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Abstract

Our behavior is driven by a small subset of all information available to
us. As our processing resources are limited, we select information to attend
to in order to learn from our environment. Visual attention has been stud-
ied for many decades. Still, current attentional models do not explain how
attentional modulations affect trial-and-error learning in the visual cortex.
This study is the first to define synaptic plasticity as a function of attentional
modulations observed prior to receiving rewards. The attention-modulated
Hebbian plasticity rule is used to simulate attention-guided learning for a se-
ries of classification tasks. Despite exclusively receiving reward feedback for
the predicted label, our attention-guided reinforcement learning framework is
able to perform comparably to supervised error-backpropagation. This holds
for datasets with up to 100 class labels. Our results are obtained by redefining
learning to reflect biological mechanisms which ultimately govern behaviour.
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1 Introduction

Our behavior is driven by a small subset of all information available to us. As our
processing resources are limited, we are required to select information to attend to
in order to learn from our environment. Attention is therefore considered a selection
process [16], as well as an increased bias towards relevant information encoded in
neural populations [6]. Neurophysiological studies have focused on measuring and
describing this process in the visual cortex for many decades. Despite a large body
of literature on visual attention, we lack a solid understanding of the mechanisms
behind attention-guided visual learning. Computational models that simulate com-
plex interactions in the brain can be used to implement attentional mechanisms by
biasing network activity to relevant input [12]. However, current attentional models
either do not reflect biological learning mechanisms in the visual cortex [11] [18] [2]
[32] [5], do not account for attention as part of the learning process [13] or fail to
explain how learning relates to known attentional modulations [26] [23].

Individuals generally learn rewarding behaviors from trial-and-error interactions
with their environment. This reinforcement learning is guided by reward predic-
tion errors [25], which are believed to be propagated by the dopaminergic system
to neurons that contributed towards the reward-associated behavior. Here, predic-
tion errors are believed to alter the synaptic strength between neurons to either
enforce or discourage the associated behavior [25] [26]. Hebbian plasticity states
that synaptic strength reflects the causality between presynaptic and postsynaptic
firing [26]. This well-established belief is more commonly stated as “cells that fire
together, wire together”. Moreover, neurophysiological studies find that attention
alters neural firing rates prior to receiving a reward [16] and increases performance
accuracy and speed [6]. It can therefore be suggested that learning mechanisms are
guided by these attentional firing modulations.

How do attentional mechanisms aid learning? This study addresses this question
by describing a biologically plausible learning framework that simulates attentional
firing modulations and integrates these into trial-and-error learning. The attention-
modulated Hebbian plasticity rule is used to simulate attention-guided learning in
the visual cortex for a series of classification tasks. Despite exclusively receiving
reward feedback for the predicted label, our attention-guided reinforcement learn-
ing framework is able to perform comparably to supervised error-backpropagation,
which provides feedback for all class labels. This holds for datasets with up to 100
class labels, i.e. where there is 100 times more feedback information for supervised
learning than for trial-and-error learning. Furthermore, while attention generally in-
creased the performance of our learning rule, our results did not indicate significant
attentional performance gains. However, we propose a slight addition to the learning
framework that could result in attentional performance gains that may outperform
error-backpropagation. The learning framework proposed in this study is the first
to define synaptic plasticity as a function of attentional modulations observed prior
to receiving rewards.
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It is important to mention that while this study aims to simulate attentional pro-
cesses, our goal is not to achieve biological ‘correctness’. For instance, we do not
implement a spiking network which would be more coherent with biological neural
networks. Moreover, current artificial neural networks do not account for types of
neurotransmitters and connections that are either excitatory or inhibitory, i.e. that
cannot change sign. Many aspects of implementing these processes are still unknown
and beyond the scope of this study.

Before discussing the proposed learning framework it is important to review previ-
ous attentional research. We review previous work on attentional modulations of
behavior in section 2.1, followed by attentional modulations of neural populations in
section 2.2, and attentional models in section 2.3. We discuss reinforcement learn-
ing and current biologically plausible learning frameworks in section 2.4. We argue
that current work calls for the attention-guided learning framework from section 3.
Results from the experiments from section 4 are detailed in section 5. We conclude
our study in section 6.

2 Background

2.1 Attending to stimuli

Before we discuss different attentional modulations, it is important to differenti-
ate between types of attention. Attention is guided by top-down or bottom-up
information or both [4]. Top-down information like intrinsic goals or knowledge is
propagated from higher to lower cortical areas, while bottom-up information like
the ‘saliency’ or ‘unexpectancy’ of stimuli flows from lower to higher areas. Tasks
that require a visual search for a unique conjunction of features between several
potential targets require both top-down and bottom-up information. The studies
we discuss in the following sections focus on top-down and bottom-up attentional
modulations as a result of contextual information. In contrast, attentional modu-
lations due to non-contextual ‘alarming’ stimuli are located in more ventral regions
that likely serve as an attentional circuit-breaker on all sensory modalities [7].

Another important distinction to be made is between types of stimuli that drive
attention. Attention can be directed to a location in the visual field, features that
correspond to specific aspects of a stimuli such as color, or objects. The mechanisms
behind these attention types are most likely not separate entities. As we will explain
in the next section, spatial attention is likely a special form of feature-based atten-
tion, which likely represents the same mechanism as object-based attention [22].
While feature-based attention is most profoundly measured in the visual cortex
[4], object-based attention is measured in higher cortical areas which are generally
specialized towards categories such as faces, body parts and scenes [22]. Spatial
attention is measured in the visual system, as well as the frontal, parietal and mid-
brain areas that control eye movement [4].
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Attentional modulations can be tested through spatial or feature cueing before the
target-stimulus onset, see Figure 1. Spatial cueing directs attention to a location
in the visual field while feature-based cueing directs attention to a target direction,
colour or motion. Target cueing increases performance accuracy as well as reaction
speed in many different types of visual tasks [6]. However, these attentional perfor-
mance gains decrease with the level of uncertainty. That is, when the size of the
attended area or range of potential target-stimuli increases in spatial and feature-
based attentional tasks respectively. This gain-deterioration is most evident in hard
tasks, such as low-contrast target detection tasks. Similarly, attentional gains in-
crease while performance accuracy deteriorates with the number of distractors, even
when these are known to be behaviorally irrelevant [6].

Figure 1: Detection tasks. Left : a spatial cue directs attention to the right visual field
before target-stimulus onset. Right : a feature cue directs attention to a red letter ‘A’. The
target-stimulus can appear on both sides of the fixation point. Attentional modulations
are measured during the cue-target interval.

While some studies reported attentional performance gains when subjects were ex-
posed to high levels of external noise [9], other studies found similar attentional
gains in zero-noise conditions [14]. This suggests that attention enhances the target-
stimulus response as well as suppresses noise-stimuli. Interestingly, many studies
report increased perceived target contrast and resolution in cueing tasks compared
to non-cueing tasks [6]. This indicates that attention alters our perception of the
world around us according to what we attend. Hence, attention ‘highlights’ what
we deem relevant or important at the expense of a true representation.

2.2 Neurophysiology of attentional modulations

Attention in the visual stream This study will focus on modelling attention in
the visual system, see Figure 2. This system receives feedforward information from
the retina in specialized areas of the fore- and midbrain [4]. From here, information
is passed along the ventral and the dorsal pathway of the visual cortex, and on
to higher visual association areas. Neural modulations as a result of both spatial
and feature-based attention generally increase with this feedforward flow. We will
discuss these modulations in the next section. Other areas that exhibit attentional
modulations are the frontal eye fields (FEF) which controls eye movements, the
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lateral intraparietal cortex (LIP) which receives information from both streams of
the visual cortex, and the prefrontal cortex (PFC) which is involved in intrinsic
goals, planning and decision making [4].

Figure 2: Illustration of the human visual system. Information from the retina is passed
along the dorsal and ventral streams of the visual cortex. Other areas include FEF, LIP
and PFC.

Top-down information from the frontal cortex to lower sensory areas is either com-
municated by back-propagating through the visual stream or through alternate con-
nections to lower areas. Such ‘shortcuts’ can be found from FEF and the prefrontal
cortex to visual cortices [4]. These pathways are believed to inform lower sensory
areas of spatial and feature-based biases. Moreover, top-down information encoding
intrinsic knowledge and goals and bottom-up information encoding the saliency of
stimuli are combined to construct priority maps of visual space [4]. These maps
indicate behaviorally important areas in the visual field and govern eye movements
accordingly. Priority maps are likely located outside of the visual system, e.g. in
FEF and parts of the midbrain.

While priority maps do not contain any feature-based information, neurons in the
visual system are often highly specialized in encoding features [4]. Hence, mecha-
nisms that govern eye movement and feature-based attention have separate neural
substrates and likely interact bi-directionally through connections in the forebrain.
As we will explain in section 2.3, hard attentional computational models produce
sequences of relevant locations in images from which cropped areas are fed into the
network, similar to how priority maps induce human eye saccades over an image [1].
Since this study focuses on simulating attention in the visual cortex, which is not
involved in governing eye saccades, hard attention will not be implemented.
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Neural attentional modulations Information that feeds into neurons of the
visual cortex generally encodes areas of the visual field known as the neuron’s recep-
tive field. The size of neuronal receptive fields increases with the visual feedforward
flow as each area integrates information from the previous area, similar to deep
convolutional networks [6]. Additionally, neurons along higher cortical areas ex-
hibit selective firing responses to certain features such as a ‘preferred’ direction [17].
Neuronal feature-selectivity can be visualized by mapping the firing response as a
function over a continuous feature range. A sharpened, i.e. narrowed, tuning curve
is believed to indicate an increased ability to encode a particular feature [15].

When attention is directed to a stimulus in their receptive field, neurons along the
visual stream are known to fire more, faster and more consistently following the stim-
ulus onset compared to non-attended tasks [16]. These attentional response gains
generally increase with the feedforward flow along the visual system and with task
difficulty, as cueing increases the amount of relevant information encoded in neural
populations most prominently in hard tasks. Additionally to altered response rates,
delay time between stimulus onset and neural responses decreases with the size of
attentional gains [16]. Furthermore, baseline activity increases prior to stimulus on-
set in the neural population encoding the attended area and decreases in neurons
encoding non-attended areas [6].

A well-known study by True & Martinez-Trujillo (1999) [17] was the first to sepa-
rate feature-based attentional modulations from spatial biases. Treue & Martinez-
Trujillo (1999) excluded spatial noise by directing attention to a moving-dot pattern
outside of the receptive field while maintaining the same pattern in the receptive
field. Remarkably, they found that neural responses are multiplicatively scaled com-
pared to directing attention inside the receptive field, see Figure 3. These results
suggest that feature-based attention is spatially-invariant, i.e. alters response rates
across the neural population. Moreover, Treue & Martinez-Trujillo (1999) argue
that neural responses are multiplied by a set rate that represents the similarity be-
tween attended and preferred features. This feature-similarity gain model predicts
increased response rates when neurons prefer the attended feature and a maximized
response when this feature is observed in the receptive field.

While [17] found that attention multiplicatively scales tuning curves without chang-
ing their shape, see Figure 4a, other studies report altered tuning behavior. Some
studies report sharpened, i.e. narrowed, tuning curves on individual or population
levels [15], indicating attention increases selectivity. Yet others studied attentional
modulations on tuning curves over a range of contrasts and found a horizontal shift
towards low-contrast stimuli, indicating attention increases sensitivity, see Figure
4b. These results do not necessarily contradict one another. In a subsequent study
[15], Treue & Martinez-Trujillo (2004) found that while attention multiplicatively
scaled responses for individual neurons, sharpened tuning curves were found at the
population-level. As we will see in section 2.2, a simple normalization model explains
both multiplicative scaling, i.e. response gain, and increased contrast sensitivity, i.e.
contrast gain.
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Figure 3: Attentional scaling of the direction-tuning curve, image from [17]. (a): At-
tention was directed inside or outside the receptive field. (b): Response rates were mul-
tiplicatively scaled.

Figure 4: Attentional modulations of contrast-tuning functions, image from [24]. (a):
Response gain. (b): Contrast gain.

Subsequent studies that isolated feature-based attentional modulations from spatial
biases found many identical results to previous work. Feature-based attention in-
creases response rates of neurons that prefer the attended feature, similar to spatial
attentional gains to a stimuli in the receptive field [6]. Similar to spatial attention,
feature-based attention is associated with decreases in pairwise variability correla-
tions between similarly tuned neurons and increases synchronized high-frequency
oscillations [16]. As a result, spatial and feature-based attention are argued to rep-
resent the same mechanism. Particularly, spatial attention may be a form of feature-
based attention where neural responses are tuned to the receptive field. However,
some studies report differences in attentional modulations [21], some of which we
discuss in the next section.

To conclude the experimental results discussed in this section, we discuss attentional
modulations related to object-based attention. Attentional response gains are high-
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est in areas that selectively respond to the target-object, such as the fusiform face
area for attending faces [3], and these modulations are spatially-invariant. More-
over, object-based attention increases firing patterns related to the target-category
while decreasing distractor-related patterns [29] and is associated with increased
gamma-oscillations [3]. These results suggest object-based attention may represent
the same mechanism as feature-based attention in higher cortical areas.

Models for attentional modulations There are many theories that attempt
to unify experimental results. Attention has been argued to shrink receptive fields
[19] or bias response rates [8] of neurons that encode the attended stimulus. While
Treue & Martinez-Trujillo (1999) explain their results with the feature-similarity
gain model, they can alternatively be explained with the feature-matching hypoth-
esis [15]. This model states that attentional gains represent the similarity between
the attended and perceived features irrespective of tuning. However, a subsequent
study [15] failed to find a correlation between attentional gains and the similarity
between the attended and perceived stimulus. Lastly, attention has been argued to
increase contrast sensitivity.

While these theories explain part of the experimental results, none explain why some
studies observe contrast gains while others find response gains of the contrast-tuning
function. Furthermore, none explain why switching attention between a preferred
and its opposite, i.e. anti-preferred, feature in a neuron’s receptive field alters its
firing rate [17]. Hence, a study that was able to explain all these results with a
simple theoretical model [24] provided a significant breakthrough in attentional re-
search. This normalization model by Heeger & Reynolds (2009) [24] states that
attention acts as a response multiplier to the attended stimulus, but the resulting
neuronal activity is normalized over the population response according to similarity
in receptive field location and tuning.

For example, when a single stimulus is presented in the receptive field, the normal-
ization model states that the size of the stimulus determines the normalization rate.
If the stimulus is small, few other neurons will perceive the stimulus and normaliza-
tion only scales down large population responses, i.e. responses to high contrasts,
resulting in contrast gain. If the stimulus is big, large cumulative population re-
sponses will be scaled down by normalization even for low contrasts, resulting in
response gain. Furthermore, when attention is directed to either of two opposite
stimuli in the receptive field, the normalization model claims that the neuron’s re-
sponse will be normalized over the activity from adjacent neurons that are tuned to
the attended stimulus. When attention is directed to the preferred feature, the neu-
ron’s attention-increased response will be little affected by this population’s activity.
However, when attention is directed to the anti-preferred feature, the neuron’s re-
sponse drops significantly due to cumulative activity of the population that prefers
this feature. This theoretical model is the first to explain the modulations observed
when switching attention between stimuli in the receptive field.

The non-linearity of the normalization model offers some interesting methods to
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identify the source of attentional modulations of the feed-forward flow. A recent
study [28] micro-stimulated lower cortical neurons to show that cross-area atten-
tional modulations are best explained by altered connections to higher areas, as
opposed to local neural response modulations. However, some studies argue that
inter-neuronal differences in attentional gains, are better explained by a tuned nor-
malization model. This model states that normalization scales the sum of the neu-
ron’s tuned responses Li over all stimuli i with contrast ci in the receptive field.
Moreover, this normalization strength is a weighted sum of population responses
to certain stimuli or locations i where weights αi represent the neurons receptive-
ness to i. For instance, intrinsic weights in a spatially-tuned neuron represent its
receptiveness to population responses from certain areas in the receptive field. In
contrast, the normalization model from [24] assumes this responsiveness is a smooth
function over the similarity to other neuron’s receptive fields and tuning. In this
model, attention βA acts as a rate multiplier to the attended stimuli A both for the
individual response and the normalization strength, see Table 1.

Model Attention type Neural response rate

Tuned normalization Any
βAcALA + cNLN

βAαAcA + αNcN + σ

EMS-tuned normalization Spatial
βAcALA

βAcA + αNcN + σ
+

cNLN

βAαAcA + cN + σ

Feature-based
βAcALA

cA + αNcN + σ
+

cNLN

αAcA + cN + σ

Table 1: Several attentional models for neural response rates to two stimuli A,N when
attending A. Here, βA signifies the attentional strength, and ci, Li and αi the contrast,
individual tuning and individual weighting of i ∈ {A,N} respectively. Lastly, σ is a
constant.

Ni & Maunsell (2017) [20] found that while the spatially and stimulus-tuned nor-
malization models explained a majority of neural responses in spatial attentional
tasks, it failed to capture some neural response variability when multiple stimuli
were present in the receptive field. Instead, neural responses could be approximated
as a sum of normalized responses, rather than a normalized cumulative response,
over all stimuli in the receptive field. When spatially tuned, this EMS-tuned normal-
ization model explained up to 92% of their data. However, a subsequent study [21]
found that feature-based attentional modulations were not correlated to normaliza-
tion strength, indicating an essential difference to spatial attention. Instead, Ni &
Maunsell (2019) [21] argue that feature-based attention acts as a rate multiplier to
the attended feature in the numerator but not the denominator, i.e. manipulates
response rates prior to normalization but not normalization strength. Hence, they
argue that a single attentional signal is shared by both types of attention but this
signal alters normalization differently.
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2.3 Computational attentional models

Convolutional networks are inspired by the human visual system [13]. Artificial
neurons, similar to biological neurons, have receptive fields from which they receive
information through weighted connections. Moreover, deep convolutional networks
(DNNs) have many layers which accumulate specialized information over larger areas
in higher layers, similar to the visual system. Hence, DNNs provide a ready frame-
work for implementing and validating the theoretical attentional models discussed
in the previous section. Previous computational studies have focused on implement-
ing object segmentation frameworks, such as Mask R-CNN [11]. However, these
models are not designed to simulate attentional mechanisms for classification tasks,
are computationally expensive and scale poorly with respect to input size. Hence,
we will discuss alternative computational models of visual attention.

One important distinction to be made is whether computational attentional models
have differentiable loss functions with respect to the input. Computational models
that implement soft attention have loss functions that can be expressed as a differen-
tiable function of the network weights and can be trained through back-propagation
in a supervised learning setting. On the other hand, models that implement hard
attention simulate human eye saccades by producing a location sequence in images
from which cropped areas are used for classification [1]. Hence, predictions made
by these models have no known ‘correctness’, but instead yield rewards that can be
trained through reinforcement learning. Training such models requires no labelling
of ‘correct’ saccades if we know whether a location sequence results in a correct
classification, i.e. a reward.

Hard attention was first implemented in [18] to bypass computational costs associ-
ated with large images, as computational complexity in CNNs scales linearly with
the number of pixels. At each time step of a recurrent neural network (RNN), frames
of variable resolutions are cropped from the input image following the predicted lo-
cation from the previous state and fed into the current state, which predicts the next
location. While this recurrent attention model predicts a single object category after
a fixed number of saccades, a deeper alternative [1], repeats this procedure until a
stop-sign label is predicted in order to detect multiple objects. Additionally, this
deep recurrent attentional model (DRAM) performs classification in a prior recur-
rent layer to prevent contextual predictions from biasing classifications, see Figure
2.3a. This model outperforms many regular CNNs on large images as its computa-
tional complexity can be controlled independently of input size by manipulating the
cropped frame resolution.

Recall that attentional mechanisms that allow for feature-based biases are measured
in different neural substrates than mechanisms that govern eye saccades [4]. There-
fore, biologically plausible computational models for feature-based attention differ
from models that implement hard attention. Models for feature-based attention cre-
ate a bias towards relevant features based on their contribution towards the correct
prediction. As such models are few and very complex, we will first discuss their
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(a) (b)

Figure 5: Two computational models implementing attention. (a): DRAM implements
hard attention, image from [1]. (b): An encoder-decoder model implements soft attention,
image from [2].

origin from language models that implement soft attention.

Soft attention in language models is the mechanism of ‘highlighting’ relevant words
through customized weighting of an input sentence for each prediction [2]. Specif-
ically, these models consist of two recurrent networks, an encoder that embeds in-
put words into a vector representation and a decoder that applies state-dependent
weighting of each embedded word for each prediction step, see Figure 2.3b. The en-

coder often consists of stacked RNNs that perform forward
→
hi and backward passes

←
hi and outputs a concatenated embedding hi = [

→
hi,
←
hi] for each word i, called an

annotation. This ensures that each annotation contains information on its preced-
ing and succeeding words [2]. At each timestep t, the decoder of state st computes
a weighted function ct =

∑
i a(st−1, hi)hi over this embedded sentence to find the

prediction yt that maximizes the conditional probability P (yt|yt−1, st, ct). While
many deviations from this base architecture exist, the key component to these soft
attentional models is the customized weighting of complete input sentences for each
prediction. This allows RNNs to considerably increase their ability to capture long-
distance dependencies.

Soft attentional models yield high performances on different language tasks such
as language translation [2] and query-answering [12]. However, recurrent networks
are inherently non-parallelizable as each state depends on its previous state, and
are therefore not fit to train on large sequences. Some models attempt to solve
this by embedding sequences in a two-dimensional space and training convolutional
networks to ‘soft-attend’, i.e. increase weighting from, certain areas of this input
[10]. By switching to these convolutional networks however, soft attentional models
encounter performance loss on large sequences as CNNs are localized due to limited
receptive fields. Hence, these models offer no sufficient solution for sequences with
long-range dependencies.
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Transformers [32] apply a form of soft attention in parallel self-attentional layers
called blocks which are considerably more parallelizable and less localized than re-
current or convolutional models. Each self-attention block produces key (K), value
(V) and query (Q) matrices as weighted functions of embedded words. As each ma-
trix is designed to encode some type of information on each word, this information
can be combined through highly-parallelizable matrix multiplications. That is, the
t-th softmaxed row of Q ·KT resembles the relative soft-attentional weights of the
sequence for output t, and its product with V equals a weighted function, similar
to ct in the decoder, of the input sentence for that output. After each self-attention
layer, the outputs from all attention blocks are concatenated for each timestep, com-
bined with the sublayer through a residual connection, normalized and fed into a
feedforward layer. As the details on these operations and the transformer architec-
ture exceeds the scope of this study, we refer the interested reader to [32].

Many computational models alter or extend this transformer structure to achieve
state-of-the-art performance on language modelling benchmarks. For instance, [31]
replaces each self-attentional layer and its subsequent feedforward layer by an all-
attention layer that aggregates embedded input vectors and non-contextual vectors
encoding general task-relevant information. While a positional encoding in each em-
bedded word allows the model to apply attention over a one-dimensional sequence,
encoding such information from two-dimensional data, such as an image, is not
straightforward. Simply extending positional encodings to two dimensions violates
translation equivalence, i.e. alters output in case of an input shift, [5] and likely does
not benefit performance. However, a recent study [5] applies relative 2-dimensional
positional encodings to solve this. Furthermore, Bello et al. (2019) find that this rel-
ative self-attention mechanism performs best when concatenated with feature maps
in a convolutional network.

While self-attentional models such as [5] achieve promising performances on image
classification datasets, no evidence exists that they account for human attentional
mechanisms. Self-attention requires multiplication between variables while, to our
best knowledge, neurons of the visual system cannot multiplicatively combine their
output. Whether indirect neural mechanisms can account for soft-attention, we will
leave for future research. While attentional modulations in the visual system cannot
be explained by any previously discussed computational models, their implementa-
tions can be fairly simple. The feature-similarity gain model states that attention
multiplicatively scales neural responses according to the similarity between their
feature-tuning and the attended stimulus. Hence, a simple implementation of this
model would compute neuronal tuning values and multiplicatively increase neural
output according to how much it corresponds with the attended feature.

A recent study [13] was the first to attempt this on a population level. That is,
Lindsay & Miller (2018) multiplicatively scaled the output of feature maps of a
pre-trained DNN according to their tuning value for the attended category. These
tuning values were computed from the normalized feature map output as a function
over the object-categories. That is, if rf (c) is the population-averaged output of
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feature map f to category c, then the tuning value tf (c) of f equals its normalized
activity over all N categories, i.e.

tf (c) =
rf (c)− r̄f√

1
N

∑N
j=1(rf (j)− r̄f )2

, where r̄f =
1

N

N∑
k=1

rf (k)

Hence, tf is a discrete tuning curve of the feature-map population and determines
how attention to an object-category multiplicatively scales the feature map output.
That is, attention of strength β to category c scales the output of neuron xf in
feature map f to

xfAtt(c) = (1 + βtf (c))x
f (1)

While this describes how attention is implemented for a given category, it does not
yet present a model that can dynamically apply attention to increase image classifi-
cation accuracy. However, the output layer of the DNN consists of binary classifiers
that detect the presence or absence of each category and separately apply attention
to the feature maps accordingly. Hence, each binary classifier for category c applies
c-specific tuning to each feature map activation and this process is executed for all
classifiers independently. The resulting model can dynamically apply attention to
detect which categories are present in an image.

Lindsay & Miller (2018) found that applying this tuned-attention model in all lay-
ers of their DNN increased image classification performance. This indicates that the
category-specific scaling of neural population activity aids in detecting each category
separately, which leads to a higher overall accuracy. Remarkably, this attentional
performance gain maximizes when applying attention solely in the final layer, i.e. to
18.8% and 22.8% in merged images and 2x2 image grids respectively. This perfor-
mance gain decreased exponentially when solely applying attention in earlier layers.
While Lindsay & Miller (2018) argue that the network fails to propagate attention,
their results show that tuning quality, i.e. the maximum tuning curve value, is
considerably lower for earlier layers. Hence, attention at lower layers induces little
selectivity, suggesting that this study is limited to simulating top-down attention.
The increase in tuning quality in higher layers corresponds to the increased sharp-
ening of tuning curves measured in higher cortical areas [4]. However, similar tuning
behavior and performance gains were found when replacing tf (c) with the average
prediction-error gradient over feature map f for category c in Equation 1. Hence,
attention might alter population responses according to tuning as well as to their
cumulative prediction error.

2.4 Attention & Reward

While Lindsay & Miller (2018) [13] provide a simple and elegant method for mod-
elling attention in the visual system, their model does not account for attention as
part of the learning process. That is, their model applies attention to a pre-trained
network where no more learning occurs. In reality, attention is more likely to aid
learning [25]. Moreover, this learning process in reality likely does not resemble
supervised learning as labelled data defining correct and incorrect output-labels is
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rarely available to us. Individuals generally learn rewarding behaviors from inter-
acting with their environment. This is called reinforcement learning. As many
learning mechanisms in the brain rely on reinforcement learning, it is crucial for a
computational model on attention-guided learning to enforce a biologically plausible
reinforcement learning rule.

Models that apply reinforcement learning provide solutions to tasks for which no
ground-truth answer exists, e.g. because it is not known or the aim is to outperform
known strategies. Hence, learning is not restricted to optimizing classification accu-
racy on training data, as is the case with the supervised form of learning, but also
involves exploration of an unknown environment. It therefore imposes a trade-off
between choosing rewarding behavior or pursuing higher rewards in an unknown ter-
ritory. Furthermore, there are different methods on how expected rewards determine
behavior in a current state s based on previous behavior in s. For instance, some
methods simply choose the behavior that maximizes the average received reward
over past behavior in s while others choose to maximize the predicted reward based
on reward predictions of succeeding states. The latter method is called temporal
difference learning [27].

The neural mechanisms behind reinforcement learning have long been subject to
neurophysiology studies. Temporal difference learning in particular has received
much attention as its reward predictions correlate strongly to neural responses in
the dopaminergic system, which is closely linked to reward expectation [27]. Dif-
ferences between received and expected rewards, or reward prediction errors, are
believed to drive reinforcement learning by altering synaptic strength between neu-
rons [25], similar to artificial networks. When receiving (or not receiving) a reward,
information encoding reward prediction errors is propagated by neuromodulatory
systems such as the dopaminergic system, to the neural population that formed the
prediction. However, a main issue with this system is credit-assignment, i.e. which
connections contribute to the prediction and should be altered. A number of neu-
rophysiology studies suggest that synapses that contribute to a prediction receive
an attentional feedback signal from higher cortical areas which marks them with a
biochemical tag [25]. These tags form eligibility traces that gate which synapses are
altered when receiving reward feedback signals.

As we can only learn what we attend, attention can be considered as a gating
mechanism for learning. This mechanism of attentional gating of which synapses
should be altered and sending a feedback signal determining how they should be
altered, should be accounted for when modelling attention-guided learning. The
attention-gated reinforcement learning scheme AGREL [26] defines a reward system
that accounts for this attentional gating and that backpropagates reward prediction
error gradients through separate connections for networks consisting of a hidden
layer Y and a softmax layer Z. Each backward connection w′j,i from neuron j to i
determines the plasticity of the forward connection wi,j and is updated according to
the same plasticity rule so that it approximates wi,j during training. This plasticity
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rule states that weights are updated according to

∆wi,j = αRifbj(δ) (2)

where Ri is the activity of presynaptic neuron i, α is the learning rate and fbj(δ) is
the feedback received in postsynaptic neuron j about the prediction-error δ. Each
output k ∈ Z is predicted with probability Rk, after which the value of the predicted
output is set to 1 while others are set to 0. The prediction-error δ for predicting
output unit s is set to (1−Rs)/Rs if the prediction is correct and −1 for an incorrect
prediction. The feedback on this prediction-error that is backpropagated through
postsynaptic neuron j equals

fbj(δ) =

{
δ Rj if j ∈ Z
δ Rj w

′
s,j (1−Rj) if j ∈ Y .

Note that as Rk = 0 for all unpredicted outputs k ∈ Z, there is no feedback to
weights that did not contribute to the prediction. This simulates the attentional
gating mechanism. The dopaminergic feedback machanism is simulated by fbj and
the backward connections w′i,j.

While AGREL provides biologically plausible learning rules for networks up to two
layers, the cortex consists of many neural layers. Hence, for a biologically plausible
model for attention-guided learning, the AGREL rules need to be generalized to fit
deeper networks. The Q-AGREL [23] rule states that for a network with any number
of hidden ReLU layers Y (1), . . . , Y (N) and a linear output layer O, the feedback
fb

(n)
j (δ) received from node j ∈ Y (n) from layer n ≤ N equals

fb
(n)
j (δ) = g′(j)

∑
y∈Y (n+1)

w′y,jfb
(n+1)
y (δ), where g′(j) = 1{j>0}.

Moreover, fb
(O)
j (δ) = δg′(j), where the prediction-error δ is determined by the mean

squared error loss function and equals δ = 1−Rs for correct predictions and δ = −Rs

otherwise. The function g equals the gradient of the activation function, which is
assumed to be the ReLU function but can be substituted for other functions. By us-
ing the ReLU function, g ensures only the synapses to nodes that contributed to the
prediction, i.e. with activity greater than 0, are altered. The resulting Q-AGREL
framework is similar to error-backpropagation of the loss over the predicted output
node. Moreover, Pozzi, Bohté & Roelfsema (2019) [23] have shown that Q-AGREL
performs comparably to supervised learning in a range of image classification tasks
when trained on 1.5-2.5 times the number of epochs.

While Q-AGREL provides a biologically plausible model of prediction-error back-
propagation through the dopaminergic system, it contains some assumptions that
likely do not comply with biological learning processes. Most importantly, attention
in Q-AGREL solely acts as a gating mechanism on the backpropagation of reward
predictions by dopaminergic neurons that alter the synapses of feedforward neu-
rons directly. However, neurophysiology studies on attentional response gain [17]
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[15] suggest that attention-guided learning may be a result of neural gain modifica-
tion. That is, attention, guided by top-down signals, multiplicatively scales neural
responses and synaptic strength is altered accordingly. In contrast to Q-AGREL,
such a mechanism would be able to explain attentional gain observed in neural
populations prior to receiving a reward and would therefore be more biologically
plausible.

3 Attention-guided learning rules

In the previous section we argued that current attentional models either do not
reflect biological learning mechanisms in the visual cortex or fail to explain how
learning relates to known attentional modulations. Here we present a biologically
plausible rule for attention-guided learning in the visual system. To our best knowl-
edge, this is the first model that describes reinforcement learning as a result of
attentional response gain observed in neurons of the visual system.

Attentional gain can be simulated by multiplicatively altering the activity of neuron
y with attentional term βy during training. For a network with layers Y 1, . . . , Y N ,
the neural activity of y ∈ Y n with activation function g therefore equals

yout = g((1 + βy) · yin), where yin =
∑

x∈Y n−1
wx,y xout + by. (3)

Here, xout signifies the neural output of the presynaptic neuron x and Y 0 signifies
the network input. When using the ReLU activation function, the attentional term
will simply scale the neural output of y with βy, see Figure 6.

Figure 6: Illustration of how feedback fb(δ) on the prediction error δ alters the attentional
gain for a ReLU-activated neuron.

Action-selection. For each training sample, all β’s are initialized to 0, indicating
no initial attentional modulation. The output of this unattended state determines
the network prediction in the action-selection phase. As reinforcement learning
imposes a trade-off between exploiting known rewards and exploration, the network
will select the highest output unit in the output layer with probability p and explores
another unit with probability 1− p. In this study, p = 0.02 unless stated otherwise.
If σ = σ1, . . . , σk signifies the softmax probabilities over the k output units, then
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output unit s is selected according to

s =

{
k with probability σk (1− p)
argmaxσ with probability p.

After predicting unit s, the network will generate a target output εs = e1, . . . , ek
that reflects this prediction. Here, es equals 1 while other output units ei 6=s equal 0.
Hence, εs equals the one-hot encoding of the selected class s.

Attentional phase. After selecting class s, the network is optimized to fit the
predicted target output εs by altering the attentional gain using gradient descent.
By optimizing the network to its prediction prior to receiving the reward prediction
error, attention is allowed to alter the network activity prior to learning, similar to
attentional modulations observed in the visual system. Here, a loss function that
corresponds to cross-entropy loss is used to compute reward prediction errors as the
relative output probabilities best reflect neural competition in higher cortical areas.

The loss between the output probabilities σ and predicted target output εs equals

Loss(ε, σ) = Σi ei log σi,

the error δ for each output unit i equals δi = ei−σi. Hence, δi = 1−σi for i = s and
−σi otherwise. If fby(δ) denotes the feedback received by neuron y on prediction
error δ, then a simple derivation of Equation (3) defines the update of attentional
term βy as

∆βy = α yin fby(δ) (4)

where α is the attention rate. Here, attentional terms will be capped at −0.5 and
0.5, to allow a maximum attentional gain of 50% as this simulates physical limita-
tions of response gain in the visual cortex [16]. Note that fby(δ) is yet to be defined
as it depends on the learning rule, i.e. on how the weight update will alter the
network. Two alternatives are suggested in Equations (6) and (8).

In the attentional phase, the attentional terms β are optimized to fit target output εs
for a fixed number of iterations t = 0, . . . , T , called the attention span, after which
a reward r is received. The networks reward prediction error r − σs determines
whether learning will enforce or discourage attention-modulated network activity.
Specifically, if s is correct reward r = 1 will alter in the weight update in the
direction of the attentional gain, while r = 0 in incorrect trials will update weights
in the opposite direction.

Weight update. We offer two different theories on attention-guided learning. The
first states that synaptic strength is updated according to the postsynaptic atten-
tional gain while the second claims that learning is dependent on the presynaptic
activity as well as relative postsynaptic attentional gain.
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1. Attentional weight gain. Suppose we write the attentional term as a weight
update over the inputs, i.e.

(1 + βy) · yin = (1 + βy) ·
∑

x∈Y n−1
wx,y xout + by

=
∑

x∈Y n−1
(1 + βy)wx,y xout + (1 + βy) by

=
∑

x∈Y n−1
(∆wATTx,y + wx,y)xout + (∆bATTy + by),

where ∆wATTx,y = βy wx,y, and ∆bATTy = βy by. Then these weight and bias updates
preserve the neural output of yout following the attentional phase. When scaling the
updates linear to the prediction error they become

∆wATTx,y = (r − σs) βy wx,y, and ∆bATTy = (r − σs) βy by. (5)

Note that the maximum attentional gain of 50% forces |βy| ≤ 0.5. Seeing as |r−σs| <
1, the weight update does not exceed the weight value, i.e.

|∆wATTx,y | ≤ 0.5 · |wx,y| ≤ |wx,y|.

Therefore, weights cannot change sign.

These updates ensure that the activation of neuron y either moves into the direction
of its attentional gain in rewarded trials, and in the opposite direction in unrewarded
trials, i.e.

yout = g

( ∑
x∈Y n−1

(∆wATTx,y + wx,y)xout + (∆bATTy + by)

)
= g

( ∑
x∈Y n−1

((r − σs) βy wx,y + wx,y)xout + ((r − σs) βy by + by)

)
= g

(∑
x∈Y n−1

λr,βy wx,y xout + λr,βy by

)
= g(λr,βy · yin),

where λr,βy = (r − σs) βy + 1. For instance, if σs = 0.5, the activation of a ReLU-
activated neuron y with βy = 0.5 becomes factor λ1,0.5 = 1.25 times its original
pre-attentive value in a rewarded trial and λ0,0.5 = 0.75 times its original value in
an unrewarded trial. For βy = −0.5, the activation of y becomes λ1,−0.5 = 0.75 in
rewarded trials and λ0,−0.5 = 1.25 in unrewarded trials.

As the weight update alters the attention-modulated network activity with a set
rate, the attentional terms can be optimized with the same feedback algorithm used
by supervised error-backpropagation. Therefore, the feedback fby(δ) on error δ
received in neuron y ∈ Y n for n < N equals

fby(δ) = g′(y)
∑

z∈Y n+1

w′z,y fbz(δ) (6)
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and fby(δ) = δy g
′(y) if n = N . Here, g′(y) equals the activation function derivative,

which equals the indicator function 1{yout>0} for a ReLU-activated neuron y.

2. Attention-modulated Hebbian plasticity. Recall that the plasticity rule
from Equation (2) states that learning depends on the presynaptic activity as well
as the feedback received in the postsynaptic neuron concerning the prediction error.
This is not the case for the attentional weight gain rules from Equation (5). Here
we derive learning rules that account for this presynaptic activity.

The weight update from Equation (2) and bias update ∆by = αfby(δ) can be derived
from the attention update by ∆wx,y = ∆βy

xout
yin

and ∆by = ∆βy
1
yin
. As the atten-

tional terms are optimized over a number of iterations during the attentional phase,
this series of attentional updates ∆βy can be approximated by the total attentional
gain βy. Moreover, when scaling the resulting updates linear to the prediction error,
they become

∆wATTx,y = (r − σs)βy
xout
yin

, and ∆bATTy = (r − σs)βy
1

yin
. (7)

These rules state that synaptic weights change according to presynaptic activity as
well as the postsynaptic attentional gain relative to its cumulative input. Hence,
these rules can be considered as attention-modulated Hebbian plasticity.

In contrast to the attentional weight gain rule, the attention-modulated Hebbian
plasticity rules allow weights to change sign. As a result, attention-guided learning
differs from optimizing the attentional terms using the feedback mechanism from
Equation (6). For instance, for two neurons x, y with a positive connection wx,y, the
feedback mechanism in Equation (6) increases attentional activity in both neurons if
y receives positive feedback. However, whether the weight update changes the sign of
wx,y in an unrewarded trial, is not accounted for in weight updates of connections to
x, resulting in sub optimal or undesirable effects on y. As a result, a feedback mech-
anism should account for these weight changes when optimizing the attentional gain.

The attention-modulated learning rule alters the attentional activity with rate r−σs
when it is optimized using the following feedback mechanism in the hidden layer

fby(δ) = g′(y)
∑

z∈Y n+1

(
wy,z + βz

yout
zin

)
fbz(δ). (8)

Hence, optimizing attention using this feedback rule will optimize the attentional
weight update. Note that it is assumed here that the feedback and feedforward
weights share the same values, i.e. wy,z = w′z,y. However, this feedback rule can be
easily extended to a system where this is not the case by replacing wy,z + βz

yout
zin

with w′z,y + βy
zout
yin

.

Approximation of Attention-modulated Hebbian plasticity. As is detailed
in section 5, an approximation of the attention-modulated Hebbian plasticity rule
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that minimizes the use of computationally expensive operations may increase clas-
sification performance. As operations such as multiplication accumulate rounding
errors in the attentional term βy of neuron y, its approximation β̂y may be defined
by the update

∆β̂y = α fby(δ).

Note that the update of βy from Equation (4) can be derived from this update by

∆βy = ∆β̂y · yin. Hence, by substituting β̂y yin for βy in the forward pass, we derive
neural output ŷout that approximates yout by

ŷout = g
(

(1 + β̂yyin) · yin
)

(9)

≈ g ((1 + βy) · yin) = yout

Similarly, substituting β̂z zin for βz in the feedback mechanism derives feedback̂fby(δ) that approximates fby(δ) from Equation (8) by

̂fby(δ) = g′(y)
∑

z∈Y n+1

(
wy,z + β̂z yout

) ̂fbz(δ) (10)

= g′(y)
∑

z∈Y n+1

(
wy,z + β̂zzin

yout
zin

) ̂fbz(δ)
≈ g′(y)

∑
z∈Y n+1

(
wy,z + βz

yout
zin

)
fbz(δ) = fby(δ)

Note that this approximated feedback mechanism further minimizes the use of com-
putationally expensive division.

4 Experiments

In the previous section, two attention-guided learning rules were derived using dif-
ferent assumptions.

1. Attentional weight gain in Equation (5) states that synaptic strength is up-
dated according to the postsynaptic attentional gain

2. Attention-modulated Hebbian plasicity in Equation (7) states that update is
dependent on the presynaptic activity as well as relative postsynaptic atten-
tional gain.

The classification performance of these learning rules are tested on the MNIST
dataset, which consists of 70, 000 28x28 pixel grayscale images of handwritten dig-
its. Moreover, successful learning rules are tested on CIFAR10 and CIFAR100,
which consist of 60, 000 32x32x3 pixel colour images of objects and organisms. CI-
FAR10 contains 10 classes of 6, 000 images per class, while CIFAR100 contains 100
classes of 600 images per class. All sets contain a preselected test set of 10, 000
samples. Computationally expensive tests are performed on the CIFAR10 vehicle
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subset, which we call CIFAR4 and consists of classes ‘automobile’, ‘airplane’, ‘ship’
and ‘truck’. CIFAR4 therefore contains 20, 000 training samples and 4, 000 test sam-
ples. For all tests 1, 000 random training samples are selected as a validation set to
measure validation accuracy during training.

How attention aids learning is reflected by the classification performance for different
attention spans T . To accurately compare these for the same global rate α̂, we set
the attention rates α to α̂/T . Both learning rules are tested on MNIST for several
attention spans using a small neural network consisting of 3 fully connected ReLU-
activated hidden layers and a linear output layer. Each of the hidden layers decrease
in size from 1500 to 1000 to 500 nodes to aggregate feedforward information. Initial
weights are sampled from a normal distribution with µ = 0 and σ = 0.05. The goal
for this experiment is to examine how attention-guided learning rules perform on
simple tasks rather than to simulate biological processes.

Visual learning can be simulated in convolutional networks since these retain spatial
information similar to the visual cortex. Therefore, samples of CIFAR4, CIFAR10
and CIFAR100 are fed into two consecutive convolutional layers with 32 3x3 filters.
Here, the second convolutional layer aggregates information from the previous layer
with stride 2 using a zero-padding. Neural output feeds into a fully connected layer
of 500 nodes, followed by a linear output layer. All hidden layers are ReLU-activated
and a dropout rate of 0.8 and 0.3 is applied to the second and third layer to prevent
overfitting. Initial weights are sampled from a normal distribution with µ = 0 and
σ = 0.02.

Lastly, to verify whether attention biases the network towards relevant information
while ignoring irrelevant information, we visualize network heatmaps using our im-
plementation of gradient-weighted class activation mapping or GRAD-CAM [30].
GRAD-CAM highlights regions that contribute to a prediction by visualizing its
gradient with respect to the last convolutional layer, which is believed to contain
high-level spatial information. In contrast to other visualization methods such as
saliency maps, GRAD-CAM is class-discriminative and is therefore more informative
on model behavior.

5 Results

All results reported in this section represent the learning rule performance over five
different network initializations. Each network was trained for a fixed number of
epochs that increase with task difficulty, i.e. 100 on MNIST, 150 on CIFAR10 and
230 on CIFAR100. The validation set was used to ensure the model does not overfit
the training data, i.e. does not contain declining sequences longer than 25 iterations.
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Weight gain vs. Attention-modulated Hebbian plasticity. As listed in Ta-
ble 7, the weight gain rule (WG) was considerably outperformed on MNIST by both
supervised error-backpropagation (EBP) and the attention-modulated Hebbian rule
(HEB) for attention spans T = 1, 2 and 5 with α = 0.01/T . In contrast, HEB
performed remarkably close if not identical to EBP on classifying new data for at-
tention spans T = 1 and 2. Here, HEB requires 1.2 − 1.5 times more epochs to
reach maximum performance than EBP. Similarly, as can be seen in Figure 8, the
learning process of HEB for these attention spans showed strong similarities to EBP
while WG is outperformed on all performance measures. The performance of HEB
quickly deteriorated for a higher attention span of T = 5. This behavior is further
examined on CIFAR10.

T α Test accuracy Epochs

M
N
IS

T

WG 1 0.01 92.24± 0.41 79± 13
2 0.005 92.29± 0.38 83± 13
5 0.002 92.32± 0.42 80± 13

HEB 1 0.01 98.48± 0.10 33± 8
2 0.005 98.45± 0.04 44± 21
5 0.002 80.85± 35.29 26± 14

EBP - 0.01 98.67± 0.04 29± 23

Figure 7: Test accuracy of WG and HEB on new samples for different attention spans
T on MNIST. Bold text represents the best performance.

Figure 8: Validation accuracy (upper row) and training accuracy (lower row) of WG
(left) and HEB (right) for different attention spans T on MNIST, signified by WG-T and
HEB-T .
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Attentional performance gains. Since HEB performed comparably to EBP
for low attention spans on simple tasks, HEB is used to simulate attention-guided
learning on CIFAR10 and its vehicle subset. As listed in Figure 9, HEB was slightly
outperformed by EBP when classifying new CIFAR10 samples for attention spans
T = 1, 2 and 5 with α = 0.005/T . However, as illustrated in Figure 10, learning
became rapidly unstable with T on the smaller set CIFAR4. This instability can be
traced back to an accumulation of rounding errors in early layers. Here, the division
and multiplication of small numbers, e.g. in the order of 10−12, causes rounding
errors, specifically when computing the relative attentional gain in the feedback
mechanism1. The accumulation of these errors during the attentional phase dis-
rupts weight updates, causing a steep decline in performance.

As detailed in section 3, an approximation rule of HEB, which we refer to as AP-
PROX, minimizes the use of these operations. As detailed in Figure 9, APPROX
performed similar if not better than HEB in classifying new CIFAR10 samples while
even outperforming EBP for T = 5. Moreover, learning did not deteriorate on CI-
FAR4, although APPROX was slightly outperformed by EBP when classifying new
samples for attention spans T=1, 2, 5, 10 and 20.

Performance measures from Figure 9, Figure 10 and Figure 17 from Appendix 7.1 in-
dicate that while attention possibly increases classification performance, our results
do not prove significant attentional performance gains. This is further confirmed by
examining the attentional gain and neural output measures in the attentional phase
of a random sample during training on CIFAR10, see Figure 13 and 18. These re-
sults indicate that attentional gain, and therefore neural output, is a linear function
of the number of iterations in the attention phase. As a result, attention-guided
learning for attention span T and rate α/T simulates learning with span 1 and rate
α. In section 6 we will argue that this is likely a result of network parameters,
specifically a low attention rate with respect to the size of the weight update.

Previous results indicate no significant attentional performance gain of APPROX
on CIFAR10 and CIFAR4. As a result, testing of APPROX on CIFAR100 was
limited to attention span T = 1 using α = 0.005. Moreover, the performance of
APPROX-1 is compared to Q-AGREL [23] with batch size 1 and α = 0.01. As EBP
overfitted the training data for long training phases, training was stopped at epoch
180. As can be seen from Figures 11 and 12, EBP outperforms both APPROX-1
and Q-AGREL due to the large amount of available feedback information, i.e. 100
times more than in trial-and-error learning. Moreover, APPROX-1 outperforms Q-
AGREL in classifying both training samples and new samples. This is most evident
for training samples, as APPROX-1 backpropagates loss over all output nodes, and
is therefore able to learn at a faster rate than Q-AGREL, which backpropagates loss
over a single output node.

1i.e. for feedback to neuron y; βy
xout

yin
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T α Test accuracy Epochs

C
IF

A
R
1
0

HEB 1 0.005 71.05± 0.73 144± 7
2 0.0025 72.04± 0.19 140± 6
5 0.001 71.69± 0.82 138± 9

APPROX 1 0.005 71.44± 0.51 142± 11
2 0.0025 71.45± 0.51 136± 14
5 0.001 72.34± 0.18 138± 5

EBP - 0.001 72.21± 0.64 134± 9

C
IF

A
R
4

HEB 1 0.01 84.65± 0.76 124± 23
2 0.005 61.15± 29.52 96± 37
5 0.002 72.61± 23.81 115± 18
10 0.001 49.10± 29.51 99± 53

APPROX 1 0.01 84.85± 0.30 131± 10
2 0.005 85.18± 0.50 122± 8
5 0.002 85.25± 0.90 118± 26
10 0.001 85.22± 0.69 130± 19
20 0.0005 84.98± 0.45 141± 10

EBP - 0.001 86.21± 0.51 134± 9

Figure 9: Test accuracy of HEB and its approximation APPROX for different atten-
tion spans T on CIFAR10 and its vehicle subset CIFAR4. Bold text represents the best
performance on a dataset.

Figure 10: Validation (upper row) and training accuracy (lower row) of HEB (left) and
its approximation APPROX (right) on CIFAR4 for different attention spans T , signified
by HEB-T and APPROX-T .
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T α Test accuracy Epochs
APPROX 1 0.005 34.72± 0.96 217± 9

EBP − 0.001 41.16± 0.42 162± 11
Q-AGREL − 0.01 32.38± 4.90 226± 2

Figure 11: Test accuracy of APPROX-1, EBP and Q-AGREL on CIFAR100.

Figure 12: Validation (left) and training accuracy (right) of APPROX-1, EBP and
Q-AGREL on CIFAR100.
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Epoch Layer 0 Layer 1 Layer 2 Output layer

0

30

60

90

120

150

Figure 13: Attentional terms β of 40 neurons from each layer during the attentional
phase when training on CIFAR10 with α = 0.0005.
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Visualizing attentional bias As was explained in section 4, GRAD-CAM high-
lights regions that contribute to a prediction by backpropagating its gradient to the
last convolutional layer [30]. Here, gradients are averaged over the width and height
dimensions to make up an importance weighting ack of each activation map k for pre-
diction c. The ack-weighted sum of neural output A(x, y, k) over all activation maps
k signifies the importance of each (x, y) location in the final convolutional layer.
The ReLU function is applied to the resulting heatmap to only visualize areas that
have a positive effect on c, i.e. the importance of (x, y) to prediction c equals

GRAD-CAMc(x, y) = ReLU

(∑
k

ack A(x, y, k)

)
Figure 14, 15 and 16 show heatmaps that highlight important regions for a prediction
during training using GRAD-CAM. No shift towards relevant regions indicating
attentional bias can be seen during the attentional phase. This finding coincides with
the notion that the attentional rate is likely too low to cause attentional performance
gain. However, a clear shift towards relevant regions can be observed during training.
For instance, the background in the sample from Figure 14 provokes the network
to predict the ‘bird’ class during the first epoch. In a later training stage, the
network has learned to predict the correct label by attending the horses’ hind legs
and equestrian. Similarly, the network predicts the automobile from Figure 15 by
attending the car door and frame, and learns that the airplane from Figure 16 can
be recognized by its wing and shark fin tail.

Epoch Prediction Original t = 0 t = 10 t = 20

0 Bird

30 Horse

Figure 14: Heatmaps of a training sample of a horse during the attentional phase
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Epoch Prediction Original t = 0 t = 10 t = 20

0 Horse

30 Automobile

60 Automobile

90 Automobile

120 Automobile

150 Automobile

Figure 15: Heatmaps of a training sample of an automobile during the attentional phase
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Epoch Prediction Original t = 0 t = 10 t = 20

0 Bird

30 Airplane

60 Airplane

90 Airplane

120 Airplane

150 Airplane

Figure 16: Heatmaps of a training sample of an airplane during the attentional phase
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6 Discussion

Our results show that the HEB learning rule that alters synaptic strength accord-
ing to presynaptic activity and the relative postsynaptic attentional gain, performs
similarly to supervised error-backpropagation for short attention spans. Further-
more, a computationally cheaper approximation APPROX of this learning rule ex-
tends this finding to larger attention spans and even outperforms supervised error-
backpropagation in some cases. This finding is most evident on sets that contain a
large number of training samples per class such as CIFAR10. Moreover, our results
show that the learning rule WG that scales synaptic strength according to the post-
synaptic attentional gain is considerably outperformed by error-backpropagation,
even on a simple task. However, as restrictions on the size of the attentional gain
prevent weights from changing their sign, this learning rule may perform better us-
ing a larger network architecture.

While attention generally increased the performance of APPROX, our results did not
indicate significant attentional performance gains. An examination of the network
activity during the attentional phase suggests that attention is generally updated
with a small, set rate. That is, attentional gain may be a linear function of the at-
tention span T and attention-guided learning therefore equals learning with span 1
when using the same global attention rate α. As this rate α resembles the size of the
weight update, it is very small. As a result, attentional updates cause no significant
changes in the neural output or consequently, the loss derivative that would lead
to attentional performance gains. However, scaling the size of the weight update
with a learning rate αw < α, e.g. αw = 0.1α, would allow larger attention rates
that could result in attentional performance gains. This addition to the APPROX
learning rule could result in attentional performance gains that may outperform
error-backpropagation.

While this study of attention-guided learning rules has been performance oriented so
far, our findings coincide with well-established neurophysiological beliefs on synaptic
plasticity. Hebbian theory states that synaptic strength is altered according to the
causality between presynaptic and postsynaptic firing [26], i.e. ”cells that fire to-
gether, wire together”. Neural firing modulations, such as the attentional response
gain observed in the visual cortex, can therefore be captured in a synaptic weight
update according to Hebbian plasticity. By describing Hebbian plasticity as a func-
tion of the postsynaptic attentional gain, this study is the first to explain neural
modulations observed in the brain before a reward is received. However, our study
is limited to the case where feedback and feedforward connections share the same
weights. Contrarily, prediction errors in the brain are backpropagated through a
dopaminergic system [27] with separate feedback weights. Therefore an extension
to the attention-modulated Hebbian learning rule that simulates the biological feed-
back mechanism more closely is described in section 3.

In this study, we argued that current attentional models either do not reflect biolog-
ical learning mechanisms in the visual cortex or fail to explain how learning relates
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to known attentional modulations. The learning framework proposed in this study
is the first to describe and simulate Hebbian plasticity as a function of attentional
response gain. Moreover, our results suggest that these attention-guided reinforce-
ment learning rules result in remarkably efficient classification. This study proposes
that the attention-modulated Hebbian learning framework reflects the mechanism
behind attention-guided learning, which ultimately governs behavior.
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7 Appendix

7.1 Performance measures

Figure 17: Validation accuracy (upper row), training accuracy (middle row) and loss (lower
row) of HEB (left) and APPROX (right) on CIFAR10 for different attention spans T , signified by
HEB-T and APPROX-T .
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7.2 Attentional gain
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Figure 18: Attentional response gain of 40 neurons from each layer during the attentional
phase when training on CIFAR10 with α = 0.0005.
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