
Utilising duality in discrete tomography problems

Steven Fleuren

March 2020

MASTER THESIS

Supervisor: Dr. T. van Leeuwen
Second reader: Dr. S. Dirksen

2

Abstract

We consider the problem of reconstructing binary images given the line sums (projections) of
the cell values along a few prescribed directions. This problem is computationally hard, and the
projection data can be noisy, so in many cases finding an exact reconstruction is not feasible.
For this reason we work with a least-squares formulation of the problem, where the aim is to
find a binary image of which the vector of its line sums is close to the given projection data. In
this paper, we will mostly focus on preprocessing algorithms that can partially reconstruct the
image, assigning values to some of the cells but leaving others undetermined.

The two main approaches we investigated are both based on some form of duality. The first
one is based on Langrangian duality: in a recent paper, A. Kadu and T. van Leeuwen introduced
a dual formulation of the discrete tomography problem and used the optimal solution of the
dual problem to partially reconstruct the binary image. We will further analyse this approach.
In particular, we will show that a certain relaxation gives raise to an equivalent dual problem,
which opens up ways to compute the dual optimal through different methods. Additionally, we
give sufficient conditions under which a non-optimal dual solution enforces the same cell value
assignment as the optimal solution.

The approach is based on roof duality, a concept introduced in 1984 as a way to find lower
bounds on real, quadratic functions with a binary domain. Additionally, methods that compute
the roof duality lower bound can also identify some variable assignments that must hold for any
minimiser of the function. While algorithms based on roof duality have become more sophisti-
cated over the years, to our knowledge it has not been applied in the field of discrete tomography
so far. We will show that in many cases roof duality based methods will not be able find good
partial reconstructions.

3

Contents

Abstract 2
1. Introduction 4
1.1. Our contributions 4
1.2. Outline 5
2. Preliminaries 7
2.1. Discrete tomography 7
2.2. Persistency and autarky 9
2.3. The pseudo-inverse 10
3. Size one autarkies 12
4. Langrangian duality 14
4.1. Convex optimisation concepts 14
4.2. Formulation of the dual problem 15
4.3. Insights about the dual program 17
4.4. Strong duality and its consequences 19
4.5. On the conjectures posed in [12] 24
5. Roof duality 27
5.1. Roof duality concepts 27
5.2. Applying roof duality to the discrete tomography problem 30
6. Numerical experiments 34
6.1. Setup 34
6.2. Results 35
7. Conclusions 38
References 39
Appendix A. Full results 40

4

1. Introduction

Discrete tomography concerns the reconstruction of discrete valued images, given the outcome
of a finite number of weighted sums of the values of the image’s cells. See Figure 1 for an example.
There are multiple variations of discrete tomography, many of which can be stated as a problem
of the form

find an x ∈ UN satisfying Ax = y, (1)

where x represents the image we want to reconstruct, U = {u1, . . . , us} ⊂ R gives the allowed cell
values, A ∈ RM×N and y ∈ RN . In most cases, M < N and A is a sparse, rank deficient matrix.
In general, the decision problem of (1) is NP-hard, as are many variants of discrete tomography,
see e.g. [8]. This means that for large images finding a solution to (1) is often not feasible. This
is one of the reasons to consider to consider a least squares formulation of the problem given by

min
x∈UN

1

2
‖Ax− y‖22 . (2)

Solving (2) exactly is at least as hard as solving (1), but by using (2) we can get an idea of how
close an x ∈ {0, 1}N is to satisfying Ax = y. A second important reason to use (2) instead of
(1) is that in practise we often have to deal with noisy measurements, and as a result the true

solution χ does not exactly satisfy Aχ = y, but the value of ‖Aχ− y‖22 will still be low.
In this paper we will mainly focus on preprocessing techniques. In particular, we are interested

in finding I ⊆ {1, . . . , N} and αi ∈ U , i ∈ I such that adding the constraints xi = αi does not
increase the minimal objective value of (2). This then given a new constrained least squares
problem with a matrix of size M × (N − |I|), which should be easier to solve than the original
form.

1.1. Our contributions. We will investigate three preprocessing techniques. The first one is
based on all the size one autarkies of the instance. In short, we can identify all i ∈ [N] and

Figure 1. An example of a discrete tomography problem. For each line, the
sum of values of the cells is known. Cells values are restricted to 1 (black) or 0
(white). This instance has two exact solutions, shown in Figure 2.

5

(a) (b)

Figure 2. The solutions of the discrete tomography problem described by Figure 1.

αi ∈ {0, 1} such that replacing xi by αi will lower the objective value of x for all {0, 1}N . We
have not been able to find sources where the method has been used before, but since the result
on which it is based is fairly easy we think it is likely that we are not the first to observe it.
For the second technique, based on Langrangian duality, we mostly build on the results from
[12]. We give some extra insights on how the dual given in [12] relates to (relaxations of) the
original primal problem. We show that the the optimal solution of the dual problem is unique,
and can be used to derive a lower bound on 1

2 ‖Ax− y‖
2
2 when we assume that x satisfies certain

constraints. Additionally we extend some of the results to dual variables that are almost optimal.
We recreated parts of an experiment performed in [12] to confirm some of our presumptions. The
last technique we will discuss is called roof duality. All the algorithms and concept relating to
this concept were introduced in other sources ([10], [3], [4], [13]). Our contributions are the
results regarding applying these concepts to the discrete tomography problem. We will apply all
three techniques to small scale test images to see how well they perform in practise.

1.2. Outline. After formalising the discrete tomography problem and other relevant concepts
in Section 2, we will introduce a simple preprocessing technique, based on identifying size one
autarkies, in Section 3. This technique will generally not reduce the problem size by much, or not
at all. However, the computation cost is cheap and the new least squares problem is guaranteed
to satisfy some properties that make it easier analyse the techniques described in Section 5.

In Section 4 we will focus on methods based on Langrangian duality [5], which is a fairly general
concept that can be applied to many constrained optimisation problems. In [12], the authors
derived the Langrangian dual program of an constrained minimisation problem equivalent to (2).
Furthermore, they found that they could use the optimal dual variables of this dual program to
partially reconstruct a solution of (2). In this paper we will show that the dual program of a
relaxation of (2) is equivalent to the dual problem found by the authors of [12]. We then use this
equivalence to derive some properties of the dual program: we show that it has a unique optimal
solution that can be expressed in terms of A, y and an optimal solution of the relaxation of (2).
Furthermore, we give a lower bound on ‖Ax− y‖2 for x ∈ UN that do not agree with the partial
solution based on the optimal dual variables. We also show how one can use almost optimal
dual solutions in this lower bound, which is important in practise since they can be computed
numerically. Lastly, we revisit an experiment reported in [12] and explain how our findings are
related to their numerical results.

6

In Section 5 we consider a different technique, based on the concept of roof duality [10]. This
technique be applied to problems of the form

min
x∈{0,1}N

f(x), (3)

where f is a quadratic function. Roof duality gives a lower bound on (3) and can sometimes
identify assignments of the form xi = αi that must hold in optimal solutions of (3). The roof
duality lower bound can be formulated in a variety of ways. One way is by constructing a
directed graph with edge capacities based on f , and then computing the maximum flow in this
graph. This approach was extended in [4], where it was shown that by analysing the strongly
connected components of the residual graph one can obtain even more information about the
minimum of (3). With their method they were able to obtain optimal solutions for maximum
cut problems on graphs derived from Very-large-scale integration (VLSI) circuit chip design,
maximum clique problems on instances derived from fault diagnosis and minimum vertex cover
problems in random planar graphs of up to 500,000 vertices. However, as we will show, roof
duality based techniques are usually not effective when applied to discrete tomography problems.

In Section 6 we give some experimental results we obtained by applying the methods discussed
in the previous sections to artificially created discrete tomography problems.

7

2. Preliminaries

Given a natural number n, we denote the set {1, . . . n} by [n]. We denote the n-dimensional
all ones vector by 1 and the all zeros vector by 0. The standard basis vectors of Rn are denoted
by e1, . . . , en. For matrices, we use I for the identity matrix, E for the all ones matrix and Z
for the zero matrix. We will sometimes use subscripts to emphasise the dimension of a matrix,
e.g. Zm,n denotes the m× n zero matrix. For a given matrix A, we write ai for its i-th column.
Given two equally sized real vectors v, w, we say that v ≤ w if and only if vi ≤ wi for all i ∈ [n];
we use <,≥ and > in a similar way. We denote the set of non-negative real numbers by R≥0

2.1. Discrete tomography. The description of discrete tomography that we will give in this
section is mainly based on [11]. We do however make a few adjustments to the notation used to
better suit the sequel. The goal of discrete tomography is to reconstruct a d-dimensional image
χ of size N = n1 × · · · × nd. Since the domain of χ is finite, we can enumerate it and consider
χ to be an element of UN , where U = {u1, u2} ⊂ R gives the allowed cell values. In order to
reconstruct χ, we are allowed to use M different projections P = {P1, . . . , PM}. Each projection
Pi corresponds to a ray Ri, which is a line in Rd given by

Ri = {λvi + wi | λ ∈ R},

where vi, wi ∈ Rd are constant vectors. Denote the set of all used rays by R = {R1, . . . , RM}.
The projection Pi is given by

Pi =
∑
j∈[N]

cijχj .

Here, each cij is defined by a given weight function1 w : R× [N]→ R as

cij := w(Ri, j).

How weight function w is chosen depends on what kind of image χ represents. In some settings
(see for instance [16]) it is appropriate to assume that each value j ∈ [N] corresponds to a box
in Rd, and that the value w(Ri, j) corresponds with the length of the line piece given by the
intersection of the ray Ri and the box corresponding to j. In other settings j corresponds to a
point pj in Rd, and the value of w(Ri, j) is given by

w(Ri, j) =

{
1 if pj ∈ Ri,
0 otherwise.

(4)

We illustrate the distinction in Example 2.1. In both cases, the problem of finding an x ∈ UN
that satisfies all the projections can be expressed as

find an x ∈ UN satisfying Ax = y, (5)

where the rows of A ∈ RM×N are given by (c1)T , . . . , (cM)T and yi = Pi for all i ∈ [M]. We
should note that while x = χ is a solution to (2.1), many more solutions could exist, especially
when the number of projections is low. In this case it is necessary to make additional assumptions
about χ, such as connectedness or convexity, to obtain a meaningful reconstruction.

Example 2.1. In Figure 3 we give two examples of a projection with direction (1,−1). In the
image on the left the xi correspond to points in R2. The matrix A corresponding to this problem

1Note that this weight function is similar to but not the same as the one in [11].

8

is given by

A =


0 0 1 0

1 0 0 1

0 1 0 0

 .

On the right each xi represents a square, and we have

A =


0 0 c13 0

c21 0 c23 c24

c31 c32 0 c34

 ,

where each cjk is proportional to the length of the section of the ray Rk that intersects the square
corresponding to xj .

Figure 3. Two different types of discrete tomography, see Example 2.1.

For the derivation of most of the techniques in this paper, we do not have to make strong
assumptions on the properties of A. However, in a few cases we will work with a specific form
of discrete tomography, which we will refer to as the lattice set reconstruction problem2. This
type of discrete tomography has been used in papers as [12], [2], [8]. It is formulated as follows:
Let each j ∈ [N] correspond to a unique point pj ∈ [n1]× · · · × [nd], and let the weight function
be given by (4). The rays are given by m sets of parallel lines Ri, i ∈ [m] with direction vi.
None of the directions are parallel to each other. For each direction, all the lines of the form
{λvi + w | λ ∈ R} that contain at least one of the points is used. The leftmost image of Figure
3 gives an example of this form of discrete tomography with m = 1, n1 = n2 = 2 and direction

v1 =
(
1 −1

)T
. The example we gave in the introduction, Figure 1, is a lattice set reconstruction

problem as well. Here the directions are given by (1, 0)T (red) and (1, 2)T (green). In general,
the problem of finding an exact reconstruction in this setting is NP-hard if m ≥ 3 [8].

As we discussed earlier, our main focus will be on a least-squares formulation of (2.1). In
particular, we will consider the binary constrained least-squares (BCLS) problem given by

minimise fLS := 1
2 ‖Ax− y‖

2
2

subject to x ∈ {0, 1}N . (BCLS)

2Most papers that use this formulation simply call it the discrete tomography problem, we use a different term
to avoid confusion with the more general definition from [11]

9

Note that we assumed that U = {0, 1}. This is without loss of generality, since if U = {u1, u2}
we can substitute x = u1x̃+ u2(e− x̃) in fLS to obtain

(u1 − u2)2 min
x̃∈{0,1}N

1

2

∥∥∥∥Ax̃+
1

u1 − u2
(u2Ae− y)

∥∥∥∥2

2

, (6)

which is again a discrete tomography problem with the same matrix A and U = {0, 1}. We will
call an ordered pair (A, y) with A ∈ RM×N and y ∈ RM an instance of minimisation problem
BCLS and denote the set of all instances of BCLS by I.

It is worth noting that discrete tomography problems with more than two grey values can also
be phrased as a problem of form BCLS, if U is given by

U = {u0, u0 + ε, . . . , u0 + kε}

for some ε > 0. The corresponding least squares problem is then equivalent to

minimise 1
2

∥∥∥u0A1− y + ε
∑k
i=1Ax

i
∥∥∥2

2
,

subject to x1, . . . , xk ∈ {0, 1}N ,
(7)

which can be written as a problem of form BCLS by concatenating x1, . . . xk into a single vector
and setting

Ã =
(
A A · · · A

)︸ ︷︷ ︸
k times

.

If the original A has dimensions M×N , then Ã will be an M×kN matrix. Hence if the number of
grey values is small the methods we will discuss are applicable, but if k is large other approaches
might be more suitable.

2.2. Persistency and autarky. The methods we discuss in this paper construct partial so-
lutions, also called partial labelings [14], to BCLS. Here a partial solution is an element z ∈
{0, 1, ø}N , where we use the symbol ø to indicate that the value of zi = ø is undetermined. We
denote Iz := |{i ∈ [N] | zi 6= ø}| and say that the size of z is the number of elements in Iz. Given
a vector x ∈ {0, 1}N , we define the fusion [14] x[z] of x and z as

(x[z])i :=

{
xi if zi = ø,

zi otherwise.

We say that a partial solution z is a strong autarky [4] for function f : {0, 1}N → R if f(x[z]) <
f(x) for all x ∈ {0, 1}N such that x[z] 6= x. Similarly, z is a weak autarky for f if f(x[z]) ≤ f(x)
for all x ∈ {0, 1}N . Related is the concept of persistency, introduced in [10]. Given some i ∈ [N]
and α ∈ {0, 1} we say that the assignment xi := α is weakly (strongly) persistent if xi = α for
some minimiser of f . Furthermore, we say that a partial solution z is persistent if for each i ∈ Iz,
the assignment xi := zi is strongly persistent. Note that if z is a strong autarky, then it is also
persistent.

The goal if the methods we will discuss is to find persistent partial solutions of BCLS, which
allows us to reduce the original problem to a smaller one. More precisely, given a persistent or
autark partial solution z, let rz : I → I (recall that I denotes the set of all instances) be its
problem reduction, that is

rz(A, y) = (r1
z(A), r2

z(y))

where r1
z deletes the columns of A corresponding to the determined entries of z and

r2
z(y) = y −

∑
i∈Iz

zia
i.

10

Solving BCLS for the smaller instance rz(A, y) then also gives a solution for the original instance
(A, y).

Example 2.2. Consider the instance (A, y) given by

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 , y =
1

5


6
2
6
2

 .

This matrix corresponds to two horizontal and two vertical projections of a 2 × 2 image. The
partial solution z = (ø, ø, ø, 0) is strongly autark. This can be shown by computing f(x)−f(x[z])
for all x ∈ {0, 1}3 × {1}. There is also an easier way to show that z = (ø, ø, ø, 0) is strongly
autark, as we will show in Section 3. Since z is strongly autark, we can reduce the instance to

rz(A, y) =




1 1 0
0 0 1
1 0 1
0 1 0

 ,
1

5


6
2
6
2


 .

2.3. The pseudo-inverse. Given a real3 matrix A, we denote its (Moore-Penrose) pseudo-
inverse by A†. For readers unfamiliar with this concept we state the properties of A† that we
will use later. We use the following definition of A†:

Definition 2.3 ((10.11) - (10.14) in [1]). Given an M ×N matrix A, we say that A† ∈ RN×M
is the pseudo-inverse of B if it satisfies the following conditions:

(i) AA†A = A;
(ii) A†AA† = A†;
(iii) (AA†)T = AA†;
(iv) (A†A)T = A†A.

One can show that there is a unique matrix that satisfies these conditions. Note that there exist
many equivalent definitions of the pseudo-inverse, the one we mentioned here has the advantage
that it is easy to verify if a matrix B is the pseudo-inverse of A. One important property of A†

is the following:

Proposition 2.4 ([15]). Let A ∈ RM×N , z ∈ Rn and y ∈ Rm. Then ‖Az − y‖2 ≤ ‖Ax− y‖2
for all x ∈ RN if and only if

z = A†y + (I −A†A)w. (8)

for some w ∈ RN .

Using properties (i) - (iv) of Definition 2.3 one can derive the following additional properties
of the pseudo-inverse ((10.17) - (10.20) in [1]):

(A†)† = A;

(AT)† = (A†)T ;

(kA)† = k†A† for any k ∈ R;

(ATA)† = A†(AT)†.

One can use these properties to derive that

(A†)T (I −A†A) = (A†)T −
(
(A†A)TA†

)T
= (A†)T −

(
A†AA†

)T
= (A†)T − (A†)T = ZM,N .

3The properties we discuss can be generalised to complex matrices, but we only need to work with real matrices
in this paper.

11

As a result, any z given by (2.4) satisfies ‖z‖2 ≥
∥∥A†y∥∥

2
, and equality holds if and only if w = 0.

The pseudo-inverse can also be used to compute solutions to linear systems, as is seen in the
following proposition:

Proposition 2.5 ([15]). Let A ∈ RM×N , z ∈ RN and y ∈ RM . Then Az = y if and only if
y ∈ Range(A) and

z = A†y + (I −A†A)w

for some w ∈ RN .

Proof. Suppose y ∈ Range(A) and z satisfies (2.4). Then y = Ax for some x ∈ RN , and we have

Az = A
(
A†y + (I −A†A)w

)
= AA†Ax+ (A−AA†A)w = Ax = y.

Now suppose Az = y. By Proposition 2.4, z must satisfy (2.4). Furthermore, since Az ∈
Range(A), so is y. �

The properties described above will be used in some proofs in Section 4.

12

3. Size one autarkies

In this section we will introduce a simple prepossessing algorithm, based on identifying all
size one autarkies. This method will not be able to reduce the problem size by much in most
instances, for reasons that will become clear later. However, by applying the algorithm we can
give some guarantees on the resulting reduced problem that will simplify the analysis of the roof
duality based method we will describe later. In this section we will assume that A is entry-wise
non-negative. We can find size one autarkies by using the following lemma:

Lemma 3.1. Let z be a partial solution of size 1, and let k ∈ [N] be such that zk 6= ø. Assume
that Aij ≥ 0 for all i ∈ [M], j ∈ [N]. Then z is a weak autarky for fLS if and only if

(1− 2zk)
〈
y, ak

〉
+ zk

〈
A1, ak

〉
≤ 1

2

∥∥ak∥∥2

2
.

Additionally, z is a strong autarky if and only if the above inequality is strict.

Proof. We only prove the weak autarky case since the proof for strong autarky is almost identical.
We have to show that

min
x∈{0,1}N

fLS(x)− fLS(x[z]) ≥ 0.

Let Ã ∈ RM×N−1 be the matrix given by deleting the k-th column from A. Note that if xk = zk,
then fLS(x)− fLS(x[z]) = 0, so we can assume without loss of generality that

min
x∈{0,1}N

fLS(x)− fLS(x[z]) = min
x̃∈{0,1}N−1

1

2

∥∥∥Ãx̃+ (1− zk)ak − y
∥∥∥2

2
− 1

2

∥∥∥Ãx̃+ zka
k − y

∥∥∥2

2
.

We derive

1

2

∥∥∥Ãx̃+ (1− zk)ak − y
∥∥∥2

2
− 1

2

∥∥∥Ãx̃+ zka
k − y

∥∥∥2

2
=

(1− zk)
(
Ãx̃− y

)T
ak + (1− zk)2 1

2

∥∥ak∥∥2

2
− zk

(
Ãx̃− y

)T
ak − z2

k

1

2

∥∥ak∥∥2

2
=

(1− 2zk)
(
Ãx̃− y

)T
ak + (1− 2zk)

1

2

∥∥ak∥∥2

2
.

Using the fact that A is non-negative, we have

min
x̃∈{0,1}N−1

(
Ãx̃− y

)T
ak − 1

2

∥∥ak∥∥2

2
= −yTak +

1

2

∥∥ak∥∥2

2

and

min
x̃∈{0,1}N−1

−
(
Ãx̃− y

)T
ak +

1

2

∥∥ak∥∥2

2
=
(
y − Ã1

)T
ak − 1

2

∥∥ak∥∥2

2
= (y −A1)

T
ak +

1

2

∥∥ak∥∥2

2

Combining the two expressions we find

min
x∈{0,1}N

fLS(x)− fLS(x[z]) = (2zk − 1)
〈
y, ak

〉
− zk

〈
A1, ak

〉
+

1

2

∥∥ak∥∥2

2

and the result follows. �

Example 3.2. We apply Lemma 3.1 to the instance from our earlier example: Let instance
(A, y) be given by

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 , y =
1

5


6
2
6
2

 .

13

The partial solution z = (ø, ø, ø, 0) is strongly autark, since〈
y, a4

〉
=

4

5
< 1 =

1

2

∥∥ak∥∥2

2
.

We can reduce the instance to

rz(A, y) =




1 1 0
0 0 1
1 0 1
0 1 0

 ,
1

5


6
2
6
2


 .

Note that we can compute A1 in O(MN) time. If A is non-negative, and after computing
A1, we can use the Lemma above to check if a partial solution of size 1 is an autarky for fLS
in O(M) time. Since there are 2n of such partial solutions, we can find all autarkies of size 1 in
O(MN) time. We can then combine the autarkies we found into a single autark partial solution
z and reduce instance (A, y) to rz(A, y). This new instance might have new size 1 autarkies! We
can repeat the procedure until we end up with an instance (A′, y′) that does not have a size 1
autarky. This instance must then satisfy

1

2
‖a′‖22 < 〈y

′, a′〉 < 〈A′1, a′〉 − 1

2
‖a′‖22

for all columns a′ of A′. Being able to make this assumption above will prove useful in Section 5.
In the context of discrete tomography, a column of ai of A will only violate the inequalities above
if the rays that pi contributes either all have a high (yj ≈ (A1)j) projection value or all have a
low (yj ≈ 0) one. In practise most points pi contribute to some rays of which the projection value
is not near either of the two extremes, in which case xi cannot be determined by this method.

14

4. Langrangian duality

Langrangian duality is a technique for finding bounds and/or solutions for constrained opti-
misation problems. The main idea is to add linear penalty terms to the objective function as
a substitute for the original rigid constraints. In the minimisation case, the optimal value of
the relaxed problem will be a lower bound for the original problem. By multiplying each linear
penalty term a corresponding weight we can alter this lower bound. It is generally of interest to
find the weights that maximise this lower bound; this is called the Langrangian dual problem.
In [12], Van Leeuwen and Kadu gave an equivalent formulation of BCLS and derived an explicit
form of its dual problem. They found that for small problems with a unique and exact solution
they could extract optimal solutions of BCLS from the optimal dual solutions, and conjectured
that this approach also works for bigger problems. In this section we will further analyse this
approach.

In the next subsection we introduce some general concepts related to convex optimisation and
Langrangian duality that will be useful in the succeeding part. After that, in Section 4.2, we
show that the Langrangian dual problem of a certain relaxation of BCLS is equivalent to the
dual problem derived in [12]. In Section 4.4 we show that this equivalence can be used to prove
some properties of the dual problem and to compute its optimal values.

4.1. Convex optimisation concepts. Here we will explain some of the theory regarding convex
optimisation that we will apply to the binary tomography problem in the remainder of this
section. We use [5] as our main source for this part. Consider an optimisation problem of the
form

minimise p(x)
subject to fi(x) ≤ 0, i ∈ [s],

hi(x) = 0, i ∈ [t].
(9)

We say that x ∈ RN is a feasible solution of (9) if x satisfies its constraints. A feasible solution
x∗ is called optimal if p(x∗) ≤ p(x) for all feasible solutions x. The Langrangian of (9) is defined
as

L(x, λ, ν) := p(x) +
∑
i∈[s]

λifi(x) +
∑
i∈[t]

νihi(x).

We say that λi (c.q. νi) is the dual variable corresponding to the constraint fi(x) ≤ 0 (c.q.
(hi(x) = 0). Note that if x is a feasible solution of (9) and λ ≥ 0, then p(x) ≥ L(x, λ, ν). In
order to find a lower bound for every feasible x we define the (Langrange) dual function as

g(λ, ν) := inf
x∈RN

L(x, λ, ν).

Since g is a pointwise infimum of set of affine functions, g itself is concave. The corresponding
dual problem is finding the dual variables that give the best lower bound, i.e.

maximise g(λ, ν)
subject to λi ≥ 0, i ∈ [s]

(10)

In this context we refer to (9) as the primal problem and to x1, . . . , xn as the primal variables.
Let p∗ be the optimal value of (9) and let d∗ be the optimal value of (10). In general, we

have d∗ ≤ p∗. This relation is often referred to as weak duality. In some cases d∗ = p∗, in which
case we speak of strong duality. For certain classes of optimisation problems we can guarantee
that strong duality holds. Slater’s condition says that if (9) is a convex optimisation problem
(i.e. p, f1, . . . , fs are convex, h1, . . . , ht are affine) and there exists a strictly feasible point x (i.e.
fi(x) < 0 for all i ∈ [s] and hi(x) = 0 for all i ∈ [t]), then strong duality holds and, even stronger,
there exist x∗ and (λ∗, ν∗) such that p(x∗) = g(λ∗, ν∗). See [5] for a proof of this fact.

15

Now suppose there exists a primal optimum solution x∗ and a dual optimum solution (λ∗, ν∗)
such that p(x∗) = g(λ∗, ν∗). If p and the constraint functions are all differentiable, then the
following conditions hold:

fi(x
∗) ≤ 0, i ∈ [s], (11)

hi(x
∗) = 0, i ∈ [t], (12)

λ∗i ≥ 0, i ∈ [s], (13)

λ∗i fi(x
∗) = 0, i ∈ [s], (14)

∇p(x∗) +
∑
i∈[s]

λ∗i∇fi(x∗) +
∑
i∈[t]

ν∗∇hi(x∗) = 0. (15)

Conditions (11), (12) and (13) follow directly from the feasibility of x∗ and λ∗. The equality (14)
is known as complementary slackness. It follows from the fact that g(λ∗, ν∗) ≤ L(x∗, λ∗, ν∗) ≤
p(x∗). Since p(x∗) = g(λ∗, ν∗) both inequalities hold as equalities, and

0 = L(x∗, λ∗, ν∗)− p(x) =
∑
i∈[s]

λ∗i fi(x
∗) +

∑
i∈[t]

ν∗i hi(x
∗).

The latter sum is zero as a result of condition (12), each term of the former sum is non-negative
by (11) and (13), and (14) follows. Condition (15) can be derived from the equation g(λ∗, ν∗) =
L(x∗, λ∗, µ∗), which implies that x∗ minimises L(·, λ∗, µ∗). Hence the gradient of L(·, λ∗, µ∗)
evaluated at x∗ is zero.

Together, (11)-(15) are known as the Karush-Kuhn-Tucker conditions, or KKT conditions for
short. The above shows that the KKT conditions are necessary for x∗ and (λ∗, ν∗) to be optimal,
assuming differentiability of the objective and constraint function. If additionally (9) is convex,
then L(·, λ, ν) is convex for all dual feasible (λ, ν), and therefore any x and (λ, ν) that satisfy the
KKT conditions must be optimal. For this reason the KKT conditions play an important role
in algorithms for finding an optimum for this kind of primal problem.

4.2. Formulation of the dual problem. By writing BCLS in an appropriate form we can
apply the theory described above to the discrete tomography problem. The authors of [12] used
a variant4 of the following formulation:

minimise 1
2 ‖Ax− y‖

2
2

subject to x = H(φ),
φ ∈ RN ,

(16)

where H is the Heaviside function. In [12] it was shown that the dual of (16) is given by

maximise 1
2y
T y − 1

2

∥∥ν −AT y∥∥2

(ATA)†
−
∑
i∈[N] max(νi, 0)

subject to ν ∈ Range(AT).
(BCLSD)

To show this fact the exact value of H(0) does not have to be the conventional value of 1/2, the
derivation of BCLSD in [12] also works if H(0) = 1 (or H(0) = 0). For convenience we will use
H(0) = 1 in the remainder of this paper, in which case (16) is equivalent to BCLS. So in a sense
the above can be considered as the Langrangian dual problem of BCLS; as such, we will refer to
it as the Binary Constrained Least Squares Dual (BCLSD) problem.

4The authors of [12] used U = {−1, 1}, we transformed their results to our choice of U = {0, 1}.

16

In the sequel, we will consider the following convex optimisation problem, which we will call
the Convex Constrained Least Squares (CCLS) problem:

minimise 1
2 ‖Ax− y‖

2
2

subject to 0 ≤ x ≤ 1, i ∈ [N],
(CCLS)

This problem is a relaxation of BCLS; as such, its objective value gives a lower bound on the
objective value of BCLS. We proceed as follows: first we will derive the Langrangian dual problem
of CCLS. Next, we show that this dual problem, which we refer to as the Convex Constrained
Least Squares Dual (CCLSD) problem, is equivalent to BCLSD. Then we will use the concepts
introduced in Section 4.1 to show that strong duality holds between CCLS and its dual. This
will in turn allow us to apply the KKT conditions to relate optimal solutions of CCLS to optimal
solutions of BCLSD and CCLSD.

Proposition 4.1. The Langrangian dual problem of CCLS is given by

maximise 1
2y
T y − 1

2

∥∥AT y − (α− β)
∥∥2

(ATA)†
− βT1,

subject to α− β ∈ Range(AT),
α, β ∈ RN≥0.

(CCLSD)

Proof. Associate the variables α, β ∈ RN with the constraints 0 ≤ x and x ≤ 1 respectively.
Then the Lagrangian of CCLS is given by

L(x, α, β) =
1

2
‖Ax− y‖22 − α

Tx+ βT (x− 1).

Since L is quadratic in x and the quadratic coefficient ATA is positive semidefinite, x∗ is a
minimiser of L(·, α, β) if and only if ∇L(x∗, α, β) = 0, i.e, x∗ solves

ATAx∗ = AT y + α− β.

A solution exists if and only if α − β is in the range of AT , in which case all minimisers are of
the form

x∗ = (ATA)†(AT y + α− β) + (I −A†A)w

= A†y + (ATA)†(α− β) + (I −A†A)w

for some w ∈ RN . So if (α − β) ∈ Range(AT) we can find an expression for the dual function
g(α, β) by substituting a minimiser x∗ in L(x, α, β). Substituting x∗ = A†y + (ATA)†(α− β) in

‖Ax∗ − y‖22 gives

‖Ax∗ − y‖22 =
∥∥(AA† − I)y +A†T (α− β)

∥∥2

2
,

=
∥∥(AA† − I)y

∥∥2

2
+
∥∥A†T (α− β)

∥∥2

2
,

= ‖y‖22 − y
TAA†y +

∥∥A†T (α− β)
∥∥2

2
.

17

Hence, provided (α− β) ∈ Range(AT), the dual function g can be written as

g(α, β) = inf
x∈RN

L(x, α, β),

=
1

2
‖Ax∗ − y‖22 − (α− β)Tx∗ − βT1,

=
1

2

(
‖y‖22 − y

TAA†y +
∥∥A†T (α− β)

∥∥2

2

)
− (α− β)T (A†y + (ATA)†(α− β))− βT1,

= −1

2

(
yTAA†y + 2(α− β)A†y + yTA

(
ATA

)†
AT y

)
− βT1 +

1

2
yT y,

= −1

2

∥∥AT y − (α− β)
∥∥2

(ATA)†
− βT1 +

1

2
yT y.

If (α−β) 6∈ Range(AT) then L(·, α, β) is not bounded from below, so in that case g(α, β) = −∞.
Thus the Langrangian dual problem of CCLS is given by CCLSD. �

To see that BCLSD and CCLSD are equivalent, note that any optimal solution (α∗, β∗) of
CCLSD satisfies α∗i β

∗
i = 0 for all i ∈ [N]. So given a optimal solution of CCLSD we can construct

a solution ν of BCLSD with the same objective value by setting ν = β∗−α∗. Conversely, setting
αi = max(0,−ν∗i) and βi = max(0, ν∗i) gives a solution of CCLSD given an optimal solution ν∗.

4.3. Insights about the dual program. Before we show that strong duality holds between
CCLS and its dual, we will first give some consideration to the structure of BCLSD. Consider
BCLSD and eliminate the constraint ν ∈ Range(AT) by substituting ν = ATµ, µ ∈ RM . This
results in the equivalent problem

maximise hmin(µ) := − 1
2

∥∥ATµ−AT y∥∥2

(ATA)†
−
∑
i∈[N] max

(
(ATµ)i, 0

)
+ 1

2y
T y

subject to µ ∈ RM .
(17)

Given a solution µ of (17) we can retrieve a solution ν of BCLSD by setting ν = ATµ. We can
express hmin as hmin(µ) = minx∈{0,1}N h(x, µ) where we define

h(x, µ) := −1

2

∥∥ATµ−AT y∥∥2

(ATA)†
− xTATµ+

1

2
yT y

and hx := h(x, ·). Using this notation we see that (17) is equivalent to

max
µ∈RM

min
x∈{0,1}N

h(x, µ). (18)

By applying the max-min inequality we find that

max
µ∈RM

min
x∈{0,1}N

h(x, µ) ≤ min
x∈{0,1}N

max
µ∈RM

h(x, µ).

We will show that the right hand side of this inequality is equivalent to the primal problem
BCLS.

Since hx is a concave quadratic function for each x ∈ RN , we can determine its maximisers
by setting its gradient to zero.

Lemma 4.2. Given x, the function hx is maximised by µ∗ if and only if

µ∗ = AA†y −Ax+ (I −AA†)w
for some w ∈ RM .

Proof. The gradient of hx is given by

∇hx = A(ATA)†AT y −A(ATA)†ATµ−Ax,

= AA†y −AA†µ−Ax.

18

Setting the gradient to zero to find the maximisers of hx gives

AA†µ∗ = AA†y −Ax.

All solutions of the above are of the form

µ∗ = AA†y −Ax+ (I −AA†)w, w ∈ RM .

�

Proposition 4.3. The primal problem BCLS is equivalent to

min
x∈{0,1}N

max
µ∈RM

h(x, µ)

Proof. If µ∗ is a maximiser of hx then we can express h(x, µ∗) as

h(x, µ∗) = −1

2

∥∥AT (AA† − I)(y − w)−ATAx
∥∥2

(ATA)†
− xTAT y − xTATAx+

1

2
yT y,

= −1

2

∥∥ATAx∥∥2

(ATA)†
− xTAT y − xTATAx+

1

2
yT y,

=
1

2
‖Ax− y‖22 .

Hence

min
x∈{0,1}N

max
µ∈RM

h(x, µ) = min
x∈{0,1}N

1

2
‖Ax− y‖22 .

�

Example 4.4. To illustrate the behaviour of the dual problem we consider the case A =
(
1, 0.2

)
.

In Figure 4 we plotted each hx for y-values 0.5, 1 and 1.5. In the first case there does not
exist a binary solution to Ax = y, but there do exist solutions in [0, 1]2. This means that
g(α, β) ≤ g(0,0) = 0 for all α, β ∈ RN , so (α∗, β∗) = (0,0), ν∗ = 0 and µ∗ = 0 are optimal
solutions of CCLSD, BCLSD and (17) respectively. The best binary solution is x = (0, 1)T with
corresponding µ̃ given by

µ̃ = AA†y −Ax = 0.5− 0.2 = 0.3.

Figure 4. Plot of the functions hx for each x ∈ {0, 1}2 and three different
values of y. We denote by p∗ and d∗ the optimal values of respectively BCLS
and CCLS.

19

In the second case x = (1, 0)T is an exact solution, so µ∗ = µ̃ = 0. In the third case x = (1, 1)T

is an optimal solution of the relaxed primal CCLS, so we have

µ∗ = µ̃ = 1.5− 1.2 = 0.3.

Note that only in the first case there is a duality gap between BCLS and BCLSD, while d∗ = p∗

in the second and third case. We will see in the next section that there is no duality gap if and
only if CCLS has a binary optimal solution.

4.4. Strong duality and its consequences. We can write CCLS as a optimisation problem
of form (9) by setting

p = fLS , fi(x) = −xi, fi+N = xi − 1 for i ∈ [N].

We see that p, f1, . . . , f2N are convex and that x = 1
21 is a strictly feasible point, so Slater’s

condition holds and there exist x∗ and (α∗, β∗) such that p(x∗) = g(α∗, β∗). Moreover, p and
the constraint function are differentiable and as such the KKT conditions apply. Combining this
with the relation ν∗ = β∗ − α∗ immediately leads to two useful results.

Lemma 4.5. Let x∗ be an optimal solution of CCLS. Then the optimal solution ν∗ of BCLSD
is unique and given by

ν∗ = AT y −ATAx∗.

Proof. Because of the equivalence of BCLSD and CCLSD, it suffices to show that β∗ − α∗ =
AT y −ATAx∗ if (α∗, β∗) optimises CCLSD. Let (α∗, β∗) be an optimal solution of CCLSD, and
recall that both α∗ and β∗ correspond to inequality constraints. By KKT condition (15) we have

0 = ∇p(x∗) +
∑
i∈[N]

(α∗i∇fi(x∗) + β∗i∇fN+i(x
∗)) ,

= ATAx∗ −AT y +
∑
i∈[N]

(−α∗i ei + β∗i ei) ,

= ATAx∗ −AT y + β∗ − α∗,

hence β∗ − α∗ = AT y −ATAx∗. �

Lemma 4.6. If ν∗ is an optimal solution of BCLSD and ν∗i 6= 0 for some i ∈ [N], then any
optimal solution x∗ of CCLS must satisfy x∗i = H(ν∗i).

Proof. Let x∗ be an optimal solution of CCLS and let (α∗, β∗) be the optimal solution of CCLSD.
By the complementary slackness condition (14) we have

α∗i > 0 =⇒ x∗i = 0, β∗i > 0 =⇒ x∗i = 1.

Since the optimal ν∗ of BCLSD satisfies ν∗ = β∗ − α∗ the above is equivalent to

ν∗i 6= 0 =⇒ H(ν∗i) = x∗i

�

In [12], the authors posed the idea to compute the optimal solution ν∗ of BCLSD, and then
construct a partial solution z of BCLS by setting zi = H(ν∗i) for all i ∈ [N] such that ν∗ is
non-zero. The above shows that this approach will not be successful when any optimal solution
x∗ of BCLS (or CCLS) is a global minimiser, since in that case

ν∗ = −∇fLS(x∗) = 0.

Despite this, the authors of [12] were able to reconstruct noiseless small scale images with their
method. At first sight, this seems contradictory. We will address this phenomenon in Section
4.5.

20

In light of Lemma 4.6, consider the following method of constructing a partial solution of
BCLS: first compute an optimal solution x∗ of CCLS; then, for each i ∈ [N] such that x∗i ∈ {0, 1},
set zi = x∗i . All the cell values that are determined by the method in [12] will also be determined
by this method, since if ν∗i 6= 0 then x∗i is binary. In some sense one can be more confident that
setting zi = α is persistent if the corresponding ν∗ is non-zero. However, this is not guaranteed to
be the case, at least not for general matrices A as we will show in the following counterexample:

Example 4.7. Set

A =

(
−1 3
12 −4

)
and y =

1

5

(
18
8

)
.

The matrix A is invertible and xc := (3/5, 7/5)T satisfies Axc = y. Since xc is the unique
minimiser of fLS(x), (xc)1 ∈ (0, 1) and (xc)2 > 1, we have ν∗2 > 0. We compute

‖A0− y‖22 =
388

25
, ‖Ae1 − y‖22 =

3233

25
, ‖Ae2 − y‖22 =

793

25
, ‖A1− y‖22 =

1088

25
,

so BCLS is minimised by x̄ = 0, and x̄2 6= H(ν∗2). See Figure 5 for an illustration.

Figure 5. Illustration of the constrained least square problem with A and y as
in Example 4.7. Here x∗ is the optimal solution of CCLS, and x̄ is the optimal
solution of BCLS

To get an idea of when the situation x̄i 6= H(ν∗i) occurs, it will be useful to give some
consideration to the geometry of the example. Given some parameter q > 0, the set of solutions
x ∈ Rn that satisfy 1

2 ‖Ax− y‖
2
2 = q is given by an ellipse centered at xc. The principal axes

of the ellipse are given by the eigenvectors of ATA and their lengths are inversely proportional
to the eigenvalues of ATA. Since the ellipse is a level set, ∇p(x) is perpendicular to it at each
point x on the ellipse. In particular, ν∗ = −∇p(x∗) is perpendicular to the curve given by

‖Ax− y‖22 = ‖Ax∗ − y‖22 at x∗. In order to create an example where 0 = x̄i 6= H(ν∗i), we need
to be able to draw an ellipse that goes through x̄, has its centre xc satisfy (xc)i > 1 and does
not enclose any other point in {0, 1}2. To be able to achieve this the matrix A must be poorly

21

conditioned (but not underdetermined because then ν∗ would become 0) , and y must be chosen
such that the major principal axis of the ellipse intersects the boundary of [0, 1]2 near x̄.

In order to use ν∗i to derive a guaranteed persistent partial assignment it needs to be large
enough in absolute value. In particular, we can give a lower bound on the value of fLS(x) for x
that satisfy H(−ν∗i) = xi for all i ∈ I for some subset I ⊆ [N]. The value of this lower bound
depends on the absolute values of the corresponding ν∗i . Then if we can find a upper bound on
the optimal value of BCLS, we can conclude that the optimal solution x̄ of BCLS must satisfy
H(ν∗i) = x̄i for at least one i ∈ I. We will state the mentioned lower bound in Lemma 4.8.
In practise, one often does not have access to the exact value of ν∗, only to an approximation
thereof. To account for this we extend the lower bound of Lemma 4.8 to dual variables that are
almost optimal. This result is given by Theorem 4.12. After that we give some ideas about how
to derive an upper bound on the optimal value of BCLS.

Lemma 4.8. Let x∗ be an optimal solution of CCLS and let ν∗ be the optimal solution of
BCLSD. Suppose I ⊆ [N] is such that ν∗i 6= 0 for all i ∈ I. Let x ∈ {0, 1}N satisfy

H(−ν∗i) = xi

for all i ∈ I. Then

fLS(x) ≥ fLS(x∗) +

(∑
i∈I |ν∗i |

4fLS(x∗)
+ 1

)∑
i∈I
|ν∗i | .

Proof. Since x∗ is an optimal solution of CCLS, H(ν∗i) = x∗i for all i ∈ I. Let ∆x = x − x∗.
Then ∆xi = − sign(ν∗i) for all i ∈ I. Note that since x ∈ [0, 1]N the inequality ν∗i ∆xi ≤ 0 holds
for all i ∈ [N]. We have

1

2
‖Ax− y‖22 −

1

2
‖Ax∗ − y‖22 = ∆xTAT (Ax∗ − y) +

1

2
‖A∆x‖22 ,

= −∆xT ν∗ +
1

2
‖A∆x‖22 ,

≥ 1

2
‖A∆x‖22 +

∑
i∈I
|ν∗i | .

Furthermore, by the Cauchy–Schwarz inequality we have

∆xTAT (Ax∗ − y) ≤ ‖Ax∗ − y‖2 ‖A∆x‖2 ,
hence

1

2
‖Ax− y‖22 ≥

1

2
‖Ax∗ − y‖22 +

1

2

(
∆xTAT (Ax∗ − y)

‖Ax∗ − y‖

)2

+
∑
i∈I
|ν∗i | ,

≥ 1

2
‖Ax∗ − y‖22 +

(∑
i∈I |ν∗i |

2 ‖Ax∗ − y‖22
+ 1

)∑
i∈I
|ν∗i | .

�

In practise, one often does not have access to the exact values of x∗ and ν∗, only to approxi-
mations of them. In order to be able to apply the above results effectively, we need to be able to
express the results above in terms of such approximations. More concretely, we will introduce the
concept of pseudo-optimality, and give a generalisation of Lemma 4.8 that utilises this concept.
Here, we define pseudo-optimality as follows:

22

Definition 4.9. Given some ε ≥ 0, we say that the primal-dual pair (x̂, (α̂, β̂)), with x̂, α̂, β̂ ∈
RN , is ε-pseudo-optimal if

(i) 0 ≤ x̂ ≤ 1;

(ii) α̂, β̂ ∈ RN≥0;

(iii) α̂ix̂i ≤ ε for all i ∈ [N];

(iv) β̂i(1− x̂i) ≤ ε for all i ∈ [N];

(v) α̂iβ̂i = 0 for all i ∈ [N];

(vi) β̂ − α̂ = AT y −ATAx̂.

If ε = 0, condition (v) is redundant and the others are simply the KKT optimality conditions
for CCLS. Similar to what we did before, we can set

ν̂ = β̂ − α̂ = AT y −ATAx̂

to obtain a solution of BCLSD, which we will relate to ν∗ later. For small ε, the value of fLS(x̂)
can be shown to be close to optimal:

Lemma 4.10. Let ε ≥ 0 and let (x̂, (α̂, β̂)) be ε-pseudo-optimal. Let x∗ be an optimal solution
of CCLS. Then

fLS(x̂) ≤ fLS(x∗) +Nε.

Proof. Since x̂ is feasible for CCLS and (α̂, β̂) is feasible for CCLSD, we have

fLS(x∗) ≥ L(x̂, α̂, β̂) = fLS(x̂)− α̂T − β̂T (1− x) ≥ fLS(x̂)−Nε.

Note that the factor is N instead of 2N as a result of condition (v). �

An ε-pseudo-optimal pair can be computed with existing iterative methods. For example, the
SciPy library’s least squares solver has the option to compute such a pair for a user-provided ε >
0, by setting the gtol option to ε, and then using the returned x̂ to compute the corresponding

α̂ and β̂.
We can relate ν̂ to ν∗ as follows:

Lemma 4.11. Let ε ≥ 0, I ⊆ [N] and let (x̂, (α̂, β̂)) be ε-pseudo-optimal. Let ν̂ = β̂ − α̂ and let
ν∗ be the optimal solution of BCLSD. Let MI be the linear map RN → RI given by

(MI(x))i = xi.

Then ∑
i∈I
|ν∗i | ≥

∑
i∈I
|ν̂i| −

∥∥MIA
T
∥∥

1

√
2MNε.

Proof. We derive ∑
i∈I
|ν∗i | = ‖MIν

∗‖1 ≥ ‖MI ν̂‖1 − ‖MI(ν
∗ − ν̂)‖1 .

We will show that ‖MI(ν
∗ − ν̂)‖1 ≤

∥∥MIA
T
∥∥

1

√
2MNε. First we observe that

ν∗ − ν̂ = AT y −ATAx∗ −AT y +ATAx̂ = ATA(x∗ − x̂),

where x∗ is an optimal solution of CCLS. We have

‖MI(ν
∗ − ν̂)‖1 =

∥∥MIA
TA(x∗ − x̂)

∥∥
1
≤
∥∥MIA

T
∥∥

1
‖A(x∗ − x̂)‖1 .

23

We use the ε-pseudo-optimality to derive an upper bound on ‖A(x∗ − x̂)‖1 . By Lemma 4.10 we
have

2Nε ≥ ‖Ax̂− y‖22 − ‖Ax
∗ − y‖22 ,

= ‖A(x̂− x∗)‖22 + 2(Ax∗ − y)TA(x̂− x∗),

= ‖A(x̂− x∗)‖22 − 2(x̂− x∗)T ν∗.

Since x̂ is feasible and x∗ is optimal, (x̂−x∗)T ν∗ ≤ 0. So we have ‖A(x∗ − x̂)‖2 ≤
√

2Nε. Using

the fact that ‖w‖1 ≤
√
M ‖w‖2 for all w ∈ RM we find that∑

i∈I
|ν∗i | ≥

∑
i∈I
|ν̂i| −

∥∥MIA
T
∥∥

1
‖A(x∗ − x̂)‖1 ≥

∑
i∈I
|ν̂i| −

∥∥MIA
T
∥∥

1

√
2MNε.

�

Note that if I = {i}, then
∥∥M{i}AT∥∥1

=
∥∥(ai)T

∥∥
1

=
∥∥ai∥∥∞, which is the element of the i-th

column of A with the largest absolute value. We now have all the tools we need to generalise
Lemma 4.8, which in turn will allow us to compute a guaranteed persistent partial solution z.

Theorem 4.12. Let ε ≥ 0 and let (x̂, (α̂, β̂)) be ε-pseudo-optimal. Suppose I ⊆ [N] is such that

|ν̂i| >
∥∥ai∥∥∞√2MNε for all i ∈ I. Let x ∈ {0, 1}N satisfy

H(−ν̂i) = xi

for all i ∈ I. Then

fLS(x) ≥ fLS(x̂) +
L2

4fLS(x̂)
+ L−Nε,

where L =
∑
i∈I |ν̂i| −

∥∥MIA
T
∥∥

1

√
2MNε

Proof. Let x∗ be an optimal solution of CCLS. Note that
∥∥M{i}AT∥∥1

=
∥∥ai∥∥∞. Since |ν̂i| >∥∥ai∥∥∞√2MNε for all i ∈ I, by Lemma 4.11 we must have ν∗i 6= 0 and sign(ν∗i) = sign(ν̂i). So

H(−ν∗i) = xi for all i ∈ I, and we can apply Lemma 4.8. Combining this with Lemma 4.10 gives

1

2
‖Ax− y‖22 ≥

1

2
‖Ax∗ − y‖22 +

(∑
i∈I |ν∗i |

2 ‖Ax∗ − y‖22
+ 1

)∑
i∈I
|ν∗i | ,

≥ 1

2
‖Ax̂− y‖22 −Nε+

(∑
i∈I |ν∗i |

2 ‖Ax̂− y‖22
+ 1

)∑
i∈I
|ν∗i |

Applying Lemma 4.11 to derive a lower bound on
∑
i∈I |ν∗i | gives the stated result. �

We can apply the bound from Theorem 4.12 to compute a partial solution z as follows:
The partial solution z returned by Algorithm 1 is persistent if u is an upper bound on the

optimal objective value of BCLS. One way to compute such an upper bound is by using a
cheap algorithm to compute an x̃ ∈ {0, 1}N such that fLS(x̃) is fairly low. Since in order to
apply Theorem 4.12, we need to approximate an optimal solution of CCLS, one can consider to
construct x̃ based on the approximate solution of CCLS x̂. This can be done in multiple ways.
A simple approach is to round each x̂i to the nearest binary value. One can take a randomised
approach, by setting x̃i = 1 with probability x∗i and setting x̃i = 0 otherwise. One can repeat
this process a few times to try different versions of x̃ and use the one that gives the best upper
bound. For our experiments discussed in Section 6, we used a somewhat more involved method,
given by Algorithm 2. The idea is that by rounding the variables x̂i that are close to binary first
we obtain a binary solution that is similar to x̂.

24

Algorithm 1

Input: A, y, ε, u.
Output: partial solution z

• Compute an ε-pseudo-optimal primal-dual pair (x̂, (α̂, β̂)), for instance by using SciPy’s
least squares solver. A lower ε can possibly provide more persistent assignments, but

comes at the cost of longer computation times. Set ν̂ = β̂ − α̂.
• For each i ∈ [N], compute the value

Li = |ν̂i| −
∥∥ai∥∥∞√2MNε.

If this value is larger than zero, we can apply Theorem 4.12 with I = {i}: if

u < fLS(x̂) +
L2
i

fLS(x̂)
+ Li −Nε,

then set zi = H(ν̂i).

Algorithm 2

Input: A, y, x̂
Output: x̃ ∈ {0, 1}N

• Find a permutation π : [N] → [N] such that min
(
x̂π(i), 1− x̂π(i)

)
≤

min
(
x̂π(j), 1− x̂π(j)

)
for all i, j ∈ [N], i < j. This can be done with a simple sort-

ing algorithm.
• For each i ∈ [N], compute

c0 = fLS(x̂1, . . . , x̂π(i)−1, 0, x̂π(i)+1, . . . , x̂N)

and
c1 = fLS(x̂1, . . . , x̂π(i)−1, 1, x̂π(i)+1, . . . , x̂N).

If c0 < c1, set x̂π(i) := 0, otherwise set x̂i := 1.
• Return x̂.

Combining methods that use x̂ to compute an upper bound on fLS(x̄) with Algorithm 2 gives
the method described by Algorithm 3.

So far, we only applied Theorem 4.12 using index sets I of size 1. It is possible to extend the
procedure to additionally identify constraints that hold for the optimal value x̄. For example,
one might find that Li > 0 and Lj > 0 but that the two values on their own are not high enough
to guarantee persistency. It could be possible that applying Theorem 4.12 with I = {i, j} does
give a positive result. In that case it is guaranteed that H(ν̂i) = x̄i or H(ν̂j) = x̄j . This can be
useful if the preprocessing is followed by a method that can make use of extra constraints on the
variables.

4.5. On the conjectures posed in [12]. In this section we will discuss the conjectures given
in [12] and how the observations from the previous section relate to them. First we describe the
experiment performed in [12]: we consider the lattice set reconstruction problem (see Section
2.1) with d = 2 and n1 = n2 =: n. For n ∈ {2, 3, 4}, all the binary images of size n × n are
constructed. For each such image the noiseless projection data is computed for three different

25

Algorithm 3

Input: A, y, ε
Output: Persistent partial solution z

• Compute an ε-pseudo-optimal primal-dual pair (x̂, (α̂, β̂)), for instance by using SciPy’s
least squares solver. A lower ε can possibly provide more persistent assignments, but

comes at the cost of longer computation times. Set ν̂ = β̂ − α̂.
• Compute a binary x̃ ∈ {0, 1}N for which the value of fLS(x̃) is low, for instance by

rounding x̂ to a binary vector using Algorithm 2.
• For each i ∈ [N], compute the value

Li = |ν̂i| −
∥∥ai∥∥∞√2MNε.

If this value is larger than zero, we can apply Theorem 4.12 with I = {i}: if

fLS(x̃) < fLS(x̂) +
L2
i

fLS(x̂)
+ Li −Nε,

then setting zi = H(ν̂i) preserves the persistency of z.

sets of directions. These sets are give by

D2 =

{(
1
0

)
,

(
0
1

)}
, D3 =

{(
1
0

)
,

(
0
1

)
,

(
1
−1

)}
, D4 =

{(
1
0

)
,

(
0
1

)
,

(
1
−1

)
,

(
1
1

)}
.

Then the obtained projection data is used to see if their method is able to reconstruct (parts of)
the original images. This method consists of the following steps:

Algorithm 4. [12]

Input: A and y
Output: partial solution z

• Find an (approximate) solution µ̂ of the dual formulation (17). This was done in
MATLAB, using a convex programming library called CVX [9]. Set ν̂ = AT µ̂.
• Set

zi =


1 if ν̂i ≥ 10−9;

0 if ν̂i ≤ −10−9;

ø otherwise.

• Return z

The result of the experiment was that for all the considered n and direction sets the output
z of Algorithm 4 satisfies

zi =


1 if xi = 1 for all x ∈ {0, 1}N that satisfy Ax = y;

0 if xi = 0 for all x ∈ {0, 1}N that satisfy Ax = y;

ø otherwise.

Note that by construction of y at least one x ∈ {0, 1}N satisfies Ax = y. In the previous section,
we saw that this implies that the optimal solution ν∗ of BCLSD is given by ν∗ = 0. This means

26

that in this case z is determined by the difference between ν̂ and ν∗. We hypothesise that ν̂i
can be relatively large if x∗i ∈ {0, 1} for all optimal solution x∗ of BCLS. The reasoning behind
this is that if x̂ is ε-pseudo-optimal then the corresponding ν̂ satisfies |ν̂i| ≤ ε

min(x̂i,1−x̂i)
. So

if x̂i is close to 0 or 1, the corresponding ν̂i is allowed to be quite large. In Algorithm 4 x̂ is
not computed explicitly, but it is plausible that the ν̂ found by the CVX solver approximately
satisfies the KKT conditions anyway. As such, we conjecture that for n ∈ {2, 3, 4}, directions
sets D2, D3 and D4 and noiseless projection data the following statement holds:

Each optimal solution of CCLS is a convex combination of optimal solutions of BCLS.

It is easy to see that if x∗ is a convex combination of optimal solutions of BCLS and y is
noiseless, it must be an optimal solution of CCLS: if x̄1, . . . , x̄k are optimal solutions of BCLS
and λ1, . . . , λk ∈ R≥0 satisfy

∑
i∈[k] λi = 1 then

A
∑
i∈[k]

λix̄
i =

∑
i∈[k]

λiAx̄
i =

∑
i∈[k]

λiy = y.

The difficulty lies in showing that the optimal solutions of CCLS are contained in the convex
hull of optimal solutions of BCLS (or finding an example where this is not the case), and we
have not succeeded in finding a conclusive answer for this. However, we were able to verify the
following weaker statement (again for n ∈ {2, 3, 4}, directions sets D2, D3 and D4 and noiseless
projection data):

If BCLS has a unique optimal solution x̄, then x̄ is the unique optimal solution of CCLS.

In order to verify the above we use the following lemma:

Lemma 4.13. Let x̄ ∈ {0, 1}N and x ∈ [0, 1]N . If x̄ 6= x and Ax̄ = Ax = y, then there exist an
i ∈ [N] and an x′ ∈ [0, 1]N such that x′i = 1− x̄i and Ax′ = y.

Proof. Let
λ′ = max

{
λ | λ(x− x̄) + x̄ ∈ [0, 1]N

}
and x′ = λ′(x− x̄) + x̄.

We have λ′ > 0 and Ax′ = λA(x − x̄) + Ax̄ = y. Furthermore, there must be an i ∈ [N] such
that x′i ∈ {0, 1} and (λ(x− x̄) + x̄)i 6= x′i for all λ < λ′. So x′i 6= x̄i, and since both are binary,
x′i = 1− x̄i. �

Our approach is as follows: For each y with a unique binary solution x̄, and each j ∈ [N], we
compute an approximate solution x̂ to the problem

minimise 1
2 ‖Ax− y‖

2
2

subject to 0 ≤ x ≤ 1, i ∈ [N],
xj = 1− x̄j .

(19)

Then we compute dual values α̂, β̂ ∈ RN≥0 that satisfy α̂iβ̂i = 0 for all i ∈ [N] and β̂ − α̂ =

AT y−ATAx̂. Then the value of L(x̂, α̂, β̂) gives a lower bound on the objective value of (19). If
for each j ∈ [N] this lower bound is larger than zero, by Lemma 4.13 we can conclude that CCLS
has x̄ as unique optimal solution. By computing a 10−5-pseudo-optimal x̂ for each n ∈ {2, 3, 4},
direction set D2, D3, D4 and noiseless y with an unique solution we have found that this is indeed
the case for all such discrete tomography problems. To summarise, we have

Proposition 4.14. If m,n ∈ {2, 3, 4}, A is the projection matrix corresponding to the discrete
tomography problem with direction set Dm and y is such that the equation Ax = y has a unique
solution x̄ ∈ {0, 1}N , then CCLS has a unique optimal solution.

27

5. Roof duality

We will now shift our focus to roof duality, another technique that can be used to find a
lower bound and partial solutions of the binary tomography problem (BCLS). Roof duality was
introduced in [10] as a means to find an upper bound on quadratic pseudo-boolean functions.
Here a pseudo-boolean function is a mapping f : {0, 1}N → R. Such a mapping is uniquely
represented by a multilinear polynomial

f(x) =
∑
S⊆[N]

cS
∏
i∈S

xi,

where the cS , S ⊆ [N] are real numbers. When this polynomial is quadratic we speak of a
quadratic pseudo-boolean function. In this case we have

f(x) = c0 +
∑
i∈[N]

cjxi +
∑

1≤i<j≤N

cijxixj .

In the same paper it was shown that the upper bound given by roof duality can be obtained by
some other approaches as well. In order to apply roof duality to binary tomography, we first have
to phrase the objective function fLS(x) = 1

2 ‖Ax− y‖
2
2 as a quadratic pseudo-boolean function.

To do so we have to replace each 1
2 (ATA)iix

2
i term with 1

2 (ATA)iixi. Denote the columns of A

by a1, . . . , an. Our objective function becomes

fPB(x) =
1

2
〈y, y〉+

∑
i∈[N]

1

2

〈
ai − 2y, ai

〉
xi +

∑
1≤i<j≤N

〈
ai, aj

〉
xixj . (20)

While roof duality was introduced to find upper bounds, we are more interested in lower bounds
on f and will state the relevant results as such. Keep this in mind when we introduce some of the
terminology from [10]. In the next subsection we will describe the original characterisation of roof
duality, as well as a maximum flow problem that gives the same lower bound. This maximum
flow formulation was introduced in [10] as well, and is considered the most efficient way to
compute the roof duality lower bound in most cases [3]. We will also briefly discuss an extension
of the maximum flow approach which was introduced in [4]. There are other formulations of roof
duality that are less very relevant for our current application; we refer to [3] for a more extensive
overview.

5.1. Roof duality concepts. We will first give the original formulation of the roof dual, and
then discuss the maximum flow approach as described in [4].

5.1.1. Original formulation. Let f : {0, 1}N → R be a quadratic pseudo-boolean function and
let h : RN → R be an affine function. We say that h is a lower plane of f if h(x) ≤ f(x) for all
x ∈ {0, 1}N . In this case minx∈{0,1}N h(x) is an easily computeable lower bound on f . When H
is a collection of lower planes of f , then

min
x∈{0,1}

f(x) ≥ max
h∈H

min
x∈{0,1}

h(x).

The idea of roof duality is to choose H to be the collection of roofs of f . These lower planes
are generated by constructing a lower plane for each term of f and then adding them. For the
constant and linear terms of f we simply use

h0(x) = c0 and hi(x) = cixi, i ∈ [N].

For quadratic terms of the form cijxixj , a lower plane hij(x) = aijxi + bijxj + dij must satisfy

dij ≤ 0, aij + dij ≤ 0, bij + dij ≤ 0 and aij + bij + dij ≤ cij . (21)

28

We say that hij is a tile if the sum of the slacks in the above inequalities is minimised, that is
aij , bij , dij minimise

−4dij − 2aij − 2bij + cij

under the constraints (21). Let

I+ := {(i, j) : 1 ≤ i < j ≤ N, cij > 0} and I− := {(i, j) : 1 ≤ i < j ≤ N, cij < 0}.

It was shown in [10] that hij is a tile if and only if it is of the form

hij(x) =

{
λij(xi + xj − 1) if (i, j) ∈ I+,

−λijxi + (cij + λij)xj if (i, j) ∈ I−

for some 0 ≤ λij ≤ |cij |. Then the roofs of f are given by

R(f) :=

{
c0 +

N∑
i=1

cixi +
∑

(i,j)∈I+

λij(xi + xj − 1) +
∑

(i,j)∈I−

−λijxi + (cij + λij)xj :

0 ≤ λij ≤ |cij | ∀ 0 ≤ i < j ≤ N

}
,

and the roof dual of f is given by

cRD(f) := max
h∈R(f)

min
x∈{0,1}N

h(x). (22)

Furthermore, any roof h that maximises (22) can be used to infer persistencies: if the coefficient
of xi is larger than zero, then the assignment xi := 0 is strongly persistent, and if this coefficient
is smaller than zero the assignment xi := 1 is strongly persistent (Theorem 4.3 in [10]).

5.1.2. Maximum flow formulation. We will first state some general theory regarding graph flows,
and then explain how this theory can be applied to compute the roof dual. Let G = (V,E) be a
directed graph without loops with edge capacities c : E → R≥0. We can assume without loss of
generality that G is a complete graph because we can give arcs we do not want to use capacity
0. Given some s, t ∈ V , we say that ψ : E → R is an s− t flow on G if it satisfies the following
three properties:

• ψ(u, v) ≤ c(u, v) for all (u, v) ∈ E;
• ψ(u, v) = −ψ(v, u) for all (u, v) ∈ E;
•
∑
u∈V :ψ(u,v)>0 ψ(u, v) =

∑
u∈V :ψ(v,u)>0 ψ(v, u) for all v ∈ V \ {s, t}.

The nodes s and t are commonly referred to as the source and the sink of the flow. We say that
ψ saturates an arc (u, v) if ψ(u, v) = c(u, v). The value of ψ, denoted |ψ|, is the net amount of
flow leaving s (or, equivalently, entering t), that is

|ψ| :=
∑
u∈V

ψ(s, u).

The maximum flow problem is the problem of finding an s− t flow ψ with maximum value. This
can be done in time polynomial in |V | and the number of edges with non-zeros capacity, for
instance by using the Edmonds-Karp algorithm [7].

The maximum flow problem is closely related to the minimum cut problem, which we will
introduce shortly. Given s, t ∈ V , an s− t cut of G is a partition (P1, P2) of V such that s ∈ P1

and t ∈ P2. The capacity of a cut is defined as

c(P1, P2) :=
∑
u∈P1

∑
v∈P2

c(u, v).

29

One can see this value as an upper bound on the amount of flow between P1 and P2. We say
that (P1, P2) is a minimum s − t cut of G if its capacity is minimised. The problem of finding
such a cut is called the minimum cut problem. A fundamental result in the theory of networks
flows, known as the max-flow min-cut theorem, is that the capacity of any minimum s− t cut is
equal to the value of any maximum s− t flow.

The residual graph of G = (V,E) (with arc capacities c) and s− t flow ψ is a graph R = (V,E)
with capacities rψ(u, v) := c(u, v) − ψ(u, v). One can show that ψ is a maximum s − t flow if
and only if there is no path (over edges with non-zero capacity) from s to t in R.

In [10] it was shown that one can use a pseudo-boolean function f to construct a graph such
that computing a maximum flow on that graph gives the roof duality lower bound. In order to
describe this construction we first need to introduce a few more concepts. Given a binary variable
xi, i ∈ [N], we define its complement as x̄i := 1 − xi. We denote LN := {x1, x̄1, . . . , xN , x̄N}.
The elements of LN are often referred to as literals. A quadratic pseudo-boolean function can
be represented as

f(x) = φ(x, x̄) = d0 +
∑
u∈L

duu+
∑

u,v∈L,u 6=v

duvuv. (23)

This representation is not unique, for instance f(x) = x1 and f(x) = 1− x̄1 represent the same
pseudo-boolean function. We say that a representation of form (23) is a posiform if du ≥ 0 and
duv ≥ 0 for all u, v ∈ L, u 6= v. The constant term of a posiform gives a lower bound on f . The
largest number c such that a posiform of f with constant term c exists has been shown to be equal
to cRD(f). Moreover, the linear part of a posiform with cRD(f) as constant term is a roof of f .
Note that given a pseudo-boolean function f one can easily construct a posiform representation
by replacing terms cijxixj with cijxj − cij x̄ixj for all negative cij and subsequently substituting
xi = 1− x̄i in the linear terms whenever necessary.

Given a posiform, its implication network [4] Gφ = (V,E) is given by

V = LN ∪ {1, 0},
E = {(u, v̄) | duv > 0} ∪ {(v, ū) | duv 6= 0},

with capacities c(u, v̄) = c(v, ū) = 1
2duv. Conversely, given a graph G = (V,E) with V as above

one can construct a posiform

φG(x) :=
∑

(u,v)∈E

cuvuv̄.

We can use this correspondence to compute the roof dual as a maximum flow problem using the
following two results:

Proposition 5.1 (Proposition 15 in [3]). Let G = (V,E) be an implication network and let ψ
be a feasible 1− 0 flow of G with value |ψ|. Let R be the residual graph of G and ψ. Then

φG(x, x̄) = φR(x, x̄) + |ψ|
for all x ∈ {0, 1}N .

Proposition 5.2 (Proposition 16 in [3]). If φ1, φ2 are posiform representations of f such that
the constant term of φ1 is smaller than the one of φ2, then there exists a 0− 1 flow in Gφ1 with
value larger than zero.

Combining these two results gives the connection the the roof duality lower bound:

Proposition 5.3 (Theorem 10 in [3]). If φ is a posiform representation of f with constant term
d0, and ψ is a maximum flow in the implication network of φ, then

cRD(f) = d0 + |ψ| .

30

Furthermore, the resulting residual graph can be used to construct an autark partial solution:

Proposition 5.4 ([4]). Let φ be a posiform representation of f and let ψ be a maximum flow
in the implication network Gψ of φ. Let R be the residual graph of Gψ and φ. Then the partial
solution given by

zi =


1 if there exists a path from node 1 to node xi in R;

0 if there exists a path from node 1 to node x̄i in R;

ø otherwise

is a strong autarky for f .

In [4] it was shown that one can possibly derive even more persistent assignments by analysing
the strongly connected components of R. We refer to [4] for details on this approach.

5.2. Applying roof duality to the discrete tomography problem. Now that we have
established the main concepts of roof duality, we can apply the theory to discrete tomography.
Here we will assume that A is entry-wise non-negative. Recall that we then can also assume that

1

2
‖a‖22 < 〈y, a〉 < 〈A1, a〉 − 1

2
‖a‖22 (24)

for all columns a of A. We can construct an implication network of fPB as follows:

Lemma 5.5. If A is entry-wise non-negative and
〈
2ai, y

〉
≥
∥∥ai∥∥ for all i ∈ [N], then

φ(x) :=
1

2
yT y +

N∑
i=1

(
1

2

∥∥ai∥∥2

2
−
〈
ai, y

〉)
+

N∑
i=1

(〈
ai, y

〉
− 1

2

∥∥ai∥∥2

2

)
x̄i +

∑
1≤i<j≤N

〈
ai, aj

〉
xixj

is a posiform of fPB. The adjacency matrix of the corresponding implication network is given by

1

2


ZN,N ATA− diag(b) ZN,1 ZN,1
ZN,N ZN,N ZN,1 AT y − 1

2b
yTA− 1

2b
T Z1,N 0 0

Z1,N Z1,N 0 0

 ,

where the rows and columns are indexed by (x1, . . . , xN , x̄1, . . . , x̄n, 1, 0)

Proof. Since A is entry-wise non-negative and
〈
2ai, y

〉
>
∥∥ai∥∥ all the coefficients of φ are non-

negative, and substituting x̄ = 1− x gives fPB , so φ is a posiform of fPB . The capacities of the
edges are given by

c(x0, xi) = c(x̄i, x̄0) =
1

2

〈
ai, y

〉
− 1

4

∥∥ai∥∥2

2
=

1

2

(
AT y − 1

2
b

)
i

for all i ∈ [N];

c(xi, x̄j) =
〈
ai, aj

〉
=

1

2
(ATA)ij for i, j ∈ [N], i 6= j.

This gives the adjacency matrix described above. �

Example 5.6. Consider the lattice set reconstruction problem with a 2×2 image and horizontal
and vertical rays. The corresponding projection matrix is

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 .

31

Given a y ∈ R4, the pseudo-boolean function given by (20) is

fPB(x) =
1

2
yT y + (1− y1 − y3)x1 + (1− y1 − y4)x2 + (1− y2 − y3)x3+

(1− y2 − y4)x4 + x1x2 + x1x3 + x2x4 + x3x4.

Assuming that (24) holds for all columns of A. Then fPB can be represented by the posiform

φ(x) =
1

2
yT y + 4− 2yT1 + (y1 + y3 − 1)x̄1 + (y1 + y4 − 1)x̄2 + (y2 + y3 − 1)x̄3+

(y2 + y4 − 1)x̄4 + x1x2 + x1x3 + x2x4 + x3x4.

The corresponding graph Gφ is depicted in Figure 6. The capacities of the edges are

dx0xi
= dx̄ix̄0

=
1

2
(yTai − 1), i ∈ {1, 2, 3, 4},

dxix̄j = dxj x̄i =
1

2
, (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)}.

x0

x1

x2

x3

x4

x̄1

x̄2

x̄3

x̄4

x̄0

Figure 6. The directed graph Gφ, where φ is defined in Example 5.6.

For the remainder of this section we will focus on the lattice set reconstruction problem. In
this case the coefficients of φ can be interpreted as follows:

•
(
AT y

)
i

gives the sum of the projection data of the rays that contain pi;

•
(
ATA

)
ij

gives the number of rays that intersect both pi and pj . In particular
∥∥ai∥∥2

2
=(

ATA
)
ii

= m for all i ∈ [N].

We argue that applying roof duality based methods will often be ineffective in this setting: In the
one directional case, roof duality based methods will never be able to find persistent assignments
after all size one autarkies are eliminated. In cases with two or more directions, roof duality
based methods can only improve on eliminating size one autarkies if there remain yi such that
yi ≤ 1

2 or yi ≥ (A1)i − 1
2 . To show this we will use the following lemma:

32

Lemma 5.7. Let n ∈ N, and consider the directed graph G = (V,E) with V = {v1, . . . , v2n, s, t}
and adjacency matrix

A =


Zn,n En,n − In,n Zn,1 Zn,1
Zn,n Zn,n Zn,1 ĉ
ĉT Z1,n 0 0
Z1,n Z1,n 0 0

 , (25)

where 0 < ĉi ≤ n − 1, for all i ∈ [n]. Then G has exactly two minimum s − t cuts, given by
({s}, V \ {s}) and (V \ {t}, {t}), and the capacity of any other cut (P1, P2) is at least

ĉn+ min(`, n− 1− u)

Proof. We see that

c({s}, V \ {s}) = c(V \ {t}, {t}) = ĉn.

More generally, let (P1, P2) be a s− t cut. Let

α = |P1 ∩ {v1, . . . , vn}| , β = |P1 ∩ {vn+1, . . . v2n}| and r = |{i ∈ Ik | vi ∈ P1, vi+n ∈ P2}| .

We have max(0, α− β) ≤ r ≤ min(α, n− β). The value of cut (P1, P2) is computed as

c(P1, P2) = ĉ(n− α) + α(n− β)− r + ĉβ.

We obtain the value of c({s}, V \ {s}) by setting α = β = 0 and the value of c(V \ {t}, {t}) by
setting α = β = n. We will now assume that 0 < α+β < 2n and use the fact that 0 < ĉ < n− 1
to show that in this case c(P1, P2) ≥ ĉn+ min(`, n− 1− u). We have to show that

α(n− ĉ) ≥ β(s− ĉ) + max(0, s− t) + min(`, n− 1− u) (26)

for all α, β ∈ {0, . . . , n} such that 0 < α+β < 2n. Given α, the left hand size of (26) is maximised
by setting β either as large or as small as possible. This leaves us to check the following cases:

• α = n, β = n− 1. We have

α(n− ĉ) = n(n− ĉ) = (n− 1)(n− ĉ) + 1 + (n− 1)− ĉ ≥ β(α− ĉ) + max(0, α− β) + n− 1− u.

• α < n, β = n. We have

α(n− ĉ) = αn− ĉn+ (n− α)ĉ ≥ αn− nĉ+ ` = β(α− ĉ) + max(0, α− β) + `.

• α > 0, β = 0. We have

α(n− ĉ) ≥ n− 1− ĉ+ 1 ≥ β(α− ĉ) + max(0, α− β) + n− 1− u.

• α = 0, β = 1. We have

α(n− ĉ) ≥ `− ĉ = β(α− ĉ) + max(0, s− t) + `.

So inequality (26) holds and

c(P1, P2) ≥ ĉ+ min(`, n− 1− u)

for all cuts (P1, P2) other than the two minimum cuts. �

We use Lemma 5.7 to show that in the one directional case there will be no paths from node
1 to other nodes in the final residual graph, which means that we can not use Proposition 5.4 to
find a non-trivial strong autarky:

33

Lemma 5.8. Consider the lattice set reconstruction problem with only one direction. Let the
rays be given by R1, . . . , RM , denote Ik := {i ∈ [N] : pi ∩Rk 6= ∅} and

Vk := {u | u ∈ {xi, x̄i}, i ∈ Ik}
for k ∈ [M]. Suppose

1

2

∥∥ai∥∥2

2
<
〈
ai, y

〉
<
〈
A1, ai

〉
− 1

2

∥∥ai∥∥2

2

for all i ∈ [N]. Let ψ be a maximum 1-0 flow of Gφ and let R be the residual network of Gφ and
ψ. Then the strongly connected components of R are given by {0}, {1}, and V1, . . . , VM .

Proof. Let k ∈ [M] and consider the subgraph of Gφ induced by Vk∪{0, 1}. Denote this subgraph
by Gk. This subgraph has the same form as the graph described by Lemma 5.7: We set n = |Ik|
and can correspond s to node 1, t to node 0, each vi, i ∈ [n] to a node xj ∈ Vk and each vi+n,
i ∈ [n] to a node x̄j ∈ Vk. Since (ATA)ij = 1 for all i, j ∈ Ik and

0 <
〈
ai, y

〉
− 1

2
<
〈
A1, ai

〉
− 1 = n− 1

for all i ∈ Ik, we can apply Lemma 5.7 to show that Gk has exactly two minimum 1−0 cuts, given
by ({1}, Vk ∪ {0}) and ({1} ∪ Vk, {0}). This implies that the strongly connected components of
the residual graph of Gk and any of its maximum flows are given by {0}, {1} and Vk. Combining
this with the fact that there are no arcs between Vi and Vj for all i 6= j then gives the result. �

The above shows that in the one directional case, the autarky we find by applying Proposition
5.4 will leave all variables undetermined. The above extends to lattice set reconstruction problems
with two or more directions in the following way:

Theorem 5.9. Consider the lattice set reconstruction problem with m ≥ 2 non-parallel directions
d1, . . . , dm. Suppose

1

2
< yi < (A1)i −

1

2
for all i ∈ [M]. Let ψ be a maximum 1− 0 flow of Gφ and let R be the residual network Gφ and
ψ. Then there is no path from node 1 to any other node in R.

Proof. An important observation is that we can see Gφ as the sum of the implication networks
arising from the one directional case. To see this note that one can see A as a block matrix

A =

A1

...
Am

 ,

where the rows of Ai correspond to the projections of direction di. We can see y in a similar
way, we denote the part of y corresponding to direction di by yi. The adjacency matrix A of Gφ
can be written as A =

∑m
i=1Ai where

Ai :=
1

2


ZN,N ATi Ai − IN,N ZN,1 ZN,1
ZN,N ZN,N ZN,1 ATi y

i − 1
21N,1(

yi
)T
Ai − 1

211,N Z1,N 0 0
Z1,N Z1,N 0 0

 .

By applying Lemma 5.8 to each direction, we see that there must be a maximum flow that
satisfies all the edges originating from node 1. As such, there is no path from node 1 to any
other node in R. �

We conclude that one can only hope for rood duality based methods to find a useful persistent
partial solution if some of the values of y are either relatively large or relatively small.

34

6. Numerical experiments

In this section we report the results of our numerical experiments meant to test the methods
described in the previous sections.

6.1. Setup. We implemented our methods in Python, making heavy use of the SciPy library
[17]. We used the compressed sparse row format to save the projection matrix A. To compute
an ε-pseudo-optimal solution of CCLS, we used the scipy.optimize.least_squares method.
In particular, we selected the Trust Region Reflective algorithm [6]. This method is well suited
for sparse problems with box constraints, such as CCLS. In order to obtain an ε-pseudo-optimal
solution, we entered ε as the gtol stopping condition and disabled the others. We used 1

21
as the initial solution. To compute the relevant properties of the implication network we used
methods from scipy.sparse.csgraph. The method we used to compute the maximum flow,
scipy.csgraph.maximum_flow, uses the Edmonds–Karp algorithm [7] to do so. The implemen-
tation in Scipy only supports integer capacities. In order to apply the method to noisy projections
we truncated the projection data to two decimals and scaled the capacities accordingly.

The presented results were obtained by using an MSI laptop with an Intel Core i5 processor,
running the Windows 10 operating system. Our code can be found at https://github.com/

s-fleuren/masterThesis

We will work with the lattice set reconstruction version of discrete tomography, with the
direction sets D2, D3 and D4 as defined in Section 4.5. We generated our projection data as
follows: we use a selection of binary images from the MPEG-7 Core Experiment CE-Shape-1
data set5, see Table 1 for some of their properties. For each (vectorised) image χ, we compute
the projection data as yi = ei(Aχ)i, where the elements of noise term e are drawn from the
normal distribution with mean 1 and σ ∈ {0.02, 0.04, 0.08}. The error term is chosen like this
because in practise the noise often increases with the amount of matter (value 1 pixels) an X-ray
passes [2]. For each χ and σ we will test the following methods:

Method a: The size one autarky elimination algorithm as described in Section 3.
Method b: The size one autarky elimination algorithm followed by Algorithm 1 with ε = 10−6 and

threshold 0. This gives a method similar to the one introduced in [12]. The differences
lie in the way ν̂ is computed and the way it is determined if ν∗ can be assumed to be
non-zero.

5See http://www.dabi.temple.edu/~shape/MPEG7/dataset.html, thanks to A. Kadu for pointing out this

resource

Image name n1 n2 N density
bell-2 64 59 3776 0.5874
crown-19 41 72 2952 0.5464
crown-2 43 84 3612 0.5778
crown-4 38 71 2698 0.6197
crown-8 42 80 3360 0.5967
crown-9 41 76 3116 0.6146
hat-5 48 50 2400 0.4746
horseshoe-10 61 59 3599 0.5854
horseshoe-8 61 62 3782 0.4381

Table 1. Properties of the images we used for our experiments. Here the
density is given by dividing the number of white (value 1) pixels by the total
number of pixels

https://github.com/s-fleuren/masterThesis
https://github.com/s-fleuren/masterThesis
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html

35

(a) (b) (c)

Figure 7. The partial solutions obtained for the image bell-2 with σ = 0.08
and m = 2. Undetermined pixels are coloured grey. On the left is the original
image, in the middle is the partial solution obtained by Method a (and c and
d), and on the right the partial solution obtained by Method b.

Method c: The size one autarky elimination algorithm followed by Algorithm 3 with ε = 10−6,
where x̃ is determined by the rounding procedure Algorithm 2.

Method d: The size one autarky elimination algorithm followed by the implication network algorithm
described in Section 5.

For each method we report the running time, the size of the returned partial solution z, and
the quantity a(z, χ) := |{i ∈ [N] : zi = χi}|, i.e. the number of pixels where z and χ agree. We
also report the value of fLS(x̂), where x̂ is the the output from the least-squares solver used for
Method b and Method c, and the values fLS(x̃) and a(x̃, χ), where x̃ is the output of Algorithm
2 used for Method c. Our full results can be found in the tables in Appendix A. In the next
section we will summarise them and give some illustrations.

6.2. Results. Method a was able to determine a small number of pixels for most of the images
(usually 15 or less, with the exceptions being bell-2 and crown-9 with m = 2 and σ = 0.08, where
method a was able to determine respectively 46 and 47 pixels). As expected, the number of pixels
that can be determined by Method a decreases when we add more directions: when m = 4 there
was only one case (bell-2, σ = 0.08) where the method was able to determine a pixel. For some
images, especially when m = 2, Method a is able to determine more pixels when the noise level
increases. In all cases, even in the presence of noise, the pixels determined by Method a all agree
with the original image χ. The run time of Method a is less than a decisecond for all test cases,
which is negligible compared to the run times of the other three methods.

Method b was able to determine more pixels than Method a for most of the cases with σ = 0.08,
topping at 579 determined pixels for image bell-2 with m = 2 and σ = 0.08. However, some of
the pixels determined by Method b do not agree with the original image χ. For instance for the
bell-2, m = 2, σ = 0.08 case, of the 579 determined pixels 548 agreed with χ. We should note
that we do not know the optimal solution(s) x̄ of BCLS, and we do not know how many of the
pixels determined by Method b agree with x̄ (we do know this for the other three methods, since
their output is guaranteed to be persistent). For cases with σ < 0.08, Method b determined
more pixels than Method a a single time, being hat-5 with m = 2 and σ = 0.04. The run time
of Method b varies quite a lot between cases, even when the original image is the same. For

36

instance, for image horseshoe-8 the method takes less than 2 deciseconds when m = 2 but more
than a minute when m = 4 and σ = 0.08.

Method c and d were not able to determine more pixels than method a in any of the cases. The
run time of method c is generally only a few deciseconds slower than method b, which indicates
that the run time of method c is dominated by computing x̂, and that the rounding procedure
is relatively cheap. The run time of method d mostly depends on the size of the image and the
number of projections, which makes sense because these two factors determine the number of
nodes and arcs of the implication network.

(a) Original image (b) x̂, m = 2 (c) x̂, m = 3 (d) x̂, m = 4

(e) x̃, m = 2 (f) x̃, m = 3 (g) x̃, m = 4

(h) x̂, m = 2 (i) x̂, m = 3 (j) x̂, m = 4

(k) x̃, m = 2 (l) x̃, m = 3 (m) x̃, m = 4

Figure 8. The constructed x̂ and x̃ for the image Horseshoe-10. The
value of σ is 0 for images (B)-(G) and σ = 0.08 for the images (H)-(M)

For some images, the x̃ computed during the execution of method c gives a good approximation
of the optimal solution. See for instance Figure 9: with just the horizontal and vertical projections
the original image of bell-2 is reconstructed almost completely in the noiseless case (the value of

37

(a) Original image (b) x̂, σ = 0 (c) x̂, σ = 0.02 (d) x̂, σ = 0.08

(e) x̃, σ = 0 (f) x̃, σ = 0.02 (g) x̃, σ = 0.08

Figure 9. The constructed x̂ and x̃ for the image bell-2 with m = 2

(a) Original image (b) x̂, m = 2 (c) x̂, m = 3 (d) x̂, m = 4

(e) x̃, m = 2 (f) x̃, m = 3 (g) x̃, m = 4

Figure 10. The constructed x̂ and x̃ for the image crown-9 with σ = 0.

fLS(x̃) is 5). Even when the noise levels get higher the reconstruction seems still decently faithful
to the original image. However, for some images more directions are needed. For instance, with
just two directions the shape of horseshoe-10 is not captured quite right by x̂ and x̃, see Figure 8.
The same goes for the image crown-9, see Figure 10. However, when m = 4 both these images are
reconstructed well. In fact, for all tested images the original image is completely reconstructed
by x̃ when m = 4 and σ = 0.

38

7. Conclusions

We considered a few different methods that can be used as preprocessing techniques for discrete
tomography problems. We found that the use of these methods is very limited. Our methods
based on the Langrangian dual program can only be expected to identify some pixel values
when noise is present, and did poorly in the numerical experiments: Method c was not able
to identify any pixel values at all, and while Method b was able to determine some pixels for
some images we cannot guarantee that these assignments are correct. Furthermore, we have
shown that methods based on roof duality are only able to determine pixel values if there are
projections with relatively low or relatively high values. In our numerical experiments, the roof
duality based method was not able to determine any pixel values. In conclusion, we do not
expect the preprocessing methods to be useful in practise.

However, we also saw in our experiments that computing a close-to-optimal solution of CCLS
and then rounding it with Algorithm 2 can give a good approximate solution of BCLS. We expect
that this procedure can be further refined (at the cost of additional computation time), by adding
intermediate steps in the rounding procedure. In particular, after a portion of the values of x̂
have been rounded to binary values, it would be possible to update the remaining values of x̂
before continuing with the rounding procedure. For future work we suggest to compare this
method with other heuristic methods, like those given in [2] or [16].

39

References

[1] S. Barnett. Matrices: methods and applications. Clarendon Press, 1990.

[2] K. J. Batenburg. A network flow algorithm for reconstructing binary images from discrete X-rays. Journal
of Mathematical Imaging and Vision, 27(2):175–191, 2007.

[3] E. Boros and P. L. Hammer. Pseudo-Boolean optimization. Discrete Applied Mathematics, 123(1-3):155–225,
2002.

[4] E. Boros, P. L. Hammer, and G. Tavares. Preprocessing of Unconstrained Quadratic Binary Optimization.

Rutgers Research Report, 2006.
[5] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[6] M. A. Branch, T. F. Coleman, and Y. Li. A subspace, interior, and conjugate gradient method for large-scale

bound-constrained minimization problems. SIAM Journal on Scientific Computing, 21(1):1–23, 1999.
[7] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems.

Journal of the ACM (JACM), 19(2):248–264, 1972.

[8] R. J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of reconstructing lattice
sets from their X-rays. Discrete Mathematics, 202(1-3):45–71, 1999.

[9] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for disciplined convex programming, 2009.

[10] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality, complementation and persistency in quadratic 0–1
optimization. Mathematical programming, 28(2):121–155, 1984.

[11] G. T. Herman and A. Kuba. Advances in discrete tomography and its applications. Springer Science &

Business Media, 2008.
[12] A. Kadu and T. Van Leeuwen. A convex formulation for binary tomography. IEEE Transactions on Com-

putational Imaging, 2019.
[13] V. Kolmogorov. Generalized roof duality and bisubmodular functions. Discrete Applied Mathematics, 160(4-

5):416–426, 2012.

[14] V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions with graph cuts - A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1274–1279, 2007.

[15] M. Planitz. Inconsistent systems of linear equations. The Mathematical Gazette, 63(425):181–185, 1979.

[16] T. Schüle, C. Schnörr, S. Weber, and J. Hornegger. Discrete tomography by convex-concave regularization
and D.C. programming. Discrete Applied Mathematics, 151(1-3):229–243, 2005.

[17] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peter-

son, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, b. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Lax-

alde, J. Perktold, R. Cimrman, I. Henriksen, E. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,

F. Pedregosa, P. van Mulbregt, and S. . . Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 2020.

40

Appendix A. Full results

Image name m σ |Iz| a(z, χ) |Iz| a(z, χ) |Iz| a(z, χ) |Iz| a(z, χ)
bell-2 2 0.02 3 3 3 3 3 3 3 3
bell-2 2 0.04 3 3 3 3 3 3 3 3
bell-2 2 0.08 46 46 579 548 46 46 46 46
bell-2 3 0.02 1 1 1 1 1 1 1 1
bell-2 3 0.04 1 1 1 1 1 1 1 1
bell-2 3 0.08 5 5 217 210 5 5 5 5
bell-2 4 0.02 0 0 0 0 0 0 0 0
bell-2 4 0.04 0 0 0 0 0 0 0 0
bell-2 4 0.08 1 1 133 132 1 1 1 1
crown-19 2 0.02 1 1 1 1 1 1 1 1
crown-19 2 0.04 2 2 2 2 2 2 2 2
crown-19 2 0.08 7 7 73 69 7 7 7 7
crown-19 3 0.02 1 1 1 1 1 1 1 1
crown-19 3 0.04 1 1 1 1 1 1 1 1
crown-19 3 0.08 1 1 47 47 1 1 1 1
crown-19 4 0.02 0 0 0 0 0 0 0 0
crown-19 4 0.04 0 0 0 0 0 0 0 0
crown-19 4 0.08 0 0 72 66 0 0 0 0
crown-2 2 0.02 2 2 2 2 2 2 2 2
crown-2 2 0.04 2 2 2 2 2 2 2 2
crown-2 2 0.08 9 9 49 46 9 9 9 9
crown-2 3 0.02 1 1 1 1 1 1 1 1
crown-2 3 0.04 1 1 1 1 1 1 1 1
crown-2 3 0.08 2 2 128 121 2 2 2 2
crown-2 4 0.02 0 0 0 0 0 0 0 0
crown-2 4 0.04 0 0 0 0 0 0 0 0
crown-2 4 0.08 0 0 54 54 0 0 0 0
crown-4 2 0.02 1 1 1 1 1 1 1 1
crown-4 2 0.04 9 9 9 9 9 9 9 9
crown-4 2 0.08 8 8 176 161 8 8 8 8
crown-4 3 0.02 1 1 1 1 1 1 1 1
crown-4 3 0.04 1 1 1 1 1 1 1 1
crown-4 3 0.08 1 1 46 46 1 1 1 1
crown-4 4 0.02 0 0 0 0 0 0 0 0
crown-4 4 0.04 0 0 7 7 0 0 0 0
crown-4 4 0.08 0 0 91 91 0 0 0 0
crown-8 2 0.02 1 1 1 1 1 1 1 1
crown-8 2 0.04 1 1 1 1 1 1 1 1
crown-8 2 0.08 15 15 314 309 15 15 15 15
crown-8 3 0.02 1 1 1 1 1 1 1 1
crown-8 3 0.04 1 1 1 1 1 1 1 1
crown-8 3 0.08 1 1 47 46 1 1 1 1
crown-8 4 0.02 0 0 0 0 0 0 0 0
crown-8 4 0.04 0 0 0 0 0 0 0 0
crown-8 4 0.08 0 0 49 49 0 0 0 0
crown-9 2 0.02 2 2 2 2 2 2 2 2
crown-9 2 0.04 2 2 2 2 2 2 2 2
crown-9 2 0.08 47 47 379 312 47 47 47 47
crown-9 3 0.02 1 1 1 1 1 1 1 1
crown-9 3 0.04 1 1 1 1 1 1 1 1
crown-9 3 0.08 1 1 12 12 1 1 1 1
crown-9 4 0.02 0 0 0 0 0 0 0 0
crown-9 4 0.04 0 0 0 0 0 0 0 0
crown-9 4 0.08 0 0 76 73 0 0 0 0

Table 2. Partial solution properties, part 1

41

Image name m σ |Iz| a(z, χ) |Iz| a(z, χ) |Iz| a(z, χ) |Iz| a(z, χ)
hat-5 2 0.02 14 14 14 14 14 14 14 14
hat-5 2 0.04 14 14 63 62 14 14 14 14
hat-5 2 0.08 14 14 144 141 14 14 14 14
hat-5 3 0.02 1 1 1 1 1 1 1 1
hat-5 3 0.04 1 1 1 1 1 1 1 1
hat-5 3 0.08 1 1 101 99 1 1 1 1
hat-5 4 0.02 0 0 0 0 0 0 0 0
hat-5 4 0.04 0 0 0 0 0 0 0 0
hat-5 4 0.08 0 0 3 3 0 0 0 0
horseshoe-10 2 0.02 1 1 1 1 1 1 1 1
horseshoe-10 2 0.04 1 1 1 1 1 1 1 1
horseshoe-10 2 0.08 7 7 60 56 7 7 7 7
horseshoe-10 3 0.02 1 1 1 1 1 1 1 1
horseshoe-10 3 0.04 1 1 1 1 1 1 1 1
horseshoe-10 3 0.08 2 2 2 2 2 2 2 2
horseshoe-10 4 0.02 0 0 0 0 0 0 0 0
horseshoe-10 4 0.04 0 0 0 0 0 0 0 0
horseshoe-10 4 0.08 0 0 0 0 0 0 0 0
horseshoe-8 2 0.02 15 15 15 15 15 15 15 15
horseshoe-8 2 0.04 15 15 15 15 15 15 15 15
horseshoe-8 2 0.08 15 15 15 15 15 15 15 15
horseshoe-8 3 0.02 5 5 5 5 5 5 5 5
horseshoe-8 3 0.04 5 5 5 5 5 5 5 5
horseshoe-8 3 0.08 5 5 5 5 5 5 5 5
horseshoe-8 4 0.02 0 0 0 0 0 0 0 0
horseshoe-8 4 0.04 0 0 0 0 0 0 0 0
horseshoe-8 4 0.08 0 0 0 0 0 0 0 0

Table 3. Partial solution properties, part 2

42

Image name m σ time (s) time (s) time (s) time (s)
bell-2 2 0.02 0.02 1.48 1.67 127.59
bell-2 2 0.04 0.02 0.80 1.00 126.59
bell-2 2 0.08 0.06 5.88 5.69 127.66
bell-2 3 0.02 0.03 17.70 17.94 235.48
bell-2 3 0.04 0.02 3.19 3.44 236.00
bell-2 3 0.08 0.03 15.91 16.13 237.75
bell-2 4 0.02 0.00 14.09 14.53 350.64
bell-2 4 0.04 0.02 25.94 26.47 350.03
bell-2 4 0.08 0.02 21.27 21.67 375.59
crown-19 2 0.02 0.02 0.25 0.39 53.73
crown-19 2 0.04 0.02 0.20 0.36 54.25
crown-19 2 0.08 0.03 0.28 0.39 59.17
crown-19 3 0.02 0.03 3.69 3.88 82.98
crown-19 3 0.04 0.02 7.38 7.47 90.63
crown-19 3 0.08 0.02 2.69 2.83 95.78
crown-19 4 0.02 0.02 24.83 25.28 130.36
crown-19 4 0.04 0.00 56.69 56.77 138.06
crown-19 4 0.08 0.02 101.02 101.67 154.78
crown-2 2 0.02 0.02 1.75 1.98 111.58
crown-2 2 0.04 0.03 1.42 1.58 106.66
crown-2 2 0.08 0.02 1.55 1.70 110.06
crown-2 3 0.02 0.02 5.52 5.78 171.44
crown-2 3 0.04 0.03 50.30 50.09 175.27
crown-2 3 0.08 0.03 8.69 8.78 189.88
crown-2 4 0.02 0.02 11.38 11.77 260.20
crown-2 4 0.04 0.02 8.42 8.81 272.30
crown-2 4 0.08 0.02 31.77 32.19 293.44
crown-4 2 0.02 0.02 1.13 1.27 54.33
crown-4 2 0.04 0.03 0.97 1.09 54.33
crown-4 2 0.08 0.02 0.64 0.64 53.52
crown-4 3 0.02 0.02 17.03 17.22 76.19
crown-4 3 0.04 0.02 8.13 8.34 82.25
crown-4 3 0.08 0.02 13.72 13.75 79.81
crown-4 4 0.02 0.00 5.02 5.14 118.78
crown-4 4 0.04 0.00 6.02 6.20 124.03
crown-4 4 0.08 0.00 19.06 19.13 132.69
crown-8 2 0.02 0.02 0.55 0.73 83.53
crown-8 2 0.04 0.02 0.77 0.98 78.11
crown-8 2 0.08 0.03 1.02 0.97 93.94
crown-8 3 0.02 0.02 3.13 3.34 142.03
crown-8 3 0.04 0.02 3.30 3.53 147.48
crown-8 3 0.08 0.02 3.31 3.48 155.57
crown-8 4 0.02 0.00 65.86 66.00 235.78
crown-8 4 0.04 0.02 7.47 7.70 228.95
crown-8 4 0.08 0.02 33.39 33.72 265.10
crown-9 2 0.02 0.02 0.73 0.91 68.55
crown-9 2 0.04 0.02 0.42 0.60 68.13
crown-9 2 0.08 0.06 2.08 2.00 74.66
crown-9 3 0.02 0.02 2.34 2.56 106.41
crown-9 3 0.04 0.03 3.77 3.95 105.88
crown-9 3 0.08 0.03 5.78 6.00 118.19
crown-9 4 0.02 0.00 136.02 134.17 162.86
crown-9 4 0.04 0.00 115.16 115.30 172.81
crown-9 4 0.08 0.02 32.05 32.43 199.28

Table 4. Method run times, part 1

43

Image name m σ time (s) time (s) time (s) time (s)
hat-5 2 0.02 0.03 0.17 0.30 22.47
hat-5 2 0.04 0.02 0.55 0.63 22.39
hat-5 2 0.08 0.03 0.53 0.55 24.17
hat-5 3 0.02 0.02 8.30 8.45 42.73
hat-5 3 0.04 0.02 16.34 16.42 43.31
hat-5 3 0.08 0.02 22.67 22.64 44.14
hat-5 4 0.02 0.02 5.48 5.70 53.06
hat-5 4 0.04 0.00 10.77 11.02 54.36
hat-5 4 0.08 0.02 3.17 3.41 53.67
horseshoe-10 2 0.02 0.02 0.14 0.36 85.52
horseshoe-10 2 0.04 0.02 0.16 0.36 84.88
horseshoe-10 2 0.08 0.03 0.33 0.48 85.14
horseshoe-10 3 0.02 0.02 4.78 5.06 156.78
horseshoe-10 3 0.04 0.03 8.27 8.42 158.69
horseshoe-10 3 0.08 0.03 6.47 6.67 166.81
horseshoe-10 4 0.02 0.00 16.11 16.14 243.67
horseshoe-10 4 0.04 0.02 28.08 28.61 244.00
horseshoe-10 4 0.08 0.02 13.31 13.72 255.13
horseshoe-8 2 0.02 0.03 0.14 0.38 76.22
horseshoe-8 2 0.04 0.03 0.14 0.39 76.61
horseshoe-8 2 0.08 0.05 0.14 0.38 78.95
horseshoe-8 3 0.02 0.03 5.89 6.19 118.03
horseshoe-8 3 0.04 0.02 5.27 5.48 118.36
horseshoe-8 3 0.08 0.03 3.17 3.41 117.88
horseshoe-8 4 0.02 0.02 51.98 52.95 178.36
horseshoe-8 4 0.04 0.02 17.92 18.64 180.52
horseshoe-8 4 0.08 0.02 79.06 80.13 180.23

Table 5. Method run times, part 2

44

Image name m σ fLS(x̂) fLS(x̃) a(x̃, χ)
bell-2 2 0.00 0.00 5.00 3747
bell-2 2 0.02 1.59 14.61 3675
bell-2 2 0.04 4.87 17.84 3671
bell-2 2 0.08 117.54 134.56 3559
bell-2 3 0.00 0.00 0.00 3776
bell-2 3 0.02 3.52 19.06 3692
bell-2 3 0.04 7.42 27.96 3602
bell-2 3 0.08 122.31 140.56 3502
bell-2 4 0.00 0.00 0.00 3776
bell-2 4 0.02 6.59 34.00 3701
bell-2 4 0.04 16.28 49.70 3613
bell-2 4 0.08 195.23 225.53 3494
crown-19 2 0.00 0.00 12.00 2428
crown-19 2 0.02 0.60 12.72 2440
crown-19 2 0.04 0.99 11.96 2420
crown-19 2 0.08 4.13 16.15 2392
crown-19 3 0.00 0.00 23.00 2752
crown-19 3 0.02 0.65 29.52 2758
crown-19 3 0.04 3.13 25.09 2729
crown-19 3 0.08 27.76 57.92 2603
crown-19 4 0.00 0.00 0.00 2952
crown-19 4 0.02 1.72 26.96 2897
crown-19 4 0.04 12.94 41.13 2816
crown-19 4 0.08 65.28 97.30 2698
crown-2 2 0.00 0.00 13.00 3474
crown-2 2 0.02 1.00 18.17 3465
crown-2 2 0.04 2.85 17.30 3398
crown-2 2 0.08 20.15 33.68 3302
crown-2 3 0.00 0.00 0.00 3612
crown-2 3 0.02 3.43 22.97 3543
crown-2 3 0.04 7.67 22.53 3452
crown-2 3 0.08 61.16 81.94 3320
crown-2 4 0.00 0.00 0.00 3612
crown-2 4 0.02 4.59 35.09 3554
crown-2 4 0.04 22.59 54.26 3465
crown-2 4 0.08 82.31 113.23 3359
crown-4 2 0.00 0.00 11.00 2572
crown-4 2 0.02 0.03 11.51 2550
crown-4 2 0.04 4.79 14.09 2520
crown-4 2 0.08 25.92 37.58 2441
crown-4 3 0.00 0.00 0.00 2698
crown-4 3 0.02 3.04 15.44 2631
crown-4 3 0.04 8.88 23.00 2584
crown-4 3 0.08 37.95 52.20 2516
crown-4 4 0.00 0.00 0.00 2698
crown-4 4 0.02 6.12 24.86 2673
crown-4 4 0.04 35.99 65.44 2596
crown-4 4 0.08 106.41 133.20 2511
crown-8 2 0.00 0.00 13.00 2916
crown-8 2 0.02 0.92 15.23 2902
crown-8 2 0.04 3.35 14.84 2823
crown-8 2 0.08 19.59 31.38 2822
crown-8 3 0.00 0.00 31.00 3106
crown-8 3 0.02 1.32 34.24 3085
crown-8 3 0.04 2.08 34.09 3080
crown-8 3 0.08 42.70 74.86 3029
crown-8 4 0.00 0.00 0.00 3360
crown-8 4 0.02 3.32 31.04 3262
crown-8 4 0.04 7.97 42.35 3210
crown-8 4 0.08 148.39 178.15 3039
crown-9 2 0.00 0.00 13.00 2696
crown-9 2 0.02 0.54 14.10 2672
crown-9 2 0.04 6.75 22.23 2679
crown-9 2 0.08 120.92 132.20 2600
crown-9 3 0.00 0.00 27.50 2877
crown-9 3 0.02 2.07 33.25 2867
crown-9 3 0.04 9.64 38.99 2821
crown-9 3 0.08 40.97 72.10 2720
crown-9 4 0.00 0.00 0.00 3116
crown-9 4 0.02 1.45 27.39 3001
crown-9 4 0.04 9.09 41.94 2897
crown-9 4 0.08 150.38 180.65 2813

Table 6. Properties of constructed x̂ and x̃, part 1

45

Image name m σ fLS(x̂) fLS(x̃) a(x̃, χ)
hat-5 2 0.00 0.00 8.00 2260
hat-5 2 0.02 0.37 7.79 2252
hat-5 2 0.04 2.66 13.79 2235
hat-5 2 0.08 14.41 25.57 2223
hat-5 3 0.00 0.00 6.50 2379
hat-5 3 0.02 0.77 13.71 2355
hat-5 3 0.04 5.49 16.41 2310
hat-5 3 0.08 80.93 93.13 2260
hat-5 4 0.00 0.00 0.00 2400
hat-5 4 0.02 2.99 21.33 2374
hat-5 4 0.04 11.35 33.61 2317
hat-5 4 0.08 43.91 66.96 2280
horseshoe-10 2 0.00 0.00 10.00 2605
horseshoe-10 2 0.02 0.27 10.52 2631
horseshoe-10 2 0.04 0.85 12.10 2605
horseshoe-10 2 0.08 5.52 17.87 2573
horseshoe-10 3 0.00 0.00 29.00 3397
horseshoe-10 3 0.02 0.40 30.43 3376
horseshoe-10 3 0.04 5.07 31.26 3351
horseshoe-10 3 0.08 16.92 44.00 3248
horseshoe-10 4 0.00 0.00 0.00 3599
horseshoe-10 4 0.02 3.71 32.99 3513
horseshoe-10 4 0.04 14.32 44.36 3444
horseshoe-10 4 0.08 30.67 60.34 3338
horseshoe-8 2 0.00 0.00 12.00 2762
horseshoe-8 2 0.02 0.06 11.65 2780
horseshoe-8 2 0.04 1.50 11.13 2776
horseshoe-8 2 0.08 4.13 13.12 2776
horseshoe-8 3 0.00 0.00 30.50 3447
horseshoe-8 3 0.02 0.22 30.19 3446
horseshoe-8 3 0.04 0.54 30.41 3402
horseshoe-8 3 0.08 4.72 37.30 3295
horseshoe-8 4 0.00 0.00 0.00 3782
horseshoe-8 4 0.02 3.08 26.85 3758
horseshoe-8 4 0.04 8.08 39.79 3678
horseshoe-8 4 0.08 68.91 103.11 3559

Table 7. Properties of constructed x̂ and x̃, part 2

	Abstract
	1. Introduction
	1.1. Our contributions
	1.2. Outline

	2. Preliminaries
	2.1. Discrete tomography
	2.2. Persistency and autarky
	2.3. The pseudo-inverse

	3. Size one autarkies
	4. Langrangian duality
	4.1. Convex optimisation concepts
	4.2. Formulation of the dual problem
	4.3. Insights about the dual program
	4.4. Strong duality and its consequences
	4.5. On the conjectures posed in Kadu2019

	5. Roof duality
	5.1. Roof duality concepts
	5.2. Applying roof duality to the discrete tomography problem

	6. Numerical experiments
	6.1. Setup
	6.2. Results

	7. Conclusions
	References
	Appendix A. Full results

