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Abstract

Commercially available cloud computing offers a viable alternative to grid comput-
ing. Researchers and organizations can utilize cloud computing to process analytical
tasks without the need to invest in hardware. When the number of tasks rises, having
automated means of deploying these tasks to a commercial cloud, huge cost savings and
availability benefits can be reaped. This research sets out to devise a decision mech-
anism to deploy analytical tasks to commercial cloud offerings in a cost-efficient way.
This is done by a literature review, analysis of the portfolios of cloud providers and
an experiment where cloud instances are benchmarked. This data is incorporated in a
decision tree, supporting the cloud instance decision.

Keywords: cloud computing, data analytics, virtual machines, cloud selection, vir-
tualization
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1 Introduction

Commercial cloud companies offer a wide variety of cloud-based computing solutions.
Each cloud provider offers a number of similar products that can be configured in
numerous ways. Cloud users, clients of cloud providers, can be overwhelmed by the sheer
number of virtual machines (VMs) that, for instance Amazon Web Services (AWS), has
on offer.

All major cloud providers offer virtual machines that are optimized for specific use
cases and virtual machines that are intended for general purposes. These virtual ma-
chines differ in terms of processor type, available RAM, storage and other hardware
related specifications. AWS offers memory-optimized, storage optimized and proces-
sor optimized instances, as well as machines that combine these optimizations (Bao,
Damon, Landman, & Gokhale, 2016). Other cloud providers offer VMs with similar
optimizations.

The variations mentioned above are technical. Next to the technical differences
there are also non-technical differences between cloud offerings that are not related to a
specific virtual machine. All instances can be purchased in various pricing and availabil-
ity models (Song & Guerin, 2017). Most cloud providers offer on-demand availability
where a user can purchase cloud computing ad-hoc. Users can also reserve instances for
a longer period, often at a discount. Because of the highly virtualized nature of cloud
computing, it is possible to make capacity available to a client in a matter of seconds
(Calcavecchia, Biran, Hadad, & Moatti, 2012). This creates a possibility for demand-
based pricing models where availability is a result of supply and demand (Rimal, Choi,
& Lumb, 2009). Cloud providers use mechanisms like these to offer instances that are
currently not used by the clients paying for them. These instances are offered with lower
reliability, but for a much lower price (Agmon Ben-Yehuda, Ben-Yehuda, Schuster, &
Tsafrir, 2013). This enables cloud providers to achieve a higher utilization rate of their
machines.

1.1 Task type

This research project focuses on a specific category of tasks that are executed by or-
ganizations and research facilities. More specifically this research project was inspired
by a data analytics company struggling to match analytical tasks to the right cloud
instance on the Amazon EC2 cloud. Successful organizations utilize machine learning,
deep learning, data analytics, big data analytics and more (Chen, Chiang, & Storey,
2012). Business need to execute a wide variety of tasks as quick as possible to stay
ahead of the competition.

Data storage and computation have gotten very affordable in the last decade (Tekiner
& Keane, 2013). Companies accumulate vast quantities of data, too large to process
with a single computer. These quantities of data are called big data. These data are
accumulated in an automated fashion and are often semi-structured or unstructured. To
be able to process big data, new techniques are needed (Oussous, Benjelloun, Lahcen,
& Belfkih, 2018). Frameworks like MapReduce and Hadoop enable users to analyse big
data using commodity hardware with fast network connections. These frameworks are
effective as the bring processing capacity to the data, as opposed to the old paradigm:
bringing data to the processing capacity (Oussous et al., 2018). The latter resulting in
heavy data traffic.
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Big data analytics packages like Hadoop, rely on utilizing distributed computing.
More specifically distributed commodity hardware (Cohen, Dolan, Dunlap, Hellerstein,
&Welton, 2009). This makes cloud computing very suitable for frameworks like Hadoop.
Just like big data analytics frameworks, also more traditional packages like R can benefit
from using distributed commodity hardware. Companies utilize cloud computing to
process more tasks in a shorter period of time, increasing their competitive advantage.
Organizations often use frameworks like Hadoop in order to handle the data volume,
once the data is summarized and cleansed they use traditional tools to further analyze
the data (Özcan et al., 2011).

Next to the aforementioned tasks, also new developments like bitcoin mining can
benefit from cloud computing. These tasks have very specific hardware requirements and
therefore are not a focus area of this research project. This research project focuses on all
analytical tasks that can be executed in the cloud. These tasks can be straight-forward
analytical tasks, as the ones executed in the benchmarking experiment in Chapter 4, but
also distributed tasks as generated by big data frameworks like Hadoop and MapReduce.

1.2 Task contextualization

As stated by Azvine, Cui, Nauck, and Majeed (2006), running data analytics tasks has
always been part of running a competitive business. Successful organizations therefore
need to run many tasks to stay competitive. Organizations have to manage and schedule
these tasks to run at the right moment. Although task scheduling and distributed
computing have been around for decades (Malone, Fikes, & Howard, 1983), users still
lack guidance in choosing between all cloud offerings. While cloud computing brought
untethered access to computing resources, many of the existing workflow and scheduling
algorithms, assume the number of resources to be bounded (Bessai, Youcef, Oulamara,
Godart, & Nurcan, 2012).

This characteristic of cloud computing, the illusion of limitless resources (Bessai et
al., 2012), introduces organizations to new problems. How to handle the requests for
processing of tasks, how to keep track of cloud offerings in use, how to deploy tasks to
the right cloud instance or offering. This research project will focus on the last problem.

(Buyya, Pandey, & Vecchiola, 2009) try and solve this problem by introducing a
cloud market were users make indirect and direct resource requests. Indirect resource
requests are made via software that users use, while direct requests are made directly at
the cloud provider. They describe the Cloudbus Toolkit with a broker and a workflow
management system. The broker maps analysis tasks to compute resources and can
provision to available on-premise, private and public clouds. The Cloudbus Toolkit also
provides a Workflow Management System (WMS) that aids the user by enabling to
represent applications as a workflow. A WMS manages information about the tasks
in the workflow, such as starting and ending timestamps, deadlines, the lifespan (or
makespan) (Combi & Pozzi, 2006).

In the light of this research project, organizations need a workflow management
system to manage the tasks that are up for execution. While workflow management
systems are suitable for managing and keeping track of all tasks that need to be executed
within the organization (Fern, Tedeschi, Priol, et al., 2011), the tasks still need to be
mapped to the right cloud resource or offering. This project sets out to identify the
task requirements and proposes a way of handling task cloud instance selection.
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1.3 Research problem and goal

Cloud computing, especially the unutilized cloud instances, can be interesting to de-
crease operational cost, especially in the field of many task computing (Ghafarian &
Javadi, 2015). Many task computing is bridging the gap between high throughput
computing and high performance computing and is using a large number of computing
resources to accomplish many computational tasks (Raicu, Foster, & Zhao, 2008). The
metrics concerned with many task computing are seconds, tasks per second, I/O speed
and others. This research sets out to identify the requirements of these tasks in order to
match them to a suitable cloud instance. These tasks can have technical requirements
in terms of needed resources, like memory, processing power, graphics processing power,
data throughput, and latency. These tasks also have business requirements, like bud-
get, deadlines and reliability (Javanmardi et al., 2014a). These requirements vary per
organization and task. While this research project focuses on general analytical tasks
performed using R, the findings related to cloud selection and cloud performance can
be applied to other types of cloud data analytics.

While it is possible to pair tasks to the right cloud offering manually by selecting a
server and deploying the task, this gets incrementally harder when the number of tasks
rises. Especially when tasks are being created by users that do not know the specific
technical requirements. Businesses that use cloud computing, need an efficient way to
pair cloud tasks to the right cloud instance (Farshidi, Jansen, de Jong, & Brinkkemper,
2018). While there are cloud brokers, businesses that help pair tasks to the right cloud,
these often do not take all requirements into account (Ferrer et al., 2012).

To be able to pair tasks as optimal as possible one has to evaluate both business
and technical requirements. There have been some advances in both fields, (Alnemr,
Pearson, Leenes, & Mhungu, 2014) have created a Cloud Offerings Advisory Tool that
considers non-functional requirements. (Ferry, Song, Rossini, Chauvel, & Solberg, 2014)
have created a Cloud Modeling Framework (CloudMF), that makes it possible to create
a Cloud Provider Independent Model that can be used to map a technical cloud model
to a cloud offering of a cloud provider.

This research aims to create a decision tree that guides users selecting cloud instances
for a cloud task. In this selection both business and technical requirements are taken
into account. For a schematic overview of the cloud instance selection process, see
Figure 1. In this research, we will refer to businesses and institutions that use cloud
computing as cloud clients. Businesses that offer cloud services will be referred to as
cloud providers. The decision tree enables cloud clients to pair a cloud task to the most
optimal cloud instance of a certain cloud provider. We will mainly focus on Amazon
Web Services since that is currently the largest cloud provider offering the widest variety
of services.
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Figure 1: Schematic overview of the cloud decision framework

1.4 Problem relevance

Companies and research institutions are increasingly using cloud computing to run tasks
that previously used to be complex and tedious. With the introduction of easy-to-use
open-source frameworks like MapReduce and Spark it became easier to use commod-
ity hardware for data analytics (Shi et al., 2015a). Traditional grid-based computing
environments are expensive and hard to scale (Srirama, Batrashev, & Vainikko, 2010).
Cloud computing delivers a viable alternative and practically limitless scaling possibil-
ities.

The introduction of new pricing models, like spot pricing, offer a cost-efficient solu-
tion (Kaulakienė, Thomsen, Pedersen, Çetintemel, & Kraska, 2015). When researchers
and companies successfully circumvent the limitations of these models, cloud based
analytics can be executed at a competitive price.

1.5 Research contribution

This research projects provides two scientific contributions: a literature review about
existing literature and a cloud instance decision tree that aides users in selecting a cloud
instance for a specific task. This research combines existing literature to create a new
artefact in the form of a decision tree.

1.6 Research questions

The research problem is described in the main research question (RQ) that is formulated
as follows:

RQ: How can a cloud computing instance be selected to perform analytical tasks,
taking into account technical and non-technical requirements?

To answer the main research question, sub questions (SQs) have been formulated.
Each subquestion answers a part of the main research question. To be able to describe
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the tasks that are processed using cloud computing we need to describe the tasks. The
description of cloud tasks will be addressed in SQ1:

SQ1: How can the requirements and characteristics of a cloud task be described?

Furthermore, we need to describe the cloud instance itself, to be able to match the
cloud tasks to the cloud instances. This will be addressed in SQ2:

SQ2: How can cloud instances be described?

Since we now have a way to describe the cloud tasks and the cloud itself, we need a
matching-mechanism to match the analytical tasks to the most optimal cloud instance.
The matching of tasks and instances is addressed in SQ3:

SQ3: How can tasks and cloud instances be matched?

1.7 Document structure

This chapter (Chapter 1) focuses on introducing the topic and the scientific challenges.
It also introduces the research questions. The next chapter, Chapter 2 explains the
research approach and research method that has been used to find answers to the
research questions. The third chapter reports the results of the literature study that
was conducted as a part of the research approach. Chapter 4 explains the set-up of
the cloud configuration performance benchmark. Chapter 5 presents the results of
the experiments that were run on the cloud environments. Chapter 6 contains the the
cloud instance decision tree. The discussion and future work are presented in Chapter 7.
Chapter 8 presents the conclusion and answers the research question and sub-questions.
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2 Research process

Chapter 1 introduces the problem and the research questions. In this chapter the steps
of this research project will be discussed. The first step will be conducting a literature
review, the problem investigation step of the design cycle described by Wieringa (2014).
The next step will be creating the experiment in order to design a decision tree and
the final step will be executing the experiment to validate the outcomes of the decision
tree. These are the treatment design and treatment validation as described by Wieringa
(2014).

This research tries to identify requirements involved in the deployment of software
to a cloud environment. The research method to conduct this research will be ex-
plained in this chapter. The steps in the research method have been modelled using a
Process Deliverable Diagram (PDD). This is a technique created by van de Weerd and
Brinkkemper (2009) and it lists the activities in the method on the left side. The right
side of the diagram shows the deliverables. In the remainder of this chapter parts of the
PDD are shown to explain the research method. Note that not all relations are shown
in these parts of the PDD due to the available space, for a complete overview see the
PDD in Appendix A.

2.1 Preliminary Literature Study

The first part of this research project was conducting a preliminary literature review
to get acquainted with the topic and to identify the current state of research on the
topic. The preliminary literature study was conducted on literature gathered via Google
Scholar. Next to the scientific literature that was found via Google Scholar, also the
websites of various cloud providers were studied. The cloud providers studied in the
preliminary literature review are Amazon Web Services and Microsoft Azure. The
results of the preliminary literature review are incorporated in the research proposal.

2.2 Research method

This chapter will explain the steps involved in this research project. An overview of
all steps will be given, as well as the details of each step. According to Von Alan,
March, Park, and Ram (2004), Information Science (IS) research can be divided in two
disciplines. Design science and behavioral science. The first is the method this research
project will be using, the latter is the discipline that tries to explain and predict business
and human phenomena relevant for analysis, design, implementation and the use of an
information system.

Von Alan et al. (2004) describe seven guidelines to ensure the quality of a design
science research project. The guidelines are as follows:

1. Design as an artifact
Design-science research must produce a viable artifact in the form of a construct,
a model, a method, or an instantiation.

The goal of this research project is to create a cloud decision framework that
aides the user to find the right cloud offering for a certain task. This decision
framework can be seen as an artifact.
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2. Problem relevance
The objective of design-science research is to develop technology-based solutions to
important and relevant business problems.

As discussed in Chapter 1.2 the problem in this research, cloud instance selec-
tion, is a relevant problem for companies and research institutions. With the
introduction of frameworks like MapReduce it became easier to use commodity
hardware for data analytics (Shi et al., 2015a). Traditional grid-based computing
environments are expensive and hard to scale (Srirama et al., 2010). Cloud com-
puting delivers a viable alternative and practically limitless scaling possibilities.
The introduction of new pricing models, like spot pricing, offer a cost-efficient
solution (Kaulakienė et al., 2015). When researchers and companies successfully
circumvent the limitations of these models, cloud based analytics can be executed
at a competitive price.

3. Design evaluation
The utility, quality, and efficacy of a design artifact must be rigorously demon-
strated via well-executed validation methods.

The design artifact that will be created in this study will be evaluated as a
part of the research process. The benefits of the artifact will be benchmarked
and compared to a baseline server to show the effectiveness of the cloud decision
framework.

4. Research contribution
Effective design-science research must provide clear and verifiable contributions in
the areas of the design artifact, design foundations, and/or design methodologies.

As discussed in Chapter 1.3, this research provides two scientific contributions:
a literature review about existing literature and a cloud instance decision tree
that aides users in selecting a cloud instance for a specific task.

5. Research rigor
Design-science research relies upon the application of rigorous methods in both the
construction and evaluation of the design artifact.

The research method shows the complete process that will be used to conduct
this research. It provides detailed information of the methods that will be used.
For a complete overview of the research method see Appendix A.

6. Design as a search process
The search for an effective artifact requires utilizing available means to reach de-
sired ends while satisfying laws in the problem environment.

The construction of the artifact will be based on literature study, expert opin-
ions and a benchmark of the artifact itself.

7. Communication of research
Design-science research must be presented effectively both to technology-oriented
as well as management-oriented audiences.

The results of this project will be presented in this thesis document as well as
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in several presentations. Both technology-oriented and management-oriented au-
diences will be provided a clear overview of the results of this research project.

Since this research project is not explaining or predicting the effects of automated
cloud deployment, but rather finding a way to automate cloud deployment, this research
project will be using a design science approach. Design Science is explained by Wieringa
(2014) as a method that iterates over two activities: designing an artifact that improves
something for stakeholders and empirically investigating the performance of an artifact
in a context. A design cycle is described by Wieringa (2014) as a process with three
phases: problem investigation, treatment design and treatment validation. The design
science research model for this specific research project is depicted in Figure 2.

IS ResearchRelevance RigorEnvironment Knowledge base

Application in the 
appropriate environment

Additions to the
 knowledge base

Applicable 
knowledge

Business 
needs

Develop / Build
artifact: cloud instance 

decision tree

Justify / Evaluate
- Benchmarking

Assess Refine

Organizations
- data analytics companies
- cloud providers
- cloud users

Technology
- cloud technologies
- cloud applications

Foundations
- cloud literature
- cloud pricing literature
- data anlytics literature

Methodologies
- Design Science
- Literature review

Figure 2: Design Science Research Framework

2.3 Literature review

In this research a structured literature review (SLR) is conducted. (Kitchenham, 2004)
define a SLR as ”A systematic review is a means of evaluating and interpreting all
available research relevant to a particular research question, topic area, or phenomenon
of interest.”. The literature study should be reproducible and the protocol should be
developed in advance of conducting the review (Okoli & Schabram, 2009).

The literature review was split into two parts. A preparation phase where all neces-
sary prerequisites where taken care of and the review execution where the actual review
was conducted.

The search queries will be executed on Google Scholar using a proxy provided by
Utrecht University. This search engine uses a number of scientific databases. Only the
results on the first ten pages were considered and added to the literature list.
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2.3.1 Literature review preparation

To be able to execute the literature review, it has to be prepared first. The preparation
phase makes sure all things necessary for the literature review are available.

The first step of the research method that is shown in the first box of the PDD is the
literature review preparation phase. The literature review will be conducted to collect
and review all available literature on the subject. The review consists of multiple steps
and is divided into two parts in the PDD, the preparation phase and the execution
phase. The first part, the preparation phase, is shown in Figure 3. The preparation
phase contains two steps.

Step one is to create search queries that will be used to find the literature about the
topic. This is the first step in the PDD, ”create search queries”. This step results in a
list of search queries, which is shown in the PDD as the SEARCH QUERY deliverable.
These queries will be used to find relevant literature about the subject of this research
project. The search queries will be based on the findings of the preliminary literature
review.

Since a literature review gives a lot of results it is important to be able to filter the
relevant findings from the less relevant findings. This will be done by applying criteria.
These criteria describe whether a certain finding has to be kept or should be removed
from the total list of findings.

Inclusion criteria describe when a piece of literature should be kept. Exclusion
criteria describe when a piece of literature should be removed. The creation of the
inclusion and exclusion criteria is shown in the second step of the PDD: ”Create inclusion
and exclusion criteria”. This activity has one deliverable, a list of criteria. In the PDD
is shown that there are two types of criteria. The criteria will be based on the findings
of the preliminary literature review.

Create search queries SEARCH QUERY

Create inclusion and 
e[clusion criteria CRITERIUM

INCLUSION
CRITERIUM

EXCLUSION
CRITERIUM

Literature revieZ

Figure 3: Part 1 of the PDD: the literature review

The initial selection is based on the title and description in Google Scholar.
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SQ1 SQ2 SQ3

How can the requirements
and characteristics of a
cloud task be described?

How can cloud instances be
described?

How can tasks and cloud in-
stances be matched?

data analytics jobs cloud modeling AND com-
puting

cloud AND deployment
AND automated

data analytics task cloud environments model-
ing

cloud scheduling

data analytics hardware re-
quirements

cloud instance types cloud computing selection

data analytics cloud cloud requirements cloud environment selection

scientific tasks cloud cloud types AND comput-
ing

cloud AND deployment
AND strategy

grid computing jobs cloud AND deployment
AND automated

grid computing hardware
requirements

cloud AND spot pricing

grid job types cloud AND requirements

grid computing AND job
types

cloud AND reliability

cloud scheduling

provisioning techniques

software architecture qual-
ity metrics

amazon spot instances

cloud modeling AND com-
puting

Table 1: Search queries used in the SLR (all queries were between quotes)
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2.3.2 Literature review execution

After the literature review is thoroughly prepared it can be executed. In this phase
all the input of the previous phase will be used to perform multiple queries on various
search engines. This part of the research method is depicted in the second blue box of
the PDD which can be found in Figure 4.

2.3.3 Execute search queries

The first step of the literature review execution (Execute queries in the PDD) is to
execute the search queries. This is the first rounded box in the PDD in Figure 4. In
this step the results of each query will be stored and saved on a list, LIST OF ARTICLES
in the PDD. The search queries are listed in Table 2.3.1. This will result in a large list
of articles that will have relevant data that can be analyzed.

2.3.4 Apply inclusion and exclusion criteria

The list of articles that is created in the first step of the literature review execution
is a large list that also contains irrelevant articles. It is important that these results
are refined. This makes the analyzing step more efficient since less articles have to be
analyzed. The list of articles will be refined by applying the inclusion and exclusion
criteria. The results will be analyzed using NVivo, qualitative data analysis software.
By scanning the abstract of each entry the criteria will be applied.

Inclusion criteria

• Peer-review papers

• Studies are written in English

Exclusion criteria

• Patents will be excluded

• Studies not related to the research questions

2.3.5 Analyze articles

After applying the criteria the remainder of the literature will be read in-depth and
coded using NVivo. NVivo is qualitative data analysis software that can be used to
analyze articles. This is done by applying a technique called coding (Bazeley & Jackson,
2013). By coding an article all relevant material will be labeled and indexed. In this
research project NVivo will be used to code all cloud requirements. These requirements
will then be placed on a requirement list. In this research we differ between business
and technical requirements.

The business requirements describe the business needs in a cloud deployment set-
ting. Business requirements are all requirements that are not technical requirements.
We define technical requirements as the requirements that the server hardware has to
support in order to complete the job.
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Anal\]e articles CHARACTERISTIC

NON-TECHNICAL
CHARACTERISTIC

TECHNICAL
CHARACTERISTIC

CHARACTERISTIC
LIST

LiteratXre reYieZ e[ecXtion

E[ecXte qXeries

Import literatXre in NViYo

Appl\ inclXsion and e[clXsion
criteria

LIST OF ARTICLES

NVIVO DATABASE
WITH ARTICLES

REFINED NVIVO
DATABASE

ARTICLE

Figure 4: Part 2 of the PDD: the literature review execution

2.4 Experiment set-up

The third part of the research method is the experiment set-up. An overview of this part
can be found in Figure 5. In this step the benchmark will be created that will be runned
on the Amazon virtual machines. With the data the benchmark yields, a decision tree
will be devised. The benchmark results will be compared to the baseline server. The
benchmark is a task that is representative for a variety of tasks that can be executed
in the cloud. These task will be executed on a baseline server. The performance of the
baseline server will be scored on the requirements found in the literature study, as well
as on the following aspects:

• Cost: the cost to perform the benchmarks.

• Makespan: the time needed to perform the benchmarks.

The test tasks will then be executed on servers in different configurations. The
performance on these servers will be scored on the same aspects. When the benchmarks
of both server set-ups are completed, the scores can be compared.
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2.4.1 Price data collection

The first step is to collect price data of cloud providers. Since the performance of the
decision framework will also be based on cost, comprehensive pricing data of Amazon
Web Services is needed. A large part of the offerings are dynamically priced via the spot
pricing mechanism. Since these prices are subject to constant change it is necessary to
collect this price data over a period of time. To collect this price data an EC2 instance
is set-up which writes the price data to a comma separated value file each day.

2.4.2 Devise server profiles

In the second step of the validation set-up server profiles are created. These server
profiles are the outcomes of the decision framework. Based on the input of the decision
framework, one of the server profiles on the SERVER TYPE LIST will be recommended.
The outcome is based on the input given on the requirements found in the literature
execution phase.

These server profiles will be based on the server families as stated by Amazon Web
Services.

DeYiVe VeUYeU SURÀleV

SERVER TYPE LIST SERVER TYPE

DeYiVe baVeline VeUYeU

E[SeUimenW VeW-XS

BASELINE SERVER
DESCRIPTION

CUeaWe benchmaUk BENCHMARK CODE

GaWheU SUice daWa PRICE DATA

Figure 5: Part 3 of the PDD: the experiment set-up
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2.5 Experiment execution

The last part of the research method is to execute the experiment and create the decision
tree. The test tasks will be run on the baseline server to get a benchmark score, which
consists of various metrics. The benchmark will run on multi core and multi node
configured servers. The benchmark results will then be used to create the decision tree.

E[SeUimeQW e[ecXWiRQ

RXQ WeVW jRbV RQ baVeliQe VeUYeU BASELINE SERVER
BENCHMARK RESULT

RXQ WeVW jRbV RQ mXlWi cRUe aQd
mXlWi QRde cRQÀgXUaWiRQV BENCHMARK SCORE

PRICE RESULT

PERFORMANCE
RESULT

CRmSaUe beQchmaUk UeVXlWV BENCHMARK
COMPARISON RESULT

MULTI CORE
RESULT

MULTI NODE
RESULT

CUeaWe deciViRQ WUee

PRICE DECISION
DATA

PERFORMANCE
DECISION DATA

DECISION TREE

Figure 6: Part 4 of the PDD: the experiment execution

2.5.1 Create decision tree

When all the data is collected the decision tree can be created. This is the artifact of
this design science research project. The decision tree enables the end-user to match
tasks to cloud instances based on a statistical analysis. The outcome of the decision
tree is a list of cloud instances suitable for the properties of the task.

2.6 Research process

For a complete overview of the research process, see the process-deliverable diagram in
Appendix A.
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3 Theoretical background

In this chapter the results of the literature study will be discussed, to give a theoretical
overview of the research field. A comparative analysis of all the authors will be shown
and all relevant papers related to the research questions will be discussed. This chapter
is divided into five sub-chapters, one for each research sub-question, a chapter about
cloud computing in general and a chapter about the literature categories and how this
project is positioned in relation to other literature.

For each sub-question with the corresponding search queries a pipeline was devised
to retrieve the relevant results. The results of each pipeline can be found in Table 2.

Research question SQ1 SQ2 SQ3

Number of results considered 88 54 76

Title and abstract review 42 (- 46) 28 (- 26) 34 (- 42)

Accessible 42 (- 0) 28 (0) 34 (0)

Relevant and used 14 7 8

Snowballing 0 0 1

Used results 14 7 9

Table 2: Literature review pipeline

3.1 Literature positioning

In this section this research project will be categorized in relation to other literature.
The literature found in this research project will be divided into buckets that show a
specific kind of research related to cloud computing and data analytics. To categorize
the literature the abstracts of the used literature were extracted using NVivo. If the
literature mentioned keywords in the abstract, those were also taken into account. The
topics of all research papers were compared in order to create six main topics to cat-
egorize the literature. It is important to mention that some research papers overlap
multiple categories. The literature was divided into the following categories:

• Cloud service selection (Table 3)

• Cloud pricing (Table 6)

• Data analytics in the cloud (Table 5)

• Cloud performance measuring (Table 6)

• Distributed systems (Table 7)

• Task scheduling (Table 8)

This research project sets out to create a cloud decision framework based on exper-
iments measuring the performance of cloud instances. This decision framework can be
used to select a cloud instance, virtual machine in order to do data analytics in the
cloud as cost-effective as possible. The experiment uses simple tests that are executed
sequentially to perform the benchmark and therefore this research project can not be
categorized as a work about task scheduling. Therefore this research project spans the
first topics mentioned in the list above.
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Cloud Service Selection

Sundareswaran, Squicciarini, and Lin (2012)

Redl, Breskovic, Brandic, and Dustdar (2012)

Voorsluys and Buyya (2012)

ur Rehman, Hussain, and Hussain (2011)

Table 3: Literature about cloud service selection

Cloud pricing

Agmon Ben-Yehuda et al. (2013)

Mattess, Vecchiola, and Buyya (2010)

Qu, Calheiros, and Buyya (2016)

Javadi, Thulasiram, and Buyya (2013)

Table 4: Literature about cloud pricing

Data analytics

Archenaa and Anita (2015)

Assunção, Calheiros, Bianchi, Netto, and Buyya (2015)

Mukherjee et al. (2012)

Najafabadi et al. (2015)

Shi et al. (2015a)

Schuster et al. (2015)

Table 5: Literature about data analytics

Cloud performance measuring

Iosup et al. (2011)

Iosup, Sonmez, Anoep, and Epema (2008)

Ousterhout, Rasti, Ratnasamy, Shenker, and Chun (2015)

Schad, Dittrich, and Quiané-Ruiz (2010)

Table 6: Literature review about cloud pricing

Distributed systems

Andrews (1991)

Raicu et al. (2008)

Subhlok, Stichnoth, O’hallaron, and Gross (1993)

Table 7: Literature review about distributed systems
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Task scheduling

Dogar, Karagiannis, Ballani, and Rowstron (2014)

Javanmardi et al. (2014b)

Kaulakienė et al. (2015)

Lee and Katz (2011)

Farley et al. (2012)

Durillo, Prodan, and Huang (2013)

Table 8: Literature about task scheduling

3.2 Cloud Computing

A widely used definition of cloud computing is the definition created by Mell, Grance,
et al. (2011). They define cloud computing as follows:

”Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics,
three service models, and four deployment models.”

The essential characteristics Mell et al. (2011) is referring to are:

• On-demand self-service
Users are able to purchase cloud services via a web portal. Often without a
contract and paid directly by credit card.

• Broad network access
Cloud services are used via a network connection and can be accessed on various
devices.

• Resource pooling
Users use a virtual instance, which is often shared with other users.

• Rapid elasticity
Cloud services can be scaled, often automatically, at any given moment.

• Measured service
Cloud clients pay per use, often per minute of used service.

Mell et al. (2011) is also referring to three service models: software as a service,
platform as a service and infrastructure as a service and four deployment models: pri-
vate cloud, community cloud, public cloud and hybrid cloud. This research project
is primarily concerned with infrastructure as a service in the public cloud deployment
model.

3.2.1 Cloud Computing History

Cloud computing, which is basically a form of grid computing, became increasingly
popular since 2006, when Amazon introduced Amazon Web Services (Fox et al., 2009).
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Most companies that are cloud providers today started with a different business model,
since there are large investments involved with offering cloud services. Companies with
an existing and profitable business model could start renting out their unused capacity.
For instance, Amazon, did have a lot of excess capacity that their online web shop only
needed during peak hours. With the introduction of faster internet connections the
need of a direct connection to a server became significantly less important and cloud
computing started becoming a viable alternative to on-premise solutions.

3.3 Cloud Task Description

There is a lot of research on data analytics in the cloud. Many researchers have written
about running analytical tasks on commodity cloud hardware. The majority of the
research is about scheduling tasks in an efficient manner.

The first step is to establish a clear definition of a task. Applications perform rich
and complex tasks, such as a search query or build a feed. These tasks involve hundreds
or thousands of components, which have to be finished before the a task is complete
(Dogar et al., 2014). (Dogar et al., 2014) gives the following definition for a task:

”The unit of work for an application that can be linked to a waiting user.”

Agmon Ben-Yehuda et al. (2013) divide data analytics software into three cate-
gories. High-performance computing, which is concerned with solving a single task,
high throughput computing which is concerned with handling many tasks and many
task computing which is concerned with handling a high number of tasks with a large
input size. They make this categorisation based on two dimensions: number of tasks
and task size. Iosup et al. (2008) use the term bags-of-tasks (BoT). BoT being large
sets (bags) of sequential tasks. BoT is a term used for over a decade, well before cloud
computing existed (Andrews, 1991).

The similarity between these descriptions is that a task consists of a number of com-
ponents that can often be handled in a sequential fashion. The hardware requirements
of a task depend on the specific task-components and the input size of the data. This
is illustrated by Agmon Ben-Yehuda et al. (2013) in Figure 7.

Agmon Ben-Yehuda et al. (2013) states that the number of tasks and the input data
size is important when selecting the right hardware. Since loosely coupled tasks can be
run independent the demand on the network transfer speeds is lower. For highly coupled
tasks that are dependent on each other an environment with fast network connections
is more suitable. Tasks with a higher data input size also have higher CPU demands
to be handled efficiently. This is also stated by Ousterhout et al. (2015), who show
that CPU and network performance often have an impact on the performance and task
completion time.

Hardware requirements of a task can be divided into these categories: light hardware
(usually cheap instances) and heavy hardware. Next to these categories there is a third
category, specialised hardware, for tasks can make use of a GPU (Lee & Katz, 2011).

Next to the hardware characteristics of a task, also non-technical characteristics can
be important in the cloud selection process (Assunção et al., 2015). Since none of the
authors created an extensive overview of all task characteristics (technical and non-
technical), but only mentioned tasks characteristics related to their specific research
project an overview was created to devise a complete list of task characteristics. This
was done in the form of a comparative analysis of all the authors. To create this analysis
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Figure 7: Input Data Size / Number of Tasks overview

all literature was read and task characteristics were extracted. An overview of all task
characteristics extracted can be found in Table 9.

The task characteristics in Table 9 are ordered based on the number of mentions.
The following task characteristics have been mentioned at least three times: file system
characteristics, data locality, data parallelism, resource usage, task size, data classifica-
tion and data velocity.

3.3.1 File system

Since cloud based analytics is usually performed on a platform comprised of several
nodes, the file system has an important role in connecting the nodes via storage. Es-
pecially big data platforms are heavily reliant on the file system to supply nodes of a
stream of data (Archenaa & Anita, 2015).

More recently, (Ousterhout et al., 2015) found however, that I/O optimizations
cannot improve task runtime by more than 19%. One reason for this is that CPU
utilization is typically close to 100% whereas disk usage is typically around 25%. This
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File system 5

Data locality 4

Data parallelism 4

Resource usage 4

Task size 4

Data classification 3

Data velocity 3

Data variety 2

Security 2

Categories of analytics 1

Data veracity 1

Data volume 1

Input size / output size
ratio

1

Makespan 1

Meta-data dependancy 1

Privacy 1

Task flows 1

Task interactivity 1

Task volume 1

Table 9: Cloud Task Characteristics Comparative Analysis. The papers with zero charac-
teristics were omitted from this table.
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means that the primary bottleneck is CPU-bound instead of I/O-bound.
File system requirements are a cloud task characteristic depending on the type of

task. Especially analytical platforms for big data are making extensive use of the file
system.

3.3.2 Data locality

Data locality is concerned with the location of data. Since data sets can get very large
the location of the data in relation to the location of the processing capacity can play
an important role. (Raicu et al., 2008) speaks about the gap between compute power
and storage performance.

While typically data was transferred to the high performance computing systems in
order to process it, bringing the computing power to the data in order to avoid data
transfer is becoming the preferred approach when handling large sets of data (Assunção
et al., 2015).

3.3.3 Data parallelism

Data parallelism is a form of parallelization across multiple nodes (Subhlok et al., 1993).
It is opposed to task parallelism, where tasks are executed in parallel, often on the same
data set. In cloud environments it is often used in big data platforms, like Hadoop, to
apply load balancing (Assunção et al., 2015).

3.3.4 Resource usage

Resource usage is concerned with the amount of resources needed to perform a certain
task. While CPU utilization tends to be very high (Ousterhout et al., 2015), this
is not the case for disk I/O rate and network throughput. These last characteristics
are task dependent. Based on the literature the most important resource related task
characteristics are: cpu utilization, disk I/O rate and network throughput.

3.3.5 Task size

Dogar et al. (2014) mentions task size as a characteristic of an application task. They
continue explaining that task size is the network footprint of a task, the sum of the sizes
of network flows involved by the task.

In Figure 8 (left) the normalized distribution of task sizes for the query-response
workflow of a search engine is presented. In Figure 8 (right) the normalized distribution
of input size of MapReduce jobs is presented. This shows that tasks can have a high
variability in task size.

3.3.6 Data classification

Data classification refers to the structure of the data. Big data consists of mostly
unstructured data (Assunção et al., 2015). Data can be classified in three ways: un-
structured, semi-structured and structured. Unstructured data is data like hand written
physician notes, semi-structured data is a form of structured data that is not accord-
ing to a specific data model. Data has to be classified in order to perform meaningful
analysis (Archenaa & Anita, 2015).
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Figure 8: Normalized distribution of task sizes for search (left) and data analytics (right)
workflows. The task size was normalized, the Y-axis shows the probability. Dogar et al.
(2014).

3.3.7 Data velocity

Data velocity is a term primarily used in the big data research field. It refers to the
rate at which data is collected and obtained (Najafabadi et al., 2015). According to
(Assunção et al., 2015) data arrive at different speeds:

• Batch: At time intervals

• Near-time: At small time intervals

• Real-time: Continuous input, process, output

• Streams: Data flows
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3.4 Cloud Environment Description

Cloud providers have an extensive portfolio of products with a variety of configuration
options. We took the cloud providers own description of the various cloud offerings as a
starting point. In the following chapters we will shed light on the descriptions of three
major cloud providers: Amazon Web Services, Microsoft Azure and Google Cloud.

3.4.1 Amazon Web Services

Amazon has over 150 EC2 Virtual Machine (VM) instances on offer. Amazon divides
these VMs into five instance families: general purpose, compute optimized, memory
optimized, accelerated computing and storage optimized. Within these instance families
Amazon offers different instance types which are comprised of a number of instance
models (Amazon Web Services, 2019).

Instance�Family
WaUgeWed�aW�VSecific�XVe�caVe

Instance�Type
VSecific�feaWXUeV,�like�bXUVWing�oU�cSX�YendoU

Instance�Si]e
memoU\�Vi]e,�cSX�VSeed,�VWoUage,

bandZidWh

Figure 9: Amazon EC2 product structure

The instance families distinguish between specific use cases, where the the instance
types differentiate between hardware vendors and components. The instance models
differentiate between hardware configurations. An illustration of AWS EC2 portfolio
can be found in Figure 9.

3.4.2 Microsoft Azure

Azure offers VMs in six different categories. These categories are similar to the instance
families used by Amazon. Azure currently offers the following categories of VMs: general
purpose, compute optimised, memory optimised, storage optimised, GPU and High
performance compute (HPC) (Microsoft, 2019).

Equal to Amazon, Azure offers various configuration options per instance category.

3.4.3 Google Cloud

The approach of Google Cloud is different from the other large providers. There are
four machine type families: general purpose, compute optimised, memory optimised
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and shared core (Google, 2019b).
In the first category, general purpose, Google offers the user to create a custom

machine type. This allows the user to create an instance with customized virtualized
hardware settings (Google, 2019a).

3.4.4 Cloud Provider Comparison

The offerings of the three largest cloud providers are similar, as can be seen in Table
10. While the VMs in each category are similar, the definitions of the types are not
standardized. This means cloud providers can indicate slightly different capabilities
when talking about, for instance, a memory-optimized instance.

Amazon Google Cloud Azure

General purpose

Compute optimized

Memory optimized

Accelerated computing

Storage optimized

High performance compute

Shared core

Table 10: Cloud Provider Instance Type Comparison

3.4.5 Technical characteristics

The selection of an appropriate instance will be primarily based on hardware require-
ments of the task at hand. Schad et al. (2010) measure the following components in
their research on VM performance: instance startup time, cpu performance, memory
speed, disk i/o, network bandwidth (internal and external).

These characteristics are often mentioned in cloud research papers. In their research
on cloud performance (Iosup et al., 2011) also mention the architecture of the machine:
32 bit or 64 bit. Since then, however, 32 bit architectures have been phased out.

Cloud providers typically use an abstract unit, elastic computing unit (ECU) or
virtual CPU (vCPU), to describe the level of CPU power (Farley et al., 2012). I/O
performance is usually rated with low, moderate or high, where only the system memory
is indicated with absolute values.

Summarizing the above, we found that cloud providers typically use a family type to
describe the intended use case of group VMs. These VMs are described with abstract
unit and absolute units. In the literature found, a VM was described with the following
technical characteristics:
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Number of processing units 4

Processing speed 3

Memory in gigabytes 3

Network bandwidth 3

Storage in gigabytes 2

Storage speed 2

Table 11: Cloud Environment Technical Characteristics

In Table 11 the technical characteristics mentioned by the authors from the literature
study can be found. The three major cloud providers, Amazon, Azure and Google
mention the same characteristics in their virtual machine descriptions.

3.4.6 Non-technical characteristics

Thus far we have looked at the technical characteristics of cloud environments, to make
a selection we also need to have insights in the non-technical characteristics of the cloud
environment (Sundareswaran et al., 2012; ur Rehman et al., 2011; Redl et al., 2012).
The main characteristics per cloud provider can be found in Table 12.

Amazon Azure Google

Price Billing per second Billing per second Billing per second

Pricing
model

On-demand, re-
served and unuti-
lized

On-demand, re-
served and unuti-
lized

On-demand, re-
served and unuti-
lized

Locality 18 regions world-
wide

46 regions world-
wide

20 regions world-
wide

Table 12: Non-technical characteristics of major cloud providers

Price As can be seen in Table 12 all cloud providers offer billing per second. This
makes it possible to acquire VMs even for tasks with a very short makespan.

Pricing models All major cloud providers offer the same pricing models, with some
slight differences.
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In the on-demand model VMs can be rented at any given time for an undefined
period.

The reserved model offers users a discount when they commit for a longer period of
time, usually one to three years.

The unutilized model is the most interesting model for batch tasks. The major
cloud providers, Amazon, Azure and Google, call this pricing model respectively spot
instances, low-priority VMs and preemptible VMs. Where Azure and Google offer these
VMs at a discount up to 80%, Amazon offers a bidding mechanism. Users have to set a
maximum bid price they are willing to pay. As long as the spot price is lower than the
bid price the VM will run. Prices vary based on supply and demand. When the spot
price rises above the bid price, the VM is cancelled automatically (Voorsluys & Buyya,
2012). Figure 10 shows the spot price of a c3.2xlarge-instance over time.

Figure 10: Spot price over time

Locality All major cloud providers are active in all regions over the world. Using
instances in a different part of the world is especially important when latency issues can
arise.
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3.5 Cloud Task Matching

Based on the literature so far, we found the characteristics to describe tasks and to
describe cloud environments. In this chapter, we will take a look at literature about
task / cloud environment matching. The majority of research literature about this
topic is specifically about scheduling algorithms. Since task scheduling is important in
all grid-based computing environments, this research field has been around for over a
decade (Subhlok et al., 1993). Grid computing existed long before cloud computing was
invented. While task scheduling is also important in cloud computing environments, the
number of possible environments is much higher as opposed to a typical grid environment
that has the same hardware components in each node. Therefore this research focuses
on finding the right cloud environment based on the task at hand.

There have been authors writing about the use of spot instances in order to gain
economic benefit for scientific workloads. Since spot instances are requested via a bid-
ding mechanism the price can vary. When the current price exceeds the bid of the user,
the instance will be terminated (Zhang, Zhu, & Boutaba, 2011). Because of this, spot
instances are very suitable for tasks that have a relatively short make span (shorter
than the live of the spot instance) and fault-tolerance (Javadi et al., 2013).

Amazon offers an API that allows the user to request data about all VMs, including
the available spot instances. This API also supplies the user of information about the
cost of each instance (Qu et al., 2016). Currently it is only possible to retrieve the
pricing information about the last three months.

3.5.1 Using spot instances

With regard to spot instances, two things should be considered when selecting a cloud
environment for a task:

1. Is the task suitable to be run on a spot instance, regarding the task characteristics?

2. Are there any suitable spot instances available?

When the task is unsuitable to be run on a spot instance, the second question can
be skipped and a selection of available on-demand or reserved instances can be made
directly.

Mattess et al. (2010) have researched how cloud computing can be used to add
additional resources to an existing dedicated cluster. While they focused mainly on
extending capacity, they also investigated the use of spot instances in particular. Their
research is based around a task provisioner where a maximum queue time is configured.
Each task has a maximum queue time. When this maximum queue time is exceeded,
the task is of loaded to the cloud environment to ensure making the deadline. When
this happens a spot instance is selected, if that is preferred.

Kaulakienė et al. (2015) have created a framework, SpotADAPT, to remedy the
limitations of spot instances. In their research they focus on two problems: the execution
time of a task is unknown on different AWS instance types and the cost of execution is
unknown. Because of these problems it is difficult for users to select a good trade-off
between either the cheapest execution or the fastest execution. Kaulakienė et al. (2015)
propose to circumvent these problems by executing small tests, so called micro-runs,
with a small subset of each task on several instances. By executing these micro-runs
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an estimate of the total run time of a task is obtained. The total price of execution is
predicted based on the current spot price.

3.5.2 Pareto optimal matching

When running tasks the makespan is mostly influenced by the hardware configuration
of the cloud environment. Because of this, the selection of a cloud environment is not
purely a mathematical equation. Users have to make a trade-off between economic
cost and makespan. When there is enough time, users can opt for cheaper, but slower
instances. When time is scarce, users can spend more to speed up the workflow. This
trade-off analysis can be solved using a Pareto analysis (Durillo et al., 2013). Pareto
is an economic theory that tries to find a balance between two values (Hochman &
Rodgers, 1969).

Figure 11: Pareto Front Analysis of makespan and economic cost (Durillo et al. 2013).

Durillo et al. (2013) have researched Pareto-based scheduling algorithms in the con-
text of commercial clouds. They have found that a pareto front can be used as a tool
for decision support. They have created a method of optimising the two conflicting
criteria mentioned above: economic cost and makespan. Durillo et al. (2013) have used
the performance benchmarks by (Iosup et al., 2011) to calculate the makespan and the
economic cost of the workflow. This way they were able to visualize the pareto front.
Pareto optimality is a state where two criteria are both optimal. In this context that
means a short makespan and low cost. The pareto front shows all pareto efficient allo-
cations. This pareto front is shown in Figure 11. This figure also shows the possibilities
of using a pareto front for selecting the right cloud environment, since it clearly shows
the pay-off between various instances. The figure shows pareto-efficient allocations of
economic cost and makespan.
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3.6 Summary

Summarizing the results found in literature we have found that tasks can be described
with the following characteristics: file system characteristics, data locality, data paral-
lelism, resource usage, task size, data classification and data velocity.

Cloud environments are classified using instance families, instance types and their
size. The three largest cloud providers, Amazon, Microsoft Azure and Google have a
similar portfolio, all of them offer VMs that are optimized for a specific use case, for
instance. VMs can be purchased, or rented, in various pricing models: on-demand,
reserved and unutilized.

When it comes to scheduling or provisioning tasks to a cloud environment, there are
a number of options. We found approaches that did micro-runs in order to estimate
the total run-time of a task, other approaches estimated this based on the task itself.
Pareto analysis seems a suitable way of balancing between makespan and economic cost
of a task.
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4 Experiment set-up

We have now established the current state of science about cloud job provisioning. The
remainder of this thesis will be about devising the decision support tool and validating
whether this artefact solves the aforementioned problem.

In this chapter a baseline VM will be selected first. Amazon offers many VMs, too
many to consider for this experiment. Therefore a list of available VMs will be devised.
These VMs are available for the decision support tool to select.

4.1 Baseline server

This research will be comparing the results of the optimal VMs to a baseline server.
To make this comparison a baseline server needs to be chosen. Since Amazon does not
provide any information on the usage statistics of the VMs on offer, a frequency table
of mentioned EC2 instances in the literature from the literature review was made.

Using NVivo a the number of references of all common EC2 instances was counted.
Table 13 shows an overview of the EC2 instances and the number of papers that referred
to each instance. Since most literature found was written before the introduction of the
m5 instance and the fact that the m4 family is still available, the m5 family is not
mentioned in the literature.

The m1.small instance was mentioned by most papers, with 36 mentions. This is
probably due to the fact that this is the cheapest instance that Amazon offers. The
xlarge instance size is the second most mentioned instance size. It also offers a well
balanced configuration suitable for many purposes.

Family

m1 m2 m3 m4 r3 c1 c3 c4

Size

small 36 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
medium 6 n.a. 9 n.a. n.a. 27 n.a. n.a.
large 29 n.a. 6 3 6 n.a. 5 2
xlarge 26 11 9 3 9 24 4 2
2xlarge n.a. 16 6 4 6 n.a. 5 3

Table 13: Number of references per EC2 instance

Since the m1, m2 and m3 instance families are phased out and the m5 instance is
just released, the m4 instance family is taken as the baseline instance. The xlarge is the
most mentioned instance size that is suitable for data analytics workloads. Therefore
the m4.xlarge instance is selected as the baseline server.

The m4.xlarge instance family uses Intel Xeon processors from the Haswell and
Broadwell generation. The baseline server features 4 vCPUs and 16 gigabytes of RAM.
Furthermore the network performance is rated as high (Amazon Web Services, 2019).

The m4.xlarge is available for $ 0.222 per Hour in the on-demand model. The
reserved price varies between $ 0.094 and $ 0.174, depending on the exact terms and
upfront payment. The spot price, at the moment of retrieval is $ 0.0708 per hour. The
spot price is approximately a third of the on-demand price. The aforementioned prices
are in the EU (Ireland) region.

A graph of the spot price over three months can be found in Figure ??.
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4.2 Benchmark set-up

To perform the benchmark and create a comparison between spot-based instances and
regular instances a benchmark will be performed. This benchmark is created using
R (Team et al., 2013). R is a software package used for statistical analysis. To be
able to boot a server in an efficient manner the Amazon Machine Image functionality
of Amazon was used. This image can be deployed to each instance that Amazon has
on offer. The R-Studio server software was installed on a VM and configured to run
the benchmark after the server had completed the booting process. After the virtual
machine was booted the exact CPU family was checked to make sure all instances used
during the benchmark were using the same CPU family. This is important since Amazon
sells different CPU families under the same instance name (Ou, Zhuang, Nurminen,
Ylä-Jääski, & Hui, 2012). None of the benchmarks had to be restarted due to different
CPU families. Next to R-Studio server a number of packages where used. The following
packages were used:

• data.table

• ggplot2

• aws.s3

• plyr

• microbenchmark

The microbenchmark package was used to execute the computeTest function for a
number of iterations. The results of each iteration, the time to complete the iteration,
was then stored in an array. The results of each benchmark were stored on Amazon’s
object storage: S3. This S3 Object Store was shared by each benchmarked EC2 instance.
An overview of the benchmark set-up can be found in Figure 12.

S3
BXcNeW

BeQchPaUk�UeVXlWV
EC2�IQVWaQce

APa]RQ�MachiQe
IPage

Figure 12: Overview of the benchmark set-up
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The following code was written and ran in the microbenchmark package in order to
obtain benchmark results for a server. The code executes multiple statistical analyses
on a dataset of baseball players containing 21.699 records. The statistical analyses
are common analyses that are often used, contributing to the representativity of this
benchmark. This dataset is part of the R package plyr and can be created using the
command baseball. It uses batting statistics of 1228 baseball players between 1871
and 2007.

computeTest = function(x) {

L = length(x)

Mis = sum(is.na(x))

Mean = mean(x, na.rm=T)

MEDIAN = median(x, na.rm=T)

SD = sd(x, na.rm=T)

var = var(x, na.rm=T)

Q1 = quantile(x, prob = 0.25, na.rm=T)

Q3 = quantile(x, prob = 0.75, na.rm=T)

MODE = mode(x)

MAD = mad(x, na.rm=T)

MAX = max(x, na.rm=T)

MIN = min(x, na.rm=T)

UNIQUE = length(unique(x))

return(c(L,Mis, Mean, MEDIAN, SD, var, Q1, Q3, MODE, MAD,MAX,MIN))

}

Configuration # Running mode Instance

1. Single node m4.xlarge

2. Multi core m4.xlarge

3. Multi node m4.large

Table 14: Overview of benchmarked instances

In Table 14 the configurations that were benchmarked are listed. The first config-
uration, single node, is the baseline configuration. This configuration makes use of a
single core, so all benchmark runs are calculated on the same core. The second configu-
ration uses the same instance, but uses multiple cores. This means the benchmark runs
were split among all four cores. Each core handled 30 runs. The third configuration
is a multi node configuration were the benchmark runs were divided among multiple
servers. It is similar to the multi core setup as each node handled 30 runs.
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5 Results

In this section the results will be discussed. The results can be divided in two parts: the
performance results which are about the performance of the benchmarked configurations
and the pricing results which show the price of each benchmarked configuration. Finally
an overview of the price-efficiency will be given.

5.1 Performance results

In this section the performance results of the benchmark will be discussed. The full
results can be found in the Appendix section (9.3, 9.4, 9.5). An overview of all results
is provided in Table 15.

baseline multi core multi node

instance m4.xlarge m4.xlarge m4.large

benchmarks executions
divided between

1 core 4 cores 4 nodes

average time per bench-
mark execution

21.8 seconds 42.0 seconds 23.1 seconds

total completion time
(sec)

2620 seconds 1277 seconds 705 seconds

total completion time
(min)

43.67 minutes 21.28 minutes 11.75 minutes

Table 15: Overview of performance benchmark results. Each configuration performed 120
benchmark executions. The executions were divided over the available cores or nodes.

A two-sample t-test was performed between the single core and multi node (twosam-
ple t-test, p <2.2e-16), the single core and multi core (twosample t-test, p <2.2e-16)
and the multi core and multi node results (twosample t-test, p <2.2e-16).

For the benchmark runs that ran on a multi core or multi node configuration the
slowest benchmark run was taken and normalized by dividing it by four.
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Figure 13: Graph of the benchmark results

5.1.1 Baseline

The baseline instance was a single node configuration and had an average time of 21.8
seconds per benchmark run. Since all benchmark runs where run on a single core, the
completion time is the sum of all benchmark runs:

makespan =

120!

i=0

time ≈ 43.67minutes

The baseline configuration completed the benchmark in roughly 44 minutes (2620
seconds / 60).

5.1.2 Multi core

The multi core instance had an average time of 42.0 seconds for each benchmark run.
Since the m4.xlarge instance has four cores the multicore configuration could handle
four benchmark runs in parallel. The total time of all benchmark runs was 5045.0
seconds. Since the benchmark runs where split among four cores the total benchmark
time is equal to the core that took the longest to complete 120

4 = 30 benchmark runs.
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Core 1

makespan =

30!

i=1

time ≈ 20.75minutes

Core 2

makespan =

60!

i=31

time ≈ 20.72minutes

Core 3

makespan =

90!

i=61

time ≈ 21.28minutes

Core 4

makespan =

120!

i=91

time ≈ 20.87minutes

In 1277 seconds all nodes completed the benchmark runs, the total completion time
was roughly 21 minutes.

5.1.3 Multi node

The multi node configuration consisted of four m4.large instances. Each instance had
to perform 30 benchmark runs. The average benchmark run took 23.1 seconds. The
total time of all benchmarks was 2769.57 seconds. Since the benchmark runs were split
among four nodes the total benchmark time is equal to the node that took the longest
to complete 120

4 = 30 benchmark runs.

Node 1

makespan =

30!

i=1

time ≈ 11.75minutes

Node 2

makespan =

60!

i=31

time ≈ 11.7minutes

Node 3

makespan =

90!

i=61

time ≈ 11.2minutes

Node 4

makespan =

120!

i=91

time ≈ 11.08minutes

Since node 1 took 705 seconds to complete 30 benchmark runs, the total completion
time was roughly 12 minutes.
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5.2 Conclusion - performance results

The performance results show that the multi-core and multi-node configurations com-
pleted the benchmarks faster than the baseline configuration. The multi-core config-
uration completed the benchmarks in 49% of the baseline time, where the multi-node
configuration completed the benchmarks in 27% of the baseline time. The multi-node
completed the benchmarks in 55% of the multi-core time.

• The multi-core configuration is more than twice as fast as the baseline server

• The multi-node configuration is almost four times faster than the baseline server

• The multi-node configuration is almost twice as fast as the multi-core configuration

The performance results show that the multi-node configuration is the fastest con-
figuration of the tested configurations. The single core performance of the m4.xlarge
instance is higher than the m4.large instance, with an average time of 21.8 seconds
per benchmark run for the m4.xlarge and an average time of the 23.1 seconds for the
m4.large instance. When running the benchmark at multiple cores the average time per
benchmark run increases to 42.0 seconds.
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5.3 Pricing results

In this section the financial side of the benchmarks will be discussed. This is done by
using historical spot price data and the spot price at the moment the benchmarks were
run. The following graphs show the spot price of the used instances over the period of
6 April 2018 to 6 March 2019.

$0,03

$0,04

$0,05

$0,06

$0,07

$0,08

06-04-18 06-05-18 06-06-18 06-07-18 06-08-18 06-09-18 06-10-18 06-11-18 06-12-18 06-01-19 06-02-19 06-03-19

Spot prices

m4.large - a m4.xlarge - a m4.large - b m4.xlarge - b m4.large - c m4.xlarge - c

Figure 14: Graph of the spot price of m4.xlarge and m4.large

There were small differences between the spot prices of the instances in the available
regions. The average price followed the same pattern. The average price over the
measured period of the m4.large instance was $ 0.03 cents per hour and the average
price of the m4.xlarge instance was $ 0.07 cents per hour.

The prices at the moment of the benchmark can be found in Table 16. The results
discussed in this section are based on the prices at the moment of execution. The prices
did not vary during the benchmark. This means that exploiting price fluctuations during
task executing will not be very feasible. A price change is not happening often enough
to wait for lower prices, unless task execution can be postponed for long periods.

In the Table 17 the total price of each benchmark can be found. To calculate the
total price of execution, the total time of execution was multiplied with the price per
second. The price per second was calculated by dividing the price per minute by 60.

While the multi core configuration was 51.3% cheaper than the baseline configura-
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m4.large m4.xlarge

on-demand price $ 0.111 $ 0.222

spot price $ 0.0344 $ 0.0703

spot price vs on-demand price 31.0% 31.7%

Table 16: Benchmark instance price overview

baseline multi core multi node

instance m4.xlarge m4.xlarge m4.large

no of nodes 1 1 4

no of cores 1 4 1

average time per benchmark run 21.8 sec 42 sec 23.1 sec

price of execution on-demand $ 0.1616 $ 0.0787 $ 0.0869

price of execution spot $ 0.0512 $ 0.0249 $ 0.0269

Table 17: Total execution cost

tion in the on-demand price model and spot price model, the multi node configuration
shows promising results in terms of achieving high cost-effectiveness. The results show
that, although the multi node configuration uses four instances instead of one instance
the total price is similar to the total price of the multi core configuration. While the
performance of the multi node configuration was almost twice that of the multi core con-
figuration, the price is only 10.4% higher. When running the multi node configuration
in the spot price model, the multi node configuration is 8.1% higher.

Compared to the baseline configuration the multi node configuration was 46.2%
cheaper in the on-demand model and 47.3% cheaper when using spot pricing. Figure
15 shows an overview of all costs related to running the benchmarks.
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6 Cloud Selection Model

In this chapter the cloud selection model will be discussed. The results of both the
experiment and the literature study were used to assemble the cloud decision model.
The cloud decision model helps the user selecting the right Amazon EC2 instances and
takes technical and non-technical requirements into account. The model is comprised of
multiple decisions that guide the user to the right instance. The model also takes spot
instance availability and suitability into account. In this chapter each decision that a
user of the model has to make will be discussed and explained.

The first part of the decision tree, containing the decision about the hardware re-
quirements can be found in Figure 16. The hardware requirement decisions determine
the suitable instance families. The second part of the decision tree can be found in
Figure 18. The second part of the decision tree determines the technical configuration
and pricing model. The complete decision tree can be found in Appendix 9.6.

While this approach, using a decision tree, gives a clear overview the model looks
rather complex and has duplicated elements. Therefore also a cloud family matrix is
proposed, this shows an overview of the available instances with the average memory
available and the cpu speed. The matrix can be found in Figure 17.

GPU decision

RAM < 384 GB
Local storage needed

No local storage needed

RAM > 384 GB

No local storage needed

Local storage needed
No GPU needed

GPU needed

RAM < 384 GB
Local storage needed

No local storage needed

RAM > 384 GB

No local storage needed

Local storage needed
Accelerated Instances with > 384 GB RAM and local storage

Accelerated Instances with > 384 GB RAM and external storage

Accelerated Instances with < 384 GB RAM and local storage

Accelerated Instances with < 384 GB RAM and external storage

Non-accelerated instances with > 384 GB RAM and local storage

Non-accelerated instances with > 384 GB RAM and external storage

Non-accelerated instances with < 384 GB RAM and local storage

Non-accelerated instances with < 384 GB RAM and external storage

RAM decision Storage 
decision

Suitable 
instances

Figure 16: Decision tree: hardware requirement decisions
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Figure 17: Cloud Family Matrix

6.1 Decision 1: GPU requirement

Although originally intended to perform operations linked to graphics, a Graphics Pro-
cessing Unit (GPU) is also suitable for non-graphics applications. Because of the physi-
cal per-core restraints and the architectural differences between GPUs and CPUs, GPUs
can perform certain operations faster than CPUs (Brodtkorb, Hagen, & Sætra, 2013).

Amazon offers GPU-enabled instances in one instance family, the accelerated in-
stances. The first question of the decision tree is therefore whether a GPU is needed or
not since it disqualifies all other instance families that have no GPU available.

6.2 Decision 2: RAM requirement

The second decision in the decision tree is about the memory requirements. Depending
on the size of the dataset the memory requirements increase. All major cloud providers
offer memory optimized instances that have large amounts of RAM. Amazon offers a
memory optimized instance family with instances that offer up to 24576 GB of memory.
The memory optimized family is the only instance family that offers instances over 384
GB RAM. The other instance families do not have more than 384 GB RAM. Therefore,
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when a task needs more than 384GB of RAM the only suitable cloud instances are in
the memory optimized family. Since this limits the number of suitable instances this
number is also used in the decision tree.

6.3 Decision 3: Storage requirement

The third decision in the decision model has to do with how cloud instances are con-
structed. Since cloud computing leans highly on virtualization also storage is often
virtualized and offloaded to another server. The storage instance is then accessed via a
network connection. While this solution is suitable for some applications, some tasks re-
quire higher throughput speeds than network connections can offer. In these cases local
storage in the form of an solid state drive (SSD) is needed. Not all Amazon instances
offer local storage, thus the third hardware decision in the decision tree is whether local
storage is needed.

6.4 Decision 4: Pricing model

Apart from deciding about the hardware requirements, also a number of business de-
cisions have to be made. The second part of the decision tree, see Figure 18 contains
the business decisions. The first decision is about the pricing model. Since Amazon
and other cloud providers offer an unutilized instances model which offers significant
discounts this is an important decision. To be able to make this decision two questions
have to be answered.

The first question to answer is whether there are unutilized instances available.
Because the availability depends on the utilization of other customers this pricing model
is not always available.

Secondly it is important to weigh in the task duration. Since the availability of
unutilized instances can not be guaranteed, this pricing model is not suitable for tasks
with higher makespans since an outage would mean the task has to be started again.

When the questions above are answered, a decision about the unutilized pricing
model can be made. When opting for a regular pricing model a decision between
reserved and on-demand instances has to be made.

6.5 Decision 5: Parallelisation suitability

The fifth decision in the decision model is concerning the parallelisation of the task at
hand. If a task can be parallelised it can be performed in a multi-core or a multi-node
approach. Given the results of the experiment in Chapter 5.2 parallelisation can deliver
significant performance gains.

6.6 Decision 6: Parallelisation approach

If parallelisation is possible for the task at hand, then an approach has to be chosen. The
decision tree offers two parallelisation approaches: multi-core parallelisation and multi-
node parallelisation. The results in Chapter 5.2 show that multi-node parallelisation is
significantly faster than multi-core parallelisation, at a minor price increase. Depending
on the business requirements in terms of deadline a multi-core approach can be desirable
if there are no time constraints and strict budget constraints.
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Pricing model

Spot unavailable or unsuitable for spot

Spot available

On-demand instances

Reserved instances

Not parallelizable

Parallelizable

Not parallelizable

Parallelizable

Not parallelizable

Parallelizable

Cost efficiency

Shortest makespan

Single core

Cost efficiency

Shortest makespan

Cost efficiency

Shortest makespan

Single core

Single core

Parallelization 
decision

Parallelization 
approach

Figure 18: Decision tree: non-hardware related decisions

6.7 Cloud Instance Decision Tree - summary

The decision tree which has been discussed in this table helps a user in finding one or
more suitable cloud instances based on the hardware requirements of the task at hand,
a pricing model and a parallelisation approach based on the business requirements.
When the outcomes of all decision tree nodes are known the right cloud instance can
be deployed.

The cloud instances which are listed on the right side of the decision tree comply
to the hardware requirements. Next to the list of suitable cloud instances or VMs is a
parallelisation approach and the pricing model. The outcome of the top node is shown
in Figure 19. All possible outcomes can be found in Appendix 9.7.
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Figure 19: Decision tree: Instance with a GPU, over 384GB of RAM and local storage
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7 Discussion

This section discusses the findings of this research project. In this section the limitations
of the research project and the cloud instance decision tree will be discussed as well as
the recommendations for future work.

7.1 Limitations of the research project

This research project set out to solve the problem of selecting suitable cloud instances
when deploying analytical tasks to the cloud. The portfolios of multiple cloud providers
were analyzed to find similarities between their offerings. We found that all cloud
providers have a similar portfolio, all major cloud providers offer the same virtual ma-
chines that are suitable for a wide variety of (analytical) tasks. This research mainly
focused on the, currently, largest cloud provider Amazon Web Services (AWS). While
choosing a single provider to focus this research project has some implications for the
generalizability, the way of deploying and selecting cloud instances is the same for the
large cloud providers. Users of cloud computing should be aware of vendor lock-in,
which can result in risks regarding business continuity and switching costs. Because all
major cloud providers offer industry standard deployment methods, for instance Docker,
these risks can be mitigated.

In order to create a decision tool to aid researchers utilizing cloud computing, an
extensive analysis of literature about data analytics in the cloud was carried out. The
literature review yielded results on cloud task description, cloud environment description
and cloud task matching. Next to a literature study an experiment was conducted to
discover the benefits of multiple cloud configurations. The experiment was executed
using AWS EC2 instances. The m4.large and m4.xlarge instances were compared using
an R-based benchmark running on single core, multi core and multi node configured
instances. The results showed an advantage of using m4.large instances in a multi node
configuration in terms of performance en cost efficiency. The multi node configuration
performed almost four times better than the single core, baseline configuration, while
being more than 46% cheaper.

There are limitations to this experiment. In the experiment the boot-up time was
disregarded in the experiment, since we wanted to benchmark the performance of task
processing. The boot-up time has an effect on the total makespan, but for tasks with
a longer makespan the boot-up time is negligible. The boot-up time is equal for all
instances, regardless of the specifications. Boot-up time should be accounted for when
task makespan is short.

The second limitation of the experiment is the loading time when processing large
datasets. The dataset in the experiment was relatively small, such that it could be
stored in memory. When processing large datasets the dataset the virtual machine has
to read the dataset from the harddrive which takes time. This is especially important
in a multinode set-up were multiple nodes have to load the dataset.

The third limitation of the experiment is the size of the experiment, this research
project can be improved by incorporating more types of data analytics and machine
learning approaches and by using a broader set of cloud instances. The most frequently
used cloud instances in literature were used for the benchmark, but there are more
cloud instances that could provide more information about optimal task-cloud matches.
Other types of data analytics were beyond the scope of this research project but would
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improve the applicability of the decision tree.
The results of the literature study and the experiment where then used to devise a

cloud decision tree. The decision tree uses the following parameters to guide the user
to a cloud instance:

• Suitability of the task with unutilized instances

• Availability of unutilized instances

• Task hardware requirements

• Budget

The decision tree incorporates these parameters in order to aid the user in select-
ing suitable AWS EC2 instances for a workload. A limitation of this approach is that
the user needs information about the parameters of a dataset or workload. While ex-
perienced researchers know the parameters this can be a problem for users with less
experience or knowledge about the dataset. To further improve the decision tree more
questions can be added in order to simplify the decision process for users. Another
limitation of the current decision tree is that it focuses on Amazon Web Services. Ama-
zon is currently the largest cloud provider with a broad portfolio which makes it an
obvious choice. By replacing the instances in the decision tree with similar instances
of another cloud provider the decision tree can also be used to select instances of other
cloud providers, making the decision tree a generic solution.
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8 Conclusion

In this chapter the research questions will be answered. This research aimed to identify
a strategy to match analytical tasks to virtual machines or cloud instances. Based on
a literature study and an experiment with cloud instances a cloud instance decision
tree was devised taking all requirements involved with the decision into account. The
decision tree aids users in selecting an optimal cloud instance.

8.1 Sub questions

The research sub questions will be answered first. In this section the sub questions of
this research project are listed and answered.

SQ1: How can the requirements and characteristics of a cloud task be described?

A cloud task is a unit of work, on which a user is waiting. Tasks can be described with
the following characteristics: file system characteristics, data locality, data parallelism,
resource usage, task size, data classification and data velocity. These characteristics
describe the technical requirements of a task. These requirements are necessary in
order to select the right cloud instance.

SQ2: How can cloud instances be described?

To effectively describe a cloud instance, the instance family, instance type and in-
stance size are used to describe the technical characteristics of an instance. All major
cloud providers offer instances with similar characteristics. Next to a technical descrip-
tion a cloud instance is obtained in multiple pricing models, on-demand, reserved and
unutilized. To select the most optimal cloud instance for a given task, the pricing model
is important since it has a large impact on the total cost of processing said task.

SQ3: How can tasks and cloud instances be matched?

To match tasks to a cloud instance it is important to know the task characteristics
and the instance characteristics, as well as the business requirements. To select the
instance a number of decisions should be taken, which are listed in the Cloud Instance
Decision Tree.

8.2 Main research question

The main research question will be answered below.

RQ: How can analytical tasks be matched to a cloud instance taking into account
all requirements?

This research project set out to devise a way to match analytical tasks to a cloud
instance. This was done using a design science approach were literature and data was
gathered to devise an artifact. The literature yielded knowledge about cloud task and
instance description and task provisioning. The experiment, which existed of bench-
marks of cloud configurations, showed the advantages of various cloud configurations.
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The multi node approach proved to be an improvement over the baseline (single core)
and multi core approach in terms of cost efficiency and performance.

The results of the benchmark were incorporated in the design artifact. This artifact
is the Cloud Instance Decision Tree. To match analytical tasks to cloud instances
the technical and non-technical requirements and characteristics of that task should
be known. The task requirements differ per task and should be known to the user.
Furthermore the cloud instances should be described and the characteristics of the
instances should be known. The artifact on this design science research project, the
Cloud Instance Decision Tree, is based on Amazon’s EC2 virtual machine portfolio.
Amazon is currently the largest cloud provider. The decision tree incorporates all
technical and non-technical characteristics of the cloud instances that Amazon has on
offer.

The decision tree takes all requirements into account by incorporating both the task
characteristics and the cloud instance characteristics. By using the Cloud Instance
Decision Tree a user is enabled in selecting the right cloud instance with the necessary
technical requirements, the optimal pricing model and the configuration that is optimal
for the requirements. The decision tree offers one or more actual instances in the form
of the Amazon EC2 instance API name, for instance an m4.xlarge. The pricing model
is based on the availability of unutilized instances and also takes the other pricing
models, on-demand and reserved, into account. Finally the user is also guided to the
right configuration, which can be single core, multi core or multi node. In a single
core configuration, only one core of the CPU is used. In a multi core configuration
one instance is used, but all available CPU cores are used to process the calculations.
In the multi node approach the workload is divided over multiple instances of which a
single CPU core is used. This way cheaper instances can be used which results in a cost
effective approach to cloud data analytics.

8.3 Future work

It was beyond the scope of this research project to create a truly automated selection
tool. To be able to use the decision tree in a completely automated fashion it should
be built as a software component that integrates the AWS API to retrieve actual data
about spot instances. Since spot prices vary over time based on the current utilization
rate and demand it is necessary to retrieve this data in real-time to select the most
optimal instance. Next to the price fluctuations of the unutilized instances the port-
folios of all major cloud providers are continuously changing. To enable unattended
instance selection it is recommended to retrieve information about the current portfolio
automatically.

Next to the automated retrieval of information about the cloud portfolio and unuti-
lized instances the cloud instance decision tree could be extended with more job specific
information and budget related information to make a narrower selection of instances
possible. Although all cloud instances selected via the decision tree are suitable, the
instances vary in terms of price per hour and exact specifications.
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9 Appendices

9.1 Appendix A
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Figure 20: Process-Deliverable Diagram (PDD) of the research method
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9.2 Appendix B

require(data.table)

require(ggplot2)

require(aws.s3)

require(microbenchmark)

Sys.setenv("AWS_ACCESS_KEY_ID" = "mykey",

"AWS_SECRET_ACCESS_KEY" = "mysecretkey",

"AWS_DEFAULT_REGION" = "us-east-2")

selectedBucket = ’wiertscriptie’

dt = data.table(plyr::baseball)

mode <- function(x) {

ux <- unique(x)

ux[which.max(tabulate(match(x, ux)))]

}

computeTest = function(x) {

#Mode <<- Mode

L = length(x)

Mis = sum(is.na(x))

Mean = mean(x, na.rm=T)

MEDIAN = median(x, na.rm=T)

SD = sd(x, na.rm=T)

var = var(x, na.rm=T)

Q1 = quantile(x, prob = 0.25, na.rm=T)

Q3 = quantile(x, prob = 0.75, na.rm=T)

MODE = mode(x)

MAD = mad(x, na.rm=T)

MAX = max(x, na.rm=T)

MIN = min(x, na.rm=T)

UNIQUE = length(unique(x))

return(c(L,Mis, Mean, MEDIAN, SD, var, Q1, Q3, MODE, MAD,MAX,MIN))

}

SE = function(x) {

N = length(x)

SE = sd(x, na.rm=T)/sqrt(N)

return(SE)

}
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#finalRS = rs

ITERATIONS = 1000

for (i in 1:20) {

cols = names(dt)[6:22]

time <- data.table(ms=microbenchmark(

rs <- dt[,lapply(.SD, function(x) computeTest(x)),

.SDcols = cols, by=’team’],

times=ITERATIONS)$time/1000000

)

#rs = data.table(SUM = sum(time$ms, na.rm=T))

#rs = data.table(MIN = min(

time$ms, na.rm=T),

Q1 = quantile(time$ms, prob = 0.25, na.rm=T),

Q2 = median(time$ms, na.rm=T),

Q3 = quantile(time$ms, prob = 0.75, na.rm=T),

MAX = max(time$ms, na.rm=T)

)

rs = data.table(MEAN=sum(time$ms, na.rm=T), SE=SE(time$ms))

if (i==1) {

finalRS = rs

}

rs$ID=21

rs$CLASS = ’Single-Node’

finalRS = rbind(finalRS, rs)

}

finalRS$ID = 1:nrow(finalRS)

finalRS$CLASS = ’Multi-Node’

p = ggplot(finalRS, aes(ID, MEAN))

#p = p+geom_boxplot(aes(

ymin = MIN,

lower =Q1 ,

middle = Q2,

upper = Q3,

ymax = MAX,

group=ID,

fill=CLASS

), stat = "identity"

)

p = p + geom_bar(aes(fill=CLASS), stat = "identity")

#p = p + geom_errorbar(aes(x=ID, ymin=MEAN-SE, ymax=MEAN+SE))

#p = ggplot(dt, aes(ab,r))

#p = p+geom_point()
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# fileName = paste0("multi-node", sample.int(10000000, 1), ".csv")

fileName = ’single-node.csv’

#ggsave(fileName, p)

fwrite(time, fileName)

scriptFile = ’simple_plot_script.R’

put_object(file = scriptFile, object = scriptFile, bucket = selectedBucket)

put_object(file = fileName, object = fileName, bucket = selectedBucket)
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9.3 Appendix C

Table 18: Benchmark results of the single node configuration

Benchmark run Time
1 22.026
2 21.983
3 22.1
4 22.058
5 21.551
6 21.552
7 21.643
8 21.713
9 21.532
10 21.562
11 21.669
12 21.495
13 21.843
14 21.593
15 21.483
16 21.571
17 21.685
18 21.605
19 21.432
20 22.162
21 21.822
22 21.466
23 21.577
24 21.418
25 21.981
26 21.824
27 22.0559999999999
28 22.0169999999999
29 21.9770000000001
30 22.106
31 22.1610000000001
32 22.261
33 22.1940000000001
34 21.7520000000001
35 21.6469999999999
36 21.894
37 21.636
38 21.8900000000001
39 21.984
40 22.183
41 22.165

64



42 22.054
43 22.0119999999999
44 22.073
45 21.904
46 22.028
47 21.96
48 21.943
49 22.0330000000001
50 22.0639999999999
51 21.9360000000001
52 21.9010000000001
53 22.027
54 21.9440000000002
55 22.1410000000001
56 22.3599999999999
57 22.165
58 22.297
59 21.9110000000001
60 21.8969999999999
61 21.8979999999999
62 21.96
63 21.894
64 22.068
65 21.932
66 22.058
67 21.9159999999999
68 21.867
69 21.9829999999999
70 21.925
71 21.7180000000001
72 21.867
73 21.704
74 21.837
75 21.6229999999998
76 21.5809999999999
77 21.6279999999999
78 22.095
79 21.8150000000001
80 21.8180000000002
81 21.9290000000001
82 22.1130000000001
83 21.723
84 21.9440000000002
85 21.8409999999999
86 21.8209999999999
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87 21.8340000000001
88 21.9559999999999
89 21.9849999999999
90 21.884
91 21.7570000000001
92 22.212
93 21.895
94 21.5840000000001
95 21.71
96 21.8210000000004
97 21.48
98 21.6729999999998
99 21.6769999999997
100 21.9989999999998
101 21.5140000000001
102 21.6419999999998
103 21.569
104 21.6959999999999
105 21.694
106 21.5360000000001
107 21.7739999999999
108 21.721
109 21.5459999999998
110 21.6859999999997
111 21.6680000000001
112 21.5810000000001
113 21.71
114 21.703
115 21.6160000000004
116 21.7530000000002
117 21.5709999999999
118 21.7709999999997
119 21.5729999999999
120 21.806
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9.4 Appendix D

Table 19: Benchmark results of the multi core configuration

Benchmark run Time
1 41.704
2 41.325
3 41.552
4 41.762
5 41.446
6 41.851
7 41.527
8 41.81
9 41.612
10 41.323
11 41.542
12 41.768
13 41.267
14 41.7589999999999
15 41.434
16 41.5999999999999
17 41.537
18 41.372
19 41.4659999999999
20 41.4150000000001
21 41.5409999999999
22 41.66
23 41.4019999999999
24 41.62
25 41.588
26 41.4360000000001
27 41.4190000000001
28 41.4300000000001
29 41.5410000000002
30 40.682
31 41.635
32 41.234
33 41.411
34 41.602
35 41.286
36 41.681
37 41.382
38 41.671
39 41.457
40 41.187
41 41.373
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42 41.596
43 41.123
44 41.582
45 41.352
46 41.5649999999999
47 41.518
48 41.3539999999999
49 41.447
50 41.3919999999999
51 41.519
52 41.619
53 41.364
54 41.603
55 41.586
56 41.373
57 41.4150000000002
58 41.3799999999999
59 41.5170000000001
60 41.731
61 43.395
62 42.936
63 43.29
64 43.545
65 43.178
66 43.538
67 43.305
68 43.465
69 43.273
70 43.005
71 43.221
72 43.4329999999999
73 42.954
74 43.462
75 43.135
76 43.371
77 43.294
78 43.138
79 43.242
80 43.1080000000001
81 43.29
82 43.439
83 43.152
84 43.352
85 43.3879999999999
86 43.2059999999999
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87 43.173
88 43.204
89 39.9300000000001
90 25.5910000000001
91 43.463
92 43.049
93 43.4
94 43.639
95 43.266
96 43.648
97 43.428
98 43.596
99 43.429
100 43.097
101 43.358
102 43.583
103 43.072
104 43.5889999999999
105 43.237
106 43.4880000000001
107 43.399
108 43.261
109 43.38
110 43.245
111 43.393
112 43.5809999999999
113 43.265
114 43.4950000000001
115 43.4690000000001
116 43.337
117 43.3099999999999
118 43.3230000000001
119 37.3310000000001
120 26.5400000000002
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9.5 Appendix E

Table 20: Benchmark results of the multi node configuration

Benchmark run Time
1 23.581
2 23.578
3 23.452
4 23.541
5 23.434
6 23.566
7 23.447
8 23.577
9 23.47
10 23.544
11 23.485
12 23.532
13 23.528
14 23.525
15 23.532
16 23.518
17 23.446
18 23.503
19 23.52
20 23.518
21 23.525
22 23.52
23 23.522
24 23.504
25 23.4949999999999
26 23.551
27 23.481
28 23.513
29 23.475
30 23.4699999999999
31 23.524
32 23.538
33 23.362
34 23.509
35 23.38
36 23.492
37 23.355
38 23.488
39 23.351
40 23.443
41 23.375
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42 23.493
43 23.4
44 23.387
45 23.392
46 23.425
47 23.417
48 23.468
49 23.423
50 23.43
51 23.417
52 23.435
53 23.3720000000001
54 23.429
55 23.452
56 23.489
57 23.4399999999999
58 23.427
59 23.342
60 23.454
61 22.509
62 22.441
63 22.328
64 22.491
65 22.424
66 22.478
67 22.434
68 22.481
69 22.354
70 22.413
71 22.305
72 22.482
73 22.432
74 22.364
75 22.405
76 22.418
77 22.443
78 22.417
79 22.486
80 22.378
81 22.351
82 22.456
83 22.424
84 22.428
85 22.413
86 22.447
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87 22.348
88 22.4069999999999
89 22.4639999999999
90 22.389
91 23.044
92 22.978
93 22.889
94 22.974
95 22.892
96 22.952
97 22.895
98 23.011
99 22.988
100 23.016
101 22.899
102 23.017
103 22.977
104 22.927
105 23.013
106 22.934
107 22.931
108 22.936
109 22.994
110 22.965
111 22.877
112 23.008
113 22.916
114 22.9359999999999
115 22.9880000000001
116 22.961
117 22.942
118 23.0039999999999
119 22.92
120 22.909
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9.6 Appendix F

RAM < 384 GB

Local storage needed

No local storage needed
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No local storage needed
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Figure 21: Complete decision tree
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