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2 Abstract

Remote sensing is the process of obtaining informative data about an object
from afar. While this applies to many different methods of data collection,
as well as different domains to collect data from, there is a universal constant
that the technology and recording instruments utilized towards this purpose are
being improved day by day. However, for every piece of higher quality data
collected from these new instruments, there still exists much more data from
now lower quality measurement instruments that can not provide the historic
significance nor insights that will begin to be made with increases in accuracy.

Machine learning has shown the capability to recognize very subtle patterns
between different types of data. In recent years, one such method known as
Generative Adversarial Networks (GANs) has displayed much success in artifi-
cially creating new data based on given input by learning from corresponding
example output. Through this research, we show the potential for using the
complex generative abilities of GANs to improve the accuracy and quality of
remote sensing data taken from older instruments by using more precise data
from newer technology as examples to learn from.

We take data obtained from two atmospheric satellites utilizing two Ozone
measurement instruments TROPOMI and its predecessor OMI that collect Ni-
trogen Dioxide (NO2) readings in the troposphere, early indicators of pollution,
and use it to create paired datasets based on location and the time a location
was crossed over by each satellite. Using this training set, we train an En-
hanced Super Resolution GAN (ESRGAN) to improve both the resolution and
measured values of OMI data used as input, inspired by TROPOMI training
examples.
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3 Introduction

The ability to process and analyze data is a trait both unique to, and highly
sought after by humans as doing so provides us a better understanding of that
data, and by extension, our environment. This understanding inevitably gives
us greater freedom and flexibility to act upon that environment and change it to
better suit our needs. Therefore, it goes without saying that methods to better
analyze or improve data are just as important. Of the different environments
that people are interested in understanding, few may be of as large a scope as
the Earth itself. Remote sensing is often being used to collect valuable data
about the Earth with the use of expensive equipment such as high flying air
crafts or satellites. This paper aims to provide the basis for a new method
of artificial data enhancement for remote sensing data. It will focus on the
collection and improvement of complex remote sensing data, primarily nitrogen
dioxide readings in the troposphere.

3.1 Background

One method for processing complex data that has seen marked success in re-
cent years is known as machine learning. Machine learning involves making
use of a computer’s superior processing speed and memory to better perform
complex algorithms without explicit instructions [22]. It includes algorithms
necessary to study, and even improve upon data. One such method involves
passing data through a layer of nodes that each add a weight to the input, rec-
ognizing and remembering patterns in the data. This framework of modeling,
called an artificial neural network, is named after the collection of neurons that
analyze information in biological brains [13]. Taking this concept even further,
if more layers are added to the neural network creating a deep neural net, the
resulting algorithm is referred to as deep learning. Deep learning has thus far
shown tremendous promise in accurately analyzing large sums of data reaching
conclusions that people cannot imagine. Using deep learning, neural networks
can even learn to produce data rather than just analyze it. One such appli-
cation of this is known as super resolution, that is, improving the quality of
low resolution images through predictions of pixel values made by the neural
network [29]. One type of implementation in general has seen rapid support in
recent years for its ability to produce new and high quality of data. Generative
Adversarial Networks, or GANs, work by pitting two separate neural networks
against each other as adversaries in a zero sum game [5]. One network, called
the generator, attempts to produce data that will successfully fool the other,
while its opponent, the discriminator, attempts to differentiate fake data from
real. As both networks become successively better at outwitting each other,
eventually the fake data becomes more or less indistinguishable from the real.

Currently, two satellites equipped with gas measurement tools called TROPOMI
and its predecessor, OMI, are measuring the Earth’s air quality in close succes-
sion. NASA is planning to move the OMI satellite to a shifted orbit to measure
the air quality at a different time. By using the aforementioned techniques to
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produce data, it should also be possible to perform super resolution, or forcibly
improving the resolution between two image pairs of lower and higher resolu-
tion respectively, to enhance the data quality of the OMI satellite to that of
the TROPOMI. To effectively gain data equal to that of two TROPOMIs with-
out building and launching an extra satellite would greatly increase the data
gathering capabilities at reduced cost. As there are many other factors in play
than simple image resolution in the data containing air quality, this isn’t truly
a super resolution task. Not only is the data being enhanced not of images, but
of highly precise gas readings, but also aren’t exact pairs due to time passed
between readings and weather conditions. To counteract these limitations, our
method will rely on the more perceptually advanced learning method of GANs
to overcome it. The question remains whether it will be possible to enhance
the data acquired from OMI using the highly adaptive and replicative nature of
GANs to an acceptable degree.

While GANs have shown great potential in the field of the reproduction and
improvement of data, there are still some problems they face which can prevent
successful application. The most commonly occurring issue perhaps, is referred
to as mode collapse, where the generator learns to produce a few successful ex-
amples of data and so will not generate any others. On the opposing side, it’s
possible for the discriminator to become too successful at discerning real data
from fake resulting in a reduced generator gradient preventing the generator
from further learning. What may be the most important issue, however, is that
of non-convergence [5]. The ultimate goal of a GAN’s zero sum game, is reach-
ing a converging point where the discriminator can no longer tell the difference
between real and fake data. In practice this is very difficult to achieve as the
results instead tend to oscillate, and destabilize, never reaching convergence.
These issues will be explained in more detail in section 4.6.3. Some implemen-
tations of GANs have focused on reducing the occurence of these issues in order
to achieve an overall better performance. For instance, one specific implementa-
tion, known as CycleGAN, involves a cyclic movement of data such that what is
generated as output, can also be fed back into the system in reverse to test if it
indeed produces the same input to see if mode collapse has occurred and train to
lessen future occurences [1]. Through this research, we seek to answer whether
the accuracy and quality of OMI-collected satellite data can be improved to
that of TROPOMI using GAN related techniques.

3.2 Research Questions

In summary, the following research questions can be clearly defined and pursued
through the rest of this paper.

1. Can GANs be leveraged to improve complex data relying mainly
on perceptual learning?
2. Can data collected from the low resolution OMI satellite be im-
proved to the resolution of TROPOMI using GANs data enhance-
ment techniques?
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3. Will the accuracy of OMI data readings suitably improve when
enhanced to TROPOMI level resolution?

3.3 Motivation

With the increasing issue of air pollution and the effects it has on our environ-
ment, it becomes ever more necessary to monitor and track the changes and
consequences to air quality. The ability to improve the results of our older tech-
nology has wide reaching applications not only in allowing us to obtain more
frequent and higher quality air monitoring with the current two satellites, but
also in having the means to further improve this data in the future as well.
This not only concerns future data, but also past data. The OMI satellite cur-
rently has over 12 years of historical data that could stand to be improved to
the level of TROPOMI, allowing many more trends and statistics to be made
which weren’t possible before. GANs show a remarkable ability to generate
data compared to earlier attempts at generative machine learning algorithms.
This in turn makes them a suitable method for analyzing and producing remote
sensing data which can also be made up of a large amount of complexity that
can thus be difficult to successfully derive patterns from. A successful prototype
applied to the improvement of NO2 data in the troposhpere could be extended
to also improve methane, or C02 data among others. Following this reasoning,
data improvement of obsolete models to match newer advancements could be
utilized in an even wider variety of domains not limited to remote sensing.

3.4 Contributions

Through this work, contributions have been made in the form of methods for
both collecting and enhancing complex NetCDF NO2 tropospheric data. More
specifically, we have created a process that takes very low level NO2 data with
high difficulty of readability and reformats it into easily displayable and pairable
datasets for both OMI and TROPOMI by location and time. While this con-
tribution is significant in itself, we have also modified and trained a variant
of Xintao’s Enhanced Super Resolution GAN (ESRGAN) [27] on this paired
data to accept and then produce OMI and generated TROPOMI swaths of
data respectively displayable over a map of the Earth. These contributions
may be useful on their own for researchers and analysts of tropospheric data or
by providing the basis of an application that could enhance and measure OMI
tropospheric data.

3.5 Outline

In section 4, we’ll examine the various literature explaining more in depth about
the relevant data, methods of enhancement, GANs, and other concepts pre-
sented in this thesis. Section 5 will cover details behind popular and successful
GANs as perspective candidates for the main tasks that will be explored. Sec-
tion 6 will give a brief overview of other projects with similar aims to this one in
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using GANs to act on and improve remote sensing data. Section 7 gives a more
detailed account of the data used for this task in addition to how it was collected
and limitations associated with it. In section 8, we’ll explain the methods we
used to create the datasets used for training, as well as setting up the training
process to produce the results. Finally the results will be overviewed in section
9 followed by the conclusion to this paper in section 10.

4 Literature

In this section, various technologies and terms relevant to understanding the
proposed concepts and research focus will be explained. It will begin with brief
explanations of the data and where it comes from, followed by what machine
learning is, and specifically neural networks. The roots of the main task in-
volving super resolution will also be detailed. Finally, the primary focus of this
paper, pertaining to GANs, will be described in more detail.

4.1 Remote Sensing

Remote sensing, from the broadest definition, is being able to obtain information
about an object from a distance without touching it. This applies to not just
physical objects like land or water surfaces, but also various kinds of energy,
temperature, gasses, or the atmosphere to list a few examples [33]. Many kinds
of measurement tools have been developed specifically for this purpose, and
have also been attached to far ranging vehicles such as aircrafts, ships, or even
satellites orbiting the Earth from space. Gasses in the Earth’s atmosphere can
be measured by satellite instruments recording the UV backscatter as sunlight
hits these gasses in the troposphere and stratosphere [36].

4.2 Troposphere

The troposphere is the first layer in the Earth’s atmosphere, and also where
most weather events occur. As it is closest layer to the surface, it functions as
an early indicator of greenhouse gasses released into the air. Several gasses can
be measured in this layer of the atmosphere including nitrogen dioxide (NO2),
carbon monoxide (CO), and ozone. There are several reasons we have chosen to
use NO2 measurements for this work. Both CO and ozone would also be useful
gasses to improve the accuracy of current measurements, however, CO is not
among the available measurements taken by the OMI instrument and ozone has
too short of a lifetime to reliably compare between OMI and TROPOMI.

NO2 on the other hand is easily detectable and measureable and has had a
long history of being measured from space. It’s well understood what chemical
reactions result from NO2 as well as what causes it to appear in the atmosphere.
NO2 is also a precursor for many other gasses that are caused by pollution [36].
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4.3 Machine Learning

Machine learning is a method that uses the significant processing and compu-
tation power that computers now possess to formulate complex algorithms to
process data [22]. Given large amounts of relatable data, a machine can draw
inferences from that data and recognize minute patterns that a human might
otherwise be unable to observe. Using the machine’s larger memory for bytes
of data, these patterns can continuously be compared with more and more data
and slowly refined giving the algorithms more certainty. This is the learning
phase for the machine as it must be given copious amounts of data in order
to successfully draw useful inferences. Two issues that can occur with machine
learning, however, is that of underfitting and overfitting the data. In the case
of underfitting, the complexity of the model might be too low that it is unable
to meaninfully distinguish between different kinds of data. This prevents the
model from learning anything useful. On the opposite side, overfitting occurs
when the parameters given to the model matches the data too closely such that
it becomes biased to the observed data and can not gain any useful information
from new data that is given [22]. In order to prevent underfitting and overfitting,
the model should be complex enough that conclusions can be drawn from the
data, as well as having a large enough amount of data that a bias isn’t formed.

4.4 Neural Networks

Artificial Neural Networks (ANNs) were devised based on the biological repre-
sentation of the brains of animals. Basically a weighted directed graph is created
of nodes representative of artificial neurons that are connected by directed edges
containing weights [13]. The graph is made up of several layers including an
input and an output layer along with one or more hidden layers between them.
This structure forms a connection between the inputs of each neuron and their
ouputs. A general example of an ANN is shown in Figure 1. Input flows through
the different nodes of the input layer, modified by the the different weights of
each node in the hidden layer before finally producing output from the output
layer.

Figure 1: Artificial Neural Network Architecture [31]
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There are two types of architectures that are commonly seen in ANNs, feed-
forward and feedback networks. In feedback networks, connections are made
between nodes in both directions, allowing for loops to occur. They are in this
way dynamic systems that can modify the neurons when new input appears
to reach new network states. Unlike feedback, feed-forward networks lack any
sort of looping and are only uni-directed graphs. These networks are static and
produce a single set of output values for each input [13]. The most commonly
used type of feed-forward network is the multilayer perceptron. Multilayer per-
ceptrons are networks that contain multiple hidden layers in addition to the
input and output layers, that are feed-forward connected without any connec-
tions between nodes of the same layer. The popularity of this structure stems
from the development of the back-propagation learning algorithm that employs
gradient descent to determine the weights of each node in the perceptron [13].
Back-propagation works by computing the error observed in the output layer of
the network, and then propagating those values backwards through the network
updating the weights of each node with the new corresponding deltas. Effec-
tively this method allows the network to eventually learn the weights needed
to produce accurate output. This learning can either be carried out in a super-
vised or unspervised manner. Supervised learning involves using data for which
a correct answer can be determined from the output of the network. Using those
answers as a guide, the network can then learn to improve and adjust. Unsuper-
vised learning in contrast forgoes this student-teacher relationship. It tries to
find patterns just within the different inputs of the dataset to understand and
organize those patterns into categories [13]. Although both methods of learning
have specific benefits, GANs generally make use of supervised learning multi-
layer perceptrons in order to teach the generative model from back-propagated
error.

4.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special instantiation of ANNs.
They’re set up as a series of stages such that inputs pass through convolutional
layers, followed by pooling layers, followed by non-linearities.

Figure 2: Convolutional Neural Networks [32]

The convolutional layer is made to detect features present in local conjunc-
tions, while the pooling layer merges semantically similar features [24]. As
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shown in Figure 2, a filter passes over the input data which splits that data into
multiple feature maps. Those feature maps are then pooled together which can
then be split up into more feature maps with additional convolutional layers
and then pooled again. After the defining and merging features in each of the
layers, the network can perform back-propagation to update and train all of the
weights like a standard ANN. For these reasons, CNNs have been very useful
in networks that perform object detection as well as feature recognition. GANs
also benefit greatly from CNNs as feature detection is extremely useful in data
generation.

4.5 Super Resolution

The concept of super resolution stems from the wish to improve the innate
resolution of viewed images. The ability to improve data quality, as mentioned
earlier, is highly sought after in data analytics. This is especially true when
concerning satellite and aerial imagery which the resolution of is not always
good enough to ascertain distinguishable features from. Normally, when an
image is upscaled from a low resolution to high, it inevitably will suffer from
blurring, as it must create new pixels to fill in the gaps between the originals
[29]. Several methods exist for trying to do this already with standard image
transformation such as pixel replication or cubic spline interpolation do little to
avoid these problems [29]. Due to the fact that naive pixel interpolation wasn’t
enough to improve resolution data, super resolution came about as a method
using learning-based networks to predict the missing data needed to transition
from lower to higher resolutions of images using image generation.

4.6 GANs

The GAN framework, proposed by Goodfellow et al. in 2014, has seen much
greater success compared to other existing deep generative models [5]. As men-
tioned earlier, the idea is that two networks, a generator and a discriminator,
compete in a zero sum, minimax, game where each network tries to outdo the
other:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

Using two multilayer perceptron networks, D and G, a value function V(D, G)
is used to calculate the log liklihood between discriminated real data D(x) and
discriminated fake data D(G(z)). D tries to maximize this probability, whereas
G tries to minimize it [5]. This calculation becomes the adversarial loss with
which the generator and discriminator use to adjust the weights of each node
for a better result. You can picture a counterfeiter(G) and a police officer(D)
working to produce and detect fake currency respectively. As each network
sequentially learns from the other about the difference between real and fake,
both networks improve upon their own tasks until real becomes indistinguishable
from fake. In this way, the system tries to reach a nash equilibrium, where each
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network can do no better than the other [5]. The basic architecture of a GAN
can be viewed in Figure 3. The figure depicts two generators, D and G, with
paired data z and x being fed into the generator and discriminator rexpectively.
The generated data G(z) is compared the real data x within the discriminator
which produces pairs of real and fake data that both networks can learn from.

Figure 3: GAN architecture [14]

4.6.1 DCGAN

Since GANs rely on ANNs by their intrinsic nature, the complexity and efficiency
of those networks are extremely important to the efficacy of the GAN itself. As
deep convolutional networks have proven to be very effective learning architec-
tures for conventional ANNs, it goes without saying that these methods would
be desirable in GANs as well. Deep Convolutional GANs (DCGANs), as could
be guessed, are GANs utilizing deep convolutional networks in their implemen-
tation, which historically, had met with little original success [21]. Three key
points differentiate the first successful DCGAN from previous attempts. First,
they replaced all pooling layers with strided convolutions so that the networks
would be able to learn spatial upsampling. They also normalized the batch data
being presented to the generator and discriminator to have zero mean and unit
variance to better stabilize learning. They also removed any fully connected
hidden layers to further improve stability at the cost of convergence speed [21].
Due to their improvements in stability and accuracy, DCGANs have been used
as the core structure for many more improvements in GAN training.
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4.6.2 SRGAN

SRGAN, or Super Resolution GAN, as the name suggests, is a GAN imple-
mentation focused towards performing super resolution. SRGAN replaces the
usual mean squared error content loss a feature map loss that is more invari-
ant to changes in pixel space [2]. This is done by optimizing each block of the
model using the perceptual loss gained from the GAN framework. This change
is helpful for improving image resolution because the error values between the
pixels won’t end up changing that much when increasing resolution, however
the space each pixel takes up will inevitably increase and is more beneficial for
the generator to learn from. SRGAN generally takes input images that are one
fourth the resolution of the high resolution output and real images that they’re
paired against [2].

4.6.3 Issues

Despite the goal of the minimax game played by GANs is to reach an equilib-
rium, this is actually very difficult in practice. In fact, the main issue that GANs
face is that of non-convergence [15]. Balancing the learning of the discriminator
and generator can be like walking a tight-rope. If the learning rate of the gener-
ator is too large, it can continuously overshoot the optimal solution without ever
reaching the point of convergence with the discriminator. On the other hand, if
the discriminator learns much more quickly than the generator, then the system
could run into the vanishing gradient problem, where the discriminator starts
rejecting the data created by the generator with high confidence, causing the
generator’s gradient to diminish, and subsequently, no longer improve [15].

Another issue that can cause trouble when attempting to train a GAN is that
of mode collapse. It occurs when a generator ends up mapping multiple inputs to
the same output, limiting the amount of samples that can be produced from real
data. This can happen when the generator learns few successful occurrences that
are able to fool the discriminator and so draws the wrong conclusions from that
[15]. According to a proof provided by Barnett(2018), generators are actually
forced towards mode collapse unless the discriminator has already been trained
to optimality [15]. This, however, directly contradicts our understanding that
the generator and discriminator must learn at an equal pace.

5 Known Methodologies

In order to create the seemingly paradox nature of a stable GAN, many tech-
niques and strategies have been created to varying success. Although these
different implementations all seek to stabilize the process of training GANs,
they each present very different ways of doing so. In this section we will detail
some different methods that have enjoyed increased popularity in recent years.
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5.1 CycleGAN

A further implementation of the GAN framework, called CycleGAN, involves
the addition of an extra pair of generator and discriminator networks. Like the
original GAN, CycleGAN defines a loss function based on the minimax game
between each pair of networks:

LGAN (G,Dz, z, x) = Ex∼p data (x) [logDz(x)]

+ Ez∼p data (z) [log (1−Dz(G(z))]
(2)

LGAN (F,Dy, x, z) = Ez∼p data (z) [logDy(z)]

+ EG(z)∼p data (x) [log (1−Dy(F (G(z)))]
(3)

While equation 2 depicts the standard adversarial loss seen in a normal GAN,
equation 3 represents the adversarial loss of the generated output, G(z), being
used to generate fake input, F(G(z)), that can be be checked against actual
input, z, by the new discriminator Dy. Using the second pair of networks, the
output from the original generator can be fed back into the new networks to
try to reproduce the original input. Figure 4 illustrates how the process works.
The fake output from the first pair of networks becomes the input of the second
pair, using the original input as the new paired real data to produce a second
set of real and fake data. By doing so, the system can determine a new concept
referred to as cycle consistency [1].

Figure 4: Cycle GAN architecture

Using cycle consistency, CycleGAN is able to also track the cycle consistency
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loss defined by the following loss function:

Lcyc(G,F ) = Ez∼p tan(z) [‖F (G(z))− z‖1]

+ Ey∼p data (y) [‖G(F (y))− y‖1]
(4)

Equation 4 tries to incentivize the behavior to maintain forward cycle consis-
tency and backward cycle consistency by calculating the difference between the
generated fake input, F(G(z)), and actual input, z, as well as generated fake
output, G(F(x)), and real output, x [1]. By ensuring that the data is transitive,
CycleGAN becomes an effective means to prevent mode collapse from occuring
during training [1]. The total loss of the framework is then defined as the sum
of each individual loss:

L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λLcyc(G,F )

(5)

λ is used as a constant to control the importance of of the cyclic loss while the
model is learning [1].

5.2 ProGAN

One suggestion that has been proposed for the stabilization of training GANs
during image generation is through the progressive growing of layers, a technique
labeled ProGAN [3]. The GAN begins by training on the images at a low
resolution until convergence is reached, and then continues training at higher
and higher resolutions in incremental steps. Not only does this aid in stabilizing
the gradient of the generator while training, but also significantly improves the
speed as the bulk of the converging step occurs at the lowest resolutions causing
the time necessary to reconverge as additional features appear to be lowered [3].

Figure 5: ProGAN method of learning on celebA dataset generation [3]

The process starts by downsampling the images passed as noise into the
generator network as well as the real data that the output is compared with by
the discriminator. As the model converges, the generator should be producing
fake data directly comparable to real at that resolution. The generator then
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starts to upsample as an additional step to learn to produce the data at a
slightly higher resolution while the discriminator again compares it to real data
that has been downsampled slightly less. This continues until the generator has
learned to produce data of the original resolution. Figure 5 depicts an example
of this occurring using images of celebrities that have been downscaled to 4x4
pixel resolution which progressively is increased to the original size of 1024x1024
pixels during training.

5.3 WGAN

Wasserstein GAN (WGAN) makes use of the Wasserstein/Earth-Mover (EM)
distance calculation when calculating loss, rather than the traditional adversar-
ial loss described in section 4.6 to achieve the following loss function:

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x∼Pg

[D(x))] (6)

In WGAN, the descriminator is referred to as the critic, as it is no longer used
for classifying real or fake images, and instead uses the wasserstein loss to report
to the generator the distance to the expected result [10]. Using this feedback,
the generator can continue learning to improve regardless of whether the dis-
criminator has already reached the optimal state or not. This has the desired
effect of stabilizing the system allowing it to reach a convergence, removing
mode collapse, as well as reducing the loss of a generator gradient [10]. Despite
these benefits however, it still suffers from an issue where the weights of each
node must be clipped to enforce the Lipschitz constraint. While this clipping
is necessary to force convergence between the generator and discriminator to
a single value; a large clipping parameter can significantly increase the time it
takes for the critic to reach optimality while a small clipping parameter can
cause the system to lose a larger portion of the generator gradient [10].

5.3.1 WGAN-GP

In order to solve this issue, WGAN-GP was proposed to eliminate weight clip-
ping, and instead enforce the Lipschitz constraint through a gradient penalty
that is added as an extra loss value:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Pẋ

[
(‖∇x̂D(x̂)‖2 − 1)

2
]

(7)

Rather than clipping the weights to reach convergence, gradient penalty instead
encourages the losses for the generator and discriminator to each approach a
constant convergence through a two-sided penalty [11]. By allowing each net-
work to still learn naturally while assisted by a penalty, the method avoids the
pitfalls of the original clipping strategy.

5.4 ESRGAN

Enhanced Super Resolution GAN (ESRGAN) expands on the approach taken
by SRGAN but making some additional improvements. They first expand their
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network structures to become much deeper, using what they introduce as a
Residual-in-Residual Dense Block (RRDB) which they state has a higher capac-
ity and improves its training ability [27]. They also remove any Batch Normal-
ization in their networks in favor of residual scaling and smaller initializations to
compensate for the deeper network. Additionally they make use of another pub-
lished GAN implementation called Relativistic average GAN (RaGAN) for their
discriminator which improves the information the generator recieves regarding
texture details of the image [27].

To evaluate the effectiveness of ESRGAN, they used a no-reference quality
metric used for single-image super resolution (Ma score) as proposed by Ma et
al. combined with Naturalness Image Quality Evaluator (NIQE) such that:

perceptual index =
1

2
((10−Ma) + NIQE) (8)

Lower perceptual index shows better perceptual quality. This perceptual index
was taken over the Root-Mean-Square Error (RMSE) for the final result. ES-
RGAN was additionally evaluated using Peak Signal-to-Noise Ratio (PSNR) in
comparison to other known SR algorithms [27].

ESRGAN consistently showed better results with regards to PSNR compared
to other known SR methods. ESRGAN also won first place at the 2018 PIRM-
SR Challenge, competing for best super resolution algorithms, with the lowest
perceptual index [27].

6 Comparison with other Projects

In this section, some previous implementations of GANs that performed the
same tasks detailed by this paper will be examined. Each of these implementa-
tions saw some notable success at the task attempted and so will make a useful
comparison for the potential improvements offered by the proposed methodol-
ogy.

6.1 Cycle-Dehaze

Cycle-Dehaze is a particular implementation of CycleGAN modified for per-
forming haze removal. An extra cyclic perceptual consistency loss was added to
the model to allow a larger comparison of feature space rather than pixel space.
The new loss function for Cycle-Dehaze is updated such that:

L (G,F,Dx, Dy) = LCycleGAN (G,F,Dx, Dy)

+ γ ∗ LPerceptual(G,F )
(9)

The original cycle consistency inherent in CycleGAN improves the PSNR while
the new perceptual loss ensures the sharpness of the images used [28].

Cycle-Dehaze was tested on 1449 pairs of images using synthesized haze and
increased that number further using data augmentation methods to produce
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modified versions of the original dataset. Their model was evaluated using
PSNR and SSIM. These measures were compared against CycleGAN as well
as the results of the NTIRE 2018 challenge on single image dehazing. Cycle-
Dehaze was further tested on different datasets to check for overfitting on a
singular dataset [28].

The results of this evaluation put Cycle-Dehaze above CycleGAN in PSNR
and SSIM, but lower than the best results of the challenge. The author concedes
that due to GPU limitations, their algorithm was forced to downscale images
first before training and then re-upscaling them which can result in a loss of
PSNR [28]. However, the results on cross-dataset testing was very promising,
as the values of PSNR and SSIM were still high and even as good as CycleGAN
on a single dataset. This shows the solution was not just overfitted to the
challenge dataset, unlike many algorithms used for the challenge, and showed
promise in being used on real world data.

7 Data

7.1 Collection

Data was collected for this task from the Tropospheric Emission Monitoring
Internet Service website (TEMIS) [35]. This website, in cooperation with the
European Space Agency (ESA), and hosted by the Dutch Meteorogical Institute
(KNMI), provides a service for browsing and downloading atmospheric satellite
data products. It gives access to products that consist of tropospheric trace
gasses, aerosol concentrations, UV products, cloud information, and surface
albedo climatologies [35]. These various sets of data come from different satellite
instruments, including the OMI and TROPOMI measurement tools which are
of interest for this paper. OMI and TROPOMI data were downloaded for the
entire period between February 02, 2018 and July 06, 2019, providing roughly a
year and a half of comparable OMI and TROPOMI data. This amount of data
came out to roughly two terabytes of disk space. Each day contains roughly
14 and 12 OMI and TROPOMI files respectively, with each file pertaining to a
swath of NO2 measurement data recorded as left reflected off the surface and
through the atmosphere as the satellite passed over the Earth in a southward
arch between each poles.
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Figure 6: Single swath taken from OMI satellite data (left) and from TROPOMI
satellite data (right)

Altogether, these files compose a full coverage of the Earth’s surface through
the course of a single day. Measurment time occurs roughly over 100 minute
increments, only taking measurements of the Earth in coordination with light
from the Sun. Each file contains data in NetCDF format, which is a common
method for storing atmospheric array oriented data. Within, are arrays rep-
resenting the NO2 values of the swath, corresponding latitude and longitudes,
time at which each latitude is recorded by the measurement instrument, as well
as various metadata such as quality, cloud coverage, and totals.

7.2 Challenges of the Data

While having this data was a useful starting point, there were many issues
in getting started with processing it. For one, in order to fully leverage the
learning capabilities of the GAN, a reliably paired dataset between OMI and
TROPOMI was needed. However, in order to do so, each data pair must be
examining both the same location and time to accurately compare features. To
make this task even more difficult, the satellites recording OMI and TROPOMI
data do not follow the same orbit, which means that regions recorded by both
satellites aren’t guaranteed to have been seen within a suitable timeframe of
one another. Also, this limitation causes the raw data that does overlap and
has been recorded at close to the same time to be skewed in representation
compared to each other making it very difficult to select any specific area from
both datasets. So of the two requirements for paired data, that of both temporal
and geographical, neither are possible using the data in its raw form.

In addition, in order to train a machine learning model, a standard shape
of input must be ensured across all the data that will be passed to the model.
The data received from the satellite on the other hand, has no consistent shape,
with the number of rows contained within each file varying widely. There also
is not a precise difference in scale between the areas represented by OMI and
TROPOMI, with some regions showing a difference in resolution along the x-axis
by a factor of 7.5 all the way up to a factor of 8.5 in other regions. This variability
is caused by the refraction of light through the atmosphere before reaching the
sensor recording the data values. There are a multitude of different conditions
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in the atmosphere that can distort the light which not only affects resolution but
also the latitude and longitude positions of specific data points. The latter effect
also contributes to the difficulty in pairing the data as specific NO2 features
could shift by several kilometers between each satellite. The former effect of
refraction also brings up another issue with training our model, specifically when
attempting to perform a super resolution task, which is the awkward resolution
scales that the model is attempting to improve between OMI and TROPOMI.
The raw TROPOMI data showed an estimated resolution increase of two along
the y-axis and eight in the x-axis. While it should be possible in theory to
perform this kind of super resolution, it further complicates our task which is
traditionally meant for improving the resolution of image data by a constant
square scale.

One other point about the data, is that the OMI and TROPOMI data are
not represented on the same unit scale. OMI is recorded in molecules per square
centimeter while TROPOMI is recorded in mols per square meter.

8 Methodology

In this section, we discuss how each of the challenges in the data were adressed
in order to create a working dataset for our model, as well as explaining the
model being used for training and the steps taken in order to train the model.

8.1 Creating Trainable Data

In order to draw comparisons between the two datasets within our model, the
unit scales must both be the same. An exact transformation is possible by
applying a correction to our OMI data to change the values to be represented
in mols per square meter just as TROPOMI is. This is handled by multiplying
across our entire raw OMI dataset a correction value of 1.6605387831627262e-20.

As for the issues with comparing the data due to differences in orbit, shape,
and scale; all these limitations should be solved at the same time by creating
a pairable training set of data. To perform super resolution, we ideally want
both the low resolution and high resolution data to mirror each other to a close
extent. As mentioned earlier, since the satellites are following different orbits,
points where the satellites overlap first needed to be found in order to create
paired data. Time and location, both had to be taken into account before
reliable pairs could be made. First, files were compared by the timestamp of
the sensing period detailed in the file title, taking only files that were recorded
within one hour of each other. This was done to ensure that the NO2 values
recorded for any region by both the OMI and TROPOMI satellites occurred
close to the same time without much chance for features in the troposphere to
move between satellites measurements.

In order to isolate overlapping areas, an atmospheric regridding tool called
xESMF was used to translate the raw OMI and TROPOMI data to a standard
shape and resolution scale. xESMF is a universal regridding tool for geospatial
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data written in Python that can perform geocentric regridding algorithms to
transform data between curvilinear and rectilinear grids. In essence, our raw
OMI and TROPOMI data is represented in differing curvilinear spaces which
is the root of the issue in comparing them. Using xESMF, both were trans-
lated to a consistent rectilinear space separated by a constant scale factor of
4 using bilinear interpolation. This change gave us two matrices representing
the world with the original NO2 values accurately geolocated within a swath
crossing some area inside of each grid. This generated two matrices of size
720x1440 and 2880x5760. The matrices were then split into smaller tiles of
32x32 and 128x128 that each contain the exact same area of the world for both
the OMI and TROPOMI satellites respectively. Each pair was then checked to
remove any tiles that did not contain 99% non-zero values which would repre-
sent areas outside of the original swath. This left only areas that fall within
both swaths which were then saved as part of the training set. In addition, the
areas around the poles were not saved as part of the paired data as the values
were significantly stretched out compared to data closer to the equator due to
coordinate-referencing issues.

While these steps created paired data matrices of the same location, close
in time, and consistently shaped and scaled, it was still not enough to ensure
that each pair contained similar features that could be recognized and used to
perform super resolution. Also, even though the base files were recorded within
an hour of each other, the actual sensing period for each file occurred over a
longer period of time. This means that in actuality, if the same area was passed
over by both satellites in the same sensing period, it could actually have occurred
within a much larger difference in time, potentially causing one satellite to record
entirely different features than the other. Although it was stated earlier that
part of the reason NO2 was chosen was for its slow feature changes, allowing
these features to appear clearly in both OMI and TROPOMI recordings, since
we are attempting to learn these features in small localized areas, the features
can shift from one tile to another between each satellite recording. While part
of the point of using a GAN for this task was to reduce the discrepencies caused
by non-paired data using perceptual learning, it remains true that closer data
pairs should allow the model to learn to reproduce features from OMI input
more accurately. So in order to reduce this amount of non-paired data further,
we made use of the variable in the original data detailing the time each latitude
was recorded. First we obtained the latitude and longitude of the center point of
each saved tile pair and located it’s relative position in the original raw data file.
Using this position, we could determine the exact time that latitude was crossed
by each measuring satellite and once again remove any tiles that occurred with
a difference of larger than an hour between them.
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Figure 7: Paired data created from OMI (left) and TROPOMI (right). Top
row depicts a visibly similar pair between OMI and TROPOMI while bottom
depicts a pair without matching features.

All in all, through this method of processing the raw data files, roughly 20
thousand tile pairs were generated to be passed into the model for training.

8.2 Model

Out of the various different GAN types explored, we chose to use Wang, Xintao,
et al.’s ESRGAN for this task as it is optimized for the super resolution of
images, and so we expect similar results using our data. It was also selected due
to its focus on perceptual loss while optimizing model weights. The ESRGAN
was tested using regular satellite imagery which is closer to the type of data it
was intended for, but also more unpaired comparable to the data we plan to use
to train it with.

In order to prepare the model, several modifications were made to account
for our datasets. First, the number of channels for the input and output to the
networks were adjusted from three to one since it normally expects three channel
RGB image data, with values occurring between 0 and 255, as opposed to our
single channel NO2 data, with values occurring between -2e-5 and 6e-5. This
should not negatively affect the training process as it is the same as performing
super resolution as if we were using grayscale images of one channel. Second,
we removed all the image processing steps as well as saving and loading of
images. Because our data is quite precise, float values accurate to 6 decimal
places, saving or processing the data as images in 255 pixel range would end up
losing that extra precision. The default pretrained models for image data were
removed so that the network could be retrained from scratch using these more
precise values. The network was additionally set up to expect input of 32x32
pixel images with an upscale resolution of 4 to produce 128x128 pixel output
images.
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8.3 Training Process

To facilitate a smoother learning process from scratch, the model was trained
in two phases. In the first phase, tile pairs were taken from the total set encom-
passing only those pairs which occurred within 10 minutes of each other as this
set represents the most closely paired data between OMI and TROPOMI. There
were approximately two thousand pairs in this set. A smaller subset of this data
was taken out to be used as validation in tracking the training process. This
validation set was composed of 100 pairs occurring within 10 minutes of each
other from 4 different days over the course of the year and a half of data, one
for each season. This was purposefully chosen as NO2 readings will also vary
by season but need to be capable of producing results regardless of the region
or date. By starting with this training group, the model should first learn to
recognize features existing in both the OMI and TROPOMI to learn what the
”correct” answer should be when generating upscaled OMI data. The model
was trained over the course of 5 days utilizing 2 Nvidia Tesla K80 GPUs for
5000 epochs in total.

Figure 8: Set of images with OMI (left), generated TROPOMI (center), and
original TROPOMI (right). Single example of a tile generated from an OMI
and TROPOMI pair with alike features.

The second phase included the rest of the remaining data taken within one
hour between each pair, bringing the total size of the training set to 20000 pairs.
In addition to the previously used validation set, another 100 pairs were added,
taken from one day during the summer but from pairs occurring within 20, 30,
40, 50, and 60 minutes of each other to view how the model handles different
times of data. The model was trained for another week with this expanded
dataset using the same GPUs for 1600 epochs.

Figure 9: Set of images with OMI (left), generated TROPOMI (center), and
original TROPOMI (right). Single example of a tile generated from an OMI
and TROPOMI pair without matching features.
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9 Results

9.1 Validation

OMI is traditionally validated by comparing it against TROPOMI values which
were then validated against ground-truth values. For our validation, we take a
similar approach by comparing the closeness of the entire swath of new generated
TROPOMI data to the original TROPOMI with that of the original OMI. As
the original TROPOMI data has already been validated, and the difference in
time between features appearing in both swaths is minimal, we can test the
validity of OMI and generated TROPOMI using original TROPOMI swaths as
a model to the same extent that OMI is normally validated.

Two separate validation methods were tested while making this compari-
son. The first is the same method used traditionally by industry experts. This
method involved taking the relative average of all overlapping pixels of OMI
and TROPOMI falling within a localized area [36].

(OMI − TROPOMI)/TROPOMI (10)

The mean value of this relative average over the area can then be taken to deter-
mine a rough similarity. A value closer to zero indicates more physical closeness
between OMI and TROPOMI or generated TROPOMI and TROPOMI in the
case of the new data. However, since OMI and TROPOMI paired swaths suffers
from some feature translation due to weather, light refraction, and time, another
more translation insenstive algorithm was tested as well. The Complex Wavelet
Structural Similarity Index (CW-SSIM) is a variation of the standard image
comparing SSIM method that separates images into multiple visual channels of
waves which are more insensitive to consistent relative phase distortions [37]. In
order to use this however, we first need to convert our data into images. This
can easily be done by normalizing all the values in our data and then projecting
it to a 255 based pixel scale.

To validate the model using these methods, 3 more dates of files were down-
loaded that weren’t part of the original training set corresponding to days in
summer, fall, and winter to test on. One file from each date containing a swath of
data that passed over both Europe and Africa, due to clear presence of NO2 fea-
tures in both hemispheres to test, were regridded to a rectilinear representation
of the data. Each OMI matrix were then cut up into tiles and passed through the
model before being pieced back together as a new generated TROPOMI matrix.
The generated TROPOMI and the original TROPOMI were then downsampled
to the same shape as the original OMI. Then, only the intersecting area be-
tween each pair of data, original OMI and original TROPOMI, and generated
TROPOMI and original TROPOMI respectively, were isolated.

23



Figure 10: Intersecting area between validating OMI swath (left) and
TROPOMI swath (right) occurring on 2020-01-15. Top row depicts original
OMI and TROPOMI while bottom depicts generated TROPOMI and original
TROPOMI.

Once these isolated paired regions of full swaths were obtained, the CW-
SSIM was calculated between each.
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Figure 11: Intersecting area between validating OMI swath (left) and
TROPOMI swath (right) with the exclusion of TROPOMI data with accuracy
of less than 75%. Top row depicts original OMI and TROPOMI while bottom
depicts generated TROPOMI and original TROPOMI.

In addition to just comparing our results against TROPOMI, we also make
use of a quality assurance variable in the TROPOMI data assessing the quality
of each datapoint. We therefore test our results against both TROPOMI swaths
as a whole, but also where TROPOMI is assured to have a determined quality
of greater than 75

CW-SSIM Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 0.92 0.91 0.92 0.94
2019-10-15 0.93 0.93 0.97 0.90
2019-07-14 0.92 0.92 0.92 0.88

Table 1: Validation results for three separate swaths of NO2 data following phase
2 of training occurring during summer, fall and winter periods taken after 1600
epochs of phase 2 training. Results are displayed over 4 columns representing a
comparison of original and generated TROPOMI against validated TROPOMI
values using CW-SSIM for both unaltered results and quality assured (QA)
results.

Table 1 shows the values obtained after validating using CW-SSIM. As can
be seen, our results have shown often on par or better than the original OMI
values, with CW-SSIM values close to 1. However, while the accuracy taken
over the swaths using the CW-SSIM method may appear to be high, this is
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infact misleading as it is mainly useful in feature comparison of images, which
there is very little to be compared over the entire swath. The method used
to traditionally verify OMI against TROPOMI is also performed on localized
regions at a time rather than entire swaths. It is reasonable to perform our
validation in the same way. Therefore, a smaller section of the swath was
examined focused around Europe instead.

Figure 12: Intersecting area between validating OMI (left) and TROPOMI
(right) over Europe on 2020-01-15. Top row depicts original OMI and
TROPOMI while bottom depicts end-of-phase2 generated TROPOMI and orig-
inal TROPOMI.
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Figure 13: Intersecting area between validating OMI (left) and TROPOMI
(right) subtracting QA values under 75% over Europe on 2020-01-15. Top row
depicts original OMI and TROPOMI while bottom depicts end-of-phase2 gen-
erated TROPOMI and original TROPOMI.

We will validate our examples over Europe using both the CW-SSIM as
discussed earlier to examine image similarity, as well as the physical validation
method of the values of OMI and generated TROPOMI data against original
TROPOMI used for traditional validation.
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CW-SSIM Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 0.78 0.67 0.77 0.74
2019-10-15 0.78 0.50 0.86 0.53
2019-07-14 0.43 0.57 0.50 0.72

Rel. Avg. Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 -0.27 0.87 -0.45 2.47
2019-10-15 0.91 -0.69 0.72 -0.74
2019-07-14 -2.97 0.07 -1.34 -0.67

Table 2: Validation results for three separate dates in the European region of
NO2 data directly following phase one of training occurring during summer,
fall and winter periods taken after 5000 epochs. Results are displayed over
four columns representing a comparison of original and generated TROPOMI
against validated TROPOMI values using CW-SSIM (top) and relative average
(bottom) for both unaltered results and quality assured (QA) results.

CW-SSIM Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 0.78 0.65 0.77 0.70
2019-10-15 0.78 0.53 0.86 0.48
2019-07-14 0.43 0.48 0.50 0.63

Rel. Avg. Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 -0.27 -0.99 -0.45 -1.34
2019-10-15 0.91 -0.77 0.72 -0.77
2019-07-14 -2.97 -0.58 -1.34 -0.81

Table 3: Validation results for three separate dates in the European region of
NO2 data during phase 2 of training occurring during summer, fall and winter
periods taken 400 epochs after phase 1 training. Results are displayed over 4
columns representing a comparison of original and generated TROPOMI against
validated TROPOMI values using CW-SSIM (top) and relative average (bot-
tom) for both unaltered results and quality assured (QA) results.
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CW-SSIM Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 0.78 0.62 0.77 0.72
2019-10-15 0.78 0.45 0.86 0.47
2019-07-14 0.43 0.49 0.50 0.64

Rel. Avg. Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 -0.27 -1.12 -0.45 -1.87
2019-10-15 0.91 -0.53 0.72 0.40
2019-07-14 -2.97 -0.73 -1.34 -0.86

Table 4: Validation results for three separate dates in the European region of
NO2 data during phase 2 of training occurring during summer, fall and winter
periods taken 900 epochs after phase 1 training. Results are displayed over 4
columns representing a comparison of original and generated TROPOMI against
validated TROPOMI values using CW-SSIM (top) and relative average (bot-
tom) for both unaltered results and quality assured (QA) results.

CW-SSIM Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 0.78 0.72 0.77 0.78
2019-10-15 0.78 0.57 0.86 0.69
2019-07-14 0.43 0.64 0.50 0.75

Rel. Avg. Orig. OMI Gen. Tro. QA>75% OMI QA>75% Gen.
2020-01-15 -0.27 3.31 -0.45 7.08
2019-10-15 0.91 -0.15 0.72 -0.01
2019-07-14 -2.97 0.22 -1.34 0.75

Table 5: Validation results for three separate dates in the European region of
NO2 data at the end of phase 2 training occurring during summer, fall and
winter periods taken 1500 epochs after phase 1 training. Results are displayed
over 4 columns representing a comparison of original and generated TROPOMI
against validated TROPOMI values using CW-SSIM (top) and relative average
(bottom) for both unaltered results and quality assured (QA) results.

Observing the results of these tables, it is apparent that generated TROPOMI
likely never succeeds OMI in accuracy during the training period when compared
against validated TROPOMI except in the test date of 2019-07-14 which will
be discussed further in the Analysis section.

9.2 Analysis

While there is apparent accuracy in the results of generated TROPOMI that
is clearly learning to draw features from given OMI input, it appears that this
accuracy does not truly improve even after an extended period of training and
may have even diminished with the inclusion of extra data pairs during phase
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two. This seems to be the case for two out of the three examples except for
the case of 2019-07-14 which shows consistently higher accuracy of generated
TROPOMI over OMI.

Figure 14: Intersecting area between validating OMI (left) and TROPOMI
(right) over Europe on 2019-07-14 with a distinct lack of features occurring. Top
row depicts original OMI and TROPOMI while bottom depicts end-of-phase2
generated TROPOMI and original TROPOMI.

In Figure 14, we see a ploted representation of the NO2 data covering Eu-
rope on 2019-07-14. Differing from the other two examples, there is a clear lack
of features present on this date. This suggests that the trained model might
be better at producing featureless data from OMI input than that of features
that we are actually interested in. The visualization of a generated TROPOMI
example where features should be present, such as the display in Figure 12,
also appears to be focusing more on background noise, and lessening the fea-
tures present rather than accentuating them like we would prefer. These two
observations coupled together, leads to a conclusion that the model is overfit-
ted on featureless data. A quick search through the training set of TROPOMI
examples for tiles containing values greater than 0.0002 (datapoints that might
represent a peak within visible features) shows a count of 1700 tiles out of 20193
tiles total. The overwhelming number of potentially featureless tiles most likely
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occurring over areas of ocean, compared to actually featured data can easily
account for how this overfitting could have occurred. This would also explain
how the accuracy of the model seemed to slightly decrease during phase two
when 18000 new tiles were added to the original 2000, increasing the division of
featured and non featured tiles even more.

In order to determine what similarities of features could be drawn between
original OMI, generated TROPOMI, and original TROPOMI, histograms were
plotted of all three for examples where NO2 features were clearly present.

Figure 15: Histograms of NO2 values of OMI (top left), TROPOMI (top right)
and generated TROPOMI (bottom) taken on 2020-01-15 at end of phase 2
training.

Observing these drawn histograms in Figure 15, there appeared to be a
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min peak centered around zero, most likely representing background noise of
a region, as well as max peaks likely occuring in the highest valued points of
visible features past a threshold of 0.00013 where the histogram curves begin
to flatten out.

Figure 16: Histograms of NO2 values of OMI (top left), TROPOMI (top right)
and generated TROPOMI (bottom) taken on 2020-01-15 at end of phase 2
training isolating features falling within range 0.00007 and 0.0002.

Using this range of suspected features, illustrated in Figure 16, we can then
try to isolate just the values representative of a feature within the region while
removing external noise from each of the three. This was done by first sub-
tracting 0.00007, the suspected min value of the feature range, from the data
to set the features at zero relative, and then setting a threshhold at the new
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max of 0.00006 and min of 0.0 to fold in all values greater or lesser than those
threshholds. The new values were then normalized over this range and then
converted into an image as displayed in Figure 17.

Figure 17: Intersecting area between OMI (left) and TROPOMI (right) over Eu-
rope on 2020-01-15 converted to image after isolating features. Top row depicts
original OMI and TROPOMI while bottom depicts end-of-phase2 generated
TROPOMI and original TROPOMI.

These newly created images should represent only the features recorded in
OMI, generated TROPOMI, and TROPOMI while removing all background
noise. As can be seen in these newly drawn images, the features in generated
TROPOMI are actually very similar to the validated TROPOMI when high-
lighted without interfering background noise. A glance at the actual plotted
values for OMI and TROPOMI back in Figure 12 shows that the shapes in
these images are the same visible shapes present in those plots. Taking the
CW-SSIM values once again on these normalized values gives us the results in
Table 3.
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CW-SSIM 5000 epochs 5400 epochs 5900 epochs 6500 epochs Orig. OMI
2020-01-15 0.68 0.78 0.80 0.77 0.87
2019-10-15 0.60 0.65 0.66 0.62 0.78
2019-07-14 0.81 0.91 0.93 0.92 0.95

Table 6: Validation results for three separate swaths of NO2 data across en-
tire training period occurring during summer, fall and winter periods. Results
are displayed over 4 columns representing a comparison of feature-only gener-
ated TROPOMI against validated TROPOMI values using CW-SSIM for both
unaltered results and feature-only OMI and validated TROPOMI (last column).

This time, there is a clear and significant increase in the accuracy of gen-
erated TROPOMI between phase 1 and phase 2. While this might seem to
contradict earlier conclusions drawn from the results, that is not necessarily the
case. While it’s true that many more non-feature tiles were added to the train-
ing set in phase 2, there were also many featured tiles that were also added.
This means that the model could learn to draw more accurate features from
these additional examples while still losing overall accuracy by reducing these
features to a range of values closer to background noise. Isolating just these
values shows that the features still persist in some form within the generated
data.

As just an additional test, a constant factor of three was multiplied across
the generated TROPOMI example to raise the value of all data points and
display the potential features more clearly. We see in Figure 18 that this does
indeed draw a picture closer to what we would expect.
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Figure 18: Intersecting area between OMI (left) and TROPOMI (right) over
Europe on 2020-01-15. Top row depicts original OMI and TROPOMI while
bottom depicts end-of-phase2 generated TROPOMI multiplied by a constant
factor of three and original TROPOMI.

10 Conclusion

Through this paper, we have created a definitive way of creating trainable and
paired data between volatile OMI and TROPOMI data. So long as both satel-
lites pass over the same region with minimal enough change in time that NO2

has not yet dispersed, we are able to create accurate geo-located tile pairs.
While it definitely looks possible to generate TROPOMI level data from OMI

with a well defined training set, the model developed for this paper isn’t yet suc-
cessful enough to provide a replacement for OMI data. It appears that features
clearly visible in both original TROPOMI and OMI data is much fainter and less
defined in the generated TROPOMI. This is likely a result of the overwhelm-
ing majority of data pertaining to open ocean or sparsely populated landmass
compared to dense urban areas that produce visible NO2 emissions. This sort
of discriminate division in training data could definitely influence the model to
favor creating less defined features as well.

If this is indeed the reason for the discrepancy between generated TROPOMI
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and original TROPOMI, it should be possible to retrain the model, choosing a
more strategic division of featured and non featured-tiles, perhaps a 4:3 ratio
or similar considering tiles containing features contain just as many data points
without features. It wouldn’t be prudent to only train using tiles containing
features as an overfitting in the other direction would occur if the model learned
that every tile requires features to be present to be valid generated TROPOMI.
Therefore, some sort of division will still be necessary during subsequent training
attempts.

Additionally, the CW-SSIM proved to be a useful method for measuring
accuracy of OMI and generated TROPOMI against the validated TROPOMI
data over local areas due to its recognizability of translations in image features.
It is possible this method might prove to be more accurate than the traditional
method used by industry experts to make relative average comparisons between
OMI and TROPOMI.

10.1 Answering the Research Questions

Looking back on our originally defined research questions, we can now give some
rudimentary answers for each.

1. Can GANs be leveraged to improve complex data relying mainly
on perceptual learning?

We have seen that GANs can definitely improve the resolution of
complex remote sensing data. Even with a large amount of training
data that was completely unpaired, results still showed generated
TROPOMI taking features directly from the OMI used as input.
This shows that the GAN’s perceptual loss is indeed feeding useful
information to the model to help the learning process.
2. Can data collected from the low resolution OMI satellite be im-
proved to the resolution of TROPOMI using GANs data enhance-
ment techniques?

The data produced by the GAN certainly contained the sharpness
and clarity of TROPOMI level resolution, however it still had not
developed all of the features which should be present.
3. Will the accuracy of OMI data readings suitably improve when
enhanced to TROPOMI level resolution?

While the accuracy of generated TROPOMI data did not overcome
that of OMI on the whole, a displayed improvement in accuracy
as a factor of useful training data was shown. This leaves open
the possibility of overtaking OMI in accuracy with enough balanced
examples to learn from.

10.2 Future Research

For future research, first and foremost another attempt should be made at train-
ing a model using a more calculated division of NO2 heavy and sparse dataset.
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It may also improve the training process to take the logarithmic value of the
NO2 data before passing it through the network. Normally, there is a very
small difference between data that represents possible features, and areas ab-
sent of any features. By taking the log value of these areas, it should create a
much larger gap between these patterns making potential features much more
visible to the network and so also more reproducible. This could also help the
model to differentiate NO2 emissions from featureless areas reducing the need
to strategically choose the samples to form a more varied dataset for training.

Another place that could be improved is the validation of generated data.
There are only so much conclusions that can be drawn from validation that
is twice removed from the actual ground-truth values. TROPOMI data itself
isn’t 100% accurate, nor is it equivalent to the OMI data that we are applying
these methods to. It would provide a useful comparison in future research if
generated TROPOMI data could also be validated against ground-truth values,
which could then be measured against original TROPOMI in accuracy. While
these methods were considered for this work, it would have proven to be a greater
task than could be fit within the scope of this project. In addition, comparing
the accuracy of CW-SSIM in estimating OMI similarity to TROPOMI with that
of ground truth values could test the viability of CW-SSIM as a future testing
metric of any new data collected.

As an aside, while this paper focused on leveraging the super resolution opti-
mizations of the ESRGAN to perform this data enhancement, another suitable
option to test would be the CycleGAN. CycleGANs have shown to be very capa-
ble in performing unsupervised learning with training data even more dissimilar
to OMI and TROPOMI [1]. It might also be capable of solving the dissollution
of features by the model as the second pair of networks must be capable of
reproducing those features to maintain cycle consistency.

With the proof of concept provided in this thesis along with the visible
potential for success, the ideas put forth here could also be applied in other areas
of remote sensing with sensitive measurement instruments that are consistently
being updated and improved, currently leaving obsolete older products behind.
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