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Abstract

Programmers who are involved in large numeric computations such as simulations,
image- and signal processing and machine learning are in dire need for the highest per-
formance. The most often used functions represent map, reduce, multiply-accumulate,
stencil computations or other functions that are cheap on their own. Industry has re-
sponded with various specialised hardware to execute these functions using ‘single-
instruction multiple data’ parallelism. Users of this hardware often have to resort to
libraries written in low-level programming languages, provided by the manufacturers,
to obtain the performance they seek. Without proper abstraction it becomes very easy to
makemistakes. Accelerate is an embedded domain specific language in Haskell that pro-
vides the right abstractions for high-performance, shape-polymorphic array computa-
tions. This work will explore a possible solution for a shortcoming in the expressivity of
Accelerate when implementing a simulation consisting of partial differential equations
with initial conditions that depend on boundary specifics e.g. the index. We achieve this
by adding expressivity to subdivide an array into tiled, independently executed regions.
The subdivision in regions studied in this thesis had its original motivation in the treat-
ment of boundary conditions, but the technique can be fruitfully applied to a variety of
other scenarios.
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Chapter 1

Introduction

Programmers who demand the best performance of their programs may find themselves
trapped between two worlds.

The first is the world of abstraction, where programs are written in a way that clearly
separates the inherent algorithm from the schedule i.e. what is computed and how it is
computed. Languages that reside here are most functional languages such as Haskell,
and Futhark. This world comes with disadvantages e.g. control over the schedules and
direct memory management are often impossible. On the other hand, we get intelligibil-
ity of the code, better maintainability and properties that aid equational reasoning such
as referential transparency.

The second is the world of absolute control, where programs and schedules are in-
terleaved and where hardware specific functions are used directly. This is the realm of
many imperative languages such as C and Fortran, languages that can be compared to a
Swiss army knife: while being amazing and versatile tools when used properly, you can
also accidentally cut yourself. We get direct access to (virtual) memory and input/output
(I/O) via peeking and poking pointers, and can use the libraries provided by manufac-
turers to interface with their hardware directly.

Interfacing with hardware requires expertise and intimate knowledge about specific
architecture. We know that we can make hardware agnostic high performance comput-
ing more accessible by providing the right abstraction[13, 2]. This is desirable, because
not everyone that wants a very high performance, also has the time or the background
to become and expert in their own hardware.

Accelerate is an embedded domain specific language (EDSL) in Haskell that provides
this abstraction. By specialising the language to the single domain of parallel array
programming, we can translate assumptions into high performance. Accelerate is a
deeply embedded language, which allows for certain optimisations and a modular code-
generator backend of which we have two, both based on LLVM [9].

Accelerate provides specialised patterns such as map and fold, as well as a more
general generate. While specialised patterns can never be complete. We aim to provide
those that are used frequently because they can be better optimised. We address the
case of a system in which different computations are performed on different sections
of an array. Currently, we have to resort to checking the index in order to select the
computation we need. This implementation of chained conditional expressions is not
only inelegant but is also inefficient: if there is a dependency between different cells in
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CHAPTER 1. INTRODUCTION

the array that we cannot satisfy directly, we have to do a second pass over the array to
fix all values that were incorrectly computed.

We will introduce a new concept to Accelerate called regions with which we attempt
to solve the problems of inelegance and inefficiency simultaneously. Regions are inde-
pendent, hyper-rectangular subsets of an array that are treated different from the rest.
This way, we attempt to clearly separate what is being computed and where from how
regions are set up.

Accompanying the regions we will add another new concept to Accelerate to in-
crease performance when using regions. unguarded stencils carry the assumption that
all accesses into the array will stay within bounds, so we can omit all boundary checks
and conditions.

We will run benchmarks to verify whether these extensions make a difference and
present ‘readability benchmarks’ to see whether code with the new extensions is clearer
than code without.
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Chapter 2

Preliminaries

2.1 Accelerate

Accelerate is a domain specific, data-parallel and collection oriented language embedded
in Haskell. Each of these concepts will be explained in the following section.

2.1.1 Domain Specific Languages

A domain specific language (DSL) is a constrained language that is tailored to a specific
domain. In the case of Accelerate, this domain is parallel array programming. Examples
of other languages that are domain specific are SQL for querying data from relational
databases, SVG for drawing vector graphics and dot for describing graphs. Examples of
constraints in these languages are that SQL has no user-definable functions, SVG has no
loops and dot cannot do arithmetic. These languages facilitate intuitive reasoning and
problem solving within their domains, but not necessarily outside their domains.

Accelerate’s domain is parallel array computations. This is an often painful domain
to work with in imperative languages because one needs to take care of low-level details
that are irrelevant to what one is trying to compute. For example, an implementation of
any image processing algorithm in an imperative language is litteredwith indices, bound
checks, accumulators and nested loops, often heavily dependent on the target hardware
architecture. These considerations are necessary in languages such as C, but have little
to do with the computation itself and can be derived by a compiler instead. This is the
core of what Accelerate attempts to provide: let the programmer worry about what is
computed and derive how a result is computed for a given hardware platform.

ADSL can be embedded in another programming language. This has several benefits,
such as allowing us to use facilities — such as variable assignment — from the hostUsing

facilities from
the host
language is
also known as
piggy-backing

language. For example, Accelerate piggy-backs on Haskell’s type-checker to achieve
type-safety. Embeddings may be shallow or deep. A shallow embedding provides a set
of functions, usually in the form of a library, that directly manipulate entities of the
domain.

In contrast to a shallow embedding, which typically only has a single meaning, a
deep embedding can have multiple meanings or semantics. This is facilitated by leaving
the interface the same, but instead of working with the semantics directly, an abstract
syntax tree (AST) is built up which can then be evaluated, transformed and manipulated
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CHAPTER 2. PRELIMINARIES 2.1. ACCELERATE

in any way we deem fit. This freedom allows us to perform different sorts of analyses
over the DSL code, such as optimizations and security-related analyses, but comes at the
cost of a more complex compiler.

2.1.2 Parallelism

Parallel programs perform the same task in a shorter amount of time, and being faster
is always desirable. Writing parallel programs is hard work, because no benefit comes
without the cost of extra problems to overcome. These problems can be inherent to
parallelism — such as competing for resources — or investing into specialised hardware.
Parallelism also comes in different flavours. Accelerate embraces data-parallelism, which
contrasts to task-parallelism. We will discuss both flavours briefly.

In the data-parallel model we run the same program on on a collection of data syn-
chronously. In practice, the data is often split equally between the available processors
and merged after the computation is complete[1]. Performance increases in this model
are larger than in the task-parallel model, with performance gain factors approaching
the number of available processors. The performance gain is in practice diminished by
overhead resulting from splitting and merging.

Splitting data efficiently often relies on the data being laid out in memory in some
optimal way e.g. for two dimensional arrays this often means row-by-row or row major
order . If data is scattered throughout memory instead, splitting overhead will grow. row-major

order is
“zig-zag from
the top left to
the bottom
right”

Some architectures have extensions that can efficiently read data from arbitrary locations
in memory to mitigate this problem.

One example of a type of data-parallel computer is the single instruction, multiple
data (SIMD) computer. All processing units execute the same instruction on a given
clock cycle, and each processing unit operates on different elements of data. It is well
suited for specialised problems that are very regular, such as image processing.[1] SIMD
devices often have large register files which allows for cheaper context switching. context

switching is
saving the
state of a
thread A and
switching to
another
thread B, so
that A can be
resumed later.

In the task-parallel model, different tasks may be executed on the same or on dif-
ferent data elements. If the tasks are different then execution must be asynchronous.
For example: with data-parallelism, we can share the program counter over n proces-
sors and amortise the cost of setting up the execution threads. Asymptotically we will
get a performance gain factor of n. In the task parallel model we also have to pay the
overhead, but cannot share the program counter, causing a performance gain factor of
less than n.

Accelerate is data-parallel because (i) we can achieve a higher performance gain;
(ii) we are working with arrays where each cell is essentially independent and compu-
tations are regular; and (iii) modern computers almost always have multiple processors
with SIMD extensions available to them.

2.1.3 Language Features

Collection-oriented languages natively support composite data structures — lists and ar-
rays — and the functions that manipulate them e.g. concat and map. Indexed languages
manipulate structures element-wise by specifying indices. C is a good example of an
indexed language because it has native support for arrays, but manipulation of arrays,
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other than accessing and assigning, is not included in the language. Instead, program-
mers will have to write these functions themselves.

Accelerate is a collection oriented language because it allows us to reason about our
code on a higher level of abstraction. Another good example of a comparable collec-
tion based language is Futhark. Note that in both languages, we do have the option to
explicitly index arrays, but this is avoidable in many cases.

As an example we will demonstrate how to implement the summation of a vector of
numbers. In Futhark, this is implemented with

let sum (xs : [f32]) = reduce (+) 0 xs

and can be similarly constructed from primitives in Accelerate as follows

sum :: Acc (Array (sh:.Int) Float) -> Acc (Array sh Float)
sum = fold (+) 0

In C, we would write this function with a single loop and an accumulator. Every time
we use a slightly different data structure e.g. lists, we would have to provide a re-
implementation. Higher order functions and type classes make this easier in a language
like Haskell.

Being collection oriented and automatically data-parallel are desirable properties for
a language that attempts to take control over the details of a computation, but it all
comes at the cost of assumptions about the executionmodel, the hardware and a complex
compiler. For example, abstraction over the target hardware platform is achieved by
different code-generator backends. Two code-generation backends, based on LLVM are
currently available: one for multi-core CPUs, and another for GPUs.

Accelerate represents arrays as delayed arrays, which contrast with manifest arrays.
Manifest arrays are existing blocks of memory. Elements of manifest arrays are directly
accessed by specifying an index. An example of a language with manifested arrays is C.
We can allocate an array with malloc, which gives us the pointer to the block containing
memory artefacts, assign cells with A[x] = y and read cells with a = A[b].

Delayed arrays are conceptual. Instead of being manifested in the memory, they are
represented by an access function

! :: ix -> a

where ix is the index type and a the element type. A commonly chosen type for ix is
Int, but this is not necessary. Delayed arrays have the benefit that the access function
can be composed with other functions, that change how the array is accessed. This has
the advantage that it enables the fusion transformation, i.e. the combination of array-
transforming and array-consuming functions to avoid intermediate data copying and
save on storage. An example of this is when a large array is transposed, we can push
the index transformation function into the consumer function and then use the original
array[7, 3].

2.1.4 Writing a program in Accelerate

Let us consider an example program to illustrate how to use Accelerate. We will select
the dot product for this purpose because it is a simple, well known algorithm. Recall
from linear algebra that
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dotp(p⃗, q⃗) = p⃗ · q⃗ =
N−1∑
i=0

piqi, (2.1)

for two vectors p⃗ and q⃗ of lengthN . In Accelerate the dot product is written as shown in
Listing 1. The function dotp takes two vectors and returns a scalar. Vector and Scalar
are type synonyms for Array DIM1 and Array DIM0 respectively. Acc indicates that
the inputs and outputs are already embedded in Accelerate, this means that they are not
evaluated in Haskell but on the target backend.

1 dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Vector Float)
2 dotp xs ys = fold (+) (zipWith (*) xs ys)

Listing 1: The dot product between two vectors expressed in Accelerate.

In regular Haskell we would write this function in almost the same way as in Ac-
celerate i.e. with foldl and zipwith. Writing the dot product like this is definitely
more compact than writing the same in C, or by using intrinsics, but we are still able to Intrinsics are

hardware
specific
instructions
and functions.

compile efficient code[2, 10, 9]. fold and zipWith have highly parallel semantics and
support as many threads as there is data.

To illustrate the meaning behind different types and classes we will discuss the type
of fold in Listing 2.

1 fold
2 :: (Shape sh, Elt e)
3 => (Exp e -> Exp e -> Exp e)
4 -> Exp e
5 -> Acc (Array (sh :. Int) e)
6 -> Acc (Array sh e)

Listing 2: The type of fold in Accelerate

With the Elt and Shape type classes, we ensure that the type variables sh and e can be
used to denote the shape and an element respectively. Shapes are lists of Int, formed
with (:.) and terminated with a nil value of Z. For example, Z :. Int denotes a one
dimensional shape.

The zero dimensional base case is type DIM0 = Z. A scalar is the only array of this
type that can be constructed with this shape. In higher dimensions we can specify the
length along that dimension by specifying a value for the Int[2, 7]. In contrast to the
dimension, this value may not be statically known.

For example, functions such as

sum :: Shape sh => Acc (Array (sh :. Int) Float) -> Acc (Array sh Float)

are constrained by the type to only accept arrays that are at least one dimensional. The
type checker of the GlasgowHaskell Compiler (GHC) will statically ensure this property
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because Z does not unify with Z :. Int or any higher dimension. The Shape type class
further constrains this function by enforcing that sh must be a shape type, but it also
allows shape polymorphism. The example we just gave will work for any array that has
a dimensionality of at least one. Shape polymorphism further increases the re-usability
of the code.

2.2 Scientific Computation
Scientific computations are often sets of partial differential equations, which may not
have analytical solutions. A commonly used method to approximate solutions to these
is the finite elementmethod (FEM).With this methodwe iterate a function from a known
initial state until a stop condition is reached. Efficiency of these functions is of great im-
portance, because both the number of elements and the number of iterations are typically
large.

For example consider a rigid, rectangular steel beam intended to be fixed at both
ends and mounting a load at the centre point. We are interested in the microscopic
static properties — nothing is in motion — of this beam with a given load to see how
it will bend or when it will break. Instead of actually testing the situation and wasting
many beams, we simulate it. To approximate the microscopic forces in the beam we
assume that initially, the beam is in equilibrium and the external force is only applied
to a single cell in the centre. In the next step, this force propagates to the adjacent cells
because they have to deliver the force to maintain the equilibrium by Newtons third law
of motion Fa = −Fr. We continue this process until we no longer observe significant
changes to the internal forces between iterations.

With this example we want to illustrate that ‘scientific computation’ commonly
translates to iterating a state transformer function over an array. The beam can easily be
mapped to a three-dimensional array with a resolution in cells per millimetre. The initial
conditions translate directly to initial values for the array, and changes to cells between
iterations only depend on the values of that cell and its neighbours. Accelerate has a
native feature that is very well suited for the latter requirement: stencil computations.

2.2.1 Stencil Computations

Stencil computations are computations that allow the programmer to use the values of
neighbouring cells, or a local context, to compute the next value. A special stencil com-
putation is the weighed sum of a local context or a convolution, denoted by an asterisk
I ∗ M. These weights are typically constant for the computation and define the entire
operation. Two examples of convolution filters are shown in Equation 2.2. The identity
function returns the image unchanged, while mean blur averages the nine neighbours.
More on convolutions can be found in Appendix A.

identity(I) =

0 0 0
0 1 0
0 0 0

 ∗ I meanblur(I) = 1

9

1 1 1
1 1 1
1 1 1

 ∗ I (2.2)

This allows us to express simulations such as the steel beam example more easily but
also has a couple of caveats:
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1. When we perform a stencil computation at the boundary, it always occurs that
the stencil needs to access a cell with a non-existing index. An example of this
situation is shown in Figure 2.1. To get around this issue we facilitate a variety of
boundary conditions. Every time a stencil computation indexes an array, we have
to test whether the index is in-bounds. Accelerate supports all common boundary
conditions:

(a) Simply returning a constant.
(b) Assuming an array of size L, when a cell at index i is accessed and not in

range then return index L − i. It is as if we are wrapping around. This
boundary condition is also known as tile.

(c) Assuming the same array and index, return−i, as if amirror has been placed
on the edges.

(d) Assuming the same array and index, return 0 if i < 0 and L − 1 if i ≥
L, clamping the values to the boundaries. Also known as “extending the
boundary cells towards infinity”

(e) Assuming a source array of type Array sh a, perform some arbitrary func-
tion f :: Exp sh -> Exp a. All the aforementioned boundary conditions
can be implemented using this one.

2. The same boundary condition is run on all boundaries and can only produce values
that the stencil function can consume. There is no way to bypass the boundary
function and produce values for the result immediately.

3. Stencils run on every cell. Because the value of a cell has — loosely speaking —
been in every position in the stencil once finished (e.g. in a 3×3 stencil we expect
a cell to be accessed 9 times), we are sensitive to having the right data in the cache
at the right time to avoid expensive memory traffic i.e. we need cache hits.
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(d) Iteration 4, focus on v3,1, now the right side
of the stencil is out of bounds.

Figure 2.1: Why boundary conditions are required. The question marks
denote the positions for which we have to synthesise a value.

We will refer
to cells that
belong to the
boundary
with “shell”
while the
converse will
be called
“core”

Although testing whether an index belongs to the boundary does not change the
complexity of the computation, it is relatively expensive. Most cells do not belong to the
boundary i.e. the number of cells belonging to the boundary is insignificant to the total
amount of cells. Proof : in a hyper-rectangular array of D dimensions where Di is the
size of the ith dimension, the total number of cells T =

∏|D|
i=1Di. The number of cells

in the core, assuming a boundary size of s, is I =
∏|D|

i=1 (Di − 2s). Because T = I + S
where S is the number of cells in the shell, we can state that the relative amount of
boundary cells is B

T
= T−I

T
= 1− I

T
, and can alternatively be written as

S

T
= 1− I

T
= 1−

|D|∏
i=1

Di − 2s

Di

, (2.3)

The shell becomes an insignificant part of each dimension as the dimension grows, for
any finite shell size s we have that

lim
∀Di∈D:Di→∞

1−
|D|∏
i=1

Di − 2s

Di

→ 0. (2.4)

Almost no cells belong to the shell, and so every time an index belonging to the core is
tested for shell membership, it is a waste of time. For example, if we have a 4k image
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generate :: Exp sh -> (Exp sh -> Exp a)
-> Acc (Array sh a)

fold :: (Exp a -> Exp a -> Exp a) -> Exp a -> Array (sh:.Int) a
-> Acc (Array sh a)

map :: (Exp a -> Exp b) -> Acc (Array sh a)
-> Acc (Array sh b)

zipWith :: (Exp a -> Exp b -> Exp c) -> Acc (Array sh a)
-> Acc (Array sh b) -> Acc (Array sh c)

permute :: (Exp a -> Exp a -> Exp a) -> Acc (Array sh' a)
-> (Exp sh -> Exp sh') -> Acc (Array sh a)
-> Acc (Array sh' a)

backpermute :: Exp sh' -> (Exp sh' -> Exp sh) -> Acc (Array sh a)
-> Acc (Array sh' a)

stencil :: stencil -> Boundary (Array sh a) -> Acc (Array sh a)
-> Acc (Array sh b)

stencil2 :: stencil -> Boundary (Array sh a) -> Acc (Array sh a)
-> Boundary (Array sh b) -> Acc (Array sh b) -> Acc (Array sh c)

Listing 3: Summary of the types of our most commonly used functions.

that we want to blur with a 3× 3mean blur (shell size of 1 cell) then only 0.14% belongs
to the shell, but we still have to test the other 99.86%.

2.3 Summary of the Accelerate interface
In Section 2.1.4 we have provided a small example which sufficiently demonstrates how
to write a basic program and what different types mean. The example was however
insufficient to demonstrate every function that Accelerate has to offer. Becausewe do not
want to provide detailed examples for each, we will provide a list of our most commonly
used concepts in Listing 3.

• To generate a new array we can use generate. The first argument is the de-
sired shape, and the second argument specifies how a value has to be created
from the index. For example, creating a zero-filled vector of length 10 is done
with generate (Z_ ::. 10) (\_ -> 0).

• Reducing an array along its outermost dimension can be achieved with fold, by
using a function specified by the first argument and a default value specified by
the second. For example, a sum can be expressed with fold (+) 0.

• Unary functions can be applied to each value in an array with map. For example,
adding one to every value is done with map (+1).

• For binary functions there is a special version of map: The function zipWith takes
a binary function specified by its first argument. Arrays should be the same size in
all dimensions, for if they are not, the larger dimension is truncated. For example,
taking the pairwise sum of two arrays is done with zipWith (+).

• Scattering of arrays is done with permute. The result is initialised with values
from the second argument and any values that are permuted into the result by the
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third argument are combined with the current value in a way that is specified by
the function in the first argument.

• Gathering of arrays is donewith backpermute. Its first argument specifies the size
of the result, and the second a function that maps indices to the original array from
indices in the target array. For example, if we assume a vector a = [1,2,3,4]
then we can flip the vector with

let Z_ ::. len = A.shape a
f (Z_ ::. x) = Z_ ::. (len - x)

in backpermute (A.shape a) f a

and get [4,3,2,1].

• A special purpose version of map, which includes a local context, is stencil. Its
first argument, stencil, is instantiated to a unary function of nested tuples to a
single value, depending on the size and the dimensions of the stencil. The second
argument specifies a boundary condition that is used to synthesise values if we
access indices that are out of bounds. For example, a local sum in one dimension
is implemented with

let f (a, b, c) = a + b + c
in stencil f (Constant 0)

• For binary maps with local context we have stencil2. It compares to stencil in
the same way that zipWith compares to map. For example, a pairwise sum (same
as zipWith) can be implemented with

let f (_, x, _) (_, y, _) = x + y
in stencil2 f (Constant 0) arr1 (Constant 0) arr2

Note that we use a stencil function, but simply disregard the local context in this
example.

2.4 Related Work

We will discuss a range of languages which provide a similar programming model as
Accelerate to the user. Tomake the conceptual and syntactical differences more clear, we
have provided a mean blur example to each language. An implementation in Accelerate
is shown in Listing 4.

2.4.1 Futhark

Futhark is a purely functional and data-parallel array language that offers a hardware in-
dependent programming model and optimising compiler that generates code for graphi-
cal processing unit (GPU)s[6]. Futhark combines the advantage of functional and imper-
ative features. The type system supports equational reasoning and guarantees the safety
of in-place updates, with conservation of referential transparency. Futhark is similar to
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1 blur :: Num a => Acc (Matrix a) -> Acc (Matrix a)
2 blur = stencil f clamp
3 where
4 f ((nw, n, ne)
5 ,( w, m, e)
6 ,(sw, s, se)) = (nw + n + ne + w + m + e + sw + s + se) / 9

Listing 4: 3× 3mean blur implementation in Accelerate for comparison
to other languages

1 let stencil[rows][cols]
2 (image: [rows][cols]f32) (row: i32) (col: i32): f32 =
3 unsafe
4 let sum =
5 image[row-1,col-1] + image[row-1,col] + image[row-1,col+1] +
6 image[row, col-1] + image[row, col] + image[row, col+1] +
7 image[row+1,col-1] + image[row+1,col] + image[row+1,col+1]
8 in sum / 9f32
9

10 let meanBlur [rows][cols] (channel: [rows][cols]f32): [rows][cols]f32 =
11 map (\row ->
12 map (\col ->
13 if 0 < row && row < rows - 1 && 0 < col && col < col - 1
14 then stencil channel row col
15 else channel[row,col])
16 (iota cols))
17 (iota rows)

Listing 5: 3×3mean blur implementation in Futhark, notice the lack of a
stencil construct and how we get around this by using map over indices.
The edges are clamped to the edge by using min and max.

Accelerate in that it is strictly evaluated, supports static shape and is monomorphic.
With Accelerate we can write polymorphic functions using Haskell’s type system.

The mean blur example in Futhark is shown in Listing 5. Because Futhark does not
support stencil, we have to omit the collection-oriented approach and use indices in-
stead. The indices are obtained by using the iota function, which returns the indices
into the array it has been provided with. The unsafe elides all safety checks and as-
sertions that occur during execution of the expression that follows it. This is useful if
the compiler is otherwise unable to avoid bounds checks[5]. Using unsafe can lead to
memory corruption. To protect the memory, we guard the boundaries with a conditional
expression, and simply ignore the boundaries. Conditional expressions such as these are
examples of precisely the ones we are trying to avoid.
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2.4.2 Halide

Halide is an EDSL in C++ that focuses on very high performance and platform indepen-
dence.

Manually fine-tuned C programs perform up to an order of magnitude faster than
the equivalent vanilla C program and are often memory bandwidth limited even if they
consist of many data-parallel stages. Manually fine-tuning C programs comes at a price
of pain to the programmer, because it requires intimate knowledge about the target
hardware and implementations can differ greatly across different architectures[12].

Halide’s approach is to bias programs with knowledge about the target architecture.
For example, a program written for two-dimensional image processing that will run
on SIMD hardware may differ vastly from the same program that will run on a mobile
phone.

This flexibility is facilitated by custom optimisation passes, modular code-generator
backends and by exposing an application programming interface (API) to write a sched-
ule – choices about storage and ordering of a computation – to the user. Accelerate does
not offer a way to control the schedule.

Functions in Halide are written with a simplified functional style and are composable
into ‘image processing pipelines’ that essentially form a directed acyclic graph (DAG) of
interdependent computations that is later optimised. The representation of arrays in
Halide is with delayed arrays that are similar to Accelerate[3], except that their index
functions are variatric — one extra argument per dimension.

Halide demonstrates impressive results with this approach such as equal perfor-
mance between two implementations of a Laplacian filter, one implemented by an x86
expert in months, another by an intern in one day using Halide[13].

1 int main(int argc, char **argv) {
2 Buffer<uint32_t> img = load_image("some_image.png");
3

4 Func blurx, blur;
5 Var x, y;
6

7 blurx(x, y) = img(x-1, y) + img(x, y) + img(x+1, y);
8 blur (x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/9;
9

10 Buffer<uint32_t> out = blur.realize(img.width(), img.height());
11 }

Listing 6: Implementation of a mean blur in Halide. We provide no
schedule so it is inferred for us by the compiler. The function blur is
automatically computed for all coordinates.

The mean blur example in Halide is shown in Listing 6. Note that there are two
different functions: blurx and blur. The former blurs only in the horizontal dimension,
by taking the sum of a value and its immediate neighbours. This function is then used
from three distinct vertical indices to get a total of nine values, which are then averaged.
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If we write the the mean blur in this way we actual have a two-pass function, but Halide
is able to fuse this automatically into one single pass using the DAG.The call to realize
computes this function on the specified domain, with the lower bounds left implicit.

2.4.3 Single Assignment C

Single Assignment C (SAC) is a functional language with C-like syntax aimed at array-
based numerical computation with a run-time performance comparable to hand opti-
mised Fortran programs. Accelerate and SAC have a very similar spirit: in both lan-
guages arrays are the only data type and functions are shape-polymorphic. In contrast
to Accelerate, SAC comes with a stand-alone compiler. By default, this compiler does a
source-to-source translation from SAC to C, but other backends such as a GPU backend
are available.

SAC is designed to be a ‘functional subset of C’. Stripping C of non-functional fea-
tures essentially comes down to the elimination of side effects, most notably global vari-
ables, reference arguments and pointers[14]. SAC tries to exclude typical functional fea-
tures – such as partial application and lazy evaluation – that make functional languages
slow, and keep those that are desirable for parallel array processing e.g. referential trans-
parency so that the result of evaluating expressions is insensitive to its context, and the
Church-Rosser property so that these evaluations are also insensitive to the computation
order. Accelerate follows a similar trend, borrowing only the features that are desirable
in the context of parallel computation from Haskell, and working around those that are
undesirable.

If we want to express a binary relation on two vectors of a different size without
truncation, then we have to explicitly concatenate elements to the smaller vector to
make them the same size. In Accelerate we can do this with (++) In SAC, you can get
around explicit concatenation by using their with-loop[4]. For example, if two vectors
of numbers, of different length are added. We can give a detailed specification of the
indices we want to include — with lower and upper bounds, strides, and step size — and
simply ignore the excluded indices. with-loops can be considered a shape polymorphic
version of array-comprehensions.

1 int blurx(int[.] row, int x) {
2 return (row[x-1] + row[x] + row[x+1])
3 }
4 int [y,x] meanblur(int[y,x] img) {
5 return (with ( 0 < row < y - 1)
6 with ( 0 < x < x - 1)
7 modarray(img[row], x,
8 (blurx(img[y], x - 1) + blurx(img, x) + blurx(img, x+1)) / 9));
9 }

Listing 7: 3× 3 mean blur implementation in SAC

The mean blur example in SAC is shown in Listing 7. In this example, we use a
similar approach as with Halide: we combine two single-pass functions into a single,
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multi-pass function that can be fused. In the blurx function we take the sum of three
adjacent values in the same row. In the body of the two nested with-loops we modify a
specific index of the row to to be the mean of all neighbours of that index. modarray will
perform in-place updates whenever possible, or a copy otherwise. In this case a copywill
occur because there is a data dependency between the cells. We ignore the boundaries
by tightening the bounds on the with-loop, boundary values will be effectively copied.

2.4.4 Repa

Regular ParallelArrays (Repa) is another language that is built on the premise that purely
functional array algorithms are easier to comprehend than their imperative counterparts[3].
Haskell lacks a good way of expressing these algorithms and then evaluate them effi-
ciently and in parallel.

Writing programs in Haskell that approach the performance of hand written C is
possible by sacrificing purity and resorting to index based methods in the IO-monad.
This way, the program is obscured and becomes much more difficult to comprehend.
Repa gets around this by using an interface based on collective operations to emphasise
the algorithm.

Repa is a shallow EDSL in Haskell. Because of this there is no AST to transform
and all optimisations take place on the library level i.e. how primitive functions are im-
plemented in Haskell. Like SAC and Accelerate, it is a shape polymorphic language
that makes it easy to reuse code for arrays with arbitrary dimensions. This shape poly-
morphism is achieved with a type class, in the same way as Accelerate (Section 2.1.4)
which allows Repa to also piggy-back on the type-checker of GHC to statically ensure
the dimensions of arrays.

The mean blur examples in Repa is shown in Listing 8. This example shows some
parallels with Accelerate because the same patterns are used for describing shapes. Two
examples are shown: the first is implemented with an update function that explicitly ac-
cesses an array using its index, similar to our approach in Futhark. Here we also ignore
the shell. The second example uses template Haskell to generate a two-dimensional sten-
cil for us with the weights we specified. In this case we also have a boundary condition
that clamps values that are out of bounds onto the boundary.

2.4.5 Масси́в

Масси́в (Massiv) is another shallow EDSL for parallel array computations in Haskell.
Масси́в has a single back end and always runs on the host central processing unit (CPU)
via Haskell’s runtime system.

Масси́в has support for schedules that allow the user to specify how a computation
has to be run, but this support is limited to Seq and ParOn: Seq is simple sequential
computation on one core, ParOn and variants fix worker threads to specific cores and
distribute thework to thoseworkers. Their approach is task-parallel because thesework-
ers do not synchronise.

To compare Масси́в to Accelerate, we turn to their GitHub page[8] to see how they
see how they compare Масси́в to Repa on the points where Accelerate differs:
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1 -- Explicit version
2 meanBlur :: Array DIM2 Double -> Array DIM2 Double
3 meanBlur arr = traverse arr id update
4 where
5 _ :. h :. w = extent arr
6

7 update get d@(sh :. i :. j)
8 = let g ox oy = get (sh :. (i + ox) :. (j + oy))
9 in if isBoundary i j

10 then get d
11 else (g (-1) (-1) + g 0 (-1) + g 1 (-1)
12 g (-1) 0 + g 0 0 + g 1 0
13 g (-1) 1 + g 0 1 + g 1 1 )/9
14

15 isBoundary i j
16 = (i == 0) || (i >= w - 1)
17 || (j == 0) || (j >= h - 1)
18

19 -- Fancy version
20 meanBlur' :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)
21 meanBlur' arr =
22 let stencil = [stencil2| 1 1 1
23 1 1 1
24 1 1 1 |]
25 in computeP . A.smap (/9) $ forStencil2 BoundClamp arr stencil

Listing 8: Implementation of the mean blur in Repa in two ways.

1. “Better scheduler that is capable of handling nested parallel computation.” Acceler-
ate does not support nested parallel computation but as Масси́в is task parallel
rather than data-parallel, this can be done.

2. “Shape polymorphic but with improved default indexing data types.” Roughly equal
to what Accelerate has, they use snoc-lists of KnownNat instead.

3. “Safe stencils for arbitrary dimensions, not only two dimensional convolution. Sten-
cils are composable through an instance of Applicative” In principle Accelerate sup-
ports stencils for arbitrary dimensions although stencils are not composable.

Масси́в gives the user control over the underlying representation of arrays and their
elements, supporting both manifested and delayed arrays. Elements can be represented
as primitive Haskell values, boxed values (either in normal form or weak-head nor-
mal form) unboxed or fixed in a specific memory location for marshalling pointers to
a foreign-function interface.

The mean blur examples in Масси́в is shown in Listing 9. Масси́в , like Repa and
Accelerate, uses a familiar pattern for accessing a particular index. Similar to what we
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1 blur :: Array D Ix2 Double -> Array DW Ix2 Double
2 blur = mapStencil Edge blurStencil
3 where
4 blurStencil = makeStencil (Sz (3 :. 3)) (1 :. 1)
5 $ \ get ->
6 (/9) . sum $ fmap (\ix -> get ix)
7 [(-1 :. -1), (-1 :. 0), (-1 :. 1)
8 ,( 0 :. -1), ( 0 :. 0), ( 0 :. 1)
9 ,( 1 :. -1), ( 1 :. 0), ( 1 :. 1)

10 ]

Listing 9: Implementation of the mean blur in Massiv

have seen with Futhark and Repa, Масси́в does have a stencil primitive, but it is based
on index-based methods and an offset for the anchor point rather than assuming the
anchor point and providing the values immediately.
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Chapter 3

Motivation

3.1 Problem Description

We have a simulation of the sediment layer in a salt marsh, which is an instance of a
simulation with a complicated stencil computation and complex boundary conditions.
The two most widely used boundary conditions for simulations like these are the Dirich-
let condition and the Von Neumann condition. The Dirichlet condition forces the value
of a cell to be constant and the Von Neumann conditions forces the derivative of a cell
to be constant. The Dirichlet condition has a straight forward implementation, but the
Von Neumann condition depends on the local context of a cell and has dependency to
its neighbours.

The salt marsh represents a physical system, and we have to implement physically
sensible behaviour at the boundaries. In this case, not all boundaries behave in the same
way. The configuration of this simulation is shown in Figure 3.1. We have reflection of
the flow, i.e. the medium hits a wall and is reflected according to the reflection principle
following from Fresnel’s equations, at the red and green boundaries. Water enters the Angle of

incidence
equals the the
angle of
reflection.

system at a constant rate on the red boundary, and flows towards the green boundary.
This is done by setting the sediment height to 0 on the green boundary, which is an ex-
ample of the Dirichlet condition. We resort to multi-pass computations and conditional
expressions on the index to achieve this complex behaviour in Accelerate.

The code computes a single step in this simulation is shown in Listing 10. A step
is performed with a binary stencil — line 1. We can also implement this step with a
unary stencil by pairing the constant array b with the variable array arr, but we have
chosen for a binary stencil to keep different kinds of data separate. After we have com-
puted a single step we have to fix the boundaries, because the boundary cells have been
recomputed in the simulateUV step and now contain invalid results. simulateUV

is the function
for the white
region,
externally
defined.

To fix the boundaries, we check the index and choose our behaviour depending on
which boundary this index belongs to. (i) If the index belongs to the yellow, blue or green
boundaries then the velocity of the direction pointing towards the boundarywe just ‘hit’,
is negated — lines 14-17 for green, 18-21 for yellow, 22-25 for blue. All other values are
copied from the previous iteration. (ii) If the index belongs to the red boundary then we
compute a value for the water flow — lines 8-12. (iii) Otherwise, the value is copied as
is. — lines 26-27.

We have to treat each boundary separately to reflect our model of reality, but the
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Figure 3.1: Configuration of the salt marsh simulation. There is a source
at the yellow boundary and a sink at the blue boundary. The yellow and
blue boundaries are walls where the medium is reflected. In the centre
(white) we run the simulation with a stencil. An overlaying stencil is
shown as an example.

way in we distinguish them is convoluted and causes redundant steps i.e. copying and
conditionals on the core.

In summary, this code is awkward to write and difficult to read, understand and
maintain. The branch that is most often chosen is the last, because there are relatively
few cells in the shell (Section 2.2.1) And although this approach is data-parallel, the
SIMD hardware will be occupied performing a copy on many cells which is essentially
unnecessary memory traffic.

Our ideal solution prevents the user from having to escape to explicit, index-based
methods such as if-expressions inside generates. From now on, we will refer to this
solution as ‘regions of independent computations’, or regions in short.

3.2 Applications

Regions will allow us to write more maintainable code for a variety of problems. In
this section we will demonstrate a couple of applications that benefit from the region
notation in order to motivate them further.

3.2.1 Salt Marsh

If regions were available to us then we can describe each of the branches in the condi-
tional expression of Listing 10 as a separate region.

No boundaries would have to be fixed because the colored boundaries can each be
generated by a separate generate. This will still copy most values at these boundaries
but avoids having to copy cells from the centre, which is where we win out.

The body of the simulation can be done with a stencil computation in a single pass.
If we have a version of stencils that omits bound-checking, we can further speed up this
computation
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3.2.2 Heat Transfer

An example of a simulation that can demonstrate clearly what regions should be able The derivation
of the entire
simulation can
be found in
Appendix B

to achieve is the simulation of heat transfer in two dimensions. The configuration of
of what a heat transfer simulation would look like is shown in Figure 3.2. The red re-
gion is an infinite heat reservoir of high temperature and the blue region is an infinite
heat reservoir of low temperature. The white centre represents the material we want to
simulate.
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T0,0 T1,0 T2,0
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T0,2 T1,2 T2,2

Figure 3.2: Configuration of what our heat transfer simulation would
look like. The red and blue regions have a constant high (Th) respectively
low (Tℓ) temperature. The white section is computed with a stencil, the
focus is currently on T1,1.

We will have to compose three rectangular regions to obtain the blue region, because
the blue region is not rectangular and this is difficult to work with The red and white
regions are already rectangular. Each rectangle is assigned a different computation. The
blue and red regions can simply generate an array with constant values and the white
centre can be simulated with a stencil computation.

3.2.3 Local Time Resolution

Explicit time marching simulations such as the salt marsh and heat transfer are only
stable if the Courant-Friedrichs-Lewy (CFL) condition is met

C = ∆t

(
n∑

i=1

uxi

∆xi

)
≤ Cmax. (3.1)

Where xi is the velocity of a phenomenon along the xi dimension and∆xi is the spatial
resolution in that dimension. In practice Cmax is often set to 1. In our two dimensional
case we have that

∆t

(
ux

∆x
+

uy

∆y

)
≤ 1, (3.2)
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In a more difficult simulation such as one that has variable spatial resolution or a
body that consists of multiple materials, we might have that on some points we do not
meet the CFL condition, but only locally. In this case we can reduce the time resolution
(Equation 3.1) of the simulation from ∆t to ∆t′ so that the condition is met and iterate
more often on this region. The rest of the array can then be updated every n steps where
∆t > n∆t′ =⇒ n = ⌈ ∆t

∆t′
⌉.

This is a speculative example because we would need to be able to identify groups
of cells in an array that do not satisfy the CFL condition, and put them in a separate
region. For example, if we have two small regions of a single cell, diagonally opposite in
an array, we would have to split the array in five regions. With more of these regions,
the amount of regions may grow quickly and partitions might not be easy to find.

What we do want to illustrate with this example is that even when there is no direct
use for regions because there are no different computations in space, it might still be
useful to have them because of different computation in time.

3.3 ResearchQuestions
The previous section clearly illustrates the problem: we want to be able to express re-
gions of independent computations inside an array. The research questions boil down to:
(i) How can we facilitate regions of independent computations in Accelerate? (ii) How
can these be used to express boundary conditions for both stencil computations and
partial differential equations efficiently? (iii) Do we need different evaluation strategies
depending on the size of the regions? (iv) If so, what are these strategies?
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1 simulationStep arr = fixBoundaries $ stencil2 simulateUV clamp b clamp arr
2 where
3 fixBoundaries arr = generate (shape arr) boundaryFn
4 where
5 (uarr, varr, harr, sarr, darr) = A.unzip5 arr
6 boundaryFn i =
7 -- Red
8 cond (r A.== 0)
9 (lift $ ( 2 * uarr A.! row1 - uarr A.! row2 :: Exp Float

10 , 2 * varr A.! row1 - varr A.! row2 :: Exp Float
11 , harr A.! neumannTop :: Exp Float
12 , 0 :: Exp Float
13 , darr A.! neumannTop :: Exp Float
14 ))(
15 -- Green
16 cond (r A.== grid_Height - 1)
17 (lift $ ( uarr A.! neumannBot , - varr A.! neumannBot
18 , harr A.! neumannBot , sarr A.! neumannBot
19 , darr A.! neumannBot))(
20 -- Yellow
21 cond (c A.== 0)
22 (lift $ (-uarr A.! neumannLeft , varr A.! neumannLeft
23 , harr A.! neumannLeft , sarr A.! neumannLeft
24 , darr A.! neumannLeft))(
25 -- Blue
26 cond (c A.== grid_Width - 1)
27 (lift $ (-uarr A.! neumannRight, varr A.! neumannRight
28 , harr A.! neumannRight, sarr A.! neumannRight
29 , darr A.! neumannRight))(
30 -- White
31 lift $ ( uarr A.! i, varr A.! i
32 , harr A.! i, sarr A.! i , darr A.! i
33 )))))
34 where
35 (_ :. r :. c) = unlift i :: (Exp Z :. Exp Int :. Exp Int)
36 row1 :: Exp DIM2
37 row1 = lift (Z :. (r+1) :. (0 :: Exp Int))
38 row2 :: Exp DIM2
39 row2 = lift (Z :. (r+2) :. (0 :: Exp Int))
40 neumannTop = lift (Z :. (1 :: Exp Int) :. c)
41 neumannBot = lift (Z :. (grid_Height - 2 :: Exp Int) :. c)
42 neumannLeft = lift (Z :. r :. (1 :: Exp Int))
43 neumannRight = lift (Z :. r :. (grid_Width - 2 :: Exp Int))

Listing 10: Hot swapping functionality at the boundaries in Accelerate.
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Integrating the Regions

We will try to find a solution by placing ourselves out of the functional- and into the
imperative context, where we will look for a similar problem. For if we manage to find
one, we might also find a solution.

We are running an if-statement inside a loop, which result in two different program
paths through this loop. Instead of having the if-statement on the inside, we can ‘hoist’
this if-statement from the loop, and convert the program into two sequential loops: one
for all then-branches, and another for all else-branches. This is similar to loop invariant
code motion. It is initially known where our boundaries are, and these boundaries do
not depend on loop variables. The only problem is that the compiler does not have this
information, because we have no way to provide it.

Example: If we consider a single if-statement or equivalently, just two sections: a
top row and the rest. Any reasonably proficient programmer would write at least two
explicit loops that have different bodies as shown in Listing 11, one for the then-branch,
and another for the else-branch.

1 size_t j = 0;
2 for (size_t i = 0; i < width); ++i) {
3 ... // body for computing the top row (boundary size = 1)
4 }
5

6 j = 1;
7 for (; j < height; ++j) {
8 for (size_t i = 0; i < width; ++i) {
9 ... // body for computing the rest

10 }
11 }

Listing 11: C implementation of different regions, a visual representation
is shown in Figure 4.1

For some special cases such as the Dirichlet condition, we are able to write the same
computation with a single traversal T1. This is done by initialising the shell — analogous
to the first loop in Listing 11 — and then constraining the domain of T1 to exclude the
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Region 2: The ‘rest’ computation

Figure 4.1: Partition of an array in two regions where the top row has
to be treated in some special way. Also see Listing 11

shell e.g. in a vector of size n and a shell size of 1, we constrain the bounds of T1 from
[0..n− 1] to [1..n− 2]. The computation then relies on mutability of the array which is
a side-effect. We also require a context independent computation such as map because if
we were to run a stencil in row-major order, then values that gravitate to the north-west
are updated first and so we mix new with old values in our stencil. A small modification,
namely an additional buffer, solves this problem: we can run T1 over the core and have
no dependency constraints, but then have to run a second traversal T2 to with different
bounds to copy the shell.

We can attempt a similar idea in Accelerate. We run some computation over the core,
and run different computations on the shell. The shell consists of contiguous regions of
indices, which can be fully specified by two hyper-dimensional vectors: the offset and
the extent. For example, assuming a two-dimensional array of size n × m with a shell
size of s. From a dimensionality of N2 we know that each vector needs two points. The
core of the array will be at [s; s] and the extent will be [n− s; m− s].

We will first add a new datatype that holds the information we need for a single
region. The offset and the extent will be expressions of shapes becausewewant to be able The Exp type

denotes an
Accelerate
runtime value.

to dynamically compute ranges of arbitrary dimension using Accelerate. Furthermore,
the extent will be implicit in the shape of the computation and there is no need to add a
field for it. Lastly we specify the computation to be run at this offset. The resulting type
is as follows

data RegionSpec acc exp a where
RegionSpec

:: exp sh -- offset
-> acc (Array sh t) -- computation
-> RegionSpec acc exp (Array sh t)

We add this type to the AST by referencing it from a new constructor that carries
some additional information such as the total size of all the regions combined, to aid in
allocation of the arrays. This is not strictly necessary as we could have computed the
total size with an analysis over the AST, but we specify it because it is a rather small
price to pay in comparison to implementing the analysis.
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data PreAcc acc exp as where
...
Region :: (Shape sh, Elt b)

=> exp sh -- Total size
-> [RegionSpec acc exp (Array sh b)] -- region specifications
-> PreAcc acc exp (Array sh b)

The consequence of using this representation is that we cannot ensure anything stat-
ically. The total size, partitioning and computations are all runtime values. It also means
that we have to assume that the region specification is complete i.e. all cells belong to at
least one region. In Section 5wewill talk about possible extensions to- and shortcomings
of this implementation in detail.

Now that we can express independent regions, we can also add a special stencil
constructor to the AST in which we embed the assumption that no boundary conditions
are required because all the indices will be in range. Apart from the lack of a boundary
condition, it will be equal to the Stencil constructor as follows

data PreAcc acc exp a where
...
Stencil :: Stencil sh a stencil -- Already supported

=> stencil
-> Boundary (Array sh a)
-> acc (Array sh a)
-> acc (Array sh b)

RStencil :: Stencil sh a stencil -- New
=> stencil
-> acc (Array sh a)
-> acc (Array sh b)

The benefit of RStencil is that it can be entirely implemented from existing parts.
For example, the interpreter can support RStencil by abstracting the interpretation
function for regular stencils. The evaluation function in the backend now takes an addi-
tional argument of (sh -> sh) that specifies how an index should be accessed. For our
new unguarded stencil this is simply id, for the regular stencil we provide the guards
that were already in place.

4.1 Evaluation

Intra-region the semantics are data-parallel like all other Accelerate computations. Inter-
region this is not necessarily so. When multiple regions carry the same function, those
regions could in principle be merged and then be executed in parallel without violating
the data-parallel property of Accelerate.

Accelerate hashes sub-trees of the AST to determine whether they have already been
compiled and can be re-used. However, this is based on a shallow hash e.g. we only hash
the function in argument of map, and this is not enough to determine whether entire
computations are equal. Determining whether functions are equal could be done based
on a deep hash of the AST, is in undecidable in general.
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We can get around this in practice, by letting the user specify multiple offsets per
computation instead of pairing an offset with an embedded computation. The imple-
mentation needs to be severely changed to facilitate this however. We will discuss this
problem in more detail in Section 5.

Running different functions on different threads can in principle be done if our target
architecture is a CPU. For a GPU this is not useful because these devices are optimised
for data-parallelism, and only sequential execution of regions with different functions
remains.

1 -- Evaluation of regions, assuming that implementations for all other AST nodes
2 -- exist.
3 eval :: Acc a -> IO a
4 eval (Region _ []) =
5 do
6 res <- allocate undefined Z
7 return res
8 eval (Region sz rs) =
9 do

10 res <- allocate undefined sz
11 return $
12 map (\(offs, reg) -> copyRegion res (eval reg) offs) rs
13

14 -- Copy the contents of an array @reg@ to another @arr@ at @offs@. @arr@ needs
15 -- to be large enough to contain @reg@
16 copyRegion :: Array sh t -> Array sh t -> sh -> Array sh t
17 copyRegion arr reg offs =
18 let f sh = let sh' = sh + offs
19 in update arr sh' (r ! sh)
20 in map f (indices reg)
21

22 -- The implementation of these functions is assumed
23 allocate :: (Shape sh, Elt t) => t -> sh -> IO (Array sh t)
24 update :: (Shape sh, Elt t) => Array sh t- > sh -> t -> Array sh t
25 indices :: (Shape sh, Elt t) => Array sh t -> [sh]

Listing 12: Evaluation semantics of the Region node in the Accelerate
AST

The current evaluation strategy of Region is given in Listing 12. We assume that
semantics for every node in the AST exists with the exception of Region and RStencil.
Additionally we will assume the existence of allocate which allocates an array of a
specified size, update which updates a single value in an array at a specified index, and
indices which returns a list of all the valid indices that an array has.

Here it is nice to have the shape of the result array at the top level, because we can
immediately allocate an array that is large enough to accommodate all regions. The
nested computations are recursively evaluated and their results are copied to the res
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array at the specified offsets, in the order that they occur in the list. We could accomplish
the same with scatters to avoid copying.

0 1 2 3 4 5 6 7
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4

5

Figure 4.2: Different regions (subarrays) whose memory regions have to
be scattered to avoid copying.

Evaluation for RStencil bypass the bound-check, but are otherwise equal to the
semantics of Stencil. Because of this similarity, we will not show the code here. Eval-
uation of RStencil is safe because an efficient runtime check can ensure from the size
of the source array, offset of the region, size of the region, and size of the stencil size, that
no out-of-bound indices will be accessed. All of these properties are available to us so
we can check this in O(1). If we do not include this runtime check, we have undefined
behaviour if the user makes a mistake.

The conditions we have to test for each region that contains an unguarded stencil
are that the ‘left’ must stay in bounds: 0 < o− ⌊ws

2
⌋ where o is the offset and ws is the

width of the stencil, and that the ‘right’ must stay in bounds o+wr + ⌊ws

2
⌋ ≤ w. where

wr is the width of the region and w is the width of the source array. Left and right refer
to an example in one dimension dimensions here. For a multidimensional array, this
condition has to hold for each dimension.

4.2 The User Language

The interface we have exposed to the user is rather compact. A summary is shown in
Listing 13

A single function, regions, is used to specify a list of computations and the offsets
at which they have to be placed. This allows the user to specify separate concepts into
different sections of code e.g. modules, and join them later.

Unguarded stencils are also directly exposed to the user via rstencil. This way,
users are free to mark any region in their computation as safe to access without bound-
checks. The runtime check will catch any mistakes and prevent undefined behaviour.

As an auxiliary helper function we have added stencil'. The semantics are exactly
the same as stencil but an array is automatically split up into different regions, de-
pending on the size of the stencil. For the regions that belong to the shell, we simply
execute the stencil. For the core, we run rstencil instead, omitting the boundary
checks.
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1 regions :: Shape sh
2 => Exp sh -- size
3 -> [(Exp sh, Acc a)] -- (offset, computation)
4 -> Acc a
5

6 rstencil :: (Stencil sh a stencil, Shape sh, Elt a, Elt b)
7 => (stencil -> Exp b) -- stencil function
8 -> Acc (Array sh a) -- source array
9 -> Acc (Array sh b)

10

11 stencil' :: (Stencil sh a stencil, Shape sh, Elt a, Elt b)
12 => (stencil -> Exp b) -- stencil function
13 -> Boundary (Array sh a) -- boundary condition
14 -> Acc (Array sh a) -- source array
15 -> Acc (Array sh b)

Listing 13: A summary of the interface to regions.

4.3 Results

In Section 3.1 we have argued that conditional expressions make the code difficult to
understand and less maintainable. In this section we will present some examples to
strengthen this claim.

4.3.1 Salt Marsh

Wewill present our re-implementation of the salt marsh example from Section 3.2.1. Re-
call the original implementation from Listing 10, our new version is shown in Listing 14.

With regions and unguarded stencils we are indeed better at separating concepts.
However, the re-implementation is longer than the original by 5 lines and is littered
with offsets and extents. This is an unfortunate outcome in this specific case. The good
news is that we do not have fix the boundaries in a second step, because we do not
break them. Each region is defined by three variables representing the offset, size and
the function to execute. Boundaries are generated at every step — lines 1-4 — and the
actual simulation step is run with an unguarded stencil in the core — lines 5,43.

For this specific case we will conclude that the clarity of the code has not improved,
but we managed to separate concepts so that no errors have corrected in a second pass.

4.3.2 Heat Transfer

An implementation of a heat simulation is shown in Listing 15. The functions that are
executed on these boundaries are simply generates, they are filled in once and then
remain constant. The function that is executed on the core is a stencil that takes the
weighed sum of the differences to all orthogonal neighbours. This formula can be easily
derived from the law of conservation of energy, a detailed derivation for this model can
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be found in Appendix B. The rest of the code are offsets and sizes, which is unfortunate
boilerplate code we have to write.

From the implementation of the heat transfer simulation we will conclude that the
code is clear and concise and can be run efficiently. We consider this a success.

4.3.3 Benchmarks

To test the performance of regions we ran benchmarks on our test system ‘Jizo’.Jizos
specifications
can be found
in Appendix D

Wewere unable to test our own implementation because we have only implemented
an interpreter backend at this time. Instead, we have approximated our implementa-
tion of regions with with the unextended Accelerate v1.4. To achieve this, we represent
regions as tuples of arrays e.g. an array with two regions is represented by

Acc (Array sh a, Array sh a)

We cannot approximate unguarded stencils without modifying the code generator
in both the CPU and GPU backends. Hence, unguarded stencils have not been bench-
marked.

The only softwarewe have used for benchmarking is theHaskell library Criterion[11].
The settings we benchmarked with are a confidence interval α = 0.95 and N = 1000
resamples. Criterion supports environments that are provided to the functions, which
are fully evaluated before the benchmarks start. We have forced evaluation of all input
arrays using this method. All of the different settings we have benchmarked are

• Array size: 1M, 2M, 5M, 10M, 50M and 100M cells

• Boundary size: 1, 2, 5, 10, 50 and 100 px

• Backend: LLVM-native and LLVM-PTX, CPU and GPU respectively.

• Functions: trivial, if-inside-trivial, if-inside-hard
if-outside-trivial, if-outside-hard

Thenames of the functions were inspired by how regions are separated in different loops
in an imperative language, as described in the beginning of this chapter:

1. trivial simply adds one to the entire array. We have included this to show how
well a simple, highly optimisable function performs.

2. if-inside means that the conditional is part of the computation that takes place
on the hardware, in contrast to if-outside where we have ‘split the regions’
before running anything, saving us the conditionals on the hardware.

3. The difference between if-inside-hard and if-inside is that the former does
a ‘hard’, computationally expensive function everywhere. The latter does a trivial
computation on the core, and a hard computation on the boundaries. A loose
naming scheme is if-<where we split>-<what is done in the core>.
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Figure 4.3: Runtimes vs input sizes on GPU (left) and CPU (right). The
same function for all regions with a shell size of 1. Lower is better.

The ‘hard’ function has to equal or exceed the complexity of an unguarded stencil func-
tion. To make a function sufficiently difficult we used an iterated function of the form
f(x) = mod (ax+ b, p)where a, b and p are large primes, repeated for 1000 iterations.
A table of numeric results can be found in Appendix C.

In Figure 4.3 we show the runtime of different functions on both the GPU and the
CPU as a function of the input size with a shell size of 1, so that they impact the mea-
surement as little as possible.

The GPU scales linearly for all input sizes and the runtime for all functions is very
close together. The reason for this is that the shell is made irrelevant by its tiny width,
therefore the GPU is mostly doing the same function for all inputs i.e. exactly what a
glsgpu is specialised in. Splitting up the regions helps a little for the if-outside-hard
function, which comes out 17 milliseconds faster than if-inside-hard.

Results for the CPU have a shape that may be explained by the caches. We expect the
graph to continue linearly for input sizes larger than 50 MiB because the largest cache
that our CPU has (L3) is 32 MiB and so no entire input will fit in the highest cache. The
other bending point appears roughly around the sizes of the lower L2 cache of 8 MiB,
although this is hypothetical.

For the trivial and if-outside-hard cases, we do see a reasonably linear trend in run-
time over different input sizes, which at least partly disproves the cache hypothesis.
These two particular benchmarks share that the intra-region function is equal and does
not contain a conditional, therefore these variants may be much easier to vectorise.

In all other cases the intra-region function changes, either dynamically or statically,
and so vectorisation is more difficult. We also have to pay the overhead of setting up
different programs on the same processor multiple times.
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Figure 4.4: Runtime vs boundary width on GPU (left) and CPU (right).
For different input sizes in Mcells, using only the function if-outside-
hard. Lower is better.

In Figure 4.4we present the relative runtime of if-outside-hard to if-inside-hard.
On a CPU, small boundary widths do not seem to benefit from regions as much as when
the boundary width is larger. The inverse holds for a GPU, but only when the arrays are
large, and not by a large margin. With the exception of five cases, all benchmarks per-
formed faster with regions than without. For GPU we observe improvements of around
10% for larger regions and 40% for smaller regions. For CPU we observe improvements
of around 45% to 80%.

Figure 4.5: Runtimes for different shell sizes on GPU (left) and CPU
(right). Only trivial, if-inside-hard and if-outside-hard. Lower is better.

Absolute runtimes for a selection of input- and shell sizes is shown in Figure 4.5. A
GPU is clearly much more suited for these kind of computations than the CPU: large
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inputs with large regions are brutally punished by a CPU while runtimes on a GPU still
scale well. The light-grey bar shows the runtime of a trivial function with no regions.
This function sets an approximate baseline for the performance — the fastest we could
achieve. An exception is the 100M-1 scenario on the GPU, where the if-outside-hard
is faster than the map. We attribute this artifact to noise in the measurement.

Figure 4.6: Relative runtime for different input/shell-size combinations
on GPU (left) and CPU (right). The graph displays Tif-outside-hard

Tif-inside-hard
. Lower value

means that our extension performs better.

A selection of relative results of Figure 4.5 are presented in Figure 4.6. In almost all
cases — with the exception of 1M-1 on the CPU — regions perform equal to or better
than conditionals in the computation with a good margin. Especially when the target
hardware is a CPU it makes a big difference to use regions instead of a conditional ex-
pression.

4.3.4 Adaptive Evaluation Strategy

The functions if-inside-hard and if-outside-hard are the most representative of
a real-world scenario that might use regions. In Figure 4.5 and Figure 4.6 a relative
comparison of those functions is presented. Relative runtimes larger than 1 imply that
running an if-expression inside a computation is cheaper to execute than splitting the
computation in different regions.

If we know the relative shell size for which embedded if-expressions are faster than
regions, we can implement an adaptive evaluation strategy. When if-expressions are
faster, we can simply generate a chain of conditional expressions similar to how it is
done in the salt-marsh implementation (Listing 10).

In theory, the costC of running n if-expressions must be less than the overhead cost
of setting up m computations, nCif < mCoh, with n representing the total number of
cells and m representing the number of distinct regions. This is difficult to determine
theoretically because we have no cost model. From our measurements it is also diffi-
cult do draw a clear line because our benchmarks are not fine-grained enough for small
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inputs, or for very large shell sizes.
In the case of 1M-1 on CPU, where roughly 0.4% of the cells belong to the shell we

observe a relative performance increase of 1.75×. In other words, regions are 75% cent
slower than simply executing the if-statements. On the other hand, in the case of 10M-1
where roughly 0.13% of the cells belongs to the shell, is 5.3× faster with regions than
with if-statements. On GPU we have a few other cases — 1M-50, 5M-50, and 10M-50
— from Figure 4.6 where evaluation of if-expressions is faster than using regions. The
same cases for a either a larger or smaller input size show the same or better performance.
Clearly relative shell size is not the most important factor here.

More research on the interplay between region- and array size is required before we
can claim whether an adaptive evaluation strategy is sensible to implement.
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1 step arr = regions (A.shape arr) [ (n_offs, A.generate n_sz n_f)
2 , (e_offs, A.generate e_sz e_f)
3 , (s_offs, A.generate s_sz s_f)
4 , (w_offs, A.generate w_sz w_f)
5 , (c_offs, A.rstencil c_f c_sz c_offs arr)]
6 where
7 (w, h, bw) = (grid_Width, grid_Height, 1)
8 (uarr, varr, harr, sarr, darr) = A.unzip5 arr
9 n_offs = Z_ ::. 0 ::. 0

10 n_sz = Z_ ::_ w ::. bw
11 n_f sh = let Z_ ::. r ::_ w = unlift sh
12 row1 = Z ::. r + 1 ::. 0
13 row2 = Z ::. r + 2 ::. 0
14 neumannNorth = Z_ ::. 1 ::. c
15 in ( 2 * uarr A.! row1 - uarr A.! row2
16 , 2 * varr A.! row1 - varr A.! row2
17 , harr A.! neumannTop
18 , 0
19 , darr A.! neumannTop)
20 e_offs = Z_ ::. w - bw ::. bw
21 e_sz = Z_ ::. bw ::. (h-2*bw)
22 e_f sh = let Z_ ::. r ::. c = unlift sh
23 neumannEast = (Z_ ::. h - 2 ::. c)
24 in (-uarr A.! neumannEast, varr A.! neumannEast
25 , harr A.! neumannEast, sarr A.! neumannEast
26 , darr A.! neumannEast)
27 s_offs = Z_ ::. 0 ::. h - bw
28 s_sz = Z_ ::. w ::. bw
29 s_f sh = let Z_ ::. r ::. c = unlift sh
30 neumannSouth = (Z_ ::. h - 2 ::. c)
31 in ( uarr A.! neumannSouth,-varr A.! neumannSouth
32 , harr A.! neumannSouth, sarr A.! neumannSouth
33 , darr A.! neumannSouth)
34 w_offs = Z_ ::. 0 ::. bw
35 w_sz = Z_ ::. bw ::. (h-2*bw)
36 w_f sh = let Z_ ::. r ::. c = unlift sh
37 neumannWest = (Z_ ::. h - 2 ::. c)
38 in (-uarr A.! neumannWest, varr A.! neumannWest
39 , harr A.! neumannWest, sarr A.! neumannWest
40 , darr A.! neumannWest)
41 c_offs = Z ::. bw ::. bw
42 c_sz = Z ::. w - bw ::. h - bw
43 c_f = simulateUv

Listing 14: Hot swapping functionality at the boundaries in Accelerate
with the new region construct
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1 step prev =
2 regions
3 (A.shape prev)
4 [ (n_offs, A.generate n_sz f_low)
5 , (e_offs, A.generate n_sz f_low)
6 , (s_offs, A.generate n_sz f_low)
7 , (w_offs, A.generate n_sz (\_ -> A.constant t_high))
8 , (c_offs, rstencil c_f c_sz c_offs prev) ]
9 where

10 Z_ ::. w ::. h = A.shape prev
11 t_high = 373.14
12 t_low = 273.14
13

14 f_low _ = A.constant t_low
15

16 c_sz = Z_ ::. w - 2 ::. h - 2
17 c_f ( ( _, n, _)
18 , ( w, m, e)
19 , ( _, s, _)) = alpha * (n + e + s + w - 4 * m)
20

21 n_offs = Z_ ::. 1 ::. 0
22 n_sz = Z_ ::. w - 2 ::. 1
23 s_offs = Z_ ::. 1 ::. h - 1
24 s_sz = Z_ ::. w - 2 ::. 1
25 e_offs = Z_ ::. w - 1 ::. 0
26 e_sz = Z_ ::. 1 ::. h
27 w_offs = Z_ ::. 0 ::. 0
28 w_sz = Z_ ::. 1 ::. h
29 c_offs = Z_ ::. 1 ::. 1

Listing 15: implementation of heat transfer with the regions
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Chapter 5

Discussion

5.1 Future Work

The current implementation of regions just scratch the surface of what we can do with
them. In this section we will discuss some ways in which they can be extended.

5.1.1 Cover Analysis

The first extension we want to discuss is one that verifies whether all cells in an array
are covered by regions. An array A is covered if the union of all regions is the same as
the entire array: ∪r∈R r = A.

Whenever there are cells that are orphaned, we have to assume some default be-
haviour for them. New regions will have to be made that contain these orphaned cells.
We can efficiently find all orphaned cells and generate regions that contain them by
using a hill climber algorithm that iteratively produces the largest region that wraps or-
phans, until there are no more orphans. A small example of a situation with orphans
is shown in Figure 5.1. The blue and red regions are specified while the white region is
not.

If the computation can be done in-place then the cells will remain untouched, which
is sensible. Assuming that the regions are not done in-place, then the white region either
contains artefacts from whenever the block was allocated, a default value, or a copied
value from the source array. We argue that copying is the most viable option because it
has the same behaviour as the in-place version.

This analysis will have to live in the runtime system of Accelerate because array
bounds in Accelerate are not statically known. In the current implementation of regions
we even use Exp sh, which is an explicit runtime type. Generalising the shape type
to describe both static and dynamic shapes might open up the possibility to move the
analysis from run- to compile time.

5.1.2 Overlap and Ordering

Another analysis that is related to a binary set operation is overlap. This analysis is
analogous to set intersection with ∀(r1, r2) ∈ R2 : (r1 ∩ r2 ̸= ∅) and can detect whether
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Figure 5.1: Array where two regions are specified (blue and red) and a
third region that is orphaned.

there are overlapping regions. If regions overlap, there is potential for further optimisa-
tion or it may have consequences for the execution order.

Example: If there is a region that is entirely contained in another, and the outer
region does not use the result of the inner region, then the inner region can be optimised
away. This optimisation is difficult to implement in Accelerate, because now we need to
introduce a dependency DAG, similar to what Halide has, in order to find and eliminate
the inner region.

Currently, the execution order is implicitly fixed by the list of regions in the Region
constructor. When code-generation is implemented for regions, the order of execution
determines what a result will be. If regions are executed in task-parallel, then our func-
tions may be unsafe because the overlapping part will be a seemingly random interleav-
ing of the two.

Example: If two overlapping regions r1 and r2 execute the same function and we do
not update the array in-place, then the order will be irrelevant to the result. In any other
case, the result of the overlapping part of the region will be determined by unspecified
behaviour due to race-conditions. There are multiple solutions to this. The first is to
never run regions in task-parallel if there is overlap. The second is to have the user
explicitly prioritise the execution order of regions.

5.1.3 Code generation

We have implemented an interpreter backend to experiment with the syntax of regions.
In our benchmarks we have approximated what regions would be like with generated
code by using tuples of arrays. These benchmarks show that there is performance to
be gained when we generate code for distinct regions: 10% for GPU and 45%− 80% for
CPU.

Ideally we generate a single code section for each distinct computation, and re-use it
for each region that the computation is executed on. As stated before, it is problematic
to determine whether two computations are the same. Equality of code sections will
have to be based on a deep hash value of the AST.

Automatically splitting arrays into regions, as is done by the stencil' function, may
generate a lot of regions and hence, code sections. In fact, the amount of code sections
scales linearly with 2d + 1 where d is the dimensionality of the array. This becomes 3d
if corners, edges, faces, etc have to all be treated in a different way.
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5.2 Caveats
As we have shown, expressivity of regions can be useful in a variety of situations. There
are however a couple of caveats that need to be discussed.

5.2.1 Representation of Regions

The current Region constructor contains a list of function-region tuples. Every function
is paired with a single region, which is problematic when generating code for separate
regions that share the same function because we have to assume that every function
is unique and generate a separate code section for each. We can test if two functions
are equal by testing on a deep hash value — assuming no hash-collisions, but this is
undecidable in general. To solve this problem we need to change the type to explicitly
contain the function that is being used. Intuitively it is a relatively simple problem to
overcome: instead of function-region pairs, we can have a pair of a function with a list
of offset-extent pairs. For example a map could be

data PreAcc acc exp t where
...
RegionMap

:: (exp a -> exp b) -- function?
-> [(exp sh, exp sh)] -- list of regions to map over
-> acc (Array sh a) -- source
-> PreAcc acc exp (Array sh b).

In contrast to how regions are currently implemented, this approach has to carry extents
for each region for each type of function. Herewe only show map, butwe ultimatelywant
to embed any arbitrary Accelerate computation in a region. It will be quite difficult to
change the compiler to handle this construct because it does not use any existing parts
of the compiler. Although it is intuitively simple, working around the problems and
actually implementing it will probably require a lot of time.

5.2.2 Nested Regions

The Region constructor holds a list of complete Accelerate computations. These com-
plete computations might again be regions, hence regions can be nested. An artificial
example of a nested region can be made by using region as follows

region sz [region sz [region sz ... [x]].

When we do this we get a list-like tree structure which, in this case, does not carry any
meaning. It is best to flatten this tree and simply have x instead. However, we stumble on
the same problem again: we cannot easily determine whether computations are equal,
and we have no dependency DAG.This makes flattening of these arbitrary, list-like trees
impossible in the current implementation.

There is no clear use case for nested regions. One could argue that a boundary region
could be split up again into three other regions: the two corners and the middle, but this
is a similarly synthetic situation. It is best to avoid nested regions. We have to demand
this from the user because in the current implementation there is no way to statically
prevent users from constructing them.
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Conclusion

In this work we have explored how regions of independent computations can be added
to Accelerate.

We have enabled the expression of these regions by adding a new constructor to
the Accelerate’s AST. This constructor contains a collection of pairs with complete Ac-
celerate computations and their offsets. Stencil boundary conditions can be expressed
using these regions by converting the old boundary conditions to functions that produce
their values and wrapping those in a generate, the exact same can be done for initial
conditions of partial differential equations.

Code is not always more clear when regions are used. In fact, the code size increases
linearly with the amount of regions that are added. Most of these extra lines are offsets
and extents that cannot be avoided, but they can be written inline. We argue that clear
separation of concepts weighs in heavier than having the least amount of code, because
separation aids in intelligibility and maintainability.

To make regions even more useful, we have added another constructor to the AST
that represents a stencil with the assumption that all accesses will be within the bounds
of the source array. This way, we can omit specifying a boundary condition, and it also
saves us the time from having to perform a bound-check while executing the stencil
function.

Runtime performance depends on region- and array size, although not on the ratio
between them. Another factor thatmakes a difference is target architecture, with relative
gains in performance of around 2.2−5.3× on CPU, while we only observe around 1.1×
for the GPU.

Although we do have multiple evaluation strategies, we cannot provide conclusive
evidence of when to switch between them. From ourmeasurements we observe only five
cases that are faster without regions, two on CPU, where one of those is just slightly
worse (4 per cent), and 3 on GPU with input sizes of 50M while input sizes of 100M
are faster. None of our results show that we should adaptively change the evaluation
strategy depending on the target architecture or input size.

Additional research is required in order to find what the interplay between region-
and array size is, and whether it makes sense to implement an adaptive evaluation strat-
egy.

In conclusion, we believe that we have demonstrated that regions are a sensible and
desirable feature for Accelerate.
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Appendix A

Matrix convolution

A.1 Definition
Matrix convolution is a special stencil operation that is the basis for many image pro-
cessing filters. It is related to continuous convolution which is a higher order mathe-
matical operator that is typically denoted with an asterisk (∗). The type of this operator
is (∗) : (α → β) → (α → β) → α → β showing that it consumes two functions and
produces another. A common way that convolution is explained is that the resulting
function shows how the shape of a function is changed by another.

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ) dτ (A.1)

Note that g is reversed around t. We will use a discrete, localised form that is related to
the continuous form in Equation A.1 called matrix convolution. Convolution of a kernel
over an image is defined as


x11 x12 . . . x1n

x21 x22 . . . x2n
... ... . . . ...

xm1 xm2 . . . xmn

 ∗


y11 y12 . . . y1n
y21 y22 . . . y2n
... ... . . . ...

ym1 ym2 . . . ymn

 =
m−1∑
i=0

n−1∑
j=0

x(1+i)(1+j)y(m−i)(n−j).

(A.2)
We are using two sums because we are operating in two dimensions and that y is

reversed like g in the continuous case. If we assume that the kernel and the region of
interest (ROI) of the image are represented by one-dimensional vectors in row-major
order then we can compute the convolution in Haskell with

convolve xs ys = sum (zipWith (*) (reverse xs) ys)

In practice we have a level of indirection and have to use indirect addressing with e.g.
gathers and scatters instead.

Convolution kernels are data parallel computations, that GPUs are optimised for.
Many stencil computation e.g. the mean blur, sharpen filter and sobel edge detection,
can be written as a convolution. If the kernel is separable e.g. the kernel is the product
of a row- and a column vector, then we can compute the convolution more efficiently
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A.2. TWO DIMENSIONAL EXAMPLE APPENDIX A. MATRIX CONVOLUTION

than when it is inseparable. Discussing whether kernels are separable or not is however
not in the scope of this work.

The anchor of a convolutionmatrix is its center. Running a convolution with a kernel
of size p × q on an image with dimensions n × m requires reading from cells with
horizontal coordinates from the interval ⌊−p

2
⌋ ≤ x ≤ ⌊n + p

2
⌋ and vertical coordinates

from the interval ⌊− q
2
⌋ ≤ y ≤ ⌊m + q

2
⌋. The bounds of the intervals are larger than

the height and width of the matrix, hence it is required to handle this gracefully i.e. a
boundary condition is required.

A.2 Two Dimensional Example
As a small proof that the general two-dimensional matrix convolution works, consider
two 3× 3 matrices. Recall from Equation A.2 that the convolution operation is defined
as

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ∗

y11 y12 y13
y21 y22 y23
y31 y32 y33

 =
m−1∑
i=0

n−1∑
j=0

x(m−i)(n−j)y(1+i)(1+j). (A.3)

Expanding the definition for this example yields Equation A.4. This is consistent with
what can be found in other literature modulo UCAI. An implementation of this equation
in C is shown in Listing 16.

X∗Y = x11y33+x12y32+x13y31+x21y23+x22y22+x23y21+x31y13+x32y12+x33y11 (A.4)

int convolve(void ** A, void ** B, size_t m, size_t n) {
int res = 0;
for (size_t i = 0; i < m; ++i) {

for (size_t j = 0; j < n; ++j) {
res += A[i][j] * B[m - i - 1][n - j - 1];

} }
return res;

}

Listing 16: Convolution example in C. The implementation differs from
the mathematical example due to zero-based arrays.
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Appendix B

Heat transfer derivation

The ‘heat equation’ is the popular name for a partial differential equation that describes a
collection of phenomena that depend on their initial value. We will focus on the temper-
ature of a body depends on its initial temperature. The heat equation for our particular
case is as follows

∂Q

∂t
= −k∇2Q. (B.1)

Where Q is the heat, depending on the constant this could resemble temperature,
energy content or a similar physical quantity. k is a constant that depends on the ma-
terial the heat is flowing through. The Laplace operator, ∇, is a shorthand notation for a
gradient of a function in multidimensional space. Simply put

∇nQ =
∂nQ

∂xn
+

∂nQ

∂yn
+

∂nQ

∂zn
. (B.2)

This equation states that the difference in heat at a single point in space, with respect
to space, depends on some constant k and the second derivative of heat with respect to
position. In other words: where there is curvature in space, there is change in time.

To compute the next state of temperature Tn+1, we simply add a gradient to the
current state of the temperature. We can describe it with the recurrent relation

T0 = Ta

Tn = Tn−1 +∆T.
(B.3)

Where Ta is the ambient temperature. The equation for one-dimensional, time inde-
pendent heat flow is ∆Q = mc∆T . We will divide this equation by ∆t to make it
time-dependent

∆Q

∆t
=

mc∆T

∆t
. (B.4)

The gradient can be computed from an equation similar to Equation B.1, instead of tak-
ing the second derivative with respect to position we will take the difference to the
neighbouring cells,
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APPENDIX B. HEAT TRANSFER DERIVATION

∆Q

∆t
= α ·

(
∆Q

∆x
+

∆Q

∆y

)
.

With α =
k

ρcpd

(B.5)

where k is the same constant as in Equation B.1, ρ is the density of the material, cp is
the specific heat capacity at constant pressure and d is the thickness of the plate we are
simulating, furthermore [α] = m s−1. We will substitute ∆Q = mc∆T for every ∆Q
and factor out mc. This yields

mc
∆T

∆t
= mcα ·

(
∆T

∆x
+

∆T

∆y

)
, (B.6)

or

∆T

∆t
= α ·

(
∆T

∆x
+

∆T

∆y

)
. (B.7)

Multiplying by ∆t and substituting the result in Equation B.3 we get the recurrent rela-
tion

T0 = Ta

Tn = Tn−1 + α∆t ·
(
∆T

∆x
+

∆T

∆y

)
.

(B.8)

We will approximate ∆T
∆x

by simply computing the difference in temperature to the
neighbouring cells. For the horizontal dimension we compute, in terms of T22 from
the temperature distribution in Equation B.9, ∆T22,x = T21 − T22 + T23 − T22 = T21 +
T23−2T22. Analogously for∆T22,y = T12+T32−2T22 and∆T22 = ∆T22,x+∆T22,y. We
divide the result by ∆x because our spatial resolution is the same for both dimensions
and it remains constant during the simulation.T11 T21 T31

T12 T22 T32

T13 T23 T33

 (B.9)
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Appendix C

Full table of results

In the next two tables we present the benchmark results rounded tomilliseconds. Round-
ing was done because sub-millisecond timeresolution is likely noise on computations of
this scale. The two functions that have been tested are: a trivial function x + 1, and a
hard function which is an iterated function of the form f(x) = mod (ax+ b, p) where
a, b, and c are large primes. For a more detailed explanation of what the functions mean
we refer to Section 4.3. Benchmarks were run using the Criterion[11] package with a
confidence interval of α = 0.95 and N = 1000 resamples.
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APPENDIX C. FULL TABLE OF RESULTS

I B trivial inside-hard outside-hard inside-trivial outside-trivial
1 1 5 8 14 8 8

2 4 12 16 12 12
5 5 23 20 22 23

10 5 36 31 36 34
50 5 124 109 123 122

100 4 182 190 181 181
2 1 5 12 15 12 12

2 5 19 16 19 18
5 5 33 26 32 34

10 5 55 35 55 55
50 5 215 144 218 221

100 5 307 263 302 307
5 1 5 20 16 21 20

2 6 31 20 30 30
5 6 63 33 61 61

10 7 117 46 115 114
50 6 500 209 504 500

100 6 720 352 727 729
10 1 8 42 23 41 41

2 8 71 26 72 70
5 8 162 41 163 164

10 8 316 60 311 313
50 8 1499 290 1481 1485

100 10 1892 482 1900 1904
50 1 25 99 48 98 95

2 25 171 54 171 169
5 26 396 100 396 387

10 26 761 151 757 762
50 26 3726 582 3710 3696

100 26 7338 1026 7360 7325
100 1 46 118 68 115 117

2 44 188 81 188 191
5 45 420 144 420 415

10 45 813 209 808 821
50 45 3894 768 3889 3889

100 48 7493 1406 7510 7489

Table C.1: Measured results for different functions, input sizes and
boundary widths on the CPU. All number are in ms, I is input size, B is
boundary width. Measurements are all within α = 0.95
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APPENDIX C. FULL TABLE OF RESULTS

I B trivial inside-hard outside-hard inside-trivial outside-trivial
1 1 2 4 2 4 4

2 2 4 2 4 4
5 2 4 2 4 4

10 2 5 3 5 5
50 2 9 10 9 9

100 2 13 13 13 13
2 1 3 5 3 5 5

2 3 6 3 5 5
5 3 6 4 6 6

10 3 6 4 6 6
50 3 13 17 13 12

100 3 19 22 19 19
5 1 7 11 7 11 11

2 7 12 8 11 11
5 7 12 8 12 12

10 7 13 9 13 13
50 7 22 26 22 22

100 7 32 32 32 32
10 1 14 19 14 18 18

2 14 19 15 19 19
5 14 20 15 19 19

10 14 21 17 20 20
50 14 32 35 32 32

100 14 49 46 49 49
50 1 73 79 70 77 76

2 69 79 71 78 77
5 69 81 79 79 79

10 70 84 83 82 81
50 68 114 105 114 114

100 69 150 145 148 148
100 1 146 155 138 152 151

2 137 155 140 153 152
5 137 158 148 163 160

10 145 167 151 164 164
50 146 208 185 209 208

100 149 256 238 254 253

Table C.2: Measured results for different functions, input sizes and
boundary widths on the GPU. All number are in ms, I is input size, B is
boundary width. Measurements are all within α = 0.95
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Appendix D

Specifications of Jizo

All programs and benchmarks were run on Jizo, our personal test system. We provide a
list of specification so that when the benchmarks are re-run on another system they can
still be compared if the specification are equal.

Part Specification

CPU AMD ThreadRipper 2950X (16 cores @ 3.5GHz), zenv1 architecture
Caches: L1d: 512 KiB, L1i: 1 MiB, L2: 8 MiB, L3: 32 MiB

GPU NVidia RTX 2080, turing architecture
RAM 64 GB DDR4, 2833 MHz
Disks 2× 8TB ‘spinning rust’ and 2× 1TB NVME drives, both pooled with LVM.
OS GNU/Linux, distribution Ubuntu 19.10 Eoan

Table D.1: Specifications of Jizo.
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