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Abstract 

This study introduces a new pore network structure model, based on the fundamentals of medial axis thinning and the 

maximal ball algorithm. Combining both methods provides great potential in preserving both topology and geometry, two 

key aspects to accurately mimic the respective pore space. To increase the accuracy of the pore network model even further, 

several characteristic improvements have been applied regarding the merging algorithm and the partitioning of the 

geometrical features. All alterations are physically viable and enhance the amount of detail, increasing the realism and 

robustness compared to other models. Ultimately, the model combines proven concepts and correct alteration to improve 

estimations related to fluid flow properties in porous media.  

The model is tested on twelve different samples, incorporating two carbonates and ten sandstones. Results regarding the 

pore network properties and absolute permeability are directly compared to the medial axis algorithm (Lindquist et al., 1996) 

and maximal ball algorithm (Dong and Blunt, 2009). The flow properties, including the relative permeability, are extracted 

using PoreFlow (Raoof et al., 2013). Percolation theory is also introduced to derive the relative permeability, combining 

critical path analysis and universal scaling. The results generated by this analytical framework are compared to the results 

generated by PoreFlow, giving new insights into the predictive capabilities of percolation theory. Overall, percolation theory 

shows great potential, however, accurately estimating the fractal dimensionality is crucial to guarantee accurate predictions. 
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1 Introduction 

Pore network modelling is applied to simulate fluid flow in porous media at a micro scale, extracting 

the governing parameters viable at a continuum macro scale. Modelling multiphase flow requires 

constitutive relations between: i) the saturation and the capillary pressure, ii) the relative permeability 

and either the saturation or capillary pressure and iii) the solute dispersivity and saturation (Raoof and 

Hassanizadeh, 2012). Field experiments obtaining these relations are often expensive and time 

consuming, while analytical solutions are restricted to boundary conditions and oversimplification 

(Xiong et al., 2016), however, numerical models may provide an opportunity to obtain transport 

properties.  

Two types of numerical pore models have been applied widely; direct numerical solutions (DNSs) and 

pore network models (PNMs). DBSs promise realistic and reliable results, as they simulate flow in an 

exact replica of the porous medium. However, these models become inefficient when the amount of 

interconnected pore throats or pore volume starts to increase (Tartakovsky et al., 2007). DNSs are also 

computationally demanding, as the entire pore space is discretized. Alternatively, the smallest 

discretization unit in a PNM is generally either a pore body or a pore throat, drastically decreasing the 

computational demand but keeping the complexity of the system intact in terms of pore connectivity. 

PNMs have been used extensively to simulate single- and multiphase fluid flow in porous media and 

are proven to provide valuable insight into the governing properties (Xiong et al., 2016). Nevertheless, 

PNMs are applied to idealizations of the pore space using simple geometries, which may lead to less 

credible reactive transport properties (Raoof et al., 2013). The predictive capability of PNMs depends 

on i) the process being simulated, ii) the assumptions made in approximating the fluid mechanics and, 

iii) how well the network structure depicts the actual geometry and topology of the real porous 

medium (Bhattad et al, 2011).  This research will mainly focus on the third dependence, combining 

current PNM methods to exploit the advantages of each technique and generate a superior pore 

network model. The flow properties, including the relative permeability in relation to the saturation 

will be obtained by incorporating PoreFlow (Raoof et al., 2013), a computational tool capable of 

simulating fluid flow under variable saturated conditions.  

Another approach to derive macroscopic properties is by applying the percolation theory to micro-

scale connectivity statistics (Ghanbarian et al., 2015). Percolation theory provides an analytical 

framework to model interconnectivity of disordered networks and porous materials, laying the 

foundation for universal scaling and critical path analysis (CPA). A key aspect of percolation theory is 

the critical water content, which is the minimum saturation to create a connected path of saturated 

pores spanning between the inflow and outflow boundary of a porous medium. Ghanbarian and Hunt 

(2012) demonstrated that universal scaling can describe the conductivity at saturation higher but close 

to the critical water content, while CPA generates results at higher saturations. Hence, universal 

scaling needs to be supplemented by CPA to compute permeability results over the whole saturation 

spectrum. This research will incorporate both techniques to obtain the relative permeability which 

will then be compared to the results generated by PoreFlow. This will give a new insight into the 

predictive capabilities of percolation theory, giving direct comparisons between pore network 

modelling and percolation theory.  
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2 Modelling Porous Media 

As this research focusses on generating a viable pore network model (PNM), the details about direct 

numerical solutions (DNSs) are only discussed briefly.  

2.1 Direct Numerical Solutions 

One of the most popular DNSs is the lattice-Botlzmann (LB) model, which solves a discretized 

Boltzmann equation of fluid particle distributions that move and interact on a regular lattice with very 

few degrees of freedom (Ramstad et al., 2010). This limitation in freedom originates from the fact that 

the LB model is evolved from a cellular automaton, in which particles can only move to the next 

neighbouring lattice point in one time step. This implementation generates both the strengths and 

weaknesses of the LB model, as the velocity vectors need to be computed at every lattice point for 

each particle distribution for every single time step. These extensive computations, in combination 

with the discretization of the entire pore space results in very accurate fluid flow predictions, making 

it the current standard method for single phase flow and transport (Blunt et al., 2013). However, 

multiphase flow adds more complexity, as the interaction between different fluids has major influence 

on the capillary flow. Consequently, the particle interactions need to be incorporated, further 

increasing the computational demand of the LB model, which is its biggest limitation. Another 

important drawback is the numerical instability when handling multiphase flow with large viscosity 

and density differences (Meakin and Tartakovsky, 2009), making it for example unsuitable for carbon 

capture storage simulations.  

2.2 Pore Network Modelling 

The computational demand of DNSs restricts the applicable porous media to small, homogeneous rock 

samples with narrow pore size distributions (Bultreys et al, 2016). In the future, DNSs are expected to 

become the benchmark, but up to date, PNMs have been the most successful methods of simulating 

multiphase fluid flow (Blunt, 2001; Blunt et al., 2013). PNMs find their origin in the discretization of 

pore bodies and pore throats, simulating fluid flow within and in between the two. However, a pore 

space is continuous, and therefor discretizing the system into pore bodies and pore throats sometimes 

results in ambiguous definitions (Hunt et al., 2014). The central idea of PNMs is to simplify the pore 

space by capturing all the relevant topological and geometrical traits of the system. Successfully 

capturing these two aspects plays a crucial role in the reliability of the generated PNM. 

2.3 PNM Properties 

Topology and geometry of the pore space play an important role in the hydraulic properties of a 

porous medium (Vogel and Roth, 2001). The former defining the location and connectivity of the pore 

space while the latter characterizes the size and shape. Both parameters influence different 

hydrogeological properties, although ultimately, they act together. The topology mainly alters the 

(relative) permeability, which is hugely affected by the connectivity of the system. Nevertheless, can 

the geometry also be linked to this process, as the shape of the throats influences the wettability and 

therefor also the connectivity. The credibility of the pore network predictions is thus highly dependent 

on both the topology and geometry and it is crucial to accurately mimic these characteristics in order 

to effectively simulate multiphase flow and transport phenomena (Xiong et al, 2016).   

2.3.1 Topology 

The main topological characteristics of a pore network are the spatial location of the pore bodies and 

the connectivity of the pore elements (Joekar-Niasar and Hassanizadeh, 2012). There are four widely 

accepted structures to simulate a three-dimensional pore network in a gird: i) structured regular, ii) 
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structured irregular, iii) unstructured regular and iv) unstructured irregular (Figure 1). Whether a pore 

network is structured or unstructured has to do with the occupation of the pore bodies, which are all 

equally divided in space for a structured grid. The regular or irregular classification is based on the 

coordination number of each pore body. In a regular grid all pore bodies have an equal number of 

throats connected to another pore body, in irregular grids this is not the case. Regular grids are most 

often used when no direct measurements of the porous material are available and only statistical data 

is captured (Xiong et al. 2016). However, when direct measurements of the pore space are available 

an irregular unstructured grid is favourable, generating more feasible results, especially regarding real 

porous media in which a wide range of coordination numbers is present (Raoof and Hassanizadeh, 

2010). 

The mean coordination number and the supplementing distribution also provide a valuable insight 

into the topological randomness of real porous media. The mean coordination number and its range 

can vary widely between different rocks, increasing with an increase in porosity (Lindquist et al., 2000).  

Several studies conducted with X-ray computed microtomography and skeletonization algorithms 

revealed a mean coordination number of 4 for most sandstones (Thovert et al., 1993; Lindquist et al., 

1996; Bakke and Oren, 1997; Oren et al., 1997; Oren and Bakke, 2002). The range of the coordination 

numbers has also been studied, various methods including 2D thin sections (Oren and Bakke, 2003) 

and X-ray computer tomography (Lindquist, 2000) revealed a range up to 16.  

Another important parameter to measure in order to preserve the topology is the connectivity 

coefficient (Figure 2), often described by the Euler-Poincaré characteristic (Hadwiger, 1957). The 

volumetric Euler number (Xv) can be used (1) to provide an unbiased estimation of the connectivity 

(Vogel and Roth, 2001). This number is based on the fundamental topological properties of a domain 

composed of several pores. 

 

Χ𝑉 =
𝑁 − 𝐶 + 𝐻

𝑉
 (1) 

Figure 1. The four different classifications of pore networks: (a) structured regular, (b) structured irregular, (c) unstructured 
regular and (d) unstructured irregular (Joekar-Niasar and Hassanizadeh, 2012). 
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In which N is the number of isolated objects, C is the number of redundant connections or loops, H is 

the number of completely enclosed cavities or hollow spheres and V is the volume (Figure 2). The 

volumetric Euler characteristic is a single value, describing the connectivity in the entire medium, 

decreasing with an increasing connectivity.  

2.3.2 Geometry 

An important feature of almost all pore network models is that the resistance to flow is assumed to 

come from the pore throats only (Raoof and Hassanizadeh, 2012). The pore throat acts as a bottleneck 

while the pore bodies are adopted to be liquid holding containers, defining the porosity of the porous 

medium. Although this bottleneck effect may be the case for single phase flow, its concept changes 

entirely when looking at multiphase flow. Raoof and Hassanizadeh (2012) argued that a pore body 

which is occupied by both the wetting phase and nonwetting phase can have similar flow resistance 

as a pore throat. This phenomenon is governed by the shape of the concerning volume. The wetting 

phase may occupy the crevices of pores with a rough or angular cross-section, while the nonwetting 

phase resides in the centre of the pores (Lenormand et al., 1983). This has not only a considerable 

effect on the fluid flow, but also on the connectivity and the proportion of the wetting and nonwetting 

phase. To simulated multiphase flow, a spatially correlated, disordered pore network is required, with 

each pore allowing multiple phase occupancies (Blunt, 2001). 

 

𝐺 =
𝐴

𝑃2
 (2) (2) 

The shape of the angular cross is defined by the shape factor (equation 2), a dimensionless number 

describing the relationship between the cross-sectional area and its perimeter (Mason and Morrow, 

1991). A circle has the highest shape factor, with a value of 0.0795, resulting from an optimal 

proportion between cross-sectional area and perimeter. For very elongated geometries, which have 

a small area compared to its perimeter, the shape factor approaches zero (Joekar-Niasar et al., 2010).  

Many different geometrical shapes (Figure 3) have been considered over the years and even a 

Figure 2. Schematic drawing of a fictional pore space (white) with skeleton (dashed line) and pore bodies (black dots). There 
are three isolated objects, two redundant connections (red dashed line) and one completely enclosed cavity (bottom right 
corner). A redundant connection can be removed without creating a new isolated object, hence, the redundant connection in 
the bottom could also be one of the other three throats in that specific loop. 
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combination of several shapes has been implemented in various pore network models (Figure 4). In 

addition to the shape factor, Joekar-Niasar et al. (2010) have shown that the number of vertices also 

has a significant effect on the hydraulic properties and should be taken into consideration.  

Another parameter influencing the flow resistance is the throat length (Figure 5). However, the 

transition from pore body to pore throat is ambiguous, raising difficulties measuring this entity. A 

common way to compute the throat length is to use the aspect ratio (3) between the radii of the 

connected pore bodies (r1 and r2) and the throat radius (rt) in combination with a simplification of the 

Hagen-Poiseuille law (4).  

 

𝑘1 =
𝑟1

𝑟𝑡
 𝑎𝑛𝑑 𝑘2 =

𝑟2

𝑟𝑡
  (3) 

 

𝐿𝑒 = 𝐿1

1 + 𝑘1 + 𝑘1
2

3𝑘1
3 + 𝐿2

1 + 𝑘2 + 𝑘2
2

3𝑘2
3  (4) 

In the most recent years of pore network modelling the three-dimensional pore body shape has 

shifted from spherical to cubic (Xiong, 2016), accounting for wettability phenomena in the pore body. 

Joekar-Niasar and Hassanizadeh (2010) presented a pore network model with truncated octahedrons 

as pore bodies. Although this allowed for simultaneous existence of both wetting and nonwetting 

fluids and unique shaping of each pore body, it was limited by a maximum coordination number of 

six. The size of the pore body is often determined by the radius of the maximal inscribed sphere or by 

Figure 3. Various geometrical shapes used as cross-sectional area in different studies. The red colour represents the 
nonwetting fluid in the centre of the pore throat while the blue colour represents the wetting fluid, occupying the crevices of 
the pore (Joekar-Niasar and Hassanizadeh, 2012). 

Figure 4. Shape factor distribution implemented by Joekar-Niasar (2010) considering irregular hyperbolic triangles (3 
vertices), regular hyperbolic polygons (more than 3 vertices) and circles. The range for each geometrical shape differs widely. 
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the radius of the volume equivalent sphere, respectively underestimating and overestimating the pore 

volume. Ultimately the maximal inscribed sphere estimation is better suited for flow, while the 

equivalent volume method thrives in regard to solute transport and porosity. The aspect ratio (3) also 

plays an important role in snap-off, which can influence trapping during imbibition (Joekar-Niasar et 

al., 2009).  Furthermore, must be emphasized that most studies assume the pore throat volume 

negligible in comparison with the pore body volume, their contribution to the flow resistance is 

however significant (Raoof and Hassanizadeh, 2012). The size of the pore throat is often related to the 

maximal inscribed sphere.  

2.4 Pore Network Models 

There are three main construction technique to generate a pore network model; i) statistical, ii) 

geological and iii) direct mapping.  

2.4.1 Statistical Reconstruction 

Statistical reconstructions are based on the hydrological properties of porous material, prospering 

during a time in which computed microtomography was constrained by its resolution, speed and 

expenses (Ioannidis and Chatzis, 2000). The essence of stochastical reconstruction is to relate one or 

more macroscopic transport coefficients to essential geometric and topological attributes of the 

microstructure (Liang et al., 2000). Although the hydrological characteristics are representative, two 

different materials can have exactly the same parameters but can spatially vary widely.  Liang et al. 

(2000) found that porous media reconstructed from the same porosity and correlation function can 

exhibit marked differences in geometry and connectivity, which correlate with differences in specific 

surface area. Furthermore, Silin and Patzek (2006) showed that the dimensionless capillary pressure 

curve does not depend on the porosity or the size of the sample, rather it depends on the intrinsic 

geometry and connectivity of the pore space. It is thus crucial to understand the local intrinsic 

properties of a porous material in order to simulate fluid flow and hydrogeological transport 

phenomena. However, the need for up-scaling from the typically small imaged volume to larger 

domains leads to the need for construction of statistically representative networks (Xiong et al, 2016). 

Figure 5. Schematic drawing for calculating the effective throat length (Le). The pore space (a) is simplified by sticking together 
two frustums (b) which is then simplified to a cylindrical tube (c). The shape of the throat is not actually circular, as this is 
determined by the shape factor. (Yi et al., 2017) 
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2.4.2 Geological Reconstruction 

Geological reconstruction can be compared to the geological process of diagenesis, which is directly 

its major drawback. The modelled diagenesis procedure is only applicable for regular shaped grains 

and is thus not applicable for limestone. The pioneers in this field of research were Bryant, Blunt and 

their co-workers (Bryant and Blunt, 1992; Bryant et al., 1993a, b) who successfully modelled 

compaction of a sandstone by simulating a pack of equally-sized spheres and moving the centres of 

the sphere vertically, allowing the spheres to overlap. This model was able to accurately predict 

relative permeability and capillary pressure. Bakke and Oren improved their work by developing a 

reconstruction method in which the grains size distribution was included by generating spheres with 

different radii. Albeit the success of Oren, Bakke and its fellow researchers (Bakke and Oren, 1997; 

Lerdahl et al., 2000; Oren and Bakke, 2002; Oren et al., 1997), being able to simulate multiphase flow 

and accurately predicting relative permeability for a variety of water-wet sandstones, there were still 

two more limiting concerns besides the restriction of spherical grains. First of all is the geological 

process by which a rock is formed unknown, or very challenging. Furthermore, is the characterization 

of pore shape and wettability not fully understood (Xiong et al, 2016), especially considering the 

dynamics of the morphological properties.  

2.4.3 Direct Mapping 

The most difficult task when creating a pore network model is identifying and specifying the pore 

bodies and pore throats (Jiang et al., 2007). According to Prodanovic et al. (2006) all pore network 

models can be categorised into two types, pore detection or throat construction. Currently, most pore 

network models are based in the former type, first defining the pore bodies before constructing the 

pore throats. However, the identification of a pore body can be an art on itself. This process can also 

be classified into two categories, geometry- or topology based. The former method makes use of the 

distance map within the pores, defining pore bodies as local maxima and pore throats as the 

connecting local minima. The topological based method makes use of the amount of connections, a 

Figure 6. Skeletonization of the pore space by using the medial axis algorithm, difficulties arise due to perturbations on the 
edge of the pores (Silin and Patzek, 2006). 
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pore body will be defined as a junction and pore throats will be defined as nonjunctions (Jiang et al., 

2007). The most important feature which both the geometrical and topological based approach have 

in common is that they both make use of a skeleton, essentially the backbone of each pore network 

model. The different methods of generating a skeleton will be described in the following paragraphs.  

2.4.3.1 Medial Axis Thinning 

The medial axis algorithm is based on finding the local maxima in the distance map and reconnecting 

them by using the local minima (Baldwin et al., 1996). The resulting skeleton is exactly centred in the 

pore body but does not necessarily preserve the topology (Figure 6), as the path reconstruction may 

produce redundant points on the skeleton (Jiang et al., 2007). A thinning algorithm is fairly similar but 

eliminates the redundant points by burning the edges of the pore space (Lindquist et al., 1996). The 

elimination procedure is iterated until no further voxel can be removed, assigning the residual voxels 

as the medial axis. The disadvantages of the thinning algorithm arise from the verifiability and 

reproducibility due to the orientation of the image (Figure 7), altering the order of elimination and 

significantly changing the results (Silin and Patzek, 2006).   

2.4.3.2 Maximal Ball Algorithm  

The maximal ball algorithm (Silin and Patzek, 2006) calculates the maximal inscribed sphere for each 

voxel in the pore space. The largest maximal sphere will consume all the overlaying smaller spheres, 

generating a network of maximal balls which are defined as the pore bodies, and connecting smaller 

balls, the pore throats. Al-Kharusi and Blunt (2007) adopted this method and added some hierarchical 

rules, which are able to handle equally sized spheres. This resulted in more credible results, but also 

increased the computing time and coordination numbers tremendously. Dong and Blunt (2009) 

continued improving this model, decreasing the computing time and error by incorporating a 

searching algorithm. This model however, had flaws concerning the segmentation of smaller pores 

into one large pore, making it unusable for samples with relatively large pore throats, like limestones. 

Also, the computational time of the algorithm is still drastically longer than algorithms making use of 

a medial axis algorithm.  

Figure 7. Different skeletons produced by the same thinning algorithm, resulting from a different order of elimination of 
redundant voxels (Silin and Patzek, 2006). 
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2.4.4 Two-scale Reconstruction 

Another type of PNM is two-scale reconstruction, which cannot be distinctively separated from the 

prior PNM methods as it makes use of either statistical reconstruction or direct mapping. Despite the 

advances of pore network modelling, the simulation of transport properties in heterogeneous rocks 

still remains an open issue due to the very broad pore size distributions in some porous media (Xiong 

et al., 2016). Several methods have been proposed to overcome this issue, most noticeable the 

advances by Jiang et al (2013) and Prodanovic et al. (2015) who integrated network models with 

distinct length scales (Figure 8). However, the shortcoming of these models is that it is computationally 

costly due to the large number of network elements (Bultreys et al., 2015). This reconstruction method 

will not be discussed in further detail because its shortcomings contradict with our research 

objectives.   

  

Figure 8. A pore network model with two distinct length scales incorporated (Xiong et al., 2016). 
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3 Flow Simulations 

The flow simulations through the extracted pore network model are simulated using PoreFlow (Raoof 

et al., 2013). One key feature of PoreFlow is the further discretization of pore bodies, which allows 

multiphase flow to occur (Figure 9). Under partially saturated conditions, the nonwetting phase may 

occupy a large volume of the pore body, allowing the wetting phase to only persist at the edges, 

drastically decreasing the conductance. Ignoring this effect may result in heavy underestimation of 

the relative permeability (Bryant and Blunt, 1992; Al-Kharusi and Blunt, 2008). 

Two important assumptions are made before computation; the fluid is incompressible and the flow is 

laminar. The sides of the pore network perpendicular to the flow direction are set to constant head 

boundaries, while the sides parallel to the flow direction are no flow boundaries. The discharge 

through a drained pore throat is calculated using the Hagen-Poiseuille equation (5). 

 

𝑞𝑖𝑗,𝑡𝑜𝑡 = ∑ 𝑔𝑖𝑗,𝑘

𝑁𝑒𝑑𝑔𝑒

𝑘=1

𝑃𝑗 − 𝑃𝑖

𝑙𝑖𝑗
 (5) 

In which qtot is the total volumetric flow rate, gk is the conductance of one specific edge, P is the 

pressure and l is the length. All parameters are computed between two pore bodies, i and j, hence 

generating the parameters for each throat specifically. The number of throat edges is implemented to 

simulate partial saturation. Each pore body is represented by a cube while the shape of the throat is 

dependent on the shape factor.  

The continuity equation is applied on the pore body (6), utilising the fact that the sum of all discharges 

should be zero.  

 

∑ 𝑞𝑖,𝑛

𝑁𝑒𝑑𝑔𝑒
𝐶𝑈,𝑖

𝑛=1

+ ∑ 𝑞𝑖𝑗,𝑡𝑜𝑡

𝑧𝑖

𝑘=1

= 0 (6) 

In which Nedge
CU,i  is the number of edges through which corner unit i is connected to other corner units 

n, within the same pore body. The first term thus represents the discharge within the different corner 

units. The second term, in which zi is the coordination number, represents the discharge for the 

connected throats.  

Figure 9. Two pore bodies connected by a pore throat (a) and the partial saturation of a pore body (b) in which the nonwetting 
phase is represented by the dark grey colour and the wetting phase by the light grey colour (Raoof et al, 2013). 
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The relative permeability (kr) at a given capillary pressure is calculated using the total discharge 

through the network (Qtot) in combination with Darcy’s law (7).  

 
𝑘𝑟 =

𝜇𝑄𝑡𝑜𝑡

𝑘𝐴
𝑑𝑃
𝑑𝑙

 (7) 

In which µ is the dynamic viscosity, k the absolute permeability and A is the area.  
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4 Percolation Theory 

Universal scaling and critical path analysis are two supplementing theories originating from 

percolation theory. The prior is applicable for volumetric water contents higher but close to the critical 

water content while the latter operates for higher water saturations. Both theories are applied to find 

the rate-limiting conductance value (Hunt, 2005). Critical path analysis (CPA) was developed by 

Ambegaokar et al. (1971) to study electron transport in amorphous semiconductors. Fortunately, 

electrical conductivity is defined completely analogously to the hydraulic conductivity in a porous 

medium (Hunt, 2005), making it also applicable for this study. Critical path analysis prevails when the 

porous medium is highly heterogeneous with a broad pore size distribution dominated by pore throats 

whose radii are slightly larger than the critical radius. The rest of the pore throats do not significantly 

contribute to flow, and therefore, can safely be ignored (Ghanbarian et al., 2016).  

4.1 Fractal Dimensionality 

Fractal dimensionality is one of the features incorporated in CPA. Fractal models provide an analytical 

framework for prediction, being able to represent highly complex natural media with a paucity of 

relevant parameters (Hunt and Ewing, 2009). Rieu and Sposito (1991) were the first to establish a 

model (8) which related the fractal pore dimensionality (D) to a finite range of pore sizes (rmin ≤ r ≤ 

rmax) and the porosity (φ). 

 

𝜑 = 1 − (
𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥
)

3−𝐷

 (8) 

The Rieu and Sposito (RS) model was intended to represent soils, not fractured rock. Also, the model 

can only be utilised when both the pore space and solid matrix are fractal and self-similar, making it 

scale invariant. This was verified for varies porous media, in particular soils, by Turcotte (1986). One 

complication of the RS model is the use of a discrete, truncated random fractal, generating only pore 

throats with a discrete radius, instead of a continuum representation. This issue was solved by Hunt 

and Gee (2002b) by exploiting a probability density function (9) of the pore throat radius which has a 

continuous, power-law form. 

 

𝑊(𝑟) =
3 − 𝐷

𝑟3−𝐷
𝑟−1−𝐷  (9) 

The porosity should be equal to the integral of the volume of the pore (r3) times the probability density 

function, W(r), over the minimum and maximum pore size, rmin ≤ r ≤ rmax (10). This approach agrees 

with Rieu and Sposito (1991), which has been verified to predict pressure-saturation curves by several 

different studies (Filgueira et al, 1999; Bird et al., 2000; Hunt and Gee, 2002a). 

 

𝜑 =
3 − 𝐷

𝑟𝑚𝑎𝑥
3−𝐷

∫ 𝑟3𝑟−1−𝐷𝑑𝑟 = 1 − (
𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥
)

3−𝐷
𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

 (10) 

For fractal description of the solid volume of a porous medium to be accurate, a log-log representation 

of the cumulative volume versus the particle size should produce a straight line (Hunt and Gee, 2002b). 

If the pore space is also fractal over a finite range of pore radii, the fractal description is probably valid 

over the same range. This prediction agrees with the Arya-Paris model (1981) and implies that the 

radius of both the largest and smallest pore is fairly consistent with the largest and smallest particle 
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radius. The fractal dimensionality can thus be found when both the proportion between the largest 

and smallest pore and the porosity is known (Figure 10). 

 
𝐷 = 3 −

log(1 − 𝜑)

log (
𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥
)

 (11) 

4.2 Critical Path Analysis 

Laminar flow in a cylindrical tube can be described by Poiseuille law (12), in which µ is the dynamic 

fluid viscosity, g is the conductance, r the radius and l the length of the tube. 

 

𝑔 =
𝜋

8𝜇

𝑟4

𝑙
 (12) 

However, pore throats appear in many different geometries. The assumption is made that the 

effective radius and length of identical shaped throats scale identically to the characteristic radius and 

length. Furthermore, self-similarity implies that r α l, which results in the following proportionality 

(13). 

 

𝑔 ∝ 𝑟3 (13) 

The proportionality between the probability density function of a pore throat and the radius of a pore 

throat (14) can be found using equation (9). 

 

𝑊(𝑟) ∝ 𝑟−1−𝐷 (14) 

Furthermore, the relation between the probability density functions of the throat radii and the 

conductance can be expressed.  

Figure 10. Graphical construction of finding rmin (2.8 µm) and rmax (133 µm) (Hunt and Gee, 2002). 
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𝑊(𝑟)𝑑𝑟 = 𝑊(𝑔)𝑑𝑔 (15) 

Using equations (13), (14) and (15) the proportionality of the probability density function of the 

conductance can be found. 

 

𝑊(𝑔) ∝ 𝑔−
𝐷
3  (16) 

Combining critical path analysis with the theory from fractal dimensionality ultimately generates an 

equation for the unsaturated hydraulic conductivity. To achieve this goal, the lower limit of equation 

(10) is altered to the critical radius (rc), which is the smallest radius encountered on a percolation path. 

This results in the critical water content, which is equivalent to the minimum amount of water 

generating a percolation path through the porous medium. 

 

𝜃𝑐 =
3 − 𝐷

𝑟𝑚𝑎𝑥
3−𝐷

∫ 𝑟3𝑟−1−𝐷𝑑𝑟 = 1 − (
𝑟𝑐

𝑟𝑚𝑎𝑥
)

3−𝐷
𝑟𝑚𝑎𝑥

𝑟𝑐

 (17) 

The partial saturation is accounted for by altering the upper limit of equation (10). In theory this should 

represent film flow permitting the porous medium to adjust the water content by entirely emptying 

the pores larger than the equilibrium radius. This complies with the Young-Laplace equation, larger 

pores empty before smaller ones. Hysteresis is not considered, as pores throats cannot empty 

partially. 

 

𝜃 =
3 − 𝐷

𝑟𝑚𝑎𝑥
3−𝐷

∫ 𝑟3𝑟−1−𝐷𝑑𝑟 = (
𝑟3−𝐷 − 𝑟0

3−𝐷

𝑟𝑚𝑎𝑥3−𝐷
)

𝑟

𝑟𝑚𝑖𝑛

 (18) 

The percolation condition of the lower boundary should also be applied to the partial saturation. 

 

𝜃𝑐 =
3 − 𝐷

𝑟𝑚𝑎𝑥
3−𝐷

∫ 𝑟3𝑟−1−𝐷𝑑𝑟 = (
𝑟

𝑟𝑚𝑎𝑥
)

3−𝐷

− (
𝑟𝑐(𝜃)

𝑟𝑚𝑎𝑥
)

3−𝐷
𝑟

𝑟𝑐

 (19) 

Combining equations (17), (18) and (19) gives an equation for the critical pore throat radius. 

 

𝑟𝑐(𝜃) = 𝑟𝑐(𝜃 = 𝜑) [
1 − 𝜑 + 𝜃 − 𝜃𝑐

1 − 𝜃𝑐
]

1
3−𝐷

 (20) 

Critical path analysis states that the hydraulic conductivity of a porous medium is controlled by the 

hydraulic conductance of the rate-limiting pore throat (Hunt, 2001), which is proportional to the cube 

of the critical radius (13). This results in a formula for the unsaturated hydraulic conductivity (Hunt 

and Gee, 2002). 

 

𝐾(𝜃) = 𝐾𝑠 [
1 − 𝜑 + 𝜃 − 𝜃𝑐

1 − 𝜃𝑐
]

3
3−𝐷

 (21) 
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4.3 Balberg Nonuniversality  

Balberg (1987) determined that distributions with a negative power-law distribution (22) approaching 

g = 0 should obey equation (23) to describe the conductance, otherwise leading to non-universal 

exponents of conduction. This theory, i.e. Balberg nonuniversality, uses the average resistance along 

the critical path rather than the largest resistance. 

 

𝑊(𝑔) ∝ 𝑔−𝛼 
(22) 

    

𝜎 ∝ (𝑝 − 𝑝𝑐)
𝛼

1−𝛼  (23) 

As equation (16) indeed has a negative power-law distribution we need to apply Balberg 

nonuniversality, which yields equation (24) for the conductance depending on the water content. 

 

𝜎 ∝ (𝜃 − 𝜃𝑐)
𝛼

1−𝛼 (24) 

As the result of Balberg needs to be mimicked, the same assumption is applied that the conduction 

paths close to zero conductance is basically 1D in character. To achieve this the bulk resistance 

distribution is cut off at gc
-1 and integrated, with the result that ⟨g-1⟩-1 is always given by gc

-α (Hunt, 

2005). This method is applied to equation (21) resulting in equation (25) (Hunt, 2005).  

 

𝐾(𝜃) = 𝐾𝑠 [
1 − 𝜑 + 𝜃 − 𝜃𝑐

1 − 𝜃𝑐
]

𝐷
3−𝐷

 (25) 

4.4 Transition from CPA to Universal Scaling 

A problem arises when the water content approaches the critical water content. A requirement of 

percolation theory is that the hydraulic conductivity vanishes at the critical water content, which is 

not valid for equation (25). Universal scaling provides the solution, which states that the unsaturated 

hydraulic conductivity should vanish according to equation (26). 

 

𝐾(𝜃) = 𝐾0(𝜃 − 𝜃𝑐)𝜇  (26) 

Universal scaling (26), or percolation scaling, implies that the hydraulic conductivity is based on the 

topology of the porous medium depending on the occupation of the pore throats. On the other hand, 

critical path analysis (25) depends on the geometry, or bottleneck, of the pores. It is evident that these 

theories should supplement each other to get the best results. However, the upper limit of percolation 

scaling has never been answered satisfactorily (Ghanbarian et al, 2014). So far the best way of finding 

this cross-over water content is by setting equal the hydraulic conductivity equations (27) and their 

derivatives (28) at the cross-over saturation (Θx).   
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 𝐾𝑠 [
1 − 𝜑 + 𝜃𝑥 − 𝜃𝑐

1 − 𝜃𝑐
]

𝐷
3−𝐷

= 𝐾0(𝜃𝑥 − 𝜃𝑐)2 (27) 

 
𝐷

3 − 𝐷

𝐾𝑠

(1 − 𝜃𝑐)
𝐷

3−𝐷

 (1 − 𝜑 + 𝜃𝑥 − 𝜃𝑐)
𝐷

3−𝐷
−1 = 2𝐾0(𝜃𝑥 − 𝜃𝑐) (28) 

Note that µ is replaced by 2, which is valid for three-dimensional porous media. Solving these 

equations for the cross-over water content yields equation (29). 

 
𝜃𝑥 = 𝜃𝑐 +

2(1 − 𝜑)

𝐷
3 − 𝐷

− 2
 (29) 

Now K0 can be determined from equation (27) as well.  

 

𝐾0 = 𝐾𝑠 [
1 − 𝜑 + 𝜃𝑥 − 𝜃𝑐

1 − 𝜃𝑐
]

𝐷
3−𝐷

(𝜃𝑥 − 𝜃𝑐)−2 (30) 

4.5 Critical Volume 

A crucial value intertwined with percolation theory is the critical water content (Θc), which is 

equivalent to the minimum amount of water generating a percolation path through the porous 

medium. For natural porous media the critical water content is unknown (Ghanbarian and Hunt, 

2012). However, Moldrup et al. (2001) developed an empirical formula (31) relating the surface area 

(A) and volume (V) to the critical water content (R2 = 0.99). Typical values range from 0.09 for sandy 

soils, to 0.13 for loamy soils and 0.19 for clayey soils (Moldrup, 2001).  

 𝜃𝑐 = 0.039 (
𝐴

𝑉
)

0.52

 (31) 

The drawback of using this method is the use of specific surface area data which is not always 

available. Another possibility to extract the critical water content is from the water retention curve. 

According to van Genuchten (1980), the critical water content is equivalent to the last measured water 

content before the gradient (dΘ/dh) becomes zero. However, this method requires pressure-

saturation curves to be available. 

It is important to emphasize that there are quite a few restrictions coupled to percolation theory. First 

of all, is the theory not applicable for multiphase flow, as pore throats are completely filled by either 

water or air due to a contact angle of the wetting phase (water) being nearly 0 degrees. This allows 

the approach to use cylindrical tubes, each with a radius determined from the pore-throat size 

distribution. Furthermore, pore bodies are not considered as flow is only limited by the constraints 

applied by the throats, which also results in the absence of trapping. Besides, the pore size distribution 

of the throats is assumed to be power-law functions for CPA to work. Lastly, universal scaling is 

applicable for saturation values close to the critical water content until the crossover saturation (Sc ≤ 

S ≤ Sx; Θc ≤ Θ ≤ Θx) while CPA is applicable from the crossover saturation until fully saturated conditions 

(Sx ≤ S ≤ 1; Θx ≤ Θ ≤ φ).  
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5 Method 

5.1 Pore Network Model Extraction 

A pore network model must satisfy the following criteria to predict multiphase flow properties: i) 

topology preservation, ii) a single voxel width skeleton, iii) medial location of skeleton and iv) 

integration of geometry (Jiang et al., 2007). Several steps need to be performed to accomplish these 

criteria; i) the CT-images have to be processed for binarization and then skeletonized, ii) the pore body 

and throat locations need to be determined and iii) their geometrical features need to be partitioned.  

5.1.1 Binarization and Skeletonization 

The provided porous media samples are represented by stacks of black-and-white images. The grey 

scale of these images range from zero until the bit size of the image, in which the former represents 

solid and the latter corresponds to pore space. Everything in between needs to be assigned to these 

categories as well, this is done by choosing a threshold which coincides with the porosity of the 

sample. However, the images need to be processed before the threshold can be determined, which is 

done in Fiji (Schindelin et al., 2012).  

The first step in this process is to alter the colour balance to assign the voxels which are either clearly 

solid or pore space to its corresponding value. Then a 3D median filter is applied to remove noise but 

retain the edges of the grains. Next, the threshold needs to be determined by matching the proportion 

of pore space voxels divided by the total amount of voxels to the experimentally found porosity. 

However, 3D fill holes should be applied before to remove physically impossible floating grains.  

When the threshold is calibrated correctly the binarized images can be skeletonized using 

Skeletonize3D (Arganda-Carreras et al., 2010). This plugin makes use of the parallel thinning algorithm 

developed by Lee et al. (1994) which is able to extract both the medial surfaces and the medial axes 

of a three-dimensional object. The algorithm finds all removable surface voxels of the pore space for 

each iteration in a symmetrical manner, assuring the medial position of the remaining pore voxels. 

The iteration process continues until the width of the skeleton is only one voxel. A key feature of the 

algorithm is the preservation of the connectivity, this is done by checking the Euler characteristic and 

the number of connected objects (Homann, 2007). The first three research criteria are satisfied by 

using this algorithm. Another advantage of using this algorithm is the short computation time, which 

is much faster than the maximal ball method developed by Silin and Patzek (2006). The created 

skeleton is analysed with AnalyzeSkeleton, which provides detailed information about the branches: 

start locations, end location, contributing voxels, Euclidean length and tortuous length. The binarized 

images are also analysed with BoneJ2, which computes the surface area, volume and the fractal 

dimensionality. The surface area is extracted using a marching cube algorithm (Lorensen and Cline, 

1997). The fractal dimensionality is computed using a box-counting algorithm (Fazzalari and Parkinson, 

1996), which returns the number of boxes (N) and the size of the boxes (s) for each iteration. The 

eventual fractal dimensionality is calculated by fitting a linear regression line through the returned 

values on a log scale. A simple manual for the binarization procedure is provided in Appendix C. 

5.1.2 Locating Pore Bodies and Throats 

The method developed in this research separates pore bodies and pore throats by using the 

topological features of the skeleton. Every skeleton voxel can be partitioned into one of the following 

four groups: i) a junction voxel with three or more connected voxels, ii) a non-junction voxel with 

exactly two connected voxels, iii) a dead-end voxel with one connected voxel or iv) an isolated voxel 

with no connected voxels. All non-junction voxels will be considered throats while the other types of 
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voxels will represent pore bodies. This procedure of classifying pore bodies and pore throats coincides 

with the method used by Jiang et al. (2006) and exceeds in topology preservation.  

A problem emerging by using this classification and the algorithm developed by Lee et al. (1994) is 

that one irregular shaped pore body can consist of multiple junction voxels (Figure 11), resulting in 

one pore body consisting of several smaller pore bodies. Consequently, there is a possibility of finding 

throats within this irregular shaped pore body artificially increasing the resistance. Other studies 

solved this problem by merging two pore bodies with a short throat between them and assigning the 

average location of those two pore bodies to the newly emerged pore body (Lindqiust et al., 1996; 

Jiang et al., 2007; Bultreys et al., 2015). However, determining which throats are short enough in order 

to merge the connected pore bodies is an arbitrary process and should thus be avoided. Also, changing 

the location of the newly emerged pore body by taking the average locations causes the geometry to 

change. Here we propose to use the maximal ball algorithm for the overlapping pore bodies. This 

method accounts for the problems mentioned above and does not generate unrealistically high 

coordination numbers.   

The pore body merging algorithm pursues the following 7-stage procedure: 

1. Determine the maximum inscribed sphere for each pore body using the distance map 

between the solid and pore space voxels. 

2. Define clusters by looking at which maximum inscribed spheres overlap. Each maximum 

inscribed sphere allocated to a cluster has to overlap with at least one other maximum 

inscribed sphere to become a cluster.  

3. Order the maximum inscribed spheres allocated to each cluster by decreasing size.  

4. Assign the first master of each cluster. The master can be defined as the largest inscribed 

sphere in a cluster (Silin and Patzek, 2006). The location of the master is fundamental for 

defining the location of the irregular shaped pore body, as it has the largest share in the 

volume of the pore space.  

5. Examine the next maximum inscribed sphere in the cluster. If it the maximum inscribed sphere 

overlaps with a larger master or larger slave, it becomes a slave, if not, it becomes a master.  

6. Repeat step 5 until all the allocated pore bodies to a cluster are either a master or a slave.  

7. Remove all the slaves from the clusters and assign the essential data coupled to a slave to the 

corresponding master.  

The algorithm is superior in preserving the geometry of the porous medium, as the fluid flow through 

an irregular shaped pore should not be restricted by throats artificially generated within this pore. An 

additional phenomenon occurring are pore bodies with a coordination number of two due to the 

merger of a dead-end voxel and a junction voxel. However, this does not give any issues regarding the 

flow simulation and gives more detail about the pore network.  

Pore bodies with a coordination number of one, and a pore body radius smaller or equal to the throat 

radius are also removed. This is done to reduce the amount of dead-end pores artificially created by 

the medial-axis algorithm due to perturbation in the pore surface. Pore bodies with a coordination 

number of zero are removed, as they are insignificant for the flow and the porosity, however, isolated 

clusters are maintained. Although these clusters do not contribute to the overall flow as well, they are 

important to establish the porosity and could influence the connectivity when fractures or dissolution 

effects come into play.  
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Pore bodies which are connected by multiple throats are also altered, albeit slightly different. The 

throat area, throat perimeter and throat radius are all individually summed and appended to a single 

throat representing the multiple throats. The average throat length of the multiple throats is 

appended as the new throat length of the single pore throat. These alterations give the most realistic 

results as most multi connected pore bodies are represented by two pore throats which have similar 

geometries, dictating the replacement throat to be an average of the two.  

5.1.3 Partitioning Geometrical Features 

Although the maximum inscribed sphere is used to merge the overlapping pore bodies, a watershed 

segmentation algorithm is used to determine the final radius of the pore bodies. The pore body radius 

will be equal to the radius of a sphere with an equivalent volume. This is done to get a correct 

representation of the pore volume which is important for solute transport and multiphase flow. Before 

the pore body radii are calculated, the throat volume is deducted to not overestimate the porosity. 

The throat volume is calculated using the formula for a cylinder dependent on the throat length and 

throat radius. The watershed segmentation makes use of markers, acting as minima, and a new 

distance map between these markers and the solid. The markers are equal to the inscribed spheres of 

the pore bodies. The pore space is filled up from these markers outwards, until the entire pore space 

is segmented to a pore body. The binary map of the sample is used as a mask to only partition the 

Figure 11. Schematic drawing of an irregular shaped pore. The maximum inscribed spheres are all part of one cluster, in 
which the red spheres represent the masters and the grey spheres represent the slaves. The green dotted line represents the 
medial axis of the network. 

Figure 12. The nine orientations of the planes incorporated in the pore network model.  
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pore space. The watershed segmentation is also used to determine the boundary pores of the sample, 

which can either by i) inlet pores, ii) outlet pores or iii) side pores. Partitioning the boundary pores to 

one of these categories is done by looking at the coordinates of the voxels allocated to a specific 

segment. E.G. when the Z-axis is chosen as the flow direction, all segments in which pore voxels are 

found with a z-coordinate of 0 can be defined as inlet pores and all pore voxels with a z-coordinate 

equal to the length of the sample can be defined as outlet pores. This same technique can then be 

applied to the x-axis and the y-axis, however, all boundary pores will be assigned to be side pores.  

There are three geometrical throat properties which need to be determined: i) the shape factor, ii) 

the throat radius and iii) the throat length. The shape factor is determined at the throat voxel with the 

smallest inscribed sphere, which is found using the distance map. If several throat voxels are found 

with the same smallest inscribed sphere, the median voxel of those is used. The area and perimeter 

are scanned at this same location in nice directions, only keeping the values allocated to the smallest 

area. The smallest area is most likely the bottleneck within a pore throat and is thus vital to predict 

the overall flow. Nine plane directions (Figure 12) are taken into account because cubic voxels are 

being used. The maximum error between the orientation of the plane and the direction of the throat 

is therefore 22.5°, which results in a maximum error of 4% for very low shape factors. Here we propose 

a new algorithm which can both determine the area and the perimeter of a throat by finding the 

polygon making up the shape of the throat. The algorithm is not affected by isolated solids within the 

pore throat. 

1. Scan the pore space in a horizonal and a vertical line from the throat location until solid is 

reached. The voxels found are allocated to the throat polygon and are shaped like a cross.  

2. Scan vertically from the voxels which were found with the horizontal scan and vice versa for 

the other voxels. The scan stops for each row or column individually when solid is reached. 

Assign the newly found voxels to the polygon. 

3. Repeat step two for the voxels which are solely found by either the horizontal or vertical scan. 

However, the scan is also stopped when a voxel is found which is already assigned to the 

polygon, this prevents the algorithm from checking voxels multiple times. The repetition of 

step two continues until no new voxels are found.  

4. Remove the duplicate voxels.  

Figure 13. Schematic drawing of the scanning procedure of a pore throat cross section. The black square represents the throat 
location from which the first horizontal scan (red) and a vertical scan (yellow) is performed. The arrows indicate the direction 
in which the scan is performed and the black dotted lines represent the boundary of the scan. Orange pixels are both found 
by the horizontal and vertical scan. 
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The area and perimeters can be calculated by counting the number of voxels and by looking at the 

amount of solid neighbours for each voxel assigned to the polygon. A multiplication factor for both 

the area and perimeter is applied for diagonally oriented planes. The shape of the polygon only 

consists of 90° angles, again, due to the use of cubic voxels. Jiang et al. (2007) studied the effects of 

rounding the corners of the polygon on the shape factor but this did not give conclusive results. The 

shape factor can both be over- and underestimated due to rougher surfaces or more rounded corners, 

unfortunately these factors are strongly dependent on resolution and sample type. 

The throat radius is, conventionally, determined by taking the minimum inscribed sphere. Here we 

propose to use the inradius dependent on the shape of the throat as it gives scale independent results. 

The inradius coincides with the scale independent shape factor proposed by Bultreys et al. (2018). 

Most rock samples are dominated by pores with a throat radius smaller than 3 voxels wide. The 

average throat radii found by Dong and Blunt (2009) was smaller than 2 voxels for nine out of the 

twelve rock samples studied. This can give ambiguous throat radii as the shape can heavily influence 

this parameter, especially for throats with a width of only 1 voxel (Figure 14). Three different equations 

have been introduced, dependent on the shape of the throat. Equation (32) is used for shape factors 

smaller than 0.0481, equation (34) is used for shape factors larger than 0.0625 and equation (33) is 

used for everything in between. The inradius can also compensate for the fact that the medial-axis is 

not always perfectly located in the middle of the pore space, accounting for the geometrical flaws 

caused by the skeletonization algorithm. For throats which have a smaller inradius than inscribed 

sphere radius, the inscribed sphere radius is taken, although the radius of the inscribed sphere needs 

to be larger than three voxels. This is done to compensate for extremely rough pore surfaces which 

are artificially created due to resolution issues (Figure 15).  

Figure 14. Schematic drawing of the throat analysation process using the conventional method (red) and our proposed 
method (green). The cross section of the throat (left) is first binarized (middle) and then converted to pore network data 
(right). The conventional method tends to underestimate the throat radius for larger pores (top), while it overestimates the 
throat radius for smaller pores (bottom), as the radius of the minimum inscribed sphere cannot be smaller than 1 voxel. The 
conventional method generates a throat radius of 1 voxel for both throats while the inradius is equal to 1.33 voxel for the 
upper throat and 0.75 voxel for the lower throat.  

Figure 15. Schematic drawing of triangular shaped throat with an inscribed sphere radius of four voxels. The area of the throat 
is 81 while the perimeter is 52 generating an inradius of 3.1 voxels, which is clearly an underestimation. 
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 𝑟𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
𝐴

0.5𝑃
 (32) 

 

𝑟𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 = 0.5√𝐴 (33) 

 

𝑟𝑐𝑖𝑟𝑐𝑙𝑒 = √
𝐴

𝜋
 (34) 

The throat length is determined using equation (3) and (4). The pore body radius is equal to the volume 

equivalent radius and the throat radius is calculated using the method described above. The eventual 

throat length is, next to the formulas mentioned above, also altered by deducting the radius of the 

two connecting master and by adding the Euclidean distance between a possible master and slave 

(Figure 16) before multiplying it with the aspect ratio. Hence, the throat is assumed to be tortuous 

outside the pore body but Euclidean within. The pore body radius is deducted because there should 

be no friction applied within the pore body.  

5.2 Pore Network Properties 

A total of twelve rock samples (Figure 17) have been analysed in this research; two limestone samples 

(Carbonate C1 – C2) and ten sandstone samples (one Berea together with S1 – S9). The Berea and S1 

sandstone are known to be homogeneous and isotropic while the two carbonate samples are 

heterogeneous and anisotropic (Dong and Blunt, 2009). S3 and S4 are coarse samples captured with 

a relatively low resolution, raising difficulties for less robust algorithms (Yi et al., 2017).  The twelve 

samples have also been used by Dong and Blunt (2009) who extracted a pore network model using 

their maximal ball (MB) algorithm and Yi et al. (2017) who extracted a pore network model using the 

medial axis algorithm (MA) developed by Lindquist and Venkatarangan (1999).  An advantage of using 

these samples is the fact that the binarization process was already performed and made available. 

This ensures that the input for our pore network model is an exact replica of the input used for the 

other studies. Our pore network properties are directly compared to the results obtained by the MB 

and MA algorithm.  

Figure 16. Schematic drawing of two pore bodies both consisting of one slave and one master, connected by a throat. The 
eventual throat length is represented by the green line, which is dependent on the tortuous length between the initially 
connected pore bodies, the Euclidean distance between the masters and the slaves and the radius of the inscribed spheres of 
the masters (red lines).    
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Figure 17. Binary images of the 12 rock samples used in this research. From top left to bottom right in Latin script order: 
Berea sandstone, C1 – C2, S1 – S9. 
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5.3 Fluid Flow Simulations 

All fluid flow simulation for our pore network model were performed in PoreFlow (Raoof et al., 2013). 

The absolute permeability measurements are directly compared to the results obtained by using the 

maximal ball (MB) algorithm developed by Dong and Blunt (2009) and the medial axis (MA) algorithm 

developed by Lindquist and Venkatarangan (1999). These two algorithms are chosen since the code is 

freely available and are already calibrated for the samples used. Furthermore, the fundamentals of 

our models are based on these techniques as well, using the medial axis algorithm created by Lee et 

al. (1994) to extract the skeleton while applying to same merging principles introduced by Dong and 

Blunt (2009). As both MA and MB methods are involved in the creation of our PNM, it is now referred 

to as the COMBO model. The absolute permeability results are also compared to the Lattice Boltzmann 

simulations, which are both performed by Dong and Blunt (2009) and Yi et al. (2017).  

5.4 Percolation Theory 

The relative permeability in relation to the water content is computed using both PoreFlow and the 

percolation theory. Four different results are compared: i) the results of PoreFlow, ii) the results of 

universal scaling and CPA (equations (29), (30), (31)), and (iii and iv) two fitted curves with one 

different constraint. The surface area, volume and fractal dimensionality, which are required for 

method 2, are directly extracted from the binarized images in Fiji. The porosity is experimentally 

obtained, and the absolute permeability is set equal for all methods to the absolute permeability 

conducted by PoreFlow. The fitting procedure is performed using a nonlinear least square 

optimization between the results of PoreFlow and equations (25) and (26). The optimization is 

performed on four different parameters with 6 crucial constraints (Table 1).  

The last two constraints are equal to equation (27) and (28). The single constraint which differs 

between method 3 and 4 is the minimum value of the critical water content. For method 3 this value 

is set to be larger than zero while for method 4 this value should be equal or larger than the last 

measured water content before the gradient of the saturation capillary pressure curve (dΘ/dh) 

becomes zero. This last constraint is added because, under normal conditions, the water content 

cannot drop below water contents indicated by the PCS-curve.  

  

Table 1. The constraints and parameter used for the nonlinear least square optimization.  

Fitting Parameters Constraints 

D 2.0 ≤ 𝐷 < 3.0 
Θc 𝜃𝑐 < 𝜃𝑥 
Θx 𝜃𝑐 <  𝜃𝑥 < 𝜃𝑠 
K0 𝐾0 > 0 

 

𝐾𝑠 [
1 − 𝜑 + 𝜃𝑥 − 𝜃𝑐

1 − 𝜃𝑐
]

𝐷
3−𝐷

= 𝐾0(𝜃𝑥 − 𝜃𝑐)2 

 𝐷

3 − 𝐷

𝐾𝑠

(1 − 𝜃𝑐)
𝐷

3−𝐷

 (1 − 𝜑 + 𝜃𝑥 − 𝜃𝑐)
𝐷

3−𝐷
−1 = 2𝐾0(𝜃𝑥 − 𝜃𝑐) 
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6 Results 

6.1 Pore Network Properties 

The medial axis algorithm (MA), maximal ball algorithm (MB) and our algorithm (COMBO) are 

compared in terms of porosity (φ), amount of pore bodies (nPB), amount of pore throats (nPT), 

average coordination number (𝐶𝑁̅̅ ̅̅ ), average pore body radius (𝑹𝑷𝑩
̅̅ ̅̅ ̅), average pore throat  radius (𝑹𝑷𝑻

̅̅ ̅̅ ̅) 

and average pore throat length (𝑳𝑷𝑻
̅̅ ̅̅ ̅) (Table 2). These parameters are chosen as they are the input for 

PoreFlow, thus directly influencing the flow parameters.  

The network porosity of the COMBO model is most often equal or slightly smaller than the real 

porosity. Exceptions are C1, S1 and S6, for which the network porosities are slightly larger than the 

real porosity and another exception is S8, for which the network porosity is 4.6 percent lower than 

the real porosity. The network porosity of the COMBO model is calculated by PoreFlow and is 

depending on the pore body radius, throat radius, shape factor and throat length.  

Figure 18. Three-dimensional representation of the skeleton (top) and eventual pore network (bottom) of the Berea sandstone.  
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The COMBO model both generates more pore bodies and pore throats than the other two algorithms. 

It is important to note that more pore bodies are automatically linked to more pore throats. S9 has 

the least amount of pore bodies and pore throats, while the Berea sandstone has the most pore bodies 

and C2 the most pore throats. The average coordination number and throat length is lower for the 

COMBO model for every single sample while the pore body radii and pore throat radii are always 

larger. The difference in throat length between the COMBO model and the other two models is 

remarkable, as the difference is often a factor 10.  

 

The average shape factor, average inscribed pore body radius and average inscribed pore throat radius 

are shown in Table 3. These pore network properties are represented separately as the data regarding 

the shape factor was not available for the MA and MB models, furthermore were the inscribed radii 

not used in the flow computations for the COMBO model. The pore body radii and pore throat radii in 

Table 2. Pore network properties for the 12 different samples generated by the medial axis (MA) algorithm, maximal 
ball (MB) algorithm and COMBO model.   

  Berea C1 C2 S1 S2 S3 S4 S5 S6 S7 S8 S9 

Resolution (µm)  5.35 2.85 5.35 8.68 4.96 9.10 8.96 4.00 5.10 4.80 4.89 3.40 

Size (voxels)  4003 4003 4003 3003 3003 3003 3003 3003 3003 3003 3003 3003 

φ  19.6 23.3 16.8 14.1 24.6 16.9 17.1 21.1 24.0 25.0 34.0 22.2 

 MA 19.5 21.3 14.1 14.1 24.6 16.6 16.5 21.1 24.0 25.0 34.0 22.1 

 MB 19.6 23.2 16.8 14.1 24.6 16.8 17.1 21.1 24.0 25.0 34.0 22.2 

 COMBO 18.4 26.9 14.7 14.2 22.5 16.4 15.7 19.8 25.2 23.0 29.4 21.9 

nPB MA 7611 4115 5590 1452 2906 9104 7199 659 1022 1759 2439 463 

 MB 6298 4576 8508 1868 2021 8926 9556 518 597 1016 1324 604 

 COMBO 11930 10146 15008 2493 4026 13763 12761 1278 1686 2407 3766 838 

nPT MA 14328 8893 11564 2455 5792 15833 11508 1243 2147 3448 5235 865 

 MB 12545 6921 10336 3048 4942 15105 13322 900 1234 2741 4209 1054 

 COMBO 16632 12070 15664 3176 6415 18621 14883 1535 2407 3818 5574 1137 

𝑪𝑵̅̅ ̅̅  MA 3.80 4.32 4.14 3.38 3.99 3.48 3.20 3.77 4.20 3.92 4.29 3.74 

 MB 3.98 3.02 2.43 3.26 4.89 3.38 2.79 3.47 4.13 5.40 6.36 3.49 

 COMBO 2.79 2.38 2.09 2.55 3.19 2.71 2.33 2.40 2.86 3.17 2.96 2.71 

𝑹𝑷𝑩
̅̅ ̅̅ ̅ (µm) MA 16.79 8.66 14.62 32.59 18.05 19.92 20.90 17.84 18.79 19.01 19.82 22.03 

 MB 15.36 7.05 11.39 25.59 17.25 16.69 16.80 16.71 19.00 20.15 21.16 16.20 

 COMBO 25.26 12.86 18.48 50.71 27.02 32.54 32.39 25.75 31.98 28.69 23.88 30.59 

𝑹𝑷𝑻
̅̅ ̅̅  ̅(µm) MA 9.09 4.51 7.39 16.50 9.79 10.22 10.60 9.36 9.84 10.40 11.16 10.99 

 MB 7.15 4.02 6.17 12.32 8.13 7.51 7.81 9.49 10.10 9.30 10.47 8.73 

 COMBO 13.28 8.98 13.65 22.45 13.95 15.09 15.48 16.45 19.91 16.94 20.05 14.33 

𝑳𝑷𝑻
̅̅ ̅̅ ̅ (µm) MA 99 82.8 100.1 204.2 103.5 117 121 122.5 144.6 115.5 123 132.3 

 MB 143.7 88.4 122.8 232.6 154.9 161.5 151.1 187 229.2 187.3 194.4 151.2 

 COMBO 11.7 7.8 12.1 20.2 11.8 14.5 14.6 12.2 15.5 14.1 17.3 10.8 

 

Table 3. Pore network properties of the 12 different samples generated our model (COMBO).  

 Berea C1 C2 S1 S2 S3 S4 S5 S6 S7 S8 S9 

Avg. SF 0.032 0.027 0.030 0.033 0.029 0.037 0.037 0.025 0.024 0.025 0.021 0.031 

Avg. RPBIS 13.81 6.30 11.06 25.84 14.85 17.71 18.17 12.80 14.87 15.80 14.73 15.84 

Avg. RPTIS 10.23 5.97 9.90 17.65 10.52 13.27 13.50 10.96 12.80 11.48 12.10 10.96 
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The values in Table 3 are much more similar to the radii used in the MA and MB algorithm, as these 

models also make use of the maximal inscribed sphere.  

The amount of masters, slaves, dead-ends and throats connecting the same pair of pore bodies for 

each sample is shown in Table 4. The amount of masters is exactly equal to the total amount of pore 

bodies in Table 2 minus the number of dead-ends, as all slaves and dead-ends are removed. S3 and S4 

are the only samples with a larger amount of masters than slaves, however this is compensated by the 

large number of dead-ends which are removed. The carbonate samples have the largest number of 

slaves, accordingly 111313 for C1 and 11826 for C2. The number of dead-ends and multi throats are 

also exceptionally high for these samples. From this data can be concluded that the initial amount of 

pore bodies, before any merger or removal, was the highest for the carbonate samples, as the masters, 

slaves and dead-ends together add up to the initial amount of pore bodies.  

The frequency diagram of the shape factor is plotted for the Berea sandstone (Figure 20). The overall 

distribution is normal, with a peculiar peak at 0.061, representing a rectangle. This phenomenon is 

visible for all the shape factor frequency diagrams. The cumulative frequency of the throat radius for 

sandstone S3 is plotted in Figure 19. The radius of the maximum inscribed sphere and the inradius are 

both presented. The inscribed sphere radius has a stair-like cumulative frequency while the cumulative 

frequency of the inradius is much smoother. Another outstanding difference is the starting point of 

both curves, which for the inscribed sphere radius starts at 9.10 µm, which is equal to the resolution, 

and 4.55 µm for the inradius. The stair-like cumulative frequency and starting point equal to the 

resolution is observed for all samples but is most prominent for S3 and S4. The cumulative frequency 

of throats with an inscribed sphere radius smaller or equal to 3 voxels is for sandstone S3 97% while 

for the Berea sandstone this percentage is reduced to 87%. The vast majority of pore throats is smaller 

than three voxels when using the inscribed sphere and thus ambiguous, as voxels are discrete units. 

Table 4. Properties related to the merging algorithm applied in the COMBO model for the12 different samples. The 
dead-ends only represent the number of dead-end pores which are removed. 

 Berea C1 C2 S1 S2 S3 S4 S5 S6 S7 S8 S9 

Masters 8295 4662 7802 1416 2653 8379 7023 501 987 1469 1955 566 

Slaves 8820 11313 11826 1844 3889 5906 5771 2075 2613 2935 5501 1200 

Dead-ends 3635 5484 7206 1077 1373 5384 5738 777 789 938 1811 272 

Multi Throats 1012 2942 3069 99 403 683 574 263 542 327 612 82 

 

Figure 19. Cumulative frequency diagram of the throat radius for sandstone S3. The red line represents the maximum 
inscribes sphere radius and the blue line represent the inradius.    
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This phenomenon can also be observed when looking at the average throat radius in Table 3, which is 

for almost all samples smaller than three times the resolution, except for S9. When looking at the 

average throat radius used by the MA and MB algorithm, S3 and S4 have values similar to the 

resolution. The cumulative frequency distribution for the pore throat radius in voxels is displayed in 

Figure 24. All samples have similar distributions, slightly varying in width. Again, S3 and S4 have a much 

narrower pore size distribution.   

6.2 Absolute Permeability 

The absolute permeability is computed in the x, y and z direction and then averaged for each sample. 

The results can be observed in Table 5, together with the absolute permeability values obtained by 

the MA algorithm, MB algorithm and the lattice Boltzmann simulation performed by Yi et al. (2009) 

(LBY) and Dong and Blunt (2009) (LBDB). The results obtained by the MA algorithm is most similar to 

the LBY simulation while the MB algorithm is most similar to the LBDB simulations. This is caused by 

using two different variations of the Lattice Boltzmann algorithm yielding completely different results, 

sometimes varying over a factor four (S3). The absolute permeability computed by the COMBO model 

will thus only be compared to the MA and MB algorithms. This precaution is taken due to the fact that 

the lattice Boltzmann simulations do not give conclusive results and because it is more rationale to 

compare the same type of models (PNMs).  

Figure 20. Frequency diagram of the shape factor for the Berea sandstone with a bin of 0.001. 

Table 5. Absolute permeability values obtained for each sample by different methods.  

 Kx Ky Kz Kavg KMA KMB KLBY KLBDB 

Berea 1796 1770 1585 1717 1790 1111 1777 1286 

C1 1093 2216 871 1393 2009 556 1647 1102 

C2 200 339 215 251 263 158 206 72 

S1 2792 3078 2107 2659 3020 1486 2410 1678 

S2 3957 3659 3073 3563 4685 3950 4779 3898 

S3 1507 1923 1233 1554 1325 281 897 224 

S4 1041 1165 721 976 823 169 528 259 

S5 3790 5201 3932 4308 6384 5369 6386 4651 

S6 11813 10380 7636 9943 15635 11282 15769 10974 

S7 5151 6505 4666 5441 7515 7926 9068 6966 

S8 9011 9591 7992 8865 15092 13932 15743 13169 

S9 3035 4070 2282 3129 3267 3640 2790 2224 
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The difference in absolute permeability for the different flow directions is most noticeable for C1, C2 

and S9, which have a relative difference between the minimum and maximum value of over 70%. On 

the other hand, the Berea and S5 sandstone are often consistent in all directions, with a variation of 

less than 20%.  

Figure 21 displays the absolute permeabilities and the relative difference of the different samples for 

the different algorithms. The results generated by the COMBO model sit in between the values 

computed by the MA and MB algorithm for the Berea sandstone, C1, C2 and S1. The COMBO model 

generates higher results for S3 and S4, while it computes lower values for all the other samples. In 

general, the MA algorithm tends to estimate a higher absolute permeability than the MB algorithm, 

except for S7 and S9. Peculiar is the fact that the COMBO model estimates a considerably lower 

absolute permeability for S7 and S8 compared to both algorithms.  

6.3 Relative Permeability and Percolation Theory 

The relative permeabilities obtained by PoreFlow are compared to three different relative 

permeability curves generated using CPA (25) and universal scaling (26). There are six key parameters 

governing the shape of this curve: the porosity (φ), the saturated permeability (Ks), the fractal 

dimensionality (D), the critical water content (θc), the cross-over water content (θx) and the calibration 

constant (K0). The first two parameters are rock properties and are therefore similar for each curve. 

The other four parameters can vary for each curve, having unique effects on the shape. The unique 

parameter combinations for each sample can be observed in Table 6, the three different curves are 

labelled as PERC, FIT1 and FIT2. The values regarding PERC are calculated using the conventional 

percolation formulas while FIT1 and FIT2 are computed using a nonlinear least square optimization 

varying in critical water content. There are some remarkable observations when comparing the 
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Figure 21. Absolute permeability measurements (top) and the relative difference between these measurements (bottom) 
for the different algorithms.  
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different parameter sets. First of all, the cross-over water content regarding PERC is for half of the 

samples (C2, S1, S5 – S7, S9) higher than the fully saturated conditions. Secondly, the critical water 

content and calibration constant is for FIT2 always higher than for PERC and FIT1. Lastly, when 

comparing the fractal dimensionality, it is notable that PERC has noticeable lower value for S1, S5 and 

S6. The fractal dimensionality should, in combination with the porosity, coincide with the cumulative 

frequency distribution of the pore throats (Figure 24). Unfortunately, the cumulative distribution is 

not exactly log-normal, making the method introduced by Hunt and Gee (2002) invalid.  

The relative permeability curves can be observed in appendix A and B, in which the former is displayed 

on a normal scale and the latter is displayed on a log scale. Both scales are incorporated to accentuate 

the differences close to zero. The influence of each parameter on the shape of the curve can easily be 

observed but can also be conducted from the formulas. Universal scaling is only affected by the 

Figure 22. The oddly shaped relative permeability curves for the carbonate C2 and sandstone S9. The black squares represent 

the results of PoreFlow, the red dashed line represent PERC, the yellow dashed line represents FIT1 and the blue dashed line 

represents FIT2. 

 

Figure 23. The relative permeability curves for the Berea sandstone. The black squares represent the results of PoreFlow, the 
red dashed line represent PERC, the yellow dashed line represents FIT1 and the blue dashed line represents FIT2. 
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calibration constant and critical water content while CPA is influenced by the porosity, absolute 

permeability, fractal dimensionality and, also, the critical water content. It is important to note that 

the dedicated parameters only influence their respective part of the curve. The cross-over water 

content acts as the transition point between universal scaling and CPA, the former is valid from the 

critical water content until the cross-over water content while CPA is valid from this transition point 

until the porosity. For universal scaling, a higher calibration constant would increase the cross-over 

permeability and would thus increase the slope. A higher critical water volume would also increase 

the slope, but this due to the fact that the water content range decreases. The shape of the curve is 

not directly altered as the power is always equal to two. For CPA, this is a bit more complicated due 

to a different exponent. As the fractal dimensionality increases, the slope increases and the shape 

changes slightly. The slope also steepens for a higher absolute permeability, increasing the vertical 

Table 6. Percolation parameters influencing the relative permeability curve.   

  Berea C1 C2 S1 S2 S3 S4 S5 S6 S7 S8 S9 

φ  0.196 0.233 0.168 0.141 0.246 0.169 0.171 0.211 0.240 0.250 0.340 0.222 

Ks (m/d)  0.921 0.729 0.180 1.763 2.571 1.031 0.603 3.289 6.387 3.903 6.685 1.909 

A/V (m-1)  0.446 0.314 0.431 0.435 0.398 0.693 0.685 0.240 0.231 0.312 0.316 0.237 

D PERC 2.819 2.713 2.717 2.614 2.780 2.849 2.883 2.512 2.525 2.681 2.801 2.560 

 FIT1 2.760 2.756 2.835 2.885 2.674 2.846 2.878 2.739 2.781 2.752 2.645 2.725 

 FIT2 2.784 2.782 2.863 2.889 2.734 2.838 2.880 2.803 2.768 2.746 2.729 2.739 

Θc PERC 0.026 0.021 0.025 0.025 0.024 0.032 0.032 0.019 0.018 0.021 0.021 0.018 

 FIT1 0.027 0.068 0.059 0.036 0.003 0.026 0.045 0.025 0.017 0.002 0.005 0.025 

 FIT2 0.048 0.090 0.080 0.037 0.057 0.040 0.053 0.046 0.062 0.070 0.098 0.039 

Θx PERC 0.144 0.227 0.244 0.385 0.166 0.131 0.105 0.519 0.477 0.256 0.131 0.426 

 FIT1 0.196 0.233 0.168 0.110 0.246 0.127 0.121 0.211 0.160 0.166 0.247 0.222 

 FIT2 0.196 0.233 0.168 0.109 0.239 0.147 0.128 0.174 0.215 0.240 0.261 0.222 

K0 (m/d) PERC 28.0 16.3 7.7 61.8 43.5 49.7 19.9 53.6 95.7 74.6 19.0 34.5 

 FIT1 32.2 26.8 15.1 141.4 43.4 44.5 29.1 95.1 106.9 54.4 55.0 49.2 

 FIT2 42.0 35.9 23.2 141.4 71.7 60.0 35.0 113.7 197.1 119.7 100.0 56.8 
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range of the curve. Decreasing the porosity, responsible for the upper limit of the water content, 

would increase the slope as the horizontal range decreases. Although the critical water content 

contributes to both universal scaling and CPA, it has a larger impact on universal scaling. This is due to 

the fact that the overall water content is lower and thus the proportion of the critical water content 

is larger. Before any comparisons are made between the curves generated by PoreFlow and the results 

computed using percolation theory, it is important to note that C2 and S9 are not representative, as 

the relative permeability curves have an unnatural shape (Figure 22). A normal relative permeability 

curve increases exponentially as the saturation increases, however, the relative permeability curves 

of these samples start to flatten as they approach full saturation. The results of PoreFlow are used as 

a benchmark, both for comparison and calibration, but the results will never match if the benchmark 

is not accurate.  

Figure 26. The relative permeability curves for the sandstone S1. There are many saturation points measured at higher water 
contents, but fewer close to the critical water content. The black squares represent the results of PoreFlow, the red dashed 
line represent PERC, the yellow dashed line represents FIT1 and the blue dashed line represents FIT2. PERC heavily 
underestimates the relative permeability, also at higher saturations. 

Figure 25. The relative permeability curves for the sandstone S2. There is a sudden drop in permeability when the water 
content approaches 0.07. The black squares represent the results of PoreFlow, the red dashed line represent PERC, the yellow 
dashed line represents FIT1 and the blue dashed line represents FIT2. Both PERC and FIT2 underestimate the permeability. 
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Unfortunately, percolation theory (PERC) is not able to give consistent results for each sample. There 

are two main errors which can be observed: i) an absolute difference between the permeability values 

for a certain saturation and ii) a difference between the saturation values for which the permeability 

approaches zero. The first error is smaller for higher saturations but increases with decreasing 

saturation. The second error is always an underestimation of the critical water content.  Ultimately, 

percolation theory is able to predict the relative permeability reasonably well for the Berea sandstone 

(Figure 23), S3, S4 and S7. For samples S1 (Figure 26), S2 (Figure 25), S5, S6 and S8 it underestimates 

the permeability while for sample C1 (Figure 27) it overestimates. The underestimation of S1, S5 and 

S6 is most noticeable as the permeability at full saturation is much lower than the saturated 

permeability. The overestimation of C1 is also very peculiar as this does not happen for any other 

sample or any other fitting technique. 

FIT1 tends to estimate the best results for higher saturations, it fails however, whenever the 

permeability drops suddenly (Figure 25). Overall, FIT1 performs considerably better than the results 

generated by percolation theory. It gives accurate results for the Berea sandstone, C1, S2 – S4 and S6 

– S8. The estimation for S1 and S5 are less successful, these samples tend to have a lot of saturation 

points and thus calibration points at higher saturations but this decreases with decreasing saturation. 

Ultimately, FIT1 is superior when compensating for error 1. 

FIT2 generates the best results at saturations close to the critical water content and often generates 

better results than percolation theory for higher saturations. It is the only method which approaches 

zero at the same water content as PoreFlow and is thus superior when compensating for error 2. This 

advantage brings the drawback of heavily underestimating the permeability when it starts to drop 

from full saturation, which results in many samples being underestimated by FIT2. The best results 

using this method are obtained for samples C1 (Figure 27), S3 and S4, the relative permeability of 

these samples also decreases more gradual (overall steeper slope). All the other samples are being 

underestimated.   

Figure 27. The relative permeability curves for the carbonate C1. The black squares represent the results of PoreFlow, the red 
dashed line represent PERC, the yellow dashed line represents FIT1 and the blue dashed line represents FIT2. PERC heavily 
overestimates the permeability while FIT2 generates the most accurate results for this sample. 
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7 Discussion 

7.1 Pore Network Properties 

Most differences in pore network properties regarding the topology are caused by the merging and 

removal procedures, while most geometry differences are caused by conscious physical 

improvements made when designing the COMBO model. The amount of pore bodies, amount of pore 

throats and the average coordination number are typical examples relating to the prior. Initially, the 

amount of pore bodies in the COMBO model is based on the number of junctions and dead-ends 

present in the skeleton, which is the same definition used in the MA algorithm. However, the MA 

algorithm reduces this number by cutting of dead-end throats with an ambiguous length. The COMBO 

model makes use of a sophisticated merging algorithm, also reducing the amount of pore bodies, but 

on a more physical basis. The MB algorithm has initially less pore bodies, as only the voxels with the 

largest inscribed sphere are appended. Besides, the MB algorithm utilises an ambiguous filter as well, 

to prevent a repetition of pore body voxels and pore throat voxels within a throat, drastically 

decreasing the amount of pore bodies.  

An increase of pore bodies will be accompanied by an increase in pore throats, provided that the 

average coordination number does not change. However, the average coordination number decreases 

for the COMBO model. This causes the amount of pore throats to be slightly larger compared to the 

different algorithms. The reduction in average coordination number has to do with our merging and 

removal algorithm. When a throat is removed or a cluster is merged into a single pore body, the pore 

body will be conserved, even though its coordination number is two. This drastically decreases the 

average coordination number as the number of slaves and dead-ends is a considerable portion of the 

total amount of pore bodies. Besides, the majority of clusters consists of two or three pore bodies 

which are merged into one pore body. The pore bodies with a coordination number of two are kept 

in order to get a better representation of the pore space. Splitting up one throat into two parts gives 

more detail about the geometry and topology of the media. Furthermore, the pore bodies with a 

coordination number of zero are also preserved, which is done to conserve the porosity.   

The average pore body radius, average pore throat radius and average pore throat length are 

influenced by the alterations made in the COMBO model to measure these entities. First of all, the 

pore throat radius, which is always higher for the COMBO model due to the use of the inradius. The 

underestimation of larger pores by the inscribed sphere is clearly explained in Figure 14. 

Unfortunately, there may also be some overestimation of the COMBO model since only nine scanning 

planes (Figure 12) are used, which limits the accuracy for larger pores. There may indeed be a 

perturbation in the pore surface which could cause the bottleneck to be smaller and thus throat radius 

to be lower. However, most often this is a local effect not influencing the flow and is expected to be 

negligible. The pore body radius is much larger due to the use of the volume equivalent radius instead 

of the maximum inscribed sphere. This is much more realistic as the pore bodies only contribute as 

main liquid storages, affecting also solute transport and mixing. The average pore throat length is 

much shorter due to i) the increase in pore throats and ii) because of the use of the aspect ratio. The 

total amount of throat length is not much different than the MA model, however, it is split up in more 

segments reducing the average throat length. The aspect ratio was introduced because there is no 

clear boundary between pore bodies and pore throats. Using Hagen-Poiseuille law and the aspect ratio 

was a liable solution to give a physical meaning to the throat length.  

A reduction in network porosity is common, as pore bodies which are not attached to the main 

connection spanning between the inlet and outlet pores are often not considered. An increase in 

network porosity is however, very uncommon. This phenomenon is caused by pore throats for which 
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its volume is not correctly divided. The volume of a pore body is calculated using the watershed 

algorithm after which half the volume of each attached throat is deducted. As the watershed algorithm 

in the COMBO model makes use of inscribed spheres as markers instead of points, it divides the pore 

space according to inscribed pore body radius. However, pore bodies with a relatively small inscribed 

sphere but a high coordination number will reduce drastically in size. This is due to two reasons, firstly 

the watershed algorithm underestimates the amount of volume which should be assigned to the pore 

body because of the small inscribed sphere. Secondly, volume decreases due to the large amount of 

connecting throats. Whenever a pore body volume becomes negative, the pore body radius is set to 

a minimum number (here equal to 1 voxel. This phenomenon causes volume to be generated, causing 

the network porosity to increase.  

The large number of slaves, dead-ends and multi throats regarding the carbonates confirms the 

heterogeneity of the samples. Defining the difference between pore bodies and pore throats is even 

harder for these samples, which may cause difficulties when estimating the flow properties. 

Generating reliable results will even become more complex when incorporating relative permeability, 

multiphase flow and solute transport. The pore space needs to be mimicked in great detail to 

approximate these complex processes, but it is hard to include enough detail with a limited amount 

of pore bodies and pore throats. Due to the fact that the COMBO model handles more input 

parameters than the other algorithms, may results in achieving more accurate flow properties. 

S3 and S4 clearly deal with resolution issues, which can be concluded from the average pore throat 

radius which is close to the resolution magnitude and by looking at the cumulative distribution of the 

pore throat radius, which has a stair-like shape. S3 and S4 also deal with a large amount of removed 

dead-end pores, as the pore body radius is often equal to the pore throat radius. The use of the 

inradius has decreased the amount of removed dead-ends, as the throat radius can become smaller 

than 1 voxel. Overall, there are five main advantages of using the inradius: i) the cumulative 

distribution is more realistically shaped as the radius is not limited by the discrete voxel length, ii) 

smaller throats will not be overestimated by the inscribed sphere, iii) larger pores will not be 

underestimated by the inscribed sphere, iv) skeletons which are not exactly in the middle of the pore 

space are no longer a problem when determining the geometrical features and v) a reduction in the 

amount of unnecessarily removed dead-end pores. These five improvements make the COMBO model 

more robust and better for dealing with resolution issues. 

The peculiar peak in the frequency diagram of the shape factor is caused by the size of the bins. There 

are two common values, 0.0606601698888 and 0.0606601704427, which contribute to the same bin 

but cannot be linked to standard area and perimeter.  

7.2 Absolute Permeability 

The relatively high differences in absolute permeability for the different flow directions was expected 

for the carbonate samples, which are heterogeneous and anisotropic. It was not expected for a 

sandstone, which in general is more homogeneous. A cause for this difference in absolute permeability 

for S9 may be a preferential flow path, which cannot be excluded when looking at the binary images. 

However, all data presented in this paper is not coupled to an orientation, which makes it impossible 

to give an undeniable conclusion.  

The properties of the COMBO model should explain why the absolute permeability is underestimated 

or overestimated compared to the MA and MB algorithms. Unfortunately, the result obtained are 

ambiguous and the input is intertwined with each other. This makes it impossible to verify whether 

the COMBO model is superior than the other algorithms and thus impossible to pin point what is the 
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cause. The (absolute) permeability is governed by four parameters: the throat radius, the throat 

length, the shape factor and the connectivity of the throats. Larger throat radii, shorter throats, higher 

shape factors and a higher connectivity will all increase the (absolute) permeability, and vice versa will 

decrease it. These observations are generally accepted, but the trouble starts when comparing 

different models.  

Initially, the connectivity is not altered by the COMBO model, as this is one of the key features of the 

skeletonization algorithm developed by Lee et al. (1994). The connectivity is dependent on the total 

amount of isolated objects, the number of redundant connections or loops and the completely 

enclosed cavities. In the COMBO model the connectivity is only reduced by removing some redundant 

connections due to multi throats. It is true that some completely enclosed cavities are removed as 

wel, but this is compensated by the fact that these will also be removed from the total amount of 

isolated objects. Hence, the connectivity is mostly altered for the carbonate samples, which have the 

largest amount of multi throats. The significance of this reduction in relation to the absolute 

permeability is unknown and should be studied in more detail.  

Also, little is known about the significance of the geometrical parameters influencing the absolute 

permeability. From Poiseuille law in a cylindrical tube we can conclude that the radius is a power three 

more significant than the throat length, however, no conclusive relations exist for the shape factor. It 

is generally accepted that the shape and the value of the shape factor affect multiphase flow, but the 

influence on absolute permeability is often neglected. However, an obtuse triangle has a significant 

higher perimeter than a circle, consequently causing the friction to increase and the absolute 

permeability to drop.  

The observations mentioned above make it impossible to label the capability of the COMBO model. 

Furthermore, the fact that the COMBO model has an entirely different topology than the other 

algorithms makes it even harder to compare the influence of the geometry on the absolute 

permeability. Lastly, the lack of a benchmark data makes it impossible to calibrate the COMBO model. 

There are several Lattice Boltzmann simulations and different pore network models, all generating 

different results. Before developing the COMBO model further, an in-depth sensitivity analysis should 

be done on the different input parameters. Also, an objective and generally accepted data set should 

be created. 

Currently, the COMBO model is not a superior model, which was the goal when this entire research 

project started. However, the improvements made on the MA and MB algorithms are physically more 

feasible. Whether the COMBO model also produces a better pore network model for flow simulation 

is for now unknown.  

7.3 Relative Permeability and Percolation Theory 

The peculiar phenomenon of cross-over water contents being higher than the porosity results in 

percolation curves which are only computed using universal scaling and thus only influenced by the 

critical water content and calibration constant. Percolation theory heavily underestimates the relative 

permeability for these samples as a consequence. S7 is an exception to this statement, which is caused 

by the fact that the cross-over water content is only slightly higher than the porosity, which implies 

that universal scaling is indeed enough to predict the relative permeability. This exception is however 

a coincidence, as CPA should always give better estimations close to fully saturated conditions 

(Ghanbarian and Hunt, 2012).  The reason why the critical water content and calibration constant is 

always higher for FIT2 is caused by the applied constraint. As PoreFlow indicates that the permeability 

approaches zero, it is feasible to apply this restriction to percolation theory as well. Whether this 
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constraint is an improvement on the results, will be discussed later. The relatively low fractal 

dimensionality of S1, S5 and S6 implies a narrow pore size distribution for the pore space, however, 

this cannot be observed when looking at the cumulative frequencies of the pore throat radii. Another 

explanation could be that the entire pore space is used to determine the fractal dimensionality, 

instead of solely the throat volume. This would suggest that the radii of the pore bodies and pore 

throats are relatively more similar in size. However, this is denied by the pore network properties 

regarding the average pore body radius and average pore throat radius for the sample, which do not 

have a conspicuous larger difference than the other samples. The flaw is most likely caused by the box 

searching algorithm, which is markedly influenced by the input parameters (Fazzalari and Parkinson, 

1996). Lastly, there is also a possibility of the samples not being fractal at all.  

Most parameters influencing the relative permeability curves are straightforward to describe. 

Increasing the absolute permeability and keeping all other parameters constant will result in more 

water traveling through the same volume of pore space, increasing the slope of the relative 

permeability. The same is true for the calibration constant, which is basically the cross-over 

permeability and thus the upper limit of universal scaling. The absolute permeability and calibration 

constant are also dependent on each other, changing proportionally by a factor (30). Similar as the 

absolute permeability, would the slope of the relative permeability increase when the porosity is 

lowered, as the same amount of water needs to travel through a smaller pore space. This can also be 

applied to the critical water content, which decreases the number of pores contributing to a spanning 

cluster between the input and output pores when increased. Again, the same amount of water needs 

to travel through a smaller pore space, increasing the slope of the relative permeability. An increase 

in fractal dimensionality and thus a broader pore size distribution, also increases the slope op the 

relative permeability. Larger pores have a relatively small total volume, as there are relatively few of 

them, but contribute significantly to the permeability. Increasing the pore size distribution will 

incorporate these larger pores for percolation theory as well. This will result in a drastic decrease in 

permeability as these larger pores will drain first, while having a relatively small impact on the 

saturation. 

The biggest problem when estimating relative permeability using percolation theory (PERC) is related 

to the cross-over saturation. Wrongly estimating this value can cause the relative permeability to be 

heavily underestimated. The cross-over saturation is dependent on three different parameters, the 

porosity, the critical water content and the fractal dimensionality. The porosity and critical water 

content are both not the cause for failure, as the porosity is correct, and the critical water volume is 

relatively small compared to the cross-over water content. However, an overestimation of the cross-

over water content is caused by an underestimation of the fractal dimensionality and vice versa. The 

prior statement is true for S1, S5 and S6, while the latter statement is true for S2 and S8. Remarkable 

is the fact that these five samples all underestimate the relative permeability, but for opposing 

reasons, emphasising the importance of correctly predicting this parameter. The overestimation of 

the relative permeability related to C1 is caused by an underestimated critical water content. This 

parameter is dependent on the ratio between the pore surface area and pore volume, which is 

remarkably low for carbonate C1. Heterogenous samples are more irregularly shaped and an 

increased ratio between the area and volume would be expected, however this is not the case. There 

are three possible explanation causing this error: i) trapping is not correctly incorporated, ii) the 

empirical formula provided by Moldrup (2001) is not applicable or iii) there is a flaw in de marching 

algorithm by Lorensen and Cline (1997), not correctly providing the surface area. The first explanation 

is most likely the cause, as trapping is only somewhat accounted for by not taking into account the 

smallest pores when applying percolation theory. However, trapping is also applicable for larger pores. 

The significance of this error should be studied in further detail. Moreover, there is the general 
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problem of underestimating the critical water content, which is the case for all samples tested. The 

question arises if the differences between 0.01 m/d or 0.001 m/d has any significant influence on the 

purpose of the research. In general, it is more valuable to estimate the higher relative permeabilities 

correctly for higher saturations. FIT1 should be the objective percolation curve if the prior statement 

is indeed applicable for the corresponding research. FIT2 is more valuable if the research is benefitted 

by exactly establishing at which water content the permeability approaches zero. Whichever research 

objective is applicable, percolation theory (PERC) should at least match one of them to become an 

addition to any research.   

Overall, the estimations of percolation theory (PERC) would drastically improve if there was a better 

way of estimating the fractal dimensionality causing the cross-over water content to be more 

accurate. An exact estimation of the critical water content is for many research purposes not of great 

importance; besides, it has no major impact on the other parameters governing the relative 

permeability. However, three possible explanation for underestimating the critical water content are 

mentioned and could thus easily be investigated. Incorporating the improvement mentioned above 

would also improve the value of the calibration constant, which is dependent on the five key 

parameters related to percolation theory. Ultimately, universal scaling and critical path analysis hold 

a promising technique, although the current issues need to be resolved to exploit its full potential. It 

is a great tool to give an extra insight into the relation between the relative permeability and the water 

content.  
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8 Conclusion 

This research introduces a new pore network structure model, the COMBO model, based on the 

fundamentals of medial axis thinning and the maximal ball algorithm. The skeletonization algorithm 

developed by Lee et al. (1994) is incorporated to extract a topological superior skeleton. Afterwards a 

merging algorithm is utilised based on the principles introduced by Dong and Blunt (2009), unifying 

overlapping pore bodies into single representative pore bodies. The merging algorithm is outstanding 

in preserving a geometrical correct pore space, while removing unrealistic resistances within pore 

bodies due to artificially created pore throats. Furthermore, the pore network model incorporates 

four characteristic improvement regarding the pore throat radius, pore throat length, pore body 

radius and shape factor. Especially the introduction of the inradius provides a great potential, as it is 

a scale independent method not limited by the position of the skeleton, also improving on the amount 

of otherwise unnecessarily removed pore throats. Using the inradius increases the robustness of the 

model, better dealing with resolution issues. Ultimately, the COMBO model is a combination of proven 

concepts combined with physically feasible improvements.  

The COMBO model is tested on 12 different samples, generating results regarding the pore network 

properties, absolute permeability and relative permeability. The accuracy of the developed pore 

network model is not yet determined, as reliable benchmark data is absent, however, this will be the 

first objective when continuing this research. Calibrating the model and performing a sensitivity 

analysis on the connectivity, throat radius, throat length and shape factor would be a major 

contribution to this research area, as there are still many uncertainties. The relative permeability data 

is compared to percolation theory, providing new insights into the predictive capabilities of this 

analytical tool. Overall, percolation theory lacks accuracy due to the poorly estimated cross-over water 

content which is mainly affected by the fractal dimensionality of the sample. Resolving this issue in 

combination with other minor issues concerning the critical water content would drastically improve 

on the overall performance of the percolation theory.  
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Figure A1 – A12. Relative permeability versus water content for the twelve different samples. The black squares represent 

the results of PoreFlow, the red dashed line represent PERC, the yellow dashed line represents FIT1 and the blue dashed line 

represents FIT2. 
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Figure B1 – B12. Relative permeability on a logarithmic scale versus water content for the twelve different samples. The 

black squares represent the results of PoreFlow, the red dashed line represent PERC, the yellow dashed line represents FIT1 

and the blue dashed line represents FIT2. 
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FIJI (Fiji Is Just ImageJ) – Skeletonizing Cookbook  

Preparing Your Samples Extraordinaire  

The following plugins should be installed before proceeding with this manual.  

- Help → Update.. → Ok 

Click on “Manage update sites” and check the boxes in front of “3D ImageJ Suite”,  

“ImageScience” and “BoneJ experimental”. 

Note: It is recommended to save you image stack after each step.  

Step 1: Importing 

 Drag the folder with the greyscale pictures into FIJI. Click on yes without checking any boxes. 

Step 2: Cropping 

Select the area which you want to analyse, use different selection tools for different shapes. 

When the desired area has been selected follow the steps below. 

- Right click on the image → Duplicate → Check the box in front of “duplicate stack” → OK 

When using a circular area the background can be removed after step 5 (The binarizing 

process). 

Step 3: Colour Balancing 

- Image → Adjust → Color Balance  

Change the minimum and maximum by moving the sliders. Click on apply when satisfied, 

then click on yes. 

 

Step 4: Smoothing 

- Process → Filters → Gaussian Blur 3D → Put all sigma’s on 2.0 → OK 
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Step 5: Binarizing 

- Image → Adjust → Threshold 

Make sure to check the box in front of “Stack Histrogram”. Adjust the lower slider and make 

sure that the percentage beneath the histogram is similar to the porosity of your sample. 

Click on apply when satisfied. 

 

A new window should pop up. Change the method to “Default”, the background colour to 

“Light” and check the box in front of “Black background (of binary masks) “. Then click on OK. 

 

Step 6: Removing Floating Solids 

 Plugins → 3D → 3D Fill Holes 

Step 7: Checking The Porosity using the histogram 

 Analyze → Histogram 

The porosity can be checked by looking at the histogram. The porosity should be equal to the 

amount of pore voxels, with value of 255, divided by the total amount of voxels. If these 

numbers do not match you should go back to step 5.   
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Step 8: Checking The Porosity and Connectivity using BoneJ2 

Plugins → BoneJ → Fraction → Volume Fraction 

The porosity will be calculated and shown in a table.  

Plugins → BoneJ → Connectivity 

The Euler number will be calculated. It is important to note that both parameters are not 

always readily available and should thus be obtained beforehand.  

Step 9: Saving Binary Images 

 File → Save As → Image sequence  

Change the file format to “PNG” and click on OK. Then select the file location at which you 

want to save the binary images.   

  

Step 10: Skeletonizing 

 Plugins → Skeletonize → Skeletonize (2D/3D) 

Step 11: Analysing Skeleton  

 Analyze → Skeleton → Analyze Skeleton (2D/3D) 

A new window should pop up, click on OK. The Branch information will pop up in a new window, 

save this file at a desired file location for later use. 
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Step 12: Extracting The Skeleton 

 File → New → Script 

A java console should appear. Change the language to BeanShell and open and run the 

BranchExtractor script. Save the log file at a desired file location for later use.  

The FIJI procedure is now finished. Use the results as input for the different Python scripts. Enjoy 

your sample! 
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All scripts are written in python and should thus also be read and executed with a capable 

interpreter. 

# PoreBodyDataExtracotr.py - Martijn van Leer & Floris Denekamp 
# Uses Branch information.csv file and binary files (/Binaries) to obtain: 
# - Pore Body locations 
# - Distance Maps (distance between pore voxel and closest solid voxel) 
# - Inscribed Sphere Radii of pore bodies and throats 
# - Merging algorithm is applied for overlapping pore bodies 
# - This file creates input files for NeighbourKernelArrayExtractor.py and ThroatDataExtractor.py 
 
#Import toolkits 
import numpy 
import csv 
from scipy import ndimage, misc 
from PIL import Image 
import os 
import math 
from collections import defaultdict 
import time 
import multiprocessing as mp 
import datetime 
 
Choose whether Maximal Ball algorithm has to be run 
while True: 
 CalcMB = raw_input('do you want to calculate the MB? y/n') 
 if CalcMB == 'y' or CalcMB == 'n': 
  break 
 else: 
  'Nope.' 
print datetime.datetime.now(), '\n' 
 
#Start timer 
Start = time.time() 
 
#Create empty lists for connected Pore Body coordinates by X, Y and Z 
PB1X = [] 
PB1Y = [] 
PB1Z = [] 
PB2X = [] 
PB2Y = [] 
PB2Z = [] 
 
#Create empty lists for Coordinates of Pore Bodies 
CorPB1 = [] 
CorPB2 = [] 
PBIndex1 = [] 
PBIndex2 = [] 
 
#Create empty lists for Tortuous Length 



Appendix D 

54 

TorL = [] 
EucL = [] 
TorR = [] 
 
#Create empty lists for Pore Locations (all skeleton voxels) 
PLoc = [] 
 
#Create empty lists for all Pore Body coordinates by X, Y and Z 
PBX = [] 
PBY = [] 
PBZ = [] 
PBR = [] 
 
#Defining function to find clusters from pairs of overlapping pore bodies 
# e.g. [[1,2],[1,3],[4,5],[4,6]] becomes [[1,2,3],[4,5,6]] 
def connected_components(lists): 
    neighbors = defaultdict(set) 
    seen = set() 
    for each in lists: 
        for item in each: 
            neighbors[item].update(each) 
    def component(node, neighbors=neighbors, seen=seen, see=seen.add): 
        nodes = set([node]) 
        next_node = nodes.pop 
        while nodes: 
            node = next_node() 
            see(node) 
            nodes |= neighbors[node] - seen 
            yield node 
    for node in neighbors: 
        if node not in seen: 
            yield sorted(component(node)) 
 
#Rename all binary files so it does not matter what the names are beforehand as long as the files are 
in the right folder (/Binaries) 
picnum1 = 1 
for filename in sorted(os.listdir("Binaries")): 
 dst = 'Binaries/BinSam' + str(picnum1).zfill(4) + '.png' 
 src = 'Binaries/' + filename 
 if not os.path.exists(dst): 
  os.rename(src,dst) 
 picnum1 += 1 
 
#Read csvfile of skeletonanalysis(/Data/Branch information.cvs) and append values to variables. 
with open('Data/Branch information.csv', 'rb') as csvfile:  
    reader = csv.reader(csvfile, delimiter=',') 
    for row in reader: 
        TorL.append(row[1]) 
        PB1X.append(row[2]) 
        PB1Y.append(row[3]) 
        PB1Z.append(row[4]) 
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        PB2X.append(row[5]) 
        PB2Y.append(row[6]) 
        PB2Z.append(row[7]) 
        EucL.append(row[8]) 
csvfile.close() 
print 'CSV file imported.' 
print datetime.datetime.now(), '\n' 
     
#Read binary images and create 3d array of it 
nr = 1 
while nr < picnum1: 
        f = ('Binaries/BinSam'+str(nr).zfill(4)+'.png') 
        row = ndimage.imread(f,flatten=1) 
        PLoc.append(row) 
        nr = nr + 1 
print 'Binary images imported.' 
print datetime.datetime.now(), '\n' 
 
#Create 3D array with  all sides as solids 
#Create a distance map for every pore voxel with euclidean distance to closest grain voxel 
print 'Creating distance maps...' 
SmallBinSam = numpy.array(PLoc) 
SmallBinSam[SmallBinSam > 0] = 1 
BinSam = numpy.zeros((SmallBinSam.shape[0]+2,SmallBinSam.shape[1]+2,SmallBinSam.shape[2]+2)) 
BinSam[1:-1,1:-1,1:-1] = SmallBinSam 
SamDist = ndimage.distance_transform_edt(BinSam)               
numpy.save('Data/BinarizedSampleArray', BinSam)   #Save the Binary arrary                                     
print 'Binarized 3D arrays of the sample and skeleton are saved.' 
numpy.save('Data/SampleDistanceArray', SamDist)   # Save the distance map                                    
print 'Distance map created.' 
print datetime.datetime.now(), '\n' 
 
#Make strings of all three coordinates of the pore body locations, compensating for the artificial 
solid sides of the sample 
#create array to make list of all pore bodies 
PBCorCheck1 = numpy.zeros_like(BinSam) 
for p in range(1,len(PB1X)): 
        PB1X[p] =int(PB1X[p]) + 1 
        PB1Y[p] =int(PB1Y[p]) + 1 
        PB1Z[p] =int(PB1Z[p]) + 1 
        PB2X[p] =int(PB2X[p]) + 1 
        PB2Y[p] =int(PB2Y[p]) + 1 
        PB2Z[p] =int(PB2Z[p]) + 1         
        CorPB1.append(str(PB1X[p]) + '\t' + str(PB1Y[p]) + '\t' + str(PB1Z[p])) 
        CorPB2.append(str(PB2X[p]) + '\t' + str(PB2Y[p]) + '\t' + str(PB2Z[p])) 
        PBCorCheck1[int(PB1Z[p]),int(PB1Y[p]),int(PB1X[p])] = 1  
 
#Make porebody list unique 
AllPB = list(set(CorPB1)) 
for p in range(1,len(PB2X)): 
    if PBCorCheck1[int(PB2Z[p]),int(PB2Y[p]),int(PB2X[p])] == 0: 
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        AllPB.append(str(PB2X[p]) + '\t' + str(PB2Y[p]) + '\t' + str(PB2Z[p])) 
        PBCorCheck1[int(PB2Z[p]),int(PB2Y[p]),int(PB2X[p])] = 1 
 
#Find inscribed sphere radius of all pore body locations using the distance map  
counter = 0 
print 'All pore bodies found. Finding inscribed spheres.' 
print datetime.datetime.now(), '\n' 
PBCorCheckUnique = numpy.zeros_like(BinSam) 
for q in range(0,len(AllPB)): 
    PBX, PBY, PBZ = AllPB[q].split('\t') 
    PBCorCheckUnique[int(PBZ), int(PBY), int(PBX)] = q 
    PBR.append(SamDist[int(PBZ), int(PBY), int(PBX)]) 
 
PBRsum = []      
print 'Inscribed spheres found. Creating lists by index...' 
print datetime.datetime.now(), '\n' 
#Create list of throats using connected pore body indexes       
for p in range(len(CorPB2)): 
    X1, Y1, Z1 = CorPB1[p].split('\t') 
    X2, Y2, Z2 = CorPB2[p].split('\t') 
    PBIndex1.append(int(PBCorCheckUnique[int(Z1),int(Y1),int(X1)])) 
    PBIndex2.append(int(PBCorCheckUnique[int(Z2),int(Y2),int(X2)])) 
    PBRsum.append(PBR[PBIndex1[p]] + PBR[PBIndex2[p]])  
 
#calculate tortuosity 
for p in range(1,len(TorL)): 
 if float(EucL[p]) == 0: 
  TorR.append(1.0) 
 elif float(EucL[p]) > float(TorL[p]): 
  TorR.append(1.0) 
 else: 
  TorR.append(float(TorL[p])/float(EucL[p])) 
   
AllBraCor = [] 
OLDBraCor = [] 
Temp = [] 
#read pore throat skeleton locations 
with open('Data/log.txt', 'r') as f: 
    for line in f: 
        inner_list = [elt.strip() for elt in line.split('endbranch')] 
        if len(inner_list[0]) == 3: 
            X,Y,Z = inner_list[0].split(',') 
            ls = [X,Y,Z] 
            AllBraCor.append(ls) 
        else: 
            AllBraCor.append(inner_list[0]) 
#create list of lists of throat skeleton locations 
for p in range(0,len(AllBraCor)): 
    if len(AllBraCor[p]) == 0: 
        OLDBraCor.append(Temp) 
        Temp = [] 
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    else: 
        X,Y,Z = AllBraCor[p].split(',') 
        ls = [int(float(Z))+1,int(float(Y))+1,int(float(X))+1] 
        Temp.append(ls) 
 
#match skeleton branches with pore bodies 
print 'Matching branches with pore bodies..' 
print datetime.datetime.now(), '\n' 
BraCor = [] 
PBcombo = [] 
Seen = [0] * len(PBIndex1) 
for p in range(len(PBIndex1)): 
  x1,y1,z1 = map(int,AllPB[PBIndex1[p]].split('\t'))  
  x2,y2,z2 = map(int,AllPB[PBIndex2[p]].split('\t')) 
  PBcombo.append([[z1,y1,x1],[z2,y2,x2]]) 
  for q in range(len(OLDBraCor)): 
   if PBcombo[p][0] == OLDBraCor[q][0] and PBcombo[p][1] == OLDBraCor[q][-
1] and Seen[q] == 0: 
    BraCor.append(OLDBraCor[q]) 
    Seen[q] = 1  
    break 
 
print 'Start Maximal Ball Pore Body Merge Protocol (MBPBMP)...' 
print datetime.datetime.now(), '\n' 
##The merge algorithm is started. It makes sure no overlapping pore bodies exists in the sample. 
Overlap = [None]*len(CorPB2)    
Iteration = 1 
Cluster = [[]] 
Cleanresults = [] 
 
#Find overlapping pore bodies 
if CalcMB == 'y': 
 for p in range(len(AllPB)): 
  X1, Y1, Z1 = AllPB[p].split('\t') 
  for q in range(len(AllPB)): 
   X2, Y2, Z2 = AllPB[q].split('\t') 
   CalcEucL = ((float(X1) - float(X2))**2 + (float(Y1) - float(Y2))**2 + (float(Z1) - 
float(Z2))**2) 
   if (PBR[p] + PBR[q])**2 >= float(CalcEucL) and p != q and [p,q] not in 
Cleanresults and [q,p] not in Cleanresults: 
    Cleanresults.append([p,q]) 
 with open('Data/cleanresults.txt', 'w') as cr: 
  for p in range(len(Cleanresults)): 
   cr.write(str(Cleanresults[p][0]) + '\t' + str(Cleanresults[p][1]) + '\n') 
else: 
 with open('Data/cleanresults.txt', 'r') as cr: 
   Cleanresultsstr = cr.readlines() 
 for p in Cleanresultsstr: 
  Cleanresults.append(map(int,(p.split('\t')))) 
 
print 'Overlapping pore bodies found. Running maximal ball algorithm..' 
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print datetime.datetime.now(), '\n'     
Cluster = list(connected_components(Cleanresults)) 
total = 0 
 
#using maximal ball in clusters 
for p in range(len(Cluster)): 
 Master = [] 
 Slave = [] 
 CR = [] 
 loc = [] 
 for x in Cluster[p]: 
  CR.append([PBR[x],x]) 
 CR.sort(reverse = True) 
 for t in CR: 
  x,y,z = AllPB[t[1]].split('\t') 
  loc.append([int(x),int(y),int(z)]) 
 for q in range(len(Cluster[p])): 
  Slaafje = False 
  for r in range(len(Master)): 
   if (CR[q][0] + CR[Master[r][1]][0])**2 >= ((loc[Master[r][1]][0] - loc[q][0])**2 
+ (loc[Master[r][1]][1] - loc[Master[r][1]][1])**2 + (loc[Master[r][1]][2] - loc[q][2])**2) and 
Master[r][1] != q: 
    Slave.append([CR[q][1],Master[r][0],q]) 
    Slaafje = True 
    break 
  if Slaafje == False: 
   amount = len(Slave) 
   for r in range(amount): 
    if (CR[q][0] + CR[Slave[r][2]][0])**2 >= (loc[Slave[r][2]][0] - 
loc[q][0])**2 + (loc[Slave[r][2]][1] - loc[q][1])**2 + (loc[Slave[r][2]][2] - loc[q][2])**2 and Slave[r][2] 
!= q: 
     Slave.append([CR[q][1],Slave[r][1],q]) 
     Slaafje = True 
     break 
  if Slaafje == False: 
   if [CR[q][1],q] not in Master: 
    Master.append([CR[q][1],q]) 
 for q in Slave: 
  for p  in range(len(PBIndex1)): 
   if PBIndex1[p] == q[0]: 
    PBIndex1[p] = q[1] 
   if PBIndex2[p] == q[0]: 
    PBIndex2[p] = q[1] 
 End = time.time() 
 total += len(Slave)           
 
print 'Masters and slaves defined. Amount of Slaves:', total 
    
#The x, y and z coordinates, throat radius and aspect length. 
ThrX = [] 
ThrY= [] 
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ThrZ = [] 
ThrRadius = [] 
LengthRatio = [] 
ThrLength1 = [] 
ThrLength2 = [] 
 
#Finding throat locations with smallest radius 
for p in range(len(BraCor)): 
 RatioPointList = [] 
 MinBraDis1 = 10000 
 if len(BraCor[p]) > 3:  
  for q in range(1,len(BraCor[p])-1): 
   if SamDist[BraCor[p][q][0],BraCor[p][q][1],BraCor[p][q][2]] < MinBraDis1: 
    MinBraDis1 = 
SamDist[BraCor[p][q][0],BraCor[p][q][1],BraCor[p][q][2]] 
  for q in range(1,len(BraCor[p])-1):   
   if SamDist[BraCor[p][q][0],BraCor[p][q][1],BraCor[p][q][2]] == MinBraDis1: 
    RatioPointList.append(q) 
  RatioPoint = RatioPointList[int((len(RatioPointList)-1) * 0.5)] 
  LengthRatio.append((float(RatioPoint)+1.0)/(len(BraCor[p])+1)) 
  ThrX.append(BraCor[p][RatioPoint][2]) 
  ThrY.append(BraCor[p][RatioPoint][1]) 
  ThrZ.append(BraCor[p][RatioPoint][0]) 
  ThrRadius.append(MinBraDis1) 
  EucL1 = math.sqrt((BraCor[p][0][2]- BraCor[p][-1][2])**2+(BraCor[p][0][1]- 
BraCor[p][-1][1])**2+(BraCor[p][0][0]- BraCor[p][-1][0])**2) 
  TorL = TorR[p] * EucL1 
  X1, Y1, Z1 = map(int,AllPB[PBIndex1[p]].split('\t')) 
  X2, Y2, Z2 = map(int,AllPB[PBIndex2[p]].split('\t')) 
  MergeLength1 = math.sqrt((BraCor[p][0][2]- X1)**2+(BraCor[p][0][1]- 
Y1)**2+(BraCor[p][0][0]- Z1)**2) 
  MergeLength2 = math.sqrt((X2- BraCor[p][-1][2])**2+(Y2- BraCor[p][-1][1])**2+(Z2- 
BraCor[p][-1][0])**2) 
  ThrLength1.append(LengthRatio[p] * float(TorL) - PBR[PBIndex1[p]] + 
MergeLength1)  
  ThrLength2.append((1-LengthRatio[p]) * float(TorL) - PBR[PBIndex2[p]] + 
MergeLength2) 
  if ThrLength1[p] <= 0 or ThrLength2[p] <= 0: 
   ThrLength1[p] = 0.5 
   ThrLength2[p] = 0.5 
 else: 
  LengthRatio.append(0.5) 
  ThrX.append(BraCor[p][1][2]) 
  ThrY.append(BraCor[p][1][1]) 
  ThrZ.append(BraCor[p][1][0]) 
  ThrRadius.append(SamDist[BraCor[p][1][0],BraCor[p][1][1],BraCor[p][1][2]])     
  ThrLength1.append(0.4) 
  ThrLength2.append(0.4) 
           
print 'Midpoints of the throats determined.' 
print datetime.datetime.now(), '\n' 
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#Finding dead-ends that need to be removed 
CorNum = [0] * len(AllPB) 
CorNumLoc = [0] * len(AllPB) 
for p in range(len(ThrX)): 
 CorNum[PBIndex1[p]] += 1 
 CorNumLoc[PBIndex1[p]] += p 
 CorNum[PBIndex2[p]] += 1 
 CorNumLoc[PBIndex2[p]] += p 
 
DeadEndcounter =0 
for p in range(len(CorNum)): 
 if CorNum[p] == 1: 
  if PBR[p] <= ThrRadius[CorNumLoc[p]]: 
   DeadEndcounter +=1 
   if PBIndex1[CorNumLoc[p]] == p: 
    PBIndex1[CorNumLoc[p]] = PBIndex2[CorNumLoc[p]] 
   else: 
    PBIndex2[CorNumLoc[p]] = PBIndex1[CorNumLoc[p]] 
print 'Amount of dead-ends removed:', DeadEndcounter 
 
LocPB1 = [] 
LocPB2 = [] 
#Create new unique list of pore bodies, replacing the removed PB.  
for p in PBIndex1: 
    LocPB1.append(AllPB[p]) 
for p in PBIndex2: 
    LocPB2.append(AllPB[p]) 
AllPBFinal = list(set(LocPB1)) 
n = 1 
PBCorCheck2 = numpy.zeros_like(BinSam) 
for p in range(len(AllPBFinal)): 
    x,y,z = AllPBFinal[p].split('\t') 
    PBCorCheck2[int(z),int(y),int(x)] = n 
    n += 1 
for p in range(len(LocPB2)): 
    x,y,z = LocPB2[p].split('\t') 
    if PBCorCheck2[int(z),int(y),int(x)] == 0: 
        PBCorCheck2[int(z),int(y),int(x)] = n 
        AllPBFinal.append(str(x) + '\t' + str(y) + '\t' + str(z)) 
        n+=1 
for p in range(len(PBIndex1)): 
    x1,y1,z1 = LocPB1[p].split('\t') 
    x2,y2,z2 = LocPB2[p].split('\t') 
    PBIndex1[p] = int(PBCorCheck2[int(z1),int(y1),int(x1)]-1) 
    PBIndex2[p] = int(PBCorCheck2[int(z2),int(y2),int(x2)]-1) 
 
#Creating array of PB indexes and removing merged PB. 
print 'Removing merged pore bodies...' 
print datetime.datetime.now(), '\n' 
ThrXFinal = [] 
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ThrYFinal = [] 
ThrZFinal = [] 
PBIndex1Final = [] 
PBIndex2Final = [] 
ThrRadiusFinal = [] 
TorRFinal = [] 
LengthRatioFinal = [] 
ThrLengthReal1 = [] 
ThrLengthReal2 = [] 
TortuousLengthReal = [] 
 
for p in range(len(ThrX)): 
 if PBIndex1[p] != PBIndex2[p]: 
  ThrXFinal.append(ThrX[p]) 
  ThrYFinal.append(ThrY[p]) 
  ThrZFinal.append(ThrZ[p]) 
  ThrRadiusFinal.append(ThrRadius[p]) 
  PBIndex1Final.append(int(PBIndex1[p])) 
  PBIndex2Final.append(int(PBIndex2[p])) 
  TorRFinal.append(TorR[p]) 
  LengthRatioFinal.append(LengthRatio[p]) 
  ThrLengthReal1.append(ThrLength1[p]) 
  ThrLengthReal2.append(ThrLength2[p]) 
 
#create new list of PBR  
PBR = [] 
for p in AllPBFinal: 
 x,y,z = map(int,p.split('\t')) 
 PBR.append(SamDist[z,y,x]) 
 
#savety check for throat length 
for p in range(len(ThrLengthReal1)): 
 if ThrLengthReal1[p] <= 0: 
  ThrLengthReal1[p] = 0.5  
 if ThrLengthReal2[p] <= 0: 
  ThrLengthReal2[p] = 0.5 
 
print 'Writing data to file...' 
print datetime.datetime.now(), '\n'         
 
#writing data to files 
with open ('Data/ThroatLocations.txt', 'w') as TLOC: 
 with open('Data/ThroatRadius.txt', 'w') as TR: 
  with open('Data/ThroatsIndex.txt', 'w') as TI: 
   with open ('Data/RealThroatLengthOne.txt', 'w') as RTLO: 
    with open ('Data/RealThroatLengthTwo.txt', 'w') as RTLT: 
     with open ('Data/LengthRatio.txt', 'w') as LR: 
      for p in range(len(ThrRadiusFinal)): 
                                                        TLOC.write(str(ThrXFinal[p]) + '\t' + str(ThrYFinal[p]) + '\t' + 
str(ThrZFinal[p]) + '\n') 
       TR.write(str(ThrRadiusFinal[p]) + '\n') 
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       TI.write(str(PBIndex1Final[p]) + '\t' + 
str(PBIndex2Final[p]) + '\n') 
       RTLO.write(str(ThrLengthReal1[p]) + '\n') 
       RTLT.write(str(ThrLengthReal2[p]) + '\n') 
       LR.write(str(LengthRatioFinal[p]) + '\n') 
 
with open ('Data/PoreBodyCoordinates.txt', 'w') as PBC: 
 with open ('Data/PoreBodyRadius.txt', 'w') as PB: 
  for p in range(len(AllPBFinal)): 
   PBC.write(str(AllPBFinal[p]) + '\n') 
   PB.write(str(PBR[p]) + '\n') 
 
End = time.time() 
 
print 'Finished. Total runtime:', round(End - Start), 's.' 
print datetime.datetime.now(), '\n' 
#Seal of Approval if everything went alright.  
print '             .---.                                 ' 
print '            /o   o\                                ' 
print '         __(=  "  =)__                             ' 
print '          //\`-=-`/\\\                              ' 
print '             )   (_                                ' 
print '            /      `==-._                          ' 
print '           /       \     ``==.                     ' 
print '          /  /   \  \         `=..--._             ' 
print '      ___/  /     \  \___      _,  ,  \            ' 
print '     `-----`"""""""`------`"""` \  \__/            ' 
print '                                 `-`               ' 
print '              Seal of Approval                     ' 
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#NeighborCounter.py - Martijn van Leer & Floris Denekamp - PoreBodyDataExtractor has to be run 
before this.  
# create xy, yz & xz planes and count the neighbors in those directions. 
#These could be added up to find the perimeter in ThroatDataExtractor.py 
 
#import toolkits 
import numpy  
from scipy import signal 
from os import mkdir, path 
from scipy import ndimage, misc 
from PIL import Image 
import datetime 
 
print datetime.datetime.now(), '\n' 
 
#Load the binary sample and make it inverse 
BinSam = numpy.load('Data/BinarizedSampleArray.npy') 
BinSam = 1 - BinSam 
BinSam = BinSam.astype(int) 
 
#a 3x3x3 kernel is created 9 times to define different planes through a cube by defining directions 
from the centre in which neighbours should be counted. The values in which neighbours should be 
counted are assigned value 1.0. The arrays are saved as NB#.npy 
Kernel1 = numpy.zeros((3,3,3), dtype = float)#1 
Kernel1[1,0,1] = 1.0 
Kernel1[1,1,0] = 1.0 
Kernel1[1,1,2] = 1.0 
Kernel1[1,2,1] = 1.0 
NB1 = signal.convolve(BinSam,Kernel1, mode = 'same') 
numpy.save('Data/NB1.npy', NB1) 
del NB1  
print 'Kernel 1/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel2 = numpy.zeros((3,3,3), dtype = float)#2 
Kernel2[0,1,1] = 1.0 
Kernel2[1,1,0] = 1.0 
Kernel2[1,1,2] = 1.0 
Kernel2[2,1,1] = 1.0 
NB2 = signal.convolve(BinSam,Kernel2, mode = 'same') 
numpy.save('Data/NB2.npy', NB2) 
del NB2 
print 'Kernel 2/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel3 = numpy.zeros((3,3,3), dtype = float)#3 
Kernel3[0,1,1] = 1.0 
Kernel3[1,0,1] = 1.0 
Kernel3[1,2,1] = 1.0 
Kernel3[2,1,1] = 1.0 
NB3 = signal.convolve(BinSam,Kernel3, mode = 'same') 
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numpy.save('Data/NB3.npy', NB3) 
del NB3 
print 'Kernel 3/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel4 = numpy.zeros((3,3,3), dtype = float)#4 
Kernel4[1,0,2] = 1.0 
Kernel4[1,2,0] = 1.0 
Kernel4[2,1,1] = 1.4142136 
Kernel4[0,1,1] = 1.4142136 
NB4 = signal.convolve(BinSam,Kernel4, mode = 'same') 
numpy.save('Data/NB4.npy', NB4) 
del NB4 
print 'Kernel 4/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel5 = numpy.zeros((3,3,3), dtype = float) 
Kernel5[0,1,2] = 1.4142136 
Kernel5[2,1,0] = 1.4142136 
Kernel5[1,2,1] = 1.0 
Kernel5[1,0,1] = 1.0 
NB5 = signal.convolve(BinSam,Kernel5, mode = 'same') 
numpy.save('Data/NB5.npy', NB5) 
del NB5 
print 'Kernel 5/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel6 = numpy.zeros((3,3,3), dtype = float) 
Kernel6[2,0,1] = 1.4142136 
Kernel6[0,2,1] = 1.4142136 
Kernel6[1,1,2] = 1.0 
Kernel6[1,1,0] = 1.0 
NB6 = signal.convolve(BinSam,Kernel6, mode = 'same') 
numpy.save('Data/NB6.npy', NB6) 
del NB6 
print 'Kernel 6/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel7 = numpy.zeros((3,3,3), dtype = float) 
Kernel7[1,2,2] = 1.0 
Kernel7[1,0,0] = 1.0 
Kernel7[2,1,1] = 1.4142136 
Kernel7[0,1,1] = 1.4142136 
NB7 = signal.convolve(BinSam,Kernel7, mode = 'same') 
numpy.save('Data/NB7.npy', NB7) 
del NB7 
print 'Kernel 7/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel8 = numpy.zeros((3,3,3), dtype = float) 
Kernel8[2,1,2] = 1.0 
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Kernel8[0,1,0] = 1.0 
Kernel8[1,2,1] = 1.4142136 
Kernel8[1,0,1] = 1.4142136 
NB8 = signal.convolve(BinSam,Kernel8, mode = 'same') 
numpy.save('Data/NB8.npy', NB8) 
del NB8 
print 'Kernel 8/9 created.' 
print datetime.datetime.now(), '\n' 
 
Kernel9 = numpy.zeros((3,3,3), dtype = float) 
Kernel9[2,2,1] = 1.0 
Kernel9[0,0,1] = 1.0 
Kernel9[1,1,2] = 1.4142136 
Kernel9[1,1,0] = 1.4142136 
NB9 = signal.convolve(BinSam,Kernel9, mode = 'same') 
numpy.save('Data/NB9.npy', NB9) 
del NB9 
print 'Kernel 9/9 created.' 
print datetime.datetime.now(), '\n' 
#Seal of Approval shows up if everything went ok.  
print 'Neighbour maps created. Finished.' 
print '             .---.                                 ' 
print '            /o   o\                                ' 
print '         __(=  "  =)__                             ' 
print '          //\`-=-`/\\\                              ' 
print '             )   (_                                ' 
print '            /      `==-._                          ' 
print '           /       \     ``==.                     ' 
print '          /  /   \  \         `=..--._             ' 
print '      ___/  /     \  \___      _,  ,  \            ' 
print '     `-----`"""""""`------`"""` \  \__/            ' 
print '                                 `-`               ' 
print '              Seal of Approval                     ' 
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#ThroatRadiusFinder.py - Martijn van Leer & Floris Denekamp - PoreBodyDataExtractor.py and 
NeighbourKernelArrayExtractor.py have to be run for this script to work.  
#This script: 
# - obtains Pore volumes using watershed 
# - obtains smallest locations of throats 
# - obtains Shape factors on throat locations 
# - obtains Volumes of throats 
# - Merges the throtas which connect the same pore bodies 
 
#import toolkits 
import numpy 
import csv 
import os 
import math 
import time 
from scipy import ndimage, misc 
from skimage.morphology import watershed 
from collections import defaultdict 
import multiprocessing as mp 
import datetime 
 
while True: 
 CalcSH = raw_input("Do you want to calculate the Shapefactor?(y/n)") 
 if CalcSH == 'y' or CalcSH == 'n': 
  break 
 print 'That is not a correct input.' 
 
#Define same function as in PoreBodyDataExtractor 
def connected_components(lists): 
    neighbors = defaultdict(set) 
    seen = set() 
    for each in lists: 
        for item in each: 
            neighbors[item].update(each) 
    def component(node, neighbors=neighbors, seen=seen, see=seen.add): 
        nodes = set([node]) 
        next_node = nodes.pop 
        while nodes: 
            node = next_node() 
            see(node) 
            nodes |= neighbors[node] - seen 
            yield node 
    for node in neighbors: 
        if node not in seen: 
            yield sorted(component(node)) 
             
#Start the timer and define function to show the elapsed time 
Start = time.time() 
print datetime.datetime.now(), '\n' 
def Showtime(Start): 
    End = time.time() 
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    Elapsed  = round(End - Start,0) 
    print  'It took ', Elapsed,'s to run so far. ' 
 
#Pore body 1 is connected to pore body 2, connected by a throat 
ThrIndex1 =[] 
ThrIndex2 =[] 
 
#Pore body radii 
PBR = [] 
 
#Pore body x, y and z coordinates 
PBX = [] 
PBY = [] 
PBZ = [] 
CorPB1 = [] 
CorPB2 = [] 
AllPB = [] 
 
#Throat parameters 
ThrX = [] 
ThrY = [] 
ThrZ = [] 
ThrRadius = [] 
ThrArea = [] 
ThrPeri = [] 
RealThroatLength1 = [] 
RealThroatLength2 = [] 
LengthRatio = [] 
 
print 'Importing text data...' 
  
#Read data from the files created in PoreBodyDataExtractor.py  
with open('Data/ThroatsIndex.txt', 'rb') as csvfile:  
    reader = csv.reader(csvfile, delimiter = '\t') 
    for row in reader: 
        ThrIndex1.append(int(row[0])) 
        ThrIndex2.append(int(row[1])) 
 
with open('Data/PoreBodyCoordinates.txt', 'rb') as csvfile:  
    reader = csv.reader(csvfile, delimiter = '\n') 
    for row in reader: 
         AllPB.append((row[0])) 
 
with open('Data/RealThroatLengthOne.txt', 'rb') as csvfile:  
    reader = csv.reader(csvfile, delimiter = '\n') 
    for row in reader: 
         RealThroatLength1.append(float(row[0])) 
 
with open('Data/RealThroatLengthTwo.txt', 'rb') as csvfile:  
    reader = csv.reader(csvfile, delimiter = '\n') 
    for row in reader: 
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         RealThroatLength2.append(float(row[0])) 
 
with open('Data/LengthRatio.txt', 'rb') as csvfile:  
    reader = csv.reader(csvfile, delimiter = '\n') 
    for row in reader: 
         LengthRatio.append(float(row[0])) 
 
ThrLoc = [] 
with open('Data/ThroatLocations.txt', 'rb') as TL: 
 reader = csv.reader(TL, delimiter = '\n') 
 for row in reader: 
         ThrLoc.append((row[0])) 
 
with open('Data/ThroatRadius.txt', 'rb') as TR: 
 reader = csv.reader(TR, delimiter = '\n') 
 for row in reader: 
         ThrRadius.append(float(row[0])) 
          
with open('Data/PoreBodyRadius.txt', 'rb') as PB: 
 reader = csv.reader(PB, delimiter = '\n') 
 for row in reader: 
         PBR.append(float(row[0]))          
                   
for p in ThrLoc: 
 x,y,z = map(int,p.split('\t')) 
 ThrX.append(x) 
 ThrY.append(y) 
 ThrZ.append(z) 
 
RealThroatLength = [] 
for p in range(len(RealThroatLength1)): 
 RealThroatLength.append(RealThroatLength1[p] + RealThroatLength2[p]) 
 
BinSam = numpy.load('Data/BinarizedSampleArray.npy') 
 
print 'Starting watershed on pore bodies...' 
print 'Creating watershed markers...' 
#watershed algorithm to obtain pore volumes 
Markers = numpy.zeros_like(BinSam).astype(numpy.int32) 
BinMarkers = numpy.zeros_like(BinSam).astype(numpy.int32) 
counter = 0 
#create markers over the volume of the pore bodies using the inscribed sphere, so the volumes are 
almost never smaller than the volume of the inscribed sphere.  
for p in range(len(AllPB)): 
 x,y,z = AllPB[p].split('\t') 
 x = int(x) 
 y = int(y) 
 z = int(z) 
 for a in range(-int(PBR[p])+1, int(PBR[p])): 
  for b in range(-int(PBR[p])+1, int(PBR[p])): 
   for c in range(-int(PBR[p])+1, int(PBR[p])): 
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    if (a**2 + b**2 + c**2) < int(PBR[p])**2 and BinSam[z - c, y - b, x - a] 
== 1: 
     if Markers[z - c, y - b, x - a] != 0: 
      counter += 1 
     Markers[z - c, y - b, x - a] = p + 1 
 
print 'Overlapping watershed marker voxels:',counter #This can be caused by discretization error 
from cubic voxels to spheres.  
print 'Starting watershed algorithm...', 
Showtime(Start) 
print datetime.datetime.now(), '\n'   
         
#Creating binary markers, markers will be equal to zero. 
BinMarkers[Markers > 0] = 1                           
BinMarkers = 1 - BinMarkers                            
 
#Creating a distance map for the binarized markers 
DistBinMarkers = ndimage.morphology.distance_transform_edt(BinMarkers) 
#dtype = float64 
 
#Creating the watershed segments      
print 'Segmentation completed.', 
Showtime(Start) 
print datetime.datetime.now(), '\n' 
   
Segments =  watershed(DistBinMarkers, Markers, mask = BinSam) 
 
print 'Watershed algorithm completed.' 
print 'Calculating volumes...' 
 
#add up the volumes of the watershed output to obtain the volume per pore, and assign values for 
boundary pores if the segment touches the side of the domain. 
def Volumef(a): 
 Boundaries = [0] * len(AllPB) 
 SegmentVolume = [0] * len(AllPB) 
 for b in range(0,Segments.shape[1]): 
  for c in range(0,Segments.shape[2]): 
   if Segments[a,b,c] != 0: 
    SegmentVolume[int(Segments[a,b,c])-1] 
=SegmentVolume[int(Segments[a,b,c])-1] + 1 
   #Find in & outlet boundary pores    
   if a == 1: 
    Boundaries[int(Segments[a,b,c])-1] = 1 
   elif a == Segments.shape[0]-2: 
    Boundaries[int(Segments[a,b,c])-1] = 2 
 return [SegmentVolume, Boundaries] 
pool = mp.Pool(processes=10) #amount of cores used to calculate volumes 
TempResults = pool.map(Volumef, range(0,Segments.shape[0])) 
pool.close() 
pool.join() 
#create seperate lists for boundaries and pore body volumes 
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SegmentVolume, Boundaries = zip(*TempResults) 
SegmentVolume = [sum(i) for i in zip(*SegmentVolume)] 
Boundaries = [max(i) for i in zip(*Boundaries)] 
print 'Pore body volumes calculated.' 
 
CalculatedVolume = [] 
for p in range(len(SegmentVolume)): 
 x,y,z = AllPB[p].split('\t') 
 x = int(x) 
 y = int(y) 
 z = int(z) 
 CalculatedVolume.append((4.0/3.0)*(PBR[p])**3.0*math.pi) 
 if SegmentVolume[p] == 0: 
  SegmentVolume[p] = 1.0 
 
print 'Total amount of throats: ', len(ThrX) 
 
print 'Finding shapefactors...', 
Showtime(Start) 
print datetime.datetime.now(), '\n'         
#count pore cells in the plane with the smallest area, and calculate shapefactors 
def SFf(p): 
 Area = [] 
 Perimeterlist = [] 
 for Dir in range(1,10): 
         SF = 0 
         Perimeter = 0 
         d = 0 
         e = 0 
         ThroatPointChecker = numpy.zeros_like(BinSam).astype(numpy.int32) 
         PorePoints = [] 
         HorPoints = [] 
         VerPoints = [] 
         VerPointsUpdater = [] 
         HorPointsUpdater = [] 
         NBMap = numpy.load('Data/NB'+str(Dir) +'.npy') 
         if ThrIndex1[p] != ThrIndex2[p]: 
             if Dir ==1: 
                 xUpdater = 'd' 
                 yUpdater = 'e' 
                 zUpdater = '0' 
                 AreaUnit = 1.0 
             if Dir ==2: 
                 xUpdater = 'd' 
                 yUpdater = '0' 
                 zUpdater = 'e' 
                 AreaUnit = 1.0 
             if Dir==3: 
          xUpdater = '0' 
                 yUpdater = 'd' 
                 zUpdater = 'e' 
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                 AreaUnit = 1.0 
             if Dir ==4: 
                 xUpdater = 'd' 
                 yUpdater = '-d' 
                 zUpdater = 'e' 
                 AreaUnit = 1.41421356237 
             if Dir ==5: 
                 xUpdater = 'd' 
                 yUpdater = 'e' 
                 zUpdater = '-d' 
                 AreaUnit = 1.41421356237 
             if Dir ==6: 
                 xUpdater = 'e' 
                 yUpdater = 'd' 
                 zUpdater = '-d' 
                 AreaUnit = 1.41421356237 
             if Dir ==7: 
                 xUpdater = 'd' 
                 yUpdater = 'd' 
                 zUpdater = 'e' 
                 AreaUnit = 1.41421356237 
             if Dir ==8: 
                 xUpdater = 'd' 
                 yUpdater = 'e' 
                 zUpdater = 'd' 
                 AreaUnit = 1.41421356237 
             if Dir ==9: 
                 xUpdater = 'e' 
                 yUpdater = 'd' 
                 zUpdater = 'd' 
                 AreaUnit = 1.41421356237  
  
             PorePoints.append([ThrZ[p],ThrY[p],ThrX[p]])            
             ThroatPointChecker[PorePoints[0][0],PorePoints[0][1],PorePoints[0][2]] =1     
             HorPoints.append([ThrZ[p],ThrY[p],ThrX[p]])  
             VerPoints.append([ThrZ[p],ThrY[p],ThrX[p]])  
             while True: 
                     for point in HorPoints: 
                         while True: 
                             d +=1 
                             if d == 1 and ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 1: 
                                 d = 0 
                                 break 
                             if BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 1:                     
                                 if ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 0: 
                                     PorePoints.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
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                                     VerPointsUpdater.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
                                 ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] += 1  
                             elif BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 0: 
                                 d = 0 
                                 break 
                          
                     for point in HorPoints: 
                         while True: 
                             d -=1 
                             if d == -1 and ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 1: 
                                 d = 0 
                                 break 
                             if BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 1:                     
                                 if ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 0: 
                                     PorePoints.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
                                     VerPointsUpdater.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
                                 ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] += 1  
                             elif BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 0: 
                                 d = 0 
                                 break 
                              
                     for point in VerPoints: 
                         while True: 
                             e +=1 
                             if e == 1 and ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 1: 
                                 e = 0 
                                 break 
                             if BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 1:                     
                                 if ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 0: 
                                     PorePoints.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
                                     HorPointsUpdater.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
                                 ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] += 1  
                             elif BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 0: 
                                 e = 0 
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                                 break 
                  
                     for point in VerPoints: 
                         while True: 
                             e -=1 
                             if e == -1 and ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 1: 
                                 e = 0 
                                 break 
                             if BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 1:                     
                                 if ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] == 0: 
                                     PorePoints.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
                                     HorPointsUpdater.append([point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)]) 
                                 ThroatPointChecker[point[0]+ eval(zUpdater),point[1]+ 
eval(yUpdater),point[2]+ eval(xUpdater)] += 1  
                             elif BinSam[point[0]+ eval(zUpdater),point[1]+ eval(yUpdater),point[2]+ 
eval(xUpdater)] == 0: 
                                 e = 0 
                                 break 
               
                     if (len(HorPointsUpdater) == 0  and len(VerPointsUpdater) == 0): 
                      break 
                     if len(Area) != 0: 
                      if len(PorePoints) * AreaUnit > min(Area): 
                       break 
                     HorPoints = [] 
                     for point in HorPointsUpdater: 
                         if ThroatPointChecker[point[0],point[1],point[2]] == 1: 
                             HorPoints.append(point) 
                     VerPoints = [] 
                     for point in VerPointsUpdater: 
                         if ThroatPointChecker[point[0],point[1],point[2]] == 1: 
                             VerPoints.append(point) 
                     HorPointsUpdater = [] 
                     VerPointsUpdater = [] 
             for point in PorePoints: 
                 Perimeter += NBMap[point[0],point[1],point[2]] 
             Area.append(len(PorePoints) * AreaUnit) 
             Perimeterlist.append(Perimeter)                               
         else: 
             Area.append(-1) 
             Perimeterlist.append(-1) 
             SF = -1 
 ID = Area.index(min(Area)) 
 if p in range(0,len(ThrX),int(len(ThrX)/10)): 
  print round(float(p)/len(ThrX)*100), '%finished' 
  Showtime(Start) 
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 return [p, Area[ID], Perimeterlist[ID]] 
  
if CalcSH == 'y': 
 pool = mp.Pool(processes=10) 
 results = pool.map(SFf, range(len(ThrX))) 
 pool.close() 
 pool.join() 
 Showtime(Start) 
 print datetime.datetime.now(), '\n' 
 
 print 'All shapefactors were found.', 
 Showtime(Start) 
print datetime.datetime.now(), '\n' 
 
if CalcSH == 'y': 
 tempresults = [] 
 for q in results: 
  tempresults.append(q) 
 tempresults.sort() 
     
for p in range(len(ThrIndex1)): 
 if CalcSH == 'y': 
  ThrArea.append(tempresults[p][1]) 
  ThrPeri.append(tempresults[p][2]) 
 
#find pores that are connected with multiple throats 
print 'Finding Multi-connected pores...', 
Showtime(Start) 
print datetime.datetime.now(), '\n' 
 
ThrIndices = [] 
for p in range(len(ThrIndex1)): 
    ThrIndices.append([ThrIndex1[p],ThrIndex2[p]]) 
    ThrIndices[p].sort() 
     
             
MultiConnectedIndices = [] 
seen = [] 
Counter = 0 
for p in range(len(ThrIndices)): 
 for k in range(len(ThrIndices)): 
  if ThrIndices[p] == ThrIndices[k] and p != k: 
   if[p,k] not in MultiConnectedIndices and [k,p] not in MultiConnectedIndices: 
    MultiConnectedIndices.append([p,k]) 
print 'total amount of multi-connected pores:' ,len(MultiConnectedIndices) 
print 'Multi-connected pores found.', 
Showtime(Start) 
print datetime.datetime.now(), '\n' 
print 'Removing multi-connected pores...' 
MultiPores = list(connected_components(MultiConnectedIndices)) 
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#add up the area, perimeter and radius of the throats, and take the average length to merge the 
pore bodies.  
Removables = [] 
for q in range(len(MultiPores)): 
 minRealThroatLength = RealThroatLength[MultiPores[q][0]] 
 minRealThroatLength1 = RealThroatLength1[MultiPores[q][0]] 
 minRealThroatLength2 = RealThroatLength2[MultiPores[q][0]] 
 for r in range(1,len(MultiPores[q])): 
  if CalcSH == 'y': 
   ThrArea[MultiPores[q][0]] += ThrArea[MultiPores[q][r]] 
   ThrPeri[MultiPores[q][0]] += ThrPeri[MultiPores[q][r]] 
  if minRealThroatLength > RealThroatLength[MultiPores[q][r]]: 
   minRealThroatLength = RealThroatLength[MultiPores[q][r]] 
   minRealThroatLength1 = RealThroatLength1[MultiPores[q][r]] 
   minRealThroatLength2 = RealThroatLength2[MultiPores[q][r]] 
   ThrX[MultiPores[q][0]] = ThrX[MultiPores[q][r]] 
   ThrY[MultiPores[q][0]] = ThrZ[MultiPores[q][r]] 
   ThrZ[MultiPores[q][0]] = ThrZ[MultiPores[q][r]] 
  ThrRadius[MultiPores[q][0]] += ThrRadius[MultiPores[q][r]] 
  Removables.append(MultiPores[q][r]) 
 RealThroatLength[MultiPores[q][0]] = minRealThroatLength 
 RealThroatLength1[MultiPores[q][0]] = minRealThroatLength1 
 RealThroatLength2[MultiPores[q][0]] = minRealThroatLength2 
Removables.sort() 
 
#Remove multiconnected pores 
ConfOne = [] 
ConfTwo = [] 
ThroatArea = [] 
ThroatPerimeter = [] 
ShapeFactor = [] 
ThroatRadius = [] 
LengthRatioFinal = [] 
RealThroatLengthFinal = [] 
RealThroatLength1Final = [] 
RealThroatLength2Final = [] 
ThrIndex1Final = [] 
ThrIndex2Final = [] 
ThrXFinal = [] 
ThrYFinal = [] 
ThrZFinal = [] 
CorNum = [0] * len(AllPB) 
for p in range(len(ThrIndex1)): 
    for q in range(len(Removables)): 
        if p == Removables[q]: 
            break 
        elif p != Removables[q] and q == len(Removables)-1: 
            ConfOne.append(ThrIndex1[p]) 
            ConfTwo.append(ThrIndex2[p]) 
            if CalcSH == 'y': 
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             ThroatArea.append(ThrArea[p]) 
             ThroatPerimeter.append(ThrPeri[p]) 
             ShapeFactor.append(ThrArea[p]/ThrPeri[p]**2.0) 
            ThroatRadius.append(ThrRadius[p]) 
            CorNum[ThrIndex1[p]] += 1 
            CorNum[ThrIndex2[p]] += 1 
            LengthRatioFinal.append(LengthRatio[p]) 
            RealThroatLengthFinal.append(RealThroatLength[p]) 
            RealThroatLength1Final.append(RealThroatLength1[p]) 
            RealThroatLength2Final.append(RealThroatLength2[p]) 
            ThrIndex1Final.append(ThrIndex1[p]) 
            ThrIndex2Final.append(ThrIndex2[p]) 
            ThrXFinal.append(ThrX[p]) 
            ThrYFinal.append(ThrY[p]) 
            ThrZFinal.append(ThrZ[p]) 
 
if CalcSH == 'n': 
 with open('Data/AREA.txt', 'r') as m: 
  with open('Data/PERIMETER.txt', 'r') as n: 
   with open('Data/SH.txt', 'r') as o: 
    AreaList = m.readlines() 
    PerimeterList = n.readlines() 
    SHList = o.readlines() 
 for p in range(len(AreaList)): 
  ThroatArea.append(float(AreaList[p])) 
  ThroatPerimeter.append(float(PerimeterList[p])) 
  ShapeFactor.append(float(SHList[p])) 
 
#Calculate the inradius using the shapefactor 
ThroatInRadius = [] 
for p in range(len(ThroatRadius)): 
 if ShapeFactor[p] < 0.048113: 
  ThroatInRadius.append(float(ThroatArea[p]*2)/ThroatPerimeter[p]) 
 elif ShapeFactor[p] > 0.0625: 
  ThroatInRadius.append(math.sqrt(float(ThroatArea[p])/math.pi)) 
 else: 
  ThroatInRadius.append(0.5*math.sqrt(float(ThroatArea[p]))) 
ThroatCombo = [] 
for p in range(len(ThroatInRadius)): 
 if ThroatRadius[p] > ThroatInRadius[p] and ThroatRadius[p] > 3.0: 
  ThroatCombo.append(ThroatRadius[p]) 
 else:  
  ThroatCombo.append(ThroatInRadius[p]) 
 
with open('Data/SH.txt','w') as TSF: 
 with open('Data/PIPER.txt','w') as TR: 
  with open  ('Data/AREA.txt', 'w') as TRA: 
   with open  ('Data/PERIMETER.txt', 'w') as TRP: 
    with open('Data/ThroatInradius.txt','w') as TIR: 
     for p in range(len(ConfOne)): 
      TSF.write(str(ShapeFactor[p]) + '\n') 
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      TRA.write(str(ThroatArea[p]) + '\n') 
      TRP.write(str(ThroatPerimeter[p]) + '\n') 
  
      TR.write(str(ThroatCombo[p]) + '\n') 
      TIR.write(str(ThroatInRadius[p]) + '\n') 
 
 
#Calculating pore body radius for aspect ratio 
PBRSegment = [] 
for p in SegmentVolume: 
 PBRSegment.append(((3.0*p)/(4.0*math.pi))**(1.0/3.0)) 
 
ThroatLength1 = [] 
ThroatLength2 = [] 
ThroatLength = [] 
for p in range(len(ThrIndex1Final)): 
 L1 = RealThroatLength1Final[p] 
 L2 = RealThroatLength2Final[p] 
 if L1 <= 0: 
  print L1 
  L1 = 0.5 
 if L2 <= 0: 
  print L2 
  L2 = 0.5 
 k1 = PBRSegment[ThrIndex1Final[p]]/ThroatInRadius[p] 
 k2 = PBRSegment[ThrIndex2Final[p]]/ThroatInRadius[p] 
 if k1 < 1: 
  k1 = 1.0  
 if k2 < 1: 
  k2 = 1.0 
 Length1 = L1 * (1+k1+k1**2)/(3*k1**3) 
 Length2 = L2 * (1+k2+k2**2)/(3*k2**3) 
 ThroatLength1.append(Length1) 
 ThroatLength2.append(Length2) 
 ThroatLength.append(Length1+Length2) 
 
#assign value to throats using the length and the inscribed sphere radius. This volume is subtracted 
from the pore bodies it connects to 
TotalVolume = sum(SegmentVolume) 
 
for p in range(len(ThroatRadius)): 
 SegmentVolume[ThrIndex1Final[p]] -= ThroatCombo[p]**2 * math.pi*ThroatLength[p]   
 SegmentVolume[ThrIndex2Final[p]] -= ThroatCombo[p]**2 * math.pi*ThroatLength[p] 
 
#Calculating PORER for PoreFlow 
PBRSegment = [] 
counter = 0 
for p in range(len(SegmentVolume)): 
 if SegmentVolume[p] <= 0: 
  SegmentVolume[p] = 1.0 
  counter +=1 
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 PBRSegment.append(((3.0*SegmentVolume[p])/(4.0*math.pi))**(1.0/3.0))  
     
   
print '\nTotal volume:', TotalVolume, '\nPore body volume:', sum(SegmentVolume), '\nThroat 
volume:', TotalVolume-sum(SegmentVolume), '\nRatio pore body volume to total volume:', 
sum(SegmentVolume)/TotalVolume , '\nSegmented volumes smaller than 0 =', counter, '\n' 
 
print 'Multi-connected pores removed.' 
print 'Writing output files...', 
Showtime(Start) 
print datetime.datetime.now(), '\n' 
#write output files that could be used as input in PoreFlow                                
with open('Data/PORERinscr.txt', 'w') as PBRF: 
 with open('Data/PORER.txt', 'w') as PORER: 
  with open('Data/PORE_LOC.txt', 'w') as PBL: 
   with open('Data/CoordinationNumbers.txt','w') as CN: 
    with open('Data/PORE_INLET.txt', 'w') as INOUT: 
     for p in range(len(PBR)): 
      PORER.write(str(PBRSegment[p]) + '\n') 
      CN.write(str(CorNum[p]) + '\n') 
      INOUT.write(str(Boundaries[p]) + '\n') 
      PBRF.write(str(PBR[p]) + '\n') 
      PBL.write(str(AllPB[p]) + '\n') 
 
with open('Data/CONF.txt', 'w') as Conf: 
 with open('Data/PIPEL.txt'  ,'w') as TL: 
  with open('Data/PIPERinscr.txt','w') as inscr: 
   for p in range(len(ConfOne)): 
    Conf.write(str(ConfOne[p]+1) + '\t' + str(ConfTwo[p]+1) + '\t1\n') 
    TL.write(str(ThroatLength[p]) + '\n') 
    inscr.write(str(ThroatRadius[p]) + '\n') 
               
#Create vtk files with pore body throats 
print'Creating vtk file...' 
SkVTK = open('Data/Skeleton.vtk', 'w') 
SkVTK.write('# vtk DataFile Version 2.0\nSkeletonoutput\nASCII\n\nDATASET 
UNSTRUCTURED_GRID\n') 
SkVTK.write('POINTS ' + str(len(AllPB)) +  ' float\n') 
for p in AllPB: 
    SkVTK.write(str(p)+'\n') 
 
SkVTK.write('\nCELLS ' + str(len(ConfOne)) + ' ' +str(len(ConfOne)*3) + '\n') 
for p in range (0, len(ConfOne)): 
    SkVTK.write('2\t' + str(ConfOne[p]) + '    \t' + str(ConfTwo[p]) + '\n') 
 
SkVTK.write('\nCELL_TYPES ' + str(len(ConfOne)) + '\n') 
for p in range (0,len(ConfOne)): 
    SkVTK.write('3\n') 
     
SkVTK.write('\nPOINT_DATA '+ str(len(PBR)) +'\nSCALARS PoreBodyRadius float\nLOOKUP_TABLE 
default \n') 
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for p in range (len(PBR)): 
    SkVTK.write(str(PBR[p]) + '\n') 
 
SkVTK.write('\nSCALARS VolumeEquivalentRadius float\nLOOKUP_TABLE default \n') 
for p in range (len(PBRSegment)): 
    SkVTK.write(str(PBRSegment[p]) + '\n')    
 
SkVTK.write('\nSCALARS Boundaries float\nLOOKUP_TABLE default \n') 
for p in range (len(Boundaries)): 
    SkVTK.write(str(Boundaries[p]) + '\n')                     
 
SkVTK.write('\nSCALARS CoordinationNumbers float\nLOOKUP_TABLE default \n') 
for p in range (len(CorNum)): 
    SkVTK.write(str(CorNum[p]) + '\n') 
 
SkVTK.write('\nCELL_DATA '+ str(len(ThroatRadius)) + '\nSCALARS ThrRadius float\nLOOKUP_TABLE 
default \n') 
for p in range (0,len(ThroatRadius)): 
    SkVTK.write(str(ThroatRadius[p]) + '\n') 
     
if CalcSH == 'y': 
 SkVTK.write('\nSCALARS Shapefactor float\nLOOKUP_TABLE default \n') 
 for p in range (0,len(ShapeFactor)): 
  SkVTK.write(str(ShapeFactor[p]) + '\n') 
 
 SkVTK.write('\nSCALARS ThroatArea float\nLOOKUP_TABLE default \n') 
 for p in range (0,len(ThroatArea)): 
  SkVTK.write(str(ThroatArea[p]) + '\n') 
 
 SkVTK.write('\nSCALARS ThroatPerimeter float\nLOOKUP_TABLE default \n') 
 for p in range (0,len(ThroatPerimeter)): 
  SkVTK.write(str(ThroatPerimeter[p]) + '\n')                 
SkVTK.close() 
 
End = time.time() 
Elapsed = End - Start 
print 'Finished. it took '+ str(round(Elapsed)) + 's to run' 
print datetime.datetime.now(), '\n' 
#Show Seal of Approval if everything went ok.  
print '             .---.                                 ' 
print '            /o   o\                                ' 
print '         __(=  "  =)__                             ' 
print '          //\`-=-`/\\\                              ' 
print '             )   (_                                ' 
print '            /      `==-._                          ' 
print '           /       \     ``==.                     ' 
print '          /  /   \  \         `=..--._             ' 
print '      ___/  /     \  \___      _,  ,  \            ' 
print '     `-----`"""""""`------`"""` \  \__/            ' 
print '                                 `-`               ' 
print '              Seal of Approval                     ' 


