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1 Introduction

One of the most important problems of topology is which spaces are homeo-
morphic to which other spaces. To show that spaces are not homeomorphic is
sometimes far from trivial. For example, proving that Rm is not homeomorphic
to Rn uses constructions of Algebraic Topology.
Algebraic Topology is a branch of mathematics that measures certain proper-
ties of spaces by assigning groups or numbers to them. When these numbers or
groups for two spaces are not the same then the spaces are not homeomorphic.
Of these, the fundamental group is one of the more important ones, and the
properties it captures is the kind of holes a space has. So clearly if the funda-
mental group of two spaces is different then they will not be homeomorphic.

The way the fundamental group π1pXq captures the ideas of holes is very intu-
itive: map S1 smooth into your space X and see if you can shrink it smoothly
down to a point.
We can generalize this construction to define homotopy groups πnpXq, which
work in the same way, but then we map Sn into our space X and we see if we
can shrink it down to a point.
We still have that X is not homeomorphic to Y if their homotopy groups are
not isomorphic.

As we have seen in the course ”Topologie en Meetkunde”, we were able to calcu-
late the fundamental group of a lot of spaces by starting with the fundamental
group of S1 and using Van Kampen and other theorems. In the same way, even
tho there is no extension for Van Kampen to general homotopy groups, we want
to first calculate the homotopy groups of spheres Sk. However, this already
turns out to be an almost impossible task

When n is smaller than k we see that πnpS
kq is the same as the trivial group

because we can move the maps image to not be surjective and then retract
Skztpu onto a point.

When n is the same as k, we see that πnpS
kq “ Z because we can wrap Sk

around itself for l P Z times, which will not be shrinkable to a point.

When n ą k the intuition starts to fall apart. For example π3pS
2q “ Z.

So we would like to have some other tools to calculate the homotopy groups of
spheres. One of these tools is to look at the framed cobordism group, Ωfrn pXq,
of a space X, which looks at the ways we can ”connect” compact submanifolds
without boundary. The theory of framed cobordism groups was most notably
developed by Lev Pontryagin, a Russian mathematician, who had gone blind
when he was 14 years old. He discovered the following beautiful relation:

Theorem 1.1 (Pontryagin Theorem). As groups,

Ωfrn´kpS
nq – πnpS

kq. (1)
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Proving this theorem will be the main point of this thesis. Afterwards, we
will discuss a couple of examples. This thesis will mostly be based on Chapter
7 of Topology from a differential viewpoint by Milnor [7], which is based on the
original article by Pontryagin [8].
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2 Homotopy Groups

To understand what the Pontryagin theorem is about, we first have to introduce
smooth homotopy groups. We will define these groups in the same way as we
did for the fundamental group in ”Topologie en Meetkunde”. There is of course
a difference between smooth homotopy groups and general continous homotopy
groups, however, because of Corollary 17.8.1 of Differential forms in algebraic
topology by Bott and Tu [1] we see that the two are isomorphic.

Corollary 2.0.1. Let M be a smooth manifold, then the smooth homotopy
groups of M are isomorphic to the continuous homotopy groups of M .

Because of this we will call the smooth homotopy groups just the homotopy
groups and use the notation that is otherwise used for the continuous homotopy
groups. Our approach of defining smooth homotopy groups will mostly rely on
how continuous homotopy groups are defined in Chapter 4.1 of Hatcher [4].
We first define what we mean with a smooth based homotopy.

Definition 2.1 (Smooth Homotopy with fixed basepoint). Suppose we have
two based manifolds pM,m0q and pN,n0q and a two smooth maps

f, g : pM,m0q ÝÑ pN,n0q

then we call these two maps smoothly homotopic with fixed basepoint if there is
a smooth map

H : pM,m0q ˆ I ÝÑ pN,n0q such that

Hpx, 0q “ H0pxq “ fpxq and

Hpx, 1q “ H1pxq “ gpxq.

where we note that Hpm0, tq “ n0 for all t P I which is why we call it based. If
two based maps f and g are smoothly based homotopic then we write

f » g.

We will call two maps smoothly homotopic if the homotopy does not have a
fixed basepoint. Being smoothly homotopic with fixed basepoint is an equiva-
lence relation, where we write rM,N spm0,n0q as the set of all equivalence classes.

We will write
`

pM,m0q ÝÑ pN,n0q
˘

as the set of all smooth based maps from
M to N .

Theorem 2.2. Being smoothly homotopic with fixed basepoint is an equivalence
relation, so

1. reflexivity: f » f for every map f P
`

pM,m0q ÝÑ pN,n0q
˘

.

2. symmetry: If f » g then g » f for every f, g P
`

pM,m0q ÝÑ pN,n0q
˘

.

3. transitivity: If f » g and g » h as well then f » h for every f, g, h P
`

pM,m0q ÝÑ pN,n0q
˘

.
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To prove transitivity we will need to construct a smooth based homotopy
out of two other smooth based homotopies. To do this we define the bump
function.

Definition 2.3 (bump function). The bump function is a smooth map

ψ : R ÝÑ R

x ÞÑ ψptq “

$

’

’

&

’

’

%

0 for t ď 0

e´
1
t

e´
1
t `e

1
1´t

for 0 ă t ă 1

1 for t ě 1.

We want to use this function to compose it with smooth maps to get a new
smooth map. To do this we first want to define it on I instead of R. So we
introduce the diffeomorphism

Lε : I ÝÑ rε, 1´ εs

t ÞÑ Lεptq “
t´ ε

1´ 2ε
.

Using this function we create our new smooth bump function

ψ̃ : I ÝÑ I

t ÞÑ ψ̃ptq “

$

’

&

’

%

0 for t P r0, εs

ψ ˝ Lεptq for t P pε, 1´ εq

1 for t P r1´ ε, 1s

.

Now that we have introduced the bump function we will prove the theorem.

Proof of theorem 2.2. We will prove this theorem in three parts.

1. reflexivity: We see that the smooth homotopy defined by

Hf : pM,m0q ˆ I ÝÑ pN,n0q

px, tq ÞÑ Hf px, tq “ fpxq for all t P I

is a smooth homotopy between f and itself.

2. symmetry: Suppose f is smoothly homotopic to g by a smooth homotopy
Hfg. We now construct a new smooth homotopy

Hgf : pM,m0q ˆ I ÝÑ pN,n0q

px, tq ÞÑ Hgf px, tq “ Hfgpx, 1´ tq.

We see that this homotopy is the same as Hfg but then in the opposite
direction. We see that Hgf is a homotopy between g and f , so g » f .
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3. transitivity: Suppose f is homotopic to g by a homotopy Hfg and g is
homotopic to h by a homotopy Hgh. We now construct a new homotopy

Hfh : pM,m0q ˆ I ÝÑ pN,n0q

px, tq ÞÑ Hfhpx, tq “

#

Hfgpx, ψ̃p2tqq for t P r0, 1
2 s

Hghpx, ψ̃p2t´ 1qq for t P r 12 , 1s

where ψ̃ is the bump function of defintion 2.3. This smooth homotopy
takes us first through Hfg and afterwards through Hgh. We see that Hfh

is a homotopy between f and h, so f » h.

Now that we have proven reflexivity, symmetry and transitivity we see that
being based homotopic is indeed an equivalence relation.

In the same way as the fundamental group, we now want to look at the based
maps from Sn to X up to smooth based homotopy.

Definition 2.4 (smooth homotopy groups). We call rSn, Xsps,x0q the nth smooth
homotopy group of pX,x0q, and we write it as πnpX,x0q.

We first identify Sn with In{ „ where we quotient out the boundary of the
box, BIn, so more explicitly

Sn – In{ „ where

pt1, ¨ ¨ ¨ , ti´1, 1, ti`1, ¨ ¨ ¨ , tnq „ pt
1
1, ¨ ¨ ¨ , t

1
i´1, 1, t

1
i`1, ¨ ¨ ¨ , tnq and

pt1, ¨ ¨ ¨ , ti´1, 0, ti`1, ¨ ¨ ¨ , tnq „ pt
1
1, ¨ ¨ ¨ , t

1
i´1, 0, t

1
i`1, ¨ ¨ ¨ , tnq for all 1 ď i ď n.

These two spaces are diffeomorphic because the interior of In is diffeomorphic
to Rn, so In{ „ is diffeomorphic to Rn Y t8u – Sn. Because of this we have
an ismomorphism between rSn, Xsps,x0q and rIn, XspBIn,x0q which consists of
smooth maps from In to X, which send the boundary BIn to x0.

As the name suggests, πnpX,x0q, is a group with addition defined in the follow-
ing way. We take rf s, rgs P πnpX,x0q and we take two representatives f and g
respectively. We want to define f ` g as the new map that first does the map
f and the map g afterwards. To do this we look at f and g as if they are maps
from In to X, both taking BIn to x0. We then define f ` g as

f ` g : pIn, BInq ÝÑ pX,x0q

pt1, ..., tnq ÞÑ

#

fpψ̃p2t1q, t2, ..., tnq for t1 P r0,
1
2 s

gpψ̃p2t1 ´ 1q, t2, ..., tnq for t1 P r
1
2 , 1s

where ψ̃ is the bump function of definition 2.3. We see that this map still maps
BIn onto x0, so it gives us a well-defined map from pointed map from Sn to X.
For this operation to define the multiplication on πnpX,x0q by rf s`rgs “ rf`gs,
we still need to check that it is well defined.
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Theorem 2.5. The multiplication ` on πnpX,x0q is well-defined, so if f1 » f2

and g1 » g2 then pf1 ` g1q » pf2 ` g2q.

Proof of theorem 2.5. To prove this we first want to prove that if f1 » f2 then
pf1 ` gq » pf2 ` gq.
Suppose f1 and f2 are homotopic by a homotopy Hf . We now construct a new
homotopy

H : pIn, BInq ˆ I ÝÑ pX,x0q

ppt1, ¨ ¨ ¨ , tpq, sq ÞÑ Hpx, sq “

#

pHf qspψ̃p2t1q, t2, ¨ ¨ ¨ , tpq for t1 P r0,
1
2 s

gpψ̃p2t1 ´ 1q, t2, ¨ ¨ ¨ , tpq for t1 P r
1
2 , 1s

where ψ̃ is the smooth bump function from definition 2.3. We note thatHpt, sq “
pHf psq ` gqptq, so this gives a homotopy between Hf p0q ` g “ f1 ` g and
Hf p1q ` g “ f2 ` g, so we see that f1 ` g is homotopic to f2 ` g.
We can construct a same kind of homotopy such that f ` g1 is homotopic to
f ` g2 when g1 is homotopic to g2.
We will now give a proof for the theorem. We see that f1 ` g1 is homotopic to
f2`g1 by our first part. By our second part we see that f2`g1 is homotopic to
f2` g2. Because being homotopic is an equivalence relation we see that f1` g1

is homotopic to f2 ` g2, which was to be proven.

Theorem 2.6. The based nth-homotopy group πnpX,x0q of pX,x0q is a group
with ` as multiplication. More explicitly:

1. closure: rf s`rgs is an element of πnpX,x0q for every rf s, rgs P πnpX,x0q.

2. associativity: prf s ` rgsq ` rhs “ rf s ` prf s ` rhsq for every rf s, rgs, rhs P
πnpX,x0q.

3. identity: The identity element is rconstx0s so rconstx0s ` rf s “ rf s “
rf s ` rconstx0s for every rf s P πnpX,x0q

4. inverse: For every rf s P πnpX,x0q there is an inverse element rf s´1 P

πnpX,x0q such that rf s´1 ` rf s “ rf s ` rf s´1 “ rconstx0
s.

To prove associativity, we first state the following lemma.

Lemma 2.7. Let ψ : I ÝÑ I be a smooth map such that ψp0q “ 0 and ψp1q “ 1.
Let f P pIn, BInq ÝÑ pX,x0q. Then

f ˝ pψ, IdIn´1q : In ˆ I ÝÑ pX,x0q

pt1, ¨ ¨ ¨ , tnq ÞÑ
`

f ˝ pψ, IdIn´1q
˘

ptq “ fpψpt1q, t2, ¨ ¨ ¨ , tnq

is homotopic to f .
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Proof of lemma 2.7. We see that I is a convex subset of R so we construct a
smooth homotopy

Hψ : pIn, BInq ˆ I ÝÑ pX,x0q

pt, sq ÝÑ Hψpt, sq “ fps ¨ t1 ` p1´ sqψpt1q, t2, ¨ ¨ ¨ , tnq

which gives a homotopy between f ˝ pψ, IdIp´1q and f .

Proof of theorem 2.6. We will prove this in four parts.

1. closure: The way we defined f ` g was by taking f on the first half of
In and g on the second half, where f and g as maps from pIn, BInq to
pX,x0q both map BIn onto tx0u. Because of this we see that f maps the
boundary of the first half of In, being BpIn´1 ˆ r0, 1

2 sq onto tx0u and g
maps the boundary of the second half of In, being BpIn´1 ˆ r 12 , 1sq onto
tx0u. Because of this we see that f`g maps BI onto tx0u, so f`g induces
a class rf ` gs P πnpX,x0q.

2. associativity: We note that pf ` gq ` h is a respeeding of f ` pg ` hq so
by lemma 2.7 we see that they are homotopic, so

`

rf s ` rgs
˘

` rhs “ rf ` gs ` rhs “ r
`

f ` g
˘

` hs “

rf `
`

g ` h
˘

s “ rf s ` rg ` hs “ rf s `
`

rgs ` rhs
˘

which proves associativity.

3. identity: We see that rconstx0
s` rf s “ rconstx0

` f s, so we want to prove
that constx0

` f is homotopic to f .
We construct the homotopy

H : pIn, BInq ˆ I ÝÑ pX,x0q

pt, sq ÞÑ Hpt, sq “

#

x0 for t1 P r0,
1
2 p1´ sqs

fpψ̃p2t1 ´ 1q, t2, ¨ ¨ ¨ , tnq for t1 P r
1
2 p1´ sq, 1s

where ψ̃ is the smooth bump function as in definition 2.3. This gives a
homotopy between constx0

` f and f , so rconstx0
` f s “ rf s. In the same

way we see that rf s “ rf s ` rconstx0
s so we see that rconstx0

s is indeed
the identity for the group.

4. inverse: We will prove that f´1 given by

f´1pt1, t2, ¨ ¨ ¨ , tnq “ fpp1´ t1q, t2, ¨ ¨ ¨ , tnq

is an inverse for f , so we want to prove that constx0 is homotopic to
f ` f´1 .
We construct the homotopy

Hf : pIn, BInq ˆ I ÝÑ pX,x0q

pt, sq ÞÑ Hf pt, sq “

$

’

&

’

%

fp2t1, ¨ ¨ ¨ , tnq for t1 P r0,
1
2 p1´ sqs

f´1p1´ p2s´ 2t1q, t2, ¨ ¨ ¨ , tnq for t1 P r
1
2s, ss

x0 for t1 P rs, 1s.
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This gives a smooth homotopy between f ` f´1 and constx0 , so we see
that rf´1s ` rf s “ rconstx0s. Because of this we see that rf s´1 “ rf´1s.

So we see that πnpX,x0q is indeed a group.

Just like we did for the fundamental group, we will now prove that for every
choice of basepoint the homotopy groups are isomorphic if the manifold X is
smoothly path-connected.

Theorem 2.8. If X is smoothly path-connected then πnpX,x0q – πnpX,x1q for
every two basepoints x0 and x1 in X.

To give an outline of the proof we will first define what we mean when we
compose a smooth path with a smooth map from pIn, BInq to pX,0 q. We define
this in the same way is it is defined in Hatcher [4] but then to keep it being
smooth we respeed both the path and the smooth map. In the same way as is
discussed for the continuous case in Hatcher [4] we see that we can construct
an isomorphism βγ : πnpX,x0q ÝÑ πnpX,x1q which is defined by composing the
classes of πnpX,x0q with a smooth path γ from x1 to x0. We note that such a
γ exists because X is smoothly path-connected.
We will write this new group as πnpXq.

Theorem 2.9. If X is smoothly simply-connected then πnpXq – rS
n, Xs where

rSn, Xs are the unbased homotopy classes.

This is proven for the continuous homotopy groups by using Proposition
4A.2 of Hatcher [4] because Sn is a CW-complex and because π1pX,x0q “ 1
because X is simply-connected. So by corollary 2.0.1 we see that this is also
true for smooth homotopy groups.
For the Pontryagin Theorem 1.1 we look at πnpS

kq, which we can write this
way because Sk is path-connected for all k P N.
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3 Framed cobordism

We now want to get a better idea of what it means for two compact subman-
ifolds without boundary to be framed cobordant. To do this we first discuss
what it means to be cobordant and what a framing is. Afterwards, we will
see that framed cobordism is a group. Our construction will be based on the
construction given in Milnor [7].
From now on, when we talk about M it will be an m-dimensional compact sub-
manifold without boundary of Rm`k.

We will first define what we mean for a submanifold N to be closed

Definition 3.1 (closed submanifold). Suppose N is a n-dimensional submani-
fold of M , then we call N closed iff N has no boundary and N is compact.

We now define what it means to be cobordant.

Definition 3.2 (cobordism). Suppose we have two n-dimensional closed sub-
manifolds N1 and N2 of an ambient manifold M of dimension m. We call
N1 and N2 cobordant if there exists a pn ` 1q-dimensional compact manifold
W ĂM ˆ I with the property that

BW “
`

N1 ˆ t0u
˘

Y
`

N2 ˆ t1u
˘

,

W X
`

M ˆ r0, εq
˘

“ N1 ˆ r0, εq and

W X
`

M ˆ r1´ ε, 1q
˘

“ N2 ˆ p1´ ε, 1s

As an example, if N is a closed submanifold of M , then N is cobordant
to itself, because N ˆ I is a pn ` 1q-dimensional manifold in M ˆ I. We see
that this is a cobordism between N and itself, so N is indeed cobordant to itself.

Now that we have introduced cobordism, we will define what it means to be
framed. First, we need to introduce the normal space.

Definition 3.3 (Normal Space). Suppose we have an N being an n-dimensional
submanifold of M , which is a m-dimensional submanifold of Rm`k, then we
define its normal space at the point p P N as the space TpN

K being a subspace
of TpM given by

TpN
K “ tv P TpM | xv, wy “ 0 for all w P TpNu .

As an example we look at the S1 being a submanifold of R2. We note that
S1 is given by an implicit equation

eq : R ÝÑ R
px, yq ÞÑ eqpx, yq “ x2 ` y2 ´ 1

which is a submersion on all of S1. We see that for x P S1 the tangent space at
p is given by the kernel of pd eqqp, which is given by

pd eqqp “
`

2xp 2yp
˘

.
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So we see that

TpS
1 “ ker

`

pd eqqp
˘

“
 

v P R2 | xp ¨ v1 ` yp ¨ v2 “ 0
(

.

However we see that we can write this as

TpS
1 “

 

v P R2 | xv, py “ 0
(

.

So we see that the normal space at a point p P S1 will consist of all the vectors
λ ¨ p with λ P R.

Now we will look at what it means for a normal space of a submanifold to
be framed.

Definition 3.4 (framing). A framing of a n-dimensional closed submanifold N
of an m-dimensional smooth manifold M is a smooth function which assigns to
every point x P N a basis for the corresponding normal space pTxNq

K,

ν : N Q x ÝÑ base
`

pTxNq
K
˘

x ÞÑ νpxq “ tν1pxq, ¨ ¨ ¨ , νm´npxqu

We first note that not all manifolds admit a framing. For example, non-
orientable manifolds can not be framed.

Now that we have both introduced cobordisms for unframed manifolds and
framings, we want to look at what it means to be framed cobordant. For this,
we look at framed manifolds, which are tuples of a manifold together with a
chosen framing.

Definition 3.5 (framed cobordism). We call two closed framed submanifolds
pN1, νN1

q and pN2, νN2
q of a manifold M framed cobordant if N1 and N2 are

cobordant as in definition 3.2 via a cobordism W Ă M ˆ I and if there is an
framing νW of W with the condition that

νW |
WX

`

Mˆr0,εq
˘pwq “ νW |N1ˆr0,εqpx, tq “

`

νN1pxq, 0
˘

for px, tq P N1 ˆ r0, εq and

νW |
WX

`

Mˆp1,1´εs
˘pwq “ νW |N2ˆp1´ε,1spx, tq “

`

νN2pxq, 0
˘

for px, tq P N2 ˆ p1´ ε, 1s.

If two submanifolds pN1, νN1
q and pN2, νN2

q are framed cobordant then we will

write this as pN1, νN1
q

fr
– pN2, νN2

q.

As an example we will look if pN, νq, being a framed submanifold without
boundary of M , is actually framed cobordant to itself. To see that it is, we first
construct the submanifold pN ˆ I, ν1q of M ˆ I with ν1px, tq “ pνpxq, 0q for all
px, tq P N ˆ I. We see that pN ˆ I, ν1q is a framed cobordism between pN, νq
and itself, so pN, νq is framed cobordant to itself.

From this example we already see that framed cobordism is reflexive, so we
are already well on our way to prove the following theorem.
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Theorem 3.6. Framed cobordism is an equivalence relation, so more explicitly

1. reflexivity: pN, νq
fr
– pN, νq for every framed submanifold pN, νq of M .

2. symmetry: if pN1, νN1
q

fr
– pN2, νN2

q then pN2, νN2
q

fr
– pN1, νN1

q as well,
for every framed submanifold pN1, νN1q and pN2, νN2q of M .

3. transitivity: if pN1, νN1
q

fr
– pN2, νN2

q and pN2, νN2
q

fr
– pN3, νN3

q

then pN1, νN1
q

fr
– pN3, νN3

q as well, for every framed submanifold
pN1, νN1

q, pN2, νN2
q and pN3, νN3

q of M .

Proof of theorem 3.6. In the previous example we have already proven reflexiv-
ity.
It is also symmetric because if we look at the framed cobordism pW,µq ĂM ˆI
between pN1, νN1q and pN2, νN2q, then we see that this is also a cobordism in
the other direction.

We will now prove transitivity. Suppose we have we have a framed cobor-
dism pW1, µW1

q between pN1, νN1
q and pN2, νN2

q and another framed cobor-
dism pW2, µW2

q between pN2, νN2
q and pN3, νN3

q. We now want to prove that
there is a framed cobordism pW̃ , µ̃q between pN1, νN1q and pN3, νN3q. The idea
is to simply take pW1, µW1q and attach pW2, µW2q at its end. So we get more
explicitly as definition for W̃ that

pW̃ , µ̃q X
`

M ˆ ttu
˘

“ pW1, µW1
q X

`

M ˆ t2 ¨ tu
˘

for t P
“

0,
1

2

‰

pW̃ , µ̃q X
`

M ˆ ttu
˘

“ pW2, µW2q X
`

M ˆ t2 ¨ t´ 1u
˘

for t P
“1

2
, 1
‰

.

We see that this gives us a cobordism between pN1, νN1
q and pN3, νN3

q, so
framed cobordism is transitive.
It follows that framed cobordism is an equivalence relation.

We note that if N1 and N2 are two submanifolds of M with a different
dimension, then there will not exist a submanifold of M ˆ I connecting the
two. We call Ωfrn pMq the set of all equivalence classes up to framed cobordism
of compact framed n-dimensional submanifolds without the boundary of M .
This turns out to be a group with the disjoint union as a product. We refer to
Theorem 3.1 of Chapter 4 of Kosinski [6].

Theorem 3.7. Ωfrn pMq is an abelian group when 2n`1 ă m by having disjoint
union as product.

In this case the equivalence class of the empty manifold is the identity class
and the inverse of a class rpN, νqs is given by the class rpN,´νqs where ´ν is the
framing of ν but with one basis vector flipped, which gives the same framing
but then in the other orientation. We note that when the dimension of our
submanifolds gets too big, then Ωfrn pMq might not even be a group.

13



4 The Pontryagin Construction

Now that we know what smooth homotopy groups and what framed cobordism
groups are, we will look at the Pontryagin Theorem 1.1. We will prove a broader
theorem, however, given by

Theorem 4.1. Let M be a m-dimensional compact smooth submanifold without
boundary of Rm`1, then

Ωfrm´ppMq – rM,Sps

We note that this gives the Pontryagin theorem when we take Sn “M . To
prove this, we first need to look at the regular value theorem, taken from the
lecture notes of Manifolds [2].

Theorem 4.2 (Regular value theorem). Suppose M and N are smooth mani-
folds and we have a smooth map,

f : M ÝÑ N

Suppose q P N is a regular value of f . Then the fiber f´1pqq above q is an
embedded submanifold of M of dimension

dimpf´1pqqq “ dimpMq ´ dimpNq

and the tangent space at p P f´1pqq is given by

Tp
`

f´1pqq
˘

“ kerpdfpq.

Because
`

Tppf
´1pqqq

˘K
is an dimpNq dimensional subspace of TpM and be-

cause
`

Tppf
´1pqqq

˘K
XTppf

´1pqq “ t0u we see that
`

Tppf
´1pqqq

˘K
‘ Tppf

´1pqq “

TpM , So
`

Tppf
´1pqqq

˘

is mapped linearly isomorphic onto TqN by dfp.

This theorem gives us a relation between maps f : M ÝÑ Sp and pm ´ pq-
dimensional framed submanifolds pN, νq. Using this relation, we will define

two maps. First we will define the map N˚ : rM,Sps ÝÑ Ωfrm´ppMq which
will send a map to its associated submanifold. Second we will define the map
col˚ : Ωfrm´ppMq ÝÑ rM,Sps and we will prove that these two maps are eachother
inverses.

14



4.1 Defining N˚

For the Pontryagin theorem we want to look at maps from m-dimensional
submanifolds into p-dimensional spheres. So suppose we have a smooth map
f : M ÝÑ Sp which maps our m-dimensional manifold into a p-dimensional
sphere.
This map f induces an equivalence class rf s P rM,Sps. We will define our map

N˚ : rM,Sps ÝÑ Ωfrm´ppMq as N˚prf sq “ N‚pfq. This new map N‚ acts on
smooth maps from M to Sp, and gives a equivalence class of framed cobordant
pm´pq-dimensional submanifold without boundary of M. The way we will con-
struct N˚ will be based on Milnor [7] but the fact that we use maps is more in
line with Davis and Kirk [3]. This equivalence class is induced by the associated
Pontryagin manifold of f . To define this Pontryagin manifold we first need to
introduce the pullback framing.

Definition 4.3 (pulback framing). Suppose that f : M ÝÑ Sp has a regular
value for a point y P Sp. We choose a framing µ on TyS

p. By the regular value
theorem we see there is a unique vector νi P Txf

´1pyq such that dfxpνippq “
µipyq. In this way create a basis νpxq for Txf

´1pyq, which induces a framing ν
for f´1pyq, which we will call f˚pµq.

Now that we have introduced the pullback framing, we need to define what
it means for a basis of TyS

p to be positively oriented. To do this we first define
what it means for a basis on Rn.

Definition 4.4 (positively oriented of a basis of Rn). We first define a linear
isomorphism J which identifies the space of bases of Rn with GLnpRq by putting
the basis vectors as columns of the matrix in the right order, so more explicitly:

J : basepRnq ÝÑ GLnpRq
v “ v1, ¨ ¨ ¨ , vn ÞÑ

`

v1 ¨ ¨ ¨ vn
˘

.

We now say that v P basepRnq is positively oriented iff detpJ q ą 0.

Now that we know what it means for a basis of Rn to be positively oriented,
we will define it for a basis of TyS

p.

Definition 4.5 (positively oriented of a basis of TyS
p). Say y P Sp. We define

the map

I : base
`

TyS
p
˘

ÝÑ base
`

Rp`1q

ν “ tν1, ¨ ¨ ¨ νpu ÞÑ Ipνq “ ty, ν1, ¨ ¨ ¨ , ν2u.

Using I we define a basis ν of TyS
p to be positively oriented iff Ipνq is positively

oriented as in definition 4.4.

Now that we have introduced what it means for a basis of TyS
p to be pos-

itively oriented, we will define the associated Pontrygain manifold of a smooth
map f .

15



Definition 4.6 (Pontryagin manifold). Suppose we have an m-dimensional
manifold M and a smooth map f : M ÝÑ Sp. Suppose further that f has a
regular value y P Sp and has a positively oriented basis µ of TyS

p as in defi-
nition 4.5. Then we call pf´1pyq, f˚pµqq the associated Pontryagin manifold of
f . We note that by the regular value theorem the Pontryagin manifold is an
pm´ pq-dimensional compact boundaryless framed submanifold.

Perhaps this seems a bit odd. We are talking about the Pontryagin mani-
fold associated to f while we, in fact, chose our regular value y P Sp and our
basis for TyS

p. We could have chosen any regular value or basis, so why is this
well-defined?
This is well-defined because up to framed cobordism, all other Pontryagin man-
ifolds associated to f are the same. We will now define the space

`

M ÝÑ Spq “ tsmooth maps from M to Spu .

So we will now define the map N‚ as

N‚ :
`

M ÝÑ Sp
˘

ÝÑ Ωfrm´ppMq

f ÞÑ N‚pfq “ rpf
´1pyq, f˚pµqs

where y is an arbitrarily chosen regular value of f and µ is an arbitrarily chosen
basis of TyS

p.

Theorem 4.7 (well-definedness of N‚). Our map N‚ is well-defined, or more
explicitly: suppose y1 P Sp is another regular value of f and µ1 is another
positively oriented basis for Ty1S

p then pf´1py1q, f˚pµ1qq is framed cobordant to
pf´1pyq, f˚pµqq,

pf´1py1q, f˚pµ1qq
fr
– pf´1pyq, f˚pµqq

To prove this we will first prove three lemmas, where the first lemma states
that the chosen basis of TyS

p does not matter up to cobordism, the second
states that the regular value does not matter locally and the third states that
the map does not matter up to homotopy.

4.1.1 Choosing a basis for TyS
p

Lemma 4.8. Suppose y P Sp is a regular value of f and that both ν1 and ν2

are positively oriented bases of TyS
p, then,

pf´1pyq, f˚pν1qq
fr
– pf´1pyq, f˚pν2qq

The proof of this theorem is based on the proof given in Milnor [7] but with
some clarifications. The idea to prove this is to prove that there is a smooth
path through basepTyS

pq connecting ν and ν1, and then we take this path to be
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the framing of the cobordism.
To do this, we identify TyS

p with Rp in the following way. Suppose ν is a
positively oriented basis of TyS

p. Then we can write an arbitrary v P TyS
p as

v “
ÿ

i

`

λi ¨ νi
˘

which gives the linear isomorphism L between TyS
p and Rp

L : TyS
p ÝÑ Rp

v ÞÑ Lpvq “
ÿ

i

`

λi ¨ ei
˘

.

In this way we can also describe another basis ν1 of TyS
p as a basis of Rp

ν1j “
ÿ

i

`

λji ¨ νi
˘

which gives

Lpν1q “
 

ÿ

i

pλji ¨ eiq “ Lpν1jq | 0 ă j ď p
(

.

Because of this we will first prove that there is a smooth path between a pos-
tively oriented basis of Rp and e, being the standard euclidian basis of Rp.

To do this we identify the space of bases of Rn with GLnpRq as in definition
4.4. So we now need to prove that GL`n pRq is path-connected. We will use the
following sublemma:

Sublemma 4.9. Suppose A,B P GLnpRq and suppose A and B are connected
by a path γ. Then detpAq and detpBq have the same sign.

Proof of sublemma 4.9. We will prove this by using contradiction. Suppose that
detpAq and detpBq have a different sign. We know that a continuous map
maps a connected set onto a connected set. Because path-connectedness induces
connectedness we know that Impγq is a connected subset of GLnpRq.
Because det : GLnpRq ÝÑ R is a continuous map, we see that det

`

Impγq
˘

“ Uγ
is connected as well.
On the other hand, we know that Impdetq “ Rzt0u so Uγ cannot be connected
because detpγp0qq and detpγp1qq have a different sign. So γp0q “ A is not
connected to γp1q “ B which is in contradiction with the assumption that A
and B are path-connected. So we see that detpAq and detpBq have the same
sign which was to be proven.

So when constructing a smooth path, we see that the bases will all be pos-
itively oriented if we start with a positively oriented basis. We will prove our
theorem in two steps: first, we want that every basis is smoothly connected to an
orthonormal one and second we want that every orthonormal basis is smoothly
connected to the standard euclidian one.
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To do this we need to construct a smooth path by composition of other smooth
paths. The resulting path does not need to be smooth however, so we give the
following definition.

Definition 4.10 (respeeding of paths). Suppose γ1, γ2 : I ÝÑM are two smooth
paths. By respeeding of paths we that we compose γ1 and γ2 before composing
them to get a new smooth path γ̃. So more explicitly

γ̃ “
`

γ2 ˝ ψ̃
˘

‚
`

γ1 ˝ ψ̃
˘

.

where ψ̃ is the smooth bump function from definition 2.3.

Sublemma 4.11. Every basis is smoothly path connected to an orthonormal
basis.

proof of sublemma 4.11. So suppose that v is a basis for Rn then we want to
have a smooth path α : I ÝÑ basepRnq, where basepRnq is the space of all bases
of Rn, such that αp0q “ v and αp1q is orthonormal.

We will do this in two steps.

1. First we use the Gram-Schmidt procedure to get an orthogonal basis. So
suppose we have a basis v of Rn. We first define a1 as

a1ptq “ v1.

Then we define ai inductively as

aiptq “

ˆ

vi ´
i´1
ÿ

j“1

´

xvi, ajp1qy

xajp1q, ajp1qy
ajp1q

¯

˙

t` vip1´ tq.

By the Gram-Schmidt procedure we see that ap1q indeed gives an orthog-
onal basis. All ai are clearly smooth, so a is a smooth path between v and
an orthogonal basis ap1q.

2. Now we will normalize our basis. So suppose we have a basis ν “ pν1, ..., νnq
of Rn. Then

aiptq “
vi
||vi||

t` vip1´ tq

gives a smooth path from vi to vi
||vi||

. So as a whole a will be a smooth

path from a basis v to a normalized basis v1.

3. The only problem we still have have is that the composition of the two
paths is not smooth, but we can make it smooth by respeeding them. We
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will call our orthogonalization path α1 and our normalization path α2.
Using defintion 4.10 gives us a new smooth path α, given by

α : I ÝÑ base
`

Rn
˘

t ÞÑ αptq “
`

pα2 ˝ ψ̃q ‚ pα1 ˝ ψ̃q
˘

ptq

which gives us a smooth path between a v and an orthonormal basis
αp1q “ ν1, which was to be proven.

By both sublemmas, we already see that every positively oriented basis is
smoothly path-connected to a positively oriented orthonormal basis. We define
the space SOnpRq as

SOnpRq :“ tA P GLnpRq such that A ¨At “ I and detpAq “ 1u

which represents the positively oriented orthonormal bases. So we want to prove
the following sublemma:

Sublemma 4.12. For every positively oriented orthonormal basis, there is a
smooth path such that it is connected to the standard basis.

proof of sublemma 4.12. So suppose that v is an orthonormal basis of Rn and
e is the standard basis.
We will prove this in two parts. First, we construct a smooth path between v
and a v rotated in such a way that the new v1 is the same as e1. In the second
part, we define the total smooth path by rotating the other vi into place as well.
We do this by using an n-dimensional rotationmatrix. To construct this, we first
define R2, which is the rotationmatrix for two dimensions, so rotating through
the xy-plane

R2pθq “

ˆ

cospθq ´ sinpθq
sinpθq cospθq

˙

.

We now define this matrix for n dimensions

Rnpθq “

ˆ

R2pθq 0
0 In´2

˙

which is the rotation through the x1x2-plane. We want to rotate through
all x1xi-planes, with i ‰ 1, where xi is the ith axis. Because when we do rotate
through all these planes our original vector v1 will be lined up with e1.
To define these rotations we first define the linear ismorphisms that define swap-
ping xi with x2

Φxi
“

¨

˚

˚

˚

˚

˝

ˆ

1 0
0 0

˙

0

ˆ

0
1

˙

0

0 Ii´3 0 0
`

0 1
˘

0 0 0
0 0 0 In´i

˛

‹

‹

‹

‹

‚
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. Using this, the rotationmatrix for the rotation through the x1xi is given by

Rx1xi
n pθq “

`

Φxi

˘´1
¨Rnpθq ¨ Φxi

.

The way we use this is by projecting the vector v1 onto the the plane we want
to rotate over and to determine the angle θ it has with respect to e1. We then
create a smooth path γxi

inductively by

γxi
: I ÝÑ Rn

t ÞÑ γxi
ptq “ Rx1xi

n pt ¨ θq ¨
`

γxi`1
p1q

˘

where we define γxn`1
p1q “ v1 and 1 ă i ď n. Now we have only rotated v1,

however we want to rotate our basis v. We define our general path inductively
by

γvjxi
: I ÝÑ Rn

t ÞÑ γvjxi
ptq “ Rx1xi

n pt ¨ θγxi`1
q ¨

`

γvjxi`1
p1q

˘

where we again define γ
vj
xn`1p1q “ vj and 1 ă i ď n. These paths induce new

smooth paths

Γxi : I ÝÑ base
`

Rn
˘

t ÞÑ Γxi
ptq “ tγvjxi

ptq | 1 ď j ď nu.

We see that γ
vj
xi p0q “ γ

vj
xi`1p1q for all 1 ď j ď n so Γxi

p0q “ Γxi`1p1q. We
compose these smooth paths while respeeding as in defintion 4.10 and call the
composition Γv1 , so more explicitly

Γv1 : I ÝÑ base
`

Rn
˘

t ÞÑ Γv1ptq “
´

`

Γx2
˝ ψ̃

˘

‚ ¨ ¨ ¨ ‚
`

Γxn
˝ ψ̃

˘

¯

ptq.

We now have a new orthonormal basis Γv1p1q “ v1 where the last n ´ 1
vectors give a basis for a hyperplane spanned by tx2, ¨ ¨ ¨ xnu which is linearly
isomorphic to Rn´1 by forgetting the first coordinate. This also induces a new
basis by the map

Λ :
!

v P base
`

Rn
˘

| v1 “ e1

)

ÝÑ base
`

Rn´1
˘

v ÞÑ Λpvq “ tprpv2q, ¨ ¨ ¨ , prpvnqu

We can now want to do the same procedure to get a smooth path Γv2 : I ÝÑ
base

`

Rn´1
˘

and in the same way we inductively make smooth paths Γvi .
To do this we take the dimension n as parameter k in our previous formulas and
our starting basis v as well, so that we get a smooth path Γkv1 : I ˆ base

`

Rk
˘

ÝÑ
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base
`

Rk
˘

which rotates a k-dimensional basis so that v1 is aligned with e1. We

now want to define smooth paths Γ̃ inductively for a fixed v by

Γ̃vi : I ÝÑ base
`

Rn´i`1
˘

t ÞÑ Γ̃viptq “ Γn´i`1
v1 pΛn´i`2pΓ̃vi´1

p1qq, tq

where 1 ď i ď n´ 1 and we define Λn`1pΓ̃v0q “ v. These are not paths through
base

`

Rn
˘

, so we define a map that will send them there by

Ξkn : base
`

Rk
˘

ÝÑ base
`

Rn
˘

v “ tv1, ¨ ¨ ¨ , vku ÞÑ Ξkpvq “ te1, ¨ ¨ ¨ , en´k´1, v1, ¨ ¨ ¨ , vku.

Now that we have done that, we will define our total path Γ between v and
e, where we take the composition while respeeding the parts as in definition 4.10

Γ : I ÝÑ base
`

Rnq
˘

t ÞÑ Γptq “ ppΞ2 ˝ Γ̃n´1q ‚ ¨ ¨ ¨ ‚ pΞ
n´pi´1q
n ˝ Γ̃viq ‚ ¨ ¨ ¨ ‚ Γ̃1qptq.

When note this path only aligns the first n´ 1 vectors of v with e, however,
we see that there are only two options for vn which is inside the line spanned
by en. It is either en or ´en. However, because our basis is positively oriented
we see that vn “ en by sublemma 4.9. So we see that Γ gives us a smooth path
between v and e, which was to be proven.

Now that we have proven this, we are ready to prove lemma 4.8.

Proof of lemma 4.8. Suppose we have an arbitrary positively oriented framing
ν0 of Rp. Using sublemma 4.11 we see that there is a smooth path γ1 from ν0

to a positively oriented orthonormal basis ν1. Using sublemma 4.12 we see that
ν1 is smoothly path connected to the standard basis e by a smooth path γ2. We
create a smooth path γ̃ by composing γ1 and γ2 as in definition 4.10.

e

ν0

ν1

P

P

GL`n pRq

SOnpRq

γ1

γ2

γ̃

Figure 1: diagram for the proof of lemma 4.8
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We will now use this path γ̃ to construct a cobordism between pf´1pyq, f˚pνq
and pf´1pyq, f˚pν1q. We see that there is a smooth path γ̃ between T

`

ν1
˘

and

T
`

ν
˘

“ e. So T´1 ˝ γ̃ gives a smooth path between ν1 and ν.
We first respeed this new path, so that all the change happens on rε, 1´ εs, so
we construct

γ “ T´1 ˝ γ̃ ˝ ψ̃ : I ÝÑ basetTyS
pu

t ÞÑ γptq.

We now see that W “ pf´1pyq ˆ I, f˚pγqq is a framed cobordism between
pf´1pyq, f˚pνqq and pf´1pyq, f˚pν1q where we define f˚pγq as

f˚pγq : f´1pyq ˆ I Q px, tq ÝÑ base
!

`

Tpx,tqpf
´1pyq ˆ Iq

˘K
)

px, tq ÞÑ
`

f˚pγq
˘

px, tq “ f˚pγtqpxq.

So we see that
`

f´1pyq, f˚pνq
˘

is framed cobordant to
`

f´1pyq, f˚pν1q
˘

, which
is what we wanted to prove.

e

ν1

T pν1q

ν

P

P

basepTyS
pq

GL`p pRq

P

basepTyS
pq

T

γ̃

T

T´1
pγ̃q

Figure 2: diagram for the proof of lemma 4.8

Now that we have proven this we will not write down the framing of the
Pontryagin manifold anymore because the chosen positively oriented basis of
TyS

p does not matter for the cobordism class of the Pontryagin manifold. We
note however that the framing of f´1pyq is still important, but the importance
comes from the map f . So from now on we will speak of a Pontryagin manifold
f´1pyq where f is a smooth map and y a regular value.

4.1.2 Choosing a regular value locally

Our next step in proving that our map N‚ is well-defined is to prove that our
choice of regular value locally does not matter for the framed cobordism class.

Lemma 4.13. Suppose y P Sp is a regular value of f, then there exists an open
U Q y such that for every x P U

f´1pyq
fr
– f´1pxq
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Our approach for this proof will be based on the proof given in Milnor [7]
but with some clarifications. To prove this lemma we first want to have an open
around y such that it only consists of regular values. So we want to prove that

Rf :“ tx P Sp | x being a regular value of fu

is open in Sp. Our approach will be to prove that its complement fpCq where
C are the critical points of f is closed in Sp. To do this we want to prove the
following sublemma.

Sublemma 4.14. The set of all critical points C for a smooth map f : M ÝÑ N
with M compact is closed.

Because M is a compact manifold it is useful to first prove this for maps
between euclidean spaces and to use a finite subcover of charts to prove it for
the general case.

Sublemma 4.15. The set of all critical points C for a smooth map f : Rm ÝÑ
Rn is closed.

We note that the critical points of a smooth map f are the points p such
that the matrix representation of dfp does not have maximal rank. So we see
that if m “ n then detpdfpq “ 0 and because det is a continuous map, we see
that C would be indeed closed. However when m ‰ n we do not have a map
like det right away. So we would like to create a square matrix that has the
same rank as dfp and create a new continuous map that takes the determinant
of this matrix. This map is given by

h : M ÝÑ R
p ÞÑ detpdfp ¨ df

t
pq

where df tp is the transposed of the matrix representation of dfp. So we now
want to prove that dfp ¨ df

t
p has the same rank as dfp. We state the following

sublemma.

Sublemma 4.16. If L PMmˆn then

rankpLt ¨ Lq “ rankpLq

To prove this we first note that the null space of a linear map L PMmˆn is
defined as

N pLq “ tv P Rn such that Lpvq “ 0 P Rmu.

We note that if L PMmˆn then Lt ¨ L PMnˆn.

Proof of sublemma 4.16. Suppose x P N pLq, then we see that pLt ¨ Lqpxq “
LtpLpxqq “ 0 P Rn because Lpxq “ 0 P Rm. So we see that x P N pLt ¨ Lq.
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We now suppose that x P N pLt ¨Lq. By taking the inner product on Rn with x
with see that

xx, Lt ¨ Lpxqy “ xLpxq, Lpxqy “ 0 P R

because Lt ¨ Lpxq “ 0. Because xv, vy “ 0 implies that v “ 0 we see that
Lpxq “ 0, so x P N pLq.
We have now proven that N pLq “ N pLt ¨ Lq so we see that dimpN pLqq “
dimpN pLt ¨Lqq as well. We now use the rank nullity theorem, which sates that
n “ dimpN pLqq ` rankpLq for every linear map L : Rn ÝÑ Rm.
Using this for L and Lt ¨ L we see that

rankpLq “ n´ dimpN pLqq “ n´ dimpN pLt ¨ Lqq “ rankpLt ¨ Lq

which was to be proven.

Proof of sublemma 4.15. Using this sublemma we see that if dfp does not have
maximal rank, then dfp ¨ df

t
p has neither, so if and only if p is a critical value of

f , then hppq “ 0. Because h is a continuous map and t0u is closed we see that
h´1pt0uq “ C is closed as well.

We see that this works in the same way if the domain is an open of Rm,
because we could just have taken an open Ω Ă Rm for the domain of the map
h. We will now prove this statement for arbitrary compact manifolds.

Proof of sublemma 4.14. We know that f : M ÝÑ N is a submersion at p iff
fχ,χ1 “ χ1 ˝ f ˝χ´1 is a submersion around χppq for every chart χ around p and
χ1 around fppq. We also know that we only have to check this condition for a
single chart χ of M around p and a single chart χ1 of N around fppq.
Because M is compact we can look at a finite cover of charts χi with the domain
Ui. We will write the set of critical points of f |Ui

as CUi
. We see that CUi

gets
mapped by χ onto the critical points of the map fχ,χ1 , which is closed in χpUiq.
Because χ´1 is a homeomorphism, which takes closed subsets to closed subsets,
we see that CUi is closed as well.
We now note that CUi is the same as C X Ui, so we see that

C “
ď

i

`

C X Ui
˘

.

We note however that C X Ui being closed in Ui for all i does not immediately
imply that C is a closed subset of M .
To prove this we look at Cc, which we want to prove to be open in M . We see
that

Cc X
ď

i

`

Ui
˘

“
ď

i

pUi X C
cq

because taking an intersection with a finite amount of unions is distributive.
We note now that Ui X C

c is the complement of Ui X C, so it is an open in Ui.
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Because of our definition of the subspace topology we see that there is an open
V ĂM such that Ui X V “ Ui XC

c, and because the intersection of two opens
is an open we see that UiXC

c is an open in M . Because a finite union of opens
is open, we get that Cc X

Ť

i

`

Ui
˘

“ Cc is an open in M . Because of this, we
see that C is indeed closed in M , which was to be proven.

Because C is closed in M and M being compact, we see that it is compact in
M . Because f is a continuous map from a compact space to a Hausdorff space
we see that fpCq is compact in Sp and because Sp is compact, fpCq is closed.
So Rf “

`

fpCq
˘c

is indeed open in Sp.

Now that we have proven this we can choose an open ball By P Rp`1 around y
such that By

Ş

Sp “ Uy Ă Rf .

We want this open Uy because if we would rotate from one point in Uy to
another point in Uy, we would not leave it. So this ensures that it will rotate
through regular values of f .

proof of lemma 4.13. Suppose z P Uy different from y, then we can rotate from
y to z in a straight line, which we call r : Sp ˆ I ÝÑ Sp.

To do this we first note that Sp is diffeomorphic to Sp by a map Φ with
Φpyq “ e1 and where Φpzq lays in the x1x2-plane, by rotating Sp into place. We
now want to construct a smooth map r : Sp ˆ I ÝÑ Sp which rotates the sphere
so that e1 is rotated onto Φpyq by

r : Sp ˆ I ÝÑ Sp

px, tq ÞÑ rpx, tq “ Rpx1,x2
pt ¨ θq ¨ x

where θ is the angle between e1 and Φpzq. Here we view Sp as a submanifold
of Rp`1.
This induces a map r̃ defined as

r̃ : Sp ˆ I ÝÑ Sp

px, tq ÞÑ r̃px, tq “
`

Φ´1 ˝ r ˝ pΦˆ IdIq
˘

px, tq.

We note that r̃px, 0q “
`

Φ´1 ˝ r ˝ pΦ ˆ IdIq
˘

px, 0q “ Φ´1 ˝ rpΦpxq, 0q “

Φ´1pΦpxqq “ x so r̃0 “ IdSp . We also see that r̃py, 1q “
`

Φ´1 ˝ r ˝ pΦ ˆ

IdIq
˘

py, 1q “ Φ´1 ˝ rpe1, 1q “ Φ´1pΦpzqq “ z. We also note that, by how we
have chosen our open Uy that r̃py, tq P Uy for all t P I, so r̃py, tq P Rf for all t.
We now define the homotopy F as

F : M ˆ I ÝÑ Sp

px, tq ÞÑ F px, tq “ r̃t ˝ fpxq

This is a smooth homotopy between f and r̃1˝f . For each t P I we see that z is a
regular value of r̃t˝f : M ÝÑ Sp, so for each t P I we get that r̃t˝f is a submersion
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for all x P pr̃t ˝ fq
´1pzq. Because of this we see that z is a regular value of F .

By lemma 4 of Chapter 2 of Milnor [7] we see that F´1pzq only has boundaries
at t “ 0 and t “ 1, so BF´1pzq “ f´1pzq ˆ t0u Y pr̃1 ˝ fq

´1pzq ˆ t1u. So F´1pzq

is a framed cobordism between f´1pzq and
`

r̃1 ˝ f
˘´1
pzq “

`

f´1 ˝ pr̃1q
´1

˘

pzq “
f´1pyq. So

f´1pyq
fr
– f´1pzq

for all z P Uy, which was to be proven.

4.1.3 Two homotopic maps

Lemma 4.17. Suppose f, g : M ÝÑ Sp are smoothly homotopic and they both
have y as a regular value, then

f´1pyq
fr
– g´1pyq

Our proof will be based on the proof in Milnor [7] but given with more
explanation. Suppose f and g are smoothly homotopic by the smooth homotopy
F . We want a smooth homotopy F̃ such that

F̃ px, tq “ fpxq for t P r0, εq and

F̃ px, tq “ gpxq for t P p1´ ε, 1s.

We create this by respeeding our original F in the following way.

Definition 4.18 (respeeding a homotopy). Suppose we have a smooth map
F : M ˆ I ÝÑ Sp, then by respeeding F we mean that we compose F with the
bump function ψ̃ of definition 2.3 so that the homotopy only happens between
rε, 1´ εs, or more explicitly

F̃ “ F ˝ pIdM , ψ̃q.

We now want to choose a regular value for F̃ that is close to y. Note that y
does not have to be a regular value for F .

Theorem 4.19 (Brown). Suppose f is a smooth map from M to N , then the
set of regular values is everywhere dense in N .

For a proof we refer to Chapter 2 of Milnor [7].

Proof lemma 4.17. By theorem 4.19 we see that for every y P Sp and for every
open Uy Q y there is a regular value z P RF̃ such that z P Uy, because otherwise
SpzUy would be closed and thus RF̃ Ă SpzUy ‰ Sp.

We now take an open Uf and Ug around y like the open Uy we used in lemma
4.13 and we make a new open Ufg “ Uf X Ug around y. By our remark above
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we see that there is a z P Ufg, being a regular value of F̃ . We also note that
z P Rf and z P Rg, so it is also a regular value for both f and g.

We get that F̃´1pzq X
`

M ˆ r0, εq
˘

“ F̃ |´1
Mˆr0,εqpzq “ f´1pzq ˆ r0, εq and

F̃´1pzq X
`

M ˆ p1 ´ ε, 1s
˘

“ F̃ |´1
Mˆp1´ε,1spzq “ g´1pzq ˆ p1 ´ ε, 1s. By lemma

4 of Chapter 2 of Milnor [7] we see that F̃´1pzq only has boundaries at t “ 0
and t “ 1, so BF̃´1pzq “ f´1pzq ˆ t0u Y g´1pzq ˆ t1u. Because of this we see
that F´1pzq is a framed cobordism between f´1pzq and g´1pzq. By lemma 4.13

we have that f´1pyq
fr
– f´1pzq and g´1pyq

fr
– g´1pzq. So because being framed

cobordant is an equivalence relation we see that f´1pyq is framed cobordant to
g´1pyq .

f´1pyq
fr
– f´1pzq

g´1pyq
fr
– g´1pzq

F̃´1
pzq

Figure 3: diagram for the proof of lemma 4.17

Proof of theorem 4.7. Now that we have proven all three lemmas, we are ready
to prove N‚ is well-defined. Suppose that y and z are two regular values of f .
Then we can make a rotation rt : Sp ˆ I ÝÑ Sp such that

r0 “ idSp and r1pyq “ z

Using this we see that we see that r0 ˝ f “ f is smoothly homotopic to r1 ˝ f
by rt ˝ f : M ˆ I ÝÑ Sp, so using lemma 4.17 we get that

`

r0 ˝ f
˘´1
pzq “ f´1pzq

fr
–
`

r1 ˝ f
˘´1
pzq “ f´1 ˝

`

r1

˘´1
pzq “ f´1pyq.

So f´1pzq
fr
– f´1pyq, which was to be proven.

We have now proven that N‚ is well-defined. However, we still need to check
that N˚ is well-defined.

Theorem 4.20 (well-definedness of N˚). The map N˚ : rM,Sps ÝÑ Ωfrm´ppMq
is well-defined, or in other words: suppose rf s, rgs P rM,Sps and rf s “ rgs, then
N˚

`

rf s
˘

“ N˚
`

rgs
˘

.

Proof of theorem 4.20. We first note that rf s “ rgs means that f is smoothly
homotopic to g. We see that N˚prf sq “ N‚pfq “ rNf s and N˚prgsq “ N‚pgq “
rNgs. We know that N‚ is a well-defined map so we can take representatives
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f´1pxq of rNf s and g´1pxq of rNgs, where x is a regular value for both f and g.

To prove that such an x exists we use theorem 4.19. We first take x̃ P Sp

as an arbitrary regular value of g. In the same way as the first part of the proof
of lemma 4.17 we see that f has a regular value in any open around x̃. So we
take Ug around x̃, which is the same open as Uy used in lemma 4.13. We see
that there is a x P Ug around x̃ and that x P Rf , so x is a regular value for both.

By lemma 4.17 we see that f´1pxq is framed cobordant to g´1pxq because f
is homotopic to g, so Nprf sq “ Nprgsq, which was to be proven.

rf s “ rgs
PP
gf

rNf s rNgs

f´1pxq
fr
– g´1pxq

PP

N‚ N‚

Figure 4: diagram for the proof of theorem 4.20
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4.2 Defining col˚

Now that we have proven that N˚ is a well-defined map, we will construct its
inverse, col˚. This map will take a class rpN, νqs P Ωfrm´ppMq of which pN, νq
is a representative and map it onto a class rfpN,νqs P rM,Sps. We will define it
as col˚prN, νsq “ colpN, νq where col acts on framed closed submanifolds of M
and sends them to the class of their associated map fpN,νq.
So we want to have a method to construct a map from M to Sp out of a
submanifold, which is given by the tubular neighbourhood theorem.

4.2.1 The tubular neighbourhood theorem

Theorem 4.21 (tubular neighbourhood theorem). For a framed closed sub-
manifold

`

N, ν
˘

of M there is an open VN of M around N such that VN is
diffeomorphic to N ˆRp where N corresponds to N ˆ t0u and where each nor-
mal frame νpxq corresponds to the standard basis of Rp for every x P N .

The way we will prove this will be based on the prove given in Milnor [7] but
discussed on more detail. To prove this theorem we first want to prove it for M
being Rm because in this situation the ambient tangent space is more intuitive.
Suppose we have a n-dimensional framed closed submanifold pN, νq of Rm and
that p “ m ´ n. The map that will be our diffeomorphism between Vn and
N ˆ Rp will be called ψ and is constructed as

ψ : N ˆ Rp ÝÑ Rm

px, tq ÞÑ x` t1 ¨ ν1pxq ` ...` tp ¨ νppxq.

We see that this map takes straight lines px, λeiq to x ` λνi. We now give the
following sublemma.

Sublemma 4.22. There is an open N ˆ Bpδ Ă N ˆ Rp around N ˆ t0u such
that ψ is a local diffeomorphism on it onto its image ψpN ˆ Bpδ q, which is an
open around N .

Proof of sublemma 4.22. To prove this we want to create opens that cover N ˆ
t0u such that every open is a diffeomorphically mapped by ψ onto its image.
Afterwards, we will create the open N ˆBpδ Ă N ˆRp, which will lay inside the
union of all the opens.
We will use the inverse function theorem to find these opens. So we want to
prove that dψpx,0q is an automorphism for every x P N . To see this is the case
we first take a chart χ mapping Ux, being an open around x P Rm, onto Ωχpxq
such that UxXN is mapped onto ΩχpxqX pRnˆt0puq Ă Rm. We will write χN
as the chart this induces on N by mapping Ux X N onto ΩχN pxq Ă Rn, where
we view Ux XN as an open of N . We now take the product chart pχN , χIdq on
N ˆRp which maps the open

`

pUxXNqˆV
˘

onto pΩχN pxqˆV q being an open
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of Rm. By looking at ψ under these charts, we see we can write it as

ψpχN ,χIdq,χ “ χ ˝ ψ ˝ pχN , χIdq
´1 with

ψpχN ,χIdq,χpt1, ¨ ¨ ¨ , tn, tn`1 ¨ ¨ ¨ tn`pq “

t1 ` ¨ ¨ ¨ ` tn ` tn`1pν1qpχN ,χIdq,χpt1, ¨ ¨ ¨ , tnq ` ¨ ¨ ¨ ` tn`ppνpqpχN ,χIdq,χpt1, ¨ ¨ ¨ , tnq.

We see that the normal frame induces a linear transformation from Rp onto
itself so the differential of ψpχN ,χIdq,χ at pt1, ¨ ¨ ¨ , tn, 0, ¨ ¨ ¨ , 0q is given by

pdψpχN ,χIdq,χqpt1,¨¨¨ ,tn,0,¨¨¨ ,0q “

ˆ

In 0
0 Ψppt1, ¨ ¨ ¨ , tnq

˙

where Ψp is the linear transformation corresponding to the normal frame.
We now see that

detppdψpχN ,χIdq,χqpt1,¨¨¨ ,tn,0,¨¨¨ ,0qq “ detpInq ¨ detpΨpq ‰ 0.

So pdψpχN ,χIdq,χqpt1,¨¨¨ ,tn,0,¨¨¨ ,0q is indeed an automorphism, because of which
dψpx,0q is as well.
So using the inverse function theorem, we see that there is an open Upx,0q around
every point px, 0q P N ˆ Rp such that ψ maps it diffeomorphically to an open
ψpUpx,0qq Ă Rm.

We now want to prove that there is an open N ˆ Bpδ inside the union of all
these opens, because then ψ is a local diffeomorphism on it. We will give a
prove by contradiction that such an open N ˆBpδ exists.
Suppose that there is no δ ą 0 such that NˆBpδ is in the union of all the opens,
then we see that for every δ ą 0 there has to be a px1, y1q P N ˆB

p
δ such that

px1, y1q R
ď

xPN

Upx,0q

because otherwise for a certain δ all points of N ˆBpδ would be in the union of
the opens.
We now construct a sequence out of these points by

αn “ px1, y1q with px1, y1q P N ˆB
p

1
n`1

such that

px1, y1q R
ď

xPN

Upx,0q

Because B
p

1 and N are both compact we see that NˆB
p

1 is a compact subset
of RmˆRp “ Rm`p. Using Bolzano Weierstrass we see that αn has a converging
subsequence, which we will call βn. We see that βn “ px1, y1q ÝÑ px̃, 0q when
n ÝÑ 8. Because px̃, 0q is a point in N ˆ t0u we see that we have an open
Upx̃,0q around it, which is part of the union of opens. Because βn converges we
have an ñ P N such that for every n ą ñ we have that βn P Upx̃,0q, which is in
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contradiction with the way we constructed βn. So we see that there is a δ ą 0
such that

N ˆBpδ Ă
ď

xPN

Upx,0q

which proves that there is a N ˆBpδ such that ψ is a local diffeomorphism on it
onto its image.

Sublemma 4.23. There is an open N ˆ Bpε Ă N ˆ Rp around N ˆ t0u such
that ψ maps it diffeomorphically onto its image ψpN ˆ Bpε q, which is an open
around N .

Proof of sublemma 4.23. Using sublemma 4.22 we see that we already have an
open N ˆ Bpδ Ă N ˆ Rp such that ψ maps it local-diffeomorphically onto its
image. So we still need ψ to be injective on N ˆ Bpδ Ă N ˆ Rp. We will prove
that it is by contradiction.
So suppose that there is no open N ˆBpδ Ă N ˆ Rp such that ψ is injective on
it. Then there are

px1, p1q, px2, p2q P N ˆB
p
δ such that

px1, p1q ‰ px2, p2q and

ψpx1, p1q “ ψpx2, p2q for all δ ą 0

because otherwise there would exist an N ˆ Bpδ such that ψ is injective on it,
where we could just take ε “ δ as our open N ˆBpε . So we make a sequence

αn “ ppx1, p1q, px2, p2qq with

px1, p1q, px2, p1q P N ˆB
p

1
n`1

such that

px1, p1q ‰ px2, p2q and ψpx1, p1q “ ψpx2, p2q.

Because N is compact, we see that N ˆ B
p

1 is a compact subset of Rm ˆ Rp “
Rm`p. By Bolzano-Weierstrass we see that αn in N ˆ B

p

1 has a converging
subsequence βn. We see that βn “ ppx1, p1qpx2, p2qqn ÝÑ ppx̃1, 0q, px̃2, 0qq when
n ÝÑ 8 and because ψ is injective on N ˆ t0u we see that x̃1 “ x̃2. By the
definition of convergence we see that for every open Upx̃,0q there is an ñ P N such
that for every n ą ñ both points pr1 ˝βn “ px1, p1qn and pr2 ˝βn “ px2, p2q are
in Upx̃,0q. However this means that there cannot exist opens Upx,0q as we have
proven to exist in the proof of sublemma 4.22, so this gives a contradiction.
We conclude that there has to be an open N ˆ Bpε Ă N ˆ Rp around N ˆ t0u
such that ψ maps it diffeomorphically onto its image ψpN ˆ Bpε q, which is an
open around N .

Now that we have proven these two sublemmas, we will prove the tubular
neighbourhood theorem for our special case.
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Proof of theorem 4.21 when M “ Rm. Using sublemma 4.23 we see that we al-
ready have an open tube around N ˆt0u such that ψ is a diffeomorphism on it.
We will now prove that this open is diffeomorphic to NˆRp with the properties
as described. We will first show that our open N ˆ Bpε Ă N ˆ Rp already has
those properties.
We see that ψpN ˆ t0uq “ N so N corresponds to N ˆ t0u.
To see that each normal frame νpxq corresponds to the standard basis e of Rp,
we will look at the speeds of smooth paths. We note that when looking at the
path

γx : r´1, 1s ÝÑ N ˆ Rp

t ÞÑ γxptq “ px, 0, ¨ ¨ ¨ , t, ¨ ¨ ¨ , 0q

where t is taken on ti, that taking ψ on it we get that

ψ ˝ γx : r´1, 1s ÝÑ Rm

t ÞÑ ψ ˝ γptq “ x` t ¨ νipxq.

By looking at their speeds at t “ 0 we see that

dψpx,0qpeiq “ dψpx,0qp
dγx
dt
p0qq “

dpψ ˝ γxq

dt
p0q “ νipxq.

So each normal frame corresponds to the standard basis e of Rp. Now that we
have proven these conditions for our open N ˆBpε Ă N ˆRp we will prove that
it is diffeomorphic to N ˆ Rp. Using the diffeomorphism

Φ1 : Bpε ÝÑ Bp1
v ÞÑ Φ1pvq “ ε ¨ v

we see that the open ball with radius ε is diffeomorphic to the open unit ball.
We now give a diffeomorphism between our open unit ball and Rp

Φ2 : Bp1 ÝÑ Rp

v ÞÑ Φ2pvq “
v

p1´ ||v||2q

which rescales Bp1 into Rp. So by taking the composition of these two diffeo-
morphisms we get a diffeomorphism between Bpε and Rp

Φ “ Φ2 ˝ Φ1 : Bpε ÝÑ Rp

v ÞÑ
1

ε

˜

v

p1´ ||v||2
ε2 q

¸

.

However, this is not yet the diffeomorphism we want, because when we look at
a path

γi : I ÝÑ Bpε

t ÞÑ t ¨ ei
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then its speed at t “ 0 is ei. However, when looking at its speed after the
diffeomorphism we see that its speed at t “ 0 is 1

ε ei, which we do not want. So
to fix this we multiply by ε after the diffeomorphism Φ, which gives us

Φ̃ : Bpε ÝÑ Rp

v ÞÑ Φ̃pvq “
v

p1´ ||v||2
ε2 q

.

This only changes the speed of our scaling, so it is a diffeomorphism. We see
that 0 is mapped to 0 and that ei corresponds with ei. This diffeomorphism
induces a diffeomorphism between N ˆ Bpε and N ˆ Rp with the properties
we want it to have. So this proves the tubular neighbourhood theorem in the
special case that M is Rp.

For the general case, we will give an overview of the construction used in
Chapter 5 of Differential Topology by Hirsch [5]. In this case we have an m-
dimensional closed submanifold of Rm`k and a closed framed n-dimensional
submanifold pN, νq. One of the main differences is that the manifold M does
not have to have a framing. In that case, there is a more general tubular
neighbourhood theorem, that we are not going to discuss. So in our case, we
take M to be a framed submanifold of Rm`k.

Proof of theorem 4.21 when M is framed. Using the tubular neighbourhood the-
orem for the case when M is Rm we see that there is an open VM around M
such that it is diffeomorphic to M ˆ Rk because M is a submanifold of Rm`k.
We note that this gives us a map

πM : VM “M ˆ Rk ÝÑ Rm`k

px, tq ÞÑ πM px, tq “ x.

We now look at the framed submanifold pN, νq. We would like to use the same
kind of construction as our case that M is Rm, however, the paths we would
get are more difficult to describe because they would be ”straight” on M . Our
construction will be to first take straight lines, which may not lie in M , but
then to project them onto M by using πM .
So we first use the same construction as we did before by

ψN : N ˆ Rm´n ÝÑ Rm´k

px, tq ÞÑ x` t1ν1pxq ` ¨ ¨ ¨ ` tm´nνm´npxq

Now we look at the part of the image of ψN that lies inside VM

UVM
“ tpx, tq | ψN px, tq P VMu .

We see that UVM
is an open of N ˆ Rm´k because UVM

“ ψ´1
N pVM q where VM

is open and ψN is smooth. We note that N ˆ t0u Ă UVM
because ψpx, 0q “ x P
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N ĂM Ă VM . We now construct the map

ψ̃ : UVM
ÝÑM

px, tq ÞÑ ψ̃px, tq “ pπM ˝ ψqpx, tq

which will be an automorphism at px, 0q and in the same way as in the case that
M “ Rm we see that there are opens N ˆ Bm´nε such that they are mapped
diffeomorphically under ψ̃. We see that ψ̃pN ˆt0uq “ N and because πM is the
identity map on N we see that dψ̃px,0qp0, eiq “ ψpx,0qp0, eiq “ νi. This proves
the tubular neighbourhood theorem when M is framed.

4.2.2 Construction of col

Our construction of the map col will be based on the construction in Milnor [7],
however in our construction we will define col as a map, which is more in line
with the approach by Davis and Kirk [3]. Now that we have proven the tubular
neighbourhood theorem we will use it to construct a smooth map from M to
Sp out of a framed closed submanifold pN, νq of M . To do this we want to use
the opens N ˆ Bpε Ă N ˆ Rp around N ˆ t0u as used in the proof of theorem
4.21 where we call ψpN ˆBpε q “ Vε.

We see that Vε is diffeomorphic to N ˆ Rp. We now define the projection
map

π : Vε – N ˆ Rp ÝÑ Rp

px, yq ÞÑ πpx, yq “ y

which is clearly smooth and it is also a submersion at 0, because when looking
at it under a chart χ̃ “ χˆχid we see that pdπχ̃qχ̃pxq “

`

0, Ip
˘

with x P N ˆt0u,
which is surjective, so π is a submersion.
The only thing we need now is to construct a map between Rp and Sp such that
it has

`

N, ν
˘

as Pontryagin manifold.
We do this by identifying Sp with Rp Y t8u. We now construct the map f ε

pN,νq
as

f εpN,νq : M ÝÑ Sp

x ÞÑ

#

πpxq for x P Vε

8 otherwise

For now we will drop the pN, νq out of our notation for f ε
pN,νq. We note that

pf εq´1p0q “ pπ ˝ ψ´1q´1p0q “ pψ ˝ π´1qp0q “ ψpN, 0q “ N

and because when we have x P N we see that

df εxpνipxqq “ pdπpx,0q ˝ pdψ
´1qxqpνipxqq “ dπx,0p0, eiq “ ei
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we get that

pdf εq˚peq “ νpxq

which proves that f ε has pN, νq as Pontryagin manifold. We will call f ε
pN,νq the

associated map of pN, νq for radius ε. To define col we will now first give the
following notation

SubnpMq “
 

framed closed n-dimensional submanifolds of M
(

.

So we will now define the map col as

col : Subm´ppMq ÝÑ rM,Sps

pN, νq ÞÑ colpN, νq “ rf εpN,νqs

where ε is the radius of an arbitrarily chosen open N ˆ Bpε around N ˆ t0u
such that it is mapped diffeomorphically by ψ, and f ε

pN,νq is the corresponding
associated map.

Theorem 4.24 (well-definedness of col). Our map col is well-defined, or more
explicitly: suppose N ˆ Bpε2 is another open around N ˆ t0u such that it is
mapped diffeomorphically by ψ then f ε2

pN,νq is smoothly homotopic to f ε1
pN,νq,

f ε1
pN,νq » f ε2

pN,νq.

Proof of theorem 4.24. Our approach to prove this is to make a smooth path
between f ε1

pN,νq and f ε2
pN,νq. We will keep our framed submanifold pN, νq fixed,

so we will write f ε
pN,νq as f ε.

We first define the space

R`ψ “
 

ε P R` | ψ is a diffeomorphism on N ˆBpε
(

.

We note that if 0 ă ε2 ď ε1 and ε1 P R`ψ then we also have that ε2 P R`ψ , because
N ˆBpε2 Ă N ˆBpε .
We now construct a path between ε1 and ε2

γε1,ε2 : I ÝÑ R`ψ
t ÞÑ ε1p1´ tq ` tpε2q

where we note that γε1,ε2ptq ď maxtε1, ε2u, so indeed γε1,ε2ptq P R
`
ψ for all t P I.

We now construct a map that will send an ε to its associated map

f‚ : R`ψ ÝÑ pM ÝÑ Spq

ε ÞÑ f‚pεq “ f ε.

where f ε is the associated map of pN, νq by choosing N ˆBpε as starting open.
Using these two maps we create our smooth path

γ : I ÝÑ pM ÝÑ Spq

t ÞÑ pf‚ ˝ γε1,ε2qptq
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which defines a smooth homotopy by

F : I ˆM ÝÑ Sp

t ÞÑ F pt, xq “
`

γptq
˘

pxq.

We see that F p0, xq “
`

γp0q
˘

pxq “
`

f‚ ˝ γε1,ε2p0q
˘

ptq “ f‚pε1q “ f ε1 and that

F p1, xq “
`

γp1q
˘

pxq “
`

f‚ ˝ γε1,ε2p1q
˘

ptq “ f‚pε2q “ f ε2 . So f ε1 and f ε2 are
smoothly homotopic, so we see that col is a well-defined map.

We have now proven that col is well-defined. However we still need to check
that col˚ is well-defined.

Theorem 4.25 (well-definedness of col˚). The map col˚ : Ωfrm´kpMq ÝÑ rM,Sks

is well-defined, or in other words: suppose rpN1, ν1qs, rpN2, ν2qs P Ωfrm´kpMq and

rpN1, ν1qs “ rpN2, ν2qs, then col˚
`

rpN1, ν1qs
˘

“ col˚
`

rpN2, ν2qs
˘

.

Proof of theorem 4.25. We see that rpN1, ν1qs “ rpN2, ν2qs means that there is
a framed cobordism pW,µq Ă M ˆ I between pN1, ν1q and pN2, ν2q. Using col
we get colpN1, ν1q “ rf

ε1
N1
s, colpN2, ν2q “ rf

ε2
N2
s and colpW,µq “ rf εWW s. Because

col is a well-defined map we can choose representatives. We take f εWW as a
representative of rf εWW s, which is a smooth map from M ˆ I onto Sp.
We see that

ψW
`

pW ˆBpεW q X pM ˆ t0u ˆ Rpq
˘

“ ψN pN ˆB
p
εW q ˆ t0u

because W has the induced framing of ν by definition 3.5, so W X
`

M ˆt0u
˘

“

N1 ˆ t0u has as framing νW |pN1ˆt0uqpwq “ pνpxq, 0q. We see that by ψW this is
mapped precisely onto ψN pN ˆB

p
εW q ˆ t0u. Because of this and because

ψW
`

pW ˆBpεW q X pM ˆ t0u ˆ Rpq
˘

“ ψW pW ˆBpεW q X pM ˆ t0uq

we see that

f εW
pW,νW q

px, 0q “ f εW
pN1,ν1q

pxq

and in the same way we see that

f εW
pW,νW q

px, 1q “ f εW
pN1,ν1q

pxq.

So f εW
pW,νW q

gives a smooth homotopy between f εW
pN1,ν1q

and f εW
pN2,ν2q

, which proves

the well-definedness of col˚.
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4.3 N˚ “ pcol˚q´1

Now that we have proven N˚ and col˚ to be both well-defined maps, we will
prove that they are each others inverses.

Lemma 4.26. N˚ ˝ col˚ “ IdΩfr
m´kpMq

or more explicitly N˚ ˝ col˚prpN, νqsq “

rpN, νqs for all rpN, νqs P Ωfrm´kpMq.

Proof of lemma 4.26. We see that N˚ ˝ col˚prf sq “ N˚pcolpfqq “ N˚prf ε
pN,νqsq

which givesN‚pf ε
pN,νqq “ rpf

ε
pN,νqq

´1p0q, pf ε
pN,νqq

˚peqs “ rpN, νqs because
`

pf ε
pN,νqq

˚peq
˘

“

pN, νq as stated in the construction of the associated map f ε
pN,νq.

Because of this we see that N˚ ˝ col˚prpN, νqsq “ rpN, νqs for all rpN, νqs P

Ωfrm´kpMq, so N˚ ˝ col˚ “ IdΩfr
m´kpMq

which was to be proven.

Lemma 4.27. col˚ ˝N˚ “ IdrM,Sps or more explicitly col˚ ˝N˚prf sq “ rf s for
all rf s P rM,Sps.

To prove this we first state the following lemma

Lemma 4.28. Suppose y is a regular value of two smooth maps f, g : M ÝÑ Sp

and µ is a basis for TyS
p. If pf´1pyq, f˚pµqq “ pg´1pyq, g˚µq then f » g.

To prove this we first want to prove the following sublemma.

Sublemma 4.29. Suppose y is a regular value of two smooth maps f, g : M ÝÑ

Sp and µ is a basis for TyS
p. If pf´1pyq, f˚pµqq “ pg´1pyq, g˚µq and f “ g on

an open U around N “ f´1pyq “ g´1pyq then f » g.

Proof of sublemma 4.29. For the proof of this sublemma we will give an overview
of the proof given in Milnor [7]. We note Spztyu is diffeomorphic to Rp by a
map P, which takes the stereographic projection. We will write

f̃ “ P ˝ f : MzN ÝÑ Rp and

g̃ “ P ˝ g : MzN ÝÑ Rp.

Because Rp is convex we see that these two maps are smoothly homotopic by

H̃ : pMzNq ˆ I ÝÑ Rp

px, tq ÞÑ H̃px, tq “ t ¨ f̃pxq ` p1´ tq ¨ g̃pxq.

We now construct our homotopy on all of M

H : M ˆ I ÝÑ Sp

px, tq ÞÑ Hpx, tq “

#

fpxq for x P U

P´1
`

H̃px, tq
˘

for x PMzN

We note that when x P U then H̃px, tq “ f̃ for all t P I so H is a well-defined
map. So we see that in this case f is smoothly homotopic to g by H.
We only need to prove now that we can change f locally into g, for which we
refer to Milnor [7].
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So if the Pontryagin manifolds are the same for two maps then they are
homotopic.

Proof of lemma 4.27. We see that col˚˝N˚prf sq “ col˚pN‚pfqq “ col˚prf´1pyq, f˚pνqsq
which gives colpf´1pyq, f˚pνqq “ rf ὲ

f´1pyq,f˚pνq
˘s which we will just simply

call rf εs. Taking this f ε as representative, we see that
`

pf εq´1p0q, f˚peq
˘

“
`

f´1pyq, f˚pνq
˘

by our construction of col, so using sublemma 4.28 we see that
f ε is smoothly homotopic to f . We get that rf s “ rf εs “ col˚ ˝ N˚prf sq, so
col˚ ˝N˚ “ IdrM,Sps which was to be proven.

This proves that N˚ “ pcol˚q´1, so N˚ is a bijection between rM,Sps and

Ωfrm´ppMq. By taking Sn as M we get the Pontryagin theorem 1.1 for sets, so
we still need to prove that it is in fact an isomorphism.
We see that N˚prf s ` rgsq “ N˚prf ` gsq and we note that pf ` gq´1pzq “ pf `
constx0

qpzqYpconstx0
`gqpzq when z ‰ x0. We also see that f » f`constx0

so
N˚prf sq “ N˚prf`constx0

sq and in the same way N˚prgsq “ N˚prconstx0
`gsq.

So we get that N˚prf`gsq “ N‚pf`gq “ rpf`constx0qpzqYpconstx0`gqpzqs “
rpf ` constx0qpzqs` rpconstx0 ` gqpzqs “ N˚rf s`N˚rgs because the pontryagin
manifolds are on opposite sides of the sphere and thus they are a disjoint union.
So we see that N˚ is actually an isomorphism between rM,Sps and Ωfrm´ppMq,
which proves the Pontryagin theorem 1.1.
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5 Examples

Theorem 5.1. πnpS
kq – 1 for n ă k.

proof of theorem 5.1. Using the Pontryagin theorem we see that πnpS
kq – Ωfrn´kpS

nq

and because n´k ă 0 we see that we need to look at negative dimensional framed
submanifolds of Sn. We know that the only negative dimensional manifold is
H, the empty manifold. Because there is only one submanifold of dimension
n´ k we see that Ωfrn´kpS

nq – 1 and thus πnpS
kq – 1 as well, which was to be

proven.

Theorem 5.2. πkpS
kq – Z.

proof of theorem 5.2. Our proof of this theorem will be based on chapter IX.4
of Differential Manifolds by Kosinski [6]. Using the Pontryagin theorem we

again see that πkpS
kq – Ωfr0 pS

nq so we need to look at the cobordism classes of
0-dimensional framed submanifolds of Sn. These are sets consisting of a finite
amount of points where at each point x the framing is just a basis for TxS

n.
We see that cobordisms between 0-dimensional framed submanifolds are a finite
number of arcs.
Looking at those arcs we see that there are three cases. The first case is that
the arc connects a point in Snˆt0u and another point in Snˆt0u. The second
case is that the arc connects two points in Sn ˆ t1u. The last case is that the
arc connects a point Sn ˆ t0u and a point in Sn ˆ t1u.

We now construct a bijection from the cobordism group onto Z by

deg : Ωfrn pS
nq ÝÑ Z

rpN, νqs ÞÑ degpN, νq “
ÿ

pPN

pdegppqq “
ÿ

pPN

porpνppqqq

where we define or as

or : basepSnq ÝÑ t`1,´1u

v ÞÑ

#

`1 if v is positively oriented

´1 if v is negatively oriented

where orientation is defined as in definition 4.5.
We first need to prove that this map is well-defined, so we need to check that if
pN1, ν1q is framed cobordant to pN2, ν2q, then degpN1, ν1q “ degpN2, ν2q.
To do this we look at the three cases of arcs we have and how they change
orientation.
We now call our arc A. When orienting A we choose a direction for its tangent
space TxA Ă TxpS

p ˆ Iq.
We now take a positively oriented smooth framing of the tangent space of

A, so

vA : A Q x ÝÑ basepTxAq

x ÞÑ vApxq
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By taking vA together with the normal framing νA of A we get a smooth map

V : A Q x ÝÑ base
`

TxpS
p ˆ Iq

˘

x ÞÑ Vpxq “ tvApxq, νApxqu

We now orient Sp ˆ I by taking the orientation of Sp together with I, where in
the case of I we take e1 to be positively oriented. We now see that the orienta-
tion of Vpxq is the same for all x P A because otherwise we would have flipped
a vector of our basis, which is not possible because then it would not be a basis
for a certain point in A. So it is either positively or negatively oriented for all
x P A in the orientation of Sp ˆ I.
We see that if at p1 the tangent vector vApp1q is inward, then at p2 the tan-
gent vector vApp2q is outward. Because Vpp1q and Vpp2q both have the same
orientation, we see that νApp1q “ νpp1q and νApp2q “ νpp2q have a different
orientation, so degpp1q “ ´degpp2q. We note that the second case implies the
same.
For the third case we see that at p2 being the point on Sn ˆ t1u the tangent
framing vApp2q is in the same direction as on p1. So by this we see by the same
reasoning that degpp1q “ degpp2q.
Suppose now that pN1, ν1q is cobordant to pN2, ν2q. When we have an arc of
case 1 then this does not change the degree, so we can neglect these arcs when
looking at the difference. The same is true for arcs of case 2. For the arcs of
case 3 we see that they only connect points with the same orientation, so we
can neglect these as well when looking at the difference of the degree. So we see
that all arcs do not change the degree, so

degpN1, ν1q “ degpN2, ν2q.

Because of this we see that deg : Ωfr0 pS
pq ÝÑ Z is a well-defined map, which was

to be proven.

We now want to prove that deg : Ωfr0 pS
pq ÝÑ Z is a bijection.

We first prove that it is injective.
Suppose pN, νq has degree 0. Then it consists of as many negatively oriented
points as positively oriented points, by which we mean that the basis on them
is positively respectively negatively oriented. We can find an open U of I such
that there is only one pair of a positively and negatively oriented point in it,
which we call p1 and p2. Then we can use an arc of case 1 to connect them
inside of U ˆ Sn and use straight arcs for all the other points, so we see that
pN, νq is cobordant to itself with p1 and p2 removed.
Doing the same trick multiple times we eventually end up with only two oppo-
sitely oriented points, which are cobordant to the empty manifold by an arc of
case 3.
In the same way, we see that if pN, νq has degree `l then it is cobordant to a set
of l positively oriented points, and when pN, νq has degree ´l then it is cobor-
dant to a set of l negatively oriented points. Because of this we see that deg
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is injective because if degpN1, ν1q “ degpN2, ν2q implies that rN1, ν1s “ rN2, ν2s.

We see that deg is surjective as well because n ą 0, otherwise the only 0-
dimensional manifold would be one point but now there can be any finite num-
ber of points.
This proves that deg : Ωfr0 pS

nq ÝÑ Z is an isomorphism of sets.
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