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Abstract

A principal bundle is a fiber bundle with a group as typical fiber. Fiber bundles are spaces
which locally look like product spaces. In this text, we will classify all numerable principal
bundles. That are principal bundles with a suitable partition of unity on the orbit space. In
order to do this many tools for principal bundles and partitions of unities are created. We
construct universal bundles, using both the Milnor construction and configuration spaces.
The latter are used to link principal bundles for symmetric groups with finitely sheeted
covering spaces. Lastly, lifting properties on principal bundles are considered.
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1 INTRODUCTION 1

1 Introduction

In topology, we are generally happy to proceed locally and thereby study the global structure of
locally “nice” spaces. As long as locally our space looks “nice”, we usually have a wide variety
of tools available. No difference is there in the case of principal bundles. Spaces for principal
bundles look locally like a product of some (arbitrary) space B with a topological group. The
bundle now locally looks like the projection on B. Precise definitions will be given throughout
this text.
Principal bundles are a special case of fiber bundles. As we see in Chapter 7, normal covering
spaces are a special case of principal bundles. Another class of examples of principal bundles are
frame spaces of vector bundles, see [Die08, Chapter 14.2]. Principal bundles can for example be
used to calculate “Čech cohomolgy groups”, see [Ful95, Paragraph 15]. As explained in [Mit11,
Chapter 10], reductions of structure groups on principal bundles imply several properties on
manifolds. In physics, principal bundles can be applied in Gauge theories. This was already
implicitly done by Dirac in the 1930th, roughly the time mathematicians started considering
principal bundles. Specific applications in physics can be found in [CW06].
The main goal in this text is to classify principal bundles. The classification theorem is present in
Chapter 5. The chapters before provide all the required tools to prove this theorem. Afterwards,
we first construct so called “universal bundle”. In the classification theorem, these bundles are
simply assumed to exist. Using specific universal bundles, we are able to prove some properties
of universal bundles. Also using universal bundles for symmetric groups, we link finitely sheeted
covering spaces to principal bundles. Lastly, I elaborate on lifting properties of principal bundles.
The appendix contains some general topological facts used in several proofs.
This text is based on two main sources: The book “Algebraic Topology” by Dieck, [Die08], and
the notes “Notes on principal bundles and classifying spaces” by Mitchell, [Mit11]. More sources
are evoked on specific topics when required. Chapters 4 and 5 are mostly based on Dieck, while
Chapter 3 is more on Mitchell. Chapters 2 and 7 consist more of own work. Other chapters are
a mix of the main sources, own work and other sources.
I assume the reader has basic knowledge of topology and abstract algebra. Notions of algebraic
topology are briefly recalled before applied. I have tried to be precise throughout the text.
Therefore the details might at times be lengthy and technical. I advise the reader who is not
interested in all details to skip these technical parts. I hope with this text to interest the reader
in the topic of principal bundles.
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2 Equivariant Maps

Let G be a topological group. Throughout this text, I assume that G is some topological group.
A left G-space is a topological space X with a continuous left action G×X → X. Equivalently,
we can define a right G-space as a space X with a continuous right action X×G→ X. Notice
that we can transform any left action into a right action and vice versa by setting gx = xg−1.
So we can restrict ourselves to left G-spaces and call them simply G-spaces.

Remark 2.1. The difference between left and right action lies in the order elements of the
group act on points in the space. Say φ : G × X → X and ψ : X × G → X are left and
right actions respectively. If g, h ∈ G and x ∈ X, there holds φ(gh, x) = φ(g, φ(h, x)) and
ψ(x, gh) = ψ(ψ(x, g), h). Hence, the need of taking the inverse above.

For any G-space X, we can define its orbit space X/G (equipped with the quotient topology)
and the projection πX : X → X/G which sends every x ∈ X to its orbit [x]X . By definition of
the quotient topology π is a continuous and surjective map. For any open U ⊆ X, we have that
π−1
X (πX(U)) =

⋃
g∈G gU , the union of co-sets. By construction of the quotient topology πX(U)

is open. Hence, πX is an open map.

For G-spaces X and Y , considerable maps X → Y do need to respect both the topology (i.e.,
be continuous) and the group action. In order to achieve the latter, we demand for a continuous
map f : X → Y that it “commutes” with the group actions. More precisely, for all x ∈ X and
g ∈ G, we demand that f(gx) = gf(x). Such a map, we call an G-equivariant map or, if the
group G is understood, simply an equivariant map. This terminology is taken from [Mit11,
p. 2]. We notice that a projection to an orbit space is an equivariant map:

Proposition 2.2. Let X a G-space. Then the projection π : X → X/G to the orbit space is an
equivariant map. Here G acts trivially on X/G.

Proof. There holds π(gx) = [gx] = [x] = g[x] = gπ(x) for all g ∈ G and x ∈ X. By construction,
π is continuous. Hence, π is a G-equivariant map.

General equivariant maps can be factored through the group action and induce a map on the
orbit spaces:

Proposition 2.3. If X and Y are G-spaces and f : X → Y a G-equivariant map, then there
exists a unique φ : X/G→ Y/G such that the following diagram commutes:

X Y

X/G Y/G

f

πX πY

φ

Here πX and πY are the projections from X and Y to their orbit space respectively.

Proof. Define φ : X/G → Y/G as φ([x]X) = [f(x)]Y . This certainly makes the diagram com-
mute. We show that the map φ is well-defined. Let y ∈ [x] for some x ∈ X. There is a g ∈ G
such that gx = y and thus φ([y]X) = [f(y)]Y = [f(gx)]Y = [gf(x)]Y = [f(x)]Y = φ([x]X).
Hence, φ is well-defined.
Suppose φ : X/G→ Y/G is another function such that the diagram commutes. For all x̄ ∈ X/G,
there is an x ∈ X such that [x]X = x̄. We now have φ(x̄) = φ([x]X) = [f(x)]Y = φ([x]X) = φ(x̄).
Hence, φ = φ and thus φ is unique.
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Proposition 2.3 is in fact nothing else than a restatement of the universal property of the
quotient space topology. Hereby, we immediately can conclude that φ is continuous. For a given
equivariant map f : X → Y , we call φ : X/G → Y/G the induced map by f on orbit spaces.
Moreover, we call any lift f : X → Y of a given φ : X/G → Y/G a G-equivariant map over
φ.
Suppose we have a map φ : X/G→ Y/G on the orbit spaces. As we see in the following example,
there need not exist an equivariant map over φ. We will elaborate more on this case in Chapter 8.

Example 2.4. Let X = Y = G = {1,−1}, a two point space. Let G act on both X and Y
by multiplication. We endow G and Y with the discrete topology, while we endow X with the
trivial topology. I leave it to the reader to prove that these actions are continuous and G is a
topological group. Note that the orbit space for both X and Y is the one-point space ∗. So
for any map f : X → Y , we have a well-defined map φ on the orbit space making the following
diagram commute:

X Y

∗ ∗

f

φ

However, none of the 4 maps f : X → Y is an equivariant map: the two bijections are not
continuous, while the two constant mappings don’t commute with the group actions. Instead, if
we endow also X with the discrete topology, then the two bijections are equivariant maps. 4

I will now discuss how properties of equivariant maps result in properties of their induced
functions and vice versa. First of all note the purely set-theoretical fact that if f : X → Y is
surjective, then the induced map φ : X/G → Y/G is surjective as well. It turns out that the
converse of this fact is also true:

Lemma 2.5. Suppose f : X → Y is a G-equivariant map between G-spaces X and Y . Let
φ : X/G→ Y/G the induced map. If the map φ is surjective, then f is surjective.

Proof. Let y ∈ Y . By surjectivity of φ and the projection πX , there exists an x ∈ X such that
φ([x]X) = [y]Y . Since φ([x]X) = [f(x)]Y , there exists a g ∈ G such that y = gf(x) = f(gx).

The following is now trivial:

Corollary 2.6. If f : X → Y is a G-equivariant map between G-spaces X and Y , then the
induced map φ : X/G→ Y/G is surjective if and only if f is surjective.

A reader might have already guessed that following surjectivity, there must come injectivity and
so it will:

Lemma 2.7. Let X and Y be G-spaces. For an injective G-equivariant map f : X → Y the
induced map φ : X/G→ Y/G is injective.

Proof. Let [x]X , [y]X ∈ X/G such that φ([x]X) = φ([y]X). Now there holds [f(x)]Y = φ([x]X) =
φ([y]X) = [f(y)]Y . So there exists a g ∈ G such that f(y) = gf(x) = f(gx). Hence, y = gx and
thus [x]X = [y]X .

Conversely, we have the following:

Lemma 2.8. Let X and Y be G-spaces such that the action on Y is free (i.e., for all y ∈ Y
and g, h ∈ G if gy = hy, then g = h). If for a G-equivariant map f : X → Y the induced map
φ : X/G→ Y/G is injective, then f is injective.
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Proof. Let x, y ∈ X such that f(x) = f(y). There holds φ([x]X) = [f(x)]Y = [f(y)]Y = φ([y]X).
By injectivity of φ, we see that [x]X = [y]X . Hence, there exists a g ∈ G such that gx = y and
thus gf(x) = f(gx) = f(y) = f(x). So g is the identity and x = y.

And again the trivial observation:

Corollary 2.9. Let X and Y be G-spaces such that the action on Y is free. A G-equivariant
map f : X → Y is injective if and only if the induced map φ : X/G→ Y/G is injective.

The assumption in Lemma 2.8 that the action on the space Y is free, is required in the sense
that for any non-free G-space Y , we can find a non-injective equivariant map whose induced
map on the orbit spaces is injective: let X = G (as topological spaces) equipped with the action
(g, h) 7→ gh. Let y ∈ Y and e 6= h ∈ G (e the identity of G) such that hy = y. Define
f : G = X → Y as f(g) = gy. This is a non-injective equivariant map (f(h) = f(e) and
f(gx) = gxy = gf(x) for all g ∈ G and x ∈ X = G). Since the orbit space G/G = ∗, the
induced map φ : X/G→ Y/G is injective.
Moreover, if Y is a free G-space, the existence of an equivariant map f : X → Y , for some
G-space X, forces the action on X to be free. Indeed, if gx = x for a g ∈ G and x ∈ X, then
gf(x) = f(gx) = f(x) and thus g is the identity of G.

For equivariant maps f, g : X → Y between G-spaces X and Y , a G-homotopy between f and
g is an equivariant map H : X × I → Y , (G acting trivially on the I coordinate) such that
H0 = f and H1 = g, i.e., it is a homotopy in the usual sense. When there exists a G-homotopy
for equivariant maps f and g, then we say that f and g are G-homotopic.

Proposition 2.10. The induced maps φ, φ′ : X/G → Y/G for G-homotopic equivariant maps
f, g : X → Y are homotopic.

Proof. Let H : X × I → Y a G-homotopy between f and g and h : X/G× I → Y/G its induced
map on orbit spaces. Notice that we have made the canonical identification of (X × I)/G with
X/G × I, which is possible since G acts trivially on I. The induced functions of f = H0 and
g = H1 are h0 and h1 respectively. By uniqueness of the induced map, we have that h0 = φ
and h1 = φ′. We see that h is a homotopy between φ and φ′. We conclude that φ and φ′ are
homotopic.

A function f : X → Y between G-spaces X and Y that is both an equivariant map and a home-
omorphism, we call a G-equivariant homeomorphism or shorter a G-homeomorphism.

Proposition 2.11. If f : X → Y a G-equivariant homeomorphism between G-spaces X and Y ,
then f−1 is an equivariant map.

Proof. We have that gf−1(x) = f−1(f(gf−1(x))) = f−1(gf(f−1(x))) = f−1(gx). By assump-
tion f−1 is continuous. Hence, f−1 is an equivariant map.

I conclude this section by the following simple (but important) proposition:

Proposition 2.12. Let X,Y, Z be G-spaces, f : X → Y and g : Y → Z G-equivariant maps.
Then their composition g ◦ f is also a G-equivariant map.

Proof. Compositions of continuous functions are continuous thus g ◦ f is continuous. If x ∈ X
and h ∈ G, then g(f(hx)) = g(h(f(x)) = hg(f(x)), so g ◦ f is an equivariant map.
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3 Principal Bundles

For any G-space X, there exists (possibly by the axiom of choice) a map s : X/G → X with
the property that the orbit of s(x̄) equals x̄ for all x̄ ∈ X/G (s is a section of the projection
π : X → X/G). Suppose the action on X is free. Given such a section s : X/G → X, we can
construct a bijection ψ : G×X/G→ X by setting ψ(g, x̄) = gs(x̄). Indeed, for any x ∈ X, the
orbits of x and s([x]) coincide. Thus, there exists a unique (by freeness of the action) gx with
x = gxs([x]). Now ψ−1 : X → G×X/G defined by ψ−1(x) = (gx, [x]) is an inverse. Notice that
for all g, h ∈ G and x̄ ∈ X/G, we have that ψ(gh, x̄) = gψ(h, x̄) and that the following diagram
commutes:

G×X/G X

X/G

ψ

π

Here the diagonal arrow is the projection on the second coordinate.

This construction (after endowing both G and X with a topology) need not create a home-
omorphism (neither ψ nor ψ−1 need be continuous). In fact, there even need not exists a
homeomorphism between G × X/G and X. When there does exist such a homeomorphism,
we will call X a trivial G-space and π a trivial G-bundle. A G-space X which locally has
this property (a locally trivial G-space) paired with the projection π : X → X/G, we call
a principal G-bundle. We can generalise this definition by replacing X/G by any space B.
It turns out this “generalisation” does not add much, since B will always be homeomorphic to
X/G, as we see in this chapter. I will make these definitions precise following [Mit11, p. 2]:

Definition 3.1. Let p : X → B an equivariant map between G spaces X and B where G
acts trivially on B. A subset U ⊆ B is called trivialising if there exists a G-homeomorphism
ψ : G×U → p−1(U) (where G acts on G×U by the group multiplication on the first component
and trivially on the second) such that the following diagram commutes:

G× U p−1(U)

U

ψU

p

Such a G-homeomorphism ψU , we call a trivialisation for (p, U). If the equivariant map p
is understood, we say that ψU is a trivialisation for U . An open cover U of B consisting of
trivialising opens is an open cover trivialising p. When the equivariant map is understood,
the cover U is an open trivialising cover. When an equivariant map p : X → B (G-acting
trivially on B) admits an open trivialising cover, then p is a principal G-bundle over B. We
call a principal bundle p : X → B trivial if there exists a trivialisation for B. The group G
is called a structure group. Every principal bundle we consider will have structure group G,
unless specifically mentioned otherwise. N

It is obvious that a principal bundle is a fiber bundle with a group as typical fiber. I will
illustrate these definitions with some examples. We first look at a trivial case:

Example 3.2. The projection G → ∗ is a trivial bundle for every topological group. The
projection G× ∗ → G is a trivialisation. 4



3 PRINCIPAL BUNDLES 6

Example 3.3. SupposeG is a discrete group andH a subgroup ofG. We consider the projection
π : G→ G/H. It is obvious that G/H and H have the discrete topology. For every g ∈ G, there
holds π−1([g]) = {hg

∣∣ h ∈ H}. Moreover, the point hg is different for varying h ∈ H. Now
the map ψ : π−1([g])→ H×H/G given by ψ(hg) = (h, [g]) is a well-defined G-homeomorphism.
Hence, π is a principal bundle. 4

Example 3.4. We consider spheres. Let X = Sn and equip X with the Z2 action, where the
non-trivial element of Z2 maps a point to its antipodal point. The group Z2 has discrete topology.
Clearly the orbit space is RPn. Every open U ⊆ Sn not containing a pair of antipodal points
projects down to a trivialising open. This is clear since U is disjoint to the set V of antipodes of
U and the group action precisely switches between these sets. In fact, we have a covering space.
More on this in Chapter 7. One can do the same analysis when taking n =∞. 4

Trivialisations can be restricted to subsets:

Lemma 3.5. If U ⊆ B is a trivialising set for a G-equivariant map p : X → B, then every
subset V ⊆ U is also a trivialising set. Moreover, the restriction ψU |V with ψU a trivialisation
for U is a trivialisation for V is.

Proof. Notice that ψU (G×V ) = p−1(V ). Indeed, if x ∈ ψU (G×V ), then ψ−1
U (x) = (g, p(x)) for

some g ∈ G and thus p(x) ∈ V . On the other hand if x ∈ p−1(V ) ⊆ p−1(U), then p(x) ∈ V . So
ψ−1
U (x) = (g, p(x)) ∈ G×V for some g ∈ G. Since p(ψU (g, x)) = x for all (g, x) ∈ G×V ⊆ G×U ,

we have the following commuting diagram:

G× V p−1(V )

V

ψU |V

p

Thus ψV : = ψU |V is a trivialisation for V .

It is obvious that principal bundles are surjective. Furthermore, principal bundles have the
following, in light of Lemma 2.8, useful property, after [Mit11, p. 2]:

Proposition 3.6. If p : X → B is a principal bundle, then the action of G on X is free.

Proof. Let x ∈ X and g ∈ G such that gx = x. Choose a trivialising set U ⊆ B containing
p(x) with trivialisation ψU : G × U → p−1(U). Then ψ−1

U (x) = (h, p(x)) for some h ∈ G. Now
(h, p(x)) = ψ−1

U (x) = ψ−1
U (gx) = gψ−1

U (x) = (gh, p(x)). Thus gh = h, so g is the identity of
G.

Following [Die08, p. 329], for a G-space, we X consider the space

C(X) := {(x, gx)
∣∣ x ∈ X, g ∈ G} ⊆ X ×X.

We endow C(X) with the subspace topology. In case the action on X is free, there is an
obvious map C(X) → G, sending (x, gx) 7→ g. The constructed map C(X) → G is called the
translation map.

Proposition 3.7. If p : X → B is a principal bundle, then the translation map is continuous.
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Proof. Take a trivialising cover U of B, notice that the family V = {(p−1(U) × p−1(U)) ∩
C(X)

∣∣ U ∈ U} form an open cover of C(X). We will prove that the translation map t : C(X)→
G is continuous on all elements of V, this directly implies that t is continuous. Let U ∈ U and
ψU : p−1(U) → G × U a trivialisation. Taking the projection to G of the trivialisation, we
obtain an equivariant map s : p−1(U) → G. Define the map t′ : (p−1(U) × p−1(U)) → G by
t′(x, y) = s(y)(s(x))−1 for all (x, y) ∈ (p−1(U) × p−1(U)). Clearly this map is continuous.
Notice that t′(x, gx) = s(gx)(s(x))−1 = g for all x ∈ X and g ∈ G. Hence, t′|C(X) = t and thus
t is continuous.

3.1 Principal Bundles and their Orbit Spaces

In Chapter 2, we considered the projection X → X/G for a G-space X. It turns out, as we see
in this section that a principal bundle is a special case of this. More precisely, for any principal
bundle p : X → B, the space B is homeomorphic to X/G, see Lemma 3.9. This is noted by
[Mit11, p. 2]. Moreover, for a principle bundle p′ : X → B′ and a space B homeomorphic to B′,
there exists a principal bundle p : X → B, see Lemma 3.8.

Lemma 3.8. Let p′ : X → B′ a principal bundle and φ : B′ → B a homeomorphism. Then
p = φ ◦ p′ is a principal bundle.

Proof. Note that φ is, in fact, a G-homeomorphism since G acts trivially on both B′ and B. By
Propositions 2.2 and 2.12, the map p : = φ ◦ p′ is an equivariant map. Take a trivialising cover
U of p′ : X → B′. Define V := {φ(U)

∣∣ U ∈ U}. The family V is a cover of B. For every V ∈ V,
we have the commuting diagram:

G× V G× U p′−1(U)

V U

IdG×φ|U ψU

p′

φ|U

Here U = φ−1(V ) ∈ U and IdG × φ|U : G × U → G × V is the homeomorphism defined by
(g, x) 7→ (g, φ|U (x)) and ψU : G × U → p′−1(U) is a trivialisation. By taking the following
sub-diagram, we see that the cover V with trivialisations ψU ◦ (IdG× φ|U )−1 form a trivialising
cover of p:

G× V p−1(V )

V

ψU◦(IdG×φ|U )−1

p=φ◦p′|p′−1(U)

Lemma 3.9. Let p : X → B a principal bundle. Then there exists a unique homeomorphism
φ : X/G → B such that φ−1 ◦ p is the projection π : X → X/G. Moreover, π : X → X/G is a
principal bundle.

Proof. Since p is an equivariant map, by Proposition 2.3, we have a unique continuous map
φ : X/G→ B such that the following diagram commutes (notice that B/G ∼= B):

X B

X/G B

p

IdB

φ
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From the diagram it is clear that if φ is bijective, then φ−1 ◦ p is the projection X → X/G.
Moreover, any bijective φ with this property makes this diagram commute. Hence, the unique-
ness of φ.

We will prove that φ is a homeomorphism:
For every b ∈ B, there is a trivialising open U ⊆ B containing p(b). Let ψU : G× U → p−1(U)
be a trivialisation. We see that p(ψU (e, p(b))) = p(b) for all b ∈ B and e is the identity of G.
Hence, p is surjective and thus by Corollary 2.6, φ is surjective.

Let x, y ∈ X such that φ([x]) = φ([y]). Then also p(x) = p(y). Choose a trivialising open
U ⊆ B around p(x) and let ψU : G × U → p−1(U) a trivialisation. Now x, y ∈ p−1(U)
and thus ψ−1

U (x) = (gx, p(x)) and ψ−1
U (y) = (gy, p(y)) for some gx, gy ∈ G. We obtain

ψ−1
U (gyg

−1
x x) = gyg

−1
x ψ−1

U (x) = gyg
−1
x (gx, p(x)) = (gy, p(y)) = ψ−1

U (y). Thus gyg
−1
x x = y

and [x] = [y]. Hence, φ is injective.

Let W ⊆ X open and w ∈ p(W ). There is a trivialising open U containing w. Take a triv-
ialisation ψU : G × U → p−1(U). Write Pr : U × G → U for the projection. Now the set
W ∩ p−1(U) is open and thus Pr(ψ−1

U (W ∩ p−1(U))) is open. Since w ∈ p(W ), there exists an
x ∈ W with p(x) = w. Hereby there holds x ∈ p−1(U) and Pr(ψ−1

U (x)) = p(x) = w and thus
w ∈ Pr(ψ−1

U (W ∩ p−1(U))) = p(W ∩ p−1(U)) ⊆ p(W ). As w ∈ p(W ) was arbitrary, we know
that p(W ) is open. We see that p is an open map.
Since the projection π : X → X/G is surjective, we have for every open V ⊆ X/G that
π(π−1(V )) = V . Hence, φ(V ) = φ(π(π−1(V ))) = p(π−1(V )) and thus φ is an open mapping.
Hence, φ is a homeomorphism.
Since φ is a homeomorphism and p a principal bundle, by Lemma 3.8, the map π = φ−1 ◦ p is
a principal bundle.

The fact that for a principal bundle p : X → B, the space B is homeomorphic to X/G implies
that most assertions in Chapter 2 are also true in the setting of principal bundles. I will highlight
the following:

Proposition 3.10 (Compare Proposition 2.3). Let p : X → B and p′ : Y → B′ principal bundles
and f : X → Y a G-equivariant map. There is a unique function φ : B → B′ such that the
following diagram commutes:

X Y

B B′

f

p p′

φ

Proof. Let φ1 : X/G → B and φ2 : Y/G → B′ the unique homeomorphisms from Lemma 3.9
and φ′ : X/G→ X/G the unique induced map from Proposition 2.3. We now have the following
diagram:

X Y

B X/G Y/G B′

f

p p′

φ1 φ′ φ2

Here the vertical arrows are the projection to the orbit space. Clearly φ = φ2 ◦ φ′ ◦ φ−1
1 is

a suitable map. Suppose ψ : B → B′ has the required property too. We have the following
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diagram:

X Y

X/G B B′ Y/G

f

p p′

φ1 ψ φ2

By uniqueness of φ′, we have that φ′ = φ−1
2 ◦ ψ ◦ φ1 and thus φ = ψ. Hence, φ is unique.

The observant reader could have noticed that Lemmas 3.8 and 3.9 describe a bijective corre-
spondence between principal bundles p : X → B for fixed space B and G-space X and homeo-
morphisms φ : X/G→ B. In fact, we can do even better:

Theorem 3.11. Let B and B′ be spaces, X a G-space and p′ : X → B′ a principal bundle. Then
there is a bijective correspondence between principal bundles p : X → B and homeomorphisms
φ : B′ → B.

Proof. By Lemma 3.8, we see that the map φ 7→ φ ◦ p′ sending homeomorphisms φ : B′ → B to
principal bundles p : X → B is well-defined. Let p : X → B a principal bundle. Lemma 3.9 gives
a unique homeomorphisms φ1 : X/G→ B and φ2 : X/G→ B′ such that φ−1

1 ◦ p = φ−1
2 ◦ p′ are

the projection X → X/G. Clearly p = φ1 ◦φ−1
2 ◦ p′ and φ1 ◦φ−1

2 : B′ → B is a homeomorphism.
Hence, the mapping is surjective. Let φ : B′ → B another homeomorphism such that φ ◦ p′ = p.
Then (φ◦φ2)−1 ◦p = φ−1

2 ◦φ−1 ◦φ◦p′ = φ−1
2 ◦p′ is the projection X → X/G. Hence, φ◦φ2 = φ1

and thus φ = φ1 ◦ φ−1
2 . So the mapping is injective and thus bijective.

Notice that this classification theorem classifies for every G-space X, which admits at least one
principal bundle, all principal bundles p : X → B. In the case that X does not admit a principal
bundle or equivalently, if the projection π : X → X/G is not a principal bundle, there still are
spaces B homeomorphic to X/G (e.g., B = X/G). However, there is (obviously) no principal
bundle p : X → B.

We conclude this section by an explicit example of a principal bundle:

Example 3.12 ([Die08, example 14.1.14]). Consider the action φ : Z × R → R defined by
(k, x) 7→ x + k. The group Z has the discrete topology. Let π : R → R/Z be the projection to
the orbit space. Define the (continuous) map f : R → S1 as f(x) = exp (2πix) for all a ∈ X.
Since f(x+ k) = f(x) for all x ∈ X and k ∈ Z, the induced map f : R/Z→ S1 is continuous.
For every interval (a, b) with b−a < 1, there holds f−1(f((a, b))) = ti∈Z(a+ i, b+ i). Therefore,
we have an obvious trivialisation ψ : ti∈Z (a + i, b + i) → Z × f((a, b)) given by ψ(x) = (bx −
ac, f(x)). In particular note that the floor function is continuous on the given domain. This
makes f a principal bundle
Let [x] be the orbit of x for all x ∈ X. Now y ∈ [x] precisely when f(x) = f(y). Indeed, if y ∈ [x],
there exists a k ∈ Z such that y = x+ k and thus f(x) = exp (2πix) = exp (2πi(x+ k)) = f(y).

Conversely, if f(x) = f(y), then 1 = f(x)
f(y) = exp (2πix) exp (−2πiy) = exp (2πi(x− y) and thus

x− y ∈ Z.
Hence, the induced map f is injective. Since f is surjective, f is surjective and thus bijective.
Notice that π([0, 1]) = R/Z and thus R/Z is compact. Since S1 is Hausdorff, we get that f is a
homeomorphism. So the orbit space of Z acting on R “is” S1. 4
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3.2 Bundle Isomorphisms

In the last section, we considered principal bundles for a fixed structure group and fixed G-space
X. As showed in the last section, all possible bundles have homeomorphic “orbit” spaces. In
this section, we still keep the structure group fixed, but instead of varying the orbit space, we
will vary the G-space X. We firstly take the orbit spaces to be homeomorphic:

Theorem 3.13. Consider two principal bundles πX : X → X/G and πY : Y → Y/G and an
equivariant map f : X → Y . If the induced function φ : X/G → Y/G on the orbit spaces is a
homeomorphism, then f is a G-homeomorphism.

Proof. Since φ is a bijection, by Proposition 3.6 and Lemmas 2.5 and 2.8, we see that f is a
bijection. It remains to show that f−1 is continuous. Let y ∈ Y . Then there are trivialising
opens U ⊆ X/G containing φ−1(πY (y)) and V ⊆ Y/G containing πY (y) of πX and πY with
trivialisation ψU and ψV respectively. Now y ∈ ψV (G × (φ(U) ∩ V ). Lemma 3.5 shows that
the restrictions ψU |G×(U∩φ−1(V )) and ψV |G×(φ(U)∩V ) are trivialisations for (πX , U) and (πY , V )
respectively. So we have the following commuting diagram:

G× (U ∩ φ−1(V )) π−1
X (U ∩ φ−1(V )) π−1

Y (φ(U) ∩ V ) G× (φ(U) ∩ V )

U ∩ φ−1(V ) φ(U) ∩ V

ψU

πX

f

πY

ψV

φ

Define p := (ψ−1
V ◦f◦ψU )|G×(U∩φ−1(V )). The diagram gives for all x ∈ U∩φ−1(V ) and e, the iden-

tity of G, that p(e, x) = (s(x), φ(x)) for some continuous s : U ∩ φ−1(V )→ G. Proposition 2.12
shows that p is an equivariant map and thus p(g, x) = g ·p(e, x) = g(s(x), φ(x)) = (g ·s(x), φ(x))
for all (g, x) ∈ G× (U ∩ φ−1(V )).

Define p−1 : G× (φ(U) ∩ V )→ G× (U ∩ φ−1(V )) as

p−1(g, x) =
(
g ·
(
s(φ−1(x))

)−1
, φ−1(x)

)
for all (g, x) ∈ G× (φ(U) ∩ V ).

Clearly p−1 is continuous. We will show that p−1 is an inverse of p. Observe that

p
(
p−1(g, x)

)
= p
(
g ·
(
s(φ−1(x))

)−1
, φ−1(x)

)
=
(
g ·
(
s(φ−1(x))

)−1 · s(φ−1(x)), x
)

= (g, x)

for all (g, x) ∈ G× (φ(U) ∩ V ). We also have

p−1
(
p(g, x)

)
= p−1

(
g · s(x), φ(x)

)
=
(
g · s(x)

(
s(x)

)−1
, x
)

= (g, x)

for all (g, x) ∈ G× (U ∩ φ−1(V )). Thus p−1 is the inverse of p.

Notice that f |ψU (G×(U∩φ−1(V ))) = (ψV ◦ p ◦ ψ−1
U )|ψU (G×(U∩φ−1(V ))). Hence, there holds that

f−1|ψV (G×(φ(U)∩V )) = ψU ◦p−1◦ψ−1
V |ψV (G×(φ(U)∩V )) and thus f−1|ψV (G×(φ(U)∩V )) is continuous.

We have shown that f−1 is continuous on an open around y, since y ∈ Y was chosen arbitrarily,
f−1 is continuous.

Taking the orbit spaces equal, we can define the following, after [Mit11, p. 2]:

Definition 3.14. We say two principal bundles p : X → B and p′ : Y → B are isomorphic
when there exists a G-homeomorphism f : X → Y such that p′ ◦ f = p. In other words f
“induces” the identity on the “orbit space”. N
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Using the previous lemma, we can characterise isomorphisms:

Corollary 3.15. Let p : X → B and p′ : Y → B principal bundles. Then a G-equivariant map
f : X → Y is an isomorphism if and only if p′ ◦ f = p.

Proof. Left to right is trivial. Suppose the right-hand side. By Lemma 3.9, there are homeo-
morphisms φ : X/G→ B and φ′ : Y/G→ B such that φ−1 ◦ p and φ′−1 ◦ p′ are the projections
X → X/G and Y → Y/G respectively. We have obtained the following diagram:

X Y

B B

X/G Y/G

f

p p′

Id

φ φ′

Clearly we can restrict to the following diagram:

X Y

X/G Y/G

f

φ◦p φ′◦p′

φ′◦φ−1

We observe that φ′ ◦ φ−1 is the induced map by f on the orbit spaces and φ′ ◦ φ−1 is a home-
omorphism. Theorem 3.13 shows that the map f is a G-homeomorphism and thus f is an
isomorphism.

We can immediately conclude that any trivialisation ψ : p−1(U) → G × U for an equivariant
map p : X → B, is an isomorphism between p|p−1(U) and the projection G × U → U and vice
versa.

In the introduction of this chapter, we considered sections of the projection X → X/G for some
free G-space X. We managed to construct a bijection ψ : G ×X/G → X with ψ(gh) = gψ(h)
for all g, h ∈ G. However, neither ψ nor ψ−1 need be continuous. By the following theorem,
we see that for principal bundles the only requirement for ψ to a G-homeomorphism is that the
chosen section of the projection X → X/G is continuous:

Theorem 3.16 ([Mit11, Proposition 2.2]). Let p : X → B a principal bundle. Then there exists
a continuous section s : B → X of p if and only if there exists a trivialisation ψ : G × B → X
for p, i.e., p is a trivial G-bundle.

Proof. Suppose ψ : G × B → X is a trivialisation. Define s : B → X as s(x) = ψ(e, x) for all
x ∈ B, where e is the identity of G. Clearly s is continuous. Now p(s(x)) = p(ψ(e, x)) = x for
all x ∈ B, since ψ is a trivialisation. Hence, s is a continuous section of p.
Conversely, suppose that s : B → X is a section of p. Define ψ : G×B → X as ψ(g, x) = gs(x) for
(g, x) ∈ G×B. We have that ψ(gh, x) = ghs(x) = gψ(h, x) for all g, h ∈ G and x ∈ B. Clearly
ψ is continuous. Hence, ψ is an equivariant map. The projection π : G× B → B is a principal
bundle. Notice that p(ψ(g, x)) = p(gs(x)) = p(s(x)) = x for all x ∈ X and g ∈ G. We conclude
by Corollary 3.15 that ψ is an isomorphism between p and π and thus a trivialisation.

While this theorem is nice when we already have principal bundles, it does not help us in proving
some map is a principal bundle. For this we can instead use the following assertion:
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Proposition 3.17. Let X a G-space. The projection p : X → X/G is a trivial bundle if and
only if there exists a continuous section s of p and an equivariant map f : X → G.

Proof. By the preceding theorem and the fact that the projection to G of a trivialisation is an
equivariant map, the condition is required. Conversely, suppose we have a continuous section s
and an equivariant map f as in the assertion. Define (continuous) maps ψ : G ×X/G → X as
ψ(g, b) = gs(b) for (g, b) ∈ G×X/G, and ψ−1 : X → G×X/G as

ψ−1(x) =
(
f(x)

(
f(s(p(x)))

)−1
, p(x)

)
.

As in the last theorem ψ is an equivariant map over the identity on X/G.
We show that ψ and ψ−1 are inverses. Therefore, we have a G-homeomorphism as requested.
For all x ∈ X, there is an h ∈ G such that hx = s(p(x)). We now see that:

ψ(ψ−1(x)) = f(x)
(
f
(
s(p(x))

))−1

s(p(x)) = f(x)
(
f
(
hx
))−1

hx = f(x)
(
f
(
x
))−1

h−1hx = x.

For all (g, b) ∈ G×B, we have:

ψ−1(ψ(g, b)) =

(
f
(
gs(b)

)(
f
(
s(p(gs(b)))

))−1

, p
(
gs(b)

))
=

(
gf
(
s(b)

)(
f
(
s(b)

))−1

, b

)
= (g, b).

This finishes the proof.

The condition in the last proposition, can be sharpened: the existence of the equivariant map
implies the existence of a section.

Corollary 3.18. Let X a G-space. If there exists an equivariant map f : X → G, then there
exists a section of the projection p : X → X/G. Hence, the projection p is a principal bundle if
and only if there exists an equivariant map f : X → G.

Proof. Define s : X/G → X as s([x]) = (f(x))−1x. This clearly is a well-defined continuous
section of p.

Applying this assertion, we see that for G-spaces X, which locally admit an equivariant map to
G, the projection X → X/G is a principal bundle.

3.3 Constructions on Principal Bundles

From a given principal bundle, we can construct new principal bundles. In this section, I con-
sider some constructions we will need later on. These include pullbacks, changing the structure
group to a subgroup and restrictions. We start with the pullback, following [Mit11, p. 3]:

Let p : X → B a principal bundle and f : C → B a map f : C → B. We define the pullback
f∗p as the map p′ : X ×B C → C, with X ×B C = {(x, c)

∣∣ p(x) = f(c)}, by projection on
the second coordinate. Endow the subset X ×B C ⊆ X × C with the subspace topology and
the group action G × (X ×B C) → (X ×B C) given by (g, (x, c)) 7→ (gx, c). We observe that
X ×B C is a G-space. Let G act trivially on C. For all (g, (x, c)) ∈ G× (X ×B C), we have that
p′(gx, c) = c = gc = gp′(x, c) and thus p′ is a G-equivariant map.

Proposition 3.19. Let U a trivialising cover for a principal bundle p : X → B and f : C → B a
map. Then the cover {f−1(U)

∣∣ U ∈ U} is a trivialising cover for the projection p′ : X×BC → C.
In particular, p′ is a principal bundle.
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Proof. We have the following diagram:

X ×B C X

C B

PrX

p′ p

f

Here PrX : X ×B C → X is the projection. Note that by surjectivity of p for every c ∈ C, there
exists an x ∈ X such that p(x) = f(c) and thus (x, c) ∈ X ×B C. This legitimates the double
head on p′. By the argument in the text, we know that p′ is an equivariant map.

Let U ∈ U and ψ a trivialising for U for the bundle p. Define ψ′ : G×f−1(U)→ p′−1(f−1(U)) as
ψ′(g, c) = (ψU (g, f(c)), c) for all (g, c) ∈ G×f−1(U). Notice that f(c) ∈ U , p(ψ(g, f(c))) = f(c)
and p′(ψ′(g, c)) = c ∈ f−1(U) for all (g, c) ∈ G × f−1(U). Hence, the map ψ′ is well-defined.
Clearly ψ′ is continuous and for all g, h ∈ G and c ∈ f−1(U). Furthermore, there holds
hψ′(g, c) = h(ψ(g, f(c)), c) = (ψ(hg, f(c)), c) = ψ′(hg, c) and thus ψ′ is a G-equivariant map.

We define the map ψ′−1 : p′−1(f−1(U))→ G× f−1(U) as ψ′−1(x, c) = (PrG(ψ−1(x)), c) for all
(x, c) ∈ p′−1(f−1(U)). Notice that p(x) = f(c) ∈ U for all (x, c) ∈ p′−1(f−1(U)) and thus ψ′−1

is well-defined. Clearly ψ′−1 is continuous. Furthermore,

ψ′−1

(
ψ′(g, c)

)
= ψ′−1

(
ψ(g, f(c)), c

)
=

(
PrG

(
ψ−1

(
ψ(g, f(c))

))
, c

)
= (g, c)

for all (g, c) ∈ G× f−1(U). For all (x, c) ∈ p′−1(f−1(U)), we have:

ψ′
(
ψ′−1(x, c)

)
= ψ′

((
PrG(ψ−1(x)), c

))
=
(
ψ
(
PrG(ψ−1(x)), f(c)

)
, c
)

=(
ψ
(
PrG(ψ−1(x)), p(x)

)
, c
)

=
(
ψ(ψ−1(x)), c

)
= (x, c).

We conclude that ψ′ is a G-homeomorphism and thus a trivialisation for f−1(U) for p′. Hence,
the cover {f−1(U)

∣∣ U ∈ U} is a trivialising cover for p′. In particular, p′ is a principal
bundle.

Pullbacks have the following “uniqueness” property:

Proposition 3.20. Let p : X → B and p′ : Y → B′ principal bundles, f : X → Y a G-
equivariant map and φ : B → B′ such that φ ◦ p = p′ ◦ f (φ is the induced function from
Proposition 3.10). Then there is an isomorphism ψ : X → Y ×B′ B between p and φ∗p′ such
that f ◦ ψ−1 is the projection Y ×B′ B → Y .

Proof. By assumption, we have the following diagram:

X Y

B B′

f

p p′

φ
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We define ψ : X → Y ×B′ B by ψ(x) = (f(x), p(x)) for all x ∈ X. Using the diagram, we
see that p′(f(x)) = φ(p(x)) and thus the map ψ is well-defined. Furthermore, we see that
ψ(gx) = (f(gx), p(gx)) = g(f(x), p(x)) = gψ(x) for all g ∈ G and x ∈ X. Hence, ψ is a
G-equivariant map. By Proposition 3.19, φ∗p′ is a principal bundle, and we have by definition
p(x) = φ∗p′(ψ(x)). We now have the following diagram:

X X ×B′ B

B B

ψ

p φ∗p′

Id

We conclude by Corollary 3.15 that ψ is an isomorphism. Clearly f ◦ ψ−1 is the projection
Y ×B′ B → Y .

Secondly, we consider changing the structure group. We follow [Mit11, p. 5] for this construction.
A G-space X can be considered as an H-space for any subgroup H of G. A natural question is:
when is the projection X → X/H a principal bundle? When X → X/G is a principal G-bundle,
not all subgroups H of G give principal bundles. For example, take X = G = R under addition
and H = Q. Suppose the projection X → X/H is a principal bundle. Since R/Q has the trivial
topology, we have a trivial bundle. Hence, there is a homeomorphism R→ Q×(R/Q). However,
the right-hand side is a disconnected space.
The necessary and sufficient condition in this case is, as we will see in the next proposition, that
the projection G → G/H is a principal bundle. We call any subgroup of G with this property
an admissible subgroup. We have seen in Example 3.3 that any subgroup of a discrete group
is admissible. Closed subgroups of Lie groups are other examples of admissible subgroups, see
[BD03, Theorem 4.3 p. 33].

Proposition 3.21. Let p : X → B a non-empty principal bundle with structure group G. For
every subgroup H 6 G, the projection X → X/H is a principal H-bundle if and only if H is
admissible.

Proof. The first half of this proof follows a remark of [Mit11], the second half is different.

Suppose that X → X/H is a principal bundle. Let x0 ∈ X. There is an obvious H-equivariant
map G→ X, taking g 7→ gx0. Pulling back its induced function G/H → X/H, leaves a princi-
pal bundle X ×X/H G/H → G/H. Let t : C(X) → G the translation map (for the bundle p).
Notice that if (x, [g]H) ∈ X ×X/H G/H, then [gx0]H = [x]H . Hence, there is an h ∈ H such
that x = hgx0. Now there are H-equivariant maps G → X ×X/H G/H taking g 7→ (gx0, [g]H)
and X ×X/H G/H → G taking (x, [g]H) → t(x0, x). It is clear both functions are well-defined,
and they are inverses of each other. Hereby G→ G/H is a principal bundle (use Lemma 3.8).

Conversely, let H be admissible. Write π : G → G/H for the projection. Write π′ : X → X/H
for the projection. For every x ∈ X, there is a trivialising open U ⊆ B containing p(x). There
is a G-equivariant map f : p−1(U) → G. Now there is a trivialising open V ⊆ G/H for π
containing π(f(x)). Hence, an H-equivariant map f ′ : π−1(V )→ H. Let W := f−1(π−1(V )) ∩
p−1(U). Notice that x ∈ W and that W is closed under the H-action. Hence, π′(W ) is open
and π′−1(π′(W )) = W . The restriction f ′ ◦ f |W : W → H is an H-equivariant map. Using
Corollary 3.18, we see that π′ is a principal bundle.

Lastly, we consider restrictions:
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Proposition 3.22. For a principal bundle p : X → B and a subset A ⊆ B, the restriction
p|p−1(A) : p−1(A)→ A is also a principal bundle.

Proof. Take a trivialising cover U of B. Let V := {U ∩A
∣∣ U ∈ U}. By Lemma 3.5, every V ∈ V

is trivialising for p and thus for p|p−1(A). Clearly V is a cover of A.
Since for all g ∈ G and x ∈ p−1(A), we have that p(gx) = gp(x) = p(x) ∈ A. We see that
gx ∈ p−1(A). Hence, p−1(A) is closed under the group action. Clearly p|p−1(A) is an equivariant
map. We conclude that p−1(A) is a G-space and p|p−1(A) a principal bundle.

3.4 Trivialising Sets

Trivialising sets for an equivariant map p : X → B can, a priori, be arbitrary subsets of B.
Obviously they need be trivialising, but other than that, there are no conditions. In this section,
I will provide ways to transform trivialising sets into other, maybe “simpler”, trivialising sets.
This will be, in particular, useful when considering partitions of unity, see Chapter 4. We have
already seen that we can restrict trivialisation to subsets, see Lemma 3.5. In this section, I
will consider merging trivialising opens. We firstly consider the case of disjoint unions, secondly
gluing on I.

Lemma 3.23. Let p : X → B a G-equivariant map and V a set of trivialising opens. If V is
pairwise disjoint (i.e., for all V1, V2 ∈ V holds V1∩V2 = ∅), then

⊔
V =

⊔
V ∈V V is a trivialising

open.

Proof. We will construct a G-homeomorphism ψ : G×
⊔
V → p−1(

⊔
V) such that p(ψ(g, x)) = x

for all g ∈ G and x ∈ X.
For every V ∈ V, there exists a trivialisation ψV for V . Define ψ : G ×

⊔
V → p−1(

⊔
V) as

ψ|G×V (g, x) = ψV (g, x) for all g ∈ G and x ∈ V for all V ∈ V. Notice that this map is well-
defined, since V is pairwise disjoint. For all x ∈ tV, there is a V ∈ V with x ∈ V and thus
ψ(gh, x) = ψV (gh, x) = gψV (h, x) = gψ(g, x) for all g, h ∈ G. Also ψ|G×V is clearly continuous
and thus ψ is continuous. We conclude that ψ is an equivariant map. Moreover, p(ψ(g, x)) =
p(ψV (g, x)) = x for all g ∈ G. Clearly p|p−1(

⊔
V) and the projection G ×

⊔
V → p−1(

⊔
V) are

principal bundles. By Corollary 3.15, ψ is a G-homeomorphism.

Lemma 3.24 ([Die08, Proposition 3.1.4]). Consider a principal bundle p : X → B×I (G acting
trivially on B × I). Let U ⊆ B and 0 = q0 < q1 < · · · < qn−1 < qn = 1 such that U × [qi−1, qi]
is a trivialising set for all 0 < i ≤ n. Then U × I is trivialising.

Proof. For a, b, c ∈ I with a < b < c, we will proof that if U × [a, b] and U × [a, c] are trivialising,
then U × [a, c] is trivialising. The general case follows by induction on n.
Take trivialisations ψ1 : G×U × [a, b]→ p−1(U × [a, b]) and ψ2 : G×U × [b, c]→ p−1(U × [b, c]).
Define ψ′ : G×U → G×U as ψ′(g, x) = PrG×U (ψ−1

2 (ψ1(g, x, b))), where PrG×U is the projection
G×U × I → G×U . The projection PG×U is an equivariant map and thus by Propositions 2.11
and 2.12, ψ′ is an equivariant map.
Define

ψ : G× U × [a, c]→ p−1(U × [a, c]) given by ψ(g, x, s) =

{
ψ1(g, x, s) if s ∈ [a, b]

ψ2(ψ′(g, x), s) if s ∈ [b, c]
.

Notice that ψ2(ψ′(g, x), b) = ψ2(PrG×U (ψ−1
2 (ψ1(g, x, b)), b) = ψ1(g, x, b) for all (g, x) ∈ G× U .

Also observe that both G× U × [a, b] and G× U × [a, c] are closed in G× U × [a, c]. Hence, by
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the Pasting Lemma (Lemma A.2), the map ψ is well-defined and continuous. For all g, h ∈ G,
x ∈ U , s ∈ [a, c] holds

hψ(g, x, s) = h ·

{
ψ1(g, x, s) if s ∈ [a, b]

ψ2(ψ′(g, x), s) if s ∈ [b, c]
=

{
hψ1(g, x, s) if s ∈ [a, b]

hψ2(ψ′(g, x), s) if s ∈ [b, c]
=

{
ψ1(hg, x, s) if s ∈ [a, b]

ψ2(ψ′(hg, x), s) if s ∈ [b, c]
= ψ(hg, x, s).

Thus ψ is an equivariant map.
Notice that the U coordinate of ψ′(g, x, s) = PrG×U (ψ−1

2 (ψ1(g, x, s))) equals x for all points
(g, x, s) ∈ G× U × [a, c]. Hereby, we get

p(ψ(g, x, s)) =

{
p(ψ1(g, x, s)) if s ∈ [a, b]

p(ψ2(ψ′(g, x), s)) if s ∈ [b, c]
= (x, s).

By Proposition 3.22, the restriction pp−1(U×[a,c]) is a principal bundle. We conclude using
Corollary 3.15 that ψ is a trivialisation for U × [a, c] and thus U × [a, c] is a trivialising set.

Remark 3.25. In the lemma above we assumed that p is a principal bundle. This is in fact
not required: one can construct directly (without using Corollary 3.15) a continuous inverse of
ψ. This would show that ψ is a trivialisation. The details are simple but technical and are left
for the reader.

With the lemma above, we can classify all principal bundles over I. We will later see that this
is part of a more general classification (Theorem 5.5 and Corollary 5.6). The proofs of those
assertions will involve the lemma above, but the case for I can be done directly.

Corollary 3.26. Every principal bundle p : X → I is trivial.

Proof. Let U a cover of trivialising opens of I. By the Lebesgue Number Lemma (Lemma A.1),
there exists a 1 < n ∈ N such that for all a, b ∈ I with 0 < b − a < 1

n−1 , [a, b] ⊆ U for some

U ∈ U . Let qi = i
n for all 0 < i ≤ n. Then the set [ i−1

n , in ] is trivialising for all 0 < i ≤ n (use
Lemma 3.5). Hence, by Lemma 3.24, I is a trivialising set and thus p is trivial.
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4 Partitions of Unity

In our further study of principal bundles, we will need partitions of unity. This section is not
meant as a complete review of partitions of unity, merely a “toolbox” for our further studies.
We will first consider the general case, afterwards we consider Partitions of Unities related
to principal bundles. Most assertions and proofs are inspired from [Die08, Chapter 13.1], the
corresponding reference is given in each case.

4.1 The General Case

We define partitions of unity:

Definition 4.1. We say that a collection U of, not necessarily, opens of a space B is point
finite if every x ∈ B is contained in only a finite number of U ∈ U . More strictly, we say that
a collection U is locally finite if for every x ∈ B, there exists an open neighbourhood V of x
which intersects only with a finite number of U ∈ U . It is trivial that a locally finite cover is
also point finite.
A point/locally finite partition of unity subordinate to an open cover U of a space B is a
family of functions (tj : B → I)j∈J with the following properties:

• For all j ∈ J , the support of tj , denoted by supp(tj) = t−1
j ((0, 1]), i.e., the closure of

t−1
j ((0, 1]) lies in U for some U ∈ U .

• The collection {t−1
j ((0, 1])

∣∣ j ∈ J} is point/locally finite.

• The sum
∑
j∈J

tj(x) = 1 for all x ∈ X.

Notice that the sum in the third condition makes sense, since for every x ∈ B, there is only a
finite number of j ∈ J such that tj(x) is non-zero. It should be clear that a locally finite partition
of unity is also a point finite one. An open cover U which admits a point finite partition of unity,
also admits a locally finite one, see Corollary 4.4. Motivated by this (yet unproven) fact, we
define a numerable cover as an open cover that admits either a point or locally finite partition
of unity. A partition of unity (whether point or locally finite) subordinated to a cover U , we
call a numeration of U . N

Our first goal is to prove the claim in the text above. We start by characterising locally finite
case:

Lemma 4.2 ([Die08, Lemma 13.1.5]). For an open over U of a space B and some index set J
the following assertions are equivalent:

1. There exists a locally finite partition of unity indexed by J × N subordinate to U

2. There exists a set of functions {tj,n
∣∣ j ∈ J, n ∈ N} with the following properties:

• For all j ∈ J and n ∈ N, there exists a U ∈ U such that supp(tj,n) ⊆ U .

• For all x ∈ B, there exists a j ∈ J and n ∈ N such that tj,n(x) > 0.

• For all fixed N ∈ N, the collection {t−1
j,N ((0, 1])

∣∣ j ∈ J} is locally finite.

Proof. 1 =⇒ 2 is trivial. Suppose 2. Since {t−1
j,N ((0, 1])

∣∣ j ∈ J} is locally finite, for all r ∈ N
the following function is continuous:

qr : B → I with qr(x) =
∑
i∈J

0<n<r

ti,n(x) for x ∈ B.
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We immediately see that for all r ∈ N and j ∈ J also the next function is continuous:

pj,r : B → I with qr(x) = max
(

0, tj,r(x)− r · qr(x)
)

for all x ∈ B.

By assumption, there exists for every x ∈ B a j ∈ J and n ∈ N such that tj,n(x) > 0. Let
r0 ∈ N be minimal with the property that tj,r0(x) > 0 for some fixed j ∈ J . Now tj,n(x) = 0
for all j ∈ J if n < r0 and thus qr0(x) = 0. Hence, pj,r0(x) = tj,r0(x) > 0. Moreover, we can
choose an N ∈ N such that tj,r0(x) > 1

N and r0 < N . We have qN (x) > tj,r0(x) and thus there
exists an open neighbourhood V of x such that qN (y) > 1

N for all y ∈ V . Now for k > N and
y ∈ V , we have k · qk(x) ≥ Ntj,r0(y) > 1 and thus pj,k(x) = 0. We conclude that the collection
{p−1
j,r ((0, 1])

∣∣ j ∈ J, r ∈ N} is locally finite.
Define

vj,r : B → I as vj,r(x) =
pj,r(x)∑

i∈J
n∈N

pi,r(x)
for all x ∈ B.

This is well-defined since the pi,n’s are locally finite and
∑

(i,n)∈J×N pi,n(x) > 0 for all x ∈ X.

Moreover, the map vj,r is continuous (again by the locally finiteness of the pi,n’s). Furthermore,∑
(j,r)∈J×N vj,r = 1 and for all j ∈ J and r ∈ N, we have supp(vj,r) = supp(pj,r) ⊆ supp(tj,r).

We conclude that the vj,r’s form a locally finite partition of unity subordinated to U indexed
by J × N.

Applying the lemma above to some point finite family of functions, we obtain the following:

Theorem 4.3 ([Die08, Lemma 13.1.7]). Let B a space and J an index set. If there exists a
family of functions {tj : B → I

∣∣ j ∈ J} such that U = {t−1
j ((0, 1])

∣∣ j ∈ J} is point finite and∑
j∈J

tj = 1, then there exists a locally finite partition of unity subordinate to U indexed by J ×N.

Proof. Define for each j ∈ J and n ∈ N the (continuous) function vj,n : B → I as

vj,n(x) = max
(

0, tj(x)− 1

n

)
for all x ∈ B.

For N ∈ N and x ∈ B fixed, there is a finite set E ⊆ J such that for all j ∈ (J − E) holds
tj(x) = 0. We define

qE : B → I as qE(y) = 1−
∑
j∈E

tj(y) for all y ∈ B.

The function qE is continuous since it is a finite sum of continuous functions. Observe that
qE(x) = 1 −

∑
j∈E tj(x) = 1 −

∑
j∈J tj(x) = 0. Take the open V = q−1

E ([0, 1
N )). Then x ∈ V

and for all y ∈ V and j ∈ (J − E) holds:

tj(y) ≤
∑

j∈(J−E)

tj(y) = 1−
∑
j∈E

tj(y) = qE(y) <
1

N
.

Hence, vj,N (y) = 0. Thus there is a finite number of j ∈ J such that v−1
j,N ((0, 1])∩V 6= ∅. In other

words {v−1
j,N ((0, 1])

∣∣ j ∈ J} is locally finite. Observe that supp(vj,n) ⊆ t−1
j ([ 1

n , 1]) ⊆ t−1
j ((0, 1])

for all j ∈ J and n ∈ N. Notice that for all x ∈ B, there is a j ∈ J with tj(x) > 0. Thus
there exists an n ∈ N with tj(x) > 1

n . Hence, vj,n(x) 6= 0. By applying Lemma 4.2, we obtain a
locally finite partition of unity subordinate to U indexed by J × N.
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In particular, we can conclude:

Corollary 4.4. If for an open cover U , there exists a point finite partition of unity subordinate
to U , then there also exists a locally finite one. Moreover, if U admits a countable point finite
partition of unity, then it also admits a countable locally finite one.

Proof. Apply Theorem 4.3 to a (countable) point finite partition of unity.

We now have proven the claim in the definition of numerable covers. Thus, from here on we
can talk about numerable covers without ambiguity. Observe that in Theorem 4.3, we have not
assumed that the supports of the tj ’s must lay in some U ∈ U . Instead, we took a cover of
preimages t−1

j ((0, 1]). In fact it is not necessary to do this assumption in Lemma 4.2 as the
following lemma will make clear:

Lemma 4.5 ([Die08, Lemma 13.1.5]). Suppose that for an open over U of a space B, there
exists a family of functions {tj,n

∣∣ j ∈ J, n ∈ N} (for some index set J) with the following
properties:

• For all j ∈ J and n ∈ N, there exists a U ∈ U such that t−1
j,n((0, 1]) ⊆ U .

• For all x ∈ B, there exists j ∈ J and n ∈ N such that tj,n(x) > 0.

• For all fixed N ∈ N, the collection {t−1
j,N ((0, 1])

∣∣ j ∈ J} is locally finite.

Then U is numerable with a numeration indexed by J × N.

Proof. We argue similar as in Theorem 4.3: Define for each j ∈ J and k, n ∈ N (continuous)
functions vj,n,k : B → I as vj,n,k(x) = max(0, tj,k(x)− 1

n ) for all x ∈ B. Since N×N is countable,
up to re-indexing, the vj,N,K ’s can be indexed by J × N. For a fixed pair (N,K) ∈ N2, there
holds v−1

j,N,K((0, 1]) ⊆ t−1
j,K((0, 1]) for all j ∈ J and thus {v−1

j,N,K((0, 1])
∣∣ j ∈ J} is locally finite.

There exists a U ∈ U such that supp(vj,n,k) ⊆ t−1
j,k([ 1

n , 1]) ⊆ t−1
j ((0, 1]) ⊆ U for all j ∈ J and

n, k ∈ N. Notice that for all x ∈ B, there is a j ∈ J and k ∈ N with tj,k(x) > 0. Thus there
exists an n ∈ N with tj,k(x) > 1

n . Hence, vj,k,n(x) 6= 0. Apply Lemma 4.2 and we obtain that
U is numerable with a numeration indexed by J × N.

The following application of Lemma 4.5 is, in particular, useful when considering homotopies:

Lemma 4.6 ([Die08, Lemma 13.1.6]). Let U a numerable cover of B × I. Then there exists a
numerable cover V of B such that for all V ∈ V there are 0 = q0 < q1 < · · · < qM−1 < qM = 1
such that for all 0 < i ≤M , there exists a U ∈ U with V × [qi−1, qi] ⊆ U .

Proof. Let {tj
∣∣ j ∈ J} a locally finite partition of unity subordinated to U = {Uj

∣∣ j ∈ J}.
Define for every N ∈ N and (k1, . . . , kN ) = k ∈ JN the map vk : B → I given by

vk(x) =

N∏
i=1

min
(
tki(x, s)|s ∈

[ (i− 1)

N
,
i

N

])
.

We will show that V := {v−1
k ((0, 1])

∣∣ k ∈ JN , N ∈ N} fulfills the requirements of the assertion.
Notice that every vk is continuous. Hence, every V ∈ V is open.

Let x ∈ B. Define the family I of all I ′ ⊆ I for which there exists a V ′ ⊆ B containing x and a
j ∈ J with V ′ × I ′ ⊆ t−1

j ((0, 1]) and V ′ × I ′ ∩ t−1
i ((0, 1]) 6= ∅ for a finite number of i ∈ J . For

every s ∈ I, there is a j ∈ J with (x, s) ∈ t−1
j ((0, 1]). Since {t−1

i ((0, 1])
∣∣ i ∈ J} is a locally finite
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family of opens, there exists opens V ′ ⊆ B and I ′ ⊆ I such that (x, s) ∈ V ′ × I ′ ⊆ t−1
j ((0, 1])

and V ′ × I ′ ∩ t−1
l ((0, 1]) 6= ∅ for only a finite number of l ∈ J . Hereby I is a cover of I.

By the Lebesgue Number Lemma (Lemma A.1), there exists a 1 < n ∈ N such that for all
a, b ∈ N with 0 < b− a < 1

n−1 , there is an I ′ ∈ I with [a, b] ⊆ I ′. For all 1 ≤ i ≤ n, there holds
i
n −

i−1
n < 1

n−1 . Hence, there is an Ī ∈ I with [ (i−1)
n , in ] ⊆ Ī and thus we can choose a ji ∈ J

with {x} × Ī ⊆ t−1
j ((0, 1]). Let k = (j1, . . . , jn). Then tji(x, s) 6= 0 for all s ∈ [ (i−1)

n , in ] and

1 ≤ i ≤ n and thus min(tji(x, s)|s ∈ [ (i−1)
n , in ]) 6= 0, since [ (i−1)

n , in ] is compact. We conclude
that vk(x) 6= 0. So V is an open cover of B.

Take a finite sub-cover I1, . . . , Im of I. Let N ∈ N fixed. Let V1, . . . , Vm ⊆ B such that for all
1 ≤ e ≤ m, there holds x ∈ Ve and Ve × Ie ∩ t−1

l ((0, 1]) 6= ∅ for a finite number of l ∈ J . We
have that x ∈ V0 :=

⋂
1≤e≤m Ve and V0 × I ∩ t−1

l ((0, 1]) 6= ∅ for only a finite number of l ∈ J .

Hence, V0 intersect v−1
k ((0, 1]) for only a finite number of k ∈ JN . We conclude that for fixed

N ∈ N, the collection {v−1
k ((0, 1])

∣∣ k ∈ JN} is locally finite.

Applying Lemma 4.5 shows that V is numerable.

For all V ∈ V, there exists an M ∈ N and a (k1, . . . , kM ) = k ∈ JM such that V = v−1
k ((0, 1]).

Define qi = i
M for 0 ≤ i ≤ M . Now for all 1 ≤ i ≤ M , there exists a U ∈ U such that

v−1
k ((0, 1])× [ (i−1)

M , i
M ] ⊆ t−1

ki
((0, 1]) ⊆ U .

The partitions of unity constructed in Lemmas 4.2 and 4.5 are in a sense not “bigger” than the
original ones (except in the case we had a finite partition). More precisely the cardinality of the
partition of unity did not increase. I will now provide a construction which reduces an arbitrary
large partitions of unity into countable ones. This countable partition of unity, in general, is
not subordinate to the original cover (a cover need not admit a countable refinement), so we
will need to transform our cover.

Lemma 4.7 ([Die08, corollary 13.1.9]). Let U a numerable cover of a space B. Then there exist
a countable numerable cover V of B with countable numeration, such that every V ∈ V can be
written as disjoint union of open subsets of elements of U . In other words: we can write every
V ∈ V as V =

⊔
k∈KWk with K some index set, Wk1 ∩Wk2 = ∅ for all K 3 k1 6= k2 ∈ K and

for every k ∈ K, there exists a U ∈ U such that Wk ⊆ U and Wk open.

Proof. Let {tj
∣∣ j ∈ J} a locally finite partition of unity subordinate to U . In the case that J

is finite (in fact countable), the theorem is trivial. Assume J is infinite. Define for every finite
nonempty subset E ⊆ J the map qE : B → I given by

qE(x) = max
(

0,min
e∈E

(
te(x)

)
− max
e∈(J−E)

(
te(x)

))
.

Every qE is continuous since the tj ’s form a locally finite partition of unity. Moreover, for every
x ∈ B, we have the finite set Ex := {j

∣∣ tj(x) > 0} and there holds qEx
(x) > 0.

We now claim the following:

Claim 1. If E,F ⊆ J finite and x ∈ B such that qE(x) 6= 0 6= qF (x), then E ⊆ F or F ⊆ E.

Proof. We argue by contradiction. Suppose there are e ∈ E − F and f ∈ F − E such that
0 < qE(x) ≤ te(x) − tf (x) and 0 < qF (x) ≤ tf (x) − te(x): a contradiction. Hence, E ⊆ F or
F ⊆ E. �
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By the claim, we immediately get that if |E| = |F | and q−1
E ((0, 1])∩q−1

F ((0, 1]) 6= ∅, then E = F .
Define for every n ∈ N the map

vn : B → I as vn(y) =
∑
E⊆J
|E|=n

qE(y) for y ∈ B.

Notice that this definition makes sense since every y ∈ B: qE(y) can be non-zero for at most
one E ⊆ J with |E| = n. Define V = {v−1

n ((0, 1])
∣∣ n ∈ N}. For every V ∈ V, we have some

n ∈ N such that
V = v−1

n ((0, 1]) =
⊔
E⊆J
|E|=n

q−1
E ((0, 1]).

Moreover, there is a U ∈ U such that q−1
E ((0, 1]) ⊆ U . Notice that v|Ex|(x) = qEx

(x) > 0.
Applying Lemma 4.5 to the vn’s, we see that V is numerable, with a numeration indexed by N.
We have shown that V matches the requirements of the assertion.

4.2 Partitions of Unity on Principal Bundles

A principal bundle p : X → B has, as defined in Chapter 3, a covering of trivialising opens of
B. In this chapter, we are considering covers which admit a partition of unity. When these two
coverings coincide, we say that p is a numerable bundle. In detail:

Definition 4.8. A principal bundle p : X → B is a numerable bundle if there exists cover
of trivialising opens U and a partition of unity subordinate to U . We say that such a cover U
is a numerable cover of trivialising opens. A partition of unity subordinate to numerable
cover of trivialising opens is a trivialising numeration. N

We will apply two main results of the previous section in the context of principal bundles: reduc-
ing partitions to countable ones (Lemma 4.7) and “gluing” on I (Lemma 4.6). The assertions
in this section are, while implicitly used in [Die08], not mentioned or proved. I fill in these
omissions.

Theorem 4.9. Every numerable bundle admits a countable numerable cover of trivialising
opens, which admits a countable numeration.

Proof. Let p : X → B a principal bundle and U a numerable cover of trivialising opens. Then
there exists a countable numerable cover V with countable numeration as in Lemma 4.7. All we
have to show is that every V ∈ V is a trivialising open. Let V ∈ V. Write V = tk∈KWk with K
some index set, Wk ⊆ U for some U ∈ U and Wk open for all k ∈ K and Wk1 ∩Wk2 = ∅ for all
K 3 k1 6= k2 ∈ K. By Lemma 3.5, the open Wk is trivialising for every k ∈ K. By Lemma 3.23,
the open V is trivialising.

Theorem 4.10. Let p : X → B×I a numerable bundle. Then there exists a countable numerable
cover V of B with countable numeration such that for all V ∈ V, the subset V × I ⊆ B × I is
trivialising. For this cover V, the family {V × I

∣∣ V ∈ V} is a countable numerable cover of
trivialising opens for p, which admits a countable numeration.

Proof. Take a numerable cover of trivialising opens of B× I. There exists a numerable cover V0

of B as in Lemma 4.6. By Lemma 4.7, there is a countable numerable cover V of B which admits
a countable numeration {tl : B → I

∣∣ l ∈ N}. We will show that V fulfills the requirements.
For every V0 ∈ V0, there exist 0 = q0 < q1 < · · · < qn−1 < qn = 1 such that for all 0 < i ≤ n,
V0 × [qi−1, qi] ⊆ U for some U ∈ U . Thus by Lemma 3.5, the set V0 × [qi−1, qi] is trivialising
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for all 0 < i ≤ n. Hence, by Lemma 3.24, the set V0 × I is trivialising for all V0 ∈ V0. Now
write V ∈ V as V = tk∈KWk with K some index set, Wk ⊆ V0 for some V0 ∈ V0 and Wk open
for all k ∈ K and Wk1 ∩Wk2 = ∅ for all K 3 k1 6= k2 ∈ K. Again by Lemma 3.5, we see
that Wk × I ⊆ V0 × I is trivialising. Hence, by Lemma 3.23, the set V × I = tk∈KWk × I is
trivialising.
Since V is a countable open cover of B, the family V ′ := {V × I

∣∣ V ∈ V} is a countable open

cover of B × I. Moreover, the family of maps {vl : B × I → I
∣∣ l ∈ N} with vl(x, s) = tl(x) for

all (x, s) ∈ B × I and l ∈ N is a countable numeration of V ′.

By the following lemmas, we see that the constructions on principal bundles in Chapter 3.3
preserve numerability of principal bundles.

Lemma 4.11. For any map f : C → B, the pullback f∗p of a numerable bundle p : X → B is
again numerable.

Proof. Take a numerable cover U of trivialising opens for p. Then by Proposition 3.19, the
cover V := {f−1(U)

∣∣ U ∈ U} is a trivialising cover for f∗p. Let {tj
∣∣ j ∈ J} a (point finite)

numeration for U . Then {tj ◦ f
∣∣ j ∈ J} is a numeration of V. Indeed, for every c ∈ C, there

are only a finite number of j ∈ J such that tj(f(c)) 6= 0 and
∑
j∈J tj(f(c)) = 1. For all j ∈ J ,

there is a U ∈ U such that f−1(t−1
j ((0, 1])) ⊆ f−1(U).

Lemma 4.12. Let p : X → B a numerable G-bundle and H an admissible subgroup of G such
that the H-bundle π′ : G→ G/H is numerable. Then the projection π : X → X/H is a numerable
H-bundle.

Proof. Proposition 3.21 shows that π is a principal H-bundle. Write p′ : X/H → B for the
canonical projection. Let U = {Uj

∣∣ j ∈ J} and V = {Vk
∣∣ k ∈ K} numerable covers

of trivialising opens for p and π′ respectively. Let (uj)j∈J and (vk)k∈K numerations of U
and V respectively. Choose for every Uj ∈ U an equivariant map fj : p−1(U) → G. Let
φj : p−1(U)/H → G/H the induced map by fj . By the proof of Proposition 3.21, the family
of opens W := {π(f−1

j (π′−1(Vk)) ∩ p−1(Uj))
∣∣ Vk ∈ V and Uj ∈ U} is a trivialising cover for π.

Define for all j ∈ J and k ∈ K the map wj,k : X/H → I as

wj,k(x) =

{
uj(p

′(x)) · vk(fj(x)) if p′(x) ∈ supp(uj)

0 if uj(p
′(x)) = 0

for all x ∈ X/H.

By the Pasting Lemma (Lemma A.2), this map is well-defined and continuous. For every
x ∈ X/H, there is only a finite number of pairs (j, k) ∈ J ×K such that wj,k(x) 6= 0. Moreover,
for every x ∈ X/H, there holds: ∑

j∈J

∑
k∈K

wj,k(x) =

∑
j∈J

∑
k∈K

{
uj(p

′(x)) · vk(fj(x)) if p′(x) ∈ supp(uj)

0 if uj(p
′(x)) = 0

=

∑
j∈J

uj(p
′(x)) ·

∑
k∈K

vk(fj(x)) if p′(x) ∈ supp(uj)

0 if uj(p
′(x)) = 0

=

∑
j∈J

{
uj(p

′(x)) if p′(x) ∈ supp(uj)

0 if uj(p
′(x)) = 0

= 1.
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We conclude by Theorem 4.3 that W is a numerable cover of X/H. Hence, π is a numerable
H-bundle.

Lemma 4.13. The restriction p|p−1(A) of a numerable bundle p : X → B for some A ⊆ B is
again numerable.

Proof. By the proof of Proposition 3.22, we know that if U is a numerable cover of trivialising
opens of p, then V = {U ∩A

∣∣ U ∈ U} is an open trivialising cover for the restriction. A numer-
ation (tj)j∈J of U can obviously be restricted to a numeration of V, by taking the restrictions
(tj |A)j∈J .
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5 Classification of Principal Bundles

This chapter is dedicated to classifying all numerable bundles over a given space B with structure
group G. We will see that the isomorphism classes of numerable bundles are in bijection with
homotopy classes of maps B → BG. Here BG is a so called classifying space for the group
G. A precise definition of a classifying space is given below. It should be clear that for this
classification, we need to have a way to turn homotopies on the orbit spaces into isomorphism
between bundles. In order to describe this construction, we firstly look at bundles over B × I
for some space B. We observe that these bundles have the following “lifting” property:

Lemma 5.1 ([Die08, Lemma 14.3.1]). Let p : X → B × I a numerable bundle and φ : B × I →
B × I the map given by φ(b, s) = (b, 1) for all (b, s) ∈ B × I. Then there exists an equivariant
lift Φ: X → X such that the following diagram commutes:

X X

B × I B × I

p

Φ

p

φ

Proof. By Theorem 4.10, there exists a countable numerable cover V of B with countable nu-
meration such that V × I is trivialising for all V ∈ V. By Corollary 4.4, there exists a countable
infinite locally finite partition of unity {vn : B → I

∣∣ n ∈ N} subordinate to V.1 Define for every
n ∈ N the map

qn : B → I given by qn(b) =
vn(b)

max
k∈N

(vk(b))
for all b ∈ B.

Since the vn’s are continuous and form a locally finite partition of unity, every qn is continuous.
Notice for all n ∈ N that supp(qn) = supp(vn) ⊆ Vn for some Vn ∈ V. Let for all n ∈ N,
ψn : G × Vn × I → p−1(Vn × I) a trivialisation. Define pB : X → B as the B coordinate of
p(x) for all x ∈ X. Similarly, define pI : X → I as the I coordinate of p(x) for all x ∈ X.
Write Pr1, P r2, P r3 for the projections from G× Vn × I to G, Vn and I respectively. Note that
pB(x) = Pr2(ψ−1

n (x)) and pI(x) = Pr3(ψ−1
n (x)) for all x ∈ p−1(Vn × I). Define for all n ∈ N,

the map Rn : X → X as

Rn(x) =

ψn
(
Pr1

(
ψ−1
n (x)

)
, pB(x),max

(
pI(x), qn(pB(x))

))
if x ∈ p−1(supp(qn)× I)

x if x ∈ X − p−1(q−1
n ((0, 1])× I)

.

Note that for all x ∈
(
X−p−1(q−1

n ((0, 1])×I))
)⋂ (

p−1(supp(qn)×I)
)
, there holds qn(pB(x)) = 0.

Hereby, we see:

ψn

(
Pr1

(
ψ−1
n (x)

)
, pB(x),max

(
pI(x), qn(pB(x))

))
=

ψn

(
Pr1

(
ψ−1
n (x)

)
, P r2

(
ψ−1
n (x)

)
,max

(
Pr3

(
ψ−1
n (x)

)
, qn
(
Pr2(ψ−1

n (x))
)))

=

ψn

(
Pr1

(
ψ−1
n (x)

)
, P r2

(
ψ−1
n (x)

)
,max

(
Pr3

(
ψ−1
n (x)

)
, 0
))

= x.

Since both X − p−1(q−1
n ((0, 1]) × I) and p−1(supp(qn) × I) are closed, by the Pasting Lemma

(Lemma A.2), Rn is well-defined and continuous. Moreover, for all n ∈ N and x ∈ X, there holds

1In case we have a finite partition of unity, we add an infinite but countable number of zeroes.



5 CLASSIFICATION OF PRINCIPAL BUNDLES 25

pB(Rn(x)) = pB(x). Indeed, if Rn(x) = x it is trivial. Otherwise, since Rn(x) ∈ p−1(Vn × I),
we have:

pB(Rn(x)) =

Pr2

(
ψ−1
n

(
ψn

(
Pr1

(
ψ−1
n (x)

)
, pB(x),max

(
pI(x), qn(pB(x))

))))
=

Pr2

(
Pr1

(
ψ−1
n (x)

)
, pB(x),max

(
pI(x), qn(pB(x))

))
=

pB(x).

With induction, we conclude that pB
(
(R1 ◦ · · · ◦Rk)(x)

)
= pB(x) for all k ∈ N. Similarly for all

n ∈ N, there holds pI
(
Rn(x)

)
= max

(
pI(x), qn(pB(x))

)
. Again with induction

pI

(
(R1 ◦ · · · ◦Rk)(x)

)
= max

(
pI(x),max

n≤k

(
qn(pB(x))

))
for all k ∈ N.

We define Φ: X → X as the composition Φ = R1 ◦ R2 ◦ . . . . For every x ∈ X, there exists an
open neighbourhood W ⊆ B of p(x) which intersects q−1

n

(
(0, 1]

)
× I for only a finite number of

n ∈ N. Thus there exists an N ∈ N such that ql(pB(y)) = 0 for all y ∈ p−1(W ) and l > N .
Clearly Rl(y) = y for all y ∈W and l > N . Hence, Φ|p−1(W ) =

(
R1 ◦ · · · ◦RN

)
|p−1(W ). Hereby

Φ is well-defined and continuous.
We have that pI(Φ(x)) = max

(
pI(x),maxn∈N(qn(pB(x)))

)
= max

(
pI(x), 1

)
= 1 and that

pB(Φ(x)) = pB(x) and thus p(Φ(x)) = φ(p(x)) for all x ∈ X. We conclude that Φ is a suitable
lift of φ.

For a principal bundle p : X → B × I, we define pt : Xt := p−1(B × {t})→ B × {t} ∼= B for all
t ∈ I as the restriction from p. By Lemma 3.8 and Proposition 3.22, the map pt is a principal
bundle. In case that p is numerable, so is pt, see Lemma 4.13. These restriction turn out to
have the following two “isomorphism” relations:

Corollary 5.2 ([Die08, p. 343]). Let p : X → B × I a principal bundle. Then the bundle
p1 × IdI : X1 × I → B × I is isomorphic to p.

Proof. Lemma 5.1 gives us the following diagram:

X X

B × I B × I

p

Φ

p

φ

Here φ : B × I → B × I is defined as φ(b, s) = (b, 1). Proposition 3.20 implies that p is
isomorphic to φ∗p. Define ψ : X1 × I → X ×B×I (B × I) as ψ(x, s) = (x, (p1(x), s)). Since
p(x) = (p1(x), 1) = φ(p1(x), s) for all (x, s) ∈ X1 × I, we see that ψ is well-defined. Moreover,
there holds p1 × IdI = φ∗p ◦ ψ. We conclude by Corollary 3.15, the map p1 × IdI is isomorphic
to φ∗f .

Corollary 5.3 ([Die08, Lemma 14.3.2]). The restrictions p0 and p1 of a numerable bundle
p : X → B × I are isomorphic numerable bundles.
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Proof. By Lemma 5.1, we have the following diagram:

X X

B × I B × I

p

Φ

p

φ

Here φ : B×I → B×I is defined as φ(b, s) = (b, 1). The restriction φ|B×{0} : B×{0} → B×{1}
is a homeomorphism. We obtain the diagram:

p−1(B × {0}) p−1(B × {1})

B × {0} B × {1}

B B

p

Φ

p

φ

The map B → B completing the diagram is the identity. This is clear by looking at the definition
of φ. The following sub-diagram together with Corollary 3.15 proves the desired result.

p−1(B × {0}) p−1(B × {1})

B B

p0

Φ

p1

Id

The assertion above provides a way to transform homotopies into isomorphism: consider a
numerable bundle p : Y → C and a homotopy h : B× I → C. Now the pullback h∗p is a bundle
over B × I, and we have the isomorphisms as in the assertion.
We now can classify all numerable bundles. We will see that every bundle arises as pullback
from a so called universal bundle. I give a definition following [Die08, p. 344]:

Definition 5.4. A numerable bundle pG : EG→ BG which admits for every numerable bundle
p : E → B, up to G-homotopy, a unique equivariant map f : E → EG is called a universal
bundle for G. The space BG is called a classifying space. N

Define B(B,G) as the set of isomorphic classes of numerable bundles. By Propositions 2.11
and 2.12, it is clear that isomorphism defines an equivalence relation. In the theorem below we
will see that B(B,G) is a set. Write [X,Y ] for the set of homotopy classes of functions X → Y .
We arrive that the classification theorem of numerable bundles:

Theorem 5.5 ([Die08, Theorem 14.4.1]). Given a universal bundle pG : EG → BG, the map
α : [B,BG]→ B(B,G) defined as [f ] 7→ [f∗pG] is a bijection.

Proof. We first show that for every principal bundle p : E → B, there exists a map φ : B → BG
such that φ∗pG is isomorphic to p. Notice that this implies surjectivity of α, provided that α is
well-defined. This also implies B(B,G) is a set.
Let p : E → B a principal bundle. By assumption, there exists a G-equivariant map f : E → EG.
By Proposition 3.10, there is a unique φ : B → BG with pG ◦ f = φ ◦ p. Proposition 3.20 shows
that φ∗pG is isomorphic to p.
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Secondly, we show that α is well-defined: let φ, φ′ : B → BG two homotopic maps and h : B×I →
BG a homotopy between φ and φ′. Lemma 4.11 and Corollary 5.3 show that the restrictions
(h∗pG)0 and (h∗pG)1 are isomorphic numerable bundles. For every s ∈ I we have the following
diagram:

(h∗pG)−1(B × {s}) EG×BG B EG

B B × I BG

(h∗pG)s h∗pG pG

is h

Notice that h ◦ is = hs and the top row of the diagram is an equivariant map. By Lemma 4.11
and Proposition 3.20, we conclude that h∗spG and (h∗pG)s are isomorphic numerable bundles
for all s ∈ I. Applying this fact for s = 0, 1, we get that φ∗pG ∼= (h∗pG)0

∼= (h∗pG)1
∼= φ′∗pG.

Lastly, we show that α is injective: let φ, φ′ : B → BG such that φ∗pG is isomorphic to φ′∗pG.
Let ψ an isomorphism. We have created the following diagram:2

EG EG×BG B EG×BG B EG

BG B BG

pG
φ∗pG

ψ

φ′∗pG

pG

φ φ′

Leaving out the φ′∗pG bundle, gives:

EG EG×BG B EG

BG B BG

pG φ∗pG pG

φ φ′

Where both top arrows are equivariant maps. Since pG : EG → BG is a universal bundle, the
top arrows are G-homotopic. By Proposition 2.10 and Lemma 3.9 and the fact that homotopies
factor through homeomorphisms, we conclude that φ and φ′ are homotopic.

With Corollary 3.26, we concluded that all principal bundles over I are trivial. Using the
classification of numerable bundles, we see that the same if true for any contractible space.

Corollary 5.6. Every numerable bundle over a contractible space is trivial.

Proof. If B is a contractible space, all maps B → BG are homotopic.

2One should notice the “abuse of notation”: the two spaces EG×BG B are different, since we have different
functions B → BG and the notation does not carry this information. A similar problem occurs when we consider
pullbacks from different bundles EG→ BG.
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6 Universal Bundles

In the previous chapter, we have classified all principal bundles over a given space B with
structure group G. However, we required a universal bundle to be given. In this chapter, we
will construct universal bundles. Firstly, a general construction for any topological group, due to
Milnor [Mil56b]. Secondly, a construction for finite discrete groups using configuration spaces.

6.1 The Milnor Construction

We first define the Milnor/join space, following [Mil56b, pp. 430–431]:

Definition 6.1. Take a collection of non-empty spaces (Xj)j∈J for some index set J . We
consider the set Σ of all sequences (sj , xj)j∈J ∈

∏
j∈J I × Xj such that only a finite number

of sj ’s are different from 0 and
∑
j∈J sj = 1. We define the join Fj∈JXj := Σ/∼ where

(sj , xj)j∈J ∼ (s′j , x
′
j)j∈J if sj = s′j for all j ∈ J and xj = x′j for all j ∈ J with s′j = sj 6= 0. It is

clear that ∼ defines an equivalence relation.
Instead of (sj , xj)j∈J , we can use the more suggestive notation (sjxj)j∈J , with 0xj = 0x′j = 0.

On the space Fj∈JXj , we have for every i ∈ J “coordinate” functions ti : Fj∈JXj → I taking
(sj , xj)j∈J 7→ si and qi : t

−1
i ((0, 1])→ Xi taking (sj , xj)j∈J 7→ xi. Notice that the both functions

are well-defined. Throughout this chapter, we assume that tj and qj are these coordinate
functions. We define the join topology on Fj∈JXj as the coarsest topology, such that all the
sj and qj are continuous. N

We can characterise the join topology with the following universal property:

Proposition 6.2. A function f : X → Fj∈JXj is continuous if and only if for all i ∈ J , the
maps ti ◦ f and qi ◦ f (where defined) are continuous.

Proof. The “only if” part is trivial. Suppose that all ti ◦ f and qi ◦ f (where defined) are
continuous. Define

S := {t−1
j (I ′)

∣∣ I ′ ⊆ I open and j ∈ J}
⋃
{q−1
j (U)

∣∣ U ⊆ Xj open and j ∈ J}.

Clearly S is a collection of opens in the join topology. Moreover, every topology containing S
makes all ti and qi continuous. Hence, S is a sub-base for the join topology. Hereby every open
V ⊆Fj∈JXj can be written as a union of finite intersections of elements of S:

V =
⋃
k∈K

nk⋂
l=1

Sk,l with K some index set and Sk,l ∈ S.

For every S ∈ S, there is a i ∈ J and either an open I ′ ⊆ I such that S = t−1
i (I ′) or an

open U ⊆ Xj such that S = q−1
j (U). Hereby, f−1(S) = f−1(t−1

j (I ′)) or f−1(S) = f−1(q−1
j (U)).

Hence, f−1(S) is open. We observe that f−1(V ) = f−1(
⋃
k∈K

⋂nk

l=1 Sk,l) =
⋃
k∈K

⋂nk

l=1 f
−1(Sk,l)

and thus f−1(V ) is open and f is continuous.

From this point most authors run straightaway to a “correct” join space (one that yields a
universal bundle). I will consider slightly more general class of join spaces. However, the used
techniques are similar to [Die08, Chapter 14.4]. In Corollary 6.7, we will conclude the classical
result.
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Assume all Xj ’s are G-spaces. Then there is a canonical action on the join Fj∈JXj by acting
(g(sj , xj)j∈J) 7→ (sj , gxj)j∈J . Since all qj ’s commute with this group action (where qj is defined)
and the action on the I coordinates is trivial, we see, using the previous proposition, that this
action is continuous. Hence, the join Fj∈JXj is a G-space. We have a similar statement for
principal bundles:

Theorem 6.3. Let (pj : Xj → Bj)j∈J principal bundles with structure group G. Then the
projection π : Fj∈JXj → (Fj∈JXj)/G is a principal bundle. Moreover, if all pj are numerable
bundles, so is π.

Proof. Choose for all j ∈ J a trivialising cover Uj of Bj . Consider the collection of opens
U := {π(q−1

j (p−1
j (U))))

∣∣ j ∈ J and U ∈ Uj}. We will see that U is a trivialising cover.

Suppose j0 ∈ J and U ∈ Uj0 . Let V := q−1
j0

(p−1
j0

(U)). Firstly, we show that π−1(π(V )) = V .

Notice, by construction, that V ⊆ t−1
j0

((0, 1]). It is clear that V ⊆ π−1(π(V )). Let (tj , xj)j∈J =

x ∈ π−1(π(V )). Then there is a (t′j , yj)j∈J = y ∈ V such that π(y) = π(x). Hence, there is
a g ∈ G such that x = gy. We deduce that tj = t′j and xj = gyj for all j ∈ J . In particular
tj0 = t′j0 6= 0 and pj0(qj0(x)) = pj0(xj0) = pj0(gyj0) = pj0(yj0) = pj0(qj0(y)) ∈ U . We conclude

that x ∈ V and thus V = π−1(π(V )).

Take a trivialisation ψ : G× U → p−1
j0

(U). Let ψ−1
G : p−1

j0
(U) → G be the G coordinate of ψ−1.

Define f : V → G as f(x) = ψ−1
G (qj0(x)). Clearly f is an equivariant map (both qj0 and ψ−1

G

are equivariant maps). Using Corollary 3.18, we see that U is a trivialising cover for π and thus
that π is a principal bundle.

Suppose all pj ’s are numerable bundles. Assume without loss of generality that for all j ∈ J ,
the cover Uj is numerable. Take for every j ∈ J a locally finite partition of unity (vj,k)k∈Kj

subordinate Uj .
Notice that tj(gx) = tj(x) for all x ∈ Fi∈JXi, g ∈ G and j ∈ J . Using the universal property
of quotient space topology, there are (continuous) induced maps t̃j : (Fi∈JXi)/G → I for all
j ∈ J . For all x ∈Fi∈JXi, there are only a finite number of j ∈ J such that 0 < tj(x) = t̃j([x])
and

∑
j∈J t̃j([x]) =

∑
j∈J tj(x) = 1. Theorem 4.3 gives us a locally finite partition of unity

(t′l)l∈L subordinate to

{t̃j
−1

((0, 1])
∣∣ j ∈ J} = {π(t−1

j ((0, 1]))
∣∣ j ∈ J}.

We choose for every l ∈ L a jl ∈ J such that t′−1
l ((0, 1]) ⊆ t̃j

−1
((0, 1]).

Define v′l,k : (Fi∈JXi)/G→ I for all l ∈ L and k ∈ Kjl as

v′l,k([x]) =

{
t′l([x]) · vjl,k(pjl(qjl(x))) if [x] ∈ t′−1

l ((0, 1])

0 if [x] ∈ t′−1
l (0)

for all [x] ∈ (Fi∈JXi)/G.

There holds pjl(qjl(gx)) = pjl(gqjl(x)) = pjl(qjl(x)) for all [x] ∈ t′−1
l ((0, 1]) ⊆ π(t−1

jl
((0, 1]))

and g ∈ G. Furthermore, there holds t′l([x]) · vjl,k(pjl(qjl(x))) = 0 if t′l([x]) = 0. Since both

t′−1
l ((0, 1]) and t′−1

l (0) are closed, the Pasting Lemma (Lemma A.2) shows that v′l,k is well-
defined and continuous.

For all x ∈ Fi∈JXi, there is only a finite number of l ∈ L and k ∈ Kjl such that t′l([x]) 6= 0
and vjl,k(pjl(qjl(x))). Hence, v′l,k([x]) 6= 0 for only a finite number of l ∈ L and k ∈ Kjl . Notice
that for all x ∈Fi∈JXi, there holds:
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∑
l∈L

∑
k∈Kjl

v′l,k([x]) =

∑
l∈L

∑
k∈Kjl

{
t′l([x]) · vjl,k(pjl(qjl(x))) if [x] ∈ t′−1

l ((0, 1])

0 if [x] ∈ t′−1
l (0)

=

∑
l∈L

t
′
l([x]) ·

∑
k∈Kjl

vjl,k(pjl(qjl(x))) if [x] ∈ t′−1
l ((0, 1])

0 if [x] ∈ t′−1
l (0)

=

∑
l∈L

{
t′l([x]) if [x] ∈ t′−1

l ((0, 1])

0 if [x] ∈ t′−1
l (0)

=

∑
l∈L

t′l([x]) = 1.

For all l ∈ L and k ∈ Klj , there exists a U ∈ Ujl such that vjl,k((0, 1]) ⊆ U . Hence, we have
that

v′−1
l,k

(
(0, 1]

)
⊆ t′−1

l

(
(0, 1]

)⋂
π
(
q−1
jl

(p−1
jl

(U))
)
⊆ π

(
q−1
jl

(p−1
jl

(U))
)
∈ U .

Using Theorem 4.3, we see that U is numerable and thus that π is a numerable bundle.

Lemma 6.4. Let p : E → B a numerable bundle for a group G and (Xj)j∈J infinitely many
(nonempty) G-spaces. Then there exists an equivariant map f : E →Fj∈JXj.

Proof. Choose for all j ∈ J a point xj,0 ∈ Xj and take an injection r : N→ J . By Theorem 4.9,
there exists a countable cover U of trivialising opens for p and a partition of unity (vn)n∈N
subordinated to U . Without loss of generality, we can assume that U = {Un

∣∣ n ∈ N} and
supp(vn) ⊆ Un for all n ∈ N. As all Un are trivialising, there are equivariant maps ψn : Un → G.
Define f : E →Fj∈JXj as f(x) = (sj(x), xj(x))j∈J for all x ∈ E with

sj(x) =

{
vn(p(x)) if r(n) = j

0 else
and xj(x) =

{
ψn(x) · xj,0 if r(n) = j and p(x) ∈ Un
xj,0 else

.

Notice that f is well-defined, since for all j ∈ J , there is by injectivity of r at most one n ∈ N
such that r(n) = j. Clearly every tj ◦ f = sj is continuous. Moreover, if x ∈ f−1(s−1

j ((0, 1])),
then sj(x) 6= 0. Thus there is an n ∈ N with r(n) = j and p(x) ∈ Un. Hence, there holds
qj(f(x)) = xj(x) = ψn(x) · xj,0 and thus qj ◦ f is continuous (where defined). Proposition 6.2
shows that f is continuous. For all g ∈ G, j ∈ J and x ∈ E, we have that sj(gx) = sj(x).
Moreover, for all j ∈ J and g ∈ G if x ∈ E with sj(gx) = sj(x) > 0, then there is an n ∈ N
with p(gx) = p(x) ∈ Un and r(n) = j. Hence, xj(gx) = ψj(gx) · xj,0 = gψj(x) · xj,0 = g · xj(x).
We conclude that f(gx) = (sj(gx), xj(gx))j∈J = (sj(x), gxj(x))j∈J = gf(x) and thus that f is
an equivariant map.

Lemma 6.5 ([Die08, Proposition 14.4.4]). Consider G-spaces E and X. Any two equivariant
maps f, g : E →Fj∈NX are G-homotopic.

Proof. Write f = (s1x1, s2x2, . . . ) with sj : E → I and xj : s−1
j ((0, 1]) → X. For all k ∈ N the

maps (s1x1, . . . , skxk, 0, sk+1xk+1, 0, . . . ) and (s1x1, . . . , skxk, sk+1xk+1, 0, sk+2xk+2, 0, . . . ) are
G-homotopic with G-homotopy Hk : E × I →Fj∈NX given by

Hk
t =

(
s1x1, . . . , skxk, tsk+1xk+1, (1− t)sk+1xk+1, tsk+2xk+2, (1− t)sk+2xk+2, . . .

)
.
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Define H : E×I →Fj∈NX as the concatenation3 H1 ·H2 ·. . . . Notice that this definition makes
sense, since for every x ∈ E, there is only a finite number of k ∈ N such that Hk

t is different
from f for some t ∈ I. For the coordinate maps tj ◦H and qj ◦H only the first j−1 homotopies
are relevant. Hereby, the coordinate maps are continuous. By Proposition 6.2, the map H
is continuous. Moreover, H is an equivariant map. Hereby, the maps (s1x1, 0, s2x2, 0, . . . )
and f are G-homotopic. Similarly, when we write g = (s′1x

′
1, s
′
2x
′
2, . . . ) with s′j : E → I and

x′j : s′−1
j ((0, 1]) → X, we see that g is G-homotopic to (s′1x

′
1, 0, s

′
2x
′
2, 0, . . . ). The G-homotopy

sending
t 7→ (ts′1x

′
1, (1− t)s′1x′1, ts′2x′2, (1− t)s′2x′2, . . . )

shows that the maps (s′1x
′
1, 0, s

′
2x
′
2, 0, . . . ) and (0, s′1x

′
1, 0, s

′
2x
′
2, . . . ) are G-homotopic. Further-

more, the G-homotopy t 7→ (ts1x1, (1 − t)s′1x
′
1, ts2x2, (1 − t)s′2x

′
2, . . . ) shows that the maps

(s1x1, 0, s2x2, 0, . . . ) and (0, s′1x
′
1, 0, s

′
2x
′
2, . . . ) are G-homotopic. We conclude that f and g are

G-homotopic.

We now conclude the following:

Theorem 6.6 ([Die08, Proposition 14.4.10]). For any non-empty numerable bundle p : X → B,
the projection π : Fj∈NX → (Fj∈NX)/G is a universal bundle.

Proof. By Theorem 6.3, the projection π is a numerable bundle. Lemmas 6.4 and 6.5 show that
π is a universal bundle.

Or even more concretely:

Corollary 6.7 ([Die08, Proposition 14.4.2]). For every topological group G, the projection
π : Fj∈NG→ (Fj∈NG)/G is a universal bundle.

Proof. Take the action G × G → G by the group multiplication. Notice that p : G → ∗ is a
numerable bundle and apply the previous theorem.

Remark 6.8. In this construction of universal bundles, I used the axiom of choice several times.
While I am perfectly fine with assuming the axiom, one can notice that the axiom is not required
when considering Fj∈NG. We can use the exact same proofs, but in this specific case all the
choices can be made canonically.

6.2 Properties of Universal Bundles

Having constructed a universal bundle, all other universal bundles inherited properties from
this. These include contractibility and universality of quotients of admissible subgroups. This
section provides the proofs.

Proposition 6.9 ([Die08, Proposition 14.4.6]). For every non-empty space X, the join Fj∈NX
is contractible.

Proof. Consider X under the action of the trivial group. This makes X a G-space. Let x0 ∈ X.
Note that the identity onFj∈NX and the constant mapFj∈NX →Fj∈NX given by (tjxj)j∈N 7→
(1x0, 0, 0, . . . ) are equivariant maps. By Lemma 6.5, these two maps are homotopic.

3Homotopies can be concatenated in a similar way as paths can. In this case, we let the first homotopy “work”
on [0, 1

2
], the second on [ 1

2
, 3
4

] etc. One should notice that this construction is only possible if the “end”-function
equals the “start”-function of the next homotopy. This is clear in our case.
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Theorem 6.10. For a universal bundle p : E → B, the space E is contractible.

Proof. Let pG : EG → BG a universal bundle such that EG is contractible. Such a bundle
exist by Proposition 6.9 and Corollary 6.7. There exist equivariant maps f : E → EG and
g : EG→ E. Since both p and π are universal bundles, both g ◦ f and f ◦ g are (G-)homotopic
to the identity on E and EG respectively. Hence, E is (G-)homotopy equivalent to EG and
thus E is contractible.

Remark 6.11. The converse of this theorem is also true: Any numerable bundle p : E → B
with E contractible is universal. For a proof see [Die08, Theorem 14.4.12]. Using this fact, we
see that for a contractible group G (contractible as topological space), the projection G→ ∗ is
a universal bundle. Applying Theorem 5.5 gives that every numerable G-bundle is trivial.

Theorem 6.12. Let pG : EG→ BG a universal G-bundle and H 6 G an admissible subgroup
such that the principal bundle G→ G/H is numerable. Then the projection pH : EG→ EG/H
is a universal H-bundle.

Proof. Lemma 4.12 shows that pH is a numerable H-bundle.
Let p : E → B a numerable H-bundle. Since pG is a universal G-bundle, there exists a G-
equivariant map f : Fi∈NG → EG. Here we see Fi∈NG and EG as G-spaces. When seeing
Fi∈NG and EG as H-spaces, the map f is also an H-equivariant map. By Theorem 6.6, the
projection π : Fi∈NG→ (Fi∈NG)/H is a universal H-bundle. Hereby, there is an H-equivariant
map g′ : E →Fi∈NG and thus f ◦ f ′ : E → EG is an H-equivariant map.
Suppose g : E → EG is another H-equivariant map. Universality of the principal G-bundle
Fi∈NG→ (Fi∈NG)/G implies that there exists a G-equivariant map f̃ : EG→ Fi∈NG. Again

f̃ is also an H-equivariant map. Both f̃ ◦ g and f̃ ◦ f ◦ f ′ are H-equivariant maps E →Fi∈NG
and thus they are H-homotopic. Hereby f ◦ f̃ ◦ g and f ◦ f̃ ◦ f ◦ f ′ are H-homotopic. Since f ◦ f̃
is G-homotopic (thus also H-homotopic) to the identity on EG, the map g is H-homotopic to
f ◦ f ′.

6.3 Configuration Spaces

A second way of producing universal bundles is using configuration spaces. Only, this construc-
tion produces universal bundles for just the symmetric groups Σn. Together with Theorem 6.12,
we obtain universal bundles for all finite groups endowed with the discrete topology. We will
see the bundles in question are all numerable. Let us start with a definition of configuration
spaces, following [Knu18, p. 3]:

Definition 6.13. The configuration space of n ordered points of a topological space X is:

Confn(X) := {(x1, . . . , xn) ∈ Xn|xi = xj implies i = j}.

This space admits a natural Σn action, by permuting the coordinates. Write Bn(X) for the
orbit space. We can immediately note that the Σn-action on Confn(X) is free. N

In this section, we firstly show that (under mild conditions on the space X) the projection
Confn(X) → Bn(X) is a principal Σn-bundle. Secondly, we prove that if X = R∞, then we
have a universal bundle. The following assertion is inspired by [Hat15, proposition 1.40a]:

Proposition 6.14. Let G a discrete group and X a G-space. Assume that for every x ∈ X,
there exists an open neighbourhood U ⊆ X and such that the co-sets gU for varying g ∈ G are
disjoint. Then the projection π : X → X/G is a principal bundle.
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Proof. Take an open set U as in the assertion. Since π is an open map, we know that π(U) is
open. We see that π−1(π(U)) = tg∈GgU . Now for every x ∈ tg∈GgU , there is a unique (!)
gx ∈ G such that x ∈ gxU . Define f : tg∈G gU → G as f(x) = gx. Since for all g ∈ G, we have
that f−1(g) = gU and f(gx) = gf(x), we see that f is an equivariant map. With Corollary 3.18,
we conclude that π is a principal bundle.

When X is a Hausdorff, the configuration space has the following two properties. While the
properties are seemingly unrelated, the proof depends on the same construction. The argument
follows [Knu18, p. 11].

Proposition 6.15. If X is Hausdorff, then the configuration space Confn(X) ⊆ Xn is open
and the projection π : Confn(X)→ Bn(X) is a principal bundle.

Proof. If n = 1, there is nothing to check. Suppose n > 1. Let (x1, . . . , xn) = x ∈ Confn(X).
By Hausdorffness of X, there exist for all 1 ≤ i < j ≤ n opens Ui,j ⊆ X such that xi ∈ Ui,j and
Ui,j ∩ Uj,i = ∅. Now define

Vi :=
⋂

1≤j≤n
i 6=j

Ui,j .

There holds xi ∈ Vi and if i 6= j, then Vi ∩ Vj = ∅. Hereby, the set V1 × · · · × Vn is open in Xn.
Moreover, it is subset of Confn(X). Hence, Confn(X) is open in Xn.
For every permutation σ ∈ Σn, we have that σ(V1 × · · · × Vn) = Vσ(1) × · · · × Vσ(n). Hence,
(V1×· · ·×Vn)∩(Vσ(1)×· · ·×Vσ(n)) = ∅ if σ is not the identity of Σn. Applying Proposition 6.14,
we see that π is a principal bundle.

Now we have principal bundles, we consider numerability. It is well-known that a paracompact
Hausdorff space admits a partition of unity for every open cover. See for example [Wil04, p.
152, 20C]. Hence, a principal bundle p : X → B with B paracompact Hausdorff is numerable.
Since the map π : Confn(X) → Bn(X), for any space X, is a quotient map by a finite group,
Hausdorffness is inherited by Bn(X) from Confn(X). The same is true for paracompactness:

Proposition 6.16. If Confn(X) is paracompact, then so is Confn(X)/H for any subgroup
H 6 Σn, in particular Bn(X) is paracompact.

Proof. Write π : Confn(X) → Confn(X)/H for the projection. Take an open cover U of
Confn(X)/H. The family {π−1(U)

∣∣ U ∈ U} is an open cover of Confn(X). Hence, U has

a locally finite refinement V. Consider the open cover W = {π(V )
∣∣ V ∈ V}. This is indeed an

open cover of Confn(X)/H as π is a surjective open map. Notice that for all W ∈ W, there is
a V ∈ V and U ∈ U such that W = π(V ) ⊆ π(π−1(U)) = U . Thus, W is a refinement of U .
Let x ∈ Confn(X)/H. Write {x1, . . . , xk} = π−1(x) for its fibers. There exist disjoint open
neighbourhoods A1, . . . , Ak of x1, . . . , xk respectively each intersecting only finitely many V ∈ V.
Hereby also A1 ∪ · · · ∪Ak intersects only a finite number of V ∈ V.
Consider π(A1) ∩ · · · ∩ π(Ak). Clearly, there holds x ∈ π(A1) ∩ · · · ∩ π(Ak). Moreover, if
π(V ) ∩ (π(A1) ∩ · · · ∩ π(Ak)) 6= ∅ for some V ∈ V, then there exists a y ∈ V such that
π(y) ∈ (π(A1) ∩ · · · ∩ π(Ak)). Hence, y ∈ Ai for some i. Thus, V intersects A1 ∪ · · · ∪ Ak. We
conclude that W is locally finite.

By Theorem 6.10, we know that every universal bundle p : E → B has a contractible space
E. Contractible spaces are “highly connected”. So in the search for universal bundles, we
need to construct spaces with “high connectivity”. In the Milnor construction, we created the
connectivity by taking products and gluing the zeroes together of some arbitrary (potentially
highly unconnected space). In other words, the more spaces you join together, the higher the
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connectivity. For configuration spaces, we are working the other way round. Since the higher n
becomes, the less connected Confn(X) will be. After all we leave out more and more points from
Xn. In example, the configuration space Conf1(R) = R and Conf2(R) = R2 − {(x, x)

∣∣ x ∈ R}.
For this reason, if we want to construct a universal bundle for configuration spaces, the space X
needs to be highly connected. As the example makes clear, even contractibility is not enough.
We consider the following space:

Definition 6.17. We define R∞ := {(xi)i∈N ∈ RN
∣∣ xi = 0 for all but finitely many i}. We

endow R∞ with the restriction topology R∞ ⊆ RN =
∏
i∈N R. Where RN has the product

topology, i.e., the coarsest topology such that all projections are continuous. N

Firstly, I will show that Confn(R∞) yields a numerable bundle. We will use the sledgehammer
and consider metrisability:

Lemma 6.18. The space RN and thus also R∞ is metrisable.

Proof. Since R is homeomorphic to the interval (0, 1), there is a homeomorphism between RN

and (0, 1)N. We will show that (0, 1)N is metrisable. Define the metric d : R∞ × R∞ → R≥0 as

d((xi)i∈N, (yi)i∈N) =
∑
i∈N

1

2i
|xi − yi|.

It is clear that this is a well-defined metric.
The (product) topology on RN is the coarsest topology such that all projections are continuous.
For the topology induced by this metric on, all projections are clearly continuous: any convergent
sequence, clearly maps to a convergent sequence in R. Hence, the topology by the metric is finer
than the (product) topology on RN.
Take a convergent sequence ((xi,j)i∈N)j∈N for the (product) topology on RN with some limit
(xi)i∈N. Let ε > 0. For every i ∈ N, there is an Ni such that for all j > Ni holds |xi,j − xi| < ε

2 .
Moreover, there is an N ∈ N such that 1

2N < ε
2 . Now let M = max(N, {Ni

∣∣ i ≤ N}). Let
m > M . Using the fact that xi,m, xi ∈ (0, 1) for all i ∈ N, we have that

d((xi,m)i∈N, (xi)i∈N) =
∑
i∈N

1

2i
|xi,m − xi| ≤

1

2N
+

∑
1≤i≤N

1

2i
|xi,m − xi| <

ε

2
+
ε

2
= ε.

Hence, the sequence is also convergent for the metric. Thus, we have found a metric for RN.

Corollary 6.19. The configuration space Confn(R∞) is metrisable.

Proof. By the previous lemma and the fact that (finite) products of metrisable spaces are metris-
able (see for example [Aze07, Theorem 4]), we know that (R∞)n is metrisable. Immediately,
also Confn(R∞) is metrisable.

Corollary 6.20. The projection Confn(R∞)→ Bn(R∞) is a numerable bundle.

Proof. As Confn(R∞) is metrisable, it is Hausdorff and paracompact. Propositions 6.15 and 6.16
show that we have a numerable bundle.

The configuration space Confn(R∞) and Milnor/joins spaces, share a similar structure. They
both consist of terminating sequences of points in a certain space. Moreover, both are seen as
a subspace of some product of spaces. As we will see now, these were exactly the properties
required to proof the universality of the Milnor/join spaces. We now use similar proofs to show
that Confn(R∞) gives rise to a universal bundle.
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Lemma 6.21 (Compare Lemma 6.4). Let p : E → B a numerable Σn-bundle. Then there exists
an equivariant map f : E → Confn(R∞).

Proof. By Theorem 4.9, there exists a countable cover U of trivialising opens for p and a partition
of unity (vj)j∈N subordinated to U . Without loss of generality, we can assume U = {Uj

∣∣ j ∈ N}
and supp(vj) ⊆ Uj for all j ∈ N. Since all Uj are trivialising, there are equivariant maps
ψj : Uj → Σn. We see Σn as the permutation on {1, . . . , n}. Define f : E → Confn(R∞) as

f(x) =

(σ1(x))(1) · v1(p(x)) (σ2(x))(1) · v2(p(x)) · · ·
...

... · · ·
(σ1(x))(n) · v1(p(x)) (σ2(x))(n) · v2(p(x)) · · ·

 for all x ∈ E with

σj(x) =

{
(ψj(x))−1 if p(x) ∈ Un
Id else

.

For all x ∈ E, there exists a j ∈ N such that vj(p(x)) 6= 0. Hence, (σj(x))(k)·vj(p(x)) is different
for varying 1 ≤ k ≤ n. Moreover: each row terminates. Hereby, f is well-defined. Notice that
for all j, k ∈ N, the map x 7→ (σj(x))(k) · vj(p(x) for x ∈ E is continuous on Uj and identically
zero outside supp(vj). By the Pasting Lemma (Lemma A.2), we conclude that f is continuous.
For all ρ ∈ Σn there holds:

f(ρx) =(σ1(ρx))(1) · v1(p(ρx)) (σ2(ρx))(1) · v2(p(ρx)) · · ·
...

... · · ·
(σ1(ρx))(n) · v1(p(ρx)) (σ2(ρx))(n) · v2(p(ρx)) · · ·

 =

(σ1(x))(ρ−1(1)) · v1(p(x)) (σ2(x))(ρ−1(1)) · v2(p(x)) · · ·
...

... · · ·
(σ1(x))(ρ−1(n)) · v1(p(x)) (σ2(x))(ρ−1(n)) · v2(p(x)) · · ·

 =

ρ

(σ1(x))(1) · v1(p(x)) (σ2(x))(1) · v2(p(x)) · · ·
...

... · · ·
(σ1(x))(n) · v1(p(x)) (σ2(x))(n) · v2(p(x)) · · ·

 =

ρf(x)

The third equality holds because permuting the rows is precisely the inverse of permuting the
coefficients. We conclude that f is an equivariant map.

Lemma 6.22 (Compare Lemma 6.5). Let E a Σn-space. Then any two equivariant maps
f, g : E → Confn(R∞) are Σn-homotopic.

Proof. We can write f = (s1, s2, . . . ) with sj : E → Rn for all j ∈ N. For all k ∈ N, the
maps (s1, . . . , sk, 0, sk+1, 0, . . . ) and (s1, . . . , sk, sk+1, 0, sk+2, 0, . . . ) are Σn-homotopic with the
(well-defined) Σn-homotopy Hk : E × I → Confn(R∞) given by

Hk
t =

(
s1, . . . , sk, tsk+1, (1− t)sk+1, tsk+2, (1− t)sk+2, . . .

)
.

Define H : E × I → Confn(R∞) as the concatenation H1 ·H2 · . . . . Notice that this definition
makes sense, since for every x ∈ E, there is only a finite number of k ∈ N such that Hk

t

is different from f for some t ∈ I. For all projections Conf(R∞) → R only finitely many
homotopies are relevant. Hence, the universal property of the product topology shows that H



6 UNIVERSAL BUNDLES 36

is continuous. Moreover, H is an equivariant map. Hereby, the maps (s1, 0, s2, 0, . . . ) and f
are Σn-homotopic. Similarly, when we write g = (s′1, s

′
2, . . . ) with s′j : E → I, we see that g is

Σn-homotopic to (s′1, 0, s
′
2, 0, . . . ). By the Σn-homotopy t 7→ (ts′1, (1−t)s′1, ts′2, (1−t)s′2, . . . ), the

maps (s′1, 0, s
′
2, 0, . . . ) and (0, s′1, 0, s

′
2, . . . ) are Σn-homotopic. Furthermore, the Σn-homotopy

given by t 7→ (ts1, (1 − t)s′1, ts2, (1 − t)s′2, . . . ) shows that (s1, 0, s2, 0, . . . ) and (0, s′1, 0, s
′
2, . . . )

are Σn-homotopic. We conclude that f and g are Σn-homotopic.

Corollary 6.23. The projection π : Confn(R∞)→ Bn(R∞) is a universal bundle.

Proof. By Corollary 6.20, the projection π is a numerable bundle. Lemmas 6.21 and 6.22 show
that π is universal.

Corollary 6.24. For every discrete finite group H, there is an n ∈ N such that the projection
π : Confn(R∞)→ Confn(R∞)/H is a universal bundle for H.

Proof. Any finite group can be embedded in a Σn for some n (Cayley’s theorem, see [Arm88,
Theorem 8.2]). Since any subgroup of a discrete group is admissible, the previous assertion,
Proposition 6.16 and Theorem 6.12 imply the assertion.



7 COVERING SPACES 37

7 Covering Spaces

Till now we considered principal bundles: these were locally trivial spaces by some group.
Similar objects are covering spaces: these are locally trivial spaces, by some discrete space. We
give a definition:

Definition 7.1. A covering space is a map p : X → B such that for every x ∈ B, there
exists an open neighbourhood x ∈ U ⊆ B with p−1(U) ∼= ti∈JUj , where p maps each Uj
homeomorphically to U , i.e., the preimage of U is the disjoint union of copies of U . Similar to
principal bundles, we call such an open U trivialising. N

Many authors (e.g., [Hat15, p. 29] and [May07, p. 21]) impose a (path-)connectedness condition
on the space X. In this text, I do not impose this. Whenever the condition is required, we
impose it “ad hoc”. We call such covering spaces (path-)connected covering spaces.

As for principal bundle when p : X → B and p′ : X̃ → B are covering spaces, we say that
f : X → X̃ is a map over B if p = p′ ◦ f . When such an f is a homeomorphism, we say it
is a covering space isomorphism, or just isomorphism if the context allows so. In case
X = X̃ and f isomorphism, we say that f is a deck transformation on X. We denote Deck(p)
for the set deck transformations of a covering space p. The set Deck(p) has a natural group
structure by composition. The deck transformation group also has a natural action on X by
sending (f, x) 7→ f(x) for all f ∈ Deck(p) and x ∈ X. A covering space is called normal or
regular, when the group of deck transformations acts transitively on the fibers of p. That is
for all x, y ∈ X with p(x) = p(y), there exists an f ∈ Deck(p) such that f(x) = y. We shall see
that connected normal covering spaces are connected principal bundles.
We first note the following property of covering spaces. The statement and proof are adapted
from [Hat15, Proposition 1.34].

Proposition 7.2. Let p : X → B a (non-empty) connected covering space. Any two deck
transformation f, g : X → X are equal if and only if they agree on one point.

Proof. The condition is obviously necessary. Suppose f and g agree on one point, we shall prove
that the set A = {x ∈ X

∣∣ f(x) = g(x)} is both open and closed. By connectedness of X, the
assertion follows.
Suppose x ∈ X. There is a trivialising open U ⊆ B containing p(x). Write p−1(U) = tj∈JUj
such that p maps each Uj homeomorphically to U . Let j1, j2 ∈ J such that f(x) ∈ Uj1 and
g(x) ∈ Uj2 . Let N := f−1(Uj1) ∩ g−1(Uj2). Notice that x ∈ N and N is open. If f(x) 6= g(x),
then Uj1 6= Uj2 . Hence, Uj1 and Uj2 are disjoint and thus f and g are nowhere equal on
N . Hence, A is closed. If f(x) = g(x), then Uj1 = Uj2 . Since p ◦ f = p ◦ g, we have that
p|Uj1

◦ f |N = p|Uj1
◦ g|N . Since p|Uj1

: Uj1 → U is a homeomorphism, there holds f |N = g|N
and thus A is open.

Many authors, such as [Die08, p. 349] and [Mit11, p. 9], notice that normal covering spaces are
nothing else than principal bundles for discrete groups and vice versa.

Theorem 7.3. Let G a discrete group and X a connected space. A map p : X → B is a normal
covering space with Deck(p) = G (as groups) if and only if it is a principal G-bundle.

Proof. Suppose p is a normal covering space with Deck(p) = G. By the natural action, X is
a G-space and p an equivariant map. Let U ⊆ B a trivialising open for the covering space p.
Write p−1(U) = tj∈JUj such that p maps each Uj homeomorphically to U . Choose a j ∈ J .
Clearly the orbit space (tj∈JUj)/G is homeomorphic to U . For all x ∈ p−1(U), there exists a
unique (use the previous proposition) g ∈ G such that g−1x ∈ Uj . Define ψ : p−1(U) → G as
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this g. For all h ∈ G holds ψ(hx) = hψ(x) and ψ−1(h) = Uj′ for some j′ ∈ J . Thus ψ is an
equivariant map and by Corollary 3.18, p is a principal G-bundle.

Conversely, if p is a principal G-bundle, then for any trivialising open U of B (for the principal
bundle p), there is a G-homeomorphism over U between p−1(U) and U ×G = tg∈GU . Hence,
p maps every sheet in p−1(U) homeomorphically to U . Thus p is a covering space. Notice that
acting with a g ∈ G on X is a deck transformation. For any deck transformation f and x ∈ X,
there is a g ∈ G such that gx = f(x). By the previous proposition, f equals the action by g.
We conclude that Deck(p) = G. Let x, y ∈ X such that p(x) = p(y). Then x = gy for some
g ∈ G and thus p is a normal covering space with deck transformation group G.

Similar to principal bundles, we say that a covering space p : X → B is numerable if there
exists a numerable cover U of trivialising opens. Using the proof of the previous theorem, it is
clear that a connected normal numerable covering space is a connected numerable bundle and
vice versa. Combining this with the classification of numerable bundles, Theorem 5.5, we obtain
the following: for every numerable normal connected covering space over a space B with (dis-
crete) deck transformation group G, there exists a unique homotopy class of maps [f : B → BG],
with BG a classifying space such that the pullback over f is isomorphic to the original covering
space. In general, this correspondence between homotopy classes of maps and connected cover-
ing spaces is not bijective (in fact it is only bijective if G = ∗) since some principal bundles have
a disconnected space. In case G is finite, by Corollary 6.24, we can take BG = Confn(R∞)/G
for a sufficiently large n.

Another way to view covering spaces in terms of principal bundles is as follows. We consider
only finitely evenly sheeted covering spaces. For a principal Σn-bundle p : X → B, consider the
Σn space (X × {1, . . . , n})/Σn. Here Σn acts on {1, , , ., n} in the canonical way and {1, , , ., n}
has the discrete topology. We claim that the projection π : (X × {1, . . . , n})/Σn → B is an
n-sheeted covering space. This construction is similar to [Die08, p. 341] for vector bundles.

Proposition 7.4. If p : X → B is a principal Σn-bundle, then π : (X × {1, . . . , n})/Σn → B
given by π([x, i]) = p(x) is a (well-defined) n-sheeted covering space.

Proof. The map π is clearly well-defined. Suppose U is a trivialising open in B for p. We see:

π−1(U) = (p−1(U)× {1, . . . , n})/Σn ∼= (U × Σn × {1, . . . , n})/Σn ∼= U × (Σn × {1, . . . , n})/Σn.

Here “∼=” means homeomorphic with a homeomorphism over U . The space (Σn×{1, . . . , n})/Σn
is the discrete space on n points. Hence, π is an n-sheeted covering space.

It is obvious that isomorphic principal bundles yield under this construction isomorphic covering
spaces. Moreover, numerable bundles yield numerable covering spaces. Theorem 5.5 and Corol-
lary 6.23 give a well-defined map from homotopy classes of maps B → Bn(R∞) to numerable
n-sheeted covering spaces p : X → B. We now seek to find a map the other way round.

Proposition 7.5. For any numerable n-sheeted covering space p : X → B, there exists a con-
tinuous injective map h : X → B × R∞ over B.

Proof. The proof of Lemma 4.7 works the same for covering spaces. (More precisely Lemmas 3.5
and 3.23 hold for evenly sheeted covering spaces too.) Hence, there is a countable partition of
unity (vj)j∈N subordinate to a countable open trivialising cover V = {Vj

∣∣ j ∈ N}. Assume
without loss of generality that supp(vj) ⊆ Uj for all j ∈ N. Write p−1(Vj) = tni=1Vj,i for all
j ∈ N such that p maps each Vj,i homeomorphically to Vj .
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There is the continuous (!) map sj : p−1(Vj) → {1, . . . , n} sending x ∈ X to the unique i such
that x ∈ Vj,i. Define h : X → B × R∞ as

h(x) =
(
p(x), (xj(x))j∈N)

)
with xj(x) =

{
sj(x) · vj(p(x)) if p(x) ∈ supp(vj)

0 if vj(p(x)) = 0
for all x ∈ X.

Using the Pasting Lemma (Lemma A.2), h is well-defined and continuous. We show that h is
injective: if h(x) = h(y) for some x, y ∈ X, then p(x) = p(y). Let j ∈ N such that vj(p(x)) =
vj(p(y)) 6= 0. Since xj(x) = xj(y), there holds s(x) = s(y). Hence, Vj,s(x) = Vj,s(y) and thus
x = y. We have found h as requested.

The map h is as we shall see very similar to the equivariant maps from Lemma 6.4 and
Lemma 6.21 in the case of principal bundles. These equivariant maps were unique up to G-
homotopy. A similar statement holds for these continuous injective maps, the proof is similar
too:

Lemma 7.6 (Compare Lemmas 6.5 and 6.22). Let p : X → B an n-sheeted covering space. Any
two injective continuous maps h, h′ : X → B × R∞ over B are homotopic over B as injective
maps. That is, there is a homotopy H : X × I → B × R∞ between h and h′ such that H is a
map over B and Ht is injective for all t ∈ I.

Proof. We can write h = (p, (s1, s2, . . . )) with sj : X → R. Notice that for all k ∈ N, the maps
(p, (s1, . . . , sk, 0, sk+1, 0, . . . )) and (p, (s1, . . . , sk, sk+1, 0, sk+2, 0, . . . )) are homotopic as injective
maps over B with the homotopy Hk : X × I → R∞ given by

Hk
t =

(
p, (s1, . . . , sk, tsk+1, (1− t)sk+1, tsk+2, (1− t)sk+2, . . . )

)
.

Define H : X × I → Confn(R∞) as the concatenation H1 ·H2 · . . . . Notice that this definition
makes sense, since for every x ∈ X, there is only a finite number of k ∈ N such that Hk

t is
different from h for some t ∈ I. For all projections R∞ → R only a finite number of homotopies
is relevant. Hence, by using the universal property of the product topology, H is continuous.
Moreover, H is a homotopy over B of injective maps. Hereby, the maps (p, (s1, 0, s2, 0, . . . ))
and h are homotopic over B as injective maps. Similarly, when we write h′ = (p, (s′1, s

′
2, . . . ))

with s′j : X → I, we see that h′ is homotopic over B to (p, (s′1, 0, s
′
2, 0, . . . )) as injective map.

By the homotopy t 7→ (p, (ts′1, (1 − t)s′1, ts′2, (1 − t)s′2, . . . )), the maps (p, (s′1, 0, s
′
2, 0, . . . )) and

(p, (0, s′1, 0, s
′
2, . . . )) are homotopic over B as injective maps. Furthermore, the homotopy sending

t 7→ (p, (ts1, (1− t)s′1, ts2, (1− t)s′2, . . . )) shows that (p, (s1, 0, s2, 0, . . . )) and (p, (0, s′1, 0, s
′
2, . . . ))

are homotopic over B as injective maps. We conclude that h and h′ are homotopic over B as
injective maps.

For an n-sheeted covering space p : X → B and a continuous injective map h : X → B × R∞
over B, we can define a map α : B → Bn(R∞): let h′ the R∞ coordinate of h. Then define
α(b) = h′(p−1(b)) for all b ∈ B. This construction and the next proposition is inspired by
[Han78, p. 241].

Proposition 7.7. Let p, h and α as above. The map α is well-defined and continuous.

Proof. For all b ∈ B, the set p−1(b) consists of n different points in X, all mapping down to b.
By injectivity of h, the set h′(p−1(b)) consists of n different points in R∞ (the B coordinate is
the same under the map h). Hereby, α(b) defines an element of Bn(R∞).
Take a trivialising open U ⊆ B. Write p−1(U) = U1 t · · · t Un such that p maps each Ui
homeomorphically to U . Write pi : Ui → U for these homeomorphisms. For all b ∈ U , we see
that α(b) = [(p−1

1 (b), . . . , p−1
n (b))]. Here [.] denotes the orbit from a point in Confn(R∞). We

conclude that α is continuous.
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Proposition 7.8. Let p, h and α as above. The homotopy class of α does not depend on h.

Proof. Let h, h′ : X → B × R∞ injective and continuous. By Lemma 7.6, there is a homotopy
H : X × I → B × R∞ over B of injective maps between h and h′. Denote α, α′ : B → Bn(R∞)
for the maps defined using h and h′ respectively. Let H ′ the R∞ coordinate of H. Using the
same proof of the previous proposition, we see that the map H : B × I → Bn(R∞) given by
H(b, t) = H ′(p−1(b), t) is well-defined and continuous. Clearly H is a homotopy between α and
α′.

For a numerable n-sheeted covering space p : X → B, there is a continuous injective map
h : X → B × R∞ over B. Using the last two propositions, we can assign to every numerable
n-sheeted covering space p, the homotopy class of the map αp : B → Bn(R∞). Here αp is defined
by the construction above.

Proposition 7.9. If p : X → B and p′ : Y → B are isomorphic, then αp and αp′ are homotopic.

Proof. Let ψ : X → Y an isomorphism. Let h : X → B × R∞ and h0 : Y → B × R∞ over B
continuous and injective. Write h′0 for the R∞ coordinate of h0. Notice that h0 ◦ψ is continuous
and injective. Also, there holds h′0(p′−1(b)) = h′0(ψ(p−1(b))) and thus by Proposition 7.8, αp
and αp′ are homotopic.

The last propositions provide a map between isomorphism classes of numerable n-sheeted cov-
ering spaces over B to homotopy classes of maps B → Bn(R∞). The map is given by the
assignment p 7→ [αp]. By Proposition 7.4, there is a map from isomorphism classes of numerable
Σn-bundles to classes of numerable n-sheeted covering spaces. The classification of numerable
bundles, Theorem 5.5, gives us a bijection between isomorphism classes of numerable Σn-bundles
and homotopy classes of maps B → Bn(R∞). Motivated by these assignments, we consider the
following diagram:

B(B,G) Cn(B)

[B,Bn(R∞)]

X 7→(X×{1,...,n})/Σn

p 7→[αp]α7→α∗π

Here π : Confn(R∞) → Bn(R∞) is the projection, B(B,G) is the set of isomorphism classes of
numerable principal bundles and Cn(B) the set4 of isomorphism classes of n-sheeted numerable
covering spaces. The diagram is a priori not commutative. To prove commutativity, it is suffi-
cient to show the following two assertions: the map from Cn(B)→ Cn(B) once counterclockwise
is the identity and the map Cn(B)→ [B,Bn(R)∞] is surjective. It is easy to see that together
this shows that the diagram commutes.

In the language of configuration spaces, we can define the following object, after [Han78]: for a
space X define:

En(X) := {(b, x) ∈ Bn(X)×X
∣∣ x ∈ b}.

We easily see that if X is Hausdorff, then the projection πn : En(X) → Bn(X) is an n-sheeted
covering space ([Han78, Proposition 2.1]). For any map f : B → Bn(X), we have the pullback
f∗π, which is an n-sheeted covering space (use the proof of Proposition 3.19). In the case where
X = R∞, we will see that these pullbacks and pullbacks for principal bundles coincide, up to
the construction of Proposition 7.4.

4At this point, I have not proved that this is a set. We will see this in a moment.
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We start by considering pullbacks on covering spaces. The following proposition is inspired by
[Han78, Proposition 3.1].

Proposition 7.10. Let p : X → B an n-sheeted covering space and h : X → B ×R∞ a contin-
uous injective map. Then pullback α∗pπn is isomorphic to p.

Proof. Write h′ for the R∞ coordinate of h. We define αp : B → Bn(R∞) as αp(b) = h′(p−1(b)).
Define Ψ: X → En(R∞) ×Bn(R∞) B by ψ(x) = ((αp(p(x)), (h′(x))), p(x)) for all x ∈ X. This
is a well-defined continuous map over B. The map is clearly injective, since h′ is injective on
orbits of p. For any ((c, z), b) ∈ En(R∞) ×Bn(R∞) B, since z ∈ c = h′(p−1(b)), there exists a
y ∈ p−1(b) such that h′(y) = z, now clearly Ψ(y) = ((c, z), b). Since locally there is a continuous
map choosing this y (namely locally α∗pπn is a homeomorphism on its image), Ψ−1 is continuous.
This makes Ψ a homeomorphism over B. Hence, Ψ is an isomorphism.

Lemma 7.11. In the diagram above the map Cn(B) → Cn(B) once counterclockwise is the
identity.

Proof. Write π : Confn(R)∞ → Bn(R∞) for the projection.
Let p : X → B a numerable covering space. We consider pullbacks over αp (for any continuous
injective map h : X → B × R∞). By Proposition 7.10, there is a covering space isomorphism
between p and α∗pπ. I shall prove that there is a homeomorphsim between En(R∞)×Bn(R∞) B
and ((Confn(R∞)×Bn(R∞) B)× {1, . . . , n})/Σn over B. This implies the assertion.
We define:

Ψ:
(

(Confn(R∞)×Bn(R∞) B)× {1, . . . , n}
)
/Σn → En(R∞)×Bn(R∞) B given by

Ψ
([(

((x1, . . . , xn), b), i
)])

=
(
(π(x1, . . . , xn), xi), b

)
and

Ψ−1 : En(R∞)×Bn(R∞) B →
(

(Confn(R∞)×Bn(R∞) B)× {1, . . . , n}
)
/Σn given by

Ψ−1((c, x), b) =
[
((x, x2, . . . , xn), b), 1

]
where {x, x2, . . . , xn} = c.

Notice that both maps are well-defined. In particular note that the order of (x2, . . . , xn) does not
matter as every order defines the same point. Moreover, Ψ and Ψ−1 are each others inverses.
Clearly Ψ and Ψ−1 are continuous maps over B. We conclude that Ψ is a covering space
isomorphism.

This lemma implies directly that the map Cn(B) → [B,Bn(R)∞] in the diagram is injective.
Hence, Cn(B) is a set.

Lemma 7.12. In the diagram above the map Cn(B)→ [B,Bn(R)∞] is surjective.

Proof. Suppose we have a map α : B → Bn(R∞). Then we have the covering space α∗πn.
There is the obvious continuous injection h : En(R∞) ×Bn(R∞) B → B × R∞ over B de-
fined by h((c, x), b) = (b, x) for ((c, x), b) ∈ En(R∞) ×Bn(R∞) B. For all b ∈ B, there holds
that h((α∗πn)−1(b)) = α(b). Proposition 7.8 shows that any continuous and injective map
En(R∞) ×BnR∞ B → B × R∞ yields the same homotopy class of maps B → Bn(R∞). We
conclude that the map Cn(B)→ [B,Bn(R)∞] in the diagram is surjective.

We have proved the following theorem:

Theorem 7.13. The diagram above commutes and all arrows are bijections.

Obviously this theorem classifies all numerable n-sheeted covering spaces over a certain space
B.
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8 Lifting Properties

Covering spaces have certain “lifting properties” that is: some maps f : B → C for a covering
space p : Y → C can be “lifted” to a map f̃ : B → X such that p ◦ f̃ = f . In this chapter, we
study the lifting of maps in the setting of numerable bundles. Firstly, we will consider a slightly
different type of lifting, namely in the case we have two principal bundles and a map on the
orbit spaces. Example 2.4 showed that, in general, maps on orbit spaces can not be lifted to
equivariant maps. On the other hand Lemma 5.1 showed that a specific map can be lifted.

Theorem 8.1 ([Die08, Homotopy Lifting 14.3.4]). Let p : Y → C and p′ : X → B numerable
bundles, f : X → Y an equivariant map and h : B× I → C a homotopy such that p◦ f = h0 ◦p′.
Then there exists an equivariant map H : X×I → Y such that H0 = f and p◦H = h◦(p′×IdI)
i.e., H is a lift of h.

Proof. We have the following diagram:

(Y ×C (B × I))×B×I B Y ×C (B × I) Y

B B × I C

i∗0(h∗p)

h̃

h∗p p

i0 h

The diagram consists of two pullbacks. Since the top arrows and f are equivariant maps.

Applying Proposition 3.20 twice gives us an isomorphism i∗0(h∗p)
ψ⇐⇒ h∗0p

ψ′⇐⇒ p′. This makes
the following diagram commute:

Y ×C B X

(Y ×C (B × I))×B×I B Y ×C (B × I) Y

B B × I C

ψ

ψ′

f

i∗0(h∗p)

h̃

h∗p p

i0 h

Additionally, there holds i∗0(h∗p) ◦ ψ ◦ ψ′−1 = p′. Hence, we have a diagram:

X Y ×C (B × I) Y

B B × I C

p′

ι h̃

h∗p p

i0 h

Here h̃ ◦ ι = f . By this diagram and Corollary 3.15, p′ is isomorphic to the restriction (h∗p)0.
Hence, by Corollaries 5.2 and 5.3, the map p′ × IdI is isomorphic to h∗p. Applying the isomor-
phism to the diagram above gives:

X X × I Y

B B × I C

p′

ι̃ H̃

p′×IdI p

i0 h
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With H̃◦ι̃ = f . Define H : X×I → Y as H(x, t) = H̃(PrX(ι̃(x)), t). We get that H0 = H̃◦ι̃ = f ,
since the I coordinate of ι̃(x) is 0 for all x ∈ X. Moreover, there holds

p(H(x, t)) = p(H̃(PrX(ι̃(x)), t)) = h(p′(PrX(ι̃(x)), t) = h(p′(x), t) for all (x, t) ∈ X × I.

Since H̃ and ι̃ are equivariant maps, so is H. Thus H is a suitable lift of h.

Using this theorem, we can prove a theorem by [Dol63]:

Corollary 8.2 ([Dol63, Theorem 4.8]). For a numerable bundle p : X → B, a map f : B′ → X
and homotopy h : B′× I → B with p ◦ f = h0, there is a lift H : B′× I → X with p ◦H = h and
H0 = f , i.e., the following diagram commutes:

B′ X

B′ × I B

i0

f

p
H

h

Proof. Let π : G × B′ → B′ the trivial (numerable) bundle over B′. Define the G-equivariant
map f ′ : G × B′ → E given by f ′(g, b) = gf(b) for all (g, b) ∈ G × B′. Clearly there holds
p ◦ f ′ = p ◦ f ◦π = h0 ◦π. By the previous theorem, we obtain a homotopy H ′ : G×B× I → X
with H ′0 = f ′ and p ◦H ′ = h ◦ (π × IdI).
Define H : B′ × I → X as H(b, t) = H ′(e, b, t) for all (b, t) ∈ B′ × I (e is the identity of G).
Now p(H(b, t) = p(H ′(e, b, t)) = h(π(e, b), t) = h(b, t) and H0(b) = H ′(e, b, 0) = f ′(b) for all
(b, t) ∈ B′ × I.

This assertion makes numerable principal bundles into Hurewicz fibrations, see [Hur55, p. 2].
Covering spaces have unique lifting, this is not true for principal bundles: the lifts created
in Theorem 8.1 and Corollary 8.2 are not necessarily unique. However, for the latter we can
precisely say when all lifts are unique:

Theorem 8.3. Under the assumptions of Corollary 8.2, the lift H is unique if and only if the
group G is, as topological space, totally path-disconnected5.

Proof. Suppose G is totally path disconnected. We argue by contradiction: let H and H ′ be
different lifts from Corollary 8.2. There is some (b0, t0) ∈ B′×I such that H(b0, t0) 6= H ′(b0, t0).
Recall that for a principal bundle p : X → B, there is a continuous map C(X) → G mapping
(x, gx) 7→ g for all x ∈ X and g ∈ G, see Proposition 3.7. Since the map I → C(X) given by
I 3 t 7→ (H(b0, t), H

′(b0, t)) is well-defined and continuous (use Lemma 3.9 and the assumption
that p ◦H = p ◦H ′), this defines a path γ : I → G. We have that H(b0, 0) = f(b0) = H ′(b0, 0)
and thus γ(0) is the identity of G. There holds H(b0, t0) 6= H ′(b0, t0) and thus γ(t0) is not
the identity of G. Hence, the path γ is not constant, which contradicts the assumption. We
conclude that the lift is unique.
Conversely, suppose G is not totally path disconnected. Then there is a non-constant continuous
map γ : I → G. Without loss of generality assume that γ(0) = e, the identity of G (otherwise
multiply with (γ(0))−1). Let H : B′ × I → X the lift from Corollary 8.2. Now the map
(b, t) 7→ γ(t)H(b, t) fulfills the requirements of Corollary 8.2 and is different from H by freeness
of the action.

5A totally path-disconnected space is a space X such that every path γ : I → X is constant. Examples
include discrete spaces, Q as subspace of R and p-adic groups.
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Notice that the first half of the last proof applies also for the lifts created in Theorem 8.1. Hence,
for totally path-disconnected groups G, homotopies can be lifted uniquely. However, the second
half of the proof can not be applied, since the map (x, t) 7→ γ(t)H(x, t) for (x, t) ∈ X×I need not
be an equivariant map. Obviously for Abelian groups it will be an equivariant map. Also, when
we drop the condition that the lift needs to be an equivariant map, we see that homotopies,
in the sense of Theorem 8.1, lift uniquely if and only if G is totally path disconnected. We
have obviously proven the uniqueness of lifts on (connected) normal covering spaces, as discrete
spaces are totally path disconnected.
The uniqueness of lifts for totally path disconnected groups implies the following theorem, well-
known in covering space theory. The proof is similar to standard proofs in covering space theory,
for all details I will refer to [FZ07, Proposition 5.1]:

Theorem 8.4. Let G be totally path disconnected, p : X → B a principal G-bundle, Y a path
connected and locally path connected space, y ∈ Y and x ∈ X. Then a continuous map f : C → B
with f(y) = p(x) lifts uniquely to a map f̃ : C → X with f̃(y) = x if and only if the group
f∗(π1(Y, y)) is a subgroup of p∗(π1(X,x)). Here π1(X,x) is the group of homotopy classes of
loops starting at x, i.e., the fundamental group of (X,x).

Having this theorem on hand, one might consider using the techniques of the classical cover-
ing space classification on principal bundles with totally path disconnected structure group.
However, one runs into some problems:

1. In the theory of principal bundles most of the time, we take the structure group fixed
(apart from the admissible subgroups). In the classification of covering spaces, we let
instead the amount of sheets vary.

2. In covering space theory and isomorphism is simply a homeomorphism over the space
“downstairs”. For principal bundles, we also demand that this homeomorphism is an
equivariant map. The lift created in the theorem above need not be an equivariant map
(in case we have a G-space Y ).

3. The construction of a universal covering space does not help us in the case of non-discrete
groups. One could consider restricting to the orbit spaces of universal bundles. For this
[Mil56a] constructs a universal bundle for a (suitable) given orbit space.

I will leave it for the reader to decide whether these problems can be circumvented.
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A Appendix

We used the Lebesgue Number Lemma and Pasting Lemma several times in our proofs. Here I
give the proofs:

A.1 Lebesgue Number Lemma

The Lebesgue number lemma, in its most general, form is a tool for compact metric spaces on
open covers, see [Wil04, Theorem 22.5]. I prove the special case for I with an induction method:

Lemma A.1 (Lebesgue number lemma). For every open cover U of I, there exists an ε > 0
such that for all a, b ∈ I with 0 < b− a < ε, there is a U ∈ U with [a, b] ⊆ U .

We first claim the following:

Claim 1. For every two open intervals A,B ⊆ I, there exists an ε2 > 0 such that for all a, b ∈ I
with 0 < b− a < ε2 and [a, b] ⊆ A ∪B, [a, b] ⊆ A or [a, b] ⊆ B.

Proof. Let A,B ⊆ I open intervals and let a1, a2, b1, b2 ∈ I such that A− {0, 1} = (a1, a2) and
B − {0, 1} = (b1, b2). Define

ε2 := min

(
max

(
δ
(

max(0, a2 − b1)
)
, a2 − b1

)
,max

(
δ
(

max(0, b2 − a1)
)
, b2 − a1

))
.

Here δ is the Kronecker delta. Clearly ε2 > 0. Suppose a, b ∈ I with 0 < b − a < ε2 and
[a, b] ⊆ A ∪ B. We argue by contradiction, say x, y ∈ [a, b] with x ∈ A − B and y ∈ B − A.
Hence, a1 ≤ x ≤ a2 and b1 ≤ y ≤ b2).
Suppose x < y. Now a1 ≤ x < y ≤ b2 so x ≤ b1. Also y ≥ a2 since x /∈ (b1, b2) ⊆ B and
y 6= (a1, a2) ⊆ A. Now x ≤ a2 ≤ y and thus a2 ∈ [x, y] ⊆ [a, b]. Hence, a2 ∈ A ∪ B and thus
a2 ∈ B or a2 = 1. With the observation that a2 > 0 and b1 < 1, we get in both cases b1 < a2

and thus ε2 ≤ a2 − b1. We arrive at y < x + ε2 ≤ b1 + ε2 ≤ a2 which contradicts y ≥ a2.
Similarly, we get a contradiction if x > y. �

Proof of Lemma A.1. Without loss of generality, we can assume that every U ∈ U is path-
connected. Otherwise, take the cover of all path-components of all U ∈ U , which is a refinement
of U . Now every U ∈ U is an interval. Since I is compact take a finite sub-cover U1, . . . , Un of
U . We proceed by induction on n: In the case n = 1 any ε > 0 would fulfill the requirements.
Suppose that for every k ∈ N and all covers V1, . . . , Vk of I consisting of intervals, we have an
ε′ > 0 with the required properties. Let W1, . . . ,Wk+1 be a cover of intervals of I. If W1 = I
any ε would work. Otherwise, we can find a 1 < j ≤ k + 1 such that W1 ∪Wj is an interval.
Indeed, at most one of {0, 1} is in W1. If 0 ∈ W1, then sup(W1) /∈ W1 and thus choose a
1 < j ≤ k + 1 such that sup(W1) ∈ Wj . Else inf(W1) /∈ W1 and thus choose a 1 < j ≤ k + 1
such that inf(W1) ∈Wj .
Now there is an ε′ for the cover W1∪Wj ,W2, . . . ,Wj−1,Wj+1, . . . ,Wk+1 and an ε2 for (W1,Wj)
as in the claim. Let ε = min(ε′, ε2). For all a, b ∈ I with 0 < b− a < ε, we get that [a, b] ⊂ Wi

for i 6= 1, j or [a, b] ⊆ W1 ∪ Wj . In the latter case we get by the claim that [a, b] ⊆ W1 of
[a, b] ⊆Wj .
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A.2 Pasting Lemma

The pasting lemma allows us to “glue” continuous functions together into a new continuous
function.

Lemma A.2. Let X and Y topological spaces, A,B ⊆ X both open or both closed, and f : A→ Y
and g : B → Y continuous such that f |A∩B = g|A∩B. Then h : A ∪B → Y given by

h(x) =

{
f(x) if x ∈ A
g(x) if x ∈ B

for all x ∈ X

is well-defined and continuous.

Proof. Since f |A∩B = g|A∩B , h is well-defined. Say both A and B are closed. If U ⊆ Y is
closed, then h−1(U) = (h−1(U)∩A)∪ (h−1(U)∩B) = f−1(U)∪ g−1(U) is closed and thus h is
continuous. A similar argument holds if both A and B are open.
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