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Chapter 1

Introduction

1.1 Asymptotic statistics

Asymptotic statistics explores the properties of statistical procedures in the
case where the sample size n tends to infinity. So throughout this thesis we
implicitly assume that n tends to infinity. There are two main reasons why
the study of asymptotic statistics is worthwhile. Firstly, statistics becomes
much simpler as the sample size n goes to infinity. In the limit we can obtain
results that are very hard, or even impossible, to obtain for a finite sample
size n. If we take a large but finite sample size, our statistical procedures
approximate the results we obtained for n tending to infinity. So the study
of asymptotic statistics allows us to draw conclusions about large samples
which could otherwise not be drawn. This brings us to the second reason.
Modern techniques allow us to actually gather large samples, which makes
the developments in asymptotic statistics useful for actual statistical research.
A term that has become increasingly popular for statistical research which
utilizes large sample sizes is ‘big data’, the results of asymptotic statistics
play a key role in this kind of research.

The results of asymptotic statistis can be used among other things to
approximate statistical procedures or to provide asymptotic optimal solutions
for statistical problems. In this thesis our focus will mainly lie on parameter
estimation in asymptotic statistics. Specifically, we will focus on moment
estimators and M-estimators in parametric models. Our goal is to develop the
underlying theory of why such estimators are consistent and asymptotically
normal. Furthermore, we want to demonstrate that the theoretical results
we obtain when the sample size n tends to infinity are also applicable when
having a large finite sample size.

In chapter 2 we will demarcate what knowledge we assume the reader to
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2 CHAPTER 1. INTRODUCTION

possess. Additionally, we will expand probability theory to include random
vectors and brush up on some well known results from statistics.

Chapter 3 concerns itself with the three modes of convergence required in
order to do asymptotic statistics and how these modes relate to each other.

The next chapter concerns itself with the Delta Method and some of its
applications. The Delta Method can be used to establish convergence of
a sequence as a consequence of the convergence of another sequence. We
introduce the concept of a parametric model and briefly discuss some of the
limitations of asymptotic theory. Lastly, we will examine moment estimators
and prove that these are asymptotically normal using the Delta Method.

Chapter 5 deals with the most important class of estimators: M-estimators.
These estimators use a maximization procedure in order to find an estimate
for a parameter θ. We study the consistency and asymptotic normality of
this class of estimators. Particularly, we will look at the maximum likelihood
estimator which is the most important kind of M-estimator. This chapter
concludes the purely theoretical part of this thesis.

In Chapter 6 we will investigate to what extent the abstract theory is
applicable in actual statistical research. We conduct several simulations in
order to show how the theory we developed is related to statistical procedures
with a finite sample size.

Subsequently, we give a conclusion in which we summarize our findings.

1.2 Consulted Literature

The first paragraph of the previous section and chapters 3-5 are based on
Asymptotic Statistics by van der Vaart [6]. Most examples, theorems and
proofs that we present are also given in this book. Van der Vaart’s book is
the most important source used in this thesis and therefore deserves explicit
acknowledgement in this introduction. However, it is not the only source.
Appendix A provides a precise overview describing where each definition,
lemma, theorem and proof has been taken from or where our idea originated.
Literal adoptions from other literature do not occur in this thesis, with the
exception of Lemma 2.9. Also, if we have chosen to omit the proof of a
theorem, then a reference is given in the text. Lastly, not every part of
this thesis is based on existent literature, Section 3.2 and Chapter 6 provide
examples of this among other things.

The reader is referred to appendix A if interested in the source of a specific
part of this thesis.
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1.3 Notation

1 all-ones vector
as→ convergence almost surely
d→ convergence in distribution
P→ convergence in probability
Cov(X, Y ) covariance of X and Y
E(X) expectation of X
1A indicator function of the set A
Nk(µ,Σ) multivariate normal distribution with mean µ and covari-

ance matrix Σ
N,Z,Q,R number fields and sets
P probability measure
op(1), Op(1) stochastic o and O symbols
Var(X) variance of X
⊆ (not necessarily strict) subset

R R ∪ {∞,−∞}
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Chapter 2

Preliminaries

In order to study asymptotic statistics we need some mathematical knowl-
edge. We assume the reader has had some introduction to probability the-
ory and statistics. We also assume that the reader has some basic calculus
skills and knowledge about analysis. This chapter provides the additional
necessary knowledge. The chapter is divided into three sections: analysis,
probability theory and statistics. The most important section is the second
section on probability theory. Readers familiar with mathematical statis-
tics may skip the last section, we merely included this section because the
statistical results presented in it are of fundamental importance in (asymp-
totic) statistics. Lastly, this chapter does not focus on proving the theorems
presented, but any reader that is interested in proofs will be referred to the
appropriate literature.

2.1 Analysis

We assume that the reader is familiar with (uniformly) bounded functions
and Lipschitz functions. Moreover, we expect the reader to be familiar with
the Heine-Cantor theorem, the Heine-Borel theorem and the inverse function
theorem. All of these things are treated in chapters 3, 4 and 9 of Mathemat-
ical Analysis by Apostol [1].

Some experience with topology is also required. Chapter 2 of Munkres [4]
should suffice in order to understand everything related to topology in this
thesis.

Furthermore, we expect the reader to have knowledge about partial deriva-
tives and total differentiability. Chapter 12 of Mathematical Analysis [1]
contains all the required information.

5



6 CHAPTER 2. PRELIMINARIES

2.2 Probability Theory

This section is based on the lecture notes of the course “Stochastic Processes”
given by Dirksen [3].

We use probability spaces to mathematically model real world processes
or experiments.

2.1 Definition (Probability space). A probability space is a triple (Ω,F ,P)
where
(i) Ω is a non-empty set, called the sample space.
(ii) F is a σ-algebra of subsets of Ω, called the event space.
(iii) P is a probability measure on (Ω,F).

The set Ω contains all possible outcomes of our process or experiment.
However, we might not be interested in individual outcomes, but in groups
containing these outcomes. For example, if we have a simple dice we have
Ω = {1, 2, . . . , 6}. When we are interested whether we throw an even number
of eyes or an odd number of eyes we want to know if the outcome of our
throw is an element of {1, 3, 5} or of {2, 4, 6}. We use the σ-algebra F to
characterize such sets of outcomes, we can consider such sets as events or as
representations of an event. So the subset {1, 3, 5} represents the event that
we throw an odd number of eyes. Generally speaking, when ω ∈ Ω occurs
we say that all events A ∈ F for which ω ∈ A have occurred. The definition
underneath gives the formal constraints we must place on F .

2.2 Definition (Sigma-algebra). A collection F of subsets of a non-empty
set Ω is called a σ-algebra on Ω if
(i) F 6= ∅.
(ii) If A ∈ F , then AC ∈ F .
(iii)If Ai ∈ F for i ≥ 1, then ∪i≥1Ai ∈ F .

After we have obtained (Ω,F) we only need a probability measure working
on F : a map that gives the probability of each event in F .

2.3 Definition (Probability measure). A map P : F → R is called a proba-
bility measure on (Ω,F) if
(i) P(A) ≥ 0 for all A ∈ F .
(ii) P(Ω) = 1.
(iii) If for all i ≥ 1 the events Ai are disjoint then P(∪i≥1Ai) =

∑∞
i=1 P(Ai).

Now that we have briefly treated each component of a probability space,
we can start looking at random variables. Suppose that we have some prob-
ability space, then we can rigorously define random variables.
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2.4 Definition (Random variable). A map X : Ω → R is called a random
variable on (Ω,F) if for all x ∈ R we have

{X ≤ x} = X−1(−∞, x] = {ω ∈ Ω | X(ω) ≤ x} ∈ F .

All random variables correspond to a distribution function. Moreover, if
we have some distribution function F , then there exists a probability space
and a random variable X defined on this space such that F is the distribution
function of X.

2.5 Definition (Distribution function). The distribution function of a ran-
dom variable X is defined by FX : R → [0, 1], with FX(x) = P(X ≤ x) and
having the following properties:
(i) FX is non-decreasing.
(ii) lim

x→−∞
FX(x) = 0 and lim

x→∞
FX(x) = 1.

(iii) FX is right-continuous.

Quite often we will not be considering one individual random variable,
but a group of random variables. In such a case it is practical to collect these
random variables in a vector.

2.6 Definition (Random vector). A tuple (X1, . . . , Xk) is called a random
vector if Xi is a random variable on (Ω,F ,P) for i = 1, . . . , k.

The distribution function of a random vector X thus becomes a function
FX : Rk → [0, 1]. When we consider a random vector X and write P(X ≤ x),
we implicitly assume x to be a vector as well such that P(X ≤ x) can be in-
terpreted as P(X1 ≤ x1, . . . , Xn ≤ xk). Random vectors have an expectation
similar to random variables.

2.7 Definition (Expectation of random vector). The expectation of a ran-
dom vector X is given by

E(X) =

E(X1)
...

E(Xn)

 .

However, the concept of variance cannot be expanded to include random
vectors as straightforward as the concept of expectation. This is due to
possible dependency between the random variables in the vector. Therefore
we need to have an understanding of the covariance between all the random
variables in the vector. The following matrix gives a plain overview of the
covariances between all the different random variables and can be considered
as the “variance” of random vectors.
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2.8 Definition (Covariance matrix). The covariance matrix of a k-dimensional
random vector X is given by

Cov(X) =


Cov(X1, X1) · · · Cov(X1, Xk)
Cov(X2, X1) · · · Cov(X2, Xk)

...
...

Cov(Xk, X1) · · · Cov(Xk, Xk)

 .

Note that the diagonal of the covariance matrix above contains the vari-
ances of all the random variables Xi. Furthermore, if all random variables in
a random vector are independent of each other, then the covariance matrix
is a diagonal matrix. The following lemma states some basic properties of
the expectation and covariance matrix of a random vector.

2.9 Lemma. For every matrix A, vector b and random vector X the follow-
ing statements are true:
(i) E(AX + b) = AE(X) + b
(ii) Cov(AX) = ACov(X)AT .
(iii) Cov(X) is symmetric and non-negative definite.

Proof. For a proof, see [7], Lemma 2.1, p.13-14.

We conclude this section with the definition of a very important distri-
bution: the multivariate normal distribution.

2.10 Definition. A random vector X is said to be multivariate-normally
distributed with parameters µ and Σ, if it has the same distribution as the
vector µ+LZ, for a matrix L with Σ = LLT and Z = (Z1, . . . , Zk)

T a vector
whose coordinates are independent N(0, 1)-distributed random variables. We
will denote this distribution as Nk(µ,Σ).

If the context makes it sufficiently clear that we are dealing with a mul-
tivariate normal distribution then the subscript ‘k’ will often be omitted.

2.3 Statistics

We briefly look at some important theorems from statistics. All the results
we look at concern limit theorems. We start off with the law of large numbers.

2.11 Theorem (Weak law of large numbers). Let X1, . . . , Xn, . . . be a se-
quence of i.i.d. random variables with E(|X1|) <∞, E(X1) = µ and Var(X1) =
σ2. For the sample average Xn = 1

n

∑n
i=1 Xi we find that for any ε > 0,

P(|Xn − µ| > ε)→ 0
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as n→∞.

Proof. For a proof, see [5], Theorem A, p.178.

The law of large numbers thus states that the sample average Xn con-
verges to µ in some way. As the name of the theorem suggests, there is also
a strong version of this law. Under the same assumptions, it states that
P( lim

n→∞
Xn = µ) = 1. In the next chapter we will see that the weak law of

large numbers corresponds to convergence in probability and the strong law
to convergence almost surely.

2.12 Theorem (Central limit theorem). Let X1, . . . , Xn be a sample of i.i.d.
random variables with E(|X1|) < ∞ and Var(X1) = σ2 < ∞. Also, let
µ = E(X1) <∞ and let Xn = 1

n

∑n
i=1Xi. Then

√
n(Xn − µ)

tends to a normal distribution with mean zero and variance σ2 as n→∞.

Proof. For a proof, see [5], theorem B, p.184.

So the law of large numbers tells us that the sample average converges to
µ, while the central limit theorem tells us something about the distribution of
the sample average around µ during this convergence. The following theorem
generalizes the central limit theorem to random vectors.

2.13 Theorem. Let || · || denote the Euclidean norm. Suppose X1, X2, . . .
are i.i.d. random vectors in Rk with E(||X1||) < ∞ and finite covariance
matrix Cov(X) = Σ. Let µ be a k-dimensional vector such that µi = E(Xi)
for all i = 1, . . . , k. Then the sequence

√
n(Xn − µ)

tends to Nk(0,Σ) as n→∞.

Proof. For a proof, see [2], Theorem 29.5, p.409.

Lastly, we take a look at the concept of Fisher information and the
Cramér-Rao bound. The Fisher information I(θ) of a random variable is
a measure of the amount of information that a random variable X possesses
about a parameter θ that determines the distribution of X. We express the
Fisher information in terms of the score.
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2.14 Definition (Score). Consider a random variable with a density function
pθ, i.e. the density of the random variable depends on the k-dimensional
parameter θ. Then the score of this random variable is the k-dimensional
vector of partial derivatives `′θ,i = ∂

∂θi
log(pθ) for i = 1, . . . , k. Thus the

score is the gradient of the log likelihood with respect to the k-dimensional
parameter θ.

Now, we are able to define the Fisher information.

2.15 Definition. The Fisher information I(θ) is equal to the variance of the
score.

In the case where θ is one-dimenional the variance of the score, and thus
the Fisher information, is equal to

I(θ) = Eθ

((
∂

∂θ
log(pθ(x))

)2
)
− Eθ

(
∂

∂θ
log(pθ(x))

)2

However, it turns out that the second term on the right is equal to zero under
suitable regularity conditions, since

Eθ

(
∂

∂θ
log(pθ(x))

)
=

∫
pθ(x)(

∂

∂θ
log(pθ(x)))dx

=

∫
pθ(x)

1

pθ(x)
(
∂

∂θ
pθ(x))dx

=
∂

∂θ

∫
pθ(x)dx

=
∂

∂θ
1

= 0.

Notice that the required regularity conditions must enable us to interchange
the integration and derivative symbols. Given that the first moment of the
score is equal to zero, we find that

I(θ) = Eθ

[(
∂

∂θ
log(pθ(x))

)2
]
.

The treatment above is rather vague about what the Fisher information
looks like in the case that θ is higher-dimensional. In the case that θ is
k-dimensional the Fisher information I(θ) is a k × k-matrix with

I(θ)i,j = Eθ

[(
∂

∂θi
log(pθ(x))

)(
∂

∂θj
log(pθ(x))

)]
,
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or equivalently

I(θ) = Eθ

[(
∂

∂θ
log(pθ(x))

)(
∂

∂θ
log(pθ(x))

)T]
.

We conclude the preliminaries with the statement of the Cramér-Rao in-
equality. This inequality provides a lower bound for the variance of unbiased
estimators.

2.16 Theorem (Cramér-Rao inequality). Let X1, . . . , Xn be an i.i.d. sample
from a distribution with density function pθ(x) to which suitable regularity
conditions apply. If θ̂n is an unbiased estimate of θ, then

Var(θ̂n) ≥ 1

nI(θ)
.

Proof. For a proof, see [5], theorem A, p.300-301.

Thus when finding an unbiased estimator θ̂n having variance 1
nI(θ)

, we
know that this estimator is in some sense optimal. Towards the end of
this thesis this inequality becomes interesting with regard to the maximum
likelihood estimator.
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Chapter 3

Stochastic Convergence

In this chapter we will introduce three modes of stochastic convergence: con-
vergence in distribution, convergence in probability and convergence almost
surely. The first two sections will be concerned with introducing these modes
of convergence and studying some of their properties. In the last section we
will study the relations between these three modes of convergence.

3.1 Convergence in distribution

We begin with a definition.

3.1 Definition (Convergence in distribution). Let X be a random vector
and let Xn be a sequence of random vectors. If

P(Xn ≤ x)→ P(X ≤ x)

for all x at which the limit distribution function x 7→ P(X ≤ x) is continuous,

then we say that Xn converges in distribution to X, denoted by Xn
d→ X.

Remember that if Xn and X are vectors, then x is a vector as well and
P(Xn ≤ x) and P(X ≤ x) should be interpreted coordinate-wise. This
means that P(X ≤ x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk) where X =
(X1, . . . , Xk) and x = (x1, . . . , xk). Throughout this thesis we will use
P(Xn ≤ x) → P(X ≤ x) to denote lim

n→∞
P(Xn ≤ x) = P(X ≤ x). We

will mostly use the name ‘weak convergence’ instead of ‘convergence in dis-
tribution’. This alternative naming will turn out to be intuitively appealing
since convergence in distribution will be the weakest form of convergence we
will treat.

Another name that is sometimes used for this kind of convergence is
‘convergence in law’, since this kind of convergence is only dependent on

13
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the induced laws of the vectors and not on the probability spaces on which
they are defined. This means that the notion of weak convergence is still
meaningful if X and Xn are defined on different probability spaces.

We could wonder why we only require P(Xn ≤ x)→ P(X ≤ x) for x for
which the limit distribution function is continuous. Since we are dealing with
a distribution function, it is right-continuous and increasing. This in turn
implies that there are countably many “jumps”, which means that there are
uncountably many x ∈ Rk where P(Xn ≤ x) → P(X ≤ x) has to hold. The
exclusion of the jump points therefore does not seem unreasonable.

We look at a simple example of a sequence of random variables that
converges weakly.

3.2 Example. Let X be an exponentially distributed random variable with
parameter λ > 0, so that

P(X ≤ x) =

{
1− e−λx if x > 0

0 elsewhere

and let Xn be a sequence of random variables with distribution function

P(Xn ≤ x) =

{
1− (1− 1

n+1
)(n+1)λx if x > 0

0 elsewhere
.

For x > 0 we find that

lim
n→∞

P(Xn < x) = lim
n→∞

1− (1− 1

n+ 1
)(n+1)λx

= 1− e−λx

= P(X < x)

.

For x ≤ 0 the result is trivial. We conclude that Xn
d→ X.

Another example of convergence in distribution that is of fundamental
importance in statistics is given below.

3.3 Example (Central limit theorem). Let X1, . . . , Xn be i.i.d. random
vectors with E(||Xi||2) <∞ and E(Xi) = µ. If the average of these random
vectors is given by Xn = 1

n

∑n
i=1 Xi, then by the central limit theorem we

find that
√
n(Xn − µ)

d→ N(0,Cov(Xi)).

The central limit theorem will reappear often in this thesis and in statis-
tics in general.

The following lemma gives a few equivalent definitions of weak conver-
gence, which will be useful in subsequent proofs and helps us in developing
a broader understanding of weak convergence.
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3.4 Lemma (Portmanteau). Let X be a random vector and Xn be a sequence
of random vectors. The following statements are equivalent:
(i) P(Xn ≤ x)→ P(X ≤ x) for all x at which the limit distribution function

x 7→ P(X ≤ x) is continuous, i.e. Xn
d→ X.

(ii) E(f(Xn))→ E(f(X)) for all bounded, continuous functions f .
(iii) E(f(Xn))→ E(f(X)) for all bounded, Lipschitz functions f .
(iv) lim inf E(f(Xn)) ≥ E(f(X)) for all nonnegative, continuous functions
f .
(v) lim inf P(Xn ∈ G) ≥ P(X ∈ G) for every open set G.
(vi) lim supP(Xn ∈ F ) ≤ P(X ∈ F ) for every closed set F .
(vii) P(Xn ∈ B) → P(X ∈ B) for all Borel sets B with P(X ∈ δB) = 0,
where δB = B − B̊ is the boundary of B.

Proof. For a proof, see [6], Lemma 2.2, p.6-7.

Before studying some properties of weakly converging sequences of ran-
dom vectors we look at another example.

3.5 Example. Let X be a Poisson distributed random variable on some
probability space (Ω,F ,P) with parameter λ such that there exists some
sequence {Pn}n∈N consisting of real numbers in [0, 1] with nPn → λ ∈ R+.

Additionally, let Ωn be the set of n-tuples consisting of ones and zeros for
all n ∈ N. We define Fn to be the power set of Ωn and Pn to be a probability
measure function that assigns the value (λ

n
)k(1− λ

n
)n−k to each ω ∈ Ω having

k ones. Then (Ωn,Fn,Pn) is a probability space on which a random variable
Xn can be interpreted as the outcome of n Bernoulli trials with parameters
λ
n
. Equivalently, a random variable Xn in (Ωn,Fn, Pn) can be interpreted as

a binomial distribution with parameter (n, Pn).

A basic result of probability theory is the Poisson limit theorem which
states that

lim
n→∞

(
n

k

)
pkn(1− pn)n−k = e−λ

λk

k!

if Pn is a sequence of real numbers in [0, 1] such that the sequence nPn

converges to a λ ∈ R+. Hence we can conclude that Xn
d→ X.

The above is an example of a sequence Xn converging weakly to X even
though all Xn and X are defined on different probability spaces. The rest
of this section will be devoted to proving Prokhorov’s theorem, which is a
generalization of the Heine-Borel theorem to sequences of random vectors.
Before stating the theorem we need a definition for uniform tightness.



16 CHAPTER 3. STOCHASTIC CONVERGENCE

3.6 Definition (Uniform tightness). A set of random vectors {Xa | a ∈ A}
is called uniformly tight or bounded in probability if for every ε > 0 there
exists a M > 0 such that supa∈A P(||Xa|| > M) < ε.

In other words, a sequence of k-dimensional random vectors Xn is uni-
formly tight if for every ε > 0 there is a constant M such that P(||Xn|| >
M) < ε for all n ∈ N , where ||.|| is the euclidean norm. Sometimes uniformly
tight is called ‘bounded in probability’. Such a name makes sense because
a set of random vectors Xn is uniformly tight if there exists a compact set
C such that P(Xn ∈ C) > 1 − ε for each n ∈ N. The following proposition
relates uniform tightness of a sequence of random vectors to the distribution
function it converges to. Note that 1 denotes the all-ones vector, so that
F (M1) = P(X1 ≤M, . . . , Xn ≤M) where X = (X1, . . . , Xn).

3.7 Proposition. Let ε > 0 and let F be the distribution function corre-
sponding to the random vector X. If P(||X|| > M) < ε, then F (M1) > 1− ε
and F (−M1) < ε.

Proof. Let ε > 0 and assume that P(||X|| > M) < ε. If we have an X for
which P(X > M1) + P(X ≤ −M1) < ε then surely P(||X|| > M) < ε as
well, because |x1|, . . . , |xn| > M implies ||X|| > M . Thus we have

{x ∈ Ω | P(X > M1) + P(X ≤ −M1) < ε} ⊆ {x ∈ Ω | P(||X|| > M) < ε}.

Using subaddivity of probability measures we can write

P(||X|| > M) ≥ P(X > M1) + P(X ≤ −M1)

≥ P(X > M1)

= 1− P(X ≤M1)

= 1− F (M1)

which implies that F (M1) ≥ 1 − P(||X|| > M) > 1 − ε. For the second
inequality, we take

P(||X|| > M) ≥ P(X > M1) + P(X ≤ −M1)

≥ P(X ≤ −M1)

= F (−M1)

which implies F (−M1) < ε.

Uniform tightness and weak convergence turn out to be closely related to
each other. The following theorem explicates this.
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3.8 Theorem (Prokhorov’s theorem). If Xn is a sequence of random vectors
in Rk, then the following statements are true:

(i) If Xn
d→ X for some random vector X, then the sequence Xn is uniformly

tight.

(ii) If Xn is uniformly tight, then there exists a subsequence Xnj with Xnj
d→

X as j →∞ for some random vector X.

In order to prove this theorem we need another result which is known
as Helly’s lemma. We will prove this lemma before proving Prokhorov’s
theorem.

3.9 Lemma (Helly’s lemma). Any sequence Fn consisting of cumulative
distribution functions on Rk has a subsequence Fnj with the property that
Fnj(x)→ F (x) at all continuity points of some possibly defective distribution
function F . Where with ‘defective distribution function’ we refer to a func-
tion having all the properties of a distribution function except that its limit
at −∞ may be greater than 0 and its limit at ∞ may be less than 1.

Proof. Let Qk = {q1, q2, . . . } be the set of vectors with rational coordinates,
ordered in anyway we like. We consider the sequence Fn(q1). This sequence
is contained in the closed and bounded set [0, 1] since Fn is a distribution
function. It follows that there exists a converging subsequence Fnj(q1). We
define the index of this subsequence as {n1

j}∞j=1 and the corresponding limit
as G(q1). Similarly, we can take Fn(q2) and extract a subsequence with index
{n2

j} ⊆ {n1
j} that converges to some limit G(q2). We can repeat this process

indefinitely for every qi. Now, we define nj := njj, which has the property
that nj ∈ {nij}∞j=1 for all i ∈ N. Using the sequence {nj}∞j=1 as an index we
find that Fnj(qi)→ G(qi) for every i ∈ N.

For the remainder of this proof, we take q, q′ ∈ Qk. If q ≤ q′, then
G(q) ≤ G(q′) because Fn is nondecreasing for all n ∈ N. We define the
function F (x) = infq>xG(q) i.e. F (x) is equal to the infimum of all limits
G(q) with q > x, this ensures that F (x) is nondecreasing.

We can also show that the function F is right-continuous. As a con-
sequence of the definition of F there exists q > x with |G(q) − F (x)| =
G(q)− F (x) < ε. It follows that for all x ≤ y ≤ q we have |F (x)− F (y)| =
F (y)− F (x) < ε. In turn, this form of uniform continuity implies that F is
right-continuous.

Consequently, for every ε > 0 there exists q < x < q′ such that |G(q) −
G(q′)| = G(q′) − G(q) < ε. Since F is nondecreasing, we also have G(q) ≤
F (x) ≤ G(q′) for all q ≤ x ≤ q′. Combining these results gives us the
inequality

G(q) = lim
j→∞

Fnj(q) ≤ lim inf
j→∞

Fnj(x) ≤ lim
j→∞

Fnj(q
′) = G(q′)
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and we conclude that | lim inf
j→∞

(x)−F (x)| < ε. By an analogous argument we

can obtain

G(q) = lim
j→∞

Fnj(q) ≤ lim sup
j→∞

Fnj(x) ≤ lim
j→∞

Fnj(q
′) = G(q′)

and thus | lim sup
j→∞

Fnj(x)− F (x)| < ε. We conclude that for every continuity

point of x of F we have lim
j→∞

Fnj(x) = F (x).

Now, we have proven the lemma for the one-dimensional case. For higher-
dimensional cases we would still have to prove that the expressions defining
masses of cells are nonnegative. When all corners of a cell are continu-
ity points this property follows from the convergence of Fnj to F and from
F being a distribution function. After that the other cases follow by right
continuity of distribution functions. For a slightly more comprehensive treat-
ment of the higher-dimensional case we refer the reader to [6], Theorem 2.5,
p.9.

Proof (of Theorem 3.8). (i) Let ε > 0 and Xn
d→ X for some sequence of

random vectors Xn and random vector X. As mentioned before, there is an
M > 0 such that P(||X|| ≥M) < ε. We assume that M is a continuity point
of the distribution function of X, otherwise we replace M by M ′ with M ′ a
continuity point of the distribution function. Because norms are continuous
functions it follows from P(Xn ≤M1)→ P(X ≤M1) that P(||Xn|| ≤M)→
P(||X|| ≤ M). Similarly, P(||Xn|| ≥ M) → P(||X|| ≥ M) as well. So there
must exist an N such that for all n ≥ N we have P(||Xn|| ≥ M) < 2ε.
We are only left with finitely many n < N . Each Xn corresponding to
such an n is uniformly tight, so there is an M for each n < N such that
P(||Xn|| ≥ M) < 2ε. Thus we can increase our fixed value of M in a way
that ensures P(||Xn|| ≥ M) < 2ε for all n ∈ N, from which it immediately
follows that Xn is uniformly tight.

(ii) Given Helly’s lemma and a sequence of random vectors Xn, we know
that the sequence of distribution functions P(Xn ≤ x) = Fn(x) contains a
subsequence that converges weakly to a possibly defective distribution func-
tion F (x). We only have to show that F is not defective, that is, we have to
show that lim

x→∞
F (x) = 1 and lim

x→−∞
F (x) = 0.

Let ε > 0. We assume that Xn is uniformly tight, therefore, by Proposi-
tion 3.7, there exists an M such that Fn(M) = P(Xn ≤ M1) > 1− ε for all
n ∈ N. Since F is nondecreasing we can always find an M large enough such
that M is also a continuity point of F . We find that

1 ≥ F (M) = lim
j→∞

Fnj(M) ≥ 1− ε
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which means that lim
x→∞

F (x) = 1.

We can treat the other limit in a similar way. By uniform tightness and
Proposition 3.7 there exists an M > 0 such that F (−M) < ε, if necessary,
we increase M until it is a continuity point of F . Now, we find

0 ≤ F (−M) = lim
j→∞

Fnj(−M) ≤ ε

which implies that lim
x→−∞

F (x) = 0, so F is not defective.

3.2 Convergence in probability and conver-

gence almost surely.

We begin by giving the definitions of the two remaining modes of convergence.

3.10 Definition (Convergence in probability). Let X be a random vector
and let Xn be a sequence of random vectors. Consider the topology induced
by some metric d(x, y) on Rk. If

P(d(Xn, X) > ε)→ 0

for all ε > 0, then we say that Xn converges in probability to X, denoted by

Xn
P→ X.

The notation d(Xm, X)
P→ 0 is equivalent to Xn

P→ X and will sometimes
be used. The following definition is quite similar to the one above, but it will
turn out to be an even stronger form of convergence.

3.11 Definition (Convergence almost surely). Let X be a random vector
and let Xn be a sequence of random vectors. Consider the topology induced
by some metric d(x, y) on Rk. If

P( lim
n→∞

d(Xn, X) = 0) = 1,

then we say that Xn converges almost surely to X, denoted by Xn
as→ X.

Contrary to convergence in distribution, for both convergence in proba-
bility and convergence almost surely it is necessary that all random vectors of
the sequence Xn and X are defined on the same probability space. Otherwise
the distance d(Xn, X) would not make any sense.
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3.12 Example (Weak/strong law of large numbers). Let X1, X2, . . . be an
infinite sequence of i.i.d. Lebesgue integrable random vectors with E(Xi) =
µ, where µ is a vector. We denote the sample average as Xn. Then the weak
law of large numbers states that

P(d(Xn, µ) > ε)→ 0

and the strong law of large numbers states that

P( lim
n→∞

d(Xn, µ) = 0) = 1.

These laws correspond to convergence in probability and convergence almost
surely respectively.

It turns out that continuous functions preserve all of the three modes of
convergence. The following theorem formalizes this and will turn out to be
very useful.

3.13 Theorem (Continuous mapping theorem). If g : Rk → Rm is a func-
tion that is continuous at every point of a set C such that P(X ∈ C) = 1,
then the following statements are true.

(i) If Xn
d→ X, then g(Xn)

d→ g(X).

(ii) If Xn
P→ X, then g(Xn)

P→ g(X).
(iii) If Xn

as→ X, then g(Xn)
as→ g(X).

Proof. (i): Let f be any bounded continuous function and g be any contin-
uous function. We define h = f ◦g. Since f and g are both continuous and f

is bounded the function h is also bounded and continuous. Now, if Xn
d→ X,

then by (ii) of Lemma 3.4 we also have E(h(Xn))→ E(h(X)), which is equiv-
alent to E(f(g(Xn)))→ E(f(g(X))). If we apply (ii) of Lemma 3.4 again we

can conclude that g(Xn)
d→ g(X).

(ii): Suppose Xn
P→ X and ε > 0. For every δ > 0 we define

Bδ = {x ∈ Rk | ∃y ∈ Rk : d(x, y) < δ and d(g(x), g(y)) > ε}.

The set Bδ consists of all x ∈ Rk within the δ-neighborhood that map outside
the ε-neighborhood in Rm. From the continuity of g we obtain lim

δ→0
Bδ = ∅.

Now, if we assume that d(g(Xn), g(X)) > ε, then either d(X,Xn) ≥ δ or
X ∈ Bδ. The probabilities of these events can be described by

P(d(g(Xn), g(X)) > ε) ≤ P(d(Xn, X) ≥ δ) + P(X ∈ Bδ),
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notice that this is an inequality since we do not subtract the intersection

of both events on the right-hand side. Since Xn
P→ X, the probability

P(d(Xn, X) ≥ δ)→ 0 for any δ > 0. Now, as mentioned before, if δ becomes
arbitrarily small the set Bδ converges to ∅ and therefore lim

δ→0
P(X ∈ Bδ) = 0.

Since both terms on the right-hand side of the inequality converge to 0, the

term P(d(g(Xn), g(X)) > ε)→ 0 as well, which means that g(Xn)
P→ g(X).

(iii): Given that a function g is continuous on a set C such that P(X ∈
C) = 0. Using the continuity of g we find that

1 = P( lim
n→∞

d(Xn, X) = 0) = P( lim
n→∞

Xn = X)

= P( lim
n→∞

g(Xn) = g(X))

= P( lim
n→∞

d(g(Xn), g(X)) = 0)

which means that g(Xn)
as→ g(X).

An important implication of the continuous mapping theorem is that
if we are interested in φ(θ) and we have a sequence of estimators Tn that
converges to some parameter θ, then φ(Tn) converges to φ(θ), provided that φ
is continuous. We further demonstrate the utility of the continuous mapping
theory by giving a simple example.

3.14 Example. Let X1, X2, . . . be i.i.d. random variables with E(Xi) =
µ < ∞ and Var(Xi) = σ2 < ∞. The central limit theorem states that
√
n
σ

(Xn−µ)
d→ N(0, 1). Now, it follows from the continuous mapping theorem

that (√
n

σ
(Xn − µ)

)2

=
n

σ2
(Xn − µ)2 d→ χ2

1.

3.3 Relationships between modes of conver-

gence

Now that we have defined the three relevant modes of convergence we can in-
vestigate the relationships between them. As mentioned in previous sections,
almost sure convergence is the strongest mode of convergence, while conver-
gence in distribution is the weakest form of convergence. In the following
theorem we will formally state and prove this among other things.
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3.15 Theorem. Let Xn and Yn be sequences of random vectors, X and Y be
random vectors and c ∈ R be a constant. The following statements are true:

(i) If Xn
as→ X, then Xn

P→ X.

(ii) If Xn
P→ X, then Xn

d→ X.

(iii) If Xn
as→ X, then Xn

d→ X.

(iv) The sequence Xn
P→ c if and only if Xn

d→ c.

(v) If Xn
d→ X and d(Xn, Yn)

P→ 0, then Yn
d→ X.

(vi) If Xn
d→ X and Yn

P→ c, then (Xn, Yn)
d→ (X, c).

(vii) If Xn
P→ X and Yn

P→ Y , then (Xn, Yn)
P→ (X, Y ).

Proof. (i) Let ε > 0. We define the decreasing sequence of sets

An = ∪m≥n{d(Xn, X) > ε}.

If Xn(ω)→ X(ω), for almost every ω ∈ Ω, as is the case when Xn
as→ X, then

P(An)→ 0. Therefore, if Xn
as→ X, then P(d(Xn, X) > ε) ≤ P(An)→ 0. We

conclude that Xn
P→ X.

(ii). Let Yn = X for all n ∈ N. We apply (v): From d(Xn, X)
P→ 0 and

Yn = X
d→ X it follows that Xn

d→ X.
(iii). This follows directly from (i) and (ii).

(iv). We assume that Xn
P→ c, then by (ii) we have Xn

d→ c as well. For

the other implication we assume that Xn
d→ c and let B(c, ε) be the open

ball with radius ε > 0 around c such that P(Xn /∈ B(c, ε)) < ε. Note that
the complement B(c, ε)C of this open ball is closed. We can write

P(d(Xn, c) ≥ ε) = P(Xn ∈ B(c, ε)C) = 0

and using (vi) of the portmanteau lemma we find

lim supP(Xn ∈ B(c, ε)C) ≤ P(c ∈ B(c, ε)C) = 0

which implies that P(d(Xn, c) > ε)→ 0, so Xn
P→ c.

(v). Suppose Xn
d→ X and d(Xn, Yn)

P→ 0. Let f be a Lipschitz continu-
ous function with range [0, 1], so that f is bounded. Then

|E(f(Xn))−E(f(Yn))| = |E(f(Xn)− f(Yn))|
≤ E(|f(Xn)− f(Yn)|)
≤ E(d(Xn, Yn))

= E(d(Xn, Yn)1{d(Xn,Yn)≤ε}) + E(d(Xn, Yn)1{d(Xn,Yn)>ε})

(3.1)



3.3. RELATIONSHIPS BETWEEN MODES OF CONVERGENCE 23

The first term in the last expression can be rewritten as

E(d(Xn, Yn)1{d(Xn,Yn)≤ε}) ≤ εE(1{d(Xn,Yn)≤ε})

= εP(d(Xn, Yn) ≤ ε)

≤ ε

and thus can be made arbitrarily small. For the second term in the last
expression of (3.1) we find

E(d(Xn, Yn)1{d(Xn,Yn)>ε}) ≤ 2E(1{d(Xn,Yn)>ε})

= 2P(d(Xn, Yn) > ε)

because f is bounded. By Definition 3.10 it follows that this term converges
to zero for every ε > 0. Hence we conclude that E(f(Xn)) and E(f(Yn))
have the same limit. Now, it follows from the Portmanteau Lemma (ii) that

Yn
d→ X.

(vi). We assume Xn
d→ X and Yn

P→ c. We use (v) again: from

d((Xn, Yn), (Xn, c)) = d(Yn, c)
P→ 0

it follows that we only have to prove that (Xn, c)
d→ (X, c). Let f : (x, y) 7→

f(x, y) be some bounded continuous function, then x 7→ f(x, c) is bounded

and continuous as well. Now, from Xn
d→ X and (ii) of the portman-

teau lemma it follows that E(f(Xn, c)) → E(f(X, c)). Applying (ii) of

the portmanteau lemma again gives (Xn, c)
d→ (X, c), which proves that

(Xn, Yn)
P→ (X, c).

(vii). Let k1, k2 ∈ N such that k1 is the dimension of the vector Xn and
k2 is the dimension of the vector Yn. Let d : Rk1+k2 × Rk1+k2 → Rk1+k2 be
the metric we work with. Whenever a vector has dimension k1 we consider
the last k2 coordinates to be equal to 0. Similarly, whenever a vector has
dimension k2, we consider the first k1 coordinates to be 0. We assume the
antecedent of our statements, which is equivalent to P(d(Xn, X) > ε) → 0
and P(d(Yn, Y ) > ε)→ 0, we find that

P(d(Xn, X) + d(Yn, Y ) > 2ε)→ 0. (3.2)

By the triangle inequality we find that

d(x1, x2) + d(y1, y2) ≥ d((x1, y1), (y1, y2)) (3.3)

for all x1, x2 ∈ Rk1 and y1, y2 ∈ Rk2 . Combining (3.2) and (3.3) gives us

P(d((Xn, Ym), (X, Y )) > 2ε)→ 0,

which concludes our proof.
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The theorem above is very useful and we should examine it more closely.
We remark that by statement (i) the statements (iv)-(vii) are also true if we
replace convergence in probability with convergence almost surely.

The last statement of the theorem can be understood as follows: conver-
gence in probability of a sequence of random vectors is equivalent to con-
vergence of each of the components of the vectors. We should observe that
this statement is not necessarily true for sequences of random vectors that
converge in distribution. The separate components of a random vector can
be dependent or independent on each other, this means that the distribution
of all components taken separately does not determine the joint distribution.
We illustrate this with an example.

3.16 Example. Let X, Y have the standard normal distribution N(0, 1).
Define Xn ∼ N(0, 1) for all n ∈ N and Yn = −Xn. It is obvious that

Xn
d→ X, and by symmetry of the normal distribution Yn

d→ Y as well.

However, it is not true that (Xn, Yn)
d→ (X, Y ) due to the dependence of

Yn on Xn. Instead, we find that (Xn, Yn)
d→ (X,−X). The distribution

of (X,−X) is very different from that of (X, Y ). Thus the distributions
of the components taken separately do not necessarily determine the joint
distribution.

Before moving on, we consider statement (vi) of Theorem 3.15 because
it has some interesting implications. Let Xn and Yn be sequences of random

vectors, X a random vector and c ∈ R a constant such that Xn
d→ X and

Yn
P→ c. Also, let g be any function that is continuous on the subset of

Rk × {c} in which (X, c) takes its values. Then by the continuous mapping

theorem we find that g(Xn, Yn)
d→ g(X, c). The following lemma is known as

Slutsky’s lemma and describes some of the applications of statement (vi).

3.17 Lemma (Slutsky’s lemma). Let Xn and Yn be sequences of random

vectors, X a random vector and c ∈ R a constant. If Xn
d→ X and Yn

P→ c,
then the following statements are true:

(i) Xn + Yn
d→ X + c.

(ii) YnXn
d→ cX.

(iii) If c 6= 0, then Y −1
n Xn

d→ c−1X.

Some remarks are in order. In virtue of Theorem 3.15 (iv), the above

lemma would still hold if we have Yn
d→ c instead of Yn

P→ c. For (i) to
be meaningful, the vector c must have the same dimension as X. A similar
remark goes for (ii), only here c and Yn must either be scalars or matrices
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having dimensions such that cX makes sense. The same goes for (iii), as long
as det(c) 6= 0. All parts of the lemma above directly follow from Theorem
3.15 (vi) with subsequent application of the continuous mapping theorem
(Theorem 3.13).

We conclude this section with an example that illustrates how the different
theorems and lemmas of this chapter can be applied.

3.18 Example. If X1, X2, . . . are i.i.d. random variables with E(X1) =

µ = 0 and E(X2
1 ) < ∞, then the t-statistic

√
nXn
Sn

, where S2
n is the sample

variance, is asymptotically standard normal. That is, the t-statistic converges
weakly to N(0, 1).

Using the lemma’s and theorems from this chapter we can prove this
claim. Firstly, we take a look at

S2
n =

n

n− 1

(
1

n

n∑
i=1

X2
i −Xn

2

)
,

by the weak law of large numbers and the continuous mapping theorem we

know that Xn
2 P→ E(Xi)

2 = µ2 = 0. What remains within the parenthesis
converges in probability as well, we can see this by applying the weak law of
large numbers and the continuous mapping theorem again:

1

n

n∑
i=1

X2
i

P→ E(X2
i ).

Obviously n
n−1
→ 1. By combining these three results, we find

S2
n =

n

n− 1

(
1

n

n∑
i=1

X2
i −Xn

2

)
P→ 1(E(X2

i )− E(Xi)
2) = Var(Xi) = σ2.

By applying the continuous map theorem again we find that Sn
P→ σ. We

shift our focus to
√
nXn. By the central limit theorem we find that

√
nXn =

√
n(Xn−µ)

d→ N(0, σ2). Using (iii) of slutsky’s lemma we can combine these
two limits and obtain

√
n
Xn

Sn

d→ N(0, σ2)

σ
= N(0, 1),

and thus the t-statistic is asymptotically standard normal.
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3.4 Stochastic order symbols

Quite often we encounter sequences of random vectors that converge to zero
in probability or are uniformly tight. We can generalize the o and O symbols
that we have for deterministic sequences to include sequences of random
vectors as well.

3.19 Definition (Stochastic o and O symbols). Let Xn, Yn and Rn be se-
quences of random vectors, then

(i) Xn = oP (Rn) is equivalent to Xn = YnRn and Yn
P→ 0.

(ii) Xn = OP (Rn) is equivalent to Xn = YnRn and Yn is uniformly tight.

For instance, we denote a sequence of random vectors that converges to
zero in probability as oP (1) and we denote a sequence of random vectors that
is uniformly tight as OP (1). The following lemma states some equalities that
hold for o and O in calculus and generalizes them for the stochastic oP and
OP .

3.20 Lemma. Let Rn be a sequence of random vectors. Then
(i) oP (1) + oP (1) = oP (1);
(ii) OP (1) +OP (1) = OP (1);
(iii) oP (1) +OP (1) = OP (1);
(iv) OP (1)oP (1) = oP (1);
(v) oP (Rn) = RnoP (1);
(vi) OP (Rn) = RnOP (1) and;
(vii) oP (OP (1)) = oP (1).

Proof. In the following proofs let all Xn and Yn be sequences of random
vectors.

(i) Let Xn
P→ 0 and Yn

P→ 0. Define Zn = Xn + Yn. Then Zn
P→ 0 by the

continuous mapping theorem.

(ii) Let Xn and Yn be uniformly tight. Let ε > 0, then there exist
Mx,My ∈ R such that sup

n
P(||Xn|| > MX), sup

n
P(||Yn|| > MY ) < ε. By

the subadditivity of norms we find that

{||Xn|| ≤MX} ∩ {||Yn|| ≤MY } ⊆ {||Xn + Yn|| ≤MX +MY },

this implies that

P(||Xn + Yn|| > MX +MY ) ≤ P(||Xn|| > MX) + P(||Yn|| > MY ) < 2ε.
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Therefore we also have

sup
n

P(||Xn + Yn|| > MX +MY ) < 2ε.

Hence Xn + Yn is uniformly tight as well.

(iii) Let Xn
P→ 0 and let Yn be uniformly tight. By Theorem 3.15 and

Prokhorov’s Theorem, the sequence Xn is uniformly tight. The result now
follows from (ii).

(iv) Let Xn be uniformly tight and let Yn
P→ 0. We need to show that

P(||XnYn|| > ε)→ 0. Suppose ε > 0, we write

P(||XnYn|| > ε) = P(||XnYn|| > ε, ||Xn|| ≤M)+P(||XnYn|| > ε, ||Xn|| > M).

For the first term, we find

P(||XnYn|| > ε, ||Xn|| ≤M) ≤ P (||MYn|| > ε) = P(||Yn|| >
ε

M
)→ 0.

Notice here that we implicitly assume that M > 0. This is no problem
because if M ≤ 0, then P(||XnYn|| > ε, ||Xn|| ≤ M) = 0. For the second
term, we get

P(||XnYn|| > ε, ||Xn|| > M) ≤ P(||Xn|| > M) < ε

by uniform tightness, so this term converges to zero as well. Hence P(||XnYn|| >
ε)→ 0.

(v)-(vi) These follow directly from Definition 3.19.

(vii) By definition oP (OP (1)) = YnOP (1) = oP (1)OP (1) where Yn
P→ 0.

The result now follows immediately from (iv).

The following lemma is a bit more intricate but will be used in the proof
of the main result of the next chapter.

3.21 Lemma. Let R be a function with domain D ∈ Rk and R(0) = 0. If

Xn is a sequence of random vectors with Xn ∈ D for all n ∈ N and Xn
P→ 0.

Then for every p > 0 we have
(i) if R(h) = o(||h||p) as h→ 0, then R(Xn) = oP (||Xn||p);
(ii) if R(h) = O(||h||p) as h→ 0, then R(Xn) = OP (||Xn||p).

Proof. Let R and Xn be as stated above. We define g(h) := 1
||h||pR(h)

for h 6= 0 and g(0) = 0, so that R(Xn) = g(Xn)||Xn||p. We prove both
statements:
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(i) We assume the antecedent of (i). Since g is continuous at zero, appli-

cation of the continuous mapping theorem gives us g(Xn)
P→ g(0) = 0. The

desired result follows.
(ii) We assume the antecedent of (ii), then there exist M and δ > 0

such that if ||h|| ≤ δ, then |g(h)| ≤ M . So P(|g(Xn)| > M) ≤ P(||Xn|| >
δ) → 0, which means that g(Xn) is uniformly tight. Our result follows
immediately.



Chapter 4

The Delta Method

In this chapter we treat the Delta method and some of its applications. In
the first section we will prove the Delta method and give some examples,
including variance stabilizing transformations. In the second section we will
briefly take a look at parametric models and how we should interpret the
results of asymptotic statistics. Lastly, we take a look at a particular kind
of estimator, namely moment estimators.

4.1 Main result

Suppose that we have an estimator Tn for some parameter θ on hand and
we are interested in φ(θ). By the continuous mapping Theorem we find that
φ(Tn) converges to φ(θ) in the same mode as Tn converges to θ, provided
that φ is continuous.

A similar problem arises often: if we have a limit distribution to which
some sequence

√
n(Tn − θ) converges, does

√
n(φ(Tn) − φ(θ)) converge as

well? According to the Delta method this is the case for convergence in
distribution, provided that the function φ is differentiable at θ.

We will introduce, state and prove the Delta method and subsequently
give a few examples of its application. Most of these examples will not di-
rectly concern parameter estimation. However, later on the Delta method
will prove to be of great importance for the estimation of parameters. There-
fore we treat it comprehensively.

The Delta method uses a Taylor expansion to approximate random vec-
tors φ(Tn). Such an expansion looks like φ(θ+δ)−φ(δ) = δφ′(θ)+ . . . , notice
that we have left out the higher order terms of the Taylor expansion and are
reducing it to a linear approximation in this way. Figure 4.1 graphically
explains the Delta method.

29
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φ′(θ)

θ

φ(θ)

Figure 4.1: Graphical representation of the Delta method.

On the horizontal axis we find the true value of θ. For sufficiently large n,
we find Tn in a small neighborhood of θ with high probability. The continuous
function φ maps θ to a point on the vertical axis, by continuity the values
of φ(Tn) are also arbitrarily close to φ(θ) for sufficiently large n with a high
probability. A measure for the difference of the convergence of φ(Tn) is given
by the slope of the tangent φ′(θ). This suggests that

φ′(θ)
√
n(Tn − θ) ≈

√
n(φ(Tn)− φ(θ).

The figure above depicts the one-dimensional case, but we are also in-
terested in the case where Tn and θ are vector-valued. In order to do this,
we need the notion of total differentiability. We mentioned this in the pre-
liminaries and we assume that the reader is familiar with this concept. In
addition to what is stated in the preliminaries, we like to mention that in
this context it might be better to think of the total derivative as a linear
approximation h 7→ φ′(h) to the function h 7→ φ(θ + h) − φ(θ) than as a
matrix of partial derivatives. We proceed to the actual theorem.

4.1 Theorem (The Delta method). Let θ ∈ D ⊆ Rk and let φ : D → Rm

be a function that is differentiable at θ. Let Tn be a sequence of random
vectors taking their values in D and let rn be a sequence of numbers in R
with rn →∞. If rn(Tn−θ)

d→ T , then rn(φ(Tn)−φ(θ))
d→ φ′(θ)T . Moreover,

rn(φ(Tn)− φ(θ))− φ′(θ)rn(Tn − θ) converges in probability to zero.

Proof. Let φ, rn and θ be as described above. Suppose that rn(Tn−θ)
d→ T .

By Prokhorov’s theorem the sequence rn(Tn− θ) is uniformly tight. Because

rn →∞ we also know that Tn − θ
d→ 0, if this would not have been the case
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then rn(Tn − θ) would diverge and that is a contradiction. Consequently, by

Theorem 3.15 the sequence Tn− θ
P→ 0 as well. Since φ is differentiable in θ,

we find that for the function R(h) = φ(θ + h)− φ(θ)− φ′(θ)h we have

lim
h→0

||φ(θ + h)− φ(θ)− φ′(θ)h||
||h||

= 0,

that is, R(h) = o(||h||) as h→∞. By Lemma 3.21 we have

R(Tn − θ) = φ(Tn)− φ(θ)− φ′(θ)(Tn − θ) = oP (||Tn − θ||).

Multiplying on both sides with rn results in

rnR(Tn − θ) = rn(φ(Tn)− φ(θ)− φ′(θ)(Tn − θ))
= rn(φ(Tn)− φ(θ))− φ′(θ)rn(Tn − θ)
= op(1)

= oP (OP (1))

= oP (rn||Tn − θ||)
= rnoP (||Tn − θ||)

by Prokhorov’s Theorem and Lemma 3.20 (vii). This proves that

rn(φ(Tn)− φ(θ))− φ′(θ)rn(Tn − θ)
P→ 0,

or equivalently

d(rn(φ(Tn)− φ(θ)), φ′(θ)rn(Tn − θ))
P→ 0.

Now, we only have to show that rn(φ(Tn) − φ(θ))
d→ φ′(θ)T . Since the

derivative map is by definition matrix multiplication and matrix multiplica-
tion is always continuous, applying the continuous mapping Theorem to our

assumption gives φ′(θ)rn(Tn − θ)
d→ φ′(θ)T . Now, applying Theorem 3.15

(v) yields the desired result

rn(φ(Tn)− φ(θ))
d→ φ′(θ)T.

Thus the Delta method can be used to turn one statement of weak conver-
gence into another statement of weak convergence, much like the continuous
mapping theorem or Slutsky’s Lemma. Another way of viewing the Delta



32 CHAPTER 4. THE DELTA METHOD

method is as a way to obtain the limit distribution of a statistic that is a func-
tion of another statistic for which we already obtained the limit distribution.
Most of the applications of the Delta method revolve around some normally
distributed random variable or random vector with mean zero, which is ob-
tained by applying the central limit theorem. Example 4.2 provides a simple
example of this.

4.2 Example. Suppose that we are interested in the limit distribution of our
sample variance. Let X1, . . . , Xn be a sample consisting of n observations.
We define the (biased) sample variance as S2

n = 1
n+1

∑n
i=1(Xi−Xn)2. Notice

that the bias here does not matter since n
n−1
→ 1. Defining our sample

variance like this makes it similar to the formula of the population variance,
therefore the function φ(x, y) = y − x2 gives the sample variance if we take
φ(Xn, X2

n). Remember that Xn = 1
n+1

∑n
i=1 Xi by assumption. Now, suppose

that our sample is taken from a distribution with E(X4) < ∞, and denote
the first four moments as α1, α2, α3 and α4. By the multivariate central limit
theorem we obtain

√
n

((
Xn

X2
n

)
−
(
α1

α2

))
d→ N2

((
0
0

)
,

(
α2 − α2

1 α3 − α1α2

α3 − α1α2 α4 − α2
2

))
.

The map φ(x, y) is differentiable with derivative map φ′(x, y) =
(
−2x 1

)
.

In particular at (α1, α2) the derivative is given by
(
−2α1 1

)
. Applying the

Delta method gives us

√
n(φ(Xn, X2

n)− φ(α1, α2)) =
√
n(S2

n − Var(X))
d→ N(0, σ2).

Since we are interested in the sample variance, we calculate σ2 exactly:

σ2 =
(
−2α1 1

)( α2 − α2
1 α3 − α1α2

α3 − α1α2 α4 − α2
2

)(
−2α1

1

)
= α4 − 4α1α3 + 8α2

1α2 − α2
2 − 4α4

1.

Alternatively, we could replace allXi with the centered variables Yi = Xi−α1.
In this case, the first moment of Y would be zero. This would reduce our
expression for the sample variance to σ2 = µ4−µ2

2, which can be found using
the expression for σ2 we obtained earlier by taking α1 = 0. Also, instead of
remarking that n

n−1
→ 1 we could also conclude that the same result is valid

for the unbiased sample variance by applying Slutksy’s lemma.

The following example is an extension of Example 4.2 and utilizes the
Delta method again.
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4.3 Example. We are interested in the joint limit distribution of the sample
variance and the T-statistic, i.e. the pair (S2

n, Xn/Sn). We consider the same
(biased) sample variance as in Example 4.2. We define

φ(x, y) =

(
y − x2,

x√
y − x2

)

and observe that for this function φ(Xn, X2
n) = (S2

n, Xn/Sn). The function
φ is defined and differentiable on {(x, y) | y − x2 > 0} ⊆ R2 with derivative
map

φ′(x, y)

(
−2x 1

x2

(y−x2)
3
2

+ 1√
y−x2

−x
2(y−x2)

3
2

)
.

Once again, let α1, α2, α3 and α4 be the first four moments of X respectively.
Applying the Delta method gives us

√
n(S2

n − σ2,
Xn

Sn
− α2

σ
)

d→ N2

((
0
0

)
,Σ

)
where the covariance matrix Σ is given by

φ′(α1, α2)

(
α2 − α2

1 α3 − α1α2

α3 − α1α2 α4 − α2
2

)
(φ′(α1, α2))T .

Variance stabilizing transformations are another useful application of the
Delta method. The concept of variance stabilizing transformations is of less
importance for the aim of this thesis. However, since this application illus-
trates the significance of the Delta method we treat it briefly. The following
scenario exemplifies what such a transformation entails.

Suppose we have a sequence of estimators Tn such that
√
n(Tn − θ)

dθ→
N(0, σ2(θ)) for all possible values of θ. Then asymptotic confidence intervals
of level 1− α for θ are given by(

Tn − zα/2
σ(θ)√
n
, Tn + zα/2

σ(θ)√
n

)
.

However, this confidence interval is problematic: in order to obtain the
boundaries of the confidence interval we need to know the value of θ, but
we do not know θ. In other words; we cannot use θ in the procedure of
estimating θ.
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A possible solution to this problem is to replace σ(θ) with an estima-
tor that is independent of θ. For a consistent sequence of estimators the
confidence level will remain 1 − α. Another solution is the application of a
variance stabilizing transformation, which generally leads to better results.

Thus the aim of our variance stabilizing transformation is to transform
σ2(θ) such that it is independent of θ. We can do this by transforming θ
to another parameter φ(θ). An estimator for φ(θ) is φ(Tn) provided φ is
continuous. We choose φ such that it is differentiable and φ′(θ)σ(θ) = 1.

According to the Delta method
√
n(φ(Tn) − φ(θ))

dθ→ N(0, φ′(θ)2σ2(θ)) =
N(0, 1), which solves our initial problem.

The function

φ(θ) =

∫
1

σ(θ)
dθ (4.1)

induces a variance stabilizing transformation. If φ is well-defined, then it
is also monotone, which implies that a confidence interval for φ(θ) can be
transformed to a confidence interval for θ, which is the parameter we were
originally interested in. In the following example we illustrate this concept.

4.4 Example. Suppose X1, . . . , Xn are i.i.d. Poisson distributed for some
θ > 0. By the central limit theorem we find that

√
n(Xn − θ)

d→ N(0, θ).

An asymptotic confidence interval of level 1− α for the parameter θ is now
given by (

Xn − zα/2

√
θ

n
,Xn + zα/2

√
θ

n

)
.

However, since the value of θ is unknown this confidence interval as well as the
convergence is uninteresting. We apply a variance stabilizing transformation.
Define the function φ(x) = 2

√
x, for x > 0 this function is differentiable with

derivative φ′(x) = 1√
x
. By the Delta method we find that

√
n(φ(Xn)− φ(θ))

d→ φ′(θ)N(0, θ) =
1√
θ
N(0, θ) = N(0, 1)

and thus the variance of the limit distribution is now independent of θ. Notice
that φ is defined as prescribed by (4.1). Now the confidence interval for
φ(θ) = 2

√
θ is given by(

Xn − zα/2
1√
n
,Xn + zα/2

1√
n

)
.
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Because 2
√
x is strictly increasing, we can use its inverse x2

4
to obtain a

confidence interval for θ that is independent of θ. We find that(
1

4

(
Xn − zα/2

1√
n

)2

,
1

4

(
Xn + zα/2

1√
n

)2
)

is an asymptotic confidence interval for θ of level 1− α.

4.2 Intermezzo: parametric models

In this section we will discuss parametric models. It serves to strengthen the
mental framework in which subsequent sections and chapters can be embed-
ded. Additionally, we will expose some of the limitations of the asymptotic
theory we present in this thesis.

We will often assume that the distribution from which we sample is part
of some kind of collection or family of distributions. We use the notion of
parametric models to describe such collections.

4.5 Definition (parametric model). A parametric model P is a collection
of probability distributions on some sample space Ω. It is given by

P := {Pθ | θ ∈ Θ}.

The model P is indexed by Θ, which we call the parameter space. For all
θ ∈ Θ the corresponding Pθ is a probability distribution.

In this thesis P always precisely contains all the distributions from a
particular family. For example, P may consist of all exponential distributions
or of all normal distributions. However, it is possible to define P and Θ in
such a way that P consists of multiple families of distributions or is a mix of
different kind of distributions.

Suppose we have a model P := {Pθ | θ ∈ Θ}, i.e. we have some distri-
bution Pθ in mind that depends on some unknown k-dimensional parameter
θ. Given θ, our supposition implies that we exactly know with what kind
of distribution Pθ we are dealing. When working with asymptotics we often
work with consistent estimators for θ.

4.6 Definition (Consistent estimator). Suppose we have some parametric
model P := {Pθ | θ ∈ Θ}. An estimator Tn is a consistent estimator for some
parameter θ if

Tn
P→ θ

for every possible value of θ ∈ Θ.
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Usually we will denote the true parameter value with θ0. So, when doing
asymptotic statistics, consistent estimators will give us the exact parameter
value with a probability tending to one.

Another even more useful property of an estimator is asymptotic normal-
ity. This allows us to construct confidence intervals for the estimator and
to conduct several statistical tests. A sequence of probability distributions
is asymptotically normal whenever it converges in distribution to a normal
distribution. In the next section and Section 5.3 we will extensively treat
this property.

Consistency and asymptotic normality are very desirable, but we must
be realistic with regard to its application. Such asymptotic properties are
not helpful when our sample size n is not sufficiently large. For instance,
in Chapter 5 we will see that maximum likelihood estimators, among other
estimators, are asymptotically optimal. But it is possible that another esti-
mator may work better when doing statistics on a finite data set, since they
might converge faster to a parameter of interest θ. Thus when applying the
concepts presented here we must always be careful to make sure that the
errors due to our finite sample size are small enough.

As mentioned before, the assumption of some parametric model P implies
that if we know the exact value of the parameter θ, then we know everything
about the underlying distribution from which we sample. We must not con-
fuse the certainty we have within a model with knowledge about the actual
distribution from which we sample. So even though the asymptotic proce-
dures we study may give us certainty with a probability tending to one, the
parametric model we assumed may be wrong. In other words, the assump-
tion of a parametric model introduces a bias which we cannot erase from
consequent procedures.

Many parameter spaces Θ we study are of infinite size and the assumption
of a corresponding parametric model might not seem like a big restriction.
However, even though a lot of parameter spaces are infinitely large, a para-
metric model covers a mere fraction of all the possible distributions that exist.
When the actual distribution of interest is not contained within a parametric
model then no matter how large the sample size n is, we will never obtain the
actual distribution of interest. We should always keep the bias introduced
by parametric models in mind.

4.3 Moment estimators

This section will be devoted to moment estimators. As a consequence of
the Delta method treated in Section 4.1, this relatively simple method of
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estimation can often lead to useful results. The method of moments uses a
set of equations for which the solution is an estimator for some parameter θ.
The parameter θ does not necessarily have to be a one-dimensional vector.

We start by giving a simple example, which we will generalize into the
method of moments. After that we prove a theorem that gives us conditions
under which the method of moments leads to desirable results.

4.7 Example. Suppose we have X1, . . . , Xn i.i.d. samples from a N(µ, σ2)
distribution. The parameter of interest is

θ = (µ, σ) ∈ {(µ, σ) ∈ R2 | µ ∈ R, σ > 0}.

Let X ∼ N(µ, σ2), then E(X) = µ and E(X2) = E(X)2 + Var(X) = µ2 + σ2.
By the law of large numbers we expect that if n is sufficiently large, then
Xn ≈ µ and X2

n ≈ µ2 + σ2. We construct a system of equations for which
the solution gives us an estimation of θ:

Xn =
1

n

n∑
i=1

Xi = E(X) = µ

X2
n =

1

n

n∑
i=1

X2
i = E(X2) = µ2 + σ2

(4.2)

Solving this system gives us µ = Xn and σ =
√
X2
n − (Xn)2. An estimation

of θ given a sample of size n would thus be θ̂n =

(
Xn,

√
X2
n − (Xn)2

)
.

We give a general definition for what a moment estimator is.

4.8 Definition. LetX1, . . . , Xn be a sample from a distribution that depends
on a parameter θ ∈ Θ and let f1, . . . , fk be functions. A method of moments
estimate is the solution of the system of equations that we obtain by ranging
the equation

1

n

n∑
i=1

fj(Xi) = Eθ(fj(X)) (4.3)

over the functions f1, . . . , fk.

Notice that in the definition above we implicitly assume that all functions
fj are defined in a way that includes all possible outcomes of the random
vector X in their domain. We can state the problem in Example 4.7 in terms
of Definition 4.8. If we define f1(x) = x and f2(x) = x2, then the system of
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equations given in Definition 4.8 leads to the same set of equations (4.2) as
in Example 4.7.

The method of moments thus consists of matching theoretical moments
to sample moments. Most of the time it is sufficient to match k moments
if the estimated parameter θ is a k-dimensional. In Example 4.7 this is also
the case. In its simplest form the method of moments utilizes the functions
fj = xj, to which the method owes its name. In this case we can reduce the
system of equations presented in Definition 4.8 to

1

n

n∑
i=1

Xj
i = Xj

n = Eθ(X
j) for j = 1, . . . , k. (4.4)

4.9 Example (Gamma distribution). Let X1, . . . , Xn be i.i.d. samples from
a gamma distribution with parameter θ = (α, β). We are interested in esti-
mating θ. We let fj(x) = xj for j = 1, 2, such that the system of equations
we need to solve reduces to (4.4) with k = 2. Suppose X has a gamma
distribution with parameter θ = (α, β). We find that Eθ(X) = α

β
and that

Eθ(X
2) = α(α+1)

β2 . Hence, we want to solve the system of equations

Xn =
α

β

X2
n =

α(α + 1)

β2
.

(4.5)

We can rewrite the second equation to X2
n = Xn

2
+ Xn

β
, which gives us

β =
Xn

X2
n −Xn

2 .

Now, using the first equation we find

α = βXn =
Xn

2

X2
n −Xn

2 .

We conclude that our method of moments estimate for θ is

θ̂n =

(
Xn

2

X2
n −Xn

2 ,
Xn

X2
n −Xn

2

)
.
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Sometimes moment estimators are not the ideal choice, but in appropriate
circumstances they have convergence rate

√
n and are asymptotically normal.

Theorem 4.10 will specify these circumstances using the Delta method, but
in order to state and prove the theorem we have to approach the method of
moments from a slightly different angle.

We define f = (f1, . . . , fk) and e : Θ → Rk : θ 7→ Eθ(f(x)). Note
that Eθ(f(x)) is a vector consisting of all the expectations Eθ(fj(x)) for
j = 1, . . . , k. We can rewrite the system of equations for which the solution
is the method of moments estimate as

fn :=
1

n

n∑
i=1

f(Xi) = e(θ) := Eθ(f(X)). (4.6)

The vector fn and e should be related to each other in a specific way in order
for (4.6) to yield a unique solution. To have any solution at all, the vector fn
should be in the range of e(θ). Moreover, if the function e(θ) is a bijection,
then the solution of (4.6) is unique with θ̂n = e−1(fn). This implies that

√
n
(
θ̂n − θ0

)
=
√
n(e−1

(
fn)− e−1(Eθ0(fn))

)
. (4.7)

Theorem 4.10 is stated in terms of this function e and vector f .

4.10 Theorem. Let e(θ) = Eθ(f(X)) be a bijection on an open set Θ ⊆ Rk,
furthermore, let e(θ) be continuously differentiable at θ0 with nonsingular
derivative e′θ0 and let Eθ0(||f(X)||2) <∞. Then moment estimators θ̂n exist
with probability tending to one and

√
n(θ̂n − θ0)

d→ N
(
0, e′−1

θ0
Σθ0(e

′−1
θ0

)T
)
.

Proof. Suppose e(θ) = Eθ(f(X)) is a bijection on an open set Θ ∈ Rk

that is continuously differentiable at θ0 with nonsingular derivative e′θ0 and
suppose Eθ0(||f(X)||2) <∞. Our assumption that e is continuously differen-
tiable implies that e is differentiable in a neighborhood of θ0. Furthermore,
the assumed continuity of e′ in θ0 combined with the nonsingularity of e′θ0
implies nonsingularity in a neighborhood of θ0. It follows from the inverse
function theorem that there exists an open neighborhood U of θ0 on which
e : U → e(U) is bijective with a differentiable inverse e−1 : e(U) → U . As a
consequence, the range e(U) is an open neighborhood of e(θ0).

By the law of large numbers the sequence fn converges in probability to
e(θ0), which implies that the probability that fn is contained in e(U) tends
to one. As a consequence, e−1(fn) is uniquely determined and the moment
estimators θ̂n exist with probability tending to one.
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We are left with proving the last part of the theorem. By the central limit
theorem the sequence

√
n(fn − Eθ0(fn)) is asymptotically normal. Observe

that e−1 is differentiable at θ0. Then by the Delta method we find that

√
n(e−1(fn)− e−1(Eθ0(fn)))

d→ N
(
0, e′−1

θ0
Σθ0(e

′−1
θ0

)T
)

which we can rewrite as

√
n(θ̂n − θ0)

dθ→ N
(
0, e′−1

θ0
Σθ0(e

′−1
θ0

)T
)
.

by equation (4.7). Lastly, we should observe that in the above equation Σθ0

represents the covariance matrix of the vector f(X) under θ0.

As mentioned before, the theorem above gives conditions for which mo-
ment estimators are asymptotically normal and have convergence rate

√
n.

We take another look at Example 4.9. The function e : Θ → Rk : θ 7→
Eθ(f(x)) is continuously differentiable with nonsingular derivative e′θ0 since
both the right-hand sides of the equations in (4.5) describe smooth functions.
Therefore by the theorem above we find that the moment estimators θ̂n of
Example 4.9 are asymptotically normal.

We conclude this chapter with another example in which Theorem 4.10
is useful.

4.11 Example. We consider the uniform distribution with parameter θ =
(α, β), that is, we consider the uniform distribution on the interval [α, β]
with α < β. Note that the parameter space {θ ∈ R2 | α < β} is an open set.
Once more, we let fj(x) = xj for j = 1, 2. Then the theoretical moments of
X are given by

Eθ(X) =
α + β

2

Eθ(X
2) =

α2 + αβ + β2

3

The right-hand side of these equations are both continuously differentiable
with nonsingular derivative, hence by Theorem 4.10 the moment estimators
θ̂n exist and are asymptotically normal.



Chapter 5

M-estimators

In this chapter we study M-estimators and their asymptotic behaviour. The
first section serves as an introduction to M-estimators and mainly consists of
examples. In the second section we look into the consistency of M-estimators
in general and derive some conditions for consistency. The subsequent section
treats asymptotic normality. We conclude the chapter with a section ded-
icated to the maximum likelihood estimator, which is the most important
type of M-estimator.

5.1 Introduction to M-estimators

In the previous chapters we have developed methods to fluently work with
stochastic convergence of sequences of random vectors. We have also looked
at the estimation of parameters, most notably by use of moment estimators.
Throughout this chapter we assume that we have some parametric model
P = {Pθ | θ ∈ Θ} containing the distribution we are sampling from.

Like moment estimators, M-estimators use a preset method in order to
find an estimate θ̂n. Let X1, . . . , Xn be an i.i.d. sample from some distribu-
tion pθ and let χ denote the set consisting of all values the random variables
Xi can take. An M-estimator maximizes a criterion function Mn(θ) that is
expressed in terms of known functions mθ : χ → R. This criterion function
Mn is given by

Mn(θ) =
1

n

n∑
i=1

mθ(Xi).

M-estimators owe their name to this maximization procedure. Often the
maximum of Mn(θ) will be determined by solving the set of equations ob-
tained by setting the partial derivatives equal to zero. In this case, these
estimators are sometimes referred to as Z-estimators, where the ‘Z’ stands

41
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for ‘zero’. Van der Vaart is the most notable user of this name, but most of
the literature simply refers to them as M-estimators, as will we.

We come to the following formal definition.

5.1 Definition (M-estimators). If θ̂n is the maximum of some function

Mn(θ) =
1

n

n∑
i=1

mθ(Xi)

where mθ : χ→ R are known functions, or if θ̂n is the solution of

0 = Ψn(θ) =
1

n

n∑
i=1

ψθ(Xi), (5.1)

where ψθ are known vector-valued functions, then we say that θ̂n is an M-
estimator.

Some remarks are in order. If the functions mθ are smooth and concave
in θ and if ψθ,i(x) = ∂

∂θi
mθ(x) then the two M-estimators are equivalent.

As mentioned earlier, this is often the case. Furthermore, this particular
situation is the biggest motivation for including M-estimators that are zeros
in the definition.

Also notice that (5.1) represents a system of equations. Alternatively,
given that the functions ψθ are k-dimensional, we can write this system as

0 =
1

n

n∑
i=1

ψθ(Xi) =
n∑
i=1

ψθ,j(Xi) for j = 1, . . . , k. (5.2)

We dropped the 1
n

in the equation above since the expression is set equal to
zero. We will sometimes refer to these equations or to (5.1) as estimating
equations.

When saying ‘the maximizer’ in the definition above there are two prob-
lems that may arise. First, a maximizer does not always exist. Secondly,
if a maximizer exists it is not necessarily unique. The first problem can be
solved by simply saying that there is no estimate if there is no maximum.
The second problem is not a problem at all, if we just choose one of the max-
ima found then this works as a proper M-estimator. So we do not have to
concern ourselves with these potential problems, and in subsequent theorems
they will be taken into account.

The most important type of M-estimator is the maximum likelihood esti-
mator. The following example makes it explicit why these types of estimators
are M-estimators, after which we will not concern ourselves with them until
section 5.4.
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5.2 Example (Maximum likelihood estimator). Let X1, . . . , Xn be samples
from some distribution Pθ ∈ P and let pθ denote the corresponding probabil-
ity density function. Then the maximum likelihood estimator maximizes the
likelihood function

∏n
i=1 pθ(Xi). Since the log function is strictly increasing,

the maximum of the likelihood function is equivalent to the maximum of the
log likelihood function

n∑
i=1

log(pθ(Xi)).

Hence the maximum likelihood estimator is an M-estimator with Mn(θ) =
1
n

∑n
i=1 log(pθ(Xi)) and mθ(x) = log(pθ(x)). In the special case of the maxi-

mum likelihood estimator we will write `θ instead ofmθ. So `θ(x) = log(pθ(x)).
We write it this way because now our notation is the same as for the score
defined in Definition 2.14. We can see this in the following way. If the density
function pθ is partially differentiable with respect to θ for each x, then we
can write the maximum likelihood estimator in the form of (5.1) by setting
ψθ = `′θ, which is the vector-valued function defined as

`′θ,j(x) =
∂

∂θj
log(pθ(x)).

In other words, `′θ is the same as the score. Most of the time it is easier to

compute θ̂ using the score, but sometimes the log likelihood function is not
smooth and the partial derivatives in `′θ may not exist. Thus the Maximum
likelihood estimator as a maximum is more fundamental then the maximum
likelihood estimator as a zero.

We might wonder what kind of reasonable M-estimators exist besides
maximum likelihood estimators. Location estimators provide an example
of this. Note that ‘location’ can be taken to mean different things like the
sample mean, sample median or centre of symmetry. The following example
generalizes a few of these location estimators and in subsequent sections we
will return to some of these examples.

5.3 Example (Location estimators). We start with considering the sample
mean and the sample median. We can obtain an estimation for the sample
mean by solving

∑n
i=1(Xi− θ) = 0. Likewise, we can obtain an estimation of

the sample median by solving
∑n

i=1 sign(Xi − θ) = 0. We implicitly assume
here that there are no tied observations at the median. These are of the
same form as the estimating equations (5.2), hence both are M-estimators.
Furthermore, both are of the form

ψ(x− θ) = 0 (5.3)
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for some function ψ that is monotone and odd around zero. M-estimators
of this form can be called ‘location estimators’ since θ̂n + α would solve∑n

i=1 ψ(Xi + α − θ) = 0, that is, shifting the data with an amount α would
result in shifting the estimate with α as well. This property is called location
equivariance, but we won’t study it further in this thesis.

Another example of a location estimator in the sense described above are
Huber estimators, which can be obtained by letting

ψ(x) =


−k if x < −k
x if |x| ≤ k

k if x > k

(5.4)

for some k ∈ R in (5.3). Huber estimators can be useful when having a
dataset containing a few extreme points that have a significant influence on
the estimate. For the median these extreme values do not really matter,
therefore the sample median can be considered a robust estimator. However,
they do matter for the sample mean, which we consider non-robust for that
reason. A Huber estimator can be used as a robust estimator for the sample
mean. For large k a Huber estimator behaves like the sample mean, while
for small k it behaves like the sample median.

Quantiles are another instance of a type of location estimator that is also
an M-estimator. The pth quantile of a sample is approximately equal to the
point θ such that pn observations are less than θ. Naturally, this implies that
approximately ((1 − p)n) observations are greater than θ. We do not treat
the quantiles any further, but merely wanted to make the reader aware of
the fact that they are M-estimators as well.

In the next two sections we will encounter more examples of M-estimators,
the examples given in this section should suffice in order for us to look at
properties of M-estimators in general.

5.2 Consistency

When estimating while using large datasets or when doing asymptotic statis-
tics it is desirable that an estimator θ̂n is consistent for the parameter of
interest θ. Remember that we defined the concept of a consistent estimator
in Definition 4.6. In this section we will study the conditions under which
M-estimators can be taken to be consistent.

We have encountered numerous consistent estimators in previous chap-
ters. For example, by the law of large numbers the sample mean Xn is asymp-
totically consistent for the population mean, provided that E(|X|) < ∞.
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Similarly, we could show that the sample median is a consistent estimator
for the population mean.

Remember consistency means that d(θ̂n, θ0)
P→ 0. So in order to prove

an estimator to be consistent, we need to have a metric d on the set Θ.
Throughout this chapter we assume that we have such a metric d.

Suppose we have a criterion function Mn(θ) corresponding to an M-
estimator, which is maximized by θ̂n. Then the asymptotic behaviour of θ̂n
is determined by the asymptotic behaviour of the criterion functions Mn(θ),
since the values of θ̂n depend on the maxima of Mn(θ). We often find that
Mn(θ) converges in probability to some non-random function M(θ), provided
that there is some kind of appropriate normalization. Let θ0 be the maxi-

mizer of M(θ). Now, if Mn(θ)
P→ M(θ) for every θ, then we might presume

that the maximizer of Mn(θ) converges to the maximizer of M(θ), that is,

θ̂n
P→ θ0.
However, this is not always the case. It turns out that the pointwise

convergence

Mn(θ)
P→M(θ) for all θ ∈ Θ

is too weak to guarantee the convergence of θ̂n → θ0, since θ̂n depends on
the entire function Mn(θ). The focus of this section lies on finding conditions
that are strong enough to guarantee this convergence.

First we will strengthen the pointwise convergence by assuming uniform
convergence of Mn to M . We will see in Theorem 5.6 and Theorem 5.7
that this uniform convergence is strong enough to guarantee the consistency
of θ̂n. However, we will see that it is too strong in the sense that weaker
assumptions are sufficient for the consistency of θ̂n as well. Lemma 5.8 will
provide an example of one of the numerous weaker alternatives.

We define two properties of Mn and M . Both of these will be used in the
two subsequent theorems.

5.4 Definition (Near maximization). Let Mn : θ 7→ Mn(θ) be a function.
We say that estimators θ̂n nearly maximize Mn if

Mn(θ̂n) ≥ sup
θ∈Θ

Mn(θ)− oP (1).

Remember, we use θ0 to denote the true parameter value. Definition 5.4
implies that Mn(θ̂n) ≥Mn(θ0)− oP (1) and this near maximization will turn
out to be enough to guarantee convergence in probability of θ̂n to θ0.

5.5 Definition (Well-separated maximum). Let M : Θ → R be a nonran-
dom map. If M attains its unique maximum at θ0 and if only θ close to θ0
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Figure 5.1: The upper graph represents a maximum that is not well-
seperated: there are θ not close to θ0 giving values M(θ) close to
M(θ0). For the lower graph this is not the case, therefore we see a well-
separated maximum there. The original and unedited figure can be found
on https://www.wikiwand.com/en/Extremum estimator (accessed on 25-12-
2019).

give values M(θ) close to the maximum M(θ0), that is,

sup
θ∈{θ|d(θ,θ0)≥ε}

M(θ) < M(θ0),

then we say that θ0 is a well-separated maximum of M .

Figure 5.1 gives an illustration of what a well-separated maximum is, and
what is not.

5.6 Theorem. Suppose Mn are random functions of θ and M is a deter-
ministic function of θ. Suppose that for every ε > 0

sup
θ∈Θ
|Mn(θ)−M(θ)| P→ 0;

sup
θ∈{θ|d(θ,θ0)≥ε}

M(θ) < M(θ0).
(5.5)

Then a sequence of estimators θ̂n that nearly maximize Mn converges in prob-
ability to θ0.

Proof. Suppose Mn are random functions and that M is a deterministic
function, and suppose that (5.5) holds for these functions. Additionally we
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assume that θ̂n is a sequence of estimators that nearly maximizes Mn. By
definition 5.4 we have

Mn(θ̂n) ≥ sup
θ∈Θ

Mn(θ)− oP (1)

≥Mn(θ0)− oP (1)

= M(θ0)− oP (1)

The last equality in this equation follows from the first statement of (5.5).
Using the inequality above and the first statement of (5.5) again, we obtain

M(θ0)−M(θ̂n) ≤Mn(θ̂n)−M(θ̂n) + oP (1)

≤ sup
θ∈Θ
|Mn(θ)−M(θ)|+ oP (1)

P→ 0.

Thus we have established that

M(θ0)−M(θ̂n)
P→ 0. (5.6)

It follows from the second statement of (5.5) that if d(θ, θ0) > ε, then
M(θ) < M(θ0)− η for some η > 0. Substituting θ̂n for θ gives us

P(d(θ̂n, θ0) > ε) ≤ P(M(θ̂n) < M(θ0)− η)

= P(M(θ0)−M(θ̂n) > η)→ 0.

The convergence to zero is a consequence of (5.6). We conclude that θ̂n
converges in probability to θ0.

Thus the theorem above states that if there is uniform convergence of
Mn in Θ, and if θ̂n nearly maximizes Mn, and if M has a well-separated
maximum, then θ̂n is consistent.

This theorem only applies in the case where our M-estimator maximizes
a criterion function. A similar theorem holds true in the case where our M-
estimator θ̂n is the zero of some criterion function Ψn(θ). Again, there is a
deterministic function to which our random functions converge in probability;

i.e. Ψn
P→ Ψ. Analogous to the preceding theorem, we might expect that a

sequence of zeros (or near-zeros) of Ψn converge in probability to a zero of
Ψ. Under some restrictions that are much like the ones in theorem 5.6, this
turns out to be the case.

5.7 Theorem. Suppose Ψn are random vector-valued functions of θ and Ψ
is a deterministic vector-valued function of θ such that for every ε > 0

sup
θ∈Θ
||Ψn(θ)−Ψ(θ)|| P→ 0;

inf
θ∈{θ|d(θ,θ0)≥ε}

||Ψ(θ)|| > 0 = ||Ψ(θ0)||.
(5.7)
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Then a sequence of estimators θ̂n with Ψn(θ̂n) = oP (1) converges in proba-
bility to θ0.

Proof. This proof is essentially an application of the previous theorem. Let
Ψn be random vector-valued functions of θ and let Ψ be a deterministic
vector-valued function of θ for which (5.7) holds. Define Mn(θ) = −||Ψn(θ)||
and M(θ) = −||Ψ(θ)||. Then by (5.7) and the reverse triangle inequality we
find

sup
θ∈Θ
||Ψn(θ)−Ψ(θ)|| ≥ sup

θ∈Θ

∣∣||Ψn(θ)|| − ||Ψ(θ)||
∣∣

= sup
θ∈Θ
|Mn(θ)−M(θ)| P→ 0

and also

inf
θ∈{θ|d(θ,θ0)≥ε}

||Ψ(θ)|| = sup
θ∈{θ|d(θ,θ0)≥ε}

−||Ψ(θ)||

= sup
θ∈{θ|d(θ,θ0)≥ε}

M(θ)

< 0

= ||Ψ(θ0)||
= −||Ψ(θ0)||
= M(θ0).

So (5.5) is true for Mn and M . Now, suppose that θ̂n is a sequence of
estimators such that Ψn(θ̂n) = oP (1). Then θ̂n nearly maximizes Mn(θ̂) =

−||Ψn(θ̂n)||. Hence by theorem 5.6 we find that θ̂n
P→ θ0.

Thus, theorems 5.6 and 5.7 can help us in verifying that M-estimators are
consistent and are therefore very useful. The main difficulty is to establish
that the conditions under which we can apply these theorems hold.

The deterministic condition imposed upon M and Ψ is implied by unique-
ness of θ0 as a maximizer of M or a zero of Ψ, if Θ is a compact set and M or
Ψ continuous. This provides a relatively easy way to verify the deterministic
condition.

The stochastic condition, i.e. the uniform convergence imposed upon Mn

and Ψn is equivalent to the set of functions {mθ | θ ∈ Θ} or {ψθ | θ ∈ Θ}
being Glivenko Cantelli. A possible set of sufficient conditions for these
sets of functions to be Glivenko Cantelli is that Θ is compact and that the
functions mθ(x) and ψθ(x) are continuous and dominated by an integrable
function. Further exploration of these sets of functions is beyond the scope
of this thesis, but the reader should be aware of their existence.
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Earlier we mentioned that the condition of uniform convergence is quite
strong and that many weaker alternatives exist. The following lemma is an
instance of one of these weaker alternatives.

5.8 Lemma. Let Θ ⊆ R and let Ψn be random functions of θ such that for

every θ ∈ Θ we have Ψn(θ)
P→ Ψ(θ), where Ψ is a fixed function. If each

function Ψn is nondecreasing and Ψn(θ̂n) = oP (1), and if for every ε > 0 the
point θ0 is such that Ψ(θ0 − ε) < 0 < Ψ(θ0 + ε). Then θ̂n is a consistent
estimator for θ0.

Proof. We suppose that we have Θ, Ψn and Ψ as in the lemma above. We
divide the proof into two cases; the case where Ψn has a unique zero at θ̂n
and the case where θ̂n is near a zero.

(i) We assume that Ψn has a unique zero at θ̂n, then for all θ1 < θ2 with
Ψn(θ1) < 0 < Ψn(θ2), the zero must be between θ1 and θ2, hence θ1 < θ̂n < θ2.
So, for all ε > 0 we have

{Ψn(θ0 − ε) < 0,Ψn(θ0 + ε) > 0} ⊆ {θ0 − ε < θ̂n < θ0 + ε}. (5.8)

It follows from Ψn(θ0−ε)
P→ Ψ(θ0−ε) that P(Ψn(θ0−ε) < 0)→ 1. Similarly,

Ψn(θ0 + ε)
P→ Ψ(θ0 + ε) implies P(Ψn(θ0 + ε) > 0)→ 1. Therefore the prob-

ability of the event on the left in (5.8) converges to one. As a consequence,
the probability of the event on the right has to converge to one as well. We

conclude that θ̂n
P→ θ0, so θ̂n is consistent for θ0.

(ii) Suppose θ̂n is a near zero. We adjust the proof of (i) to include this
case. For every ε, η > 0 we have

{Ψn(θ0 − ε) < −η,Ψn(θ0 + ε) > η}
⊆{θ0 − ε < θ̂n < θ0 + ε} ∪ {Ψn(θ̂n) /∈ [−η, η]}

(5.9)

From Ψn(θ)
P→ Ψ(θ) for all θ it follows that P(Ψn(θ0 − ε) < −η) → 1 and

P(Ψn(θ0 + ε) > η) → 1. Now, if we take η > 0 sufficiently small, then the
left-hand side of (5.9) converges to one. From the assumption that Ψn(θ̂n) =
oP (1) it follows that P(Ψn(θ̂n) /∈ [−η, η]) converges to zero. Consequently,
P(θ0 − ε < θ̂n < θ0 + ε) converges to one and we conclude that θ̂n is a
consistent estimator.

Notice that the lemma above can also be applied if all functions Ψn are
non-increasing, since we can just take the negative of Ψn and Ψ and all
other assumptions would still hold. The following example illustrates how
the theorems and lemma presented in this section can be applied.
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5.9 Example (Sample median). We consider the sample median from ex-
ample 5.3 again. We expect that estimator θ̂n is consistent. The estimator
θ̂n is a zero or near a zero of the function

Ψn(θ) =
1

n

n∑
i=1

sign(Xi − θ). (5.10)

For every θ ∈ Θ we find that

Ψ(θ) = E(sign(X − θ)) = P(X > θ)− P(X < θ)

using the law of large numbers. Since we are setting Ψ to zero, we expect that
θ̂n converges in probability to a point θ0 such that P(X > θ0) = P(X < θ0),
i.e. if θ̂n is consistent it converges in probability to the population median.

Consistency of θ̂n would follow from an application of theorem 5.7, but
verifying that Ψn uniformly converges to Ψ is difficult and therefore we prefer
to apply lemma 5.8. We just saw that the law of large numbers implies
Ψn(θ̂n) = oP (1). We can see that the function Ψn in 5.10 is non-increasing.
If the population median θ0 is unique, which we assumed in 5.3, then for all
ε > 0 we have that

P(X < θ0 − ε) <
1

2
< P(X < θ0 + ε).

From this it follows that Ψ(θ0 − ε) > 0 > Ψ(θ0 + ε). By lemma 5.8 we

conclude that θ̂n
P→ θ0.

5.3 Asymptotic normality

In the previous section we investigated under which conditions a sequence of
estimators θ̂n is consistent. Given consistency of a sequence of estimators, the
next question we ought to ask ourselves is at what rate the difference between
θ̂n and θ0 converges to zero. Quite often this rate is 1√

n
and as a result the

sequence
√
n(θ̂n−θ0) neither diverges nor collapses to zero. Moreover, we are

also interested in whether the sequence
√
n(θ̂n − θ0) converges to a normal

distribution or not, i.e. whether the sequence
√
n(θ̂n − θ0) is asymptotically

normal. In this section we will attempt to answer both of these questions
with regard to M-estimators.

There are many different sets of conditions we do not mention in this
section which also yield asymptotic normality. The purpose of this section
is to give the reader an impression of what some of these sets of conditions
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look like and how they can be used to establish asymptotic normality. Thus
contrary to our treatment in previous chapters and sections we will not be
able to prove all theorems we posit, nor will we prove every claim we make.

Instead of an arbitrary metric we will only consider the Euclidean metric
d in this chapter. Furthermore, we let Θ be an open subset of a Euclidean
space throughout this section.

In definition 5.1 we characterised M-estimators in two different ways: as
maximum of a function Mn and as zero of some function Ψn. In our treatment
of asymptotic normality of M-estimators we will mostly work with the latter
characterization. This choice might weaken our results in some instances,
because the characterization as a maximum is sometimes more fundamental
than the characterization as a zero, as we saw in example 5.2. However, the
consequences of this choice are minimal and should not be a problem.

Throughout the remainder of this chapter we will suppose that we have
an i.i.d. sample from some distribution pθ.

Remember that definition 5.1 stated that

Ψn(θ) =
1

n

n∑
i=1

ψθ(Xi)

and that by the law of large numbers Ψ(θ) = E(ψθ(Xi)), such that the zeros
θ̂n of Ψn converge to the zero θ0 of Ψ. θ̂n First, we only consider the situation
where the parameter of interest θ is one-dimensional. We obtain the following
theorem.

5.10 Theorem. Suppose that the function ψθ(x) is twice continuously dif-
ferentiable in some neighborhood B of θ0. For every θ ∈ B and every fixed
x, suppose the derivatives ψ′θ(x) and ψ

′′

θ (x) are such that |ψ′′

θ (x)| ≤ ψ
′′
(x)

for a function ψ
′′

with E(ψ
′′
(Xi)) < ∞. Also suppose that E(ψ2

θ0
(Xi)),

E(|ψ′θ0(Xi)|) < ∞ and E(ψ′θ0(Xi)) 6= 0. If θ̂n are zeros of Ψn that are con-
sistent for a zero θ0 of Ψ, then

√
n(θ̂n − θ0)

d→ N

(
0,

E(ψ2
θ0

(Xi))

E(ψ′θ0(Xi))2

)
.

In order to prove this theorem we need the following lemma, which we
will prove before giving a proof of theorem 5.10.

5.11 Lemma. Under the same assumptions as in theorem 5.10, and if θ̂n
are zeros of Ψn that are consistent for a zero θ0 of Ψ, then the following
statements are true:
(i)
√
nΨn(θ0)

d→ N
(
0,E(ψ2

θ0
(Xi))

)
;
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(ii) Ψ′n(θ0)
P→ E(ψ′θ0(Xi));

(iii) Ψ′′n(θ̃n) = Op(1), where θ̃n denotes a point between θ̂n and θ0 for each
n ∈ N.

Proof. We make the same assumptions as in theorem 5.10 and prove each
statement.

(i) Because

√
nΨn(θ0) =

√
n

(
1

n

n∑
i=1

ψθ0(Xi)

)
=

1√
n

n∑
i=1

ψθ0(Xi)

and E(ψθ0(Xi)) = 0, application of the central limit theorem yields
√
n(Ψn(θ0))

d→
N(0,E(ψ2

θ0
(Xi))).

(ii) We can write Ψ′n(θ0) = 1
n

∑n
i=1 ψ

′
θ0

(Xi), so Ψ′n(θ0) is essentially an
average of all ψ′θ0(Xi). This enables us to apply the law of large numbers, by

which we obtain our desired result Ψ′n(θ0)
P→ E(ψ′θ0(Xi)).

(iii) As in (ii), Ψ
′′
n(θ̃n) = 1

n

∑n
i=1 ψ

′′

θ̃n
(Xi) is an average of all ψ

′′

θ̃n
(Xi).

Our result would immediately follow from the law of large numbers, but
the terms ψ

′′

θ̃n
(Xi) are dependent through θ̃n = θ̃n(X1, . . . , Xn), therefore we

cannot simply apply the law of large numbers.

We define the event An = {θ̃n ∈ B} for all n ∈ N. By assumption An
happens with probability tending to one. By the triangle inequality and our
assumptions we have

|Ψ′′

n(θ̃n)| ≤ 1

n

n∑
i=1

|ψ′′

θ̃n
(Xi)| ≤

1

n

n∑
i=1

ψ
′′
(Xi).

Now, we can apply the law of large numbers to 1
n

∑n
i=1 ψ

′′
(Xi), since there

is no dependency between the different terms. This yields 1
n

∑n
i=1 ψ

′′
(Xi)

P→
E(ψ

′′
(Xi)) <∞. By theorem 3.15 (ii) and Prokhorov’s theorem the sequence∑n

i=1 ψ
′′
(Xi) is uniformly tight. For M ∈ R we find that

P
(
|Ψ′′

n(θ̃n) > M
)
≤ P

(
1

n

n∑
i=1

ψ
′′
(Xi) > M

)
+ P(ACn )

By assumption P(ACn ) converges to zero and by uniform tightness we have
an M ∈ R for every ε > 0 such that P( 1

n

∑n
i=1 ψ

′′
(Xi) > M) < ε. Hence

P(|Ψ′′
n(θ̃n)| > M) < ε as well, and thus Ψ

′′
n(θ̃n) = OP (1).
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Proof (of theorem 5.10). We assume the antecedents of the theorem. Addi-
tionally assume that θ̂n are zeros of Ψn that are consistent for a zero θ0 of Ψ.
This means that θ̂n → θ0 and therefore it is reasonable to construct a Taylor
expansion of Ψn(θ̂n) around θ0. Let θ̃n be a point between θ̂n and θ0, then

0 = Ψn(θ̂n) = Ψn(θ0) + (θ̂n − θ0)Ψ′n(θ0) +
1

2
(θ̂n − θ0)2Ψ

′′

n(θ̃n).

We rewrite this equation in order to get an expression for
√
n(θ̂n − θ0), first

we write

−Ψn(θ0) = (θ̂n − θ0)

(
Ψ′n(θ0) +

1

2
(θ̂n − θ0)Ψ

′′

n(θ̂n)

)
which leads to

(θ̂n − θ0) =
−Ψn(θ0)

Ψ′n(θ0) + 1
2
(θ̂n − θ0)Ψ′′

n(θ̂n)
.

Now, multiplying by
√
n gives us

√
n(θ̂n − θ0) =

−
√
nΨn(θ0)

Ψ′n(θ0) + 1
2
(θ̂n − θ0)Ψ′′

n(θ̂n)
. (5.11)

By lemma 5.11 we have Ψ
′′
n(θ̃n) = Op(1) and by assumption we have θ̂n

P→ θ0.
Combining these gives us

1

2
(θ̂n − θ0)Ψ

′′

n(θ̃n) = oP (1)OP (1) = oP (1)

by lemma 3.20 (iv).
We consider the denominator of (5.11), the left term converges in proba-

bility to E(ψ′θ0(Xi)) and the right term converges to zero in probability. By
Slutsky’s lemma (i) we conclude that the denominator converges to E(ψ′θ0(Xi))
in distribution. The numerator of (5.11) converges in distribution to

N(0,E(ψ2
θ0

(Xi))).

Note that E(|ψ′θ0(Xi)|) < ∞ and E(ψ′θ0(Xi)) 6= 0 by assumption. Now,
application of (iii) from Slutsky’s lemma yields the desired result

√
n(θ̂n − θ0)

d→ N

(
0,

E(ψ2
θ0

(Xi))

E(ψ′θ0(Xi))2

)
.
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Theorem 5.10 can easily be generalized to higher-dimensional θ. Suppose
that the parameter of interest θ is k-dimensional. Instead of a single esti-
mating equation, we would have k estimating equations. Remember that the
estimating equations are given by (5.1), which can be found in definition 5.1.
Or equivalently by (5.2), which can be found right underneath definition 5.1.
Then Ψn : Rk → Rk and the sequence of derivatives Ψ′n(θ0) consists of square
matrices of dimension k that converge to the matrix E(ψ′θ0(Xi)), which we
assume to be invertible. The entries of this matrix are given by

E(ψ′θ0(Xi))i,j = E

(
∂

∂θj
ψθ0,i(Xi)

)
.

With the exception of replacing ordinary multiplication with matrix multi-
plication and division multiplication with taking the inverse the proof would
remain the same. So Theorem 5.10 is also true for higher-dimensional θ.
Thus in the k-dimensional case we would obtain
√
n(θ̂n − θ0)

d→ Nk

(
0,
(
E
(
ψ′θ0(Xi)

))−1
E
(
ψθ0(Xi)ψ

T
θ0

(Xi)
) (

E
(
ψ′Tθ0 (Xi)

))−1
)

when applying Theorem 5.10.
If we are able to verify that all the conditions are met, Theorem 5.10 gives

us a desirable result. However, not all the assumptions in the theorem are
easy to verify or very common properties. The strongest condition required
by the theorem is that uniformly for all θ in a neighborhood B of θ0, the
function ψ

′′

θ (x) can be bounded from above by some integrable function ψ
′′
.

Firstly, we should observe that the double prime in ψ
′′

is only used to make
clear that this function is connected to the second derivative ψ

′′

θ (x), thus it
does not signify that it is a second derivative of some function ψ. Secondly,
we take a look at how we could find such an integrable function ψ

′′
. The

most obvious choice is ψ
′′

= supθ∈B |ψ
′′

θ0
|. Since for this function we have

sup
θ∈B

E(|ψ′′

θ0
(Xi)|) ≤ E

(
sup
θ∈B
|ψ′′

θ (Xi)|
)
, (5.12)

and thus gives us a desirable result. However, we still require E
(
ψ

′′
(Xi)

)
<

∞. Quite often it is hard to determine the exact value of the expression on
the right-hand side in (5.12). In these cases we are better off by bounding it
with some simpler expression to ensure that E

(
ψ

′′
(Xi)

)
<∞.

5.12 Example (Cauchy likelihood). Let us have some i.i.d. sample from
a Cauchy distribution with location θ ∈ Θ. We consider the log likelihood
function

θ 7→Mn(θ) = − 1

n

n∑
i=1

log(1 + (xi − θ)2).
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The maximum likelihood estimator θ̂n will then be a zero of the function
Ψn(θ) = 1

n

∑n
i=1 ψθ(Xi), where

ψθ(x) =
x− θ

1 + (x− θ)2
.

Alternatively, we could say that ψθ(x) = ψ(x− θ) for

ψ(x) =
x

1 + x2

The first two derivatives of ψ are

ψ′(x) =
1− x2

(1 + x2)2
and ψ

′′
(x) =

8x3

(1 + x2)3
− 6x

(1 + x2)2
,

which are both continuous and have limit zero at ±∞. This implies that
there is a constant L > 0 such that

|ψ(x)|, |ψ′(x)|, |ψ′′
(x)| ≤ L for all x ∈ R,

hence these function are uniformly bounded. This means that

E
(
ψ

′′
(Xi)

)
,E
(
ψ2
θ0

(Xi)
)
,E
(
ψ′θ0(Xi)

)
<∞.

Now, if additionally E
(
ψ′θ0(Xi)

)
6= 0 then all conditions in Theorem 5.10 are

satisfied. If this is the case, then for any θ̂n that is consistent for a zero θ0 of
Ψ(θ) the sequence

√
n(θ̂n − θ0) is asymptotically normal.

Another condition of Theorem 5.10 that is often problematic is that ψθ(x)
is required to be twice continuously differentiable. An instance where this
leads to problems is the function ψθ(x) = sign(x− θ) from Example 5.3 and
Example 5.9, which gives the sample median. This function is clearly not
twice continuously differentiable and thus theorem 5.10 cannot be applied.
However, the M-estimator corresponding to the function ψθ(x) is asymptot-
ically normal. For many M-estimators this is the case: Theorem 5.10 is not
applicable but they are asymptotically normal. Thus we are forced to develop
other methods of establishing asymptotic normality. The following theorem
is an alternative of Theorem 5.10 and assumes less than one derivative.

5.13 Theorem. Let θ ∈ Θ and let B be a neighborhood of θ0. Let ψθ(x) be
a vector-valued function such that for all θ1, θ2 ∈ B and for some function
ψ′ with E (ψ′2(Xi)) <∞ we have

||ψθ1(x)− ψθ2(x)|| ≤ ψ′(x)||θ1 − θ2||. (5.13)
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Furthermore, let E (||ψθ0(Xi)||2) < ∞ and let the map θ 7→ E (ψθ(Xi)) be
differentiable at a zero θ0 with nonsingular derivative matrix Vθ0.

If
1

n

n∑
i=1

ψθ̂n(Xi) = oP

(
1√
n

)
and θ̂n

P→ θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ψθ0(Xi) + oP (1).

Moreover, the sequence
√
n(θ̂n− θ0) is asymptotically normal with mean zero

and covariance matrix

V −1
θ0

E
(
ψθ0(Xi)(ψθ0(Xi))

T
)

(V −1
θ0

)T .

Proof. For a proof, see [6], Theorem 5.21, p.52-53.

We illustrate the use of the theorem above by giving an example.

5.14 Example (Huber estimator). We consider the Huber function (5.4)
from Example 5.3. It is clear that this function ψ(x) is differentiable for all x
except at x = ±k, since the left and right derivatives differ from each other
in these points. Therefore the function θ 7→ ψθ(x) = ψ(x − θ) with ψ the
Huber function is differentiable at all θ except θ = x ± k. Notice that the
derivative of this function is either equal to one or equal to zero. It follows
that

|ψ(x− θ1)− ψ(x− θ2)| ≤ |θ1 − θ2|
for every pair θ1, θ2 ∈ Θ. We conclude that ψ is Lipschitz with Lipschitz
constant ψ′(x) = 1.

We assume that the corresponding probability measure P on R has a
density function p that is differentiable with respect to θ with nonsingular
derive matrix Vθ =

∫
ψ(x)p′(x + θ)dx. We observe that for the density p

corresponding to the probability measure P we have

E (ψθ(Xi)) =

∫
ψ(x− θ)p(x)dx =

∫
ψ(x)p(x+ θ)dx.

Now all the conditions of Theorem 5.13 are satisfied, hence we conclude
that the sequence

√
n(θ̂n− θ0) is asymptotically normal with mean zero and

covariance matrix

V −1
θ0

E
(
ψθ0(Xi)(ψθ0(Xi))

T
)

(V −1
θ0

)T .
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Theorem 5.13 is better applicable than Theorem 5.10 while still being
relatively simple. However, the asymptotic normality of the sample median
still cannot be proven, since the Lipschitz condition in (5.13) does not hold
for the function θ 7→ sign(x− θ). So the conditions in Theorem 5.13 are still
stronger than necessary. Motivated by finding a suitable method of proving
the asymptotic normality of the sample median we will state another theo-
rem. The following theorem is based on the characterization of M-estimators
as maximizers of Mn. It is very similar to the previous theorem, but it
includes the sample median.

5.15 Theorem. Let B be a neighborhood of θ0 and let mθ(x) be a function
for all θ ∈ Θ such that θ 7→ mθ(x) is differentiable at θ0 for almost every
x, with derivative m′θ0(x). Furthermore, let m′(x) be a measurable function
with E (m′2(Xi)) <∞ such that for all θ1, θ2 ∈ B

|mθ1(x)−mθ2(x)| ≤ m′(x)||θ1 − θ2||.

Moreover, suppose that the map θ 7→ E (mθ(Xi)) admits a second-order Tay-
lor expansion at a point of maximum θ0 with nonsingular symmetric second
derivative matrix Vθ0. If

1

n

n∑
i=1

mθ̂n
(Xi) ≥ sup

θ∈Θ

1

n

n∑
i=1

mθ(Xi)− oP
(

1

n

)

and θ̂n
P→ θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

m′θ0(Xi) + oP (1).

Moreover, the sequence
√
n(θ̂n− θ0) is asymptotically normal with mean zero

and covariance matrix

V −1
θ0

E
(
m′θ0(Xi)(mθ0(Xi))

T
)
V −1
θ0
.

Proof. For a proof, see [6], Theorem 5.23, p.54.

Equipped with the theorem above we could prove that the sample median
is asymptotically normal. However, proving asymptotic normality with the
theorems above is rather tedious as we have seen in Example 5.12 and Exam-
ple 5.14. Furthermore, the proof of the asymptotic normality of the sample
median is very much alike these examples in spirit. Therefore we omit its
proof.
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5.4 Maximum Likelihood Estimators

Most of the subjects we treated thus far have been leading us towards the
maximum likelihood estimator. In some sense, this section is the theoretical
pinnacle of this thesis. Yet we do not really introduce any complex new
matter here, we merely narrow the very general theorems from the previous
sections down to the maximum likelihood estimator. The reason for this is
that the maximum likelihood estimator is very important and therefore we
ought to treat it comprehensively. This estimator is of grave importance due
to its frequent application: it is popular in both parametric statistics as well
as non-parametric statistics. We will look at both the consistency and the
asymptotic normality of the maximum likelihood estimator.

Let X1, . . . , Xn be a random sample from some density pθ. Earlier, in
example 5.2 we stated that the criterion function of a maximum likelihood
estimator is equal to

Mn(θ) =
1

n

n∑
i=1

log(pθ(Xi)), (5.14)

it will turn out to be convenient to subtract the constant
∑n

i=1 log(pθ0(Xi))
from this criterion function, which yields

Mn(θ) =
1

n

n∑
i=1

log

(
pθ(Xi)

pθ0(Xi)

)
. (5.15)

We should observe that subtraction of a constant does not affect the max-
imum of a function, hence the maxima of (5.14) and (5.15) are equivalent.
We let log(0) = −∞, this ensures that (5.15) is well-defined provided pθ0
is the true density. The asymptotic function to which Mn(θ) converges in
probability is

M(θ) = Eθ0

(
log

(
pθ(X)

pθ0(X)

))
by the law of large numbers. The number −M(θ) is called the Kullback-
Leibler divergence of pθ and pθ0 . The minus is introduced because the
Kullback-Leibler was first defined as

Eθ0

(
log

(
pθ0(X)

pθ(X)

))
,

interchanging the numerator and the denominator requires the introduction
of the minus sign in order to keep both expectations equal. We can consider
the Kullback-Leibler divergence as a measure of how different pθ is from pθ0 .
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We can also consider it as a measure of distance between two distributions,
but this only works intuitively since the Kullback-Leibler divergence does not
have all the properties of a metric.

Remember that in the section about consistency we established that the
maximum of Mn(θ) converges to the maximum of M(θ) under suitable con-
ditions. So, we expect that the maximum of Mn(θ) converges to the maxi-
mum of M(θ) for maximum likelihood estimators as well. If we consider the
Kullback-Leibler divergence −M(θ) as a distance between two distributions,
then the maximum of M(θ) minimizes the distance between pθ0 and pθ. The
upcoming lemma will prove this and will also show that this maximum is
unique if the true density pθ0 is identifiable.

5.16 Definition (Identifiability). A true density pθ0 is identifiable if pθ 6= pθ0
for all θ 6= θ0.

In other words, the true density is identifiable within a parametric model
if there is exactly one distribution in that model having a density equal
to pθ0 , namely the distribution corresponding to θ0 itself. Identifiability of
the parameter is necessary: if the true parameter is not identifiable then a
consistent estimator cannot exist for it. We arrive at the following lemma.

5.17 Lemma. Let P = {pθ | θ ∈ Θ} be a parametric model in which the
true parameter θ0 is identifiable.

M(θ) = Eθ0

(
log

(
pθ
pθ0

(X)

))
has a unique maximum at θ0.

Proof. We observe that

M(θ0) = Eθ0

(
log

(
pθ0
pθ0

(X)

))
= Eθ0 (log(1)) = 0.

Therefore θ0 is the unique maximum whenever M(θ) < 0 for all θ ∈ Θ with
θ 6= θ0.

We know that for all x ≥ 0 the inequality log(x) ≤ x−1 holds. This means
that log(

√
x) ≤

√
x−1 as well, from which we deduce that log(x) ≤ 2(

√
x−1).

Thus we also know that

Eθ0

(
log

(
pθ
pθ0

(X)

))
≤ 2Eθ0

(√
pθ
pθ0

(X)− 1

)
. (5.16)
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For the term on the right-hand side of the inequality above we find

2Eθ0

(√
pθ
pθ0

(X)− 1

)
= 2Eθ0

(√
pθ −

√
pθ0√

pθ0

)
= 2

(∫
pθ0(x)

√
pθ(x)−

√
pθ0(x)√

pθ0(x)
dx

)

= 2

(∫ √
pθ(x)pθ0(x)−

√
pθ0(x)

2
dx

)
= 2

(∫ √
pθ(x)pθ0(x)dx− 1

)
= −

(
2−

∫
2
√
pθ(x)pθ0dx

)
= −

∫ √
pθ(x)

2
+
√
pθ0(x)

2
− 2
√
pθ(x)pθ0(x)dx

= −
∫ (√

pθ(x)−
√
pθ0(x)

)2

dx.

(5.17)

Observe that the integral at the bottom of the display above is strictly neg-
ative for θ 6= θ0, because by assumption pθ 6= pθ0 for all θ 6= θ0. Combining
(5.16) and (5.16) gives us

Eθ0

(
log

(
pθ
pθ0

(X)

))
≤ −

∫ (√
pθ(x)−

√
pθ0(x)

)2

dx < 0 if θ 6= θ0.

We conclude that θ0 is the unique maximum.

Furthermore, we conclude that under the same regularity conditions as in
section 5.2 the maximum likelihood estimator is consistent for any identifiable
θ0.

5.18 Example (Misspecified model). This example is an extension of Section
4.2. Suppose we have a sample X1, . . . , Xn and suppose we have a parametric
model P = {pθ|θ ∈ Θ}. We would like to estimate θ to find the underlying
distribution from which we sampled. However, suppose that this underlying
distribution pθ0 is not included in the parametric model, i.e. there is no θ ∈ Θ
such that pθ is the underlying distribution. We are interested in what would
happen if we estimate θ by maximizing the log likelihood

∑n
i=1 log(pθ(Xi)).

We might expect that θ̂n is unpredictable and behaves in an erratic way.
However, the opposite is true. Assuming that θ̂n satisfies the conditions to
be consistent, we expect that θ̂n converges to a value θ0 ∈ Θ, which is the
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maximum of the function θ → E(log(pθ(Xi))). Note that the expectation is
taken under the true underlying distribution. We find that θ0 maximizes the
Kullback-Leibler divergence

−M(θ) = −Eθ0

(
log

(
pθ(X)

pθ0(X)

))
that we discussed earlier in this section. We also mentioned that we could
consider the Kullback-Leibler divergence as a measure of distance in some
sense. Hence we can intuitively think about pθ0 as a projection of the true
underlying distribution onto our parametric model P . However, we should
always remember that the Kullback-Leibler divergence is not a metric and
for that reason pθ0 is not really a projection.

Under appropriate circumstances the sequence
√
n(θ̂n − θ0) is asymptot-

ically normal as well.
We might ask what the practical value is of the estimator θ̂n when the

underlying distribution is not included in the parametric model we assume.
The answer to this question differs depending on the situation. If the para-
metric model comes close to the truth, θ̂n may be a valuable estimator.
Conversely, if, for instance, we let P be the family of uniform distributions
and our true underlying distribution is an exponential distribution, then θ̂n
may not be of any help. Besides the “distance” between pθ0 and the true
underlying distribution p one should also consider the context in which one
is estimating.

Next, we shall take a look at the asymptotic normality of the maximum
likelihood estimator. We start of with an informal treatment and subse-
quently we will formally state a theorem. However, as in the previous sec-
tion, we lack the means to give a formal proof of the theorem we present,
therefore we omit the proof.

We assume suitable regularity of our criterion function. As we saw earlier
in Example 5.2, the maximum likelihood estimator solves the set of equations

∂

∂θ

n∑
i=1

log (pθ(Xi)) = 0

Remember that in Example 5.2 we set ψθ,j equal to `′θ,j(x) = ∂
∂θj

log(pθ(x)).

The results of the theorems in the previous section makes us expect that√
n(θ̂n − θ) is asymptotically normal with mean zero and covariance matrix(

E(`
′′

θ0
(Xi))

)−1

E
(
`′θ0(Xi)`

′T
θ0

(Xi)
) (

E(`
′′T
θ0

(Xi))
)−1

. (5.18)
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When comparing the covariance matrix above with the higher-dimensional
version of Theorem 5.10 we see that the display above has second derivatives
where the result of Theorem 5.10 has first derivatives. Furthermore, (5.18)
has first derivatives where our earlier result just contained the function. This
is a consequence of the equality ψθ,j(x) = `′θ,j(x), which we defined in example
5.2.

If we make a few additional assumptions it turns out that the covariance
matrix (5.18) reduces to the Fisher information matrix

Iθ0 = E
(
`′θ0(Xi)`

′T
θ0

(Xi)
)
.

We explicate the reason for this in the one-dimensional case. We differen-
tiate

∫
pθ(x)dµ(x) = 1 twice with respect to θ. Suppose that the order of

integration and differentiation can be reversed, we then find
∫
p′θ(x)dµ(x) =∫

p
′′

θ (x)dµ(x) = 0. Combining this with

`′θ(x) =
p′θ(x)

pθ(x)
and `

′′

θ (x) =
p
′′

θ (x)

pθ(x)
−
(
p′θ(x)

pθ(x)

)2

gives us E (`′θ(Xi)) = 0 and E
(
`
′′

θ (Xi)
)

= −Iθ. This means that the curvature
of the likelihood is equal to minus the Fisher information Iθ. Substituting
these identities into (5.18) reduces the covariance matrix to I−1

θ .
In the higher-dimensional case this result follows in a similar way, where

we should interpret E (`′θ(Xi)) and E
(
`
′′

θ (Xi)
)

as a vector and a matrix re-
spectively.

So, maximum likelihood estimators satisfy

√
n(θ̂n − θ0)

d→ N

(
0,

1

Iθ0

)
(5.19)

under suitable regularity conditions. In light of the Cramér-Rao inequality
(Theorem 2.16) this result is very important. It implies that for large n the
estimator θ̂n has distribution

N

(
θ0,

1

nIθ0

)
.

In other words, θ̂n is asymptotically unbiased and has asymptotic variance
(nIθ0)

−1. The Cramér-Rao theorem states that the variance of an unbiased
estimator is at least (nIθ0)

−1, which is the Cramér-Rao bound. Hence (5.19)
seems to imply that the maximum likelihood estimator is asymptotically
the most efficient unbiased estimator we can obtain. However, we must be
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sceptical towards this conclusion. The reasoning above is not mathemati-
cally rigorous and the conclusion therefore cannot be simply accepted. We
lack a proper asymptotic version of the Cramér-Rao theorem and hence the
Cramér-Rao bound is useless when considering asymptotic normality. Yet
the conclusion that maximum likelihood estimators are asymptotically effi-
cient is true, we simply lack the means to prove this formally. The reasoning
above merely serves to give the reader a basic notion of why the maximum
likelihood estimator is asymptotically efficient.

At the end of this section we formally state a theorem containing a set
of conditions for asymptotic efficiency. We will see that the conditions for
asymptotic efficiency presented in the reasoning above can even be relaxed
in some respects. For instance, the restriction of two derivatives for pθ can
be relaxed to weaker regularity conditions.

Another reason why we should be cautious when claiming asymptotic
efficiency for maximum likelihood estimators is that for some frequently oc-
curring distributions, like the uniform distribution, this is not the case. The
example below illustrates this fact.

5.19 Example. Suppose we have a uniform distribution on [0, θ] from which
we obtain a sample X1, . . . , Xn. The maximum likelihood estimator is given
by θ̂n = max{X1, . . . , Xn}. The variance of the sequence of estimators θ̂n is
of order O(n−2), hence the norming rate is not

√
n, but n. The distribution

of θ̂n is given by

Fθ̂n(x) =


0 if x ≤ 0(x
θ

)n
if 0 < x < θ

1 if x ≥ θ

For all x < 0 we find

Pθ0
(
−n(θ̂n − θ0) ≤ x

)
= Pθ0

(
θ̂n ≥ −

x

n
+ θ0

)
= 1− Pθ0

(
θ̂n ≤ θ0 −

x

n

)
= 1− (1− x/θ0

n
)n → 1− e−

1
θ0
x
,

which means that −n(θ̂n − θ0) converges in distribution to an exponential
distribution with parameter θ0. As a consequence, the sequence

√
n(θ̂n− θ0)

converges to zero in probability. Hence the conclusions we informally inferred
are not true for the uniform distribution with parameter [0, θ].

We should observe that a lot of the operations used in the informal infer-
ence are not possible on the uniform distribution, so this conclusion should
not come as a surprise.
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The following theorem concludes this chapter and makes the informal
treatment of the asymptotic normality of the maximum likelihood estimator
rigorous. The theorem follows from theorem 5.15, or from theorem 5.13 by
setting `′θ = ψθ as we did earlier. However, the following theorem only applies
to maximum likelihood estimators, and not to M-estimators in general. As
we mentioned earlier, regularity conditions can be less restrictive: we do not
require a second derivative. Nevertheless, the following theorem somehow
guarantees that E

(
`
′′

θ (Xi)
)

= −Iθ without assuming second derivatives.

5.20 Theorem. Let P = {pθ | θ ∈ Θ} be a parametric model with Θ ∈ Rk

open. Let B ⊆ Θ be a neighborhood of θ0. Suppose pθ(x) is a probability
density function such that θ 7→ log(pθ(x)) is continuously differentiable for
every x and such that for all θ1, θ2 ∈ B we have the inequality

| log(pθ1(x))− log(pθ2(x))| ≤ `′(x)||θ1 − θ2||,

where `′ is a function satisfying Eθ0 (`′2(Xi)) < ∞. Additionally, assume
that the fisher information matrix Iθ = Eθ

(
`′θ(Xi)`

′T
θ (Xi)

)
is nonsingular

and continuous on Θ. Then for the maximum likelihood estimator θ̂n that is
consistent the sequence

√
n(θ̂n− θ0) is asymptotically normal with mean zero

and covariance matrix I−1
θ0

.

Proof. For a proof, see [6], Theorem 5.39, p.39.



Chapter 6

Simulations

In this chapter we study how well the results presented in this thesis can
be applied in actual statistical research. We will do some simulations and
compare the outcomes to what we would expect in light of the theoretical
results we obtained in previous chapters. We will do four different simula-
tions. Firstly, we will simulate a moment estimator and study how fast it
converges to the actual parameter. In the second simulation we will consider
a maximum likelihood estimator θ̂n and investigate for what sample size the
sequence

√
n(θ̂n − θ0) starts tending to a normal distribution. The third

section focusses on the asymptotic normality of the sample median. In the
final section we will focus on a parametric model that does not contain the
distribution from which we sample and look at what happens when we start
estimating its parameter. The codes used for our simulations can be found
in Appendix B.

6.1 Moment estimator of Gamma distribu-

tion

We consider the moment estimator for the Gamma distribution with param-
eter θ = (α, β). In example 4.4 we found that the moment estimator of θ is
given by

θ̂n =

(
Xn

2

X2
n −Xn

2 ,
Xn

X2
n −Xn

2

)
.

This estimator does not meet the conditions of theorem 4.10, hence we do
not expect our estimator to be asymptotically normal. However, we are not
interested in the normality of our estimator for large samples, but in how
accurate the estimate is for different sample sizes.

65
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We let θ = (α, β) = (7, 2) and simulate the parameter estimates for α
and β for different sample sizes n. The figures below contain the results.

Figure 6.1: Estimates for α for different sample sizes.

We should note that the range of the vertical axis in the plot of the
estimate of α is much greater than in the plot of the estimator of β. Hence
the values of the estimates for α are much more scattered, therefore the
estimate of β seems to be more accurate than the estimate of α. However,
for sufficiently large n, say n > 1000, the estimates of α and β are both very
close to the actual value. A sample of this size is often easy to obtain given
the modern techniques at our disposal for collecting data.

Even though the theoretical framework in which we develop our methods
supposes a sample size that tends to infinity, we can see that the developed
methods can already be useful for relatively small sample sizes of n = 1000.

We should be very cautious when interpreting the figures above. In this
particular case n > 1000 might be a sufficiently large sample size, but this is
not necessarily true for moment estimators from every other possible distribu-
tion. Moreover, it might not even be the case for other Gamma distributions.
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Figure 6.2: Estimates for β for different sample sizes.

Maybe some possible parameters θ cause bigger fluctuations in the estimates,
demanding a bigger sample size to obtain a reliable estimate. We investigate
this by doing another similar simulation, but now for θ = (α, β) = (3, 5).
The results are shown in Figure 6.3 and Figure 6.4.

We can see that the rate of convergence of the estimator for α in Figure
6.3 is very similar to the estimator in Figure 6.1 if we take the different
scales of the vertical axis into account. For the second simulation a sample
size of n > 1000 seems to be large enough to ensure a reliable estimate of α.
However, for the estimate of β in Figure 6.4 we see that for some n > 1000 the
estimate is not as close to the actual value as for the other three estimates.
This is not surprising since the estimates for β in Figure 6.4 are also more
scattered than all the other estimates. An explanation for this is that the
shape of the density of the Gamma(3,5) distribution is very different from
that of the Gamma(7,2) distribution, as can be seen in Figure 6.5. As a
result, a sample from the Gamma(3,5) probably has a greater variance than
a sample from the Gamma(7,2) distribution.

Nonetheless, for n > 1000 we still have an estimate for β that would be



68 CHAPTER 6. SIMULATIONS

Figure 6.3: Estimates for α for different sample sizes.

sufficiently accurate for most applications. Furthermore, for larger n such as
n > 5000 the estimate seems to be as reliable as all the other estimates. So
consistency still holds, but we must conclude that the parameter values influ-
ence the number of samples needed before obtaining a reliable estimate. We
should always keep this in mind. Because contrary to the discussion above,
when doing actual statistical research we do not know the actual distribu-
tion from which we are sampling. Hence we cannot determine beforehand
how large a sample size should be. So the example given here merely serves
to demonstrate that it might be possible that a sample size of n = 1000 is
sufficiently large to reap the benefits of asymptotic statistics. In practice, we
should always remain cautious when assuming that n is sufficiently large.
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Figure 6.4: Estimates for β for different sample sizes.

Figure 6.5: Comparison of the densities of the Gamma(7,2) distribution and
the Gamma(3,5) distribution.
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6.2 Asymptotic normality of the maximum

likelihood estimator

In this section we will consider an exponential distribution with parameter θ
and the maximum likelihood estimator θ̂n. Given the results of Section 5.4
we expect that for large n the distribution of

√
n(θ̂n − θ0) tends to a normal

distribution

N

(
0,

1

Iθ0

)
.

Note that we expect this because the density function of the exponential
distribution is smooth and complies with the regularity conditions described
earlier in Section 5.4. Remember that Iθ0 denotes the Fisher information
of the random variable having an exponential distribution with θ0 as its
parameter.

Given an exponential distribution with parameter θ and a sample of size
n, the likelihood function is given by

L(θ | X1, . . . , Xn) =
n∏
i=1

θe−θXi

= θne−θ
∑n
i=1Xi .

Then the log-likelihood equals

l(θ | X1, . . . , Xn) = nlog(θ)− θ
n∑
i=1

Xi.

Differentiating the log-likelihood and setting it equal to zero gives us

0 =
n

θ
−

n∑
i=1

Xi,

from which the maximum likelihood estimator easily follows:

θ̂n =
n∑n
i=1Xi

.

Next, we compute the Fisher information of an exponentially distributed
random variable. The score of the random variable is equal to

d

dθ
log
(
θe−θx

)
=

d

dθ
(log(θ)− θx)

=
1

θ
− x



6.2. ASYMPTOTIC NORMALITY OF THEMAXIMUMLIKELIHOOD ESTIMATOR71

Since the exponential distribution is sufficiently regular, we know that

I(θ) = Eθ

(
(
1

θ
− x)2

)
= E

(
(1− xθ)2

θ2

)
=

1

θ2
.

Thus we have found the Fisher information.
Now, suppose we set θ0 = 2, so that we are sampling from an exponential

distribution with rate 2. Then

Iθ0 =
1

22
=

1

4
,

from which it follows that
1

Iθ0
= 4.

So, using the results that we computed above, we expect that

√
n

(
n∑n
i=1 Xi

− 2

)
d→ N(0, 4). (6.1)

We simulate the distribution on the left-hand side of (6.1) for different
sample sizes n. Figure 6.3 displays the results. The histogram represents
the simulated distribution for each sample size, while the red line represents
the normal distribution N(0, 4). As we can see, for n = 5 the histogram
does not resemble the normal distribution N(0, 4) at all: it is asymmetric
and the shape of the histogram does not correspond to that of the normal
distribution. However, a sample size of 5 is almost always too low to do any
sensible statistical analysis. We have merely included n = 5 to illustrate
our point. Looking at the next plot we see that for n = 20 the histogram
resembles the normal distribution a lot more, but still it is asymmetric and
its values do not correspond very well to the red line. For n = 50, which still
is a relatively low sample size, we see that the histogram starts resembling
a normal distribution, even though it still is a bit asymmetric and the left
side does not correspond to the red line very well. Lastly, for a much larger
sample size such as n = 10000, we see that the histogram has become almost
completely symmetric and has the same shape as the normal distribution
N(0, 4). This confirms our expectation that (6.1) holds.

A few comments should be made. The histogram of n = 10000 is not very
different from the histogram of n = 50, while the histogram of n = 50 differs
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Figure 6.6: Comparison between the distribution of
√
n(θ̂n−θ0) and N(0, Iθ0)

for different sample sizes n.

a lot from those of n = 5 and n = 20. So we see that at first the distribution
tends to a normal distribution relatively fast, but a much larger sample size
is needed before it closely resembles one. Nonetheless, if the context does not
require a lot of accuracy we can use relatively small sample sizes, say n > 50,
to obtain estimates that are close to the actual parameter value with a high
probability. Such estimates may seem like they are not very desirable, but
sometimes the context in which we use statistical procedures does not allow
large sample sizes. Furthermore, in a lot of situations the maximum likeli-
hood estimator is an optimal estimator, especially when regularity conditions
apply.

We conclude that

√
n(θ̂n − θ0)

d→ N

(
0,

1

Iθ0

)
(6.2)
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holds when sampling from the exponential distribution. Observe that the
display above is the same as (5.19) in Section 5.4. Lastly, since (6.2) holds
we know that the maximum likelihood estimator is also consistent in this
example.

6.3 Asymptotic normality of the sample

median

At the end of Section 5.3 we claimed that as a result of Theorem 5.15 the
sample median is asymptotically normal, but we did not give a proof. In this
section we will attempt to demonstrate this fact using a simulation.

We will demonstrate, using an example, that under the regularity con-
ditions of Theorem 5.15 the sample median is asymptotically normal with
asymptotic variance

1

(2f(θ0))2
, (6.3)

where f denotes the density of the distribution under consideration and θ0

is the median of this distribution.

Suppose that we have a Beta-distribution with parameter θ = (α, β) =
(2, 5) from which we sample. Note that this distribution meets the conditions
of Theorem 5.15. Let Yn denote the sample median from a sample of size n.
The median of this distribution is approximately equal to

θ0 ≈
α− 1

3

α + β − 2
3

=
5
3
19
3

=
5

19
≈ 0.263158.

We will first look at the estimate of the population median given different
sample sizes. Figure 6.7 shows our results. We can see that the sample
median seems to be consistent: it converges to the population median at a
rate at least as good as the estimates we saw for the moment estimators in
Section 6.1. This is not surprising, since we have already proven that the
sample median is consistentin Example 5.9.

We continue by investigating the distribution of
√
n(Yn− θ0) for different

n. Our expectation is that this distribution tends to a normal distribution
with its variance equal to (6.3). Given that θ0 ≈ 5

19
, we find that

f(θ0) =
5
19

(1− 5
19

)4

B(2, 5)
=

5
19

(14
19

)4

1
30

≈ 2.3272,
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Figure 6.7: Estimates for the population median for different sample sizes.

where B denotes the Beta function. Therefore, the asymptotic variance we
expect to find is equal to

1

(2 · 2.3272)2
≈ 0.04616.

A simulation similar to the one in the previous section leads to the results
shown in Figure 6.8.

We can see that for n = 5 the sample median already vaguely resembles
a normal distribution. At n = 25 this resemblance is even clearer. Taking
larger sample sizes such as n = 100 does not affect the distribution of

√
n(Yn−

θ0) very much: the histogram in the middle and the one on the bottom are
very similar. For n = 25 and n = 100 the corresponding histograms tend
to the normal distribution indicated by the red line. We conclude that the
sample median is indeed asymptotically normal.

Any reader that is interested in a rigorous proof of the asymptotic nor-
mality of the sample median is referred to [6], Example 5.24, p.54-55.
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Figure 6.8: Comparisons between the distribution of
√
n(Yn − θ0) and the

Normal distribution with mean 0 and variance equal to 0.04616.
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6.4 Misspecified model

In this last simulation we take a look at what happens when we have a mis-
specified model, i.e. when the actual distribution from which we sample is
not contained in our parametric model. Suppose that our parametric model
consists of all exponential distributions and that we are sampling from a
uniform distribution working on the interval [0, 2]. We are interested in find-
ing the actual distribution of the population from which we sample. As we
saw in the previous section, the maximum likelihood estimator is suitable
for such an estimation. But remember, our estimation gives us a parameter
θ for which the corresponding distribution pθ is an exponential distribution,
so with this parametric model it is impossible to find the actual distribu-
tion. Figure 6.4 gives us the results of our maximum likelihood estimate for
different sample sizes n.

Figure 6.9: Estimates for θ for different sample sizes.

One might expect that such an estimator would behave erratically, but
the opposite is true: the maximum likelihood estimator seems to converge to
1 as n gets large. Moreover, it seems to converge at a rate very similar to the
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convergence of the moment estimators we saw in Section 6.1. This illustrates
the danger of being overconfident in our estimation if we have a large sample
size: our estimated distribution pθ looks nothing like the actual distribution.
Figure 6.10 compares our estimated distribution and the actual distribution.

Figure 6.10: Comparison of the uniform and exponential distributions under
consideration.

Figure 6.10 speaks for itself, the represented distributions do not look
like each other at all. The attentive reader might argue that this example is
ridiculous: if every sample is smaller than 2, then we can be almost certain
that we are not dealing with an exponential distribution with rate 1. This is
true, but the example we give here is merely to illustrate what happens when
our actual distribution is not contained in our parametric model. What we
should learn from this is that even though our asymptotic tool kit functions
properly, our results do not necessarily correspond to reality. Thus we should
always exercise caution when accepting a parametric model as a basis for
statistical analysis.
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Chapter 7

Conclusion

In Chapter 2 and Chapter 3 we developed the necessary knowledge and meth-
ods to start investigating moment estimators and M-estimators. We distin-
guished between three modes of convergence: convergence in distribution,
convergence in probability and convergence almost surely. This distinction
helped us to better understand important statistical results like the central
limit theorem and the laws of large numbers, allowing us to work more flu-
ently with these theorems. Moreover, these different concepts of stochastic
convergence were fundamental in the definitions of important concepts like
consistency and asymptotic normality.

Chapter 4 focussed on the Delta method. We looked at some applications
of the Delta method including finding the limit distribution of the sample
variance and variance stabilizing transformations. The intermezzo on para-
metric models did not contain any mathematical results in the form of a
theorem or lemma, but nonetheless, this short section turned out to be of vi-
tal importance. Parametric models are essential when estimating parameters
using moment estimators or M-estimators. In fact, in subsequent chapters
we saw that the practical value of an estimator largely depends on the choice
of the parametric model within the estimation is performed.

The last section of Chapter 4 focussed on moment estimators. We gave
a general definition and also established conditions for which moment esti-
mators are asymptotically normal in Theorem 4.10. In several examples we
saw how moment estimators could be used. Additionally, in the first section
of Chapter 6 we demonstrated what an actual estimation using a moment
estimator would look like.

The last purely theoretical chapter was about M-estimators and formed
the theoretical peak of this thesis. We examined a few existing M-estimators
other than maximum likelihood estimators: the sample mean, the sample me-
dian, Huber estimators and quantiles. Using the concepts of well-seperated
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maxima and near maximization we proved in Theorem 5.6 and Theorem 5.7
that in many cases M-estimators are consistent. In the subsequent section we
investigated under what conditions an M-estimator is asymptotically normal.
We found that it is hard to find a satisfying set of conditions that implies
asymptotic normality because either the conditions are too strong to allow
estimators like the sample mean and sample median or the conditions are not
very practical. We presented three sets of conditions that imply asymptotic
normality, these are given in Theorem 5.10, Theorem 5.13 and Theorem 5.15.
The conditions for asymptotic normality stated in these theorems all revolve
around regularity of the functions ψθ(x) and mθ(x).

The last section of Chapter 5 treated the most important kind of M-
estimator: the maximum likelihood estimator. In particular, besides the
results that hold for all M-estimators we have proven that under sufficient
regularity conditions the maximum likelihood estimator is an optimal esti-
mator when the sample size n tends to infinity.

Lastly, Chapter 6 served to demonstrate that the theoretical results could
also be applied in cases where we have a large finite sample size. We showed
that the moment estimator of the Gamma distribution presented in Example
4.9 gives an accurate estimate for large sample sizes. Moreover, we saw
that the maximum likelihood estimator is indeed asymptotically normal and
optimal. The third section focussed on the asymptotic normality of the
sample median and we concluded that this M-estimator is asymptotically
normal as well.

The last simulation showed that our asymptotic results do not always
lead to desirable results. Specifically, in the preceding sections we learned
that our theorems seem to work well within a parametric model, but that
this does not guarantee good results because our actual distribution may not
be contained in our parametric model.

To conclude, when having a large sample size asymptotic statistics can
provide very useful methods for parameter estimation. However, we should
always be cautious with regard to assuming a parametric model within which
we perform such estimations.
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References

This appendix contains references to the consulted literature and used sources.
For chapters 2-5 there is a list containing references to the relevant literature.
These references do not mean that we have exactly copied them from their
sources. In many cases we have expanded or improved what was given in the
literature. This is the case for almost all proofs from [6]. In the case that we
have literally adopted something from the literature, it is stated in the list
underneath.

The first paragraph of Chapter 1 is loosely based on the introduction from
[6], the remainder of that chapter is original. The same goes for Chapter 6,
whenever we use things from previous chapters we mention it in the text.

All figures have been made by us using R or pgfplots, with the exception
of Figure 5.1, which is an edited figure. The original figure can be found on
https://www.wikiwand.com/en/Extremum estimator.

Whenever ‘-’ appears in the column on the right it means that we’ve come
up with it ourselves: no literature was used.
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Appendix B

Codes for simulations

This appendix contains the code for the simulations we used to create the
figures in Chapter 6.

Code used in Section 6.1

The following code is used to obtain the simulations shown in Figure 6.1 and
Figure 6.2. The code used to obtain the simulations of Figure 6.3 and Figure
6.4 can be obtained by changing the values of 7 and 2 to 3 and 5 respectively.
Also, in both plots the ylim parameter should be changed to c(0, 15) and
c(2, 10) respectively.

#In this simulation we will estimate the parameter of a Gamma

#distribution for different sample sizes.

seq = c(2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,

50,55,60,65,70,75,80,90,100,125,150,175,

200,250,300,400,500,750,1000,1250,1500,

1750,2000,2500,3000,3500,4000,4500,5000,

7500,10000) #vector containing all the sample sizes

#for which we want to estimate the parameter of interest.

sim <- rep(0,length(seq))

sim2 <- rep(0,length(seq))

for(n in 0:47) { #for-loop that determines all estimates

X <- rgamma(seq[n],7,2)

sim[n] <- mean(X)^2/(mean(X^2)-mean(X)^2)

sim2[n] <- mean(X)/(mean(X^2)-mean(X)^2)
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}

plot(seq,sim,xlab="sample size",ylab="parameter estimate

for alpha", ylim=c(0, 20), log = ’x’,) #plot containing

#estimates of alpha

abline(h=7,lty=44) #dotted line signifying the actual

#value of the parameter

plot(seq,sim2,xlab="sample size",ylab="parameter estimate

for beta", ylim=c(0, 5), log = ’x’) #plot containing

#estimates of beta

abline(h=2,lty=44) #dotted line signifying the actual

#value of the parameter

#The code underneath plots the densities of both Gamma

#functions under consideration

plot(seq(0,10,length=100),dgamma(seq(0,10,length=100),

7,2),type=’l’,ylim=c(0,0.5),ylab=’density’,xlab=’outcome’)

lines(seq(0,10,length=100),dgamma(seq(0,10,length=100),3,5),

col=’orange’)

Code used in Section 6.2

The following code is used to obtain the simulations shown in Figure 6.6.

#In this simulation we will show that the maximum

#likelihood estimator of the exponential distribution

#tends to a normal distribution

theta = 2 #rate of the exponential distribution

par(mfrow=c(2,2)) #this makes sure that the four

#plots are compiled into one image

#the following for-loop creates histograms that

#approximate a normal distribution for four different

#sample sizes.

for (n in c(5,20,50,10000)) {

approximation <- c();
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for(i in 0:10000) { #for-loop that creates

#the data on which the histograms are based

theta_sc <- n/rgamma(1,rate=theta,shape=n)

approximation <- c(approximation,sqrt(n)*

(theta_sc - theta))

}

#The following code plots the histograms and the

#normal distribution.

hist(approximation,breaks=20,probability=T,main=

paste("Histogram with n",n,sep="="),xlim=

c(-8,8), ylim=c(0,0.2))

lines(seq(-8,8,length=100),dnorm(seq(-8,8,length=

100),mean=0,sd=theta),col=’red’)

}

Code used in Section 6.3

The following code contains the code used to create Figure 6.7 and Figure
6.8.

#In this simulation we will show that the sample median is

#consistent and asymptotically normal. We will also look at

#the numerical errors with regard to the population mean.

median = 0.263158 #actual value of the median of the Beta

#distribution with parameter (2,5).

seq = c(2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,

50,55,60,65,70,75,80,90,100,125,150,175,

200,250,300,400,500,750,1000,1250,1500,

1750,2000,2500,3000,3500,4000,4500,5000,

7500,10000) #vector containing all the sample sizes

#for which we want to estimate the median of the distribution.

sim <- rep(0,length(seq))

for(n in 0:47) { #for-loop that determines all estimates

#and generates a list of the errors of the estimates
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Y <- rbeta(seq[n],2,5)

sim[n] <- median(Y)

print(sim[n]-median)

}

plot(seq,sim,xlab="sample size",

ylab="Estimate for population median",

ylim=c(0, 0.75), log = ’x’,) #plot containing estimates

#for population median

abline(h=median,lty=44) #this creates a dotted line

#signifying the actual value of the median

#the following for-loop creates histograms that

#approximate a normal distribution for four different

#sample sizes.

for (n in c(5,25,100)) {

approximation <- c();

for(i in 0:10000) { #for-loop that creates

#the data on which the histograms are based

medianestimate <- median(rbeta(n,2,5))

approximation <- c(approximation,sqrt(n)*

(medianestimate - median))

}

#The following code plots the histograms and the normal

#distribution.

hist(approximation,breaks=20,probability=T,main=

paste("Histogram with n",n,sep="="),xlim=

c(-0.5,0.5), ylim=c(0,2))

lines(seq(-0.5,0.5,length=100),dnorm(seq(-0.5,0.5,

length=100),mean=0,sd=0.2146),col=’red’)

}

Code used in section 6.4.

The following code is used to obtain Figure 6.9 and Figure 6.10.

#In this simulation we illustrate what happens when we

#have a misspecified model. We will sample from a uniform

#distribution and try to estimate the parameter of an
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#exponential distribution.

seq = c(3,5,10,20,50,100,200,300,400,500,1000,1500,2000,

3000,4000,5000,10000,20000,30000,50000) #vector

#containing all the sample sizes for which we want

#to estimate the parameter of interest.

sim <- rep(0,length(seq))

for(n in 0:20) { #for-loop creating the estimate for all

#sample sizes.

X <- runif(seq[n], min=0,max=2)

sim[n] <- seq[n]/sum(X)

}

plot(seq,sim,xlab="sample size",ylab="estimate for theta",

ylim=c(0.5, 2), log = ’x’,) #plot of the estimations

abline(h=1,lty=44) #this dotted line signifies the value

#to which the estimator seems to converge

#the following code plots the densities of the exponential

#and uniform distribution.

plot(seq(0,7,length=100),dexp(seq(0,7,length=100),1),

type=’l’,ylim=c(0,0.75), ylab= ’density’,

xlab = ’outcome’)

lines(seq(0,7,length=100),dunif(seq(0,7,length=100),

min=0,max=2),col=’orange’)
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