐹𝑉 (∗))
⊢ 𝐴 ∀𝐼𝑋⊢ ∀𝑋.𝐴

⊢ ∀𝑋.𝐴 ∀𝐸⊢ 𝐴{𝐵/𝑋}

⊢ 𝐴{𝐵/𝑋}
∃𝐼⊢ ∃𝑋.𝐴 ⊢ ∃𝑋.𝐴

𝑥⊢ 𝐴
⋮ (𝑋 ∉ 𝐹𝑉 (∗))

⊢ 𝐶 (𝑋 ∉ 𝐹𝑉 (𝐶)) ∃𝐸𝑋,𝑥𝐶

Figure 2.6: Logical rules for truth (⊤), falsehood (⊥), conjunction (∧), disjunction (∨), implication (⊃),
universal quantification (∀) and existential quantification (∃) in natural deduction.

THE 𝜇 ̃𝜇-CALCULUS 7

𝑥⊢ 𝐴
⋮

⊢ 𝐵 ⊃ 𝐼𝑥⊢ 𝐴 ⊃ 𝐵
Natural deduction

Γ, 𝐴 ⊢ 𝐵, Δ ⊃ 𝑅Γ ⊢ 𝐴 ⊃ 𝐵, Δ
Sequent calculus

Figure 2.7: Implication in natural deduction and the sequent calculus

𝑥⊢ (𝐴 ∧ 𝐵) ∧ 𝐶 ∧𝐸1⊢ 𝐴 ∧ 𝐵 ∧𝐸1⊢ 𝐴

𝑥⊢ (𝐴 ∧ 𝐵) ∧ 𝐶 ∧𝐸2⊢ 𝐶 ∧𝐼⊢ 𝐴 ∧ 𝐶 ⊃ 𝐼𝑥⊢ (𝐴 ∧ 𝐵) ∧ 𝐶 ⊃ 𝐴 ∧ 𝐶
Natural deduction

𝐴𝑥𝐴 ⊢ 𝐴 ∧𝐿1𝐴 ∧ 𝐵 ⊢ 𝐴 ∧𝐿1(𝐴 ∧ 𝐵) ∧ 𝐶 ⊢ 𝐴
𝐴𝑥𝐶 ⊢ 𝐶 ∧𝐿2(𝐴 ∧ 𝐵) ∧ 𝐶 ⊢ 𝐶 ∧𝑅(𝐴 ∧ 𝐵) ∧ 𝐶 ⊢ 𝐴 ∧ 𝐶 ⊃ 𝑅⊢ (𝐴 ∧ 𝐵) ∧ 𝐶 ⊃ 𝐴 ∧ 𝐶

Sequent calculus

Figure 2.8: An example proof of the proposition (𝐴 ∧ 𝐵) ∧ 𝐶 ⊃ 𝐴 ∧ 𝐶 in the two logical systems.

rule: 𝐴 ∧ 𝐵 can be introduced when we know that both 𝐴 and 𝐵 are true. The elimination rules are
straight forward too. If we know that 𝐴 ∧ 𝐵 holds, we can safely eliminate either proposition to end
up with 𝐴 or 𝐵. The sequent calculus does not have elimination rules, of course, but instead defines
behaviour for the left-hand side. Take the special case of ∧𝐿1 where the starting judgement is 𝐴 ⊢ 𝐶 .
This judgement claims that𝐶 must be true if𝐴 is true. If we were to change the hypothesis𝐴 to𝐴 ∧ 𝐵,

𝐶 would still be true, as𝐴∧𝐵 dictates that𝐴must be true. We thus end up with
𝐴 ⊢ 𝐶

𝐴 ∧ 𝐵 ⊢ 𝐶 . This step
can be generalised to rule ∧𝐿1. Since ∧ is symmetric, we can use the same steps to gain rule ∧𝐿2.

The rules for implication display the true power of the sequent calculus. Natural deduction’s ⊃ 𝐼𝑥
rule handles implication by creating a new verification rule 𝑥 and allowing this rule to be used some-
where on above the right-hand side of the implication. Since the sequent calculus is conditional, it is
not necessary to create new rules. The proposition on the left-hand side of the implication simlpy gets
moved to the hypotheses, while the right-hand side remains in the consequences. This allows for a much
simpler and more straight forward rule, and by proxy, proofs. Figure 2.7 contains the right introduction
rules for implication in both systems.

Figure 2.8 shows example proofs for the proposition (𝐴∧𝐵)∧𝐶 ⊃ 𝐴∧𝐶 in both natural deduction
and the sequent calculus. The twoproof trees display the implications of the different approaches taken by
the two systems. In both systems, the implication is first reduced to the right-hand side𝐴∧𝐶 , after which
the conjunction is split into𝐴 and𝐶 . In natural deduction, the two propositions need to be expanded to
(𝐴 ∧ 𝐵) ∧ 𝐶 using elimination rules, before the generated verification rule 𝑥 can be utilised to finish
the proof. In the sequent calculus, the system ’remembers’ (𝐴 ∧ 𝐵) ∧ 𝐶 as a hypothesis, and this can be
reduced to either 𝐴 or 𝐶 .

Another advantage the sequent calculus has over natural deduction is its neutrality. The sequent

8 THE 𝜇 ̃𝜇-CALCULUS

calculus can be used to prove both true and false judgements, whereas natural deduction favours truth
over falsehood. This neutrality is used to implement negation (¬) into the sequent calculus. In natural
deduction, this is not possible. Instead, a negation of𝐴 can be implied by proving the judgement𝐴 ⊃ ⊥
as follows:

𝑥⊢ 𝐴
⋮

⊢ ⊥ ⊃ 𝐼𝑥⊢ 𝐴 ⊃ ⊥
Using this encoding, it is possible to prove ¬⊥, or ”false is false”.

𝑥⊢ ⊥ ⊃ 𝐼𝑥⊢ ⊥ ⊃ ⊥
A final remark on the logical rules for both the sequent calculus and natural deduction is about the

quantification rules. The rules for both existential and universal quantification in both systems contain
side conditions. Let us look at the right rule and the introduction rule for universal quantification.

Γ ⊢ 𝐴, Δ (𝑋 ∉ 𝐹𝑉 (Γ ⊢ Δ)) ⊃ 𝑅Γ ⊢ ∀𝑋.𝐴, Δ

⋮ (𝑋 ∉ 𝐹𝑉 (∗))
⊢ 𝐴 ∀𝐼𝑋⊢ ∀𝑋.𝐴

Both rules contain a side condition: (𝑋 ∉ 𝐹𝑉 (Γ ⊢ Δ)) and (𝑋 ∉ 𝐹𝑉 (∗)) respectively. Here, 𝐹𝑉
refers to a function that returns all the free variables in its argument. A free variable is a variable that is
not bound by any quantifiers. For example, the result of 𝐹𝑉 (∀𝑋.(𝑋 ∨ 𝑌 ∨ 𝑍)) would be the set of 𝑍
and 𝑌 .

Another reoccurring concept in the logical rules is substitution. The substitution of𝐵 for𝑋 in propo-
sition 𝐴 is denoted as 𝐴{𝐵/𝑋}. This means that every free occurrence of 𝑋 within 𝐴 is replaced by 𝐵.
Substitution is used in - among others - the ∃𝑅 rule.

Γ ⊢ 𝐴{𝐵/𝑋}, Δ ∃𝑅Γ ⊢ ∃𝑋.𝐴, Δ
This rule permits the introduction of existential quantifieres over any free variable. For example, this rule
can be used to transform the judgement Γ ⊢ 𝐴 ∧ 𝐵, Δ to Γ ⊢ ∃𝑋.𝑋 ∧ 𝐵, Δ, as𝐴 ∧ 𝐵 is equivalent to
𝑋 ∧ 𝐵{𝐴/𝑋}.

2.2 The 𝜇 ̃𝜇-calculus
In this section the 𝜇 ̃𝜇-calculus is introduced and fully specified. First, we recall some notions about the
𝜆-calculus. Then, the simplest version of the 𝜇 ̃𝜇-calculus is defined, and compared to the 𝜆-calculus.
Next, the 𝜇 ̃𝜇-calculus is extended with advanced types and type constructors, and the effects of this on
typing and evaluation rules are explained. Finally, function types are introduced using these concepts,
and examples of programming with the 𝜇 ̃𝜇-calculus are given.

2.2.1 The 𝜆-calculus
Alonzo Church invented the 𝜆-calculus [Chu36], a minimalistic core programming language based on
natural deduction, in 1936. The𝜆-calculus in itself consists of just three components: variables, functions
and term application.

THE 𝜇 ̃𝜇-CALCULUS 9

𝑥, 𝑦, 𝑧 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝑀, 𝑁 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑀 ∣ 𝑀 𝑁

The dynamic behaviour of these terms is defined by three simple rules:

𝛼-equivalence: 𝜆𝑥.𝑀 =𝛼 𝜆𝑦.𝑀
𝛽-reduction: (𝜆𝑥.𝑀) 𝑁 ≻𝛽 𝑀{𝑁/𝑥}

𝜂-conversion: (𝜆𝑥.𝑀 𝑥) ≻ 𝜂𝑀 (𝑥 ∉ 𝐹𝑉 (𝑀))

Once we start adding types according to Church’s simply typed 𝜆-calculus [Chu40], the similarities
between the calculus and natural deduction become striking. First, we add a function type (→) and im-
plement typing rules for functions and function applications. Functions can be compared to implication
in natural deduction. Where 𝐴 ⊃ 𝐵 means “if 𝐴 is true, 𝐵 is true,” function 𝜆𝑥.𝑀 with type 𝐴 → 𝐵
can be seen as “if 𝑥 has type 𝐴, 𝑀 has type 𝐵.” This way, a 𝜆-function reflects the introduction rule for
implications, as defined in Figure 2.6. Implication’s elimination rule is useful too. Where 𝐴 ⊃ 𝐵 and
𝐴 are true, 𝐵 must be true as well. Similarly, where 𝑀 has type 𝐴 → 𝐵, and 𝑁 has type 𝐴, 𝑀 𝑁
must have type 𝐵. Using the connections between functions and implication, we are able to deduce the
introduction and elimination rules for functions: the → 𝐼𝑥 and the → 𝐸 rules in Figure 2.9.

Next, we add product types to the calculus. To do so, we extend our definition of terms by pairs and
projections, and add a product type:

𝑀, 𝑁 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ (𝑀, 𝑁) ∣ 𝜋1(𝑀) ∣ 𝜋2(𝑀)
𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐴 → 𝐵 ∣ 𝐴 × 𝐵

Dynamically, 𝜋1(𝑀, 𝑁) evaluates to 𝑀 , while 𝜋2(𝑀, 𝑁) evaluates to 𝑁 . In other words, 𝜋1 and 𝜋2
eliminate terms of product types. Like functions, product types bear a strong resemblance to a proposi-
tional constructor in natural deduction: conjunction. Where𝑀 has type 𝐴, and 𝑁 has type𝐵, (𝑀, 𝑁)
must have type𝐴 × 𝐵. This reflects the behaviour of conjunction: if𝐴 is true and𝐵 is true,𝐴 ∧ 𝐵 must
be true. Once again, we can infer the typing rules from natural deduction. The×𝐼 ,×𝐸1 and×𝐸2 rules
are added to the calculus in Figure 2.9.

Finally, we add sum types (+), and extend the definition of terms once more:

𝑀, 𝑁 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ 𝜄1(𝑀) ∣ 𝜄2(𝑀)
∣ (𝑐𝑎𝑠𝑒 𝑀 𝑜𝑓 𝜄1(𝑥) ⇒ 𝑁1 ∣ 𝜄2(𝑦) ⇒ 𝑁2)

𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐴 → 𝐵 ∣ 𝐴 × 𝐵 ∣ 𝐴 + 𝐵

With these new terms comemore evaluation rules. 𝑐𝑎𝑠𝑒 𝜄1(𝑀) 𝑜𝑓 𝜄1(𝑥) ⇒ 𝑁1 ∣ 𝜄2(𝑦) ⇒ 𝑁2 evaluates
to𝑁1{𝑀/𝑥}, while 𝑐𝑎𝑠𝑒 𝜄2(𝑀) 𝑜𝑓 𝜄1(𝑥) ⇒ 𝑁1 ∣ 𝜄2(𝑦) ⇒ 𝑁2 evaluates to𝑁2{𝑀/𝑥}. In a way, sum
types are the dual of product types. While products consist of one constructor that takes two terms, and
two destructors, sums consist of two constructors that take one term, and one destructor. It may come as
no surprise that product types heavily resemble disjunction. As seen before, we derive the product typing
rules from natural deduction’s disjunction rules, and define the +𝐼1, +𝐼2 and +𝐸𝑥,𝑦 in Figure 2.9.

The complete definition of this version of the 𝜆-calculus is found in Figure 2.9.

10 THE 𝜇 ̃𝜇-CALCULUS

𝑋, 𝑌 , 𝑍 ∈ 𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐴 → 𝐵 ∣ 𝐴 × 𝐵 ∣ 𝐴 + 𝐵

𝑥, 𝑦, 𝑧 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝑀, 𝑁 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑀 ∣ 𝑀 𝑁 ∣ (𝑀, 𝑁)

∣ 𝜋1(𝑀) ∣ 𝜋2(𝑀) ∣ 𝜄1(𝑀) ∣ 𝜄2(𝑀)
∣ (𝑐𝑎𝑠𝑒 𝑀 𝑜𝑓 𝜄1(𝑥) ⇒ 𝑁1 ∣ 𝜄2(𝑦) ⇒ 𝑁2)

𝐻, 𝐽 ∈ 𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 ∶∶= 𝑀 ∶ 𝐴

𝑀 ∶ 𝐴 𝑁 ∶ 𝐵 ×𝐼(𝑀, 𝑁) ∶ 𝐴 × 𝐵
𝑀 ∶ 𝐴 × 𝐵 ×𝐸1𝜋1(𝑀) ∶ 𝐴

𝑀 ∶ 𝐴 × 𝐵 ×𝐸2𝜋2(𝑀) ∶ 𝐵

𝑀 ∶ 𝐴 +𝐼1𝜄1(𝑀) ∶ 𝐴 + 𝐵
𝑀 ∶ 𝐵 +𝐼2𝜄2(𝑀) ∶ 𝐴 + 𝐵

𝑀 ∶ 𝐴 + 𝐵

𝑥𝑥 ∶ 𝐴
⋮

𝑁1 ∶ 𝐶

𝑦𝑦 ∶ 𝐵
⋮

𝑁2 ∶ 𝐶 +𝐸𝑥,𝑦case 𝑀 of 𝜄1(𝑥) ⇒ 𝑁1 ∣ 𝜄2(𝑦) ⇒ 𝑁2 ∶ 𝐶
𝑥𝑥 ∶ 𝐴

⋮
𝑀 ∶ 𝐵 → 𝐼𝑥𝜆𝑥.𝑀 ∶ 𝐴 → 𝐵

𝑀 ∶ 𝐴 → 𝐵 𝑁 ∶ 𝐴 → 𝐸𝑀 𝑁 ∶ 𝐵

Figure 2.9: The simply typed 𝜆-calculus with function (→), sum (+) and product (×) types.

THE 𝜇 ̃𝜇-CALCULUS 11

2.2.2 The 𝜇 ̃𝜇-calculus
We have seen how the 𝜆-calculus relates to natural deduction. In this section we will explore the results
of creating a programming language based on the sequent calculus: the 𝜇 ̃𝜇-calculus. The 𝜇 ̃𝜇-calculus
originally stems from Herbelin [Her05]. Since the sequent calculus is ambidextrous, meaning that it has
both right and left-hand rules, so is the 𝜇 ̃𝜇-calculus. In the context of programming, this translates to the
calculus differentiating between terms and co-terms: Terms on the left side of the turnstile, co-terms on
the right side.

Terms are comparable to the terms in the 𝜆-calculus. They consist of variables and various construc-
tors, which together represent pieces of data. Co-terms are the dual to terms. They are not formed by con-
structors, but rather destructors, observers, or consumers. Co-terms represent co-data, or co-inductively
defined data. Co-data is often used to represent infinite structures, such as infinite streams. Terms and
co-terms do not have separate type systems; a term can have the same type as a co-term.

In the 𝜇 ̃𝜇-calculus, computation happens in commands: structures where a term and a co-term of
the same type come together.

𝑐 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∶∶= ⟨𝑇 𝑒𝑟𝑚 ∥ 𝐶𝑜𝑇 𝑒𝑟𝑚⟩

This may seem complicated, especially when compared to the 𝜆-calculus, where computation simply
happens in function applications. However, recall that terms are producers of a type where co-terms are
consumers. Commands allow producers and consumers to interact with each other, which is the essence
of computation. After all, producing datawhich cannot be consumed is not very useful, nor is a consumer
of data that cannot be produced.

Terms and co-terms can interact using 𝜇 and ̃𝜇-constructions.

𝑥, 𝑦, 𝑧 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= … 𝛼, 𝛽, 𝛾 ∈ 𝐶𝑜𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝜇𝛼.𝑐 𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= 𝛼 ∣ ̃𝜇𝑥.𝑐

𝑐 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∶∶= ⟨𝑣 ∥ 𝑒⟩

At first glance, 𝜇 and ̃𝜇 look to be the 𝜇 ̃𝜇-calculus equivalent of the 𝜆-calculus’ 𝜆. This is, however, not
the case. 𝜆-constructions are actual functions. They take an argument and produce a term that may use
this argument. 𝜇 and ̃𝜇-constructions take an argument, a co-term and a term respectively, and execute a
command that may use this argument. They do not return any value by themselves, and are therefore not
functions. They are perhaps more accurately compared to void methods, as found in many imperative
programming languages, such as C.

2.2.2.1 Typing

Judgements in the sequent calculus consist of a set of hypotheses and a set of consequences. Judgements
in the 𝜇 ̃𝜇-calculus are similar. Hypotheses are replaced by an input environment, which stores variables
and their types. Consequences are replace by an output environment, which does exactly the same for co-
variables. The judgements come in different shapes: passive and active. Passive judgements, which are
denoted by 𝑐 ∶ (Γ ⊢ Δ), simply bind an input environment and an output environment to a command.
Then there are active judgements: (Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ) and (Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ). Active judgements highlight
one proposition, which is called the active proposition. The active proposition is the proposition that we
currently want to prove. It can therefore not be removed by using weakening rules in a proof tree. The
full definition of the core 𝜇 ̃𝜇-calculus is given in Figure 2.10.

Since judgements have been extended from the sequent calculus, the 𝐴𝑥 and 𝐶𝑢𝑡 rule are not suffi-
cient anymore for the𝜇 ̃𝜇-calculus. Instead, we now split the𝐴𝑥 rule into two verification rules: 𝑉 𝑅 and
𝑉 𝐿. These rules complete a proof of a right active judgement and a left active judgement respectively.

𝑉 𝑅𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴

12 THE 𝜇 ̃𝜇-CALCULUS

𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 𝑋, 𝑌 , 𝑍 ∈ 𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝑥, 𝑦, 𝑧 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= … 𝛼, 𝛽, 𝛾 ∈ 𝐶𝑜𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …

𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝜇𝛼.𝑐 𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= 𝛼 ∣ ̃𝜇𝑥.𝑐
𝑐 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∶∶= ⟨𝑣 ∥ 𝑒⟩
Γ ∈ 𝐼𝑛𝑝𝑢𝑡𝐸𝑛𝑣 ∶∶= 𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶ 𝐴𝑛

Δ ∈ 𝑂𝑢𝑡𝑝𝑢𝑡𝐸𝑛𝑣 ∶∶= 𝛼1 ∶ 𝐴1, … , 𝛼𝑛 ∶ 𝐴𝑛
𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 ∶∶= 𝑐 ∶ (Γ ⊢ Δ) ∣ (Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ) ∣ (Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ)

Core rules:

𝑉 𝑅𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴

𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝐴, Δ)
𝐴𝑅Γ ⊢ 𝜇𝛼.𝑐 ∶ 𝐴 ∣ Δ

𝑐 ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ Δ)
𝐴𝐿Γ ∣ ̃𝜇𝑥.𝑐 ∶ 𝐴 ⊢ Δ

Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ Γ′ ∣ 𝑒 ∶ 𝐴 ⊢ Δ′
𝐶𝑢𝑡⟨𝑣 ∥ 𝑒⟩ ∶ (Γ′, Γ ⊢ Δ′, Δ)

Figure 2.10: The core 𝜇 ̃𝜇-calculus

Next, we alter the cut rule to adopt the new judgement definitions. Whereas before it cut a proposition
out of the hypotheses and the consequences, it now cuts out an active left judgement and an active right
judgement, and combines them into a command. In practice, this rule forces the term and the co-term
in a command to be of the same type.

Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ Γ′ ∣ 𝑒 ∶ 𝐴 ⊢ Δ′
𝐶𝑢𝑡⟨𝑣 ∥ 𝑒⟩ ∶ (Γ′, Γ ⊢ Δ′, Δ)

Finally, we add activation rules, which allow a passive judgement to be turned into an active one by
creating either a 𝜇 or a ̃𝜇-construction.

𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝐴, Δ)
𝐴𝑅Γ ⊢ 𝜇𝛼.𝑐 ∶ 𝐴 ∣ Δ

𝑐 ∶ (Γ, 𝑥 ∶ 𝐴 ⊢ Δ)
𝐴𝐿Γ ∣ ̃𝜇𝑥.𝑐 ∶ 𝐴 ⊢ Δ

2.2.2.2 Evaluation

Like the 𝜆-calculus, the core 𝜇 ̃𝜇-calculus evaluates according to serveral simple rules. First, the 𝜂𝜇 and
𝜂�̃� reduction rules. These allow 𝜇 and ̃𝜇-constructions to be removed when their argument is directly
applied in its command. As the name suggests, the 𝜂𝜇 and 𝜂�̃� rules are similar to the 𝜆-calculus’ 𝜂 rule.

𝜇𝛼.⟨𝑣 ∥ 𝛼⟩ ≻𝜂𝜇
𝑣 ̃𝜇𝑥.⟨𝑥 ∥ 𝑒⟩ ≻𝜂�̃�

𝑒

Next, we have the 𝜇 and ̃𝜇-rewriting rules. These specify how commands can be evaluated, similar to
𝛽-reduction in the 𝜆-calculus.

⟨𝜇𝛼.𝑐 ∥ 𝑒⟩ ≻𝜇 𝑐{𝑒/𝛼} ⟨𝑣 ∥ ̃𝜇𝑥.𝑐⟩ ≻�̃� 𝑐{𝑣/𝑥}

The attentive reader may have noticed that the 𝜇 and ̃𝜇-rewriting rules get into conflict in specific
situations. What happenswith a command that has a𝜇-construction on the left side, and a ̃𝜇-construction

THE 𝜇 ̃𝜇-CALCULUS 13

on the right side? With the current rules, we could rewrite ⟨𝜇𝛼.𝑐1 ∥ ̃𝜇𝑥.𝑐2⟩ to both 𝑐1{ ̃𝜇𝑥.𝑐2/𝛼} and
𝑐2{𝜇𝛼.𝑐1/𝑥}. Which result is the correct one?

Actually, both results are correct, it is simply a matter of preference. As Curien and Herbelin for-
malised, the two evaluation options represent different evaluation strategies: call-by-name and call-by-
value [CH00]. Call-by-value prioritises 𝜇-rewriting over ̃𝜇-rewriting, while call-by-name prioritises ̃𝜇-
rewriting over 𝜇-rewriting.

2.2.3 Adding constructors and types
So far, we have seen the 𝜇 ̃𝜇-calculus where all types are atomic type variables. The next step is to add
basic types connectors and associated constructors, as we have done for the 𝜆-calculus in Figure 2.9.

First, we will add product types (×). Once again, we define tuples as a constructor for product types.
However, where the 𝜆-calculus has 𝜋1 and 𝜋2 as terms, they are co-terms in the 𝜇 ̃𝜇-calculus.

𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ (𝑣, 𝑣) 𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ 𝜋1[𝑒] ∣ 𝜋2[𝑒]
Just like for the 𝜆-calculus, we can use the logical foundations of the 𝜇 ̃𝜇-calculus in the definitions

of the typing rules for products. We have previously established the relationship between product types
and conjunction. We use the logical rules for conjunction to derive typing rules.

Γ ⊢ 𝐴, Δ Γ ⊢ 𝐵, Δ ∧𝑅Γ ⊢ 𝐴 ∧ 𝐵, Δ
Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ Γ ⊢ 𝑣′ ∶ 𝐵 ∣ Δ ×𝑅Γ ⊢ (𝑣, 𝑣′) ∶ 𝐴 × 𝐵 ∣ Δ

Γ, 𝐴 ⊢ Δ ∧𝐿1Γ, 𝐴 ∧ 𝐵 ⊢ Δ
Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ ×𝐿1Γ ∣ 𝜋1[𝑒] ∶ 𝐴 × 𝐵 ⊢ Δ

Γ, 𝐵 ⊢ Δ ∧𝐿2Γ, 𝐴 ∧ 𝐵 ⊢ Δ
Γ ∣ 𝑒 ∶ 𝐵 ⊢ Δ ×𝐿2Γ ∣ 𝜋2[𝑒] ∶ 𝐴 × 𝐵 ⊢ Δ

Note that 𝜋1 and 𝜋2 take co-terms as arguments, instead of terms. Unlike in the 𝜆-calculus, it is not
possible to insert a term (𝑣, 𝑣′) into 𝜋1 and get 𝑣 as a result. Instead, a consumer of 𝑣 is passed to 𝜋1 This
allows for the following reduction rules:

⟨(𝑣, 𝑣′) ∥ 𝜋1[𝑒]⟩ ≻𝜋1
⟨𝑣 ∥ 𝑒⟩

⟨(𝑣, 𝑣′) ∥ 𝜋2[𝑒]⟩ ≻𝜋2
⟨𝑣′ ∥ 𝑒⟩

It may come as no surprise that we add sum types to the calculus next. Sum types consist of two
constructors, 𝜄1 and 𝜄2, and one consumer. In the 𝜆-calculus, this consumer was modeled as a 𝑐𝑎𝑠𝑒 𝑜𝑓
expression. In the 𝜇 ̃𝜇-calculus, the syntax [𝑒, 𝑒′] is used, meaning a pair of two co-terms. For intuition’s
sake, this can be read as

𝑐𝑎𝑠𝑒 𝑣 𝑜𝑓 𝜄1(𝑥) ⇒ ⟨𝑥 ∥ 𝑒⟩ ∥ 𝜄2(𝑦) ⇒ ⟨𝑦 ∥ 𝑒′⟩

In words, whenever [𝑒, 𝑒′] encounters a term 𝑣 within a command, this resolves to a computation of the
argument to 𝜄1 and 𝑒, or the argument to 𝜄2 and 𝑒′, according to the shape of 𝑣. Formally:

⟨𝜄1(𝑥) ∥ [𝑒, 𝑒′]⟩ ≻𝜄1
⟨𝑥 ∥ 𝑒⟩

⟨𝜄2(𝑦) ∥ [𝑒, 𝑒′]⟩ ≻𝜄2
⟨𝑦 ∥ 𝑒′⟩

The typechecking rules can be derived from the logical rules for disjunction in the sequent calculus
once more.

14 THE 𝜇 ̃𝜇-CALCULUS

Γ ⊢ 𝐴, Δ ∨𝑅1Γ ⊢ 𝐴 ∨ 𝐵, Δ
Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ +𝑅1Γ ⊢ 𝜄1(𝑣) ∶ 𝐴 + 𝐵 ∣ Δ

Γ ⊢ 𝐵, Δ ∨𝑅2Γ ⊢ 𝐴 ∨ 𝐵, Δ
Γ ⊢ 𝑣 ∶ 𝐵 ∣ Δ +𝑅2Γ ⊢ 𝜄2(𝑣) ∶ 𝐴 + 𝐵 ∣ Δ

Γ, 𝐴 ⊢ Δ Γ, 𝐵 ⊢ Δ ∨𝐿Γ, 𝐴 ∨ 𝐵 ⊢ Δ
Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ Γ ∣ 𝑒′ ∶ 𝐵 ⊢ Δ +𝐿Γ ∣ [𝑒, 𝑒′] ∶ 𝐴 + 𝐵 ⊢ Δ

2.2.4 User-defined (co-)datatypes
So far we have extended the calculus with sum and product types. Using these together allow complex
data structures to be modeled. However, this is not intuitive, since the structures cannot be named. As
an alternative, Downen added user-defined (co-)datatypes to the 𝜇 ̃𝜇-calculus in his PhD thesis [Dow17].

The calculus is extended with declarations of both datatypes and co-datatypes. Datatypes consist of
any number of constructors. Co-datatypes are defined by any number of observers instead. Both con-
structors and observers can take any number of arguments, which can be both terms and co-terms. The
(co-)datatype declarations specify of which types the arguments to constructors and observers should be.
The constructors and observers can be used as terms and co-terms respectively.

𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐹(#»𝐴)
𝐹 , 𝐺 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∶∶= …
𝐾 ∈ 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 ∶∶= …

𝑂 ∈ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟 ∶∶= …
𝑑𝑒𝑐𝑙 ∈ 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∶∶= 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒

»

𝐾 ∶ #»𝐴 ⊢ 𝐹(#»𝑋) ∣ #»𝐵
∣ 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒

»

𝑂 ∶ #»𝐴 ∣ 𝐹(#»𝑋) ⊢ #»𝐵

In this notation of declarations, each data declaration can define any number of constructors. Each
constructor has its own type system

#»𝐴 ⊢ 𝐹(#»𝑋) ∣ #»𝐵. Here, the vector
#»𝐴 contains all the types of the

term arguments that the constructor takes. Similarly,
#»𝐵 represents the collection of the types of the co-

term arguments that the constructor takes. 𝐹(𝑋) is the type that the constructor will have with all of its
arguments. The type constructor declaration 𝐾 ∶ #»𝐴 ⊢ 𝐹(#»𝑋) ∣ #»𝐵 essentially means that constructor 𝐾
has type 𝐹(#»𝑋), given that it is supplied with term arguments with the types

#»𝐴, and co-term arguments
with the types

#»𝐵. This syntax works the exact same way for co-datatype declarations and observers, of
course. As an example, product and sum types can be implemented this way:

𝑑𝑎𝑡𝑎 𝐴 × 𝐵 𝑤ℎ𝑒𝑟𝑒 (_, _) ∶ 𝐴, 𝐵 ⊢ 𝐴 × 𝐵 ∣
𝑑𝑎𝑡𝑎 𝐴 + 𝐵 𝑤ℎ𝑒𝑟𝑒 𝜄1(_) ∶ 𝐴 ⊢ 𝐴 + 𝐵 ∣

∣ 𝜄2(_) ∶ 𝐵 ⊢ 𝐴 + 𝐵 ∣

Underscores (_) are used as placeholders for (co-)terms in the constructors of both declarations, meaning
that for the constructor (𝑥, 𝑦) with type 𝐴 × 𝐵, 𝑥 must have type 𝐴, and 𝑦 must have type 𝐵.

Using these user-defined declarations of sum and product types has one drawback in comparison to
the hard-coded variant that we have seen in Section 2.2.3: the declarations do not offer ways to consume
the created data. To be able to do so anyway, the 𝜇 and ̃𝜇 constructions are altered. Whereas before, ̃𝜇
took a variable as its argument, it will now take a pattern. Likewise, 𝜇 will no longer take a co-variable,
but a co-pattern instead. Patterns consist of either a single variable, or a constructor with any number of
sub(co-)variables. Of course, co-patterns are the exact same thing, but using co-variables and observers

THE 𝜇 ̃𝜇-CALCULUS 15

instead of variables and constructors. In addition to the introduction of patterns, 𝜇 and ̃𝜇 can now take
multiple pairs of patterns and commands.

𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝑥 ∣ 𝐾(#»𝛼, #»𝑥)
̃𝑝 ∈ 𝐶𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝛼 ∣ 𝑂[#»𝑥 , #»𝛼]

𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝜇(# »̃𝑝.𝑐) ∣ 𝐾(#»𝑒 , #»𝑣)
𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= 𝛼 ∣ ̃𝜇[# »𝑝.𝑐] ∣ 𝑂[#»𝑣 , #»𝑒]

Formal typing rules for these generalised (co-)data declarations are needed. Because of the nested
structure of the constructors and observers, these rules are very complicated. for simplicity’s sake, let
us first look at sum types, and generalise from there. As we have just seen, sum types consist of two
constructors: 𝜄1 and 𝜄2. Both take one term argument. When we pass a term 𝑣 of type 𝐴 to 𝜄1, the new
term has type 𝐴 + 𝐵. If we instead pass 𝑣 to 𝜄2, the result’s type is 𝐵 + 𝐴. So, given that we have

𝑑𝑎𝑡𝑎 𝐴 + 𝐵 𝑤ℎ𝑒𝑟𝑒 𝜄1(_) ∶ 𝐴 ⊢ 𝐴 + 𝐵 ∣
∣ 𝜄2(_) ∶ 𝐵 ⊢ 𝐴 + 𝐵 ∣

we know both constructors turn an argument into a sum type as follows:

Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ 𝜄1Γ ⊢ 𝜄1(𝑣) ∶ 𝐴 + 𝐵 ∣ Δ
Γ ⊢ 𝑣 ∶ 𝐵 ∣ Δ 𝜄2Γ ⊢ 𝜄2(𝑣) ∶ 𝐴 + 𝐵 ∣ Δ

For a generic data declaration 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ⊢ 𝐹(#»𝑋) ∣ # »𝐵𝑖𝑗

𝑗𝑖
, this strategy gives us

the following typing rule:

»

Γ ∣ 𝑒 ∶ 𝐵𝑖𝑗
»{𝐶/𝑋} ⊢ Δ

𝑗 # »

Γ ⊢ 𝑣 ∶ 𝐴𝑖𝑗
»{𝐶/𝑋} ∣ Δ

𝑗

𝐹𝑅𝐾𝑖Γ ⊢ 𝐾𝑖(#»𝑒 , #»𝑣) ∶ 𝐹 (#»𝐶) ∣ Δ
In words, this rule tells us that for each constructor in the declaration, we are able to construct type 𝐹 ,
substituting𝑋 for whatever types we decide to use, as long as they match the declaration. In the context
of sum types, 𝐹 would be +, 𝑋 would be 𝐴 and 𝐵, 𝐾1 would be 𝜄1, 𝐾2 would be 𝜄2, 𝐴1 would be a
single 𝐴, 𝐴2 a single 𝐵, and both 𝐵1 and 𝐵2 would be empty. As an example, assuming a variable 𝑥
with type 𝐶 , this rule can be used to prove that 𝜄1(𝑥) has type 𝐶 + 𝐵.

𝑉 𝑅Γ ⊢ 𝑥 ∶ 𝐶 ∣ Δ 𝐹𝑅𝜄1Γ ⊢ 𝜄1(𝑥) ∶ 𝐶 + 𝐵 ∣ Δ
The same logic can be used to define typing rules for co-datatypes and observers. For a given decla-

ration 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝑂𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ∣ 𝐺(#»𝑋) ⊢ # »𝐵𝑖𝑗

𝑗𝑖
, we have the rule

»

Γ ⊢ 𝑣 ∶ 𝐴𝑖𝑗
»{𝐶/𝑋} ∣ Δ

𝑗 # »

Γ ∣ 𝑒 ∶ 𝐵𝑖𝑗
»{𝐶/𝑋} ⊢ Δ

𝑗

𝐺𝐿𝑂𝑖Γ ∣ 𝑂𝑖[#»𝑣 , #»𝑒] ∶ 𝐺(#»𝐶) ⊢ Δ
The 𝐺𝐿 rule is the exact same as the 𝐹𝑅 rule, except it introduces an observer instead of a constructor.

Observers and constructors are not the only extensions to the calculus we have made. (Co-)patterns
have been added as well, which have caused 𝜇 and ̃𝜇 definitions to be altered. Before, activation rules
𝐴𝑅 and 𝐴𝐿 could be used to typecheck 𝜇 and ̃𝜇 (co-)terms. With the renewed definitions, those rules
are not going to be sufficient anymore. Let us analyse the𝐴𝑅 rule to find its essence, which can be used
for a new rule that includes patterns.

16 THE 𝜇 ̃𝜇-CALCULUS

𝑐 ∶ (Γ ⊢ 𝛼 ∶ 𝐴, Δ)
𝐴𝑅Γ ⊢ 𝜇𝛼.𝑐 ∶ 𝐴 ∣ Δ

The𝐴𝑅 rule allows us to turn a command into a 𝜇-term, using a co-variable that exists in the output
environment as the parameter. The new rule should do the same thing, but for a co-pattern. In practice,
this means that every (co-)variable in the co-pattern must be known, and that the observer in the co-
pattern must be well-typed. We introduce two functions. One that takes a pattern or co-pattern and a
type, and matches every variable that occurs in the (co-)pattern with the correct type, to finally return
an input environment containing all the variables in the original (co-)pattern. The other function we
introduce is one that does the exact same, but with co-variables, which will therefore return an output
environment.

𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑥, 𝐶) = 𝑥 ∶ 𝐶
𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝛼, 𝐶) = ∅

Given 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ⊢ 𝐹(#»𝑋) ∣ # »𝐵𝑖𝑗

𝑗𝑖

𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝐾𝑖(#»𝛼𝑖, #»𝑥𝑖), 𝐹 (#»𝐶)) = # »𝑥𝑖𝑗 ∶ 𝐴𝑖𝑗{𝐶/𝑋}𝑗

Given 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝑂𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ∣ 𝐺(#»𝑋) ⊢ # »𝐵𝑖𝑗

𝑗𝑖

𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑂𝑖[#»𝑥𝑖, #»𝛼𝑖], 𝐺(#»𝐶)) = # »𝑥𝑖𝑗 ∶ 𝐴𝑖𝑗{𝐶/𝑋}𝑗

𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝛼, 𝐶) = 𝛼 ∶ 𝐶
𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑥, 𝐶) = ∅

Given 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝑂𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ∣ 𝐺(#»𝑋) ⊢ # »𝐵𝑖𝑗

𝑗𝑖

𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑂𝑖[#»𝑥𝑖, #»𝛼𝑖], 𝐺(#»𝐶)) = # »𝛼𝑖𝑗 ∶ 𝐵𝑖𝑗{𝐶/𝑋}𝑗

Given 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ⊢ 𝐹(#»𝑋) ∣ # »𝐵𝑖𝑗

𝑗𝑖

𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝐾𝑖(#»𝛼𝑖, #»𝑥𝑖), 𝐹 (#»𝐶)) = # »𝛼𝑖𝑗 ∶ 𝐵𝑖𝑗{𝐶/𝑋}𝑗

As an example, the result of𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠((𝑥, 𝑦), 𝐴×(𝐵×𝐶))would be the environment𝑥 ∶ 𝐴, 𝑦 ∶
𝐵 × 𝐶 . Now that we are able to process entire patterns and co-patterns, we can define new rules for 𝜇
and ̃𝜇 constructions.

»𝑐𝑖 ∶ (Γ, 𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴) ⊢ 𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴), Δ)
𝑖

𝐹𝐿
Γ ∣ ̃𝜇[# »𝑝𝑖.𝑐𝑖

𝑖] ∶ 𝐴 ⊢ Δ
»𝑐𝑖 ∶ (Γ, 𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴) ⊢ 𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴), Δ)

𝑖

𝐺𝑅
Γ ⊢ 𝜇(# »̃𝑝𝑖.𝑐𝑖

𝑖) ∶ 𝐴 ∣ Δ

These rules can be used to typecheck 𝜇 and ̃𝜇 constructions, such as the judgement Γ ∣ ̃𝜇[𝜄1(𝑥).𝑐1 ∣
𝜄2(𝑦).𝑐2] ∶ 𝑋 + 𝑌 ⊢ Δ:

𝑐1 ∶ (Γ, 𝑥 ∶ 𝑋 ⊢ Δ) 𝑐2 ∶ (Γ, 𝑦 ∶ 𝑌 ⊢ Δ)
𝐹𝐿Γ ∣ ̃𝜇[𝜄1(𝑥).𝑐1 ∣ 𝜄2(𝑦).𝑐2] ∶ 𝑋 + 𝑌 ⊢ Δ

Figure 2.11 shows the full definition of the𝜇 ̃𝜇-calculuswithuser-defined (co-)datatypes and its typing
rules.

THE 𝜇 ̃𝜇-CALCULUS 17

𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐹(#»𝐴) 𝑋, 𝑌 , 𝑍 ∈ 𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝐹, 𝐺 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∶∶= …
𝐾 ∈ 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 ∶∶= … 𝑂 ∈ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟 ∶∶= …
𝑥, 𝑦, 𝑧 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= … 𝛼, 𝛽, 𝛾 ∈ 𝐶𝑜𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …

𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝑥 ∣ 𝐾(#»̃𝑝 , #»𝑝) ̃𝑝 ∈ 𝐶𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝛼 ∣ 𝑂[#»𝑝 , #»̃𝑝]
𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝜇(# »̃𝑝.𝑐) ∣ 𝐾(#»𝑒 , #»𝑣) 𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= 𝛼 ∣ ̃𝜇[# »𝑝.𝑐] ∣ 𝑂[#»𝑣 , #»𝑒]

𝑑𝑒𝑐𝑙 ∈ 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∶∶= 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾 ∶ #»𝐴 ⊢ 𝐹(#»𝑋) ∣ #»𝐵
∣ 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒

»

𝑂 ∶ #»𝐴 ∣ 𝐹(#»𝑋) ⊢ #»𝐵
𝑐 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∶∶= ⟨𝑣 ∥ 𝑒⟩
Γ ∈ 𝐼𝑛𝑝𝑢𝑡𝐸𝑛𝑣 ∶∶= 𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶ 𝐴𝑛

Δ ∈ 𝑂𝑢𝑡𝑝𝑢𝑡𝐸𝑛𝑣 ∶∶= 𝛼1 ∶ 𝐴1, … , 𝛼𝑛 ∶ 𝐴𝑛
𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 ∶∶= 𝑐 ∶ (Γ ⊢ Δ) ∣ (Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ) ∣ (Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ)

Core rules:

𝑉 𝑅𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴

Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ Γ′ ∣ 𝑒 ∶ 𝐴 ⊢ Δ′
𝐶𝑢𝑡⟨𝑣 ∥ 𝑒⟩ ∶ (Γ′, Γ ⊢ Δ′, Δ)

Logical rules:

Given 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ⊢ 𝐹(#»𝑋) ∣ # »𝐵𝑖𝑗

𝑗𝑖
:

»

Γ ∣ 𝑒 ∶ 𝐵𝑖𝑗
»{𝐶/𝑋} ⊢ Δ

𝑗 # »

Γ ⊢ 𝑣 ∶ 𝐴𝑖𝑗
»{𝐶/𝑋} ∣ Δ

𝑗

𝐹𝑅𝐾𝑖Γ ⊢ 𝐾𝑖(#»𝑒 , #»𝑣) ∶ 𝐹 (#»𝐶) ∣ Δ
»𝑐𝑖 ∶ (Γ, 𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴) ⊢ 𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴), Δ)

𝑖

𝐹𝐿
Γ ∣ ̃𝜇[# »𝑝𝑖.𝑐𝑖

𝑖] ∶ 𝐴 ⊢ Δ

Given 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝑂𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ∣ 𝐺(#»𝑋) ⊢ # »𝐵𝑖𝑗

𝑗𝑖
:

»𝑐𝑖 ∶ (Γ, 𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴) ⊢ 𝐶𝑜𝑉 𝑎𝑟𝑠𝑇 𝑦𝑝𝑒𝑠(𝑝𝑖, 𝐴), Δ)
𝑖

𝐺𝑅
Γ ⊢ 𝜇(# »̃𝑝𝑖.𝑐𝑖

𝑖) ∶ 𝐴 ∣ Δ

»

Γ ⊢ 𝑣 ∶ 𝐴𝑖𝑗
»{𝐶/𝑋} ∣ Δ

𝑗 # »

Γ ∣ 𝑒 ∶ 𝐵𝑖𝑗
»{𝐶/𝑋} ⊢ Δ

𝑗

𝐺𝐿𝑂𝑖Γ ∣ 𝑂𝑖[#»𝑣 , #»𝑒] ∶ 𝐺(#»𝐶) ⊢ Δ

Figure 2.11: The 𝜇 ̃𝜇-calculus with user-defined (co-)datatypes.

18 THE 𝜇 ̃𝜇-CALCULUS

2.2.4.1 Evaluation

In addition to new typing rules, we also need new reduction rules to define evaluation for the new user-
defined (co-)datatypes. We already have the 𝜇 and ̃𝜇 rewriting rules. Those only work on 𝜇 and ̃𝜇 (co-
)terms where there is only a single (co-)pattern, and it consists of a one simple (co-)variable. Fortunately,
we are able to rewrite more complicated (co-)patterns to a series of simple (co-)patterns. We could for
example rewrite the command ⟨(𝑣, 𝑣′) ∥ ̃𝜇[(𝑥, 𝑦).𝑐]⟩ to ⟨𝑣 ∥ ̃𝜇𝑥.⟨𝑣′ ∥ ̃𝜇𝑦.𝑐⟩⟩. This way both 𝑣 and
𝑣′ get matched to 𝑥 and 𝑦 respectively, and every ̃𝜇 co-term consist of single variables as patterns. After
rewriting the 𝜇 and ̃𝜇 rewriting rules can be used to further evaluate the command.

⟨𝑣 ∥ ̃𝜇𝑥.⟨𝑣′ ∥ ̃𝜇𝑦.𝑐⟩⟩ ≻�̃� ⟨𝑣′ ∥ ̃𝜇𝑦.𝑐⟩{𝑣/𝑥} ≻�̃� 𝑐{𝑣/𝑥, 𝑣′/𝑦}

What actually happens during the rewriting of patterns, is that every sub-pattern and sub-co-pattern
is taken from the input (co-)pattern and moved to a separate command. Of course, this only happens if
the constructor or observer in the (co-)pattern matches the constructor or observer that is supplied to the
pattern in the original command. We can formalise these rewriting rules, called 𝛽𝐹 and 𝛽𝐺, as follows:

⟨𝐾𝑖(#»𝑒 , #»𝑣) ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(
#»̃𝑝 , #»𝑝).𝑐𝑖 ∣ …]⟩ ≻𝛽𝐹

⟨𝜇 #»̃𝑝 .⟨ #»𝑣 ∥ ̃𝜇 #»𝑝 .𝑐𝑖⟩ ∥ #»𝑒 ⟩
⟨𝜇(⋯ ∣ 𝑂𝑖[#»𝑝 , #»̃𝑝].𝑐𝑖 ∣ …) ∥ 𝑂𝑖[#»𝑣 , #»𝑒]⟩ ≻𝛽𝐺

⟨ #»𝑣 ∥ ̃𝜇 #»𝑝 .⟨𝜇 #»̃𝑝 .𝑐𝑖 ∥ #»𝑒 ⟩⟩

The 𝛽𝐹 and 𝛽𝐺 rules also work for (co-)patterns that have sub-(co-)patterns that do not consist of a
single (co-)variable. The new rules can, for instance, be used to evaluate the command ⟨((𝑣1, 𝑣2), 𝑣3) ∥

̃𝜇[((𝑥, 𝑦), 𝑧).𝑐]⟩ as follows:

⟨((𝑣1, 𝑣2), 𝑣3) ∥ ̃𝜇[((𝑥, 𝑦), 𝑧).𝑐]⟩
≻𝛽𝐹

⟨(𝑣1, 𝑣2) ∥ ̃𝜇[(𝑥, 𝑦).⟨𝑣3 ∥ ̃𝜇𝑧.𝑐⟩]⟩
≻𝛽𝐹

⟨𝑣1 ∥ ̃𝜇𝑥.⟨𝑣2 ∥ ̃𝜇𝑦.⟨𝑣3 ∥ ̃𝜇𝑧.𝑐⟩⟩⟩
≻�̃�

⟨𝑣2 ∥ ̃𝜇𝑦.⟨𝑣3 ∥ ̃𝜇𝑧.𝑐⟩⟩{𝑣1/𝑥}
≻�̃�

⟨𝑣3 ∥ ̃𝜇𝑧.𝑐⟩{𝑣1/𝑥, 𝑣2/𝑦}
≻�̃�

𝑐{𝑣1/𝑥, 𝑣2/𝑦, 𝑣3/𝑧}

2.2.4.2 Nested evaluation

Despite the new rules, there are still situations where evaluation gets stuck, even though it should not be.
This occurs whenever a 𝜇-term or ̃𝜇-co-term exists within a constructor or observer. For example, we are
currently not able to further evaluate the command ⟨(𝑥, 𝜇𝛽.⟨𝑦 ∥ 𝛽⟩) ∥ 𝛼⟩, even though we know that
𝜇𝛽.⟨𝑦 ∥ 𝛽⟩ could be simplified to just 𝑦 by the 𝜂𝜇 reduction rule. To allow those inner (co-)terms to be
lifted, we first need to define values and co-values. A (co-)value is a (co-)term that cannot be evaluated any
further. Whether a (co-)term is or is not a (co-)value, depends on the evaluation context. Some (co-)terms
can be evaluated further under call-by-value(𝒱), while they have already reached their final form under
call-by-name(𝒩) and vice versa. Under call-by-value, every co-term is a co-value, but only some terms
are co-terms: variables, constructors where every sub-term is a value, and 𝜇-terms for which at least one
of the co-patterns contains an observer. Under call-by-name, this is almost exactly reversed: every term

THE 𝜇 ̃𝜇-CALCULUS 19

is a value, but only co-variables, observers where every sub-co-term is a co-value, and ̃𝜇-co-terms with at
least one constructor in any of its patterns are co-values.

𝑉 ∈ 𝑉 𝑎𝑙𝑢𝑒𝒱 ∶∶= 𝑥 ∣ 𝐾(#»𝑒 , #»𝑉) ∣ 𝜇(
»

𝑂[#»𝑝 , #»̃𝑝].𝑐)
𝐸 ∈ 𝐶𝑜𝑉 𝑎𝑙𝑢𝑒𝒱 ∶∶= 𝑒

𝑉 ∈ 𝑉 𝑎𝑙𝑢𝑒𝒩 ∶∶= 𝑣

𝐸 ∈ 𝐶𝑜𝑉 𝑎𝑙𝑢𝑒𝒩 ∶∶= 𝛼 ∣ 𝑂[#»𝑣 , #»𝐸] ∣ ̃𝜇[
»

𝐾(#»̃𝑝 , #»𝑝).𝑐]

This means that under call-by-value, constructors that have sub-terms that are not values and 𝜇-
terms that have just a single co-pattern, which is a single co-variable, are non-values. Similarly, under
call-by-name, observers that have sub-co-terms and ̃𝜇-co-terms that have a single pattern, consisting of a
variable, are non-co-values. Now that we know which (co-)terms should be liftable, we can define lifting
rules 𝜍 :

𝐾(#»𝐸, 𝑒′, #»𝑒 , #»𝑣) ≻𝜍 𝜇𝛼.⟨𝜇𝛽.⟨𝐾(#»𝐸, 𝛽, #»𝑒 , #»𝑣) ∥ 𝛼⟩ ∥ 𝑒′⟩
𝐾(#»𝐸, #»𝑉 , 𝑣′, #»𝑣) ≻𝜍 𝜇𝛼.⟨𝑣′ ∥ ̃𝜇𝑦.⟨𝐾(#»𝑒 , #»𝑉 , 𝑦, #»𝑣) ∥ 𝛼⟩⟩
𝑂[#»𝑉 , 𝑣′, #»𝑣 , #»𝑒] ≻𝜍 ̃𝜇𝑥.⟨𝑣′ ∥ ̃𝜇𝑦.⟨𝑥 ∥ 𝑂[#»𝑉 , 𝑦, #»𝑣 , #»𝑒]⟩⟩
𝑂[#»𝑉 , #»𝐸, 𝑒′, #»𝑒] ≻𝜍 ̃𝜇𝑥.⟨𝜇𝛽.⟨𝑥 ∥ 𝑂[#»𝑣 , #»𝐸, 𝛽, #»𝑒]⟩ ∥ 𝑒′⟩

where 𝑥, 𝑦, 𝛼 and 𝛽 are free (co-)variables, and 𝑣′ and 𝑒′ are non-values and non-co-values, respectively.
Now, we can use the new lifting rules to further evaluate our example, but only under call-by-value.

Under call-by-name, ⟨(𝑥, 𝜇𝛽.⟨𝑦 ∥ 𝛽⟩) ∥ 𝛼⟩ cannot be evaluated anyfurther, because 𝜇𝛽.⟨𝑦 ∥ 𝛽⟩ is seen
as a value in this strategy.

⟨(𝑥, 𝜇𝛽.⟨𝑦 ∥ 𝛽⟩) ∥ 𝛼⟩
≻𝜍

⟨𝜇𝛾.⟨𝜇𝛽.⟨𝑦 ∥ 𝛽⟩ ∥ ̃𝜇𝑧.⟨(𝑥, 𝑧) ∥ 𝛾⟩⟩ ∥ 𝛼⟩
≻𝜇

⟨𝜇𝛽.⟨𝑦 ∥ 𝛽⟩ ∥ ̃𝜇𝑧.⟨(𝑥, 𝑧) ∥ 𝛼⟩⟩
≻𝜇

⟨𝑦 ∥ ̃𝜇𝑧.⟨(𝑥, 𝑧) ∥ 𝛼⟩⟩
≻�̃�

⟨(𝑥, 𝑦) ∥ 𝛼⟩

The complete definition of all evaluation rules can be found in Figure 2.12.
What we have not seen implemented in the𝜇 ̃𝜇-calculus with user-defined (co-)datatypes are the pre-

viously built-in consumers to sum and product types. Before, we could consume them using the co-term
[𝑒, 𝑒′] for sum types, and 𝜋1 and 𝜋2 for product types. However, since datatypes cannot have observers,
and co-datatypes cannot have constructors, these have disappeared from the new calculus. To re-integrate
them, we need to define them as functions.

2.2.5 Functions in the 𝜇 ̃𝜇-calculus
While functions are an integral built-in piece of the 𝜆-calculus, they fulfill no special role in the 𝜇 ̃𝜇-
calculus, and are therefore not built into the calculus. However, that does not mean that it is not possible
to define functions in the 𝜇 ̃𝜇-calculus; we just need to declare the function co-datatype and its observer
first.

20 THE 𝜇 ̃𝜇-CALCULUS

Evaluation strategies ∶ call-by-value 𝒱
∣ call-by-name 𝒩

𝑉 ∈ 𝑉 𝑎𝑙𝑢𝑒𝒱 ∶∶= 𝑥 ∣ 𝐾(#»𝑒 , #»𝑉) ∣ 𝜇(
»

𝑂[#»𝑝 , #»̃𝑝].𝑐)
𝐸 ∈ 𝐶𝑜𝑉 𝑎𝑙𝑢𝑒𝒱 ∶∶= 𝑒

𝑉 ∈ 𝑉 𝑎𝑙𝑢𝑒𝒩 ∶∶= 𝑣

𝐸 ∈ 𝐶𝑜𝑉 𝑎𝑙𝑢𝑒𝒩 ∶∶= 𝛼 ∣ 𝑂[#»𝑣 , #»𝐸] ∣ ̃𝜇[
»

𝐾(#»̃𝑝 , #»𝑝).𝑐]

Evaluation rules

⟨𝜇𝛼.𝑐 ∥ 𝑒⟩ ≻𝜇 𝑐{𝑒/𝛼}
⟨𝑣 ∥ ̃𝜇𝑥.𝑐⟩ ≻�̃� 𝑐{𝑣/𝑥}
𝜇𝛼.⟨𝑣 ∥ 𝛼⟩ ≻𝜂𝜇

𝑣
̃𝜇𝑥.⟨𝑥 ∥ 𝑒⟩ ≻𝜂�̃�

𝑒
⟨𝐾𝑖(#»𝑒 , #»𝑣) ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(

#»̃𝑝 , #»𝑝).𝑐𝑖 ∣ …]⟩ ≻𝛽𝐹
⟨𝜇 #»̃𝑝 .⟨ #»𝑣 ∥ ̃𝜇 #»𝑝 .𝑐𝑖⟩ ∥ #»𝑒 ⟩

⟨𝜇(⋯ ∣ 𝑂𝑖[#»𝑝 , #»̃𝑝].𝑐𝑖 ∣ …) ∥ 𝑂𝑖[#»𝑣 , #»𝑒]⟩ ≻𝛽𝐺
⟨ #»𝑣 ∥ ̃𝜇 #»𝑝 .⟨𝜇 #»̃𝑝 .𝑐𝑖 ∥ #»𝑒 ⟩⟩

𝐾(#»𝐸, 𝑒′, #»𝑒 , #»𝑣) ≻𝜍 𝜇𝛼.⟨𝜇𝛽.⟨𝐾(#»𝐸, 𝛽, #»𝑒 , #»𝑣) ∥ 𝛼⟩ ∥ 𝑒′⟩
𝐾(#»𝐸, #»𝑉 , 𝑣′, #»𝑣) ≻𝜍 𝜇𝛼.⟨𝑣′ ∥ ̃𝜇𝑦.⟨𝐾(#»𝑒 , #»𝑉 , 𝑦, #»𝑣) ∥ 𝛼⟩⟩
𝑂[#»𝑉 , 𝑣′, #»𝑣 , #»𝑒] ≻𝜍 ̃𝜇𝑥.⟨𝑣′ ∥ ̃𝜇𝑦.⟨𝑥 ∥ 𝑂[#»𝑉 , 𝑦, #»𝑣 , #»𝑒]⟩⟩
𝑂[#»𝑉 , #»𝐸, 𝑒′, #»𝑒] ≻𝜍 ̃𝜇𝑥.⟨𝜇𝛽.⟨𝑥 ∥ 𝑂[#»𝑣 , #»𝐸, 𝛽, #»𝑒]⟩ ∥ 𝑒′⟩

Figure 2.12: Evaluation rules and strategies in the 𝜇 ̃𝜇-calculus with user-defined (co-)datatypes.

THE 𝜇 ̃𝜇-CALCULUS 21

A function is something that takes a term of one type, and produces a new term of a second type. Of
course, in the𝜇 ̃𝜇-calculus, producing a new term and returning it is not as trivial as it is in the𝜆-calculus.
Producing and returning a term requires it to be part of a command, which in turn requires a co-term
of the same type. The observer for the function type will therefore take a term of the input type, and a
co-term of the output type.

𝑐𝑜𝑑𝑎𝑡𝑎 𝐴 → 𝐵 𝑤ℎ𝑒𝑟𝑒 _ ⋅ _ ∶ 𝐴 ∣ 𝐴 → 𝐵 ⊢ 𝐵
The observer 𝑣 ⋅ 𝑒 represents a call-stack.

Using this new definition, we can re-implement 𝜋1 and 𝜋2, the product type’s consumers.

𝜋1 = 𝜇((𝑥, 𝑦) ⋅ 𝛼.⟨𝑥 ∥ 𝛼⟩) ∶ 𝐴 × 𝐵 → 𝐴
𝜋2 = 𝜇((𝑥, 𝑦) ⋅ 𝛼.⟨𝑦 ∥ 𝛼⟩) ∶ 𝐴 × 𝐵 → 𝐵

While 𝜋1 and 𝜋2 were co-terms before, they are terms now. As such, 𝜋1 and 𝜋2 are strictly no longer
consumers, but rather producers of functions. This changes the way they are used. Before, we could
extract 𝑣 out of (𝑣, 𝑣′) using the command ⟨(𝑣, 𝑣′) ∥ 𝜋1[𝑒]⟩, which would evaluate to ⟨𝑣 ∥ 𝑒⟩. With
the new version 𝜋1, we build a call-stack containing (𝑣, 𝑣′) and the output co-term 𝑒 instead: ⟨𝜋1 ∥
(𝑣, 𝑣′) ⋅ 𝑒⟩, or the fully expanded version ⟨𝜇((𝑥, 𝑦) ⋅𝛼.⟨𝑥 ∥ 𝛼⟩) ∥ (𝑣, 𝑣′) ⋅ 𝑒⟩. This command eventually
evaluates to the same result ⟨𝑣 ∥ 𝑒⟩, according to the new evaluation rules:

⟨𝜇((𝑥, 𝑦) ⋅ 𝛼.⟨𝑥 ∥ 𝛼⟩) ∥ (𝑣, 𝑣′) ⋅ 𝑒⟩
≻𝛽𝐺

⟨(𝑣, 𝑣′) ∥ ̃𝜇((𝑥, 𝑦).⟨𝜇𝛼.⟨𝑥 ∥ 𝛼⟩ ∥ 𝑒⟩)⟩
≻𝛽𝐹

⟨𝑣 ∥ ̃𝜇𝑥.⟨𝑣′ ∥ ̃𝜇𝑦.⟨𝜇𝛼.⟨𝑥 ∥ 𝛼⟩ ∥ 𝑒⟩⟩⟩
≻�̃�

⟨𝑣′ ∥ ̃𝜇𝑦.⟨𝜇𝛼.⟨𝑣 ∥ 𝛼⟩ ∥ 𝑒⟩⟩
≻�̃�

⟨𝜇𝛼.⟨𝑣 ∥ 𝛼⟩ ∥ 𝑒⟩
≻𝜇

⟨𝑣 ∥ 𝑒⟩
With our new definitions, 𝜋1 and 𝜋2 are the 𝜇 ̃𝜇-calculus equivalents of the Haskell functions 𝑓𝑠𝑡 and
𝑠𝑛𝑑.

The consumer for sum types [𝑒, 𝑒′] is different. Since this co-term requires two separate sub-co-
terms, and call-stacks only contain one sub-co-term, we cannot implement [𝑒, 𝑒′]without first declaring
a wrapper co-datatype 𝐴 &𝐵:

𝑐𝑜𝑑𝑎𝑡𝑎 𝐴 &𝐵 𝑤ℎ𝑒𝑟𝑒 [_, _] ∶∣ 𝐴 &𝐵 ⊢ 𝐴, 𝐵
With this new co-datatype, we are able to define a function which takes a term of a sum-type, and con-
sumes it, as seen below.

ℎ𝑎𝑛𝑑𝑙𝑒𝑆𝑢𝑚 ∶ 𝐴 + 𝐵 → 𝐴 &𝐵
ℎ𝑎𝑛𝑑𝑙𝑒𝑆𝑢𝑚 = 𝜇(𝜄1(𝑥) ⋅ [𝛼1, 𝛼2].⟨𝑥 ∥ 𝛼1⟩

∣ 𝜄2(𝑦) ⋅ [𝛼1, 𝛼2].⟨𝑦 ∥ 𝛼2⟩)
Like with product types and 𝜋1 and 𝜋2, ℎ𝑎𝑛𝑑𝑙𝑒𝑆𝑢𝑚 is a term, instead of a co-term. Once again,

this changes the way ℎ𝑎𝑛𝑑𝑙𝑒𝑆𝑢𝑚 is used, compared to [𝑒, 𝑒′] in the 𝜇 ̃𝜇-calculus without user-defined

22 THE 𝜇 ̃𝜇-CALCULUS

(co-)datatypes. We are still able to evaluate the commands we write using this new system to the same
command that we expect to get in the old system.

⟨ℎ𝑎𝑛𝑑𝑙𝑒𝑆𝑢𝑚 ∥ 𝜄1(𝑣) ⋅ [𝑒, 𝑒′]⟩
≻𝛽𝐺

⟨𝜄1(𝑣) ∥ ̃𝜇(𝜄1(𝑥).⟨𝜇[[𝛼1, 𝛼2].⟨𝑥 ∥ 𝛼1⟩] ∥ [𝑒, 𝑒′]⟩)⟩
≻𝛽𝐹

⟨𝑣 ∥ ̃𝜇𝑥.⟨𝜇[[𝛼1, 𝛼2].⟨𝑥 ∥ 𝛼1⟩] ∥ [𝑒, 𝑒′]⟩⟩
≻�̃�

⟨𝜇[[𝛼1, 𝛼2].⟨𝑣 ∥ 𝛼1⟩] ∥ [𝑒, 𝑒′]⟩
≻𝛽𝐺

⟨𝜇𝛼1.⟨𝜇𝛼2.⟨𝑣 ∥ 𝛼1⟩ ∥ 𝑒′⟩ ∥ 𝑒⟩
≻𝜇

⟨𝜇𝛼2.⟨𝑣 ∥ 𝑒⟩ ∥ 𝑒′⟩
≻𝜇

⟨𝑣 ∥ 𝑒⟩

⟨ℎ𝑎𝑛𝑑𝑙𝑒𝑆𝑢𝑚 ∥ 𝜄2(𝑣′) ⋅ [𝑒, 𝑒′]⟩
≻𝛽𝐺

⟨𝜄2(𝑣′) ∥ ̃𝜇(𝜄2(𝑦).⟨𝜇[[𝛼1, 𝛼2].⟨𝑦 ∥ 𝛼2⟩] ∥ [𝑒, 𝑒′]⟩)⟩
≻𝛽𝐹

⟨𝑣′ ∥ ̃𝜇𝑦.⟨𝜇[[𝛼1, 𝛼2].⟨𝑦 ∥ 𝛼2⟩] ∥ [𝑒, 𝑒′]⟩⟩
≻�̃�

⟨𝜇[[𝛼1, 𝛼2].⟨𝑣′ ∥ 𝛼2⟩] ∥ [𝑒, 𝑒′]⟩
≻𝛽𝐺

⟨𝜇𝛼1.⟨𝜇𝛼2.⟨𝑣′ ∥ 𝛼2⟩ ∥ 𝑒′⟩ ∥ 𝑒⟩
≻𝜇

⟨𝜇𝛼2.⟨𝑣′ ∥ 𝛼2⟩ ∥ 𝑒′⟩
≻𝜇

⟨𝑣′ ∥ 𝑒′⟩

In addition to re-implementing lost consumers, functions and user-defined (co-)datatypes allow us
to define much more powerful (co-)terms than we could before. We are now able to declare recursive
(co-)datatypes, such as lists and streams.

𝑑𝑎𝑡𝑎 𝐿𝑖𝑠𝑡 𝐴 𝑤ℎ𝑒𝑟𝑒
𝑁𝑖𝑙 ∶ ⊢ 𝐿𝑖𝑠𝑡 𝐴 ∣
𝐶𝑜𝑛𝑠 ∶ 𝐴, 𝐿𝑖𝑠𝑡 𝐴 ⊢ 𝐿𝑖𝑠𝑡 𝐴 ∣

𝑐𝑜𝑑𝑎𝑡𝑎 𝑆𝑡𝑟𝑒𝑎𝑚 𝐴
𝐻𝑒𝑎𝑑 ∶∣ 𝑆𝑡𝑟𝑒𝑎𝑚 𝐴 ⊢ 𝐴
𝑇 𝑎𝑖𝑙 ∶∣ 𝑆𝑡𝑟𝑒𝑎𝑚 𝐴 ⊢ 𝑆𝑡𝑟𝑒𝑎𝑚 𝐴

Next, we are able to define functions that alter the structure of these (co-)datatypes. For example, we

THE 𝜇 ̃𝜇-CALCULUS 23

are able to implementmap and foldr for lists:

map ∶ (𝐴 → 𝐵) → 𝐿𝑖𝑠𝑡 𝐴 → 𝐿𝑖𝑠𝑡 𝐵
map = 𝜇(𝑓 ⋅ 𝛼.⟨𝜇(𝑦 ⋅ 𝛽.⟨𝑦 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑓 ∥ 𝑥 ⋅ ̃𝜇𝑧.⟨𝑚𝑎𝑝 ∥ 𝑓 ⋅ 𝑥𝑠 ⋅ ̃𝜇𝑧𝑠.

⟨𝐶𝑜𝑛𝑠 𝑧 𝑧𝑠 ∥ 𝛽⟩⟩⟩
∣ 𝑁𝑖𝑙.⟨𝑁𝑖𝑙 ∥ 𝛽⟩]⟩) ∥ 𝛼⟩)

foldr ∶ (𝐴 → 𝐵 → 𝐵) → 𝐵 → 𝐿𝑖𝑠𝑡 𝐴 → 𝐵
foldr = 𝜇(𝑓 ⋅ 𝑏 ⋅ 𝑁𝑖𝑙 ⋅ 𝛼.⟨𝑁𝑖𝑙 ∥ 𝛼⟩

∣ 𝑓 ⋅ 𝑏 ⋅ 𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼.⟨𝑓𝑜𝑙𝑑𝑟 ∥ 𝑓 ⋅ 𝑏 ⋅ 𝑥𝑠 ⋅ ̃𝜇𝑏′.⟨𝑓 ∥ 𝑥 ⋅ 𝑏′ ⋅ 𝛼⟩⟩)

These definitions display the power of the call-stack: We can see exactly which computations happen,
and in what order.

24 THE 𝜇 ̃𝜇-CALCULUS

3
Programmingwiththe𝜇 ̃𝜇-calculus

In this chapter we propose a high-level programming languageMMH(Mu-Mu-tilde-Haskell), which uses
the 𝜇 ̃𝜇-calculus as an intermediate language. This means that programs written inMMH are compiled
to 𝜇 ̃𝜇-calculus programs. In this form, the programs can be typechecked and evaluated using the 𝜇 ̃𝜇-
calculus’ rules. The 𝜇 ̃𝜇-calculus will fulfill the same role for MMH as the 𝜆-calculus does for several
languages, such as Haskell and ML.

A good starting point would be transpiling 𝜆-calculus programs to 𝜇 ̃𝜇-calculus programs. With such
a transpiler, we are able to evaluate Haskell programs in the 𝜇 ̃𝜇-calculus. Next, we can extend Haskell’s
syntax to allow the power of the 𝜇 ̃𝜇-calculus - the separation of data and co-data - to be exploited.

3.1 Converting 𝜆-terms to 𝜇 ̃𝜇-terms
Before we can start translating 𝜆-programs to 𝜇 ̃𝜇-programs, we first need a renewed definition of the 𝜆-
calculus; one that supports user-defined datatypes and constructors. This definition is given in Figure 3.1.

We define an algorithm Conv, which converts 𝜆-structures to 𝜇 ̃𝜇-structures. There are many sim-
ilarities between the 𝜆-calculus and the 𝜇 ̃𝜇-calculus. For example, the type system is nearly the same.
In both calculi, types can consist of either a type variable, or a connector with a collection of subtypes.
These types are therefore valid in both calculi, meaning that conversion is not necessary.

Additionally, the 𝜆-calculus also has built-in support for function types, while the 𝜇 ̃𝜇-calculus does
not. For this reason, we require an implementation of function types in the 𝜇 ̃𝜇-system. We will hence-
forth assume the definition that we have seen before:

𝑐𝑜𝑑𝑎𝑡𝑎 𝐴 → 𝐵 𝑤ℎ𝑒𝑟𝑒 _ ⋅ _ ∶ 𝐴 ∣ 𝐴 → 𝐵 ⊢ 𝐵

Using this definition, we can copy function types from the 𝜆-calculus as well, meaning that all 𝜆-calculus
types can be safely copied to the 𝜇 ̃𝜇-calculus, without any modifications.

Datatypes and constructors are similar between the two calculi as well. The only difference is that
constructors in the𝜇 ̃𝜇-calculusmay contain co-terms in addition to terms, while 𝜆-calculus constructors
solely contain terms. This effectively means that the collection of 𝜇 ̃𝜇-constructors is a superset of the
collection of 𝜆-constructors; every 𝜆-constructor can be a 𝜇 ̃𝜇-constructor, but not every 𝜇 ̃𝜇-constructor

26 CONVERTING 𝜆-TERMS TO 𝜇 ̃𝜇-TERMS

𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐹(#»𝐴) ∣ 𝐴 → 𝐵
𝑋, 𝑌 , 𝑍 ∈ 𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …

𝐹 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∶∶= … 𝐾 ∈ 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 ∶∶= …
𝑥, 𝑦, 𝑧 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= … 𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝑥 ∣ 𝐾(#»𝑥)

𝑀, 𝑁 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝜆[# »𝑝.𝑀] ∣ 𝑀 𝑁 ∣ 𝐾(# »𝑀)
𝑑𝑒𝑐𝑙 ∈ 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∶∶= 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒

»

𝐾 #»𝐴 ∶ 𝐹(#»𝑋)
𝐻, 𝐽 ∈ 𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 ∶∶= 𝑀 ∶ 𝐴

Typing rules:
𝑥𝑥 ∶ 𝐴

⋮
𝑀 ∶ 𝐵 → 𝐼𝑥𝜆𝑥.𝑀 ∶ 𝐴 → 𝐵

𝑀 ∶ 𝐴 → 𝐵 𝑁 ∶ 𝐴 → 𝐸𝑀 𝑁 ∶ 𝐵

Given 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖
»𝐴𝑖𝑗

𝑗 ∶ 𝐹 (#»𝑋)
𝑖
:

»

𝑀𝑗 ∶ 𝐴𝑖𝑗
»{𝐵/𝑋}

𝑗

𝐹𝐼
𝐾𝑖(

»𝑀) ∶ 𝐹(#»𝐵)

»
»

»

𝑥𝑖𝑗 ∶ 𝐴𝑖𝑗
»{𝐶/𝑋}
⋮

𝑀𝑖 ∶ 𝐵

𝑥𝑖𝑗
𝑗𝑖

→ 𝐼𝐾𝑖𝜆[# »𝐾𝑖(#»𝑥𝑖).𝑀𝑖
𝑖] ∶ 𝐹 (#»𝐶) → 𝐵

Evaluation:

𝜆𝑥.𝑀 𝑁 ≻𝛽𝑥
𝑀{𝑁/𝑥}

𝜆[⋯ ∣ 𝐾𝑖(#»𝑥).𝑀𝑖 ∣ …] 𝐾𝑖(
#»𝑁) ≻𝛽𝐹

𝑀𝑖{
»𝑁/𝑥}

Figure 3.1: The 𝜆-calculus with datatypes and constructors.

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 27

can be a 𝜆-constructor. The case for declarations in Conv is therefore a simple one:

Conv(𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖
»𝐴𝑖𝑗

𝑗 ∶ 𝐹 (#»𝑋)
𝑖
)

=

𝑑𝑎𝑡𝑎 Conv(𝐹(#»𝑋)) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖 ∶ # »

Conv(𝐴𝑖𝑗)
𝑗 ⊢ Conv(𝐹(#»𝑋)) ∣

𝑖

With types and constructors done, we are able to define Conv’s behaviour for variables and patterns,
before we can finally start converting terms.

Conv(𝑥) = 𝑥 Conv(𝐾(#»𝑥𝑖
𝑖)) = 𝐾(∅, # »

Conv(𝑥𝑖)
𝑖
)

In the 𝜆-calculus, terms come in four different shapes: variables, 𝜆-functions, function applications,
and constructors. We have just shown how to convert variables and constructors, which leaves us with
𝜆-functions and function applications. In the𝜇 ̃𝜇-calculus, functions need to have both an input term and
an output co-term. For the simplest kind of functions, the ones only have variables as patterns, and no
constructors, conversion is as simple as adding a fresh co-variable in the function’s pattern and returning
the function’s term to this co-variable.

Conv(𝜆𝑥.𝑀) = 𝜇(Conv(𝑥) ⋅ 𝛼.⟨Conv(𝑀) ∥ 𝛼⟩)
𝜆-functions that have a constructor as at least one of its patterns require more work. In the 𝜇 ̃𝜇-

calculus, constructors and observers in (co-)patterns can only contain variables. This holds for the call-
stack observer (⋅) as well. For this reason, we cannot convert a 𝜆-function 𝜆[𝐾(#»𝑥).𝑀] to a 𝜇-term
𝜇(𝐾(#»𝑥)⋅𝛼.⟨Conv(𝑀) ∥ 𝛼⟩), as𝐾(#»𝑥)⋅𝛼 is a nested pattern. This problem can be easily circumvented
by splitting the pattern into two separate parts. We first generate a 𝜇-term that expects a call-stack. This
call-stack contains a fresh variable 𝑦 and a fresh co-variable𝛼. We then generate a ̃𝜇-co-term that contains
the converted patterns and the converted terms of each branch in the 𝜆-function. The term from the call-
stack, 𝑦, is directly applied to the generated ̃𝜇-co-term. The command in the ̃𝜇-co-term connects the
converted 𝜆-term to the output of the call-stack, 𝛼.

Conv(𝜆[# »𝐾𝑖(#»𝑥𝑖).𝑀𝑖
𝑖
]) = 𝜇(𝑦 ⋅ 𝛼.⟨𝑦 ∥ ̃𝜇[# »

Conv(𝐾𝑖(#»𝑥𝑖)).⟨Conv(𝑀𝑖) ∥ 𝛼⟩
𝑖
]⟩)

Finally, we define the behaviour of Conv for function applications. In the 𝜆-calculus, computation
happens in function applications. In the 𝜇 ̃𝜇-calculus, this happens in commands. This complicates the
transformation algorithm, since function applications are terms, but commands are not. The generated
term will therefore be a 𝜇-term which takes a single fresh co-variable as its pattern. Its command uses
the left-hand side of the function application as the term, while it uses the right-hand side in a call-stack
as the co-term.

Conv(𝑀 𝑁) = 𝜇𝛼.⟨Conv(𝑀) ∥ Conv(𝑁) ⋅ 𝛼⟩
This approach of converting function applications to the𝜇 ̃𝜇-calculus can be problematic if there exists

a function application within the right-hand side of a function application. Let us for example define the
datatype 𝐿𝑖𝑠𝑡, and the function 𝑡𝑎𝑖𝑙, which takes a list and returns the same list, but without its first
element:

𝑑𝑎𝑡𝑎 𝐿𝑖𝑠𝑡 𝐴 𝑤ℎ𝑒𝑟𝑒 𝑁𝑖𝑙 ∶ 𝐿𝑖𝑠𝑡 𝐴 ∣ 𝐶𝑜𝑛𝑠 𝐴 (𝐿𝑖𝑠𝑡 𝐴) ∶ 𝐿𝑖𝑠𝑡 𝐴
𝑡𝑎𝑖𝑙 = 𝜆[(𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠).𝑥𝑠]

If we now apply 𝑡𝑎𝑖𝑙 twice in a row to a list 𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙), we expect to see 𝑁𝑖𝑙 as the result.
In the 𝜆-calculus, this result is achieved as follows:

𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))) ≻𝛽𝐹
𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙) ≻𝛽𝐹

𝑁𝑖𝑙

28 CONVERTING 𝜆-TERMS TO 𝜇 ̃𝜇-TERMS

𝑑𝑎𝑡𝑎 𝐿𝑖𝑠𝑡 𝐴 𝑤ℎ𝑒𝑟𝑒 𝑁𝑖𝑙 ∶ (⊢ 𝐿𝑖𝑠𝑡 𝐴 ∣) ∣ 𝐶𝑜𝑛𝑠 ∶ (𝐴, 𝐿𝑖𝑠𝑡 𝐴 ⊢ 𝐿𝑖𝑠𝑡 𝐴 ∣)
𝑡𝑎𝑖𝑙 = 𝜇(𝑦 ⋅ 𝛼.⟨𝑦 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩)
𝑐𝑎𝑙𝑙 = Conv(𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))))

= 𝜇𝛼.⟨𝑡𝑎𝑖𝑙 ∥ (𝜇𝛽.⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ 𝛽⟩) ⋅ 𝛼⟩

⟨𝑐𝑎𝑙𝑙 ∥ 𝛼⟩
≻𝜇

⟨𝑡𝑎𝑖𝑙 ∥ (𝜇𝛽.⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ 𝛽⟩) ⋅ 𝛼⟩
≻𝜇

⟨𝜇𝛽.⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ 𝛽⟩ ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩
≻𝜇

⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩
≻𝜇

⟨𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙) ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩]⟩
≻�̃�

⟨𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩
≻�̃�

⟨𝑁𝑖𝑙 ∥ 𝛼⟩

Figure 3.2: Evaluating 𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))) using a call-by-value strategy in the 𝜇 ̃𝜇-
calculus.

In the 𝜇 ̃𝜇-calculus, however, this is a much more complicated process. To see the evaluation steps, we
first need to convert the definitions to the 𝜇 ̃𝜇-calculus using Conv.

𝑑𝑎𝑡𝑎 𝐿𝑖𝑠𝑡 𝐴 𝑤ℎ𝑒𝑟𝑒 𝑁𝑖𝑙 ∶ (⊢ 𝐿𝑖𝑠𝑡 𝐴 ∣) ∣ 𝐶𝑜𝑛𝑠 ∶ (𝐴, 𝐿𝑖𝑠𝑡 𝐴 ⊢ 𝐿𝑖𝑠𝑡 𝐴 ∣)
𝑡𝑎𝑖𝑙 = 𝜇(𝑦 ⋅ 𝛼.⟨𝑦 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩)
𝑐𝑎𝑙𝑙 = Conv(𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))))

= 𝜇𝛼.⟨𝑡𝑎𝑖𝑙 ∥ (𝜇𝛽.⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ 𝛽⟩) ⋅ 𝛼⟩

Of course, we cannot directly evaluate 𝑐𝑎𝑙𝑙, since it is a term, and not a command. Instead, we will
evaluate the command ⟨𝑐𝑎𝑙𝑙 ∥ 𝛼⟩, for some arbitrary 𝛼. We expect the result to be ⟨𝑁𝑖𝑙 ∥ 𝛼⟩. There are
two evaluation strategies, meaning there are two different reduction paths from ⟨𝑐𝑎𝑙𝑙 ∥ 𝛼⟩. Figure 3.2
shows the successful evaluation from ⟨𝑐𝑎𝑙𝑙 ∥ 𝛼⟩ to ⟨𝑁𝑖𝑙 ∥ 𝛼⟩ using the call-by-value strategy. Evaluating
the command using the call-by-name strategy, however, never reaches its end goal ⟨𝑁𝑖𝑙 ∥ 𝛼⟩. The first

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 29

two reduction steps using call-by-name are the same as the first two steps when using call-by-value.

⟨𝑐𝑎𝑙𝑙 ∥ 𝛼⟩
≻𝜇

⟨𝑡𝑎𝑖𝑙 ∥ (𝜇𝛽.⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ 𝛽⟩) ⋅ 𝛼⟩
≻𝜇

⟨𝜇𝛽.⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ 𝛽⟩ ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩

At this point, evaluation gets stuck. We are using call-by-name, meaning that we prioritise ̃𝜇-reductions
over 𝜇-reductions. The ̃𝜇-co-term in question expects a 𝐶𝑜𝑛𝑠 constructor as its argument, but the term
that is supplied to it is 𝜇𝛽.⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ 𝛽⟩, a 𝜇-term.

To get around this problem, we can alter the definition of Conv for function applications. Instead of
generating terms that contain nested computations, we make sure function applications never contain
another function application on the right-hand side. To do this, we need to reverse the order in which
computations happen. The innermost computation needs to happen first, after which the result is passed
to the second innermost computation, et cetera. To do this, we extract all the function applications in the
application thatwe are trying to convert to the𝜇 ̃𝜇-calculus, and create a call-stack of all the left-hand sides
in the extracted function applications. For a nested function application term 𝑀1 (𝑀2 (… (𝑀𝑛 𝑁))),
where 𝑁 is not a function application, this is done as follows:

Conv(𝑀1 (𝑀2 (… (𝑀𝑛 𝑁)))) =
𝜇𝛼.⟨Conv(𝑀𝑛) ∥ Conv(𝑁) ⋅ ̃𝜇𝑥1.⟨Conv(𝑀𝑛−1) ∥ 𝑥1 ⋅ … ̃𝜇𝑥𝑛.⟨𝑀1 ∥ 𝑥𝑛 ⋅ 𝛼⟩⟩⟩

Graphically, we can see that a tree of function applications is essentially turned upside down into a
tree of terms and co-terms, connected by commands and call-stacks.

⋮

𝑁𝑀𝑛

𝑀3

𝑀2

𝑀1

𝜇𝛼

𝑁 ⋅ ̃𝜇𝑥1

𝑥1 ⋅ ̃𝜇𝑥2

⋮

𝑥𝑛 ⋅ 𝛼𝑀1

𝑀𝑛−1

𝑀𝑛

We can use this new rule for our earlier example, 𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))):
Conv(𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))))

= 𝜇𝛼.⟨Conv(𝑡𝑎𝑖𝑙) ∥ Conv(𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙)) ⋅ ̃𝜇𝑥.⟨Conv(𝑡𝑎𝑖𝑙) ∥ 𝑥 ⋅ 𝛼⟩
Figure 3.3 shows the reduction steps for this new definition for both call-by-value and call-by-name eval-
uation strategies.

3.1.1 Typechecking
We now have a complete definition for Conv. In this section we will prove that the conversion from 𝜆-
calculus terms to 𝜇 ̃𝜇-calculus terms by Conv is type-safe. In essence, this means that for any 𝜆-calculus

30 CONVERTING 𝜆-TERMS TO 𝜇 ̃𝜇-TERMS

𝑡𝑎𝑖𝑙 = 𝜇(𝑦 ⋅ 𝛼.⟨𝑦 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩)
𝑐𝑎𝑙𝑙 = Conv(𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))))

= 𝜇𝛼.⟨𝑡𝑎𝑖𝑙 ∥ 𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙) ⋅ ̃𝜇𝑥.⟨𝑡𝑎𝑖𝑙 ∥ 𝑥 ⋅ 𝛼⟩

⟨𝑐𝑎𝑙𝑙 ∥ 𝛼⟩
≻𝜇

⟨𝑡𝑎𝑖𝑙 ∥ 𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙) ⋅ ̃𝜇𝑥.⟨𝑡𝑎𝑖𝑙 ∥ 𝑥 ⋅ 𝛼⟩
≻𝜇

⟨𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙) ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ ̃𝜇𝑥.⟨𝑡𝑎𝑖𝑙 ∥ 𝑥 ⋅ 𝛼⟩⟩]⟩
≻�̃�

⟨𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙 ∥ ̃𝜇𝑥.⟨𝑡𝑎𝑖𝑙 ∥ 𝑥 ⋅ 𝛼⟩⟩
≻�̃�

⟨𝑡𝑎𝑖𝑙 ∥ (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙) ⋅ 𝛼⟩
≻𝜇

⟨𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ 𝛼⟩]⟩
≻�̃�

⟨𝑁𝑖𝑙 ∥ 𝛼⟩

Figure 3.3: Evaluating 𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))) using the improved version of Conv that
generates call-stacks for nested function applications. These reduction steps are the same for both call-by-
name and call-by-value evaluation.

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 31

term𝑀 with type 𝐴, the result of Conv(𝑀) must have type 𝐴 too. Terms come in four different shapes
in the 𝜆-calculus: variables, 𝜆-functions, function applications and constructors. Terms of all shapes will
be proven to be type-safe.

First, we convert variables. Variables are a special case, because their types cannot be proven without
any context. In both the 𝜆-calculs and the 𝜇 ̃𝜇-calculus, it is not possible to prove that a variable 𝑥 has
the type 𝐴 without some form of context. In the 𝜆-calculus, this context is provided via the → 𝐼 rules,
while in the𝜇 ̃𝜇-calculus, the context is the input environmentΓ. Because of this, we canmake no claims
about the type of an arbitrary variable 𝑥 in the 𝜆-calculus. Likewise, we cannot make any claims about
the type of the result of Conv(𝑥) in the 𝜇 ̃𝜇-calculus either. However, not knowing the type of 𝑥 in either
calculus means that all type information is retained during the conversion.

Secondly, we convert constructors. We will convert an arbitrary constructor 𝐾𝑖(
»𝑀) with datatype

declaration 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾 #»𝐴 ∶ 𝐹(#»𝑋) and type 𝐹(#»𝐵). First, we will transform the datatype dec-

laration to the format of the𝜇 ̃𝜇-calculus: 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾𝑖 ∶ # »𝐴𝑖𝑗
𝑗 ⊢ 𝐹(#»𝑋) ∣

𝑖
. We can now convert

𝐾𝑖(
»𝑀) to the 𝜇 ̃𝜇-calculus by using Conv. Conv(𝐾𝑖(

»𝑀)) = 𝐾𝑖(∅, # »

Conv(𝑀𝑗)
𝑗). Finally, we need to

prove that the constructor’s type remains the same after conversion to the 𝜇 ̃𝜇-calculus. The𝐹𝐼 rule tells
us that we can only reach the conclusion that𝐾𝑖(

»𝑀) has type𝐹(#»𝐵)when each term𝑀𝑗 in
»𝑀 has type

𝐴𝑖𝑗
»{𝐵/𝑋}. Similarly, according to the 𝐹𝑅𝐾𝑖

rule, each term Conv(𝑀𝑗) must have type 𝐴𝑖𝑗
»{𝐵/𝑋}

before we can claim 𝐾𝑖(∅, # »

Conv(𝑀𝑗)
𝑗
) has type 𝐹(#»𝐵).

»

𝑀𝑗 ∶ 𝐴𝑖𝑗
»{𝐵/𝑋}

𝑗

𝐹𝐼
𝐾𝑖(

»𝑀) ∶ 𝐹(#»𝐵)

»

⊢ Conv(𝑀𝑗) ∶ 𝐴𝑖𝑗
»{𝐵/𝑋} ∣

𝑗

𝐹𝑅𝐾𝑖

⊢ 𝐾𝑖(∅, # »

Conv(𝑀𝑗)
𝑗
) ∶ 𝐹 (#»𝐵) ∣

We now have reduced the problem to proving for each of 𝑀𝑗 that their types do not change when trans-
forming them to the 𝜇 ̃𝜇-calculus using Conv. We have therefore inductively proven that the transforma-
tion of constructors from the 𝜆-calculus to the 𝜇 ̃𝜇-calculus is type-safe.

Next, we will do the same for 𝜆-functions. The result of using Conv on a 𝜆-function depends on
the patterns in the function. For a single variable pattern, the result is simpler that for one or more
patterns that contain a constructor. Let us first look at the former case: a lambda function 𝜆𝑥.𝑀 with
type 𝐴 → 𝐵. the → 𝐼𝑥 rule tells us that to prove 𝜆𝑥.𝑀 ∶ 𝐴 → 𝐵, we need to prove 𝑀 ∶ 𝐵, and
are allowed to use a verification rule that confirms 𝑥 ∶ 𝐴. The 𝜇 ̃𝜇-calculus version of 𝜆𝑥.𝑀 ∶ 𝐴 is
𝜇(𝑥 ⋅𝛼.⟨Conv(𝑀) ∥ 𝛼⟩), with the usual co-datatype declaration of functions. The𝐺𝑅 rule can be used
to reduce the judgement to ⟨Conv(𝑀) ∥ 𝛼⟩ ∶ (𝑥 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐵). The 𝐶𝑢𝑡 rule splits this command into
its term and its co-term. Both need to have the same type, 𝐵. The 𝑉 𝐿 rule is used to verify the co-term
branch. What is left is the judgement 𝑥 ∶ 𝐴 ⊢ Conv(𝑀) ∶ 𝐵 ∣. This means we need to prove that
the 𝜇 ̃𝜇-calculus version of 𝑀 has type 𝐵, and we know that 𝑥 has type 𝐴. This premise is equivalent to
the one we still needed to prove for the 𝜆-calculus, meaning that 𝜆-functions with a single variable as its
pattern can be safely converted to the 𝜇 ̃𝜇-calculus.

𝑥𝑥 ∶ 𝐴
⋮

𝑀 ∶ 𝐵 → 𝐼𝑥𝜆𝑥.𝑀 ∶ 𝐴 → 𝐵

𝑥 ∶ 𝐴 ⊢ Conv(𝑀) ∶ 𝐵 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝐵 ⊢ 𝛼 ∶ 𝐵
𝐶𝑢𝑡⟨Conv(𝑀) ∥ 𝛼⟩ ∶ (𝑥 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐵)

𝐺𝑅⊢ 𝜇(𝑥 ⋅ 𝛼.⟨Conv(𝑀) ∥ 𝛼⟩) ∶ 𝐴 → 𝐵 ∣
The strategy for proving the type-safety of the conversion of 𝜆-functions one or more constructors

in its patterns is similar. For a given declaration 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾 #»𝐴 ∶ 𝐹(#»𝑋) and a 𝜆-function
𝜆[# »𝐾𝑖(#»𝑥𝑖).𝑀𝑖

𝑖] with type 𝐹(#»𝐶) → 𝐵, we can use the → 𝐼𝐾𝑖
rule. After applying this rule, we need

to prove that every branch’s output term 𝑀𝑖 is of type 𝐵. For each of those branches, we get access to
verification functions for all variables 𝑥𝑖𝑗 in the pattern of the branch.

32 CONVERTING 𝜆-TERMS TO 𝜇 ̃𝜇-TERMS

»
»

»

𝑥𝑖𝑗 ∶ 𝐴𝑖𝑗
»{𝐶/𝑋}
⋮

𝑀𝑖 ∶ 𝐵

𝑥𝑖𝑗
𝑗𝑖

→ 𝐼𝐾𝑖𝜆[# »𝐾𝑖(#»𝑥𝑖).𝑀𝑖
𝑖] ∶ 𝐹 (#»𝐶) → 𝐵

Conv transforms this 𝜆-function into 𝜇(𝑦 ⋅ 𝛼.⟨𝑦 ∥ ̃𝜇[# »𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛼⟩
𝑖
]⟩). Just like for 𝜆-

functions with a single variable as its pattern, we can consecutively apply the 𝐺𝑅 and the 𝐶𝑢𝑡 rule.
The 𝑉 𝑅 rule is used to verify the term side of the command. This leaves us with the co-term

̃𝜇[# »𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛼⟩𝑖], which should have the type 𝐹(#»𝐶). To further reduce this judgement,
we apply the 𝐹𝐿 rule. As a result of this, we need to prove that for each branch 𝑖 in the ̃𝜇-co-term,
⟨Conv(𝑀𝑖) ∥ 𝛼⟩ is type-correct. As we already know that 𝛼 has type 𝐵, type-correct in this instance
means that Conv(𝑀𝑖) must have type 𝐵.

𝑉 𝑅
𝑦 ∶ 𝐹(#»𝐶) ⊢ 𝑦 ∶ 𝐹(#»𝐶) ∣

»
»𝑥𝑖𝑗 ∶ 𝐴𝑖𝑗{𝐶/𝑥}𝑗 ⊢ Conv(𝑀𝑖) ∶ 𝐵 ∣

𝑖 𝑉 𝐿∣ 𝛼 ∶ 𝐵 ⊢ 𝛼 ∶ 𝐵
𝐶𝑢𝑡

»

⟨Conv(𝑀𝑖) ∥ 𝛼⟩ ∶ (# »𝑥𝑖𝑗 ∶ 𝐴𝑖𝑗{𝐶/𝑥}𝑗 ⊢ 𝛼 ∶ 𝐵)
𝑖

𝐹𝐿
∣ ̃𝜇[# »𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛼⟩𝑖] ∶ 𝐹 (#»𝐶) ⊢ 𝛼 ∶ 𝐵

𝐶𝑢𝑡
⟨𝑦 ∥ ̃𝜇[# »𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛼⟩𝑖]⟩ ∶ (𝑦 ∶ 𝐹 (#»𝐶) ⊢ 𝛼 ∶ 𝐵)

𝐺𝑅
⊢ 𝜇(𝑦 ⋅ 𝛼.⟨𝑦 ∥ ̃𝜇[# »𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛼⟩

𝑖
]⟩) ∶ 𝐹 (#»𝐶) → 𝐵 ∣

Once again, the remaining premises for the 𝜇 ̃𝜇-calculus are equivalent to those remaining in the proof
tree for the 𝜆-calculus.

Finally, we will convert function applications to the 𝜇 ̃𝜇-calculus and prove type-safety. Recall how
nested function applications alter the results of Conv. For this reason, we will use the term
𝑀𝑛 (𝑀𝑛−1 (… (𝑀1 𝑁))) for this proof. Assuming we want to prove this term has type 𝐴𝑛, we can
repeatedly use the → 𝐸 rule. This rule tells us that for our term, 𝑀𝑛 must be of type 𝐴𝑛−1 → 𝐴𝑛,
while (𝑀𝑛−1 (… (𝑀1 𝑁))) must have type 𝐴𝑛−1. Applying this rule once more tells us that 𝑀𝑛−1
must be of type𝐴𝑛−2 → 𝐴𝑛−1, and (… (𝑀1 𝑁)) of type𝐴𝑛−2. Repeating this process until we can no
longer continue will eventually tell us that every 𝑀𝑖 must have type 𝐴𝑖−1 → 𝐴𝑖. The innermost input
term, 𝑁 , is supplied to 𝑀1, which must have type 𝐴0 → 𝐴1. 𝑁 must therefore be of type 𝐴0.

𝑀𝑛 ∶ 𝐴𝑛−1 → 𝐴𝑛

𝑀𝑛−1 ∶ 𝐴𝑛−2 → 𝐴𝑛−1

𝑀1 ∶ 𝐴0 → 𝐴1 𝑁 ∶ 𝐴0 → 𝐸𝑀1 𝑁 ∶ 𝐴1
⋮

→ 𝐸𝑀𝑛−1 (… (𝑀1 𝑁)) ∶ 𝐴𝑛−1 → 𝐸𝑀𝑛 (𝑀𝑛−1 (… (𝑀1 𝑁))) ∶ 𝐴𝑛
Transforming𝑀𝑛 (𝑀𝑛−1 (… (𝑀1 𝑁))) to the𝜇 ̃𝜇-calculus usingConv yields𝜇𝛼.⟨Conv(𝑀1) ∥ Conv(𝑁)⋅

̃𝜇𝑥1.⟨Conv(𝑀2) ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨Conv(𝑀𝑛) ∥ 𝑥𝑛−1 ⋅𝛼⟩⟩⟩⟩. For the sake of simplicity and read-
ability, we will refer to this term as 𝜇𝛼.⟨𝑀1 ∥ 𝑁 ⋅ ̃𝜇𝑥1.⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩⟩,
meaning we remove the mention of Conv. Typechecking this can be done by first using the the𝐴𝑅 and
𝑐𝑢𝑡 rules. This tells us that 𝑀1 needs to be of type 𝐴0 → 𝐴1, and that the co-term supplied to 𝑀1,
𝑁 ⋅ ̃𝜇𝑥1.⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩, must be of the same type.

⊢ 𝑀1 ∶ 𝐴0 → 𝐴1 ∣ ∣ 𝑁 ⋅ ̃𝜇𝑥1.⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩
∶ 𝐴0 → 𝐴1 ⊢ 𝛼 ∶ 𝐴𝑛 𝐶𝑢𝑡⟨𝑀1 ∥ 𝑁 ⋅ ̃𝜇𝑥1.⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩⟩ ∶ (⊢ 𝛼 ∶ 𝐴𝑛)

𝐴𝑅⊢ 𝜇𝛼.⟨𝑀1 ∥ 𝑁 ⋅ ̃𝜇𝑥1.⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩⟩ ∶ 𝐴𝑛 ∣

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 33

From this point on, we can start recursively applying the 𝐺𝐿𝑂𝑖
rule, then applying the 𝐴𝐿 rule on the

co-term we get out of the 𝐺𝐿𝑂𝑖
rule, and finally applying the 𝐶𝑢𝑡 rule. This leaves us with three new

premises to prove. Knowing that the last term we saw was 𝑀𝑖, 𝑀1 in this case, we now need to prove
that the input to this function has type 𝐴𝑖−1. We also add the next function term, 𝑀𝑖+1, which has type
𝐴𝑖+1 → 𝐴𝑖+2. Finally, we also need to prove the co-term supplied to 𝑀𝑖+1 has the same type.

⊢ 𝑁 ∶ 𝐴0 ∣

⊢ 𝑀2 ∶ 𝐴1 → 𝐴2 ∣ 𝑥1 ∶ 𝐴1 ∣ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛
∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩ ∶ 𝐴1 → 𝐴2 ⊢ 𝛼 ∶ 𝐴𝑛 𝐶𝑢𝑡⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩ ∶ (𝑥1 ∶ 𝐴1 ⊢ 𝛼 ∶ 𝐴𝑛)

𝐴𝐿∣ ̃𝜇𝑥1.⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩ ∶ 𝐴1 ⊢ 𝛼 ∶ 𝐴𝑛 𝐺𝐿𝑂𝑖∣ 𝑁 ⋅ ̃𝜇𝑥1.⟨𝑀2 ∥ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩ ∶ 𝐴0 → 𝐴1 ⊢ 𝛼 ∶ 𝐴𝑛

We can apply this same strategy once again, and keep doing this until it is no longer possible to do so.
Each step adds a new premise that needs to be proven: 𝑀𝑖+1.

𝑉 𝑅𝑥1 ∶ 𝐴1 ⊢ 𝑥1 ∶ 𝐴1

⊢ 𝑀3 ∶ 𝐴2 → 𝐴3 ∣ 𝑥2 ∶ 𝐴2 ∣ 𝑥2 ⋅ ̃𝜇𝑥3.⟨… ⟩
∶ 𝐴2 → 𝐴3 ⊢ 𝛼 ∶ 𝐴𝑛 𝐶𝑢𝑡⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩ ∶ (𝑥2 ∶ 𝐴2 ⊢ 𝛼 ∶ 𝐴𝑛)

𝐴𝐿∣ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩ ∶ 𝐴2 ⊢ 𝛼 ∶ 𝐴𝑛 𝐺𝐿𝑂𝑖𝑥1 ∶ 𝐴1 ∣ 𝑥1 ⋅ ̃𝜇𝑥2.⟨… ̃𝜇𝑥𝑛−1.⟨𝑀𝑛 ∥ 𝑥𝑛−1 ⋅ 𝛼⟩⟩⟩ ∶ 𝐴1 → 𝐴2 ⊢ 𝛼 ∶ 𝐴𝑛

At some point, it is no longer possible to apply these steps, because the judgement that needs to be proven
will be 𝑥𝑛−1 ∶ 𝐴𝑛−1 ∣ 𝑥𝑛−1 ⋅ 𝛼 ∶ 𝐴𝑛−1 → 𝐴𝑛 ⊢ 𝛼 ∶ 𝐴𝑛. This final step can be completed using the
𝐺𝐿𝑂𝑖

rule, and using the two verification rules on the results.

𝑉 𝑅𝑥𝑛−1 ∶ 𝐴𝑛−1 ⊢ 𝑥𝑛−1 ∶ 𝐴𝑛−1 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝐴𝑛 ⊢ 𝛼 ∶ 𝐴𝑛 𝐺𝐿𝑂𝑖𝑥𝑛−1 ∶ 𝐴𝑛−1 ∣ 𝑥𝑛−1 ⋅ 𝛼 ∶ 𝐴𝑛−1 → 𝐴𝑛 ⊢ 𝛼 ∶ 𝐴𝑛

After this entire process, there are a number of judgements that have not been proven. These are the
judgements deciding the type of the innermost input term 𝑁 , and all the functions

»𝑀 . These coincide
exactly with the premises left open-ended in the 𝜆-calculus. We can therefore safely conclude that func-
tion applications can be transformed to the 𝜇 ̃𝜇-calculus in a type-safe manner.

3.1.2 Evaluation

In addition to typechecking, it is important that 𝜆-calculus terms do not change their meaning when
they are converted to the 𝜇 ̃𝜇-calculus. The term that they evaluate to must be the same in both calculi.
However, as terms by themselves can often not be fully evaluated in the 𝜇 ̃𝜇-calculus, we want the eval-
uation of a 𝜆-calculus term 𝑀 to be the same in a 𝜇 ̃𝜇-calculus command with a fresh co-variable 𝛼:
⟨Conv(𝑀) ∥ 𝛼⟩. Formally, we want to prove that if 𝑀 evaluates to 𝑁 , then ⟨Conv(𝑀) ∥ 𝛼⟩ evaluates
to ⟨Conv(𝑁) ∥ 𝛼⟩ under both evaluation strategies.

The evaluation of variables, constructors and 𝜆-functions are trivial in this case. Neither can be eval-
uated further in the 𝜆-calculus, which means 𝑀 is equivalent to 𝑁 . By proxy, Conv(𝑀) is equivalent
to Conv(𝑁), and therefore ⟨Conv(𝑀) ∥ 𝛼⟩ is already evaluated to ⟨Conv(𝑁) ∥ 𝛼⟩.

Function applications are the only terms that can be 𝛽-reducable in the 𝜆-calculus. These applica-
tions come in two different shapes, according to the two 𝛽-reduction rules:

𝜆𝑥.𝑀 𝑁 ≻𝛽𝑥
𝑀{𝑁/𝑥}

𝜆[⋯ ∣ 𝐾𝑖(#»𝑥).𝑀𝑖 ∣ …] 𝐾𝑖(
#»𝑁) ≻𝛽𝐹

𝑀𝑖{
»𝑁/𝑥}

34 NESTED (CO-)PATTERNS

First, we will check the former. The result of Conv(𝜆𝑥.𝑀 𝑁) is 𝜇𝛼.⟨𝜇(𝑥 ⋅ 𝛽.⟨Conv(𝑀) ∥ 𝛽⟩) ∥
Conv(𝑁) ⋅ 𝛼⟩. In a command, we can evaluate this term as follows:

⟨𝜇𝛼.⟨𝜇(𝑥 ⋅ 𝛽.⟨Conv(𝑀) ∥ 𝛽⟩) ∥ Conv(𝑁) ⋅ 𝛼⟩ ∥ 𝛼⟩
≻𝜇

⟨𝜇(𝑥 ⋅ 𝛽.⟨Conv(𝑀) ∥ 𝛽⟩) ∥ Conv(𝑁) ⋅ 𝛼⟩
≻𝛽𝐺

⟨Conv(𝑁) ∥ ̃𝜇𝑥.⟨𝜇𝛽.⟨Conv(𝑀) ∥ 𝛽⟩ ∥ 𝛼⟩⟩
≻�̃�

⟨𝜇𝛽.⟨Conv(𝑀) ∥ 𝛽⟩ ∥ 𝛼⟩{Conv(𝑁)/𝑥}
≻𝜇

⟨Conv(𝑀) ∥ 𝛼⟩{Conv(𝑁)/𝑥}

This final result corresponds to the evalation in the 𝜆-calculus.
Next, we do the same for type application on a 𝜆-function with a constructor as its argument. We use

Conv to convert 𝜆[⋯ ∣ 𝐾𝑖(#»𝑥).𝑀𝑖 ∣ …] 𝐾𝑖(
#»𝑁) to 𝜇𝛼.⟨𝜇𝑦 ⋅ 𝛽.⟨𝑦 ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛽⟩ ∣

…]⟩ ∥ 𝐾𝑖(
»

Conv(𝑁𝑗)
𝑗) ⋅ 𝛼⟩. This term can be evaluated in a command as follows:

⟨𝜇𝛼.⟨𝜇𝑦 ⋅ 𝛽.⟨𝑦 ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛽⟩ ∣ …]⟩ ∥ 𝐾𝑖(
»

Conv(𝑁𝑗)
𝑗) ⋅ 𝛼⟩ ∥ 𝛼⟩

≻𝜇

⟨𝜇𝑦 ⋅ 𝛽.⟨𝑦 ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛽⟩ ∣ …]⟩ ∥ 𝐾𝑖(
»

Conv(𝑁𝑗)
𝑗) ⋅ 𝛼⟩

≻𝛽𝐺

⟨𝐾𝑖(
»

Conv(𝑁𝑗)
𝑗) ∥ ̃𝜇𝑦.⟨𝜇𝛽.⟨𝑦 ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛽⟩ ∣ …]⟩ ∥ 𝛼⟩⟩

≻�̃�

⟨𝜇𝛽.⟨𝐾𝑖(
»

Conv(𝑁𝑗)
𝑗) ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛽⟩ ∣ …]⟩ ∥ 𝛼⟩

≻𝜇

⟨𝐾𝑖(
»

Conv(𝑁𝑗)
𝑗) ∥ ̃𝜇[⋯ ∣ 𝐾𝑖(#»𝑥).⟨Conv(𝑀𝑖) ∥ 𝛼⟩ ∣ …]⟩

≻𝛽𝐹

⟨ # »

Conv(𝑁𝑗)
𝑗 ∥ ̃𝜇 #»𝑥 .⟨Conv(𝑀𝑖) ∥ 𝛼⟩⟩

»≻�̃�

⟨Conv(𝑀𝑖) ∥ 𝛼⟩{ # »

Conv(𝑁)/𝑥}

Like the earlier case, function application on 𝜆-functions that take constructors as arguments evaluate
to the same term in both calculi. We can therefore conclude that the generated 𝜇 ̃𝜇-calculus terms from
Conv can be safely evaluated, as they reduce to the same term as they would in the 𝜆-calculus.

3.2 Nested (co-)patterns

So far, the 𝜇 ̃𝜇-calculus has only supported simple (co-)patterns. A simple (co-)pattern is a (co-)pattern
which exists of either a (co-)variable, or a constructor or observer towhich all arguments are (co-)variables.
While 𝜇-terms and ̃𝜇-terms solely using these simple (co-)patterns are relatively easy to evaluate, they

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 35

can also become verbose. To avoid this, we add support nested (co-)patterns. This means that construc-
tors and observers in (co-)patterns can now contain additional constructors and observers, instead of just
(co-)variables.

𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝑥 ∣ 𝐾(#»̃𝑝 , #»𝑝) ̃𝑝 ∈ 𝐶𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝛼 ∣ 𝑂[#»𝑝 , #»̃𝑝]

These nested (co-)patterns allowmore readable (co-)terms to be written. For example, let us compare
our previous definition of the function𝑚𝑎𝑝 to a new definition that nested (co-)patterns allow us towrite.

map ∶ (𝐴 → 𝐵) → 𝐿𝑖𝑠𝑡 𝐴 → 𝐿𝑖𝑠𝑡 𝐵
map = 𝜇(𝑓 ⋅ 𝛼.⟨𝜇(𝑦 ⋅ 𝛽.⟨𝑦 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑓 ∥ 𝑥 ⋅ ̃𝜇𝑧.⟨𝑚𝑎𝑝 ∥ 𝑓 ⋅ 𝑥𝑠 ⋅ ̃𝜇𝑧𝑠.

⟨𝐶𝑜𝑛𝑠 𝑧 𝑧𝑠 ∥ 𝛽⟩⟩⟩
∣ 𝑁𝑖𝑙.⟨𝑁𝑖𝑙 ∥ 𝛽⟩]⟩) ∥ 𝛼⟩)

map = 𝜇(𝑓 ⋅ 𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼.⟨𝑓 ∥ 𝑥 ⋅ ̃𝜇𝑦.⟨𝑚𝑎𝑝 ∥ 𝑓 ⋅ 𝑥𝑠 ⋅ ̃𝜇𝑧.⟨𝐶𝑜𝑛𝑠 𝑦 𝑧 ∥ 𝛼⟩⟩⟩

∣ 𝑓 ⋅ 𝑁𝑖𝑙 ⋅ 𝛼.⟨𝑁𝑖𝑙 ∥ 𝛼⟩)

We are now able to write 𝑓 ⋅ 𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼 as a co-pattern, whereas before, it was necessary to split this
co-pattern into pieces: 𝑓 ⋅ 𝛼, 𝑦 ⋅ 𝛽 and 𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠. Reducing this to a single co-pattern also reduces the
number of commands in the term, resulting in a much more concise and readable definition.

Similarly, nested patterns can be added to the 𝜆-calculus lc. Once both the 𝜆-calculus and the 𝜇 ̃𝜇-
calculus support nested patterns, we can simplify one of the cases in Conv. Previously, 𝜆-functions that
have a constructor in their patterns were converted to the 𝜇 ̃𝜇-calculus using the following rule:

Conv(𝜆[# »𝐾𝑖(#»𝑥𝑖).𝑀𝑖
𝑖
]) = 𝜇(𝑦 ⋅ 𝛼.⟨𝑦 ∥ ̃𝜇[# »

Conv(𝐾𝑖(#»𝑥𝑖)).⟨Conv(𝑀𝑖) ∥ 𝛼⟩
𝑖
]⟩)

Now that nested patterns are supported, this can be simplified by removing the inner ̃𝜇-co-term, and
instead placing the converted patterns inside a call-stack pattern:

Conv(𝜆[# »𝐾𝑖(#»𝑝).𝑀𝑖
𝑖
]) = 𝜇(# »

Conv(𝐾𝑖(#»𝑝)) ⋅ 𝛼.⟨Conv(𝑀𝑖) ∥ 𝛼⟩
𝑖
)

We could use the existing 𝛽-reduction rules in the 𝜇 ̃𝜇-calculus to evaluate nested (co-)patterns, but
doing so can lead to problematic situations. As an example, we will apply an arbitrary function 𝑔 to each
element in an empty list 𝑁𝑖𝑙, using the definition of 𝑚𝑎𝑝 with nested co-patterns. We will use a fresh
variable 𝑦 as the final co-term in the command.

⟨𝜇(𝑓 ⋅ 𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼.⟨… ⟩ ∣ 𝑓 ⋅ 𝑁𝑖𝑙 ⋅ 𝛼.⟨… ⟩) ∥ 𝑔 ⋅ 𝑁𝑖𝑙 ⋅ 𝛾⟩

We can rewrite this command using the 𝛽𝐺 rule. However, this rule does not match patterns recursively,
but simply rewrites a command whenever a 𝜇-term on the left side contains a co-pattern with the same
observer in it as the co-term on the right side of the command.

⟨𝜇(⋯ ∣ 𝑂𝑖[#»𝑝 , #»̃𝑝].𝑐𝑖 ∣ …) ∥ 𝑂𝑖[#»𝑣 , #»𝑒]⟩ ≻𝛽𝐺
⟨ #»𝑣 ∥ ̃𝜇 #»𝑝 .⟨𝜇 #»̃𝑝 .𝑐𝑖 ∥ #»𝑒 ⟩⟩

This causes the previous command to be rewritten to the following command:

⟨𝑔 ∥ ̃𝜇𝑓.⟨𝜇(𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼.⟨… ⟩) ∥ 𝑁𝑖𝑙 ⋅ 𝛾)⟩⟩

This happens because both cases in the original 𝜇-term contain a call-stack as its co-pattern. The 𝛽𝐺 rule
therefore matches the co-term 𝑔 ⋅ 𝑁𝑖𝑙 ⋅ 𝛾 on the first case that it matches on. If we continue evaluating

36 NESTED (CO-)PATTERNS

the command, we get the following steps:

⟨𝑔 ∥ ̃𝜇𝑓.⟨𝜇(𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼.⟨… ⟩) ∥ 𝑁𝑖𝑙 ⋅ 𝛾)⟩⟩
≻�̃�

⟨𝜇(𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼.⟨… ⟩) ∥ 𝑁𝑖𝑙 ⋅ 𝛾⟩
≻𝛽𝐺

⟨𝑁𝑖𝑙 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝜇𝛼.⟨… ⟩ ∥ 𝛾⟩]⟩

From this point, evaluation cannot continue, because we have𝑁𝑖𝑙 as a term, while the ̃𝜇-co-term on the
right side of the command only accepts 𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.

This is not the behaviour that is expected. To combat this, we could alter the 𝛽-reduction rules to
require nested (co-)patterns to recursively match any incoming (co-)terms. This would work fine for our
earlier example. ⟨𝑚𝑎𝑝 ∥ 𝑔 ⋅ 𝑁𝑖𝑙 ⋅ 𝛾⟩ would simply evaluate to ⟨𝑁𝑖𝑙 ∥ 𝛾⟩ in one single reduction step.

Unfortunately, this approach can lead to problems as well. If a sub-(co-)term is not fully evaluated
yet, this can cause mistakes in the (co-)pattern matching. As an example, we will write a function 𝑛𝑜𝑡,
which takes a boolean parameter and returns its inverse. To do so, we first need to declare the boolean
datatype.

𝑑𝑎𝑡𝑎 𝐵𝑜𝑜𝑙 𝑤ℎ𝑒𝑟𝑒 𝑇 𝑟𝑢𝑒 ∶ (⊢ 𝐵𝑜𝑜𝑙 ∣) ∣ 𝐹𝑎𝑙𝑠𝑒 ∶ (⊢ 𝐵𝑜𝑜𝑙 ∣)

With this definition, we can define 𝑛𝑜𝑡.

𝑛𝑜𝑡 ∶ 𝐵𝑜𝑜𝑙 → 𝐵𝑜𝑜𝑙
𝑛𝑜𝑡 = 𝜇(𝑇 𝑟𝑢𝑒 ⋅ 𝛼.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ ∣ 𝐹𝑎𝑙𝑠𝑒 ⋅ 𝛼.⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩)

Now, applying an unevaluated term that should evaluate to either 𝑇 𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒 to this function can
lock the evaluation context. As an example, let us apply the term 𝜇𝛽.⟨𝑇 𝑟𝑢𝑒 ∣ 𝛽⟩ to this function.

⟨𝜇(𝑇 𝑟𝑢𝑒 ⋅ 𝛼.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ ∣ 𝐹𝑎𝑙𝑠𝑒 ⋅ 𝛼.⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩) ∥ 𝜇𝛽.⟨𝑇 𝑟𝑢𝑒 ∣ 𝛽⟩ ⋅ 𝛾⟩

We cannot evaluate this, since 𝜇𝛽.⟨𝑇 𝑟𝑢𝑒 ∣ 𝛽⟩ cannot be matched by either 𝑇 𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒.

3.2.1 Expanding (co-)patterns

Instead of recursively (co-)pattern matching during evaluation, we allow (co-)terms to be written with
nested (co-)patterns, but rewrite all of the (co-)terms to ones that only contain simple patterns. This
process is called pattern expansion. Pattern expansion is a technique of simplifying terms often used in
languages based on the 𝜆-calculus that can be implemented for the 𝜇 ̃𝜇-calculus too.

The standard algorithm to compute such transformations has beenAugustsson’s algorithmC [Aug85]
for many years. Augustsson originally developed this algorithm for his own Lazy ML compiler [Aug84].
ML is based on the 𝜆-calculus, of course, but with some slight alterations, algorithm C can be used for
the 𝜇 ̃𝜇-calculus as well. From this point on, Augustsson’s algorithm will be referred to as C, while the
transformation algorithm for the 𝜇 ̃𝜇-calculus will be referred to as C𝜇.

In the 𝜆-calculus, every object is a term, including computations. C therefore produces terms. In
the 𝜇 ̃𝜇-calculus, however, we can also write co-terms and commands. Since terms and co-terms cannot
interact with each other by themselves, algorithm C𝜇 produces commands.

Both C and C𝜇 are functions that take three input parameters. For C, these three arguments are a list
of terms, a list of tuples of a list of patterns and a term, and a default term. For C𝜇, the three arguments
are a list of expressions, which can be both terms and co-terms, a list of tuples of a list of (co-)patterns and
a command, and a default command. Both functions are expressed below.

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 37

𝑀 ∈ 𝑇 𝑒𝑟𝑚
𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
C(# »𝑀, # »(#»𝑝 , 𝑀), 𝑀) ∶ 𝑀

𝑣 ∈ 𝑇 𝑒𝑟𝑚 𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚
𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ̃𝑝 ∈ 𝐶𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑒𝑥𝑝 ∶∶= 𝑣 ∣ 𝑒 𝑞 ∶∶= 𝑝 ∣ ̃𝑝
𝑐 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑
C𝜇(# »𝑒𝑥𝑝, # »(#»𝑞 , 𝑐), 𝑐) ∶ 𝑐

Several constraints must be applied to the input arguments for the algorithm to function correctly.
First, each pattern sequence needs to be of exactly the same length as the list of expressions. Next, the
expressions and (co-)patterns should match their kinds, meaning that a term should never be matched
to a co-pattern, and a co-term should never be matched to a pattern.

Theorem 3.1. Given C𝜇(# »𝑒𝑥𝑝, # »(#»𝑞 𝑖, 𝑐𝑖)
𝑖, 𝑑), for each 𝑖, # »𝑒𝑥𝑝 and #»𝑞 𝑖 must have the same cardinality. Ad-

ditionally, for each 𝑖 and for each 𝑗, either 𝑒𝑥𝑝𝑗 is a term, and 𝑞𝑖𝑗 is a pattern, or 𝑒𝑥𝑝𝑗 is a co-term, and
𝑞𝑖𝑗 is a co-pattern.

The initial input of C𝜇 requires a default input expression. To do this, we generate a fresh variable
whenwewant to expand a co-term’s (co-)patterns, or a fresh co-variable whenwewant to expand a term’s
(co-)patterns. Using this method, the input to C𝜇 for 𝑛𝑜𝑡 would be

C𝜇([𝑒], {([𝑇 𝑟𝑢𝑒 ⋅ 𝛼], ⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩)
([𝐹𝑎𝑙𝑠𝑒 ⋅ 𝛼], ⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩)} , error)

where 𝑒 is a fresh co-variable. The default case is used when matching fails on all (co-)patterns. Since
there is no default case when matching fails for the entire term, error is used. Similarly, the input to C𝜇
for 𝑚𝑎𝑝 would be:

C𝜇([𝑒], {([𝑓 ⋅ 𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠 ⋅ 𝛼], ⟨𝑓 ∥ 𝑥 ⋅ ̃𝜇𝑦.⟨𝑚𝑎𝑝 ∥ 𝑓 ⋅ 𝑥𝑠 ⋅ ̃𝜇𝑧.⟨𝐶𝑜𝑛𝑠 𝑦 𝑧 ∥ 𝛼⟩⟩⟩)
([𝑓 ⋅ 𝑁𝑖𝑙 ⋅ 𝛽], ⟨𝑁𝑖𝑙 ∥ 𝛽⟩) } , error)

Like in C, there are four different cases in C𝜇 that determine the result of the algorithm.

Case 1

C𝜇([], { ([], 𝑐) } , 𝑑)
This is the simplest case. There are no expressions left to match, and no (co-)patterns that need

matching either. All that is left of the input is a command 𝑐 and the default command 𝑑. Since there
are no (co-)patterns left, it would not be possible to fail to match at this point. This means command 𝑐 is
returned.

Case 2

C𝜇([𝑣, 𝑞2 … , 𝑞𝑛],
⎡
⎢
⎢
⎢
⎣

([𝑥1, 𝑝12, … , 𝑝1𝑛], 𝑐1)
([𝑥2, 𝑝22, … , 𝑝2𝑛], 𝑐2)

…
([𝑥𝑚, 𝑝𝑚2, … , 𝑝𝑚𝑛], 𝑐𝑚)

⎤
⎥
⎥
⎥
⎦

, 𝑑)

or

38 NESTED (CO-)PATTERNS

C𝜇([𝑒, 𝑞2 … , 𝑞𝑛],
⎡
⎢
⎢
⎢
⎣

([𝛼1, 𝑝12, … , 𝑝1𝑛], 𝑐1)
([𝛼2, 𝑝22, … , 𝑝2𝑛], 𝑐2)

…
([𝛼𝑚, 𝑝𝑚2, … , 𝑝𝑚𝑛], 𝑐𝑚)

⎤
⎥
⎥
⎥
⎦

, 𝑑)

In this case, every first (co-)pattern in the lists is a variable or a co-variable. Since matching on a
variable is always possible, all that needs to happen at this stage is substituting the first input expression
for all the first (co-)variables. This is achieved by returning a 𝜇 or ̃𝜇 construction. For terms, the result
is:

⟨𝑣 ∥ ̃𝜇[𝑥].C𝜇([𝑞2 … , 𝑞𝑛],
⎡
⎢
⎢
⎢
⎣

([𝑝12, … , 𝑝1𝑛], 𝑐1{𝑥/𝑥1})
([𝑝22, … , 𝑝2𝑛], 𝑐2{𝑥/𝑥2})

…
([𝑝𝑚2, … , 𝑝𝑚𝑛], 𝑐𝑚{𝑥/𝑥𝑚})

⎤
⎥
⎥
⎥
⎦

, 𝑑)⟩

and for co-terms:

⟨𝜇[𝛼].C𝜇([𝑞2 … , 𝑞𝑛],
⎡
⎢
⎢
⎢
⎣

([𝑝12, … , 𝑝1𝑛], 𝑐1{𝛼/𝛼1})
([𝑝22, … , 𝑝2𝑛], 𝑐2{𝛼/𝛼2})

…
([𝑝𝑚2, … , 𝑝𝑚𝑛], 𝑐𝑚{𝛼/𝛼𝑚})

⎤
⎥
⎥
⎥
⎦

, 𝑑) ∥ 𝑒⟩

Case 3

C𝜇([𝑣, 𝑞2 … , 𝑞𝑛],

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

([𝐾1 𝑐𝑝𝑠1 𝑝𝑠1, 𝑝12, … , 𝑝1𝑛], 𝑐1)
…

([𝐾𝑘 𝑐𝑝𝑠𝑘 𝑝𝑠𝑘, 𝑝𝑘2, … , 𝑝𝑘𝑛], 𝑐𝑘)
([𝑥𝑘+1, 𝑝𝑘+1,2, … , 𝑝𝑘+1,𝑛], 𝑐𝑘+1)

…
([𝑥𝑘+𝑟, 𝑝𝑘+𝑟,2, … , 𝑝𝑘+𝑟,𝑛], 𝑐𝑘+𝑟)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑑)

or

C𝜇([𝑒, 𝑞2 … , 𝑞𝑛],

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

([𝑂1 (𝑐𝑝11, … , 𝑐𝑝1𝑚) (𝑝′
11, … , 𝑝′

1𝑚), 𝑝12, … , 𝑝1𝑛], 𝑐1)
…

([𝑂𝑘 (𝑐𝑝𝑘1, … , 𝑐𝑝𝑘𝑚) (𝑝′
𝑘1, … , 𝑝′

𝑘𝑚), 𝑝𝑘2, … , 𝑝𝑘𝑛], 𝑐𝑘)
([𝛼𝑘+1, 𝑝𝑘+1,2, … , 𝑝𝑘+1,𝑛], 𝑐𝑘+1)

…
([𝛼𝑘+𝑟, 𝑝𝑘+𝑟,2, … , 𝑝𝑘+𝑟,𝑛], 𝑐𝑘+𝑟)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑑)

In this case thefirst pattern in eachpattern sequence can be either a (co-)constructor or a (co-)variable.
However, the order of the pattern sequences is important. Every pattern sequence starting with a (co-
)variable comes after every pattern sequence that starts with a (co-)constructor. In this case the pattern
sequences are grouped. All pattern sequences starting with the same (co-)constructor are grouped to-
gether, and all pattern sequences starting with a variable are part of the same group. For example, take
the following list of pattern sequences:

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 39

⎡
⎢
⎢
⎢
⎣

([𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠, …], 𝑐1)
([𝑁𝑖𝑙, …], 𝑐2)

([𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠, …], 𝑐3)
([𝑧, …] 𝑐4)

⎤
⎥
⎥
⎥
⎦

The formed groupswill be[([𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠, …], 𝑐1)
([𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠, …], 𝑐3)

], [([𝑁𝑖𝑙, …], 𝑐2)] and [([𝑧, …] 𝑐4)]. The groups

will form the different cases in the command that is returned. The result for terms is:

⟨𝑣 ∥ ̃𝜇[𝐾1 (𝑥11, … , 𝑥1𝑚) (𝛼11, … , 𝛼1𝑚)].C𝜇([𝑞2, … , 𝑞𝑛], [([𝑐𝑝𝑠11, 𝑝𝑠11, 𝑝12, … , 𝑝1𝑛], …)
…

] , default)⟩

∣ …

∣ [𝐾𝑁 (𝑥𝑗1, … , 𝑥𝑗𝑚) (𝛼𝑗1, … , 𝛼𝑗𝑚)].C𝜇([𝑞2, … , 𝑞𝑛], [([𝑐𝑝𝑠𝑗1, 𝑝𝑠𝑗1, 𝑝12, … , 𝑝1𝑛], …)
…

] , default)

∣ [𝑥].C𝜇(𝑞2, … , 𝑞𝑛, {([𝑝𝑘+1,2, … , 𝑝𝑘+1,𝑛], 𝑐𝑘+1{𝑥/𝑥𝑘+1})}, 𝑑)
Here, default can refer to two different commands, depending on the context. If the input set of

(co-)pattern sequences contains a sequence that starts with a (co-)variable, default refers to the result
of C𝜇 that is called for the (co-)variable case, as seen in the results above. If there is no (co-)pattern
sequence starting with a (co-)variable, default refers to 𝑑. In that case, an extra case is added to the 𝜇 or

̃𝜇 construction: [𝑣].𝑑 or [𝛼].𝑑.

Case 4

The final case is similar to case 3: The (co-)pattern sequences can start with both (co-)variables and (co-
)constructors. However, in this situation, the sequences are not ordered. The pattern sequences starting
with a (co-)variable are not necessarily at the end of the sequence set. To solve this issue, the (co-)pattern-
sequences are once again grouped, but this time in order. The sequences are divided by repeatedly taking
the longest possible prefix that is sorted. If 𝑃𝑘 is the set of those groups, the result for both terms and
co-terms is:

C𝜇([𝑞1, … , 𝑞𝑛], 𝑃1, 𝑑1)
𝑤ℎ𝑒𝑟𝑒 𝑑1 = C𝜇([𝑞1, … , 𝑞𝑛], 𝑃2, 𝑑2)
𝑤ℎ𝑒𝑟𝑒 𝑑2 = C𝜇([𝑞1, … , 𝑞𝑛], 𝑃3, 𝑑3)

…
𝑤ℎ𝑒𝑟𝑒 𝑑𝑘 = C𝜇([𝑞1, … , 𝑞𝑛], 𝑃𝑘, 𝑑)

3.2.2 Adding join points
The (co-)pattern expansion introduced by algorithmC𝜇 can lead to code duplication. In case 3, the result
of the function may contain several branches that all use the same default value. To demonstrate this,
we define a function 𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑠𝑇 𝑟𝑢𝑒 that takes a list of boolean value, and returns 𝑇 𝑟𝑢𝑒 if the second
value is 𝑇 𝑟𝑢𝑒, but 𝐹𝑎𝑙𝑠𝑒 otherwise.

𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑠𝑇 𝑟𝑢𝑒 ∶ 𝐿𝑖𝑠𝑡 𝐵𝑜𝑜𝑙 → 𝐵𝑜𝑜𝑙
𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑠𝑇 𝑟𝑢𝑒 = 𝜇((𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑇 𝑟𝑢𝑒 𝑥𝑠)) ⋅ 𝛼.⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩

∣ 𝑦 ⋅ 𝛽.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛽⟩)

40 NESTED (CO-)PATTERNS

Expanding the (co-)patterns in this function using C𝜇 yields

𝜇(𝑙 ⋅ 𝛼.⟨𝑙 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠.⟨𝑦 ∥ ̃𝜇(𝑇 𝑟𝑢𝑒.⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩)⟩]⟩]⟩
∣ 𝑧.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩

∣ 𝑧.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩
∣ 𝑧.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩)

Even for such a short and simple term, the (co-)pattern expansion algorithm has duplicated the de-
fault command twice. The command ⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ occurs three times in the expanded version of
𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑠𝑇 𝑟𝑢𝑒.

To combat this duplication of commands, we can use join points [Mau+17]. Instead of duplicating
the default command, join points let us define the command once, and storing it under some variable.
Whenever the command should occur, we can instead refer to this variable.

To implement this in the𝜇 ̃𝜇-calculus, we first introduce command-variables, and alter the definitions
of commands.

𝑑 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑉 𝑎𝑟 ∶∶= …
𝑐 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∶∶= ⟨𝑣 ∥ 𝑒⟩ ∣ 𝑑

Using this new definition, 𝜇-terms and ̃𝜇-co-terms are able to refer to a command using a command-
variable 𝑑. To add meaning to this ability, we add let-bindings for commands to the calculus to both
terms and co-terms next.

𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ 𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝑣
𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ 𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝑒

As command-variables are only supposed to be introduced using these let-bindings, we do not need
to introduce typechecking rules that introduce a passive judgement with a command-variable. Instead,
we only add rules that introduce let-bindings, andmake sure that the command-variables are not present
in the premises of the rules, but rather replaced by their definitions.

Γ ⊢ 𝑣{𝑐/𝑑} ∶ 𝐴 ∣ Δ
𝑙𝑒𝑡𝑅Γ ⊢ 𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝑣 ∶ 𝐴 ∣ Δ

Γ ∣ 𝑒{𝑐/𝑑} ∶ 𝐴 ⊢ Δ
𝑙𝑒𝑡𝐿Γ ∣ 𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝑒 ∶ 𝐴 ⊢ Δ

Using these rules, we know that we can never get a valid passive judgement of a command-variable in
a typechecking tree. If we do encounter such a judgement, it means that a command-variable has been
used that has not been defined.

Evaluating join points can be done in one of two separate approaches. First, we could define an envi-
ronmentΦ, which stores command-variables and the commands they are bound to. Using this approach,
we could reduce a term 𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝑣with command environmentΦ to 𝑣with the updated environment
Φ, 𝑑 = 𝑐. Then, whenever we encounter the command-variable 𝑑, we can look up its meaning in the
command environment. Alternatively, we could leave out the environment, and instead replace every
occurence of 𝑑 with 𝑐 as soon as we encounter a let-binding. This way, a term 𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝑣 evaluates
to 𝑣{𝑐/𝑑}. Similarly to the typechecking rules, this approach causes encountering a command-variable
leading to an error, as each command-variable should have been replaced by the 𝑙𝑒𝑡 rules.

Whichever approach we choose, it is important that the evaluation of let-bindings has precedence
over the 𝛽-reduction rules. Not having this precedence can lead to pattern match failure. As an example,
the command

⟨𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝐶𝑜𝑛𝑠 (𝜇𝛼.𝑑) 𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠.⟨… ⟩]⟩

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 41

should see the let-binding be reduced before applying 𝛽-reduction as follows:

⟨𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝐶𝑜𝑛𝑠 (𝜇𝛼.𝑑) 𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠.⟨… ⟩]⟩
≻

⟨𝐶𝑜𝑛𝑠 (𝜇𝛼.𝑐) 𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠.⟨… ⟩]⟩
≻𝛽𝐹

…

Or, using the first approach:

⟨𝑙𝑒𝑡 𝑑 = 𝑐 𝑖𝑛 𝐶𝑜𝑛𝑠 (𝜇𝛼.𝑑) 𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠.⟨… ⟩]⟩ (Φ)
≻

⟨𝐶𝑜𝑛𝑠 (𝜇𝛼.𝑑) 𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠.⟨… ⟩]⟩ (Φ, 𝑑 = 𝑐)
≻𝛽𝐹

…

If we instead give precedence to the𝛽-reduction rules, evaluationwill get stuck, since a let-binding cannot
be matched with a (co-)pattern containing a constructor or an observer.

3.2.2.1 Adding join points to C𝜇

Now that join points have been implemented in the 𝜇 ̃𝜇-calculus, we need algorithm C𝜇 to produce join
points, instead of duplicating commands. We have already established that the duplication of commands
happens by passing the same default command to multiple branches in a 𝜇-term or ̃𝜇-co-term. The
only point at which this happens in algorithm C𝜇 is in case 3. Note that commands that were already
duplicated in the input of C𝜇 will still occur multiple times. This technique only stops the system from
duplicating commands itself. These user-duplicated commands could be removed using join points as
well, by analysing the result of C𝜇. This thesis will, however, not go into detail about this process.

As described in Section 3.2.1, C𝜇 takes a term or co-term, and a list of patterns and co-patterns. If the
input is a term, and all the first elements in the list of (co-)patterns are patterns, the algorithm produces
a command with the input term on the left side, and a ̃𝜇-co-term using each of these patterns as its cases
on the right side. Likewise, if the input is a co-term, and all the first (co-)patterns are co-patterns, the
produced command consists of a 𝜇-term on the left side, and the input co-term on the right side. This
generated 𝜇-term or ̃𝜇-co-term may contain the default command several times. To prevent this, we
enclose the generated 𝜇-term or ̃𝜇-co-term in a let-binding where we bind a fresh command-variable 𝑑′

to default. We then pass 𝑑′ to the next recursive usages of C𝜇, instead of default.
Given the input

C𝜇([𝑣, 𝑞2 … , 𝑞𝑛],

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

([𝐾1 𝑐𝑝𝑠1 𝑝𝑠1, 𝑝12, … , 𝑝1𝑛], 𝑐1)
…

([𝐾𝑘 𝑐𝑝𝑠𝑘 𝑝𝑠𝑘, 𝑝𝑘2, … , 𝑝𝑘𝑛], 𝑐𝑘)
([𝑥𝑘+1, 𝑝𝑘+1,2, … , 𝑝𝑘+1,𝑛], 𝑐𝑘+1)

…
([𝑥𝑘+𝑟, 𝑝𝑘+𝑟,2, … , 𝑝𝑘+𝑟,𝑛], 𝑐𝑘+𝑟)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑑)

42 MU-MU-TILDE-HASKELL

C𝜇 will produce

⟨𝑣 ∥ 𝑙𝑒𝑡 𝑑′ = default 𝑖𝑛

̃𝜇[𝐾1 (𝑥11, … , 𝑥1𝑚) (𝛼11, … , 𝛼1𝑚)].C𝜇([𝑞2, … , 𝑞𝑛], [([𝑐𝑝𝑠11, 𝑝𝑠11, 𝑝12, … , 𝑝1𝑛], …)
…

] , 𝑑′)⟩

∣ …

∣ [𝐾𝑁 (𝑥𝑗1, … , 𝑥𝑗𝑚) (𝛼𝑗1, … , 𝛼𝑗𝑚)].C𝜇([𝑞2, … , 𝑞𝑛], [([𝑐𝑝𝑠𝑗1, 𝑝𝑠𝑗1, 𝑝12, … , 𝑝1𝑛], …)
…

] , 𝑑′)

∣ [𝑥].C𝜇(𝑞2, … , 𝑞𝑛, {([𝑝𝑘+1,2, … , 𝑝𝑘+1,𝑛], 𝑐𝑘+1{𝑥/𝑥𝑘+1})}, 𝑑)

Likewise, with input

C𝜇([𝑒, 𝑞2 … , 𝑞𝑛],

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

([𝑂1 (𝑐𝑝11, … , 𝑐𝑝1𝑚) (𝑝′
11, … , 𝑝′

1𝑚), 𝑝12, … , 𝑝1𝑛], 𝑐1)
…

([𝑂𝑘 (𝑐𝑝𝑘1, … , 𝑐𝑝𝑘𝑚) (𝑝′
𝑘1, … , 𝑝′

𝑘𝑚), 𝑝𝑘2, … , 𝑝𝑘𝑛], 𝑐𝑘)
([𝛼𝑘+1, 𝑝𝑘+1,2, … , 𝑝𝑘+1,𝑛], 𝑐𝑘+1)

…
([𝛼𝑘+𝑟, 𝑝𝑘+𝑟,2, … , 𝑝𝑘+𝑟,𝑛], 𝑐𝑘+𝑟)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑑)

C𝜇 will produce

⟨𝑙𝑒𝑡 𝑑′ = default 𝑖𝑛 ∥ 𝑒⟩

𝜇[𝑂1 (𝑥11, … , 𝑥1𝑚) (𝛼11, … , 𝛼1𝑚)].C𝜇([𝑞2, … , 𝑞𝑛], [([𝑐𝑝𝑠11, 𝑝𝑠11, 𝑝12, … , 𝑝1𝑛], …)
…

] , 𝑑′)

∣ …

∣ [𝑂𝑁 (𝑥𝑗1, … , 𝑥𝑗𝑚) (𝛼𝑗1, … , 𝛼𝑗𝑚)].C𝜇([𝑞2, … , 𝑞𝑛], [([𝑐𝑝𝑠𝑗1, 𝑝𝑠𝑗1, 𝑝12, … , 𝑝1𝑛], …)
…

] , 𝑑′)

∣ [𝑥].C𝜇(𝑞2, … , 𝑞𝑛, {([𝑝𝑘+1,2, … , 𝑝𝑘+1,𝑛], 𝑐𝑘+1{𝑥/𝑥𝑘+1})}, 𝑑)

Whenwe use this new version ofC𝜇 on our definition of 𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑠𝑇 𝑟𝑢𝑒, we now get a termwithout
any command duplication:

𝜇(𝑙 ⋅ 𝛼.⟨𝑙 ∥ 𝑙𝑒𝑡 𝑑 = ⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ 𝑖𝑛
̃𝜇[𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠.⟨𝑥𝑠 ∥ ̃𝜇[𝐶𝑜𝑛𝑠 𝑦 𝑦𝑠.⟨𝑦 ∥ ̃𝜇(𝑇 𝑟𝑢𝑒.⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩)⟩]⟩]⟩

∣ 𝑧.𝑑
∣ 𝑧.𝑑

∣ 𝑧.𝑑)

3.3 Mu-Mu-tilde-Haskell

We have shown how 𝜆-calculus programs can be converted to 𝜇 ̃𝜇-calculus programs, and how these
converted programs can be typechecked and evaluated. Using this process, we can use high-level pro-
gramming languages that compile to the 𝜆-calculus as a front-end to the 𝜇 ̃𝜇-calculus. A widely used

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 43

𝑋, 𝑌 , 𝑍 ∈ 𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐹 #»𝐴

𝑥 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝛼 ∈ 𝐶𝑜𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …

𝑐 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∶∶= 𝑣 <||> 𝑒
𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= 𝑥 ∣ 𝐾 # »(𝑣 ∣ 𝑒) ∣ 𝑣 𝑣 ∣ (\ ̃𝑝 → 𝑐) ∣ (\𝑐𝑎𝑠𝑒 # »̃𝑝 → 𝑐)

∣ 𝑙𝑒𝑡 # »𝑑𝑒𝑐𝑙 𝑖𝑛 𝑣 ∣ 𝑣 𝑤ℎ𝑒𝑟𝑒 # »𝑑𝑒𝑐𝑙
𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= ∼𝛼 ∣ 𝑂 # »(𝑣 ∣ 𝑒) ∣ (\𝑝 → 𝑐) ∣ (\𝑐𝑎𝑠𝑒 # »𝑝 → 𝑐)

∣ 𝑙𝑒𝑡 # »𝑑𝑒𝑐𝑙 𝑖𝑛 𝑒 ∣ 𝑒 𝑤ℎ𝑒𝑟𝑒 # »𝑑𝑒𝑐𝑙
𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝑥 ∣ 𝐾 # »(𝑝 ∣ ̃𝑝)

̃𝑝 ∈ 𝐶𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= ∼𝛼 ∣ 𝑂 # »(𝑝 ∣ ̃𝑝)

𝑑𝑎𝑡𝑎𝑑𝑒𝑐𝑙 ∈ 𝐷𝑎𝑡𝑎𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∶∶= 𝑑𝑎𝑡𝑎 𝐹 #»𝑋 =
»

𝐾 # »𝑋 ∣ ∼𝑋

∣ 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺 #»𝑋 =
»

𝐾 # »𝑋 ∣ ∼𝑋
𝑑𝑒𝑐𝑙 ∈ 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∶∶= 𝑥 ∶∶ 𝐴

∣ ∼𝛼 ∶∶ 𝐴
∣ 𝑥 #»𝑝 = 𝑣
∣ ∼𝛼 = 𝑒

𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ∈ 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ∶∶= # »(𝑑𝑎𝑡𝑎𝑑𝑒𝑐𝑙 ∣ 𝑑𝑒𝑐𝑙)

Figure 3.4: The syntax of MMH.

example of such a language is Haskell. We can use Haskell to write 𝜇 ̃𝜇-calculus programs in a much
more comfortable way. However, as Haskell has no notion of co-data, writing programs in plain Haskell
does not allow us to fully control the 𝜇 ̃𝜇-calculus. Instead, we propose a new programming language
that is heavily based on Haskell, but has some syntactical additions and alterations to allow the unique
features of the 𝜇 ̃𝜇-calculus to be controlled: MMH. Figure 3.4 shows the syntactical definition ofMMH.

At the top-level, aMMH program exists of declarations. A declaration can be a datatype declaration,
a codatatype declaration, a (co-)term type declaration, or a (co-)term definition declaration. Datatype
declarations are nearly the same as they are in Haskell. There is one difference: in the 𝜇 ̃𝜇-calculus, and
therefore inMMH, constructors can contain both terms and co-terms as arguments. To accomodate for
this feature, we place a tilde (∼) before types that represent a co-term, and do not place this tilde for types
that represent a term.

𝑑𝑎𝑡𝑎 𝐹 #»𝑋 = 𝐾1
»𝑋 ∣ ∼𝑋

⋮
𝐾𝑛

»𝑋 ∣ ∼𝑋

As an example, we can define the datatype 𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 𝑑𝑎𝑡𝑎 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑋 = 𝑇 𝑋 ∣ 𝐶 ∼𝑋. To
construct a value of type 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑋, we either use 𝑇 with a term of type 𝑋, or 𝐶 with a co-term of

44 MU-MU-TILDE-HASKELL

type 𝑋. We implement co-datatype declarations the same way.

𝑐𝑜𝑑𝑎𝑡𝑎 𝐺 #»𝑋 = 𝑂1
»𝑋 ∣ ∼𝑋

⋮
𝑂𝑛

»𝑋 ∣ ∼𝑋

The function co-datatype is declared inMMH as 𝑐𝑜𝑑𝑎𝑡𝑎 𝑎 → 𝑏 = 𝑎 . ∼𝑏. We use a similar technique
to differentiate between term and co-term declarations. 𝑛𝑎𝑚𝑒 = … will define a term called 𝑛𝑎𝑚𝑒,
while ∼𝑛𝑎𝑚𝑒 = … will define a co-term 𝑛𝑎𝑚𝑒.

To represent commands inMMH, a reserved operator (<||>) is introduced. Using this operator, we
can write 𝑣 <||> ∼ 𝑎, which is compiled to ⟨𝑣 ∥ 𝑎⟩ in the 𝜇 ̃𝜇-calculus.

In Haskell, term declarations can contain patterns on the left side of the equals sign, e.g. 𝑚𝑎𝑝 𝑓 (𝑥 ∶
𝑥𝑠) = … . Internally, this is read as a string of 𝜆-functions, 𝜆𝑓.𝜆(𝑥 ∶ 𝑥𝑠) … . Since this is only relevant
for function terms, we allow these patterns for termdeclarations inMMH, but not in co-termdeclarations.

𝑑𝑒𝑐𝑙 ∈ 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∶∶= 𝑥 ∶∶ 𝐴
∣∼ 𝛼 ∶∶ 𝐴
∣ 𝑥 #»𝑝 = 𝑣
∣∼ 𝛼 = 𝑒

Terms in Haskell consist of a variable, a constructor, a function application, a 𝜆-function, a let-
binding, or a 𝑤ℎ𝑒𝑟𝑒-construction. These are integrated in MMH accordingly. Unfortunately, this does
not provide full coverage of the terms in the 𝜇 ̃𝜇-calculus. We are able to write variables and construc-
tors, but 𝜇-terms cannot be written. To implement this feature, we remove the syntax for anonymous
𝜆-functions in Haskell, and instead use a similar syntactical structure to support 𝜇-terms. Whereas in
Haskell, we could write (\𝑥 → 𝑀), which would be translated to 𝜆𝑥.𝑀 in the 𝜆-calculus, we can now
write (\ ∼ 𝑎 → 𝑣 < || > 𝑒), or 𝜇𝑎.⟨𝑣 ∥ 𝑒⟩ in the 𝜇 ̃𝜇-calculus. Of course, this same syntax also
supports observers as patterns. We use the same syntax to write ̃𝜇-co-terms. The difference between the
two is the same as it is in the 𝜇 ̃𝜇-calculus: the co-term takes a pattern, while the term takes a co-pattern.

𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ (\ ̃𝑝 → 𝑐)
𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ (\𝑝 → 𝑐)

This addition does mean that the Haskell syntax for anonymous functions can no longer be used.
However, non-anonymous functions can still be introduced using let-bindings, or𝑤ℎ𝑒𝑟𝑒-structures. Al-
ternatively, the new syntax for 𝜇-terms can be used to introduce anonymous functions, although this
syntax is closer to the 𝜇 ̃𝜇-calculus than it is to the 𝜆-calculus. Where we would write (\𝑥 → 𝑀) in
Haskell, we write (\𝑥.∼𝑎 → 𝑀 <||> ∼𝑎) inMMH.

There is one more thing missing. As it stands, 𝜇-terms and ̃𝜇-co-terms can only contain one single
(co-)pattern in MMH. This means we cannot write (co-)terms that pattern match on multiple cases. To
allow this, we draw inspiration from GHC’s LambdaCase extension [Men19]. We allow the keyword
𝑐𝑎𝑠𝑒 to be added to (\)-construction. When this is done, we allow multiple cases to be defined within
the (co-)term as follows:

𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ (\𝑐𝑎𝑠𝑒 # »̃𝑝 → 𝑐)
𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ (\𝑐𝑎𝑠𝑒 # »𝑝 → 𝑐)

These alterations and additions to Haskell together form a solid high-level programming language
that uses the 𝜇 ̃𝜇-calculus as its foundation. Figure 3.5 shows an exampleMMH program.

PROGRAMMINGWITH THE 𝜇 ̃𝜇-CALCULUS 45

data List a = Nil
∣ Cons a (List a)

map ∶∶ (a → b) → List a → List b
map f (Cons x xs) = Cons (f x) (map f xs)
map f Nil = Nil
data Either a b = Left a

∣ Right b
codata a & b = ∼a & ∼b
handleEither ∶∶ Either a b → a & b
handleEither = 𝜆case (Left a) ∘ (∼a & ∼b) → a < || > ∼a

(Right b) ∘ (∼a & ∼b) → b < || > ∼b)
foldr1 ∶∶ (a → b → b) → b → List a → b
foldr1 f b Nil = b
foldr1 f b (Cons x xs) = f x (foldr1 f b xs)
foldr2 ∶∶ (a → b → b) → b → List a → b
foldr2 = 𝜆case f ∘ b ∘ Nil ∘ ∼a → b < || > ∼a
f ∘ b ∘ (Cons x xs) ∘ ∼a →
foldr2 < || > f ∘ b ∘ xs

∘ (𝜆y → f < || > x ∘ y ∘ ∼a)
data Bool = True ∣ False
codata Negation a = Not a
∼coval ∶∶ Negation Bool
∼coval = Not True

Figure 3.5: An example MMH program

46 MU-MU-TILDE-HASKELL

3.3.1 Conclusion
The 𝜇 ̃𝜇-calculus provides a solid basis for a modern high-level programming language. In this chapter,
we have shown how 𝜆-calculus programs can be converted to 𝜇 ̃𝜇-calculus programs. Next, we added
support for nested (co-)patterns to the 𝜇 ̃𝜇-calculus, using an extended version of Augustsson’s algorithm
C. With these two definitions, we are able to directly convert most of the programming language Haskell
to the 𝜇 ̃𝜇-calculus. Finally, we have formalised a new language based on Haskell, called MMH. MMH
features some additional syntax to add support for the unique features of the 𝜇 ̃𝜇-calculus.

4
Adding polymorphism

At this point, the 𝜇 ̃𝜇-calculus and MMH do not support type polymorphism. In this chapter, we will
propose a way to add polymorphism to the 𝜇 ̃𝜇-calculus in a way that is useful in the context of high-level
programming languages. To do so, we will first look at a system for polymorphism in the 𝜇 ̃𝜇-calculus by
Paul Downen and Zena Ariola. We will discuss how this approach is not suited when the 𝜇 ̃𝜇-calculus is
used as a core language for a high-level programming language. Finally, we will propose our own system,
based on Hindley-Milner polymorphism in the 𝜆-calculus.

4.1 Downen and Ariola’s polymorphism

One option to introduce a powerful polymorphic typing system to the 𝜇 ̃𝜇-calculus is Downen & Ariola’s
System 𝒞𝒟 [DA19]. System 𝒞𝒟 is a polymorphic variant of the �̄�𝜇 ̃𝜇-calculus [CH00]. In this system,
polymorphism is possible through type functions.

Before, types consisted of type variables, or connectors. In addition to this, type functions and type
applications are included. Type functions (𝜆𝑋.𝐴) take a type variable 𝑋, and produce a new type 𝐴.
Type application works by applying one type to another one (𝐴 𝐵).

𝐹 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∶∶= … 𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐹(#»𝐴) ∣ 𝜆𝑋.𝐴 ∣ 𝐴 𝐵

In essence, the untyped 𝜆-calculus is now embedded within the 𝜇 ̃𝜇-calculus’ type system. As a result,
the type system needs its own 𝛽 and 𝜂-reduction rules: (𝜆𝑋.𝐴) 𝐵 ≻𝛽 𝐴{𝐵/𝑋} and 𝜆𝑋.𝐴 𝑋 ≻𝜂 𝐴.

Next, we extend constructors, observers and (co-)patterns by allowing them to contain type informa-
tion. In addition to terms and co-terms, constructors and observers can now have types as arguments.
Patterns and co-patterns are allowed to contain type variables accordingly. An important distinction is
the fact that (co-)patterns can only contain type variables, and not types themselves. This makes it possi-
ble to define polymorphic (co-)terms, but the system cannot pattern match on types. Since the definition
of constructors and observers has been altered, we need to renew (co-)datatype declarations as well. In
declarations, constructors and observers can contain type variables that represent the type arguments.
These type variables are then bound to the rest of the declaration, meaning that it is possible to declare a

48 DOWNEN AND ARIOLA’S POLYMORPHISM

constructor or observer with an argument that has one of the type arguments as its type.

𝑣 ∈ 𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ 𝐾(#»𝐴, #»𝑒 , #»𝑣) ∣ …
𝑒 ∈ 𝐶𝑜𝑇 𝑒𝑟𝑚 ∶∶= ⋯ ∣ 𝑂[#»𝐴, #»𝑣 , #»𝑒] ∣ …
𝑝 ∈ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝑥 ∣ 𝐾(#»𝑋, #»̃𝑝 , #»𝑝)

̃𝑝 ∈ 𝐶𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ∶∶= 𝛼 ∣ 𝑂[#»𝑋, #»𝑝 , #»̃𝑝]
𝑑𝑒𝑐𝑙 ∈ 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∶∶= 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒

»

𝐾 #»𝑌 ∶ #»𝐴 ⊢ 𝐹(#»𝑋) ∣ #»𝐵
| 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒

»

𝑂 #»𝑌 ∶ #»𝐴 ∣ 𝐹(#»𝑋) ⊢ #»𝐵

With these additions to the calculus come new typing rules. We redefine the 𝐹𝑅 and 𝐺𝐿 rules
to make sure that type arguments are properly substituted in the other types in both constructors and
observers.

Given 𝑑𝑎𝑡𝑎 𝐹(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝐾 #»𝑌 ∶ #»𝐴 ⊢ 𝐹(#»𝑋) ∣ #»𝐵:
»

Γ ∣ 𝑒 ∶ 𝐵𝑖𝑗
»

{𝐶/𝑋, # »𝐶′/𝑌 } ⊢ Δ
𝑗 # »

Γ ⊢ 𝑣 ∶ 𝐴𝑖𝑗
»

{𝐶/𝑋, # »𝐶′/𝑌 } ∣ Δ
𝑗

𝐹𝑅𝐾𝑖Γ ⊢ 𝐾𝑖(
»𝐶′, #»𝑒 , #»𝑣) ∶ 𝐹 (#»𝐶) ∣ Δ

Given 𝑐𝑜𝑑𝑎𝑡𝑎 𝐺(#»𝑋) 𝑤ℎ𝑒𝑟𝑒
»

𝑂 #»𝑌 ∶ #»𝐴 ∣ 𝐹(#»𝑋) ⊢ #»𝐵:
»

Γ ⊢ 𝑣 ∶ 𝐴𝑖𝑗
»

{𝐶/𝑋, # »𝐶′/𝑌 } ∣ Δ
𝑗 # »

Γ ∣ 𝑒 ∶ 𝐵𝑖𝑗
»

{𝐶/𝑋, # »𝐶′/𝑌 } ⊢ Δ
𝑗

𝐺𝐿𝑂𝑖Γ ∣ 𝑂𝑖(
»𝐶′, #»𝑣 , #»𝑒) ∶ 𝑂(#»𝐶) ⊢ Δ

We also add new type conversion rules 𝑇 𝐶𝑅 and 𝑇 𝐶𝐿. These conversion rules allow types to be
equal under 𝛽 and 𝜂 reduction. They contain premises in the shape of 𝐴 =𝛽𝜂 𝐵. Formally, 𝐴 =𝛽𝜂 𝐵
when both 𝐴 and 𝐵 can be evaluated to the same type 𝐶 using 𝛽-reduction and/or 𝜂-reduction.

Γ ⊢ 𝑣 ∶ 𝐴 ∣ Δ 𝐴 =𝛽𝜂 𝐵
𝑇 𝐶𝑅Γ ⊢ 𝑣 ∶ 𝐵 ∣ Δ

Γ ∣ 𝑒 ∶ 𝐴 ⊢ Δ 𝐴 =𝛽𝜂 𝐵
𝑇 𝐶𝐿Γ ∣ 𝑒 ∶ 𝐵 ⊢ Δ

Using type parameters in constructors and observers, we are able to implement both existential and
universal quantification as user-defined (co-)datatypes. We denote type variables by prefixing them with
’@’.

𝑐𝑜𝑑𝑎𝑡𝑎 𝐹𝑜𝑟𝑎𝑙𝑙 𝑥 =
𝐹𝑜𝑟𝑎𝑙𝑙 @𝑦 ∼(𝑥 𝑦)

𝑑𝑎𝑡𝑎 𝐸𝑥𝑖𝑠𝑡𝑠 𝑥 =
𝐸𝑥𝑖𝑠𝑡𝑠 @𝑦 (𝑥 𝑦)

Using the co-datatype for universal quantification, we are able to write polymorphic functions, such as a
polymorphic identity function.

𝑖𝑑 ∶∶ 𝐹𝑜𝑟𝑎𝑙𝑙 (\𝑥.𝑥 → 𝑥)
𝑖𝑑 = \(𝐹𝑜𝑟𝑎𝑙𝑙 @𝑦 (𝑥 ⋅ ∼𝑎)) → 𝑥 <||>∼𝑎

𝑖𝑑𝑇 𝑟𝑢𝑒 ∶∶ 𝐵𝑜𝑜𝑙
𝑖𝑑𝑇 𝑟𝑢𝑒 = \ ∼𝑎 → 𝑖𝑑 <||> 𝐹𝑜𝑟𝑎𝑙𝑙 @𝐵𝑜𝑜𝑙 (𝑇 𝑟𝑢𝑒 ⋅ ∼𝑎)

We can use the new typing rules to typecheck these terms. First, we will typecheck the identity
function. To do so, we start with the judgement ⊢ 𝜇(𝐹𝑜𝑟𝑎𝑙𝑙 𝑌 (𝑥 ⋅ 𝛼).⟨𝑥 ∥ 𝛼⟩) ∶ 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 →
𝑋) ∣. The𝐺𝑅 rule lets us remove the co-pattern from this term, and typecheck its command instead. To

ADDING POLYMORPHISM 49

do so, we first check the outer co-pattern: 𝐹𝑜𝑟𝑎𝑙𝑙 𝑌 (𝑥 ⋅ 𝛼). The 𝐹𝑜𝑟𝑎𝑙𝑙 co-datatype definition tells us
that for the type 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋), the pattern (𝑥 ⋅ 𝛼) must be of type (𝜆𝑋.𝑋 → 𝑋) 𝑌 . We can
use the 𝛽-reduction rule to reduce this type to 𝑌 → 𝑌 . We can now split the pattern 𝑥 ⋅ 𝛼 into separate
parts again, and find out that both 𝑥 and 𝛼 must be of type 𝑌 . We insert them into the input and output
environments, and can continue typechecking the judgement ⟨𝑥 ∥ 𝛼⟩ ∶ (𝑥 ∶ 𝑌 ⊢ 𝛼 ∶ 𝑌). To do so, we
apply the 𝐶𝑢𝑡 rule to split off the term and co-term. Both can be inmediately verified using the 𝑉 𝑅 and
𝑉 𝐿 rules respectively.

𝑉 𝑅𝑥 ∶ 𝑌 ⊢ 𝑥 ∶ 𝑌 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝑌 ⊢ 𝛼 ∶ 𝑌
𝐶𝑢𝑡⟨𝑥 ∥ 𝛼⟩ ∶ (𝑥 ∶ 𝑌 ⊢ 𝛼 ∶ 𝑌)

𝐺𝑅⊢ 𝜇(𝐹𝑜𝑟𝑎𝑙𝑙 𝑌 (𝑥 ⋅ 𝛼).⟨𝑥 ∥ 𝛼⟩) ∶ 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋) ∣
Next, we will typecheck the usage of the identity function in 𝑖𝑑𝑇 𝑟𝑢𝑒. We start with the judgement 𝑖𝑑 ∶
𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋) ⊢ 𝜇𝛼.⟨𝑖𝑑 ∥ 𝐹𝑜𝑟𝑎𝑙𝑙 𝐵𝑜𝑜𝑙 (𝑇 𝑟𝑢𝑒 ⋅ 𝛼)⟩ ∶ 𝐵𝑜𝑜𝑙 ∣, as the type of 𝑖𝑑 has already
been proven. We use the 𝐴𝑅 rule to remove 𝛼, and instead continue checking the command. We use
the 𝐶𝑢𝑡 rule to split the command, and need to prove that both sides of the command have the same
type. We already know 𝑖𝑑’s type, meaning both sides need to be of type 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋). The
term-premise is swiftly closed by the 𝑉 𝑅 rule, but the co-term-premise needs more work. We need to
prove the judgement ∣ 𝐹𝑜𝑟𝑎𝑙𝑙 𝐵𝑜𝑜𝑙 (𝑇 𝑟𝑢𝑒 ⋅ 𝛼) ∶ 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋) ⊢ 𝛼 ∶ 𝐵𝑜𝑜𝑙. We can use
the 𝐺𝐿 rule to do this. The definition of 𝐹𝑜𝑟𝑎𝑙𝑙 tells us that the co-term 𝑇 𝑟𝑢𝑒 ⋅ 𝛼 needs to be of type
(𝜆𝑋.𝑋 → 𝑋) 𝐵𝑜𝑜𝑙, as 𝐵𝑜𝑜𝑙 is the type argument to 𝐹𝑜𝑟𝑎𝑙𝑙 in this example. We can further evaluate
this type to 𝐵𝑜𝑜𝑙 → 𝐵𝑜𝑜𝑙 using 𝛽-reduction. Knowing this, we can use the 𝐺𝐿 once again to split
𝑇 𝑟𝑢𝑒 ⋅ 𝛼 into a separate term and co-term. These new judgements can be proven using the 𝐹𝑅 and 𝑉 𝐿
rules.

𝑉 𝑅𝑖𝑑 ∶ ⋯ ⊢ 𝑖𝑑 ∶ ⋯ ∣

𝐹𝑅⊢ 𝑇 𝑟𝑢𝑒 ∶ 𝐵𝑜𝑜𝑙 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝐵𝑜𝑜𝑙 ⊢ 𝛼 ∶ 𝐵𝑜𝑜𝑙
𝐺𝐿∣ 𝑇 𝑟𝑢𝑒 ⋅ 𝛼 ∶ (𝜆𝑋.𝑋 → 𝑋) 𝐵𝑜𝑜𝑙 ⊢ 𝛼 ∶ 𝐵𝑜𝑜𝑙

𝐺𝐿∣ 𝐹𝑜𝑟𝑎𝑙𝑙 𝐵𝑜𝑜𝑙 (𝑇 𝑟𝑢𝑒 ⋅ 𝛼) ∶ 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋) ⊢ 𝛼 ∶ 𝐵𝑜𝑜𝑙
𝐶𝑢𝑡⟨𝑖𝑑 ∥ 𝐹𝑜𝑟𝑎𝑙𝑙 𝐵𝑜𝑜𝑙 (𝑇 𝑟𝑢𝑒 ⋅ 𝛼)⟩ ∶ (𝑖𝑑 ∶ 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋) ⊢ 𝛼 ∶ 𝐵𝑜𝑜𝑙)

𝐴𝑅𝑖𝑑 ∶ 𝐹𝑜𝑟𝑎𝑙𝑙 (𝜆𝑋.𝑋 → 𝑋) ⊢ 𝜇𝛼.⟨𝑖𝑑 ∥ 𝐹𝑜𝑟𝑎𝑙𝑙 𝐵𝑜𝑜𝑙 (𝑇 𝑟𝑢𝑒 ⋅ 𝛼)⟩ ∶ 𝐵𝑜𝑜𝑙 ∣

4.1.1 Type inference
Although very powerful, there is a limitation to this type of polymorphism: type inferencing is undecid-
able. We canfind the types of non-polymorphic (co-)terms by attempting to typecheck the (co-term) using
a fresh type variable as the (co-)terms supposed type. The typing rules tell us useful information about
this type in the shape of equality. For example, if we have the judgement ⊢ 𝑇 𝑟𝑢𝑒 ∶ 𝜏 ∣, we can use the
𝐹𝑅 rule to find that type variable 𝜏 must be equivalent to the type 𝐵𝑜𝑜𝑙. This is denoted as 𝜏 ∼ 𝐵𝑜𝑜𝑙.
These equivalencies, often called constraints [MH88], can be accumulated throughout a typechecking
tree. After this is done, we can use them to evaluate the type of the original judgement by substituting
types according to the found constraints. Using this technique, we can, for instance, infer the type of𝑛𝑜𝑡.
We start a proof tree with the judgement ⊢ 𝜇(𝑇 𝑟𝑢𝑒 ⋅ 𝛼.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ ∣ 𝐹𝑎𝑙𝑠𝑒 ⋅ 𝛼.⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩) ∶ 𝜏1 ∣
where 𝜏1 is a fresh type variable. We can apply the 𝐺𝑅 rule to remove the 𝜇, and continue proving the
types of the commands in all branches. Doing so, we first use co-pattern matching to fill the input and
output environments, and report any constraints to 𝜏1. There are two co-patterns in the𝜇-term: 𝑇 𝑟𝑢𝑒⋅𝛼
and 𝐹𝑎𝑙𝑠𝑒 ⋅ 𝛼. As the co-patterns are call-stacks, we know that 𝜏1 must be equivalent to a function type.
We also know that 𝑇 𝑟𝑢𝑒 and 𝐹𝑎𝑙𝑠𝑒 have type 𝐵𝑜𝑜𝑙. We do not know the type of 𝛼 yet, however. We
therefore assign a fresh type variable 𝜏2 to𝛼 in both branches, and store the constraint 𝜏1 ∼ 𝐵𝑜𝑜𝑙 → 𝜏2.

⋮
⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ ∶ (⊢ 𝛼 ∶ 𝜏2)

⋮
⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩ ∶ (⊢ 𝛼 ∶ 𝜏2) 𝜏1 ∼ 𝐵𝑜𝑜𝑙 → 𝜏2 𝐺𝑅⊢ 𝜇(𝑇 𝑟𝑢𝑒 ⋅ 𝛼.⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ ∣ 𝐹𝑎𝑙𝑠𝑒 ⋅ 𝛼.⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩) ∶ 𝜏1 ∣

50 HINDLEY-MILNER POLYMORPHISM

Next, we continue with the two commands. Both can be proven in the same way. We apply the 𝐶𝑢𝑡
rule to split the command into a term and co-term. The𝐶𝑢𝑡 rule tells us that the term and co-term need
to be of the same type. We already know that 𝛼 is of type 𝜏2 in both comands, while 𝑇 𝑟𝑢𝑒 and 𝐹𝑎𝑙𝑠𝑒
are constructors of the datatype 𝐵𝑜𝑜𝑙. As such, we add the constraint 𝜏2 ∼ 𝐵𝑜𝑜𝑙. The remaining two
judgements can be proven with the 𝐹𝑅 and the 𝑉 𝐿 rules in both branches.

𝐹𝑅⊢ 𝐹𝑎𝑙𝑠𝑒 ∶ 𝐵𝑜𝑜𝑙 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝜏2 ⊢ 𝛼 ∶ 𝜏2 𝜏2 ∼ 𝐵𝑜𝑜𝑙
𝐶𝑢𝑡⟨𝐹𝑎𝑙𝑠𝑒 ∥ 𝛼⟩ ∶ (⊢ 𝛼 ∶ 𝜏2)

𝐹𝑅⊢ 𝑇 𝑟𝑢𝑒 ∶ 𝐵𝑜𝑜𝑙 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝜏2 ⊢ 𝛼 ∶ 𝜏2 𝜏2 ∼ 𝐵𝑜𝑜𝑙
𝐶𝑢𝑡⟨𝑇 𝑟𝑢𝑒 ∥ 𝛼⟩ ∶ (⊢ 𝛼 ∶ 𝜏2)

After finishing the entire proof tree, we are left with two constraints: 𝜏1 ∼ 𝐵𝑜𝑜𝑙 → 𝜏2 and 𝜏2 ∼ 𝐵𝑜𝑜𝑙.
We can combine these constraints to find that the type of 𝑛𝑜𝑡 must be 𝐵𝑜𝑜𝑙 → 𝐵𝑜𝑜𝑙.

However, this technique does not work for polymorphic (co-)terms. We can try to execute the same
steps for the polymorphic identity functionwedefined earlier. We startwith the judgement⊢ 𝜇(𝐹𝑜𝑟𝑎𝑙𝑙 𝑌 (𝑥⋅
𝛼).⟨𝑥 ∥ 𝛼⟩) ∶ 𝜏1 ∣. We first apply the 𝐺𝑅 rule to remove 𝜇-term and its co-pattern, and continue with
the command ⟨𝑥 ∥ 𝛼⟩. In doing so, we find two constraints. The first is 𝜏1 ∼ 𝐹𝑜𝑟𝑎𝑙𝑙 𝜏2, because the
𝜇-term contains a 𝐹𝑜𝑟𝑎𝑙𝑙 constructor, but we are not sure of the 𝐹𝑜𝑟𝑎𝑙𝑙 connector’s argument. We do
know that applying 𝑌 to this argument would give us a function type 𝜏3 → 𝜏4, since 𝑥 ⋅ 𝛼 is a call-stack.
We therefore get the constraint 𝜏2 𝑌 ∼ 𝜏3 → 𝜏4, and the input and output environment are extended
with 𝑥 ∶ 𝜏3 and 𝛼 ∶ 𝜏4. Next, we can split the command ⟨𝑥 ∥ 𝛼⟩ by using the𝐶𝑢𝑡 rule. This tells us that
𝑥 and 𝛼 are of the same type, leading to the constraint 𝜏4 ∼ 𝜏3. We can then use the verification rules to
finish the proof.

𝑉 𝑅𝑥 ∶ 𝜏3 ⊢ 𝑥 ∶ 𝜏3 ∣ 𝑉 𝐿∣ 𝛼 ∶ 𝜏4 ⊢ 𝛼 ∶ 𝜏4 𝜏4 ∼ 𝜏3 𝐶𝑢𝑡⟨𝑥 ∥ 𝛼⟩ ∶ (𝑥 ∶ 𝜏3 ⊢ 𝛼 ∶ 𝜏4) 𝜏1 ∼ 𝐹𝑜𝑟𝑎𝑙𝑙 𝜏2, 𝜏2 𝑌 ∼ 𝜏3 → 𝜏4 𝐺𝑅⊢ 𝜇(𝐹𝑜𝑟𝑎𝑙𝑙 𝑌 (𝑥 ⋅ 𝛼).⟨𝑥 ∥ 𝛼⟩) ∶ 𝜏1 ∣
As a result, we have three constraints: 𝜏1 ∼ 𝐹𝑜𝑟𝑎𝑙𝑙 𝜏2, 𝜏2 𝑌 ∼ 𝜏3 → 𝜏4, and 𝜏3 ∼ 𝜏4. We can simplify
this by applying the last constraint to the others. We are then left with two constraints: 𝜏1 ∼ 𝐹𝑜𝑟𝑎𝑙𝑙 𝜏2
and 𝜏2 𝑌 ∼ 𝜏3 → 𝜏3. We are not able to solve this set of constraints any further. We cannot possibly
determine what 𝜏2 must be, which means that all we know of the type of the identity function is that it
must be 𝐹𝑜𝑟𝑎𝑙𝑙 𝜏2, where 𝜏2 could be anything. As this is not useful information, this example proves
that this typing system does not suffice, and another approach is needed.

4.2 Hindley-Milner polymorphism

Type inferencing being undecidable for polymorphic terms is a problem that is not unique to the 𝜇 ̃𝜇-
calculus. In fact, it holds true for the polymorphic 𝜆-calculus System F as well [Wel99]. To support both
polymorphism and type inference, many functional programming languages use theHindley-Milner type
system [Mil78].

The Hindley-Milner type systemwas invented for the 𝜆-calculus, but its core ideas can be used in the
𝜇 ̃𝜇-calculus. In the 𝜆-calculus this typing system differentiates between types and type schemes. Types
can be type variables or connectors, while type schemes are either a type, or a universally quantified
type. Most terms have types, but top-level declared terms and let-bound terms are allowed to have a type
scheme. Using this system, the 𝜆-calculus can support polymorphism, but only on the top-level.

𝐹 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∶∶= … 𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐹(#»𝐴) 𝜎 ∈ 𝑇 𝑦𝑝𝑒𝑆𝑐ℎ𝑒𝑚𝑒 ∶∶= 𝐴 ∣ ∀𝑋.𝐴

ADDING POLYMORPHISM 51

It is not possible to use a constructor to create a quantified type. Instead, we generalise the inferred
types of all top-level definitions. For example, if we have a top level definition 𝑖𝑑 = 𝜆𝑥.𝑥, we can infer
its type as follows:

𝜏2 ∼ 𝜏3 𝑥𝑥 ∶ 𝜏3 𝜏1 ∼ 𝜏2 → 𝜏3 → 𝐼𝑥𝜆𝑥.𝑥 ∶ 𝜏1

The constraints we find in this typechecking tree, 𝜏1 ∼ 𝜏2 → 𝜏3 and 𝜏2 ∼ 𝜏3, tell us that 𝜏1 can be
rewritten to 𝜏3 → 𝜏3. We generalise types by finding all free type variables in the type, and binding them
with a universal quantifier. In the case of 𝑖𝑑, this means the final type will be ∀𝜏3.𝜏3 → 𝜏3.

Whenever 𝑖𝑑 is used in a term, we instantiate its type. If we infer the type of the term 𝑖𝑑 𝑇 𝑟𝑢𝑒, we
start the process by claiming its type is a fresh type variable 𝜏1. We then use the → 𝐸 rule to split the
term into two parts: 𝑖𝑑 and 𝑇 𝑟𝑢𝑒. We know that 𝑖𝑑 must have some function type that produces a term
of type 𝜏1. We also know that 𝑖𝑑 takes 𝑇 𝑟𝑢𝑒 as an argument. Since 𝑇 𝑟𝑢𝑒’s type is 𝐵𝑜𝑜𝑙, we know that
in this step, 𝑖𝑑 must be of type 𝐵𝑜𝑜𝑙 → 𝜏1. As we have determined previously, 𝑖𝑑’s fully quantified type
is actually ∀𝜏3.𝜏3 → 𝜏3. This means that 𝐵𝑜𝑜𝑙 → 𝜏1 must be an instance of ∀𝜏3.𝜏3 → 𝜏3. This is a
new type of constraint, denoted as 𝐵𝑜𝑜𝑙 → 𝜏1 < ∀𝜏3.𝜏3 → 𝜏3.

𝐵𝑜𝑜𝑙 → 𝜏1 < ∀𝜏3.𝜏3 → 𝜏3
𝑖𝑑 ∶ 𝐵𝑜𝑜𝑙 → 𝜏1 𝑇 𝑟𝑢𝑒 ∶ 𝐵𝑜𝑜𝑙 → 𝐸𝑖𝑑 𝑇 𝑟𝑢𝑒 ∶ 𝜏1

We can instantiate the right-hand side of this constraint by passing it a fresh type-variable 𝜏4. This gives
us the constraint𝐵𝑜𝑜𝑙 → 𝜏1 ∼ 𝜏4 → 𝜏4. This constraint can then be split into 𝜏1 ∼ 𝜏4 and 𝜏4 ∼ 𝐵𝑜𝑜𝑙.
Reducing these constraints oncemore gives us 𝜏1 ∼ 𝐵𝑜𝑜𝑙, whichmeans that the type of the term 𝑖𝑑 𝑇 𝑟𝑢𝑒
must be 𝐵𝑜𝑜𝑙.

4.2.1 Hindley-Milner in the 𝜇 ̃𝜇-calculus
We can implement a similar typing system in the 𝜇 ̃𝜇-calculus, and therefore inMMH. Just like in the 𝜆-
calculus, we differentiate between types and type schemes. (Co-)terms that are defined at the top-level, in
let-bindings or in where-clauses have type schemes, other (co-)terms have types. To do this, the inferred
types of all the (co-)terms that can have a type scheme are generalised. Because of these changes, our type
inferencing process can now result in two kinds of constraints: equivalencies (𝐴 ∼ 𝐵), and instances
(𝐴 < 𝐵). The difference between the two is subtle. 𝐴 < 𝐵 means that 𝐴 and 𝐵 must be equivalent
when all quantification from𝐵 is removed, and the quantified variables are replacedwith fresh variables.
𝐴 ∼ 𝐵 means that 𝐴 and 𝐵 are simply equivalent. We define three constraint rules that allow instance
constraints to be simplified.

The first rule we define is the𝐶𝑜𝑛 − 𝑀𝑜𝑛𝑜 rule. This rules specifies that if two types - and not type
schemes - are equal, they are automatically an instance of each other.

𝐴 ∼ 𝐵 𝐶𝑜𝑛 − 𝑀𝑜𝑛𝑜𝐴 < 𝐵
Next, we add the 𝐶𝑜𝑛 − 𝐼𝑛𝑠𝑡 rule. This rule tells us that if a type scheme 𝜎1 is an instance of another
type scheme 𝜎2, 𝜎1 will also be an instance of a quantified version of 𝜎2.

𝜎1 < 𝜎2{𝑌 /𝑋}
𝐶𝑜𝑛 − 𝐼𝑛𝑠𝑡𝜎1 < ∀𝑋.𝜎2

Then, we define the 𝐶𝑜𝑛 − 𝑆𝑘𝑜𝑙 rule, which dictates that for a type scheme 𝜎1 that is an instance of
another type scheme 𝜎2, a quantified version of 𝜎1 is also an instance of 𝜎2, as long as the type parameter
of this quantified version does not occur in 𝜎2.

52 HINDLEY-MILNER POLYMORPHISM

𝐴, 𝐵, 𝐶 ∈ 𝑇 𝑦𝑝𝑒 ∶∶= 𝑋 ∣ 𝐹(#»𝐴) 𝑋, 𝑌 , 𝑍 ∈ 𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶∶= …
𝜎 ∈ 𝑇 𝑦𝑝𝑒𝑆𝑐ℎ𝑒𝑚𝑒 ∶∶= 𝐴 ∣ ∀𝑋.𝜎 𝐹 , 𝐺 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∶∶= …

Core rules:

𝐵 < 𝐴 𝑉 𝑅𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐵 ∣
𝐵 < 𝐴 𝑉 𝐿∣ 𝛼 ∶ 𝐵 ⊢ 𝛼 ∶ 𝐴

Constraint rules:

𝐴 ∼ 𝐵 𝐶𝑀𝐴 < 𝐵
𝐶𝑉𝐴 ∼ 𝐴

𝜎1 < 𝜎2{𝑌 /𝑋}
𝐶𝐼𝜎1 < ∀𝑋.𝜎2

𝜎1 < 𝜎2 𝑋 ∉ 𝐹𝑉 (𝜎2)
𝐶𝑆∀𝑋.𝜎1 < 𝜎2

Figure 4.1: Changes to the 𝜇 ̃𝜇-calculus to support the Hindley-Milner type system.

𝜎1 < 𝜎2 𝑋 ∉ 𝐹𝑉 (𝜎2)
𝐶𝑜𝑛 − 𝑆𝑘𝑜𝑙∀𝑋.𝜎1 < 𝜎2

Finally, we add one more rule: the 𝐶𝑜𝑛 − 𝑉 𝑒𝑟𝑖𝑓𝑦 rule. This rule does not handle instante constraints,
but it allows equivalency constraints to be removed if the constraint represent a type being equivalent to
itself. These kinds of constraints are trivially true, and therefore not useful.

𝐶𝑜𝑛 − 𝑉 𝑒𝑟𝑖𝑓𝑦𝐴 ∼ 𝐴
Figure 4.1 shows all the changes that are made to the 𝜇 ̃𝜇-calculus to support the Hindley-Milner type
system.

With these new rules in place, we are able to write polymorphic (co-)terms. Just like we did for the
𝜆-calculus, we will write an identity function 𝑖𝑑, and show its type inferencing process. As we have seen
before, an identity function in the 𝜇 ̃𝜇-calculus can be written as 𝜇(𝑥 ⋅ 𝛼.⟨𝑥 ∥ 𝛼⟩). We will start the type
inference process by claiming this term has type 𝜏1. We can use the 𝐺𝑅 rule to continue. This tells us
that 𝜏1 must be of some function type. We therefore get the constraint 𝜏1 < 𝜏2 → 𝜏3, and insert 𝑥 ∶ 𝜏2
and 𝛼 ∶ 𝜏3 into the input and output environments. As the constraint has unquantified types on both
sides of the instance operator, it can be reduced to the equivalency constraint 𝜏1 ∼ 𝜏2 → 𝜏3. Next, we
typecheck the command ⟨𝑥 ∥ 𝛼⟩, with environments 𝑥 ∶ 𝜏2 ⊢ 𝛼 ∶ 𝜏3. We use the 𝐶𝑢𝑡 rule to split the
command. As both sides of the command must have the same type, we obtain the constraint 𝜏2 ∼ 𝜏3.
We also obtain two more judgements to prove: 𝑥 ∶ 𝜏2 and 𝛼 ∶ 𝜏3. These can be proven using the 𝑉 𝑅
and 𝑉 𝐿 rules respectively. This gives us the constraints 𝜏2 < 𝜏2 and 𝜏3 < 𝜏3. These can be reduced to
equivalencies using the 𝐶𝑀 rule, after which they can be removed with the 𝐶𝑉 rule.

𝐶𝑉𝜏2 ∼ 𝜏2
𝜏2 < 𝜏2 𝑉 𝑅𝑥 ∶ 𝜏2 ⊢ 𝑥 ∶ 𝜏2 ∣

𝐶𝑉𝜏3 ∼ 𝜏3
𝜏3 < 𝜏3 𝑉 𝐿∣ 𝛼 ∶ 𝜏3 ⊢ 𝛼 ∶ 𝜏3 𝜏2 ∼ 𝜏3 𝐶𝑢𝑡⟨𝑥 ∥ 𝛼⟩ ∶ (𝑥 ∶ 𝜏2 ⊢ 𝛼 ∶ 𝜏3)

𝜏1 ∼ 𝜏2 → 𝜏3 𝐶𝑀𝜏1 < 𝜏2 → 𝜏3 𝐺𝑅⊢ 𝜇(𝑥 ⋅ 𝛼.⟨𝑥 ∥ 𝛼⟩) ∶ 𝜏1 ∣
The constraints we get from the typechecking tree are 𝜏2 ∼ 𝜏3 and 𝜏1 ∼ 𝜏2 → 𝜏3. We can reduce this
to 𝜏1 ∼ 𝜏3 → 𝜏3. Finally, we generalise this type and find that 𝑖𝑑’s type is ∀𝜏3.𝜏3 → 𝜏3.

Next, we will infer the type of a term that uses 𝑖𝑑: 𝜇𝛼.⟨𝑖𝑑 ∥ 𝑇 𝑟𝑢𝑒 ⋅ 𝛼⟩. As usual, we start with a
judgement that binds this term to a fresh type variable 𝜏1. We already know the type of 𝑖𝑑, which is stored

ADDING POLYMORPHISM 53

Γ ⊢ 𝑣1 ∶ 𝐵 ∣ Δ Γ, 𝑥 ∶ 𝑔𝑒𝑛(𝐵) ⊢ 𝑣2 ∶ 𝐴 ∣ Δ 𝐿𝑒𝑡𝑅1Γ ⊢ 𝑙𝑒𝑡 𝑥 = 𝑣1 𝑖𝑛 𝑣2 ∶ 𝐴 ∣ Δ

Γ ∣ 𝑒 ∶ 𝐵 ⊢ Δ Γ ⊢ 𝑣 ∶ 𝐴 ∣ 𝛼 ∶ 𝑔𝑒𝑛(𝐵), Δ 𝐿𝑒𝑡𝑅2Γ ⊢ 𝑙𝑒𝑡 𝛼 = 𝑒 𝑖𝑛 𝑣 ∶ 𝐴 ∣ Δ

Γ ⊢ 𝑣 ∶ 𝐵 ∣ Δ Γ, 𝑥 ∶ 𝑔𝑒𝑛(𝐵) ∣ 𝑒 ∶ 𝐴 ⊢ Δ 𝐿𝑒𝑡𝐿1Γ ∣ 𝑙𝑒𝑡 𝑥 = 𝑣 𝑖𝑛 𝑒 ∶ 𝐴 ⊢ Δ

Γ ∣ 𝑒1 ∶ 𝐵 ⊢ Δ Γ ∣ 𝑒2 ∶ 𝐴 ⊢ 𝛼 ∶ 𝑔𝑒𝑛(𝑏), Δ 𝐿𝑒𝑡𝐿2Γ ∣ 𝑙𝑒𝑡 𝛼 = 𝑒1 𝑖𝑛 𝑒2 ∶ 𝐴 ⊢ Δ

Figure 4.2: Typing rules for let-bindings in MMH. These rules can be used for top-level definitions and
where-clauses too.

in the input environment. The starting judgement is 𝑖𝑑 ∶ ∀𝜏3.𝜏3 → 𝜏3 ⊢ 𝜇𝛼.⟨𝑖𝑑 ∥ 𝑇 𝑟𝑢𝑒⋅𝛼⟩ ∶ 𝜏1 ∣. The
first step is to apply the𝐴𝑅 rule. This removes the 𝜇-term, and places 𝛼 ∶ 𝜏1 in the output environment.
The remaining judgement is a passive one, and it can be split using the 𝐶𝑢𝑡 rule. This rule forces the
term 𝑖𝑑 and the co-term 𝑇 𝑟𝑢𝑒 ⋅ 𝛼 to be of the same type. Since we know that 𝑇 𝑟𝑢𝑒 has type𝐵𝑜𝑜𝑙 and 𝛼
has type 𝜏1, this type will be 𝐵𝑜𝑜𝑙 → 𝜏1. The co-term side is relatively easily proven. We apply the 𝐺𝐿
rule to split it into 𝑇 𝑟𝑢𝑒 and 𝛼. We can use 𝐹𝑅 to finish the judgement ⊢ 𝑇 𝑟𝑢𝑒 ∶ 𝐵𝑜𝑜𝑙 ∣. Applying
𝑉 𝐿 to ∣ 𝛼 ∶ 𝜏1 ⊢ 𝛼 ∶ 𝜏1 gives us the constraint 𝜏1 < 𝜏1. Since both of these types are unquantified,
and equivalent, we can use the 𝐶𝑀 and 𝐶𝑉 rules to finish this branch of the proof. Next, we go back
to proving the judgement 𝑖𝑑 ∶ ∀𝜏3.𝜏3 → 𝜏3 ⊢ 𝑖𝑑 ∶ 𝐵𝑜𝑜𝑙 → 𝜏1 ∣. We can use the 𝑉 𝑅 rule to get the
constraint𝐵𝑜𝑜𝑙 → 𝜏1 < ∀𝜏3.𝜏3 → 𝜏3. The right-hand side of this constraint is then instantiated by the
𝐶𝐼 rule. This results in 𝐵𝑜𝑜𝑙 → 𝜏1 < 𝜏4 → 𝜏4. As both types are now unquantified, we can use 𝐶𝑀
to turn the instance constraint into an equivalency constraint 𝐵𝑜𝑜𝑙 → 𝜏1 ∼ 𝜏4 → 𝜏4. This is the only
constraint that remains from the type inference tree. It can be split into two new constraints: 𝜏4 ∼ 𝐵𝑜𝑜𝑙
and 𝜏1 ∼ 𝜏4. Combining these two results into 𝜏1 ∼ 𝐵𝑜𝑜𝑙, which means the original term has type
𝐵𝑜𝑜𝑙.

𝐵𝑜𝑜𝑙 → 𝜏1 ∼ 𝜏4 → 𝜏4 𝐶𝑀𝐵𝑜𝑜𝑙 → 𝜏1 < 𝜏4 → 𝜏4 𝐶𝐼𝐵𝑜𝑜𝑙 → 𝜏1 < ∀𝜏3.𝜏3 → 𝜏3 𝑉 𝑅𝑖𝑑 ∶ ∀𝜏3.𝜏3 → 𝜏3 ⊢ 𝑖𝑑 ∶ 𝐵𝑜𝑜𝑙 → 𝜏1 ∣

𝐹𝑅⊢ 𝑇 𝑟𝑢𝑒 ∶ 𝐵𝑜𝑜𝑙 ∣

𝐶𝑉𝜏1 ∼ 𝜏1 𝐶𝑀𝜏1 < 𝜏1 𝑉 𝐿∣ 𝛼 ∶ 𝜏1 ⊢ 𝛼 ∶ 𝜏1 𝐺𝐿∣ 𝑇 𝑟𝑢𝑒 ⋅ 𝛼 ∶ 𝐵𝑜𝑜𝑙 → 𝜏1 ⊢ 𝛼 ∶ 𝜏1 𝐶𝑢𝑡⟨𝑖𝑑 ∥ 𝑇 𝑟𝑢𝑒 ⋅ 𝛼⟩ ∶ (𝑖𝑑 ∶ ∀𝜏3.𝜏3 → 𝜏3 ⊢ 𝛼 ∶ 𝜏1)
𝐴𝑅𝑖𝑑 ∶ ∀𝜏3.𝜏3 → 𝜏3 ⊢ 𝜇𝛼.⟨𝑖𝑑 ∥ 𝑇 𝑟𝑢𝑒 ⋅ 𝛼⟩ ∶ 𝜏1 ∣

We have seen how polymorphic (co-)terms can be defined and used in the 𝜇 ̃𝜇-calculus. This is made
possible by generalising the types of all top-level definitions. InMMH, we need several extra typing rules,
because it should also be possible to define polymorphic (co-)terms using let-bindings andwhere-clauses.
To support this, the types of (co-)terms defined this way must be generalised. Figure 4.2 formalises the
typing rules that facilitate this.

4.2.2 Conclusion

We have seen two separate approaches to type polymorphism in the 𝜇 ̃𝜇-calculus. First, we have explored
Downen and Ariola’s system. While this system is very powerful, it renders type inference undecidable.
For this reason, we have implemented Hindley-Milner polymorphism into the 𝜇 ̃𝜇-calculus. Using this

54 HINDLEY-MILNER POLYMORPHISM

system, we have shown how it is possible to write polymorphic terms and co-terms, and how the types of
these (co-)terms can be inferred.

5
Closing remarks

5.1 Conclusions

This thesis has proposed a modern high-level programming language called MMH, that uses the 𝜇 ̃𝜇-
calculus at its core. Syntactically, MMH is an extension to Haskell. MMH has been formalised by first
defining conversion steps for 𝜆-calculus terms to 𝜇 ̃𝜇-calculus terms. Since Haskell can be compiled to
the 𝜆-calculus, this conversion method lets Haskell programs be converted to a collection of 𝜇 ̃𝜇-calculus
terms. Next, support for nested (co-)patterns in the 𝜇 ̃𝜇-calculus has been implemented. This is done
by formalising a pattern expansion algorithm C𝜇, based on Augustsson’s algorithm C. Finally, custom
syntactical extensions have been added to Haskell to allow co-terms and commands to be written. This
way, users ofMMH are able to take full control of the power of the 𝜇 ̃𝜇-calculus.

In addition, the 𝜇 ̃𝜇-calculus and MMH have been given support for polymorphic types. This has
been done by adapting the Hindley-Milner typing system for the 𝜇 ̃𝜇-calculus.

5.2 Future work

5.2.1 Formalisation
AlthoughMMH has strong fundamental roots in both the 𝜆-calculus and the 𝜇 ̃𝜇-calculus, its soundness
has not been proven in this thesis. For future stability, proving this, as well as Turing completeness, would
be a logical next step.

5.2.2 Adding modern features
MMH can be used as a general purpose programming language. However, it lacks certain features that
the modern programmer may expect. For instance, there is as of yet no way of creating interfaces. This
could perhaps be done by implementing type classes in a similar way as Haskell has it. Likewise, the
specifications ofMMH in this thesis do not discuss splitting programs overmultiple files. Thismeans that
MMH programs need to be written in one single file, and there is no way to organise code into chunks.
From a user’s point of view, this is unacceptable for a modern programming language. Another feature

56 FUTUREWORK

that is lacking in MMH, is a way to interact with the user. As it stands, MMH programs cannot read or
write files, and they have noway of receiving user input. Implementing such features could be interesting.

5.2.3 Code generation
This thesis has focused on compiling programs to the 𝜇 ̃𝜇-calculus. However, in a compiler, 𝜇 ̃𝜇-calculus
would not be the end station. The𝜇 ̃𝜇-calculuswould be used as an intermediate language. More research
is needed on converting this intermediate language to actual machine code. An especially interesting
point here, are the call-stacks that are generated by functions in MMH. Since this neatly organises all
computations in a program in a strict order, they can perhaps be taken advantage of.

5.2.4 Adding dependent types
In dependently typed languages, types traditionally are seen as terms. How could a dependently typed
programming language be built on top of the𝜇 ̃𝜇-calculus? The𝜇 ̃𝜇-calculus differentiates between terms
and co-terms. What would the effect of this be in a dependently typed setting?

5.2.5 Converting 𝜇 ̃𝜇-calculus programs to the 𝜆-calculus
Section 3.1 describes a process of transforming 𝜆-calculus programs to 𝜇 ̃𝜇-calculus programs. Doing this
in the reversed direction could be an interesting alternative, as the 𝜆-calculus does not contain a direct
replacement for co-terms in the 𝜇 ̃𝜇-calculus.

Listing of figures

2.1 Propositions in the sequent calculus and natural deduction 3
2.2 Judgements in natural deduction and the sequent calculus 4
2.3 The core rules of the sequent calculus . 5
2.4 The structural rules of the sequent calculus . 5
2.5 Logical rules for truth (⊤), falsehood (⊥), conjunction (∧), disjunction (∨), negation (¬),

implication (⊃), universal quantification (∀) and existential quantification (∃) in the se-
quent calculus. 6

2.6 Logical rules for truth (⊤), falsehood (⊥), conjunction (∧), disjunction (∨), implication
(⊃), universal quantification (∀) and existential quantification (∃) in natural deduction. 6

2.7 Implication in natural deduction and the sequent calculus 7
2.8 An example proof of the proposition (𝐴 ∧ 𝐵) ∧ 𝐶 ⊃ 𝐴 ∧ 𝐶 in the two logical systems. 7
2.9 The simply typed 𝜆-calculus with function (→), sum (+) and product (×) types. 10
2.10 The core 𝜇 ̃𝜇-calculus . 12
2.11 The 𝜇 ̃𝜇-calculus with user-defined (co-)datatypes. 17
2.12 Evaluation rules and strategies in the 𝜇 ̃𝜇-calculus with user-defined (co-)datatypes. . . . 20

3.1 The 𝜆-calculus with datatypes and constructors. 26
3.2 Evaluating 𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))) using a call-by-value strategy in the 𝜇 ̃𝜇-

calculus. 28
3.3 Evaluating 𝑡𝑎𝑖𝑙 (𝑡𝑎𝑖𝑙 (𝐶𝑜𝑛𝑠 𝑥 (𝐶𝑜𝑛𝑠 𝑦 𝑁𝑖𝑙))) using the improved version of Conv that

generates call-stacks for nested function applications. These reduction steps are the same
for both call-by-name and call-by-value evaluation. 30

3.4 The syntax ofMMH. 43
3.5 An exampleMMH program . 45

4.1 Changes to the 𝜇 ̃𝜇-calculus to support the Hindley-Milner type system. 52
4.2 Typing rules for let-bindings in MMH. These rules can be used for top-level definitions

and where-clauses too. 53

58 LISTING OF FIGURES

Bibliography

[Aug84] Lennart Augustsson. “A compiler for lazyML”. In: Proceedings of the 1984 ACMSymposium
on LISP and functional programming. ACM. 1984, pp. 218–227.

[Aug85] Lennart Augustsson. “Compiling patternmatching”. In:Conference on Functional Program-
ming Languages and Computer Architecture. Springer. 1985, pp. 368–381.

[CH00] Pierre-Louis Curien and Hugo Herbelin. “The duality of computation”. In: ACM sigplan
notices 35.9 (2000), pp. 233–243.

[Chu36] Alonzo Church. “An unsolvable problem of elementary number theory”. In:American jour-
nal of mathematics 58.2 (1936), pp. 345–363.

[Chu40] Alonzo Church. “A formulation of the simple theory of types”. In: The journal of symbolic
logic 5.2 (1940), pp. 56–68.

[DA19] PaulDownen andZenaMAriola. “CompilingWithClassical Connectives”. In:arXiv preprint
arXiv:1907.13227 (2019).

[Dow+16] Paul Downen et al. “Sequent calculus as a compiler intermediate language”. In: Proceed-
ings of the 21st ACM SIGPLAN International Conference on Functional Programming. 2016,
pp. 74–88.

[Dow17] Paul Downen. “Sequent Calculus: A Logic and a Language for Computation and Duality”.
In: (2017).

[Gen35] GerhardGentzen. “Untersuchungenüber das logische Schließen. I”. In:Mathematische zeitschrift
39.1 (1935), pp. 176–210.

[Her05] HugoHerbelin. “C’estmaintenant qu’on calcule: au cœur de la dualité”. In:Mémoire d’habilitation,
available from cited url (2005).

[Mau+17] Luke Maurer et al. “Compiling without continuations”. In: ACM SIGPLAN Notices. Vol. 52.
6. ACM. 2017, pp. 482–494.

[Men19] Alejandro Serrano Mena. “Increasing Code Reuse”. In: Practical Haskell. Springer, 2019,
p. 71.

[MH88] John C Mitchell and Robert Harper. “The essence of ML”. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 1988, pp. 28–46.

[Mil78] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of computer
and system sciences 17.3 (1978), pp. 348–375.

[Wel99] Joe BWells. “Typability and type checking in System F are equivalent and undecidable”. In:
Annals of Pure and Applied Logic 98.1-3 (1999), pp. 111–156.

	Acknowledgements
	Abstract
	Introduction
	Contributions
	Structure

	The µµ-calculus
	Introduction to Gentzen's sequent calculus
	Logical rules

	The µµ-calculus
	The λ-calculus
	The µµ-calculus
	Typing
	Evaluation

	Adding constructors and types
	User-defined (co-)datatypes
	Evaluation
	Nested evaluation

	Functions in the µµ-calculus

	Programming with the µµ-calculus
	Converting λ-terms to µµ-terms
	Typechecking
	Evaluation

	Nested (co-)patterns
	Expanding (co-)patterns
	Adding join points
	Adding join points to Cµ

	Mu-Mu-tilde-Haskell
	Conclusion

	Adding polymorphism
	Downen and Ariola's polymorphism
	Type inference

	Hindley-Milner polymorphism
	Hindley-Milner in the µµ-calculus
	Conclusion

	Closing remarks
	Conclusions
	Future work
	Formalisation
	Adding modern features
	Code generation
	Adding dependent types
	Converting µµ-calculus programs to the λ-calculus

