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Summary 
 

Until a decade ago, relatively little scientific attention has been paid to the impact of 

climate change and changing weather patterns on the transport sector (Koetse & Rietveld, 

2009). However, Helbich et al. (2014) argue that active transport modes like cycling receive 

increasingly more scientific attention (e.g., Buehler & Pucher, 2010; Aldred, 2013; Heinen, 

Maat & Wee, 2013). Especially the effects of weather on these weather-exposed active 

transport modes are of interest, according to Helbich et al. (2014). Most studies, however, 

focus on weather extremes, while the effects of normal weather conditions on daily travel 

behaviours are often neglected (Sabir, 2011; Böcker, Dijst & Faber, 2014; Böcker et al., 

2015; Liu et al., 2017). Also, variations in land use and transportation networks may also 

affect the impact of weather conditions on route choice behaviour of cyclists (e.g. 

Brandenburg et al., 2004; Phung and Rose, 2008; Thomas et al., 2013; Helbich et al., 2014). 

This study is designed to investigate the effects of weather conditions on the route choice 

behaviour of commuting cyclists using GPS trajectories. The following factors are taken 

into account that are expected to influence route choice behaviour of cyclists: personal 

characteristics, weather conditions, the spatial environment and travel distance. Previous 

studies provided evidence of a relationship between the first three factors and cyclists’ 

route choice behaviour, which directly influences travel distance. Still no evidence has 

been provided through GPS trajectories of actual differences in route choice and travel 

distance due to weather conditions.  

 

This study concluded that not all weather conditions influence route choice behaviour of 

commuting cyclists that strong. The influence of wind, precipitation and temperature on 

age and gender are noticeable within this study, however, these effects remain minimal. 

The presence of daylight is no significant predictor of route choice behaviour. However, 

this study indicates positive effects of temperature and precipitation on absolute 

deviation, meaning higher temperatures and a higher amount of precipitation causes 

longer travel distances. Within this study, relative deviation cannot significantly be 

explained by weather conditions. 

An interesting outcome of this study is that commuting cyclists tend to deviate from the 

shortest route when the temperature rises, up to a temperature of approximately 25 

˚Celsius, then the deviation becomes smaller. Another interesting outcome of the 

regression analyses is the negative effect of the combination of much rain and hard wind. 

This result is not remarkable, since much rain and hard wind are harsh circumstance for 

most cyclists. On the other hand, wind direction, expressed as head- or tailwind in this 

study, is no significant predictor of absolute or relative deviation within this study. 

Besides, within this study, personal characteristics and weather conditions do not 

significantly influence commuters’ choice to cycle through specific spatial environment 

categories. There are however some weather conditions that can explain differences in 

route choice between built and natural environments, however, these effects are fairly 

weak. 

Further research could focus on differences between types of respondents, types of bicycle, 

seasons and infrastructure. It would also be interesting to use a mixed methods approach 

which could make it possible to gain more insight into the cyclists’ preferences or 

motivations behind their route choices.  
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1. Introduction 

1.1 Context and Problem Statement 
Nowadays climate change adaptation and mitigation receive much attention, scientific as 

well as societal. Renewed climatological research has revealed evidence for global 

temperature rise, changes in precipitation patterns and increased frequencies of extreme 

weather conditions (IPCC, 2007; Böcker et al., 2015). Until a decade ago, relatively little 

scientific attention has been paid to the impact of climate change and changing weather 

patterns on the transport sector (Koetse & Rietveld, 2009). In view of the continuous 

exposure of transport activities to weather conditions, this is a remarkable fact, according 

to Böcker et al. (2015). The authors continue by stating that earlier studies on the 

relationship between climate, weather and transport mainly focused on network 

performance of transportation systems. For example, enough research has been performed 

on the impacts of extreme heat, frost, storm, fog, rain and snow on rail, air and road 

infrastructures. Unlike its effects on network performance, the effects of weather on 

individual travel behaviours on the micro-level (people’s daily choices for outdoor and 

indoor activities, destinations and transport modes for instance) received much less 

attention. This applies especially to research into active open-air transport modes, such 

as walking and cycling, while these are directly exposed to weather (Sabir, 2011; Sabir et 

al., 2011; Böcker et al., 2013; Böcker et al., 2015).  

However, Helbich et al. (2014) argue that active transport modes like cycling receive 

increasingly more scientific attention (e.g., Buehler & Pucher, 2010; Aldred, 2013; Heinen, 

Maat & Wee, 2013). Especially the effects of weather on these weather-exposed active 

transport modes are of interest, according to Helbich et al. (2014). The most investigated 

weather conditions are temperature, precipitation, wind speed and snowfall (in Nordic 

countries and Canada). The impacts of humidity, fog, sunshine and cloud cover are less 

often investigated (Liu et al., 2017). Most studies, however, focus on weather extremes, 

while the effects of normal weather conditions on daily travel behaviours are often 

neglected (Sabir, 2011; Böcker, Dijst & Faber, 2014; Böcker et al., 2015; Liu et al., 2017).  

Recently, Zhao et al. (2018) discussed several studies in which the impacts of weather on 

cycling from both survey analysis and big data mining have been investigated. Main 

findings from survey data analysis indicate that cyclists are affected by adverse weather 

conditions more seriously compared to other travel modes (Winters et al., 2007; Müller et 

al., 2008; Sabir, 2011; Liu et al., 2015a, 2015b). Since cyclists are less protected against 

the bad weather compared to motorised travellers (Liu et al., 2015b), they are more likely 

to reduce cycling trips due to cold or hot temperature (Richardson, 2000), precipitation 

(Bergström and Magnusson, 2003; Winters et al., 2007), and strong wind (Flynn et al., 

2012).  

In their literature review, Böcker et al. (2013) discuss the knowledge on everyday weather 

and individual travel behaviours. The authors argue that no elaborative overview of 

impacts of weather conditions on individual daily travel behaviour existed up to that date, 

although some reviews (Heinen, Wee & Maat, 2010; Koetse & Rietveld, 2009) discussed 

the interactions between individual characteristics, weather and daily mode choices.  

Some earlier studies indicated that cyclists’ travel behaviour vary significantly depending 

on seasons (Richardson, 2000; Bergström and Magnusson, 2003). More recent studies 

(Böcker, et al., 2015; Liu et al., 2015a, 2015b, 2016) showed that the impact of weather on 
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bicycle choice not only depends on seasons but also on regions and travel purposes. Also, 

the impacts of weather on non-commuters are much more significant than on commuters.  

According to Zhao et al. (2018), these studies provide a solid foundation for analysis of 

associations of weather and the use of bicycles. Liu, Susilo and Karlström (2017) agree 

and argue that traditional survey data includes detailed personal characteristics. These 

types of data can help researchers to further understand how weather affects travel 

decision-making processes. Edmond et al. (2009) already stated that women, more than 

men, avoid risk and anticipate by either not traveling by bicycle, or by choosing a different 

route where or when the travel conditions are safer (Edmond et al., 2009). For instance, 

women cyclists care more about the presence of daylight than men (Bergström & 

Magnusson, 2003).  Concerning the route choice of cyclists and the distribution between 

man and woman, it can also be suggested that women will mainly choose the shortest 

route, while men are more willing to take a detour (Heinen, Wee & Maat, 2010).  

However, impacts of weather elements such as temperature and rainfall on cycling are 

difficult to be quantitatively estimated from studies based on survey data due to small 

sample size (Liu, Susilo & Karlström, 2017; Zhao et al., 2018). Besides, cyclists are often 

directly subject to weather and thus respond more complicatedly to the changes in weather 

conditions as compared to car users or transit passengers. In addition, cycling can be used 

for both utilitarian and leisure purposes. To analyse the weather-cycling relationship, it 

is therefore important to include the trip purpose in the analysis (Zhao et al., 2018). By 

using technology of smart counters or cards, bicycle usage can be recorded automatically, 

which makes it possible to examine weather-cycling relationship at a larger scale to 

complement the self-reported survey results (Zhao et al., 2015).  

Compared to survey data analysis, Zhao et al. (2018) argue, the research on big data 

mining in terms of the weather influence on bicycle usage is relatively small. One frequent 

reason is the lack of data. To investigate the weather-cycling relationship, it is necessary 

to consider the impact of the weather on different days of week or times of day on bicycle 

usage, which results in large amounts of data within each period of interest. However, 

automatic data collection for cycling have become available only in recent years with the 

installation of smart cycling counters and the usage of smart cards (Zhao et al., 2018). 

Nowadays, passively generated data (such as GPS trajectories on travel routes) can record 

multi-day travels of one to many individuals (Liu, Susilo & Karlström, 2017). Collecting 

GPS trajectories saves both time and money and solves the problem of limited sample size 

(Li, 2017). This creates many scientific opportunities, since the variation of everyday 

weather influences individual travel patterns throughout the year (Van Leeuwen, Koetse, 

Koomen, & Rietveld, 2009). The seasonality of the weather conditions, reflecting seasonal 

habituation effects, plays a significant role in explaining variability in daily travel 

behaviour. This emphasizes the importance of incorporating seasonal effects in the 

analysis of meteorological impacts (Creemers et al., 2015).  

Most studies have focused on a single travel behaviour dimension, such as mode choice or 

trip distance, while only a few have developed models involving several travel behaviour 

dimensions (e.g. Böcker et al., 2015; Liu et al., 2015a). Moreover, scientists have tended to 

focus on the push and pull factors at the origin and destination points, while the actual 

route between those two points remained rather unexplored (Duppen and Spierings, 

2013).  
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Variations in land use and transportation networks may also affect the impact of weather 

route choice behaviour of cyclists. Helbich et al. (2014) also emphasize that the locational 

component and the spatial variations in weather effects on behavioural outcomes have 

been underexplored. Although some empirical results demonstrate different effects of 

weather conditions on cycling between different spatial settings (e.g. Brandenburg et al., 

2004; Phung and Rose, 2008; Thomas et al., 2013). For instance, Phung and Rose (2008) 

demonstrated that cycling in suburban and weather-exposed areas is more sensitive to 

precipitation than cycling in inner-city and sheltered areas. Also, Díaz et al. (2002) 

mentioned a higher impact of heat on vulnerable population groups such as elderly. 

Although no direct link to travel behaviours was made, urban heat island could influence 

travel behaviour of relatively older cyclists. GPS trajectories can provide a more exact 

representation of the different spatial environments cyclists are exposed to. It would also 

open ways to directly assess the effects of land use patterns and lower-scale street designs 

on route choice behaviour. Such an approach could therefore provide a clearer 

understanding of localised weather conditions and interrelated route choices (Helbich et 

al, 2014).  

As mentioned before, climate change adaptation and mitigation receive much attention 

nowadays, scientific as well as societal. The scientific relevance of this research has 

already been discussed in the previous paragraphs. Such scientific insights can be relevant 

for the achievement of policy goals concerning sustainable and healthy transportation via 

weather-exposed transport modes like cycling (Böcker, Dijst, Prillwitz, 2013; Böcker, 

Prillwitz, Dijst, 2013; Böcker et al., 2015). This certainly applies to the Netherlands, since 

the use of the bicycle in the Netherlands continues to grow (Kennisinstituut voor 

Mobiliteitsbeleid, 2017). Regional and local governments in the Netherlands are 

determined to improve the infrastructure for cyclists. For example, the province of Noord-

Brabant and various municipalities are developing so-called ‘cycle highways’ (Provincie 

Noord-Brabant, 2016). It can be very useful to reveal the influence of weather and the 

spatial environment on the route choice behaviour of cyclists in order to determine the 

best trajectories for those cycle highways.  

Despite the fact that more and more research has been performed into the effects of 

weather conditions on transport, cycling and route choice behaviour, there still exists a 

gap in scientific knowledge. No research has been performed yet into the effects of weather 

conditions on the route choice behaviour of cyclists in which the focus is on GPS 

trajectories and the differences in route choice throughout the seasons of the year. The 

aim of this research is to fill this gap and to provide scientific insights for the achievement 

of policy goals regarding cycling. 
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1.2 Research objectives 
This study is designed to investigate the effects of weather conditions on the route choice 

behaviour of commuting cyclists in which the focus is on GPS trajectories and the actual 

differences in route choice throughout the seasons of the year. The following factors are 

taken into account that are expected to influence route choice behaviour of cyclists: 

personal characteristics, weather conditions, the spatial environment and travel distance. 

Previous studies provided evidence of a relationship between the first three factors and 

cyclists’ route choice behaviour, which directly influences travel distance. Still no evidence 

has been provided through GPS trajectories of actual differences in route choice and travel 

distance due to weather conditions.  

 

The factors ‘personal characteristics’, ‘weather conditions’, ‘spatial environment’ and 

‘travel distance’ are eventually expressed in various variables in a statistical model. The 

first factor, ‘personal characteristics’, consists of only two variables: gender and age. 

Cycling motive would also belong to personal characteristics. This study is, however, 

limited to commuters only and therefore this variable has the same value for each 

respondent, which makes it useless to include it in the analysis.  The second factor, 

‘weather conditions’, consists of four variables: temperature, precipitation, wind 

speed/direction and daylight. The third factor, ‘spatial environment’, represents different 

types of ‘land use’. Land use refers to the spatial properties of the direct surroundings of 

the roads such as the amount of greenery and buildings. The last factor, ‘travel distance’, 

is expressed in ‘route length’, ‘deviation’ and ‘length per category’. 

  

The impacts of weather conditions on commuting cyclists’ route choice behaviour are 

examined within the province of Noord-Brabant in the Netherlands; the Metropolitan 

Region of Eindhoven (MRE) to be specific, a region committed to cycling (Provincie Noord-

Brabant, 2016).  

 

This study only focuses on commuting cyclists, due to the following arguments. 

Commuting is often undertaken on a daily basis and out of necessity (Gehl, 2011) and is 

usually undertaken in a repetitive mode, as efficient as possible (Duppen & Spierings, 

2013). Yet there is more complexity to be found in daily commutes than just getting from 

origin to destination via the most efficient trajectories, according to Duppen and Spierings 

(2013). The authors give a detour through a quiet and green environment as an example, 

which could be chosen with the purpose of avoiding chaotic or dangerous situations and 

saving time. Since weather conditions directly affect active transport modes such as 

cycling, it can be expected that people would also take a detour due to precipitation or 

wind speed for instance. Additionally, commuting is a daily activity, which makes it 

possible to investigate the impact of weather conditions on travel patterns throughout the 

year. Hereby, this study can cover everyday weather as well as ‘extreme’ weather 

conditions. 
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1.3 Research questions 
The research objectives lead to the following main research question: 

To what extent do personal characteristics and weather conditions influence commuting 

cyclists’ route choice behaviour? 

In order to give this research structure, the main research question is divided into three 

sub-questions which will be explained in more detail. 

1. How are personal characteristics of commuting cyclists related to weather 

conditions and route choice behaviour? 

The first sub-question covers the factor ‘personal characteristics’. Earlier studies have 

shown that personal characteristics as gender and age can influence route choice 

behaviour of cyclists. The answers to this question can complement that knowledge and 

therefore personal characteristics of commuting cyclists cannot be neglected.   

2. To what extent do commuting routes deviate under different weather conditions? 

The second sub-question covers the factors ‘weather conditions’ and ‘travel distance’. The 

influence of temperature, precipitation, wind speed/direction and daylight on commuting 

cyclists’ route choice behaviour has already been discussed. However, evidence for the 

actual deviation of commuting routes under different weather conditions is still lacking. 

The answers to this question can therefore complement and improve the existing 

knowledge.  

3. To what extent do commuters cycle through different spatial environments under 

different weather conditions? 

The third sub-question covers the factors ‘spatial environment’ and ‘travel distance’. 

Earlier studies already provided insights into the influence of the spatial environment on 

cyclists’ route choice behaviour. Still, there is a lack of knowledge on weather-oriented 

properties of the spatial environment. Also, factors such as protection from wind and rain 

could influence the route choices of commuting cyclists. GPS trajectories can provide new 

insights into the weather-oriented properties of the spatial environment. The answers to 

this question can thus complement and improve the existing knowledge.  
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2. Theoretical framework 
This chapter serves as theoretical framework to identify the weather conditions and 

environmental factors that affect cyclists’ route choice behaviour. First, the literature 

about the relationship between weather, transport and route choice behaviour in general 

will be discussed, after which the focus is on the relationship between weather and the 

active, open-air, transport mode cycling. In addition, the influence of personal 

characteristics and the spatial environment on route choice behaviour of cyclists is treated. 

Also, different ways of assessing the relationship between weather and cycling. This 

chapter concludes with a conceptual model, which gives an overview of weather, personal 

and environmental related factors that have shown to influence cyclists’ route choice in 

earlier research. 

2.1 Weather and travel behaviour 
Studies focusing on weather impacts on travel behaviour differ from each other in a variety 

of perspectives (Liu et al., 2017). Böcker et al. (2015) mention that studies that have 

investigated the travel-behavioural effects of objectively measured weather conditions on 

transport mode choices generally conclude that cold, cloudy, wet and windy weather 

conditions stimulate motorised transport, while warm, sunny and dry weather conditions 

increase usage of active modes – with typically larger effects for leisure than for utilitarian 

trips (e.g. Sabir, 2011; Creemers et al., 2014). The impact of weather has been found to be 

stronger on active and open-air transport modes, particularly cycling, than in-vehicle 

modes (Sabir, 2011; Liu et al., 2017). Helbich et al. (2014) argue that the effects of weather 

conditions on active transport modes like cycling receive increasingly more scientific 

attention. The most investigated weather conditions are temperature, precipitation, wind 

and snowfall (in Nordic countries and Canada). The impacts of humidity, fog, sunshine 

and cloud cover are less often investigated (Liu et al., 2017). Most studies, however, focus 

on weather extremes, while the effects of normal weather conditions on daily travel 

behaviours are often neglected (Sabir, 2011; Böcker, Dijst & Faber, 2014; Böcker et al., 

2015; Liu et al., 2017). Recently, Böcker et al. (2013), Liu et al. (2017) and Zhao et al. 

(2018) discussed the knowledge on everyday weather and individual travel behaviours. 

The authors argue that no elaborative overview of impacts of weather conditions on 

individual daily travel behaviour existed up to that date, although some studies discuss 

the interactions between personal characteristics, weather and daily transport mode 

choices.  

In the following paragraphs, the current knowledge on weather and travel behaviour is 

discussed. First, the three most investigated weather conditions are treated; precipitation, 

temperature and wind respectively.  

2.2 Precipitation 
In their literature review, Böcker et al. (2013) discuss several studies on the effect of 

precipitation on trip generation. Scientists (i.e. Hanbali & Kuemmel, 1993; Hassan & 

Barker, 1999; Call, 2011) indicated car traffic reductions during rain- or snowfall. Others 

(Hofmann & O’Mahony, 2005; Tang & Thakuriah, 2012) analysed public-transport 

ridership statistics and detected decrease in public-transport use during rain- or snowfall. 

Saneinejad et al. (2012) showed an increasing probability of travellers choosing to walk on 

rainy days. These studies, which are mainly focused on North America, conclude negative 

precipitation effects on the use of motorized transportation. In contrast, a national travel 

survey study from the Netherlands indicated a positive relationship between precipitation 
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and the use of car and public-transport, resulting from large-scale switching from active 

to motorized transport modes (Sabir, 2011).  

Nevertheless, many studies were focused on active transportation, due to its direct 

exposure to weather (Böcker et al., 2013). As Sabir (2011) also stated, precipitation is 

mentioned as one of the most important reasons not to cycle (Bergström & Magnusson, 

2003’; Winters et al., 2007).  Snow is the major factor that negatively impacts on bicycle 

usage (Cools et al., 2010). Cross-sectional studies (Winters et al., 2007; Parkin et al., 2008) 

revealed lower levels of cycling for areas with higher annual precipitation, although they 

admit other physical factors such as hilliness have larger impacts. Others (i.e. Richardson, 

2000; Phung & Rose, 2008; Goetzke & Rave, 2011; Miranda-Moreno & Nosal, 2011; 

Thomas et al., 2013) proved similar negative effects of precipitation on cycling. 

While many studies indicate the relevance of precipitation for trip generation, transport 

mode and destination choices, few have analysed the effects of precipitation on a wider 

range of travel decisions (Böcker et al., 2013). Three studies (Cools et al., 2010; De Palma 

& Rochat, 1999; Khattak & De Palma, 1997) conclude negative weather effects on route 

choice and adjustment of departure time, indicating that people anticipate on differences 

in expected travel times. In addition, Aaheim and Hauge (2005) discovered reduction in 

travelled distance due to precipitation, indicating that people choose closer destinations 

or cancel trips to further destinations.   

Precipitation does not affect travel choices in the same way in all situations (Böcker et al., 

2013). Some studies (Ahmed et al., 2010; Brandenburg et al., 2004) revealed temporal 

differentiations in relative weather impacts for cycling counts. Generally, this seems to 

indicate a larger effect on leisure compared with utilitarian trips. This conclusion is 

supported by most studies measuring trip purpose directly (Sabir, 2011). For commute 

trips, respondents only adapt departure times, while for shopping and leisure also mode 

and destination changes or trip cancelling were determined (Cools et al., 2010). An 

exception is a German study by Goetzke and Rave (2011), demonstrating significant 

precipitation effects on cycling to work, but not on cycling for leisure. This study indicates 

that effects may also differ for different population categories and between different 

geographical contexts (Böcker et al., 2013).  

2.3 Temperature 
The effects of temperature on travel choices are generally lower than precipitation effects 

(Cools et al., 2010; Sabir, 2011). Nonetheless, these two studies conclude that temperature 

has significant positive effects on walking and especially cycling, and negative effects on 

car and public transport. Earlier studies confirm these positive effects of temperature on 

active open-air transportation and prove that warmer weather increases cyclist rate 

(Bergström & Magnusson, 2003; Brandenburg et al., 2004; Phung & Rose, 2008; 

Richardson, 2000). Studies in the Netherlands, Canada and Sweden have shown that 

bicycle usage positively correlates with temperature until the temperature reaches 25°C 

(Liu et al., 2015a; Sabir, 2011; Saneinejad et al., 2012). Additionally, studies from warmer 

climates, find that not only low temperatures, but also high temperatures, between 25 and 

30 ºC, are disadvantageous for cycling (Ahmed et al., 2010; Phung & Rose, 2008; 

Richardson, 2000). Also, Díaz et al. (2002) mentioned a higher impact of heat on vulnerable 

population groups such as elderly. Although no direct link to travel behaviours was made, 

urban heat island could influence travel behaviour of relatively older cyclists. 

Temperature effects on travel purposes such as leisure are stronger than for commuting 
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(Sabir, 2011; Thomas et al., 2012). Additionally, Aaheim and Hauge (2005) discovered that 

travelled distances for shopping are reduced with higher temperatures, whereas for 

recreational purposes trip distances increase. So, temperature effects on travel behaviour 

differ for trip-purposes, personal characteristics and geographical context (Böcker et al., 

2013). 

2.4 Wind 
Compared to precipitation and temperature, wind it is often overlooked in studies on the 

effects of weather on travel choices, except when it comes to cycling (Böcker et al., 2013). 

Aaheim and Hauge (2005) detected wind as a deterrent for cycling, mentioned by most 

respondents in their study in Norway. In a cross-sectional comparison of Dutch 

municipalities Rietveld and Daniel (2004) found a weak negative correlation between 

average annual wind speed and cycling. Flynn et al. (2012) in the USA and Heinen, Maat, 

and Van Wee (2011) in the Netherlands discovered that wind negatively affects bicycle 

commuting. In another Dutch study, Thomas et al. (2012) found negative wind effects on 

cycle flows. Others pointed at the different effects of light and strong wind. Sabir (2011) 

discovered no changes in Dutch modal split shares for moderate wind speeds between 1 

and 4 Beaufort. Only in the case of heavy wind (of approximately 5 Beaufort or higher), 

cyclist shares decreased from 30% to less than 25%, mostly increasing the share of 

walking. Also, an Australian study (Phung & Rose, 2008) mentioned cycling declines only 

for strong winds. As with precipitation and temperature, some studies indicated that wind 

effects differ for trip purposes and personal characteristics (Böcker et al., 2013). In 

Flanders, Cools et al. (2010) declared that half of their respondents mention storms as a 

reason to postpone or cancel shopping and leisure trips, whereas for commute trips, storms 

hardly lead to cancellations and only changed departure times. Despite the moderate effect 

of wind speed on cycling, the effect of wind direction has not been investigated yet.  

2.5 Weather, seasons and climate 
The impact of everyday weather on transport systems is not directly noticeable because 

the variation of everyday weather influences the individual’s travel patterns throughout 

the year (Van Leeuwen, Koetse, Koomen, & Rietveld, 2009; Liu et al., 2017). Some earlier 

studies already indicated that cyclists’ travel behaviour vary significantly depending on 

seasons (Richardson, 2000; Bergström and Magnusson, 2003). The seasonality of the 

weather conditions, reflecting seasonal habituation effects, plays a significant role in 

explaining variability in daily travel behaviour. This emphasizes the importance of 

incorporating seasonal effects in the analysis of meteorological impacts (Creemers et al., 

2015). 

Liu et al. (2017) emphasize that most studies did not separate the effects of weather and 

climate, while these cannot be separated. For instance, 10°C in summer in a country of 

cold climate may have a completely different effect from 10°C in winter in the same 

country. The former may be interpreted as ‘cold in summer’, while the latter may be 

interpreted as ‘warm in winter’. In an attempt to solve this issue, Sabir (2011) used dummy 

variables to represent trips that took place in different seasons (seasonal dummies), 

together with the temperature variables in a travel behaviour model and found significant 

effects of the seasonal dummies. However, Liu et al. (2017) continue, this approach hinders 

the interpretation of the effect of temperature variables because their parameters should 

then be interpreted as the effects of changing temperature values in different temperature 

intervals after controlling for the season, which does not seem to be reasonable. Liu et al. 

(2015a) proposed an alternative approach; to allow the parameters of different 
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temperature intervals to interact with the parameters of seasonal dummies. In other 

studies, Liu et al. (2014, 2015b) proposed another approach to separate the effect of climate 

and the effect of weather. They used the mean of historical meteorological variables or 

thermal comfort measures in a given month and given location of each trip as a variable 

to represent climate effect. They used the standardised deviation against this variable to 

represent the weather effect (Liu et al., 2017). Liu et al. (2017) conclude that there is still 

no consensus on how the effect of climate should be represented. Therefore, more relevant 

empirical evidence on the effect of weather on cycling travel behaviour is needed. 

Analysing GPS-based cycling routes throughout the year can certainly be a step in the 

right direction.  

2.6 Personal characteristics and cycling 
As mentioned before, weather effects on cycling behaviour may differ for trip purposes and 

personal characteristics (Böcker et al., 2013). According to Heinen, Wee and Maat (2010) 

the impact of gender on cycling appears to be country specific. In countries with low cycling 

rates, men tend to cycle more; while in countries with high cycling rates, such as the 

Netherlands and Belgium, cycling is also popular among women (Heinen, Wee & Maat, 

2010). There are studies, however, that indicate differences in cycle behaviour between 

gender.  

Edmond et al. (2009) state that women, more than men, avoid risk and anticipate by either 

not traveling by bicycle, or by choosing a different route where the travel conditions are 

safer (Edmond et al., 2009). Concerning the route choice of cyclists and the distribution 

between man and woman, it can be suggested that women will mainly choose the shortest 

route, while men are more willing to take a detour (Heinen, Wee & Maat, 2010).  

In their study in Sweden, Bergström and Magnusson (2003) discovered that women 

mention precipitation more often as reason not to cycle than men. Keay (1992) detects 

considerable female cyclist reductions during light rain in Australia, while male cyclist 

reductions only occur during heavier rainfall. Also, women, recreationists and commuters 

have a greater aversion to rain (Bergström and Magnussen, 2003). Böcker et al. (2015) 

found evidence that women and older aged people have colder thermal experiences. 

The impacts of weather on non-commuters are much more significant than on commuters. 

For instance, rising temperature in a ‘colder than normal’ day encourages non-commuters 

to ride in warm months, while that is not the case in cold winter (Böcker, Dijst, et al., 

2013; Liu et al., 2015a, 2015b, 2016). Diáz et al. (2002) mentioned a higher impact of heat 

on vulnerable population groups such as elderly. Although no direct link to travel 

behaviours was made, urban heat island could influence travel behaviour of older cyclists. 

Precipitation and wind speed affect both commute and non-commute cycling in a negative 

way (Aaheim & Hauge, 2005; Flynn et al., 2012; Heinen et al., 2011; Liu et al., 2017). 

Moreover, women cyclists care more about the presence of daylight than men (Bergström 

& Magnusson, 2003). However, this important aspect of cyclists’ travel behaviour, 

sunlight, is still overlooked. Currently, no research exists that looks into changing routes 

between sunset and sunrise.   

2.7 Spatial environment and cycling 
Variations in land use and transportation networks may also affect the impact of weather 

route choice behaviour of cyclists. Most studies have focused on a single travel behaviour 

dimension, such as mode choice or trip distance, while only a few have developed models 
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involving several travel behaviour dimensions (e.g. Böcker et al., 2015; Liu et al., 2015a). 

Moreover, scientists have tended to focus on the push and pull factors at the origin and 

destination points, while the actual route between those two points remained rather 

unexplored (Duppen and Spierings, 2013).  

Helbich et al. (2014) also emphasize that the locational component and the spatial 

variations in weather effects on behavioural outcomes have been underexplored. Although 

some empirical results demonstrate different effects of weather conditions on cycling 

between different spatial settings (e.g. Brandenburg et al., 2004; Phung and Rose, 2008; 

Thomas et al., 2013). Aaheim and Hauge (2005) revealed larger precipitation effects on 

mode choice in the Bergen city centre compared with the outskirts, resulting from a more 

exclusive weather-independent car use in suburban areas. Phung and Rose (2008) 

demonstrated that cycling in suburban and weather-exposed areas is more sensitive to 

precipitation than cycling in inner-city and sheltered areas. 

GPS trajectories can provide a more exact representation of the different environments 

cyclists are exposed to. It would also open ways to directly assess the effects of land use 

patterns and lower-scale street designs on route choice behaviour. Such an approach could 

therefore provide a clearer understanding of localised weather conditions and interrelated 

route choices (Helbich et al, 2014). Since the personal characteristics regarding cycling 

and the environment of cyclists in the Netherlands may differ from the rest of the world, 

exploring the relationship between weather and cycling on route choice behaviour in the 

MRE may bring new insights for the Dutch context.  

2.8 Different ways of assessing the relationship between weather and 

cycling 
According to Zhao et al. (2018), survey analysis and big data mining provide a solid 

foundation for analysis of associations of weather and the use of bicycles. Liu et al. (2017) 

agree and argue that traditional survey data includes detailed individual characteristics. 

These types of data can help researchers to further understand how weather affects travel 

decision-making processes. However, impacts of weather elements such as temperature 

and rainfall on cycling are difficult to be quantitatively estimated from studies based on 

survey data due to small sample size (Liu et al., 2017; Zhao et al., 2018). Besides, cyclists 

are often directly subject to weather and thus respond more complicatedly to the changes 

in weather conditions as compared to car users or transit passengers. In addition, cycling 

can be used for both utilitarian and leisure purposes. To analyse the weather-cycling 

relationship, it is therefore important to include the trip purpose in the analysis (Zhao et 

al., 2018). By using technology of smart counters or cards, bicycle usage can be recorded 

automatically, which makes it possible to examine weather-cycling relationship at a larger 

scale to complement the self-reported survey results (Zhao et al., 2015).  

Compared to survey data analysis, Zhao et al. (2018) argue, the research on big data 

mining in terms of the weather influence on bicycle usage is relatively small. One frequent 

reason is the lack of big data. To investigate the weather-cycling relationship, it is 

necessary to consider the impact of the weather on different days of week or times of day 

on bicycle usage, which results in large amounts of data within each period of interest. 

However, automatic data collection for cycling have become available only in recent years 

with the installation of smart cycling counters and the usage of smart cards (Zhao et al., 

2018). Nowadays, passively generated data (such as GPS trajectories on travel routes) can 

record multi-day travels of a given individual (Liu et al., 2017). Collecting GPS trajectories 
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saves both time and money and solves the problem of limited sample size (Li, 2017). This 

creates many scientific opportunities, since the variation of everyday weather influences 

individual travel patterns throughout the seasons (Van Leeuwen, Koetse, Koomen, & 

Rietveld, 2009), which plays a significant role in explaining variability in daily travel 

behaviour (Creemers et al., 2015).  

2.9 Conclusion 
Studies regarding cyclists’ route choice behaviour have shown that they do not always 

choose the shortest route to their destination. Various weather, personal and 

environmental related factors influence cyclists’ route choice, which are shown in figure 

2.1. Although previous already studied these factors, except for sunlight, GPS trajectories, 

collected throughout the year, can provide new interesting insights. To emphasize once 

again; these factors may vary between different geographical contexts.  

 

Figure 2.1: Conceptual model. 
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3. Methodology  
This chapter describes how the research is carried out step by step and justifies the 

methods that are used for executing the study. First, the choice for the revealed preference 

method is explained by comparing stated and revealed preference studies. Thereafter, the 

study area is described. Followed by a detailed description of all the research methods 

within this study. 

3.1.1 Stated preference studies 

Route choice behaviour has been researched in many different ways. Until recent years, 

the literature on bike route choice was exclusively based on stated preference (SP) data 

(Zimmermann et al., 2017). For instance, respondent take part in a survey in which they 

were asked to evaluate routes based on their main characteristics (Winters et al., 2011; 

Zimmermann et al., 2017). Some SP based studies were limited to performing a descriptive 

analysis without estimating a formal model, while others used multinomial logit or 

regression analysis methods (Zimmermann et al., 2017). Although SP studies can be 

relatively inexpensively implemented and are able to evaluate alternatives that are not 

yet available, they also have a number of well-known shortcomings (Vedel et al., 2017; 

Zimmermann et al., 2017). The limitations of SP studies arise mostly from the difference 

between claimed and observed behaviour, as described by Sener et al. (2009). Therefore, 

SP studies does not always reflect the reality of the individual’s route choice options and 

the preferences often do not manifest in reality (Broach et al., 2012; Tilahun et al., 2007; 

Winters et al., 2010). Zimmermann et al. (2017) confirm that it is indeed difficult for SP 

studies to put respondents in a setting where they can best reproduce the behaviour they 

exhibit in reality. Additionally, most stated preference studies are small-scale studies (Liu 

et al., 2017; Zhao et al., 2018). Therefore, they are often under sampled, biased and are 

not representative to generalize cycling behaviour because these studies deal with many 

limitations.  

3.1.2 Revealed preference studies 

Revealed preference (RP) studies were enabled by the emergence of geographic 

information systems (GIS) which gave access to new types of data. Data was then still 

collected through surveys, but instead of being put in hypothetical choice situations, 

participants had to recall their actual commuting routes, which were subsequently 

analysed with GIS (Zimmermann et al., 2017). 

While providing useful insights, these first attempts to analyse bike route choice based on 

RP data never resulted in the estimation of a full route choice model, as observed by 

Broach et al. (2012). In particular, the models lack a comprehensive choice set of paths 

since the recalled route is compared mostly only to the shortest path (e.g. Harvey et al., 

2008). The models focused on predicting specific aspects of route choice, such as the 

distance deviation from the shortest path or the presence of bike facilities but cannot be 

applied to predict path probabilities for a large set of routes. In other words, they are 

certainly useful for behavioural analysis, but not for trip distribution in a network 

(Zimmermann et al., 2017). The first RP study that overcame these limitations was the 

work of Menghini et al. (2010). Its main innovation was to exploit automatically processed 

GPS-based observations. Hence Menghini et al. (2010) were the first to obtain a large-

scale GPS sample of cyclists’ trajectories matched to a suitable network and to estimate a 
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complete bike route choice model. Revealed preference studies are now considered as an 

established way to investigate route choice behaviour (Romanillos et al., 2015). 

Some other studies followed the steps of Menghini et al. (2010), but overall the literature 

on bike route choice based on RP is still in its early stages compared to its car counterpart. 

Notably, Hood et al. (2011) extended the Zürich results of Menghini et al. (2010) to the US 

context, in a study based in San Francisco. Broach et al. (2012) contributed as well to the 

state of the art by estimating a model comprising a richer set of attributes.  

Since GPS is getting more and more accurate and GPS is widely available large-scale 

studies can easily be set up at low costs (Hood et al., 2013). This provides opportunities to 

gain more insight into the previously under sampled cycling research. Also, possible gaps 

and ambiguity are avoided while identifying routes people use in reality (Zhu and 

Levinson, 2015).  

Even though GPS studies are considered valuable, some challenges and limitations still 

exist. The quality of GPS data is influenced by external conditions, and therefore open 

space and clear skies are ideal for collecting accurate GPS data (Casello et al., 2011). This 

might lead to some inaccuracies in case a cyclist rides between or close to large structures, 

through tunnels or when it is clouded outside. Another challenge in revealed preference 

studies is the sampling of the cyclists, because it determines to a large extent for what 

purposes the data can be used and generalized. Many cycling studies deal with the 

sampling problem; the targeting of cyclists in studies from Sener et al. (2009) and Broach 

et al. (2012) lead to a sample of confident cyclists with a road warrior mentality for 

instance. Finally, Tilahun et al. (2007) state that revealed preference observes only the 

final consumer choice and does not take into account how the cyclists came to their final 

decision or how cyclists would act in case of future- or fictional situations.  

3.1.3 Chosen method 

In order to study the effects of weather on route choice behaviour, the choice has been 

made to use a GPS based revealed preference method. This method makes it possible to 

observe route choice behaviour by comparing the chosen routes of the cyclists to the 

shortest routes.  The relationship between personal characteristics, weather, spatial 

environment and route choice behaviour is investigated by statistically comparing 

multiple attributes on the chosen and the shortest route. It is also examined whether the 

amount of deviation from the shortest route can be explained by the difference between 

the various attributes on both routes. The following paragraphs explain the used methods 

in more detail. 
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3.1.4 Research area 

The impacts of weather conditions on commuting cyclists’ route choice behaviour is 

examined within the Metropolitan Region of Eindhoven (MRE) to be specific. This area 

covers 21 municipalities (see figure 3.1), has over 750.000 inhabitants (CBS, 2018) and 

exists of different types of land use, such as agricultural land, forests, villages and a 

densely built up city centre. This region covers the same municipalities as the COROP 

region Noord-Brabant Zuidoost (CBS, 2017). COROP is a classification which is used for 

analytical purposes in the Netherlands.  

The available GPS dataset called ‘B-Riders’ also covers this entire region. Finally, a 

weather station of the Royal Netherlands Meteorological Institute (KNMI) is located in 

Eindhoven, resulting in adequate and detailed information about weather conditions.  

 

Figure 3.1: Municipalities within the Metropolitan Region of Eindhoven.  
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3.2 Research methods 
This study can be divided into several activities. An overview of these activities, and thus 

the research process, are presented step-by-step in figure 3.2. The following paragraphs 

elaborate on the different steps of the research process, except for the literature research, 

since this has already been treated in section 2.  

 

Figure 3.2: Research process.  

3.3 Collecting data & sampling 
For this study, several weather-, environmental- and cycle related datasets are needed. 

The next paragraphs describe the sources and formats of the used datasets.  

3.3.1 B-Riders 

- Respondents, routes and cycle network 

The commuting cycle routes are derived from a GPS-based dataset on cycling behaviour, 

provided by B-Riders (2014). The B-Riders dataset emerged from an electric bicycle and 

speed pedelec stimulation program performed in the Dutch province of Noord-Brabant. 

The dataset covers the entire province of Noord-Brabant, which naturally covers the 

research area: The Metropolitan Area of Eindhoven. This program was originally initiated 

to generate interest for e-bikes, but also resulted in a lot of valuable GPS data. These GPS-

tracks have been stored and numbered as ‘links’. These links refer to unique line segments 

in a network dataset called ‘Links’, which is also obtained from B-riders. The quality of 

this network dataset will be checked using the cycle network dataset of the Fietsersbond 

(the Dutch Cycling Union), see section 3.3.2. 

The B-Riders dataset is unique in its kind because it does not only provide GPS tracks, 

exact start and arrival times and cycling speed, but it also provides individual 

characteristics such as gender, age and trip purpose (e.g. commuting or recreational). Due 

to privacy concerns, the age of the respondents has been rounded to five years.  

3.3.2 Fietsersbond and BBG 

- Cycle network and environmental data 

The second dataset that is used is the cyclist network dataset of the Fietsersbond, a 

national cycling association. This dataset consists of all digitized roads in the Netherlands 

that are accessible for cyclists and is composed by means of volunteered geographic 

information (VGI). According to Goodchild and Li (2012) VGI is a type of crowd-sourcing 

in which people create and contribute georeferenced facts about their spatial environment. 

The cycle network of the Fietsersbond, which they also use in their own route planner, can 

therefore be considered as a detailed and up-to-date source regarding cyclist networks in 

the Netherlands. This network is stored in vector format and contains additional 
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attributes, such as road type, environment, degree of illumination and the presence of road 

salt during winter time. Because the network is built by volunteers, it is possible that 

values are subjective. That is why the environmental attributes are checked by comparing 

them to a reliable dataset that features information about the spatial environment: the 

BBG (the national land use dataset). After comparing the environmental attributes of both 

datasets in ArcGIS, the Fietsersbond datasets seemed to have many missing and 

misplaced values. Hence it has been decided to use the BBG as leading dataset for the 

spatial environment.  

3.3.3 KNMI  

- Weather data 

The datasets regarding weather conditions are obtained from the Royal Dutch 

Meteorological Institute (KNMI). This Dutch national weather service maintains a 

database with detailed information on national, regional and local weather conditions of 

the present and previous years. One of the weather stations of the KNMI is located in 

Eindhoven. The KNMI therefore is the main source of hourly data on temperature, 

precipitation, wind speed/direction and daylight. These datasets are presented in csv or 

text format and have been converted to usable tables. Since the routes contained 

information about the data and the start and end time, it is possible to match the hourly 

weather conditions to the routes.   

3.3.4 Data sample B-Riders dataset 

As stated before, the B-Riders dataset contains information on age, gender, trip purpose 

and start and arrival time. In order to obtain the information needed for this study, one 

sample is initially drawn. Since the MRE is the research area, the dataset will be narrowed 

down to routes that have the origin and destination within this area. Each respondent has 

cycled at least one route within the MRE region. Subsequently, a random sample is drawn 

according to the following steps: 

- The trip purpose is either from ‘home’ to ‘work’ or from ‘work’ to home. 

- The dataset is firstly grouped by user id and then by route id. 

- Per respondent, one random trip has been chosen. 

This resulted in a sample containing one commuting trip per respondent that started and 

ended within the research area. Since this study focuses on commuters, it is important to 

compare its gender and age distribution to that of the employed labour force of the MRE 

region. As table 3.1 shows, it seems that the gender distribution is highly representative. 

Regarding age, the distribution is skewed: The respondents are substantially older than 

the average employed labour force of the MRE. This could be due to the fact that the B-

Riders dataset consists of users of an electric bicycle or speed pedelec. For a detailed 

overview of the age distribution of the respondents, see Appendix I.  

 Male Female <25 years 25-44 years >45 years 

MRE (N = 370.000) 55,4% 44,6% 14,8% 42,2% 43% 

Sample (N = 734) 53,4% 46,6% 0,6% 26,7% 72,7% 
Table 3.1: Age distribution MRE and sample. 

Source: B-Riders (2014) & CBS (2019).  
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Initially, the sample exists of 734 routes. However, some routes will be excluded in order 

to achieve research objectives of this study as well as possible. All routes with a deviation 

of more than 10 kilometres will be excluded, since it is very unlikely that commuters would 

take a detour this large. This process is described in section 4.2.  

3.4 Prepare and enrich cycling network 
Before the chosen and shortest routes can be created it is necessary to prepare and enrich 

the cycling network. The B-Riders dataset is already provided with a routable cycle 

network called ‘Links’, existing of lines and vertices. These segments are all uniquely 

numbered and correspond with the variable ‘linknumber’ within the routes’ csv files of the 

B-Riders dataset. This makes it possible to create the chosen routes. The methods used to 

compute the chosen and shortest routes are explained in more detail in section 3.5. 

The quality of the ‘Links’ network is checked using the cycle network of the Fietsersbond. 

However, these two networks are geographically not perfectly matched. Which means that 

the computed routes would not match with the Fietsersbond network as well. In order to 

match the ‘Links’ network with the correct road segments of the Fietsersbond network, a 

buffer operation, with a distance of 5 meters, is performed. The line segments of the cycle 

network are selected when the centre of those segments lays within the buffer. The result 

is a geographically correct, routable cycle network. This network will subsequently be 

enriched with the spatial environment attributes of the BBG land use dataset (CBS, 2008), 

using geo-processing and spatial join methods. The original BBG land use dataset consists 

of multiple land use categories (see Appendix II), which are reclassified into six categories, 

as shown in table 3.2. Terrain that is impassable for cyclists will be excluded from the new 

attribute table. These six categories will be used both separately and combined. In order 

to investigate whether there are differences between urban and rural environment the six 

categories are also merged into just two categories: Built and Natural, shown in table 3.2 

as well. These spatial environment categories are used to create the final dataset. 

Reclassified category Merged category 

Residential, retail & public facilities Built 

Business & industrial 

Park & other public green Natural 

Open natural landscape 

Agricultural 

Closed natural landscape (mainly forest) 
 Table 3.2: Reclassified and merged spatial environment categories. 
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3.5 Create chosen and shortest routes 
After the routable cycling network is enriched with the spatial environment attributes, 

the chosen and shortest routes can be determined. As explained in section 3.3.1, the ‘Links’ 

network consist of uniquely numbered line segments, which correspond with the variable 

‘linknumber’ in the routes’ csv files of the B-Riders dataset. These csv files also contain 

the routeid for each unique route, a sequence code that shows the order in which the 

respondents have travelled specific road segments and the start and arrival time for each 

route. By using Modelbuilder in ArcGIS, a model (see Appendix III) is created which 

computes a shapefile for each chosen route within the sample. These shapefiles contain 

the length per line segment as well as per spatial environment category. Finally, all the 

chosen routes are merged into one shapefile that will be used to create the final dataset.  

Before the shortest routes can be computed; the origin and destination points of each route 

have to be determined (see Appendix IV). Each chosen route exists of several links, stored 

in a specific order (sequence). This makes it possible to derive the beginning and end point 

of a route by selecting ‘sequence 1’ for origin point. The destination point was selected by 

a vice versa category; the ‘sequence 1’ in that category represented the end point of a route. 

When the origin and destination points of the chosen routes have been determined, it is 

possible to calculate the shortest routes using the Network Analyst extension in ArcGIS, 

which can transform the cycle network into a route layer. During this process, the costs 

are assigned to the road’s length in meters. Also, several restrictions such as travel 

direction and accessibility are set. Thereafter, a model (see Appendix V) is created using 

Modelbuilder in ArcGIS which computes the shortest route belonging to each chosen route. 

Just like the chosen routes, the chosen routes are also merged into one shapefile that will 

be used to create the final dataset. 

Using another model (see Appendix VI), a straight line between the origin and destination 

points is also drawn, which made it possible to calculate the direction of travel for each 

route. This variable will be used to calculate to what extent the cyclists have head- or 

tailwind, the following section elaborates on this. 
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3.6 Creation of final dataset 
To investigate whether the amount of deviation and the differences between 

environmental factors can be explained by personal characteristics and variation of 

weather conditions, the chosen and shortest routes have to be compared. Therefore, a final 

dataset will be created that can be used in the statistical analysis. The final dataset is a 

result of calculations with the output tables of the chosen and shortest routes, enriched 

with personal- and weather-related variables. To measure the deviation, both the absolute 

and relative deviation are calculated following these two formulas: 
 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑚𝑒𝑡𝑒𝑟𝑠): ∆𝑙𝑒𝑛𝑔𝑡ℎ =  𝑙𝑒𝑛𝑔𝑡ℎ𝑐ℎ𝑜𝑠𝑒𝑛 − 𝑙𝑒𝑛𝑔𝑡ℎ𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 
 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑟𝑎𝑡𝑖𝑜): 𝑅𝑎𝑡𝑖𝑜 =  𝑙𝑒𝑛𝑔𝑡ℎ𝑐ℎ𝑜𝑠𝑒𝑛/𝑙𝑒𝑛𝑔𝑡ℎ𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 
 
For the relative deviation, a value of 1.00 indicates an identical length of the shortest 

compared to the chosen route, whereas values bigger than 1.00 indicate that the chosen 

routes are longer than the shortest routes. Due to the fact that the chosen routes are 

compared with the shortest possible routes, values below 1.00 cannot occur. The difference 

in length and coverage per spatial environment category is calculated as well. For all 

categories this is done in the following manner: 

 

Difference in length (kilometres) per spatial environment category: ∆𝑥 = 𝑥𝑐ℎ𝑜𝑠𝑒𝑛 − 𝑥𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 

Difference in coverage (%) per spatial environment category: ∆𝑥 = 𝑥𝑐ℎ𝑜𝑠𝑒𝑛 − 𝑥𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 

The personal- and weather-related attributes do not differ between the chosen and the 

shortest routes, since they are both linked to the same respondent and timeframe. The 

final dataset (see section 4.3) will have the following personal- and weather-related 

attributes: 

- Age in years (ratio) 

- Gender (nominal) 

- Head- or tailwind (ratio) 

- Windspeed in km/h (ratio) 

- Temperature in ˚Celsius (interval) 

- Precipitation in mm (ratio) 

- Dark/light (nominal)  

For the nominal (dichotomous) variable attributes, dummy variables will be created to 

ensure that these variables can also be included in the statistical analysis. Before 

executing the statistical analysis, routes with an extreme deviation (>10km) will be 

eliminated from the final dataset. Table 3.3 is an example of the final attribute table of 

route 1575332. 

Length Sample Gender Age Temp. Prec. Windspeed Headwind Dark/ 

light 

9,37 Rain F 24 12,8 12,1 14 96 Light 

Abs. dev. 

Total 

Abs. Δ 

Built 

Abs Δ 

Natural 

Abs. Δ 

Cat. 1 

Abs. Δ 

Cat. 2 

Abs. Δ 

Cat. 3 

Abs. Δ 

Cat. 4 

Abs. Δ 

Cat. 5 

Abs. Δ 

Cat. 6 

0,154 -0,146 0,3 -0,146 0,0 0,0 0,057 0,328 -0,085 

Rel. dev. 

Total 

Rel. Δ 

Built 

Rel. Δ 

Natural 

Rel. Δ 

Cat. 1 

Rel. Δ 

Cat. 2 

Rel. Δ 

Cat. 3 

Rel. Δ Cat. 

4 

Rel. Δ Cat. 

5 

Rel. Δ 

Cat. 6 

2,6% -2,9% 2,9% -2,9% 0,0% 0,0% 0,7% 4,3% -2,1% 

Table 3.3: Final attribute table for route 1575332. 
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3.7 Statistical analysis 
Eventually, the influence of personal characteristics and weather conditions on route 

choice behaviour will be investigated using a multiple linear regression method. The main 

goal in this research for using regression analysis is to determine whether there is a 

significant relationship between the dependent and independent variables, and if so, how 

well this relationship can be explained in linear model(s). However, before such models 

can be built, several statistical tests are performed to determine whether there are 

significant differences between the chosen and shortest routes, between spatial 

environments and between males and females. After several statistical tests (such as T-

test, ANOVA and Welch) are performed, an attempt can be made to create linear models. 

3.7.1 Multiple linear regression  

As a final product of this study, several multiple linear regression analyses will be 

executed. The models should explain average deviation or differences in length or coverage 

of the spatial environment categories by using a number of independent variables. Within 

these models, the focus lies on personal characteristics, weather conditions and the spatial 

environment. Although it seems logical that weather conditions and the spatial 

environment influence cycling route choice behaviour, these variables have not been 

studied before, using similar methods and amount of data. Therefore, this can be 

considered as an exploratory research. This makes it relevant to elaborate on the 

methodology of multiple regression models.  

According to Braun and Oswald (2011) the combination of linear regression and 

exploratory research could cause some problems when analysing the impact of 

independent variables. The authors emphasize that one must be certain of the linearity 

and that one should be aware it is not confident whether a linear model fits the data the 

best. Besides Braun and Oswald (2011), Field (2013) also discusses multiple regression 

methodologies quite extensive. A common used way of interpreting and comparing 

variable effects within multiple linear regression is making use of the Beta (β). In order to 

describe the studied phenomena correctly, it is important to gain insight into the relative 

importance of predictors within a regression model. However, determining the relative 

importance of predictors is always ambiguous when the predictors are correlating. Indices 

can therefore be calculated to reflect on the relative importance of predictors. Braun and 

Oswald (2011) mention three indices (Incremental R², General dominance weights and 

Relative importance weights), while Field (2013) only uses the incremental R² to validate 

predicator explanation of dependent variables. Since it is relatively easy to use the 

incremental R² in SPSS software, this method will also be used within the multiple 

regression analyses of this study.  

Field (2013) describes several ways of entering predictors in a multiple regression model. 

The stepwise method in combination with automatic linear modelling may seem helpful 

when trying to find the best fitting model for exploratory predictors. Yet there are many 

disadvantages of this method. Model estimations are less reliable since this method 

usually results in missing significant predictors and in too high estimates of significance 

and R² values of the included predictors. 

Besides, all weather conditions are interdependent in reality. In order to create a model 

that predicts reality as well as possible, it is important to include all weather-related 

variables simultaneously. Because of the exploratory elements of this study, the enter 

method is not ideal as well. Using the hierarchical method is a compromise between the 
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two methods. Based upon the conceptual model (see section 2.9), the predictors are added 

to the model in the following sequence: (1) personal characteristics, (2) weather conditions.  

3.7.2 Model variables 

The dependent and independent variables in the linear model(s) are as follows: 

Dependent (Y): - The amount of deviation from the shortest route (in 

absolute or relative terms). 

  

Independent (X): - Personal characteristics. 

 - The weather conditions at the time the route was driven. 

 

OR 

 

Dependent (Y): - The difference in length or coverage of spatial 

environment category x from the shortest route (in 

absolute or relative terms). 

  

Independent (X): - Personal characteristics. 

 - The weather conditions at the time the route was driven. 
 

Resulting in models with the following structure: 𝑌 =  𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3+. . +𝑏𝑘𝑏𝑋𝑘 
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4. Data preparation  
 

4.1 Prepare and enrich cycling network  
Before the data can be analysed it is prepared to make sure there are no errors that may 

disrupt the research process. First of all, the cycling network is set up. This is an important 

step in order to create the chosen and shortest routes for all taken trips later on in the 

process. As stated in section 3.4, the ‘Links’ and Fietsersbond cycle networks were 

geographically not perfectly matched. The buffer operation resulted is a geographically 

correct, routable cycle network. Using geo-processing and spatial join methods, the 

network is enriched with the reclassified spatial environment attributes of the BBG land 

use dataset, as shown in figure 4.1.  

 

Figure 4.1: Coverage of spatial environment categories on cycle network. 

A new attribute is added to the dataset; a column representing the newly calculated length 

per segment in meters. Using this variable, the travelled length per spatial environment 

category can be calculated. As figure 4.1 and table 4.1 show, a clear majority of the spatial 

environment of the cycle network consists of residential, retail and public buildings, 

followed by agriculture.  
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Spatial environment 

category 

Description  Number of 

segments 

Total length 

in km 

1 Residential, retail & 

public facilities 

36847 2591,273 
 

2 Bussiness & industrial  3044  266,836 

3 Park & other public 

green 

1709 135,501 
 

4 Open natural landscape 178 142,443 
 

5 Agricultural 9833 1880,063 
 

6 Closed natural landscape 

(mainly forest)  

2604 881,679 
 

Table 4.1: Distribution of spatial environment categories over cycle network. 

4.2 Create shortest and chosen path  
After the cycle network has been updated with the spatial attributes, the chosen routes 

can be determined. As already explained in section 3.4, the GPS-tracks have been 

numbered as ‘links’. These numbers refer to unique line segments in the routable cycle 

network. By using ModelBuilder in ArcGIS, several geo-processing tools (see Appendix III) 

are deployed to compute the chosen routes. This resulted in 734 unique routes that are 

shown in figure 4.2.  

 

Figure 4.2: Coverage of chosen and shortest routes on cycle network, separate. 

As explained in section 3.5, ArcGIS’ Network Analyst extension and Modelbuilder are used 

to compute the shortest routes between the origin and destination point of each chosen 

route. Since the route layer does not feature environmental data, the shortest routes are 

spatially joined to the enriched cycle network in ArcGIS to add all attribute information. 

The shortest routes of the first sample are also shown in figure 4.2. At first glance, figure 

4.3 shows that many chosen and shortest routes differ from each other.  Figure 4.4 gives 

an example of the difference in spatial environment coverage between the chosen and 

shortest path of route 732592. Whether these differences are significant will be 

determined in section 5. 
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Figure 4.3: Coverage of chosen and shortest routes, combined. 

 

Figure 4.4: Example difference in spatial environment coverage between chosen and shortest route.  
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Before the data can be 

analysed, several outliers have 

been removed. Since this study 

is focussed on commuting 

cyclists, it can be assumed that 

routes which deviate more than 

10 kilometres have more trip 

purposes than just commuting. 

Although a deviation of 10 

kilometre is still very wide, no 

more routes have been 

removed in order to represent 

the reality as well as possible. 

Figure 4.5 gives an example of 

a route in which the cyclist has 

cycled more than twice as far; 

including this route, 27 cases 

have been removed, resulting 

in 707 routes. 

Figure 4.5: Example route with extreme deviation. 

As already mentioned in section 

3.5, the origin and destination 

points are not only used to 

compute the shortest routes. 

For each route, a straight line 

between the origin and 

destination points is drawn, 

which made it possible to 

calculate the direction of travel, 

as shown in figure 4.6. This 

variable is used to calculate to 

what extend the cyclists had 

head- or tailwind. The resulting 

variable is used in the final 

dataset, as will be explained in 

section 4.3.  

 

 

  

Figure 4.6: Example cycling direction 

of route 691006. 
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4.3 Final dataset 
The chosen and shortest routes have already been linked to the enriched cycle network 

and the weather-related variables. Subsequently the differences (Δ) between the two 

routes, as shown in figure X, are calculated. The personal- and weather-related attributes 

do not differ between the chosen and the shortest routes, since they are both linked to the 

same respondent and timeframe. Besides, no calculations were needed for these variables, 

with the exception of ‘Headwind’. This variable is calculated using the direction of travel 

and the wind direction.  

There are differences between travel distance and length or coverage per spatial 

environment between the chosen and shortest routes. These differences are calculated 

according to the formulas discussed in section 3.6. Table 4.2 shows an example of the final 

attribute table of route 1575332. Initially, all length-related variables were calculated in 

meters. These variables have been converted from meters into kilometres since cyclists 

travel rather large distances and it can be assumed that they would not take distances 

that small into account when determining their route.  

Length Sample Gender Age Temp. Prec. Windspeed Headwind Dark/ 

light 

9,37 Rain F 24 12,8 12,1 14 96 Light 

Abs. dev. 

Total 

Abs. Δ 

Built 

Abs Δ 

Natural 

Abs. Δ 

Cat. 1 

Abs. Δ 

Cat. 2 

Abs. Δ 

Cat. 3 

Abs. Δ 

Cat. 4 

Abs. Δ 

Cat. 5 

Abs. Δ 

Cat. 6 

0,154 -0,146 0,3 -0,146 0,0 0,0 0,057 0,328 -0,085 

Rel. dev. 

Total 

Rel. Δ 

Built 

Rel. Δ 

Natural 

Rel. Δ 

Cat. 1 

Rel. Δ 

Cat. 2 

Rel. Δ 

Cat. 3 

Rel. Δ Cat. 

4 

Rel. Δ Cat. 

5 

Rel. Δ 

Cat. 6 

2,6% -2,9% 2,9% -2,9% 0,0% 0,0% 0,7% 4,3% -2,1% 

Table 4.2: Final attribute table for route 1575332. 
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4.4 Sampling repeated 
In order to increase the variance within the data, two sampling approaches are tested. As 

already explained in section 3.3.4, the first sample is drawn randomly. Subsequently, it is 

decided to repeat the same procedure for three new samples (see figure 4.7). However, 

these samples are not drawn randomly, but represent relatively extreme weather 

conditions. The three new samples meet the same requirements as the first sample, but 

additionally, the KNMI datasets are used to select the routes for these new samples. The 

following samples with one unique route per respondent, starting and ending within the 

study area, are drawn: 

- Rain (399 routes with >1mm precipitation in the relevant hour) 

- Warm (399 routes with >25˚C in the relevant hour) 

- Wind (114 routes with >30km/h windspeed in the relevant hour) 

The idea behind this is to investigate whether relatively extremer weather conditions can 

predict cyclists’ route choice behaviour and to check if there are some mutual significant 

relations. Appendix VII compares the average weather conditions of the four samples with 

those of the research area. Including the first sample, 1619 unique routes from unique 

respondents will eventually be used in the statistical analysis. In the following sections, 

these samples will be referred to as follows: First, Rain, Warm and Wind. 

 

Figure 4.7: Partial repetition research process.  
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5. Data analysis 
 

In this section, the results of the data analysis are presented. The first part will 

statistically investigate differences between the chosen and shortest routes, between 

spatial environments and between males and females. In the second part, the influence of 

personal characteristics and weather conditions on cyclists’ route choice behaviour is 

examined using multiple linear regression models. 

 

5.1 General route statistics 
Before we can investigate what factors influence the deviation of the shortest routes, first 

the route lengths and deviations itself are investigated to see whether the respondents 

travelled further than the shortest alternatives at all. Also, the differences between spatial 

environments and personal characteristics are investigated. 

 

5.1.1 Differences in route length 

First of all, the routes’ lengths are compared to investigate if the commuting cyclists 

actually travelled longer routes than the shortest possibilities. When comparing the 

descriptive statistics for both type of routes (see table 5.1), it shows at first glance that the 

shortest routes are shorter than the chosen routes in general. This difference, however, 

can be due to chance and therefore the difference needs to be proven statistically. To 

investigate whether there is a significant difference between the average deviation of the 

two types of routes a paired samples T-test is used (Field, 2009).  

 

Therefore, the following null hypothesis is tested:  

H0 = The average length of the shortest and chosen routes are not different from 

each other.  

The corresponding alternative hypothesis is:  

HA = The average length of the shortest and chosen routes are different from each 

other.  

 

A paired samples T-test shows that on average, the length of chosen routes (M = 9,738) 

are significantly larger than the shortest routes (M = 8,922), t(1619) = 28,8, p < 0.01, r = 

0. 0,582. The effect size can be classified as large.  

Total sample Length 

chosen  

(km) 

Length  

shortest 

(km) 

Abs. deviation 

(km)  

(chosen-shortest) 

Rel. deviation 

(ratio) 

(chosen/shortest) 

Count 1619 1619 1619 1619 

Mean 9,738 8,921 0,817 1,144 

St. deviation 5,673 5,352 1,143 0,375 

Minimum 0,505 0,156 0 1,000 

25% 5,463 4,869 0,194 1,029 

50% 9,547 8,662 0,424 1,058 

75% 13,000 12,158 0,942 1,114 

Maximum 31,088 27,267 8,077 6,689 
Table 5.1: Descriptive statistics trip length. 

 

In general, the deviations from the shortest routes are not large. The first 50% of the 

chosen routes deviate less than 450 meters from the shortest route. Due to a number of 

outliers and variance in the data, the average deviation is 817 meters, or in relative terms; 
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the average deviation is 1.14 times as far as the shortest route.  Even though many routes 

are concentrated around small deviations relative to the shortest route, the value of the 

standard deviation suggests that there is a large variance in the absolute deviation of all 

routes. 
 
When comparing the descriptive statistics for the absolute deviation for the four different 

samples (see table 5.2), the average deviation differs between all four samples. The first 

sample seems to deviate less from the shortest route than the other three samples.  

Absolute 

(km) 

Total 1st sample Rain Warm Wind 

Count 1619 707 399 399 114 

Mean 0,817 0,585 0,993 1,037 0,867 

St. 

Deviation 

1,143 0,637 1,401 1,461 1,052 

Minimum 0 0 0,007 0,012 0,017 

25% 0,194 0,169 0,227 0,211 0,202 

50% 0,424 0,384 0,507 0,435 0,449 

75% 0,942 0,790 1,117 1,172 1,090 

Maximum 8,077 5,097 8,049 8,077 5,133 
Table 5.2: Descriptive statistics absolute deviation. 

To rule out if this is due to chance, the Welch test gives more insight into this matter. The 

Welch test is used as an alternative to the regular ANOVA test when the assumptions of 

the regular ANOVA are violated (Field, 2009). For the Welch test the H0 = There is no 

difference in means between the four samples; and the HA = There is a difference in means 

between the four samples. The Welch test shows that on average, the absolute deviation 

between the samples is significantly different: F = 20.993, p < 0.01. This allows to reject 

the null hypothesis with a 99% 

certainty. A Games Howell post 

hoc test is executed to find out 

which sample means significantly 

differ (Field, 2009). This test 

showed that the first sample 

significantly differed from the 

other three samples (see table 

5.3). Negative mean differences 

suggest that on average the 

absolute deviation of the first 

sample is lower than the absolute 

deviation of the other three 

samples. 

     Table 5.3: Results Games Howell test absolute deviation.  

  

 

 

 

Games 

Howell 

 Mean 

difference 

Sig. 

First Rain -0,408* 0.000 

Warm -0,453* 0.000 

Wind -0,282* 0.031 

Rain First  0,408* 0.000 

Warm -0,045 0.971 

Wind  0,126 0.724 

Warm First  0,453* 0.000 

Rain  0,045 0.971 

Wind  0,171 0.505 

Wind First  0,282* 0.031 

Rain -0,126 0.724 

Warm -0,171 0.505 
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Relative 

(ratio) 

Total 1st sample Rain Warm Wind 

Count 1619 707 399 399 114 

Mean 1,144 1,090 1,179 1,200 1,135 

St. 

Deviation 

0,375 0,185 0,471 0,513 0,196 

Minimum 1,000 1,000 1,001 1,003 1,004 

25% 1,029 1,026 1,032 1,033 1,032 

50% 1,058 1,052 1,059 1,066 1,070 

75% 1,114 1,097 1,123 1,142 1,149 

Maximum 6,689 4,022 5,266 6,689 2,119 
Table 5.4: Descriptive statistics relative deviation. 

When comparing the descriptive statistics for the four samples in relative terms (see table 

5.4), the lowest average deviation is found again in the first sample. To find out if there is 

a significant difference between the average relative deviations (and between which 

samples), again the Welch Test and Games Howell post hoc tests are executed. For the 

Welch test the H0 = There is no difference in means between the four samples; and the HA 

= There is a difference in means 

between the four samples. The 

Welch test shows that on average, 

the means of the relative 

deviation between the samples 

are significantly different: F = 

9.223, p < 0.01. The Games 

Howell test shows however that 

only the average deviation of the 

first sample is significantly 

different from the 2nd (Rain) and 

3rd (Warm) sample (see table 5.5). 

This implies that on average the 

relative deviation of the first 

sample is smaller than in those 

two samples.    Table 5.5: Results Games Howell test relative deviation. 

  

Games 

Howell 

 Mean 

difference 

Sig. 

First Rain -0,085* 0.003 

Warm -0,107* 0.000 

Wind -0,041 0.159 

Rain First  0,085* 0.003 

Warm -0,022 0.926 

Wind  0,044 0.457 

Warm First  0,107* 0.000 

Rain  0,022 0.926 

Wind  0,066 0.162 

Wind First  0,041 0.159 

Rain -0,044 0.457 

Warm -0,066 0.162 
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5.1.2 Difference between spatial environments 

Previous paragraph showed that there is a significant difference between the length of the 

chosen and shortest routes in general and that there are some significant differences in 

deviation between the four samples. However, possible variance between different types 

of spatial environment have not yet been discussed. Therefore, the spatial environment 

categories need investigation as well. Before the variables can be included in a regression 

model, this section examines whether the length and coverage per category is different on 

the chosen and shortest routes.  

A method that is often used to do this is comparing means. To investigate whether the 

means are the same or significantly different for the chosen and shortest routes, a paired 

samples T-test is executed for all six categories that are investigated. Additionally, these 

categories are divided into two groups: built- and natural environment; a paired T-test is 

also executed for these two categories. 

The following null hypothesis is tested first:  

H0 = The average length per category of the shortest and chosen routes are not 

different from each other.  

The corresponding alternative hypothesis is:  

HA = The average length per category of the shortest and chosen routes are different 

from each other.  

 
Spatial 

environment 

category 

Route N Mean 

(km) 

Mean 

difference 

(chosen-

shortest) 

t df p value r value 

(effect 

size) 

1 Chosen 1619 3,731 0,059 1,970 1618 0.049 0,049 
 

Shortest  1619 3,670 
     

2 Chosen 1619 0,809 0,120 6,978 1618 0.000 0,171 
 

Shortest 1619 0,689 
     

3 Chosen 1619 0,600 0,164 12,446 1618 0.000 0,296 
 

Shortest 1619 0,436 
     

4 Chosen 1619 0,181 0,035 2,571 1618 0.010 0,064 
 

Shortest 1619 0,146 
     

5 Chosen 1619 2,545 0,369 11,878 1618 0.000 0,283 
 

Shortest 1619 2,176 
     

6 Chosen 1619 1,874 0,070 2,638 1618 0.008 0,065 
 

Shortest 1619 1,804 
     

Built Chosen 1619 4,539 0,180 6,090 1618 0.000 0,150 
 

Shortest 1619 4,359 
     

Natural Chosen 1619 5,200 0,638 15,918 1618 0.000 0,368 
 

Shortest 1619 4,562 
     

Table 5.6: Mean differences of length per category (km). 

 

As table 5.6 shows, the average length of all the categories of the chosen routes are 

significantly longer than those of the shortest routes. The null hypothesis of the T-test can 

be rejected with a 95% (or higher) certainty for all categories and the alternative 

hypothesis can be accepted; the average length per category of the shortest and chosen 

routes are different from each other. Although, they are considered to have a (extremely) 

small effect size. This does not guarantee that the coverage per category is also different 

between the chosen and shortest routes.  
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Therefore, the following null hypothesis is also tested:   

H0 = The average coverage per category of the shortest and chosen routes are not 

different from each other.  

The corresponding alternative hypothesis is:  

HA = The average coverage per category of the shortest and chosen routes are 

different from each other.  

 

Spatial 

environment 

factor 

Route N Mean 

(%) 

Mean 

difference 

(chosen-

shortest) 

t df p value r value 

1 Chosen 1619 42,9 -2,8 -8,427 1618 0.000 0,205 
 

Shortest 1619 45,7  

    

2 Chosen 1619 8,2 0,5 2,647 1618 0.008 0,066 
 

Shortest 1619 7,7  

    

3 Chosen 1619 6,4 1,2 8,003 1618 0.000 0,195 
 

Shortest 1619 5,2  

    

4 Chosen 1619 1,4 0,3 2,531 1618 0.011 0,063 
 

Shortest 1619 1,1  

    

5 Chosen 1619 24,4 1,5 5,619 1618 0.000 0,138 
 

Shortest 1619 22,9  

    

6 Chosen 1619 16,6 -0,7 -2,96 1618 0.003 0,073 
 

Shortest 1619 17,3  

    

Bebouwd Chosen 1619 51,1 -2,3 -6,995 1618 0.000 0,171 
 

Shortest 1619 53,4  

    

Onbebouwd Chosen 1619 48,9 2,3 6,995 1618 0.000 0,171 
 

Shortest 1619 46,6  

    

Table 5.7: Mean differences of coverage per category (%). 

 
While the absolute differences are larger, the relative means of the categories do not differ 

that much. As table 5.7 shows, they differ between -2,8% and +2,3% and are considered to 

have a (extremely) small effect size. Still, the same applies to the difference in coverage 

per category as to the difference in length: the average coverage of all the categories of the 

chosen routes are significantly different from those of the shortest routes. The null 

hypothesis of the T-test can be rejected with a 98% (or higher) certainty for all categories 

and the alternative hypothesis can be accepted; the average coverage per category of the 

shortest and chosen routes are different from each other.  

This section indicated significant differences between the length and coverage of the 

spatial environment categories in general. In addition, paragraph 5.1.1 already showed 

that there is a significant difference between the length of the chosen and shortest routes 

in general and that there are some significant differences in deviation between the four 

samples. The next step is to investigate whether there are significant differences in the 

length and coverage of the spatial environment categories between the four samples.  
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Absolute 

(km) 

N 1 2 3 4 5 6 Built Natural 

Total 1619 0,059 0,120 0,164 0,035 0,369 0,069 0,179 0,637 

First 707 0,025 0,076 0,146 0,035 0,321 -0,019 0,102 0,483 

Rain 399 0,055 0,181 0,171 0,044 0,434 0,108 0,236 0,757 

Warm 399 0,084 0,111 0,200 0,059 0,405 0,179 0,195 0,843 

Wind 114 0,199 0,213 0,126 -0,086 0,314 0,102 0,411 0,455 

Table 5.8: Mean differences in length per category. 

Relative 

(%) 

N 1 2 3 4 5 6 Built Natural 

Total 1619 -2,8 0,5 1,2 0,3 1,5 -0,7 -2,3 2,3 

First 707 -1,8 0,2 1,0 0,3 1,6 -1,3 -1,6 1,6 

Rain 399 -3,4 0,7 1,4 0,3 1,4 -0,3 -2,7 2,7 

Warm 399 -3,8 0,4 1,4 0,4 1,7 -0,1 -3,3 3,3 

Wind 114 -2,9 1,8 0,9 -0,5 1,3 -0,6 -1,2 1,2 

Table 5.9: Mean differences in coverage per category. 

When comparing the differences in length and coverage of the spatial environment 

categories of the four samples (see table 5.8 and 5.9) many (minor) differences can be 

observed. To find out whether these differences are significant, the Welch test and Games 

Howell post hoc tests are executed once more. The Welch test shows that the difference in 

length per category is significantly different between certain samples for category 2, 6, 

Built and Natural (see table X). Despite that, the Games Howell test indicates that the 

difference in length of the ‘2nd’ category does not differ significantly between the samples. 

The Games Howell test still demonstrates the following significant differences: 

- The difference in length of the ‘6th’ category between the First and Warm samples 

(p = 0.022);  

- The difference in length of the ‘Built’ category between the First and Wind samples 

(p = 0.020); 

- The difference in length of the ‘Natural’ category between the First and Rain 

samples (p = 0.049); First and Warm samples (p = 0.003); Warm and Wind samples 

(p = 0.032). 

As table 5.10 shows, the Welch test indicates that the average difference in coverage per 

category does not differ significantly between the samples. These results are confirmed by 

the Games Howell test as well.   

Difference in length per 

category 

 Difference in coverage per 

category 

Spatial 

environment 

category 

F Sig. Spatial 

environment 

category 

F Sig. 

1 0.918 0.432 1 2.265 0.080 

2 2.664 0.047 2 1.783 0.150 

3 1.061 0.365 3 0.529 0.663 

4 1.755 0.155 4 2.534 0.056 

5 0.883 0.450 5 0.067 0.977 

6 3.245 0.022 6 1.507 0.212 

Built  3.231 0.022 Built  1.863 0.135 

Natural 5.628 0.001 Natural 1.863 0.135 

Table 5.10: results Welch tests. 
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Until now the variables ‘deviation’ and ‘spatial environment’ have been analysed both 

separately and combined. We now know that the chosen routes are indeed significantly 

longer than the shortest routes and that there is a significant difference in deviation 

between the four samples. Also, there are significant differences in the length and 

coverage of the spatial environment categories between the chosen and shortest routes 

and between a part of the samples. 

5.1.3 Differences in personal characteristics 

As last step before all variables can be included in multiple regression models, personal 

characteristics need some investigation as well. Hence this section investigates whether 

there are differences in length and share per category between males and females. Also, 

the influence of age on differences in length and share per category is examined as well. 

At first glance, tables 5.11 and 5.12 show many differences between males and females. 

On average, men tend to deviate 153 meters further from the shortest route than women. 

To find out whether these differences are significant, the ANOVA and Welch test are 

executed once more.  

Absolute 

(km) 

N Total 1 2 3 4 5 6 Built Natural 

Total 1619 0,817 0,059 0,120 0,164 0,035 0,369 0,069 0,179 0,637 

Male 851 0,889 0,034 0,137 0,189 0,022 0,409 0,098 0,172 0,718 

Female 768 0,736 0,087 0,101 0,136 0,050 0,325 0,038 0,188 0,548 
Table 5.11: Mean differences in length per category. 

Relative 

(%) 

N Total 1 2 3 4 5 6 Built Natural 

Total 1619 14,6 -2,8 0,5 1,2 0,3 1,5 -0,7 -2,3 2,3 

Male 851 14,1 -3,3 0,5 1,4 0,1 2,0 -0,8 -2,8 2,8 

Female 768 15,1 -2,3 0,5 0,9 0,4 1,0 -0,6 -1,8 1,8 
Table 5.12: Mean differences in coverage per category. 

Both tests show that on average, the means between males and females only significantly 

differ for the total absolute deviation, in route length in natural environment and in route 

length in category 3 (see table 5.13). A possible explanation for these small differences in 

deviation between males and females could be the use of e-bikes and speed pedelecs within 

the B-Riders program. When such bicycles are used, the travelled distance is less 

influenced by the amount of physical effort of the respondent.  

Absolute   Relative 

Category Anova 

Sig. 

Welch 

Sig. 

Category Anova 

Sig. 

Welch 

Sig. 

Total 0.007 0.007 Total 0.653 0.654 

Built 0.782 0.782 Built 0.133 0.134 

Natural 0.035 0.034 Natural  0.133 0.134 

1 0.385 0.386 1 0.129 0.13 

2 0.31 0.311 2 0.965 0.966 

3 0.043 0.042 3 0.115 0.115 



40 
 

4 0.304 0.299 4 0.129 0.136 

5 0.177 0.172 5 0.075 0.074 

6 0.255 0.252 6 0.772 0.771 

Table 5.13: Results ANOVA and Welch tests. 

5.1.4 Personal characteristics and route choice behaviour 

To investigate whether there is a linear relationship between age or gender and deviation 

or the differences in length and share per spatial environment category, several simple 

linear regression analyses are executed within the total sample, the results are presented 

in Appendix VIII and IX. These analyses only proved a small significant relationship 

between age and the share in built or natural environment and between gender and 

absolute deviation, ΔBuilt and ΔCat. 3. The use of e-bikes and speed pedelecs could be a 

possible explanation for this as well. Although the influence of gender and age seems 

minimal, these variables will be included in the multiple regression models. On their own, 

gender or age do not explain any deviation or difference that strong. However, these 

variables will be included in the final model to see how they react to each other and to the 

weather-related variables.  

5.1.5 Weather conditions and route choice behaviour 

To examine whether there is a linear relationship between weather conditions 

independently and deviation or the differences in length and share per spatial 

environment category, several simple linear regression analyses are executed within the 

total sample, the results are presented in Appendix X. These analyses show that especially 

dark/light can significantly explain differences of several dependent variables on its own. 

Also, windspeed, temperature and precipitation seem to explain variance of some 

dependent variables significantly. However, the same applies to all significant models; 

with an R² lower than 0.01, the strength of these relations are very weak.  

The next section will combine all variables in hierarchical multiple linear models to find 

out whether personal characteristics and weather conditions significantly explain absolute 

and relative deviation or differences between spatial environment categories on the chosen 

and shortest routes.  

5.2 Regression analysis 
This section will investigate whether people deviate further from the shortest route and if 

they deviate for a different spatial environment on the chosen route under certain weather 

conditions. The aim is to estimate hierarchical multiple regression models that can explain 

the deviation from the shortest route. Models are estimated for the four samples 

separately as well as combined. 

The null and alternative hypotheses upon which the hierarchical regressions models are 

based are:  

1. H0 = There is no relationship between the amount of deviation from the shortest 

route and ‘weather condition’. 

HA = There is a significant relationship between the amount of deviation from 

the shortest route and ‘weather condition’. 
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2. H0 = There is no relationship between the difference in length of ‘spatial 

environment category’ and ‘weather condition’. 

HA = There is a significant relationship between the difference in length of 

‘spatial environment category’ and ‘weather condition’. 

3. H0 = There is no relationship between the difference in share of ‘spatial 

environment category’ and ‘weather condition’. 

HA = There is a significant relationship between the difference in share of 

‘spatial environment category’ and ‘weather condition’. 

The null hypotheses will be rejected with 95% certainty when the model’s probability of 

the corresponding F-statistic is p ≤ 0.05. Table 5.14 shows the sequence in which the 

independent variables are included in the hierarchical multiple regression models.  

Model Independent variables Scale of measurement 

1 Age in years  Ratio 

Gender  Dichotomous (female = 1, male = 0) 

2 Age in years Ratio 

Gender Dichotomous 

Head- or tailwind Ratio 

Windspeed in km/h  Ratio 

Temperature in ˚Celsius  Interval 

Precipitation in mm  Ratio 

Dark/light  Dichotomous (dark = 1, light = 0) 
Table 5.14: Independent variables of the hierarchical multiple regression models. 

 

5.2.1 Correlation 

The first step of building a regression model is to identify correlations of all possible 

predictors. The correlation of the predictors of absolute and relative deviation of the total 

sample is used as example. The correlation matrices for the predictors of absolute and 

relative deviation can be found in Appendix XI. These matrices indicate that temperature, 

precipitation, dark/light and gender show a significant correlation with absolute deviation 

and that only temperature show a correlation with relative deviation. In addition, these 

correlations are very low (r < 0.1). It is also important to look for high correlations amongst 

the predictors. It is interesting to mention that age only significantly correlates with 

gender, while gender also has a significant correlation with absolute deviation, 

temperature and dark/light. These correlations are also very low (r < 0.1). The threshold 

for excluding variables from a multiple regression is r > 0.9; none of the correlation values 

surpass this value. These correlation matrices are also created for the other eight 

dependent variables and for the four samples separately; less and lower correlations were 

found here.  

5.2.2 Hierarchical multiple regression models 

Despite the little and low correlations of the predictors, hierarchical multiple regression 

models are estimated for each dependent variable, which are presented in Appendix XII 

and XIV. As stated in section 3.7.1, the personal characteristic variables age and gender 

are entered first. Subsequently, the weather-related variables are entered into the model. 

No distinction is made between variables with or without correlation with the dependent 

variables. In total, 90 models are estimated; 18 per sample and 18 for the total sample. 
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The analysis resulted in 11 models that are proven to predict route choice significantly, of 

which only 9 include weather-related variables. Table 5.15 shows a summarized overview 

of the results per dependent variable. The green coloured cells represent significant 

models including the weather-related variables, the yellow coloured cells represent models 

that are only significant without the weather-related variables. The R² and the 

significance level of the models are presented as well. 

Table 5.15: Summarized overview significant results simple linear regression analyses. 

Absolute  

Dependent 

variable 

Total 1 2 3 4 

Total deviation 0,019**  0,040* 0,030*  

Δ Built 0,010*   0,055*   

Δ Natural      

Δ Category 1      

Δ Category 2      

Δ Category 3      

Δ Category 4      

Δ Category 5      

Δ Category 6      

 

Relative 

Dependent 

variable 

Total 1 2 3 4 

Total deviation      

Δ Built 0,008*  0,036*  0,128* 

Δ Natural 0,008*  0,036*  0,128* 

Δ Category 1      

Δ Category 2      

Δ Category 3      

Δ Category 4      

Δ Category 5      

Δ Category 6      

 

 
Looking at table 5.15, it is interesting to see is that the three ‘extremer’ samples clearly 

contributed to the significance of the total models, since the first sample resulted in zero 

significant models. It is then clear to see that, within this study, personal characteristics 

and weather conditions do not significantly influence commuters’ choice to cycle through 

specific spatial environment categories. There are however some significant models that 

can explain differences in route choice between built and natural environments. However, 

both Built and Natural are categories that have emerged from merging the six more 

specific spatial environment categories, which may explain why the relation with their 

predictors is stronger. 

 

 

 

** Significant at the 0,01 level      

* Significant at the 0,05 level 

 

Table 5.15: Summarized overview results simple linear regression analyses. 
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The following interesting models are interpreted and discussed:  

- Model that predicts absolute deviation for the total sample;  

- Model(s) that predict Δ Built rel. or Δ Natural rel. for the Wind sample; 

- Model that predicts absolute deviation for the Rain sample; 

- Model that predicts Δ Built abs. for the Rain sample. 

Table 5.16: Model summary most significant model: absolute deviation total sample. 

Dependent 

variable 

Model Independent 

variables 

R² ΔR² - sign. ANOVA 

Absolute 

deviation 

1 Age, gender 0,5% 0,5% * 0,017 * 

2 Age, gender 

Head/tailwind 

Windspeed 

Temperature 

Precipitation 

Dark/light 

1,9% 1,4% ** 0,000 ** 

** Significant at the 0,01 level      Sample: N = 1619 

* Significant at the 0,05 level 
 
Table 5.17: Linear models of predictors of absolute deviation of commuters in kilometres. 

Absolute 

deviation 

Predictors B 

(confidence 

interval) 

Standard error Beta (β) p-value 

Model 1 Constant 1,063 0,190  0,000 

Age -0,003 0,004 -0,023 0,351 

Gender -0,159 0,057 -0,070 0,005 

Model 2 Constant 0,792 0,215  0,000 

Age -0,004 0,004 -0,029 0,246 

Gender -0,176 0,057 -0,077 0,002 

Head/tailwind 0,000 0,001 -0,017 0,489 

Windspeed 0,006 0,004 0,045 0,077 

Temperature 0,013 0,004 0,092 0,001 

Precipitation 0,027 0,010 0,071 0,005 

Dark/light -0,112 0,111 -0,027 0,313 

Sample: N = 1619 
 

Tables 5.16 and 5.17 present the most significant model in two hierarchical modelling 

steps: the model that explains the absolute deviation for the total sample. Since both 

models (1 and 2) are significant, they can be used separately to explain the absolute 

deviation of commuting cyclists. In column ‘B’ the coefficient of each predictor is shown, 

as well as the constant of the model. The rightest column gives the p-values for the B 

coefficients; a result of a t-test which tests whether the B coefficient significantly differs 

from 0. The lower the value, the stronger the variable affects the model. A non-significant 

p-value however, does not mean that there is no relationship between the predictor and 

the independent variable, absolute deviation in this case. Even though the correlation 

matrices (see Appendix XI) indicated a significant correlation of temperature, 

precipitation, dark/light and gender with absolute deviation, the model shows that 

dark/light is no significant predictor of absolute deviation. Age and wind direction, 
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expressed as head- or tailwind in this model, are also no significant predictors of absolute 

deviation. 

After adding the weather-related predictors, the negative influence of age and gender 

increased slightly, which also applies to almost all significant models (see Appendix XIV). 

In general, this model indicates that the addition of weather-conditions has a greater 

negative effect on older and / or female respondents, although this difference is minimal.  

Although the B is not the best way to compare the predictors mutually, it is an easy way 

to have a glance at the effect size of each independent variable. Looking at the B values, 

it is clear to see that gender and dark/light have the greatest values. It is therefore worth 

mentioning that, after adding the weather-related variables, men tend to deviate 176 

meters more than women. To compare: table 5.11 already showed that, without adding the 

weather-related variables, men deviate 153 further from the shortest route than women. 

Another interesting result is that temperature has a positive significant influence on 

absolute deviation, meaning that commuting cyclists tend to deviate 13 meters when the 

temperature rises with one degree. For instance, whit a temperature of 20 ˚Celsius, 

commuters would cycle an average of 1/3 kilometre longer than with a temperature of -5 

˚Celsius. However, the significant model for absolute deviation of the Warm sample (see 

Appendix XIV), proves a negative significant effect of temperature on absolute deviation, 

meaning that commuting cyclists tend to cycle 72 meters shorter when the temperature 

rises with one degree. The routes of the Warm sample have been selected because the 

temperature at the moment the route was driven surpassed 25 ˚Celsius. It can be 

suggested that commuting cyclists tend to deviate from the shortest route when the 

temperature rises, up to a temperature of approximately 25 ˚Celsius.  

In addition, windspeed (0,006) and precipitation (0,027) both have a positive effect on 

absolute deviation, meaning commuters tend to deviate from the shortest route when the 

windspeed or amount of precipitation increases. Whether they prefer built or natural 

environments under such weather conditions can partially be explained by the significant 

models for the Rain and Wind samples. 

When interpreting a hierarchical multiple regression, in addition to the R², the Δ R² is also 

interesting. The Δ R² indicates whether or not adding the weather-related predictors led 

to an increased explanation of the dependent variable. When the number of predictors 

grows, the R² always grows. However, SPSS also presents the significance value for the Δ 

R². Despite the fact that with a Δ R² of 1,9% the R² almost quadrupled, the relation between 

the dependent variable and its predictors remains weak.  

 

Table 5.18: Model summary of models with highest R². 

Dependent 

variable 

Model Independent 

variables 

R² ΔR² - sign. ANOVA 

Δ Built rel. 1 Age, gender 5,2% 5,2% 0,053 

2 Age, gender 

Head/tailwind 

Windspeed 

Temperature 

Precipitation 

Dark/light 

12,8% 7,6% 0,038 * 
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Δ Natural 

rel. 

1 Age, gender 5,2% 5,2% 0,053 

2 Age, gender 

Head/tailwind 

Windspeed 

Temperature 

Precipitation 

Dark/light 

12,8% 7,6% 0,038 * 

** Significant at the 0,01 level      Sample: N = 114 

* Significant at the 0,05 level 
 

Table 5.19: Linear models of models with highest R². 

Δ Built rel. Predictors B 

(confidence 

interval) 

Standard error Beta (β) p-value 

Model 1 Constant 0,102 0,071  0,155 

Age -0,002 0,001 -0,176 0,067 

Gender 0,024 0,021 0,108 0,261 

Model 2 Constant -0,025 0,142  0,863 

Age -0,002 0,001 -0,132 0,180 

Gender 0,032 0,022 0,143 0,148 

Head/tailwind 0,000 0,000 0,033 0,726 

Windspeed 0,002 0,003 0,080 0,483 

Temperature 0,002 0,004 0,058 0,599 

Precipitation -0,073 0,033 -0,245 0,029 

Dark/light 0,034 0,027 0,141 0,213 

Δ Natural 

rel. 

Predictors B 

(confidence 

interval) 

Standard error Beta (β) p-value 

Model 1 Constant -0,102 0,071  0,155 

Age 0,002 0,001 0,176 0,067 

Gender -0,024 0,021 -0,108 0,261 

Model 2 Constant 0,025 0,142  0,863 

Age 0,002 0,001 0,132 0,180 

Gender -0,032 0,022 -0,143 0,148 

Head/tailwind 0,000 0,000 -0,033 0,726 

Windspeed -0,002 0,003 -0,080 0,483 

Temperature -0,002 0,004 -0,058 0,599 

Precipitation 0,073 0,033 0,245 0,029 

Dark/light -0,034 0,027 -0,141 0,213 

Sample: N = 114 
 
Tables 5.18 and 5.19 show the two models with the highest R² (12,8%) and Δ R² (7,6%); the 

values of the other significant models can be found in Appendix XII. These two models can 

significantly explain the difference in share of the built or natural environment for the 

Wind sample. The models are almost the same; the only difference is that the coefficients 

and Beta’s are the opposite of each other. This is explained by the fact that these categories 

complement each other: when the share of the natural environment increases, the share 

of the built-up environment decreases.  
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These models are an interesting example of the effect of using ‘extremer’ samples. The 

routes of the Wind sample have been selected because the average windspeed at the 

moment the route was driven surpassed 35 km/h. Therefore, it is not remarkable that the 

only significant predictor in these models is precipitation; after all, much precipitation and 

hard wind are harsh circumstance for most cyclists. Within this model there is a negative 

effect of precipitation (-7,3%) on the share of Built and a positive effect of precipitation 

(+7,3%) on the share of Natural, which implies that the respondents prefer to cycle outside 

the built-up area when there is strong wind and rain. As said before, these are fairly 

extreme samples. 

Looking at the significant model that predicts absolute deviation for the Rain sample (see 

Appendix XIV), it shows a negative significant effect of windspeed (-0,047) on absolute 

deviation. Also, within the model that predicts the absolute difference in length of the built 

environment for the Rain sample, windspeed has a negative effect of -23 meters per mm 

precipitation increase. These models confirm the negative influence of precipitation and 

wind combined. 

An interesting effect within the last model is the negative effect (-0,692) of dark/light on 

the absolute difference in length of the built environment, meaning that commuters tend 

to cycle 692 meters shorter through the built environment when it is dark.    

There are three more significant models as a result of the total sample; one that can 

significantly explain the difference in travelled kilometres through built-up area and two 

models that can significantly explain the difference in share of the built or natural 

environment. However, these models are weak due to the fact they have an R² of 1% or 

lower and only one significant predictor (gender and age respectively). Moreover, the two 

models that explain the difference in share of the built or natural environment are only 

significant without including the weather-related variables. For a more detailed overview 

of these models, see Appendix XIII and XIV.  
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6. Discussion 
This chapter will answer the research questions and discuss the limitations of this study 

and recommendations for future studies, to finish with the conclusion. 

6.1 Answering research questions 
This study was designed to investigate the effects of weather conditions on the route choice 

behaviour of commuting cyclists in which the focus is on GPS trajectories and the actual 

differences in route choice throughout the seasons of the year. Earlier studies suggested 

that personal characteristics, weather conditions and the spatial environment influence 

cyclists’ route choice behaviour. Although travel distance is an important consideration 

when selection a route from A to B, no scientific evidence has been provided yet through 

GPS trajectories of actual differences in route choice and travel distance due to weather 

conditions. Before answering the main research question of this study, the answers to the 

sub questions are provided.  
 
How are personal characteristics of commuting cyclists related to weather conditions and 

route choice behaviour? 

On their own, age and gender barely explain route choice behaviour.  In general, men tend 

to deviate further from the shortest route than women. After adding the weather-related 

predictors to the model for absolute deviation of the total sample, the negative influence 

of age and gender increased slightly, which also applies to almost all significant models 

(see Appendix XIV). This model indicates that the addition of weather-conditions has a 

greater negative effect on older and / or female respondents, although this difference is 

minimal. In the significant multiple regression models of the total sample, age is only 

significantly influencing the difference in share of the built or natural environment. 

Although the effect is (very) small, relatively older people tend to prefer cycling in a 

natural instead of a built environment. In the significant multiple regression models of 

the total sample, gender is only significantly influencing absolute deviation. This is in line 

with an earlier study of Heinen, Wee and Maat (2010) in which they suggested that women 

will mainly choose the shortest route, while men are more willing to take a detour. 

Earlier studies (i.a. Aaheim & Hauge, 2005; Bergström & Magnusson, 2003; Böcker et al., 

2015; Flynn et al., 2012; Heinen et al., 2011; Liu et al., 2017; Keay, 1992) mentioned rain 

and wind as primary negative influencers of route choice behaviour of female and / or older 

cyclists. Within this study, the effects of wind, precipitation and temperature on age and 

gender are noticeable, however, these effects remain minimal.  

Since e-bikes and speed pedelecs are only recently emerging, earlier studies mainly 

focussed on regular bicycles. When electrical supported bicycles are used, the travelled 

distance is less influenced by the amount of physical effort of the cyclist, which could 

explain the minimal relations between personal characteristics and weather conditions or 

route choice behaviour.  
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To what extent do commuting routes deviate under different weather conditions? 

Simple linear analyses showed that especially the presence of sunlight can significantly 

explain absolute deviation on its own. Also, windspeed, temperature and precipitation 

seem to explain absolute deviation significantly. These simple linear models were however 

very weak. While the correlation matrices indicated a significant correlation of 

temperature, precipitation and the presence of daylight with absolute deviation, the 

hierarchical multiple linear model for absolute deviation showed that the presence of 

daylight is no significant predictor. This model indicated positive effects of temperature 

and precipitation on absolute deviation, meaning higher temperatures and a higher 

amount of precipitation causes longer travel distances. Although the effect of these 

predictors remains low, these results fit an earlier study by Aaheim and Hague (2005) that 

presented reduction in travelled distance due to precipitation. Within this study, relative 

deviation cannot significantly be explained by weather conditions. 

An interesting outcome of the regression analyses is the difference of the influence of 

temperature on absolute deviation between the total and Warm sample. For the total 

sample temperature has a positive significant influence on absolute deviation, meaning 

that commuting cyclists tend to deviate when the temperature rises. While the significant 

model for absolute deviation of the Warm sample, proves a negative significant effect of 

temperature on absolute deviation. Knowing these effects are weak, it can be suggested 

that commuting cyclists tend to deviate from the shortest route when the temperature 

rises, up to a temperature of approximately 25 ˚Celsius. These results complement earlier 

studies that have proven positive correlation between bicycle usage and temperature until 

the temperature reaches 25°C (Liu et al., 2015a; Sabir, 2011; Saneinejad et al., 2012). 

Additionally, the negative effect of temperature on absolute deviation of the Warm sample 

complement studies from warmer climates that already indicated that high temperatures, 

between 25 and 30 ºC, are disadvantageous for cycling (Ahmed et al., 2010; Phung & Rose, 

2008; Richardson, 2000).  

Another interesting outcome of the regression analyses is the combination of much rain 

and hard wind. The significant model for absolute deviation of the Rain sample features a 

negative significant effect of windspeed. This result is not remarkable, since much rain 

and hard wind are harsh circumstance for most cyclists. The significant model that 

predicts absolute deviation for the Rain sample shows a negative significant effect of 

windspeed (-0,047) on absolute deviation. Also, within the model that predicts the absolute 

difference in length of the built environment for the Rain sample, windspeed has a 

negative effect of -23 meters per mm precipitation increase. These models confirm the 

negative influence of precipitation and wind combined. Previous studies (Heinen, Maat & 

Van Wee, 2011; Phung & Rose, 2008; Sabir, 2011; Thomas et al., 2012) already indicated 

negative effects of wind on cycling. The negative effect of the combination of wind and rain 

on absolute deviation is a worthy addition. On the other hand, wind direction, expressed 

as head- or tailwind in this study, is no significant predictor of absolute or relative 

deviation. 
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To what extent do commuters cycle through different spatial environments under different 

weather conditions? 

Within this study, personal characteristics and weather conditions do not significantly 

influence commuters’ choice to cycle through specific spatial environment categories. 

There are however some significant models that can explain differences in route choice 

between built and natural environments. Both Built and Natural are categories that have 

emerged from merging the six more specific spatial environment categories, which may 

explain why the relation with their predictors is stronger. Yet, the models that can 

significantly explain differences in share of the built or natural environment are very weak 

and have no significant weather-related predictors. Except for the models that explain the 

difference in share of the built or natural environment for the Wind sample, where 

precipitation is the only significant predictor. Within those models, there is a negative 

effect of 24,5% on the share of Built and a positive effect on the share of Natural, which 

implies that the respondents prefer to cycle outside the built-up area when there is strong 

wind and rain. As stated before, these are fairly extreme samples. This result is in contrast 

to earlier research of Phung and Rose (2008), in which the authors demonstrated that 

cycling in suburban and weather-exposed areas is more sensitive to precipitation than 

cycling in inner-city and sheltered areas. 

To what extent do personal characteristics and weather conditions influence commuting 

cyclists’ route choice behaviour? 

Within this study, the effects of wind, precipitation and temperature on age and gender 

are noticeable, however, these effects remain minimal. The respondents used in this study 

were users of an e-bike or speed pedelec. When electrical supported bicycles are used, the 

travelled distance is less influenced by the amount of physical effort of the cyclist, which 

could explain the minimal relations between personal characteristics and weather 

conditions or route choice behaviour.  

The hierarchical multiple linear model for absolute deviation showed that the presence of 

daylight is no significant predictor. However, this model indicated positive effects of 

temperature, precipitation and windspeed on absolute deviation, meaning higher 

temperatures and a higher amount of precipitation or stronger wind cause longer travel 

distances. Within this study, relative deviation cannot significantly be explained by 

weather conditions. 

An interesting outcome of this study is, although the effects are weak, that commuting 

cyclists tend to deviate from the shortest route when the temperature rises, up to a 

temperature of approximately 25 ˚Celsius, then the deviation becomes smaller. Another 

interesting outcome of the regression analyses is the combination of much rain and hard 

wind. The significant model for absolute deviation of the Rain sample features a negative 

significant effect of windspeed. Also, within the model that predicts the absolute difference 

in length of the built environment for the Rain sample, windspeed has a negative effect. 

These models confirm the negative influence of precipitation and wind combined. This 

result is not remarkable, since much rain and hard wind are harsh circumstance for most 

cyclists. On the other hand, wind direction, expressed as head- or tailwind in this study, 

is no significant predictor of absolute or relative deviation within this study. 

Within this study, personal characteristics and weather conditions do not significantly 

influence commuters’ choice to cycle through specific spatial environment categories. 
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There are however some significant models that can explain differences in route choice 

between built and natural environments, however, these models are also fairly weak. 

6.2 Limitations and recommendations  
This study can be considered as a first attempt at data driven research to investigate the 

relation between cyclists’ route choice behaviour and weather conditions using a GPS 

based revealed preference method. The lack of research within this subject was partly 

problematic when validating the results of this study. This method and the used data from 

the B-Riders program only made it possible to observe and investigate the final decision 

of the cyclist. Although the trip purpose is known, it would be interesting to use a mixed 

methods approach of stated- and revealed preference. This could make it possible to gain 

more insight into the cyclists’ preferences or motivations behind their route choices. 

Despite this, the exploratory results of this study can be used as a first regarding route 

choice behaviour and GPS trajectories. 

Using open- and freely available cycling data from the B-Riders program had many 

benefits, but also some limitations. The biggest advantage of using this data is that the 

data was already available and new data collection was therefore not necessary. Also the 

nature of the project made it possible to study cycling for everyday use, commuting in this 

case, which is often not possible with cycling data. However, using free and publicly 

available cycling data also had its limits due to privacy. First of all, the trips are 

anonymized by cutting off 200 meters from the start and end-location of a trip. This means 

that the derived origins and destinations are not the exact start and end locations of the 

routes. Besides, the sample was skewed concerning age, which makes it difficult to 

generalize the results of the data analysis. Also, the dataset is biased due to the fact that 

there was a motivational factor to participate in the B-Riders program. The research area 

is however representative for the whole of the Netherlands and the countries that have 

high mode shares of bicycle use and a comparable infrastructure and spatial environment. 

Different spatial environment and infrastructural characteristics (e.g. U.S.) make the 

results less interpretable. 

Other limitations of this research are due to the availability and quality of spatial 

environmental data. Even though the Fietsersbond has the most accurate and rich cycling 

network that is created and kept up-to-date using volunteers (VGI), many roads still 

lacked usable data for spatial environment attributes. Especially detailed infrastructural 

or environmental information was lacking. Partly because the dataset is maintained by 

volunteers, which made many attributes fairly subjective. The used spatial environment 

dataset could have been operationalised better, to get more detailed and significant 

information on how weather conditions affect route choice within separate elements of the 

spatial environment. 

The analysis showed however that a few models exist in which deviation or the difference 

in spatial environment categories could significantly be explained by personal 

characteristics and weather conditions. Previous research about cyclists’ route choice 

behaviour corresponded with some of these outcomes. However, in general, the models did 

not perform that well which indicates that these relationships are not well captured in a 

hierarchical multiple regression model. This could be due to the used variables or the used 

sample, which consisted of electric supported bicycle users.  

Even though some insight is acquired regarding the effect of personal characteristics and 

weather conditions on the amount of deviation from the shortest route, these models are 
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not suitable for other purposes such as predicting route choice behaviour concerning the 

spatial environment. In order to gain more and better insight into the complex relationship 

between route choice and weather conditions, other (non-linear) methods should be 

explored and more detailed environmental factors should be taken into account. To model 

route choice behaviour, also other factors like infrastructure and safety should be 

considered as well.  

More research on cyclists’ route choice behaviour is needed in order to create accurate and 

flexible models that can provide more insight into the relationship between route choice 

behaviour and weather conditions by using multiple predictors. Further research could 

focus on differences between types of respondents, types of bicycle, seasons and 

infrastructure. Although the trip purpose and the GPS-trajectories are known, it would be 

interesting to use a mixed methods approach of stated- and revealed preference. This could 

make it possible to gain more insight into the cyclists’ preferences or motivations behind 

their route choices.  
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6.3 Conclusion 
This study is designed to investigate the effects of weather conditions on the route choice 

behaviour of commuting cyclists using GPS trajectories. The following factors were taken 

into account that were expected to influence route choice behaviour of cyclists: personal 

characteristics, weather conditions, the spatial environment and travel distance. Previous 

studies provided evidence of a relationship between the first three factors and cyclists’ 

route choice behaviour, which directly influences travel distance. Still no evidence has 

been provided through GPS trajectories of actual differences in route choice and travel 

distance due to weather conditions.  

 

The influence of wind, precipitation and temperature on age and gender are noticeable 

within this study, however, these effects remain minimal. The respondents used in this 

study were users of an e-bike or speed pedelec, which could explain the minimal relations 

between personal characteristics and weather conditions or route choice behaviour.  

The hierarchical multiple linear model for absolute deviation showed that the presence of 

daylight is no significant predictor. However, this model indicated positive effects of 

temperature and precipitation on absolute deviation, meaning higher temperatures and a 

higher amount of precipitation causes longer travel distances. Within this study, relative 

deviation cannot significantly be explained by weather conditions. 

An interesting outcome of this study is that commuting cyclists tend to deviate from the 

shortest route when the temperature rises, up to a temperature of approximately 25 

˚Celsius, then the deviation becomes smaller. Another interesting outcome of the 

regression analyses is the negative effect of the combination of much rain and hard wind. 

This result is not remarkable, since much rain and hard wind are harsh circumstance for 

most cyclists. On the other hand, wind direction, expressed as head- or tailwind in this 

study, is no significant predictor of absolute or relative deviation within this study. 

Within this study, personal characteristics and weather conditions do not significantly 

influence commuters’ choice to cycle through specific spatial environment categories. 

There are however some significant models that can explain differences in route choice 

between built and natural environments, however, these models are fairly weak. 
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