
Utrecht University

Master Thesis

Extracting high-quality end-user
requirements via a chatbot

elicitation assistant

Author
Marc Valkenier

Supervisors
Dr. Fabiano Dalpiaz (1st)

Prof. dr. Kees van Deemter (2nd)

Business Informatics
Department of Information and Computing Sciences

Faculty of Science
Utrecht University

January 23, 2020

Abstract

Requirements elicitation can be done using several methods, depend-
ing on what segment of users one would want to target. This thesis studies
whether a chatbot can be used to elicit high-quality end-user requirements.
This thesis introduces ReqBot, a prototype chatbot elicitation assistant;
we investigate ReqBot’s impact on the quality of requirements and its
usability. Quality is represented by referential ambiguity and vagueness,
a subset of ambiguity, which in turn is a quality metric for requirements.
ReqBot aims to detect these ambiguities and resolve them through inter-
action with the user. ReqBot is tested against a Google Form, a repre-
sentation of a current method of end-user requirement elicitation. While
both gained a high usability score, possibly due to the simplicity of the
user input interface, there was no significant difference in usability be-
tween the two. ReqBot was able to detect and resolve ambiguities with a
decent recall, however, it still lacks in precision.

Key words— Requirements engineering, end-user requirements, chatbot, qual-
ity of requirements, ambiguity, referential ambiguity, vagueness, usability

i

Acknowledgements

This thesis has been a large and all-encompassing project for me and
was not always as easy. There are some people I want to thank for their
help during and with this thesis. First and foremost, Fabiano, for all your
help and advice guiding me through the thesis. The end result and the
research would not have been the same without your help. I also want to
thank my friends and family to cheer me up when I got stuck and helped
me stay motivated. Finally, I also want to thank everyone who took the
time out of their day to participate in my experiment.

iii

Contents

1 Introduction 1

2 Research Methodology 4

3 Literature 6
3.1 Frameworks for quality of requirements 6

3.1.1 Frameworks in literature 7
3.1.2 Selecting a requirements quality framework 10
3.1.3 Criteria of the QUS framework 11
3.1.4 Selecting a criterion . 12

3.2 Ambiguity . 14
3.2.1 Types of ambiguity . 15
3.2.2 Selecting type(s) of ambiguity 18
3.2.3 Tools for detecting ambiguity 19

3.3 Chatbot . 24
3.3.1 Introduction to chatbots 24
3.3.2 Classification of chatbots 24

4 Artifacts description 26
4.1 Development of ReqBot . 26
4.2 ReqBot under the bot taxonomy lenses 28
4.3 Functionality of ReqBot . 33
4.4 Other artifacts . 38

4.4.1 Requirements form . 38
4.4.2 Scenarios . 39

5 Experiment and results 41
5.1 Experiment . 41

5.1.1 Set-up . 41
5.1.2 Experiment procedure . 41
5.1.3 Participants . 42

5.2 Results . 43
5.2.1 Collected outputs . 43
5.2.2 Usability . 43
5.2.3 Correctness . 47
5.2.4 Quality . 50

6 Conclusion 51
6.1 Conclusion of sub-questions . 51
6.2 Conclusion of main research question 53

7 Discussion 54
7.1 Limitations and threats . 54
7.2 Future work . 55

v

A Considered platforms and frameworks for the chatbot artifact 63

B Complete BPMN of ReqBot 64

C All dialog 65

D Scenarios 69

E Experiment - scenario and condition planning 74

F Experiment approach 76

G Experiment introduction 77

H Results - significance values 79

vi

1 Introduction

Stakeholders in a software company, from management to product owners to
developers, want to create systems that fit their users’ needs best. This in-
creases the chance for users to stay satisfied with and loyal to the system.
These end-users have wishes, desires and expectations of a system. Their ideas
can become the building blocks for requirements, and are gathered through sev-
eral techniques such as brainstorm sessions, interviews, focus groups and user
observation [56, 75]. Most existing techniques fail to reach a large number of
end-users. It would, for example, be practically impossible to interview all end-
users of a system used by thousands or millions. It is more practical to focus
on representatives of the end-users, which is the case with a focus group [38].
This type of techniques is widely used and accepted but they inherently miss
requirements from end-users since not all of them were a part of the elicitation
process. This, in turn, results in the possibility that the system may not fit all
the needs of its end-users.

There are commonly used approaches to tackle this problem, including feed-
back forums, review sections, app reviews, feature requests and user forms
[51, 35]. However, it can be hard to get high-quality requirements from these
unidirectional types of input [32]. In classic elicitation techniques, an expert an-
alyst collects and organizes the requirements using conventional notations that
express the key traits of requirements. End-users, on the other hand, are not
expert requirements analysts and their formulated requirements do not adhere
to standards and conventions. As a response to this limitation, some authors
have proposed automated approaches to extract the key traits of requirements,
e.g., from app reviews [33].

Figure. 1: Aspects of CrowdRE (from Groen et al. [32])

1

The research area which tries to incorporate these end-user requirements is
called CrowdRE (or crowd-based requirements engineering). CrowdRE elicits
feedback provided by the earlier mentioned channels and other sources if possi-
ble. This feedback can be analysed with various techniques, such as text mining
for linguistic feedback. Combined with monitoring and usage data, this should
yield new sets of requirements as visualised in Figure 1 [32]. A disadvantage
of this general approach is that feedback elicitation and analysis are two sep-
arate phases in requirements engineering and by extension also in CrowdRE.
This makes it difficult to gain more information on the given feedback since
the interaction is completed after the feedback has been sent. This could be
information that was left out of the feedback but would be essential to craft a
high-quality requirement and satisfy the end-user.

Chatbots can be used for a wide range of goals, including answering fre-
quently asked questions, assisting in online shopping and other assisting or
knowledge based functions. Such a chatbot is essentially “a conversational agent
that interacts with users in a certain domain or on a certain topic with natural
language sentences” [36]. In the area of requirements engineering, the appli-
cation of a chatbot is new and only a few prototypes are currently available,
including CORDULA [27].

The popularity of chatbots has been increasing over the last few years as
illustrated by Figure 2. This surge in popularity is caused by the increased
popularity of messaging platforms and the advancements in AI and machine
learning [34]. Through the advancements in AI and also natural language pro-
cessing (NLP), the user queries can be recognised better and answered accord-
ingly. Another factor is the indication that text communication has become a
socially acceptable form of personal interaction [29], which goes hand in hand
with the increased popularity of messaging platforms. In this thesis, we aim to
reap the benefits of this quickly advancing technology and study the extent to
which chatbots can be used as an assistant to elicit requirements.

Figure. 2: Google Trends graph showing how the popularity of the term Chatbot
has changed over the past 10 years [5])

2

While CORDULA showed that it is possible to create a chatbot for elicit-
ing requirements, there are still several unanswered questions in the combined
field of requirements engineering and chatbots. Can a chatbot help to create
high-quality requirements? How could it even be determined that one of those
resulting requirements has a high-quality? Would the chatbot affect usability
compared to currently applied techniques? To gain a better grasp on this com-
bined field and further explore it, the main research question (MRQ) we put
forward is the following:

MRQ To what degree could a requirements elicitation chatbot improve
the quality of end-user requirements and the experience of end-
users while they express these requirements for a software prod-
uct?

To structure the answering process of the MRQ, several supporting research
questions are formed. As the quality of a requirement can be a subjective
concept, it is first and foremost required to specify quality to a degree that
becomes measurable. To explore this, the first sub-question of this thesis is:

SQ1 What measures determine the quality of a requirement?

With this information it will also be possible to focus on one specific measure
in depth, leading to the second research question:

SQ2 What techniques can be used to automate the detection of defects in a
requirement for a selected measure, as defined in SQ1?

This research question is the first half of the equation on the road to improve
a specific quality measure of requirements, as the defects in a requirement can
only be resolved if they are detected. The second half is part of the next research
question:

SQ3 How to design and construct a requirements elicitation chatbot for improv-
ing the quality of requirements?

With the creation of a chatbot that aims to improve the quality of require-
ments by solving defects of a specific measure of certain requirements, the ques-
tion remains how well it works in practice, leading to the last research question:

SQ4 How effective is the chatbot, as created in SQ3, in eliciting high-quality
requirements?

The effectiveness will be measured from both a quality and usability aspect.
The quality aspect will be measured by the defects of the selected measure that
get resolved.

3

2 Research Methodology

According to Wieringa, the two main types of research in design science are
design problems and knowledge questions [71]. A research concerns a design
problem if the design or redesign of an artifact aims to contribute to achieve
a goal. The proposed template for such a problem is: Improve <a problem
context> by <designing an artifact> that satisfies <some requirements> in or-
der to <help stakeholder achieve some goals>. A knowledge question requests
knowledge about the real world as it is. Knowledge questions can be divided
into explanatory questions, asking why something happened and descriptive
questions, asking what happened. The main difference between a knowledge
question and a design problem is that a design problem aims to make changes
in the world, while a knowledge question observes the world without making
changes. This thesis mainly concerns design problem.

The design cycle is a subset of the engineering cycle and consists of problem
investigation, treatment design and treatment validation. Each phase
can have one or multiple methods in it. These methods depend among others
on the research and the availability of sources.

This research started with the problem investigation phase, which aimed to
answer SQ1 and a part of SQ2. To answer SQ1 and thus find measures to quan-
tify the quality of a requirement, an iterative literature study was conducted on
quality measures of requirements. This literature study aims to find a measure
by starting at a high level framework for quality and then iterative zooming in
on a specific aspect until one satisfying measure was found. This phase also fo-
cused on solving SQ2 by studying the current tooling and research on detecting
defects in a requirement concerning the measure from SQ1.

The treatment design phase concerns both SQ2 and SQ3. The first of these
focuses on getting familiar with the practical implications on detecting these
defects in requirements and the latter with designing and building a prototype
chatbot.

The treatment validation phase is used to answer SQ4 and thus determine
the effectiveness of the chatbot. The prototype chatbot, created in SQ3, is
validated in an experiment with participants researching both usability and
quality. It is necessary to keep in mind that by introducing the chatbot, the
quality of a requirement can be influenced by other less intended factors, as
visualised in Figure 3. By introducing a chatbot, the user experience and general
usability of requirement elicitation can change. This can have an effect on the
quality of a requirement even without trying to resolve a detected defect. The
quality of the defect detection also needs to be addressed, since resolving defects
can not be done without first detecting the defects. These factors need to be
taken into account to provide the most rounded results.

4

Figure. 3: Factors that can influence the measured quality

5

3 Literature

This chapter concerns the literature study of this thesis. The literature study
is divided into three parts. First, in Section 3.1, different requirement quality
frameworks are described and evaluated, whereafter one is picked and further
investigated. From this framework, one measure is chosen to focus on. Second,
the chosen measure, ambiguity, is explored in Section 3.2. This includes the
different types of ambiguity and the existing tools for detection. Last, the
current state of chatbots is explored in Section 3.3, providing insight in what a
chatbot is and how one can be classified.

3.1 Frameworks for quality of requirements

To improve or measure improvement on the quality of requirements, a deeper
understanding of what determines the quality of a requirement is needed. A
first step in this can be achieved by following a specific quality framework, con-
sisting of quality metrics. Such a framework should describe all quality aspects
of a requirement. With more knowledge on all quality aspects of a requirement,
it becomes possible to build or discover measurements for these aspects. This
section will evaluate different frameworks for the quality of a requirement and
choose the most useful. In Section 3.1.3, the criteria of this selected framework
are evaluated and the best one will be selected in Section 3.1.4. Of this criterion,
all types are evaluated, selecting the best ones for this research. By zooming
in on quality in this manner, the research is focused on a few specific quality
measures in depth instead of quality in a broad manner as visualised in Figure 4.
The term framework will be taken as a broad overarching term in these sections
since most of the lists of quality aspects on requirements were not specifically
defined as a framework.

Figure. 4: Literature approach on selecting a measure for quality

6

3.1.1 Frameworks in literature

In the 1990s, several frameworks that can be used to determine the quality of
requirements were created. Two prominent ones were the three dimensions by
Pohl [57] and the framework of Lindland, Sindre and Solvberg for the quality of
conceptual models [47]. First, the three dimensions framework is based on the
idea of an initial input and a desired output. This output can be improved along
three dimensions: specification, representation and agreement and is visualised
in Figure 5 [57].

• The specification dimension starts at its lowest at opaque, moves to
fair and ultimately to complete. This dimension represents the degree of
understanding of a requirement at a certain time.

• The representation dimension begins at informal and is at its maxi-
mum at formal, with informal in between. This dimension deals with
the manner in which the requirements are represented. A requirement
could, for example, be represented as text in natural language (informal),
ER-diagrams (semi-formal) or via a formal specification language.

• The agreement dimension, moves from a personal view up to a common
view. It is tightly linked with the specification as it deals with the degree
of agreement on the specification.

Figure. 5: Three dimensions of RE by Pohl [57]

In 2013, Pohl and Ulfat-Bunyadi evaluated the three dimensions framework
and renamed the specification dimension to the content dimension and the repre-
sentation dimension to the documentation dimension. Further, no large adapta-
tions were made while it was used. However, this framework was not specifically

7

for the quality of requirements [58]. Since the framework is essentially quite sim-
ple, it will not be enough to base metrics of. It is however due to its simplicity
a good tool to assist in explanations considering the quality of requirements.

The framework of Lindland, Sindre and Solvberg (shortened to the frame-
work of Lindland) is aimed at conceptual models. However, it can also be used
to determine the quality of a requirement represented as a conceptual model.
This framework also focuses on three dimensions: syntax, semantics and prag-
matics. These dimensions are the result of the comparison of sets of statements.
There are four statements:

• The model is the set of statements that were made.

• The language consists of all possible statements possible in the syntax.

• The domain has all possible statements that are relevant as well as cor-
rect.

• The audience interpretation is the set of statements that the model
contains according to the audience.

The degree of similarity between the model and the language results in the syn-
tax dimension, the model and the domain results in the semantic dimension and
the model and the audience interpretation results in the pragmatic dimension
[47].

Krogsti et al. compared the framework of Lindland with the three dimen-
sions framework and remarked that they are similar in the deeper structures but
differ on the surface. The dimensions of both frameworks overlap as can be seen
in the syntactic dimension, which corresponds with the representation dimen-
sion. Krogsti et al. argued that both these dimensions deal with the relation
between the specification and the used language and thus overlap. However,
he also noted that they differ in that the three dimensions framework discusses
several languages and saw formal specification as a goal, while Lindland’s frame-
work does not consider multiple languages and sees formality only as a means.
According to Krogsti, the semantic dimension corresponds with the specification
dimension as both are concerned with the goal of completion. The difference
is that Lindland’s framework also includes validity and feasibility, whereas the
three dimensions framework does not [41].

In the same time period, Rosenberg et al. proposed a structurally differ-
ent set of metrics than Lindland and Pohl. While Rosenberg et al. did not
call it a framework, he provided a set of metrics to determine quality. For the
Automated Requirement Measurement (ARM) tool, a tool that scans software
requirement specification documents, seven measures were constructed. These
measures could indicate possible problems in requirements. The measures are
lines of text (i), imperatives (ii), continuances (iii), directives (iv), weak phrases
(v), incomplete (vi) and option (vii). Rosenberg et al. concluded that with this

8

tool, applying these measures, it is possible to “point out requirements that may
be ambiguous or otherwise poorly worded and thus subject to testing problems”
[59].

Ali defined a larger set of metrics for a quality requirements document in
2006 [11]. A division was made between so-called internal and external charac-
teristics. Internal characteristics define how requirements should be specified,
while external characteristics describe the outer appearance of a requirements
document. According to the internal characteristics, requirements need to be:
unambiguous, correct, complete, understandable, verifiable, internal consistent,
traced, traceable, modifiable, annotated by relative importance, annotated by
relative stability, annotated by version, not redundant, at right level of detail,
precise and organised. These characteristics were probably based on work by
Davis et al., who defined 24 qualities of a software requirement specification
[24]. This larger set of characteristics or qualities of requirements can be used
to grasp what constitutes a quality requirement. These frameworks are aimed
at complete software documents, but also contain metrics that can be applied
to individual requirements.

Lucassen et al. proposed a framework to determine the quality of user stories:
the quality user story framework (QUS) [49]. The framework was created in the
context of agile RE and is intended for the creation of high-quality user stories.
It consists of 14 quality criteria, which are divided into three groups, similar
to the three views of Lindland: syntactic, semantic and pragmatic. In a later
paper, Lucassen reworked the framework to encompass the 13 criteria, as can
be seen in Figure 6. In the latter paper, the quality of explicit dependencies has
been removed and the term scalable has been changed to estimatable.

9

Figure. 6: Quality user story framework by Lucassen et al. [50]

3.1.2 Selecting a requirements quality framework

To select a valid and usable framework for this research, several requirements
were created to evaluate the frameworks by:

• The framework needs to provide a sufficient level of detail on the measures
or aspects it presents for determining the quality of a requirement. This
includes a description of the aspect and forces aspects to be specific.

• The aspects presented by the framework should be measurable to a reason-
able degree. This ensures that it is possible to have a measurable outcome
later in this research.

• Both the novelty of a framework and the times it is applied in other
research should be considered. An older framework has had more time to
be established, used and verified compared to a new one, which can make
it a more accepted framework. However, research in the field of RE is an
ongoing process in which newer research and thus newer frameworks can
be developed with the knowledge of older frameworks combined with the
research done in the time between them.

• While not all previous mentioned frameworks were set out to be frame-
works or models, it can be useful to use one of these which was intended
as a framework.

10

The frameworks have been compared along with all previously mentioned
requirements. By process of elimination, the three dimensions and Lindland’s
framework were dropped due to the measurability and the level of detail in the
models. While both frameworks are usable in their own way and are also well
established, they were too high level to be used in this research. The frame-
work for the ARM tool by Rosenberg dropped off due to it being too focused
on one tool and having very specific but not usable measures. This narrowed
the selection down to the QUS framework and the 24 qualities by Davis. The
QUS framework was selected as the framework to be continued to be used in
this research since it is designed as a framework and it made a clear distinction
between quality measures for individual requirements and sets of requirements.

3.1.3 Criteria of the QUS framework

The QUS framework consists of 13 criteria, these need to be further explored
to gain insight in which of these could be best suited for improvement by a
chatbot. To gain this insight, the literature on or related to the criteria was
researched. The 13 criteria are described below, with their definitions according
to Lucassen et al. [50].

Atomic: “A user story expresses a requirement for exactly one feature”.
Liskin et. al researched the granularity of user stories. With a focus on Expected
Implementation Duration or EID, a survey was conducted yielding 72 results.
It revealed that in general more coarse (larger/longer) user stories resulted in
more problems, such as grow unexpectedly in EID. It was stated that “smaller
user stories are perceived as more tangible and predictable, they help to keep
feedback-cycles short, and they entail less post-development changes” [48].

Minimal: “A user story contains nothing more than role, means, and ends”.
In the Agile manifesto, user stories were defined as having three parts. These
are a part of the question on who, what and why [16]. Wautelet et al. researched
the different templates in which the user story format has been used. For the
’who-part’, the term ’role’ is most often used. Several different terms are used
for the parts on what and why. These include goal, action or feature for what
and business value, benefit or reason for why [70]. There were no additional
parts that could expand a user story, showing that this is the maximal size.

Well-formed: “A user story includes at least a role and a means”. Leffing-
well states that user stories should contain at least a role and means [45]. With
one of these parts missing, the user story would lose its value since it would
either miss what needs to be done or from which perspective. This is crucial
information, while the ends or reason is not necessarily.

Conceptually sound: “The means expresses a feature and the ends ex-
presses a rationale”.

11

Problem-oriented “A user story only specifies the problem, not the solu-
tion to it”.

Unambiguous: “A user story avoids terms or abstractions that lead to
multiple interpretations”. Different types of ambiguity exist, including lexi-
cal ambiguity, syntactic ambiguity, semantic ambiguity, pragmatic ambiguity,
vagueness, generality and language errors [18]. Different tools exist to find and
reduce ambiguity, such as Smella, which works using so-called bad smells to find
ambiguity [25].

Conflict-free: “A user story should not be inconsistent with any other user
story”. Sommerville et al. noted that conflicting requirements exist and failure
to detect and resolve them will lead to rework [65]. Kim et al. divides require-
ment conflicts into activity conflicts and resource conflicts. They also propose a
quite general approach of 4 phases to detect and manage these conflicts: require-
ments authoring, partitioning, conflicts detection and conflicts management.

Full sentence: “A user story is a well-formed full sentence”.
Estimatable: “A story does not denote a coarse-grained requirement that

is difficult to plan and prioritize”. Different techniques exist to estimate user
stories. These are among others triangulation, planning poker and voting. Mi-
randa proposes a paired comparison method to reduce the number of compar-
isons [53, 52].

Unique: “Every user story is unique, duplicates are avoided”. If duplicates
exist and go undetected, it would result in a rework of the software feature
according to Barbosa et al. Furthermore, they introduced an approach to detect
possible duplicates [13]. With duplicates resulting in rework, the importance of
a user story being unique is exemplified.

Uniform: “All user stories in a specification employ the same template”.
There are several manners to write a user story as Wautelet et al. showed [70].
However, within one organisation it is important to use a specific template. If
different people were to apply different templates within one team, the result
might be that misinterpretations occur.

Independent: “The user story is self-contained and has no inherent depen-
dencies on other stories”.

Complete: “Implementing a set of user stories creates a feature-complete
application, no steps are missing”.

3.1.4 Selecting a criterion

The selection of a criterion is based on several requirements.

• Given the exploratory nature of this research, the focus will be on im-
proving individual requirements as opposed to sets of requirements.
Therefore, it would be preferable to use a criterion that concerns individ-
ual requirements;

12

• The relevance of the criterion in the context of a chatbot is important.
A chatbot has interaction with a user and this should be exploited. A
criterion that can be improved without interaction is thus less interesting;

• The severity of the consequences if the criterion is left unchecked and
the gain if the criterion is positively influenced;

• The achievability of implementation should be taken in mind. The
chosen criterion should have the possibility of being implemented within
the time-span of this research.

Considering these four requirements, the criteria complete, independent, uni-
form, unique and conflict-free are not suitable candidates since these focus on (a
part of) the entire set of requirements. For example, end-user requirements do
not need to be unique as many users can have the same or a similar requirement.
This could, in turn, be used to prioritise requirements. The criteria full sentence,
atomic, minimal and problem-oriented are excluded on the base of relevance in
the context of a chatbot. These criteria are on ways of writing requirements,
that would not require interaction with the user to improve. Moreover, the
end-users communicate to the chatbot by writing in natural language and not
a predetermined format. All of these can also later be fixed by a requirements
engineer examining the requirements. For instance, a requirements engineer can
rework a user story that is not problem-oriented to one that is without having
to interact with the user by rephrasing or removing the solution part.

By method of elimination, four criteria are left:

• Well-formed

• Conceptually sound

• Unambiguous

• Estimatable

Conceptually sound requires a semantic understanding of what is expressed in
a user story, in short, it would require the chatbot to understand the mean-
ing of what is written. The suspected achievability of this is considered as too
hard for this research. The criterion estimatable could be positively influenced
by asking the user how important the requirement is, gaining information on
prioritisation. However, if this is not implemented, the consequences might not
be too severe since end-user requirements are generally processed by a product
owner or a requirement engineer. They can decide whether it is estimatable in
its current size or if it needs to be divided into smaller parts. They should be
able to do this to a degree, even with sub-optimal requirements. This criterion
is thus excluded based on the fact that the suspected gain of another criterion
would be greater.

13

A user story should always have at least a role, a means and an ends. This
can be achieved by asking the correct questions for each requirement but might
be a bit too basic to have a large impact on the quality on its own. Unambiguous
on the other hand can require interaction with the end-user. If for example, a
requirements engineer has an ambiguous user story, it can in cases be impossible
to determine the meaning the end-user wanted to give to that user story. Thus
direct interaction with the user could prevent ambiguity, by asking the user the
meaning of the ambiguous part. Furthermore, if ambiguity is left unchecked,
the results could be severe. As ambiguity means that a (part of a) user story
has multiple interpretations. This could result in an implementation which does
not conform to the intended meaning of the user story. As unambiguous can be
used on individual user stories, has severe results if it is left unchecked and can
require interaction to be improved, unambiguous is chosen as the criterion for
this research.

3.2 Ambiguity

Ambiguity is defined as “the quality of being open to more than one interpreta-
tion” by the Oxford Dictionary [2] and as “the fact of something having more
than one possible meaning and therefore possibly causing confusion” by the Cam-
bridge Dictionary [6]. While both definitions share the part on something having
multiple meanings or interpretations, the latter addresses the possibility that
this, in turn, can cause confusion. This immediately illustrates the risk ambi-
guity poses to requirements since this confusion needs to be resolved, which can
cost time, money or both.

Ambiguity can be either intentional or unintentional. Under the assumption
that one does not specifically intend to be ambiguous while writing requirements,
the main concern is unintentional ambiguity. However, whether a sentence or a
requirement is communicated with the same meaning also depends on the writer
and the reader of it. As language contains a large set of rules, not every rule
will be understood by everyone. If two people know a rule and both write or
read a sentence following that rule, the meaning of that sentence will be clear
for both. In case they both apply the rule similarly wrong, the meaning of the
sentence could still be clear. But if one of them does apply the rule, while the
other does not, they could have a miscommunication [18]. Take for example the
user story:
As a user, I do not want no scroll-bar on the homepage.

This user story contains a double negative. A reader would be unaware
whether the writer did this on purpose and meant that he does not want the
scroll-bar to be absent or that it was an error and the writer meant that he does
not want a scroll-bar. While this sentence should have only one meaning, it is
ambiguous since the knowledge of the writer is unknown and thus could have
another meaning.

14

3.2.1 Types of ambiguity

Ambiguity as a whole encompasses several distinctly different types of ambigu-
ity. Berry et al. defined them as lexical, syntactical, semantic and pragmatic
ambiguity. These were supplemented with vagueness, generality and language
errors. These types are listed below with the definitions provided by Berry et al.
[18]. Most of these types are comprised of sub-types, as can be seen in Figure 7.

Figure. 7: Types of ambiguity, based on Berry et al. [18]

Lexical ambiguity “occurs when a word has several meanings”. While
many words in the English language have multiple meanings, it is often pos-
sible to determine the meaning of such an ambiguous word with the help of
contextual cues [61]. For example, nails can refer to fingernails or nails that you
should hit with a hammer, but through the context of the rest of a sentence,
the meaning can become clear. E.g. ’I cut my nails because they grew too long’
makes it clear that fingernails are meant. However, this is not always the case,
as ’I broke a nail’ does not clarify what type of nails is meant. Lexical ambiguity
can be divided in homonymy and polysemy. Homonymous words have multiple

15

meanings, but these are unrelated to one another, while polysemous words have
related meanings [17].

Syntactic ambiguity “occurs when a given sequence of words can be given
more than one grammatical structure, and each has a different meaning”. Berry
et al. divided this type of ambiguity in analytical, attachment, coordination
and elliptical ambiguity. Of these, coordination ambiguity is closely related and
essentially also part of semantic ambiguity.

Analytical ambiguity “occurs when the role of the constituents within a
phrase or sentence is ambiguous”. The definition of Berry et al. is substantiated
by Fuchs et al. as they claim that analytical ambiguity “arises when the type of
a constituent is undecidable” [28]. Both define it as an ambiguity that occurs
when there is uncertainty on the role or the type of a constituent. An example
of this would be the German teacher, which can be interpreted as a German
that teaches a random course or a teacher of the German language.

Attachment ambiguity “occurs when a particular syntactic constituent
of a sentence, such as a prepositional phrase or a relative clause, can be legally
attached to two parts of a sentence”. Zhao and Lin further divide attachment
ambiguity further in thee categories: prepositional or PP-attachment ambiguity,
relative clause ambiguity and pre-nominal modifier ambiguity [76].

Coordination ambiguity occurs “when more than one conjunction, and
or or, is used in a sentence or when one conjunction is used with a modifier”.
The possible harm such an ambiguity can cause is stressed by Agarwal and
Boggess as they state that “If a natural language understanding system fails to
recognise the correct conjuncts, it is likely to misinterpret the sentence or to lose
its meaning entirely” [10]. In this case, the term ambiguity is not used but the
consequences overlap with the definition of an ambiguity: there are multiple
interpretations with a chance of misinterpretation. Brouwer et al. divided
coordination ambiguity into noun phrase and sentence coordination ambiguity
[21]. This was in turn based upon research from Frazier, who researched how
long it takes to disambiguate or process sentences. Frazier did however not
specifically classify these as a coordination ambiguity [26].

Elliptical ambiguity “occurs when it is not certain whether or not a sen-
tence contains an ellipsis”. Sellars states on elliptical ambiguity that “in ellipsis
the context completes the utterance and enables it to say something which it
otherwise would not, different contexts enabling it to say different things” [62].
This overlaps with the definition of Kiyavitskaya et al. of an ellipsis: “Ellipsis
is the deliberate omission of some aspect of language form whose meaning can
be understood from the context of that form” [37]. An example used by both
Kiyavitskaya and Berry to illustrate this type of ambiguity is “Perot knows a
richer man than Trump”, which can have two meanings. The first meaning is
that Perot knows someone who is richer than Trump and in the second case it
means that of all the people Trump and Perrot know, only Perrot knows the
richest person. In the second case, it is implied that the sentence should be
’Perot knows a richer man than Trump knows’. Through the omission of the
’knows’ at the end of the sentence, an elliptical ambiguity is created.

16

Semantic ambiguity “occurs when a sentence has more than one way of read-
ing it within its context although it contains no lexical or structural ambiguity”.
It contains scope, coordination and referential ambiguity. Coordination and ref-
erential ambiguity overlap with syntactic and pragmatic ambiguity respectively
and are thus discussed in those sections.

Scope ambiguity occurs when quantifier operators and negation operators
can enter into different scoping relations with other sentence constituents. An
example of this is some people buy a Toyota. This can mean that there are mul-
tiple people buying multiple cars by Toyota or that a group of people buy one
Toyota together. In this case, ambiguity is created by two quantifier operators
(some and a). The same can occur with a negation and a quantifier operator.

Pragmatic ambiguity “occurs when a sentence has several meanings in the
context in which it is uttered”. It encompasses referential and deictic ambiguity.

Referential ambiguity “occurs when an anaphor can take its reference
from more than one element, each playing the role of the antecedent”. This
definition has a similar basis with the one used by Nieuwland and van Berkum:
“Referential ambiguity arises whenever readers or listeners are unable to select a
unique referent for a linguistic expression out of multiple candidates” [54]. Their
research concludes that readers make an inference to evaluate the referential
candidate if they resolve the ambiguity. Though this only happens when both
candidates have equally plausible antecedents.

Deictic ambiguity “occurs when pronouns, time and place adverbs, such
as now and here, and other grammatical features, such as tense, have more than
one reference point in the context”. This type of ambiguity is closely related
to referential ambiguity since it is based on the same uncertainty of a reference
point in the earlier text. The main difference is that referential specifically con-
cerns an anaphor, while deictic focusses on pronouns and adjectives.

Vagueness, “a requirement is vague if it is not clear how to measure whether
the requirement is fulfilled or not”. Vagueness with this definition is a term
which can include many cases. Opinions can also differ on where the threshold
lies for something to be vague. Adjective and adverb vagueness is a form of
vagueness that can be seen as slightly more concrete. If an adjective or adverb is
not concrete or measurable to a degree, the statement becomes vague. Adjective
vagueness can be reduced by avoiding or replacing vague adjectives (such as fast
or small) with concrete terms.

Generality, “a general expression can be made more precise”. My sibling
is a form of generality, as one can have multiple siblings and with just this
information it is unclear which one is intended.

Language error “occurs when a grammatical, punctuation, word choice, or
other mistake in using the language of discourse leads to text that is interpreted
by a receiver as having a meaning other than that intended by the sender”.

17

3.2.2 Selecting type(s) of ambiguity

Given the types of ambiguity described in the previous paragraph, a decision
needs to be made on which type(s) should be used in this research. A viable type
of ambiguity should adhere to a set of requirements specific to this research:

• The expected impact of the type of ambiguity on the requirement should
be considered. Not all types of ambiguity might cause problems of the
same magnitude if they are left in a requirement. This should be viewed
from two sides: the negative consequences if an ambiguity of that type
remains and the positive rewards the disambiguation of that type of am-
biguity would yield.

• The probable practicality of resolving the type of ambiguity should be
taken into account. This includes the ability to detect the type of ambi-
guity and the added value of direct user interaction to remove the type of
ambiguity.

• The practical likelihood of a type of ambiguity occurring should be looked
at. Types of ambiguity that do probably not happen often in requirements,
will be considered as less applicable for this research.

• The time and resource constraints of this research should be kept in mind.

2 types of ambiguity were selected for this research:

• Referential ambiguity

• Adjective and adverb vagueness

Referential ambiguity can cause some confusion if it is not resolved. This
type is probably common in a conversation in natural language such as a con-
versation with a chatbot. A user can refer to a word or a part of a phrase that
was entered in an earlier interaction. During the conversation with the chatbot,
a requirement will be formed and if referential ambiguity occurs during this
conversation, the requirement may not have the meaning intended by the user.
There is a practical way to solve this type of ambiguity by finding an anaphor
that can take reference from multiple elements. Then the chatbot can ask the
user from which of the elements the anaphor should take reference.

Adjective and adverb vagueness is a form of vagueness and can have a
significant impact on a requirement. If a user provides a requirement containing
e.g. ...I want to be able to send large files..., the requirement is not usable. The
definition of a large file would differ from user to user, making the requirement
too vague to be implemented. The detection and disambiguation of this type of
ambiguity seem to be fairly doable. There needs to be a list with vague adjec-
tives and adverbs and for each a or several disambiguation questions that can
be communicated to the user. This type of ambiguity presumably occurs often
in end-user requirements as the vague adjectives and adverbs are easy ways to

18

communicate a desire without becoming concrete. For the rest of this thesis,
vagueness will refer to adjective and adverb vagueness specifically.

The impact of lexical ambiguity can vary in different cases, depending
on the word and the context. It is, however, a type that can have a straight-
forward method of detection and disambiguation. E.g. if a word has two distinct
meanings, the chatbot could ask the user which of the two meanings he intended,
resulting in quick and easy disambiguation. The likelihood of occurrence of this
type of ambiguity is deemed relatively high as there are many homonyms in the
English language increasing the chance that one can be used unintentionally.
However, as many words in the English language can have multiple meanings,
it would result in a lot of false hits without an elaborate way of filtering. Lexical
ambiguity was thus discarded, but if a third type would be picked, lexical would
be the first choice.

The other types of ambiguity are to some extent viable but lack in one or
multiple aspects compared to those described above. Language errors can occur
in requirements, however, these errors can be hard or impossible to detect. Lan-
guage errors, such as spelling or grammar errors, can generally be detected by
a spell checker. But for a sentence to become ambiguous as the result of a lan-
guage error, the error needs to cause the sentence to have multiple meanings. To
detect these, the chatbot would, in turn, have to be able to determine the mean-
ing of a sentence, which is deemed out of the scope for this research. Analytical
ambiguity, elliptical ambiguity and attachment ambiguity could essentially also
be chosen, but they were not as there was no concrete plan to automatically
detect them. These ambiguity types, along with lexical ambiguity, can be an
interesting subject for future work.

3.2.3 Tools for detecting ambiguity

Before ambiguities can be resolved, they first need to be detected. Given the
definitions in the previous section, it is possible to find these ambiguities man-
ually in a text or a requirement. For a chatbot to act upon ambiguity with the
goal of disambiguation, ambiguities must get detected automatically. Different
tools and approaches exist in the literature to detect and sometimes even resolve
ambiguities. 20 tools or approaches were evaluated to gain a better understand-
ing in what techniques exist to detect ambiguities and how they can be applied.

Of all tools, Smella is one of the best defined and described. It is a tool
developed by Femmer et al. that automatically detects defects in requirements,
including ambiguity [25]. It does so by borrowing the concept of bad code
smells and applying it to the field of requirements engineering, calling them
requirement smells. Femmer et al. give a requirement smell four characteristics:

• A smell has a indicator for a quality violation of a requirement

• A smell does not guarantee a violation and thus, it always needs to be
evaluated with the context in mind

19

• A smell has within the requirement a concrete location

• A specific smell has a specific concrete detection mechanism that was
used to find the smell.

The smells do thus not indicate defects directly but rather findings that can
later be classified as defects. A defect is, in this case, an instance of a quality
violation. Smella gets requirements as input and gives a representation of the
results as output, including a dashboard and list of all found smells. To do this,
it has a 4 steps protocol: requirements parsing, language annotation, language
annotation and presentation.

First, the requirements parsing, which is a process of getting the require-
ments from a certain format (e.g. a word document or a CSV file) to a desired
format. This format is plain text files, one for each requirement. This is done
so that they can be used in the later phases of the process.

Second, language annotation is the step of providing meta-information on
the requirements. Smella has 3 ways of annotating the language in the require-
ments: POS tagging, morphological analysis and dictionaries & lemmatization.
Part-of-speech (POS) tagging is a way of determining the function of a word
in a sentence such as a verb, adjective, pronoun, etc. This technique is com-
mon among ambiguity detection tools and approaches. RESI is, for example,
a tool that uses POS tagging first to later apply rules to it to find so-called
problems, which include forms of ambiguity [39]. SREE also uses POS tagging
in combination with parsing in its syntactic analysis [68, 69] and POS tagging
is also a method used and mentioned by numerous others [22, 31, 12, 67, 73].
The second method Smella uses for annotation is morphological analysis, which
is based on POS tagging. It is a more in-depth analysis in which the inflexion
of the word is determined. Morphology is also used by Willis et al. to assist
them in predicting coordination ambiguity [72]. Last, Smella uses dictionaries
& lemmatization. A lemmatizer normalizes words to produce the original form
of the word. E.g ’does’, ’did’ and ’done’ will return to the word ’do’ if this lem-
matizer is used. These words are late matched against words from pre-defined
dictionaries.

Third, the identification of findings occurs. In this process, the informa-
tion from the language annotation is used to identify findings. Depending on
the type of smell a different technique was used by Femmer et al. as can be seen
in Table 1

20

Smell name Detection
Subjective Language Dictionary
Ambiguous Adverbs and Adjectives Dictionary
Loopholes Dictionary
Open-ended, non-verifiable terms Dictionary
Superlatives Morphological analysis or POS tagging
Comparatives Morphological analysis or POS tagging
Negative Statements POS tagging and dictionary
Vague Pronouns POS tagging: Substituting pronouns

Table 1: Smella, detection per type smell by Femmer et al. [25]

Last, the representation of findings, which occurs in Smella. It is possi-
ble to view, review and blacklist findings on a requirement level. The findings
are indicated in the requirements in a spell checker style.

The Quality Analyzer for Requirements Specifications (QuARS) is a tool for
the analysis of requirements documents. It aims to detect linguistic inaccuracies
and defects [42]. QuARS has two main analysis functions:

• Lexical technique: aimed at finding vagueness, subjectivity, optionality
and readability.

• Syntactical technique: aimed at finding implicity, weakness, under-specification
and multiplicity.

The methods that QuARS uses are a syntactic parser, a lexical parser, an
indicator detector, a view deriver and dictionaries. The syntactic parser works
as an early POS tagger as they yield approximately the same output. The
lexical parser identifies specific words and is used to supports the detection of
special terms. The indicator detector identifies the defects based on the output
of both parsers and creates a log file which is visualised by the view deriver.
The dictionaries are a passive part of QuARS and the contents are used by
both analysis and the view deriver. The analysis for both the lexical and the
syntactical technique is the same, but the output on the screen of the user will
differ depending on the selected method.

The NL2OCL project aims to translate natural language to object constraint
language. To accomplish this, the Stanford POS tagger and the Stanford Parser
are used. In their paper, Bajwa et al. describe that while the tagger and parser
are quite accurate, they can make some errors relevant to the project due to two
types of ambiguity [12]. The attachment ambiguity and homonymy, a form of
lexical ambiguity causing confusion on the syntactical identification of a word,
are identified as the causes.

To address the attachment ambiguity, the project combines the two inputs
it requires to function, namely a specification of a constraint and a UML class

21

model. By evaluating the parse tree with the UML, mistakes in the parse
tree caused by the attachment ambiguity can be fixed. As for homonymy, this
was fixed by mapping the tagged words to elements of the UML. With these
approaches, the project was able to improve the precision and recall of the Stan-
ford parser in the case of the attachment ambiguity and the accuracy concerning
homonymy. In addition to these three tools or approaches, many others exist.
The essentials of these tools are summarised in Table 2.

Name Publication Year Detects
QuARS QuARS: A Tool for Analyzing

Requirements [42]
2005 Lexical, syntactical

n/a Automatic identification of nocu-
ous ambiguity [72]

2008 Nocuous ambiguity

n/a An experimental ambiguity de-
tection tool [60]

2008 Ambiguity in general

SREE Avoiding ambiguity in require-
ments specifications [68]

2008 Lexical, syntactic

T1 and T2 Requirements for tools for am-
biguity identification and mea-
surement in natural language re-
quirements specifications [37]

2008 Lexical, syntactic

AMBER The Usability of Ambiguity De-
tection Methods for Context-
Free Grammars [15]

2009 Ambiguity (has mode for
ellipsis)

RESI RESI - A Natural Language
Specification Improver [39]

2009 Lexical and coordination
among others (not men-
tioned as these terms)

Ambidexter Ambidexter: Practical ambigu-
ity detection [14]

2010 Ambiguity in general

n/a Ambiguity Detection: Towards
a Tool Explaining Ambiguity
Sources [31]

2010 Lexical, syntactic, seman-
tic, pragmatic, vagueness,
language error

NAI Automatic Detection of Nocu-
ous Coordination Ambiguities in
Natural Language Requirements
[74]

2010 syntactical

n/a Analysing anaphoric ambiguity
in natural language requirements
[73]

2011 Anaphoric ambiguity

n/a Tool for Automatic Discovery of
Ambiguity in Requirements [55]

2012 Lexical, syntactic, syntax

NL2OCL
(project
name)

Resolving Syntactic Ambiguities
in Natural Language Specifica-
tion of Constraints [12]

2012 Focussed on homonymy
and attachment ambiguity

22

n/a Quality factor assessment and
text summarisation of unam-
biguous natural language re-
quirements [67]

2013 Ambiguity in general

RQA A framework to measure and im-
prove the quality of textual re-
quirements [30]

2013 Ambiguity as part of Cor-
rectness, Completeness
and Consistency

DODT The DODT tool applied to sub-
sea software [66]

2014 Ambiguity and other met-
rics

n/a Resolving Ambiguities in Natu-
ral Language Software Require-
ments: A Comprehensive Survey
[63]

2015 Ambiguities

n/a Detecting Vague Words &
Phrases in Requirements Doc-
uments in a Multilingual
Environment [22]

2017 Vague words and phrases

Smella Rapid quality assurance with Re-
quirements Smells [25]

2017 Subjective Language,
Ambiguous Adverbs and
Adjectives, Loopholes,
Open-ended non-verifiable
terms, Superlatives, Com-
paratives, Negative State-
ments, Vague Pronouns,
Incomplete References

REVV Pinpointing Ambiguity and In-
completeness in Requirements
Engineering via Information Vi-
sualisation and NLP [23]

2018 (near-) synonymy,
homonymy, incomplete-
ness

Table 2: An overview of disambiguation tools and approaches

23

3.3 Chatbot

This section gives an overview of chatbots. It starts with an introduction to
chatbots and ends with a framework to classify them. The classification is also
used to describe the chatbot created for this thesis in Section 4.2.

3.3.1 Introduction to chatbots

A software bot is “an interface that connects users to services” [44]. Lebeuf
remarks that people commonly and incorrectly use the terms software bot and
chatbot interchangeably. Chatbots are a domain within all software bots, mean-
ing that a chatbot is not necessarily a chatbot, but every chatbot is a software
bot. The chatbots differentiate themselves from the other bots by having a
conversational interface [9]. This definition is in line with both definitions from
Shawar and Atwell, “a software system, which can interact or chat with a human
user in natural language such as English” [64] and the Oxford Dictionary, “a
computer program designed to simulate conversation with human users, espe-
cially over the internet” [3]. In short, a chatbot is a specific bot that interacts
with human users through conversation.

3.3.2 Classification of chatbots

There are different ways to classify bots and chatbots depending on what at-
tributes the person making the classification focuses. Chatbots and software
bots are for these classifications again used interchangeably since most classifi-
cations do not make a distinction between them. The classification can depend
on the environment or platform that the chatbots use. So there can be a dis-
tinction made between Slack-based bots and Telegram-based bots. Another
distinction could be based on intention, namely good bots and bad bots. With
good bots containing chatbots, crawlers, transactional bots, informational bots
and entertainment bots while bad bots contain hackers, spammers, scrapers and
impersonators [9].

Bunardzic classifies chatbots in 4 types [8]:

• Stateless bots are bots that do not track a conversation. They process
the text send by the user and provide a reply, but there is no conversa-
tional end goal and the chatbot does not store information from previous
sentences. Most of the chatbots today are this type and they are relatively
easy to build

• Semi-stateful bots track conversations in a limited capacity. These
bots can be compared to an automated phone menu: the choice the user
makes earlier defines the options or responses the user can get later in the
conversation

• Stateful bots track conversations even more than the semi-stateful bots.
Where semi-stateful bots track the conversation only during a session,

24

stateful bots can track a conversation over multiple sessions. This means
that the bot should e.g. be able to answer questions on previous conver-
sations with the same user.

• Loyal bots are comparable to stateful bots in most ways. The distinction
is that stateful bots review the history of interaction upon receiving a
message while loyal bots do this on a scheduled basis. This results in the
fact that loyal bots should be able to provide more sophisticated services.

Lebeuf et al. proposed a taxonomy for software bots based on the properties,
behaviour and environment of a software bot [43]. The goal of this taxonomy is
to create a structure to examine and study bots. Three main dimensions were
created for the construction of the taxonomy in their research: the environment
dimension, the intrinsic dimension and the interaction dimension. These can
be seen with their respective facets in Figure 8. The environment dimension
describes the surroundings in which the bot operates. This can, in turn, have an
influence on the behaviour and capabilities of the bot. The intrinsic dimension
focuses on facets of the bot, describing the properties of the bot, such as its
goal. While it is often hard to determine some of these facets without having
the knowledge from the developers of the chatbot, all facets are designed so
that they can be identified. The interaction dimension consists of the different
facets on the interaction of a bot with entities in its environment. This can be
users but also other systems.

Figure. 8: High-level taxonomy of software bots by Lebeuf et al. from [43]

25

4 Artifacts description

In this chapter, all artifacts that are used in the experiment are described. The
main focus is the major artifact of this thesis, a chatbot. First, the development
of this chatbot is described, followed by placing it in a scientific context using
the taxonomy described in Section 3.3.2. Finally, the specific functionalities
are described and explained. Next to the chatbot, a requirements form comple-
menting the chatbot is presented. Lastly, scenarios are described, which contain
requirements that participants should extract in the experiment.

4.1 Development of ReqBot

We, this thesis’ supervisor and this thesis’ author, created an artifact in the
form of a chatbot to answer SQ4, answering SQ2 and SQ3 in the process. The
chatbot was later named ReqBot, short for requirements chatbot and will be
referred to as such. We designed ReqBot as a proof-of-concept tool to use in
the experiment phase of this thesis. ReqBot had to adhere to a few basic re-
quirements, R1 - R5, to fulfill this purpose.

R1: ReqBot has to be able to ask users questions which would yield all in-
formation a requirement needs. Going with the user story format this entails
the means: what a user wants changed or added; the ends: why a user wants
the means; and the role: what type of user the user is to the system.

R2: ReqBot has to be able to support a conversation. As the minimum
information we would want users to provide already consists of the 3 aforemen-
tioned parts, ReqBot has to be able to ask this information in a set of multiple
questions. It could be argued that all information (means, ends and role) could
be asked in one question. However, this could give an information overload to
the user, who could end up answering only a part of that question. After all, is
a chatbot that can only ask one question that different from an online form?

R3: ReqBot has to lead the conversation. This is necessary as we know
what information we need from a user to form a complete requirement. Not
every user can be expected to know this information and neither should they
if they get asked the right questions. This results in a conversation in which
ReqBot asks questions and the user answers questions and by answering these
questions the user specifies his or her wishes.

R4: ReqBot has to have the ability to detect certain types of ambiguity
and vagueness, more specifically referential ambiguity and vagueness for we
have chosen these as the best candidates to improve quality, as described in
Section 3.2.2.

R5: ReqBot has to be able to initiate a disambiguation process on the
detected ambiguity or vagueness. This entails an interaction with the user in

26

which ReqBot asks for clarification which would resolve the initial ambiguity.
The aim of this should be to resolve the ambiguity, which would positively im-
pact the quality of the requirement.

With these 5 basic requirements, we started the design process of ReqBot.
The first step was to find a platform and create a low-fi prototype. With this, we
could test the capabilities of the platform and discover the critical interactions
the chatbot would need to have. Most platforms that allowed sequential inter-
actions and thus supported the option for a conversation, had limited options
of adding custom code which was primarily needed for the detection of ambigu-
ities. See Appendix A for the tested platforms and frameworks including their
strengths and weaknesses. After several iterations, we decided to use the Bot
Framework from Microsoft [1]. This framework provides a basis to develop a
chatbot. Unlike most of the earlier used platforms, Bot Framework has no drag
and drop functionalities to build dialogue so everything has to be programmed
by hand. This does allow more freedom in terms of what the bot can do, recall
and process. This made Bot Framework the best choice for the development of
a chatbot for this thesis project.

Development was done in an iterative manner. During several meetings with
the thesis’ supervisor, we evaluated the newly created functionalities. During
these meetings, we also discussed what functionalities should be added, changed
or removed. These meetings continued until the week before the start of the
experiment, after which no changes were made.

About halfway through development, we planned sessions with 3 partici-
pants to test the current version of the chatbot. The main goal for us was to
get a grasp on how people would interact with the chatbot and what the weak
points were. The sessions were set-up in a semi-structured manner. We created
a scenario of a fictive person who is struggling with a system for these sessions
to give the participants some context to use the chatbot in. The scenario starts
with a general description of the person using the system and is followed by 5
requirements concealed in the text. More on scenarios can be read in Section
4.4.2 and all complete scenarios are located in Appendix D.

This thesis’ author gave the participants a short explanation of the research,
the chatbot and the goal of this session. The participants were encouraged to
think aloud if he or she would get stuck and to remember both positive and neg-
ative aspects of the chatbot. After this, the participants were given the scenario
and the chatbot, whereafter he or she would start interacting with the chatbot.
The participants were observed while interacting with the chatbot and after the
session, there was an unstructured interview on the experience with the chatbot.
Using the information gathered in these sessions, we made improvements on the
chatbot.

27

The major improvements were:

• ReqBot initiates the conversation

• A more elaborate explanation of the difference between a new feature and
an existing feature (later renamed to new idea and request a change)

• More diversity in responses from the chatbot

• An indication that the requirement will be used

The chatbot, ReqBot, will be further discussed in the next two sections.
First by placing it in the taxonomy of Lebeuf [44]. This taxonomy is made to
compare chatbots using a back box approach, meaning they can be classified
without having to know the inner structures of the bot. However, having de-
veloped the chatbot, we can provide more information on functionality and also
on design decisions. This is detailed in the latter section. The project’s code
has been placed on GitHub [4].

4.2 ReqBot under the bot taxonomy lenses

Lebeuf’s taxonomy was made to classify and evaluate software bots. As Figure
8 in Section 3.3.2 shows, Lebeuf divided the taxonomy in 3 parts: the environ-
ment dimension, the intrinsic dimension and the interaction dimension. Lebeuf
provided possible values or ranges for each of the facets in each dimension. Fig-
ures 9, 10 and 11 show the taxonomy of ReqBot in the environment, intrinsic
and interaction dimension respectively. The boxes with solid lines are the facets
and those with dotted lines are ReqBot’s values for these facets.

28

Figure. 9: Environment dimension based on the taxonomy by Lebeuf [43]

Starting with the Environment dimension, Lebeuf defines the environ-
ment relatively vague or open to interpretation as: “describes the surrounding
in which the bot lives and operates” [44]. This thesis’ interpretation of it is
that ReqBot lives operates from the Bot Framework emulator, making this its
environment and can interact with a user in that environment, namely the one
talking to ReqBot.

With this in mind, ReqBot’s environment type is a platform as it can only
run in the Bot Framework Emulator at this point in time. This also results in
the scope of the bot, being the size of its environment, to be limited and thus
bounded. The closure, who has access to the environment of the bot is thus
also closed, as only those with access to ReqBot’s code can access it at this
time. If an updated version would go live via Azure, these facets of the envi-
ronment of the bot would change. ReqBot would not be influenced by changes
in the environment so it is classified as static. The predictability of ReqBot
varies between deterministic and uncertain. All the actions of the bot can be
predicted in general, however for most responses we created different textual
formulations. Different responses with the same semantic meaning are used at
random to make the chatbot feel more human and less repetitive, thus making
it not fully predictable. The permanence of ReqBot is sequential as choices or
responses made by a user can affect the rest of the conversation, at least until
the conversation is ended. The environment has a countable population of 2,
namely the chatbot and the user. This, in turn, makes the environment hetero-
geneous as both members are of a different type: one a human, the other a bot.

29

Figure. 10: Intrinsic dimension based on the taxonomy by Lebeuf [43]

The Intrinsic dimension, as visualised in Figure 10, concerns among oth-
ers the facet knowledge. The memory of this knowledge is short-term and the
source is partially encoded and partially supplied. All knowledge of an inter-
action is reset after each termination of the bot, but during run-time, the bot
does use supplied knowledge such as a person’s name.

Concerning the reasoning of ReqBot, the mechanisms are scripted and the
predictability is deterministic as the same inputs would always yield the same
results. The predictability might seem mixed due to the earlier mentioned ran-
domisation of textual formulation, but as all have the same semantic meaning
this does not apply. ReqBot has complete agency as it can carry out its goals and
tasks without any approval from an external party. Its reasoning is in between
transparent and visible as it explains at times why something is happening to
make the user more aware of the situation and hopefully get a better response.

30

Furthermore, the reactivity is intentionally asynchronous to make the bot ap-
pear more human. A direct response was met with negative responses during
the testing sessions, while a delayed response gave the impression of the bot
thinking or processing the input. Lastly concerning the reasoning of ReqBot,
its scheduling is non-interrupting, meaning that only one task can exist at a
time. All other stimuli are ignored until that task is done.

ReqBot is non-adaptive as it is not able to change its behaviour at runtime
so all adaptability sub-facets are void. The bot has multiple goals, with the
main one being: to elicit end-user requirements. The bot’s other goal is to
reduce ambiguity. The complexity of this is considered as rather low since it
can be fulfilled by having a user answer a few questions, there are no complex
calculations needed to complete the goal. The criticality is low as well as the
consequence of failing the goal coincides with one end-user not entering his or
her requirement. While this should not happen, no critical business functions
depend on the bot to achieve its goal. By having such an easy or well-defined
goal, it becomes achievable. Furthermore, the goals are quite explicit as parts
of them are even mentioned to the user during interactions to help the user un-
derstand the intentions of ReqBot. The source of the two main goals differs as
the bot always tries to elicit requirements making it an internal goal, meaning
the goal originates from and is triggered within the bot. However, the goal of
reducing ambiguity only is triggered if ambiguity occurs in the environment,
moving its source to external.

Concerning the delegation of ReqBot, the degree in which the bot has the
authority to act on the behalf of others, it sits in between partial and com-
plete. The bot has the authority to act as an elicitation assistant, but only
provides potential requirements. At this stage, the requirements would need to
be manually analysed. ReqBot is a very specialised bot as it is made for one
purpose: to elicit end-user requirements. If e.g. one were to attempt to make
a random conversation with the bot, it would not be able to respond accordingly.

As for anthropomorphism, the bot has besides its name, ReqBot, and its
profession of a requirement elicitation assistant no anthropomorphic features.
These features were not deemed crucial for the bot and some could even be
counterproductive as they could present an overload of information to the user.
Closing this dimension is the lifecycle. ReqBot is created by a human when it
is started and will not terminate until it is instructed to, making its lifespan
continuous. The bot is also not able to create other bots or instances of itself.

31

Figure. 11: Intrinsic dimension based on the taxonomy by Lebeuf [43]

The third and final dimension, the interaction dimension, is visualised in
Figure 11. ReqBot is allowed complete access to every part of its environment it
is able to access, so there are no artificial restrictions. However, discounting the
user it can not access or sense anything in its environment and is also unable to
make changes to it. The bot has no sensors to pick up stimuli or physical output
options. However, ReqBot is communicative with the user via text messages.

The disposition of the bot, its willingness to help, falls between cooperative
and benevolent as it focuses on one task and assuming it is the same task as the
user has, ReqBot will provide help. During this, it is truthful as no intentional
lie or deception is built in. During the interaction it interacts one-on-one with a
user and the direction of the conversation is a limited two-way. The user is not
at any point in the conversation able to drastically influence the responses of the
chatbot, but at several points, the bot and the user can influence one another’s
reaction. At all times, the bot is direct with its interaction, asking the informa-
tion it needs. The language capabilities it uses to do this vary from keywords to
natural language. While ReqBot is not able to semantically understand natural
language, it uses it for various purposes, such as processing it to find ambiguities.

An important aspect to realise of ReqBot is that this chatbot is proactive.
Unlike a vast number of chatbots, ReqBot does not answer questions by match-
ing the best response to the question. It leads the conversation, asks questions
and guides the user. This makes it possible to collect requirements as the
user might not know what information is needed for a complete requirement.
However, by splitting the required information up in smaller pieces and let the
chatbot ask these to the user it can elicit the right information and thus the
requirement.

32

Finally concerning the robustness of the bot, it has several options for error
prevention, which can both be done by the user and the bot. ReqBot provides
for certain questions a few clickable options, preventing the user from making
an error at that point as any other input will not be accepted. The user has the
option to prevent errors in an acceptance interaction in which the bot shows
the full requirement and requests if it is correct as it is. If the user thinks that
this is not the case, he or she can make a change in the means, ends or role.
Whereafter the bot returns to the same confirmation question. ReqBot is also
able to discover errors in the form of ambiguity. The user can correct these by
specifying his or her intention once the bot asks for specifics.

4.3 Functionality of ReqBot

Figures 12, 14, 16, and 15 show all functionalities of ReqBot using the Business
Process Modeling Notation (BPMN) 2.0. The complete BPMN diagram is vi-
sualised in Appendix B. This diagram shows the path through the chatbot with
all interaction possibilities of a user.

Most activities represent one response, either from the chatbot or from the
user. Some do however represent more than one response to keep the diagram
cleaner and focused. Most responses from ReqBot have several variants with
the same semantic meaning, e.g., an affirmative response could be “All right,
thanks”, “Noted it”, “Thank you, I got it” or “Okay, I got that”. If several
variants exist, one will be picked at random. This was implemented to make
ReqBot less stale and provide variation to keep a user engaged if that user would
enter multiple requirements and thus would go through the same dialog. All
possible dialog responses can be read in Appendix C.

Figure. 12: BPMN model of ReqBot 1/3

33

The chatbot starts each conversation with an explanation of itself and re-
quests the name of the user in the next message. This is visualised in Figure 12.
After a name is entered, ReqBot explains that it can help with entering a change
request or a new idea and the user is presented with two buttons, one for each
option. At this point, the user has to pick one of these options, all other at-
tempts would yield a message urging the user to choose one of the options.
There are 3 standard ways to pick an option in the Bot Framework: (1) click
the button, (2) type the text of the button and send, (3) enter and send the
number corresponding to the number of the option. So the left button would
always be 1, the one next to it 2, etc. This holds for all option-interactions of
the user. In the diagram, these can be recognised by the word choose in the user
lane. Figure 13 gives an example of what this part of the conversation amongst
others looks like in practice.

Figure. 13: Screenshot of a conversation with ReqBot

If the user picks the option Request a change, ReqBot asks an additional
question, namely which component this change concerns. The user has several
options, including the option Other... which allows the user to type an answer
other than the given options. ReqBot tells the user that it understands that
the option was not in the list and asks if the user can write it down. This is
thus an example of multiple responses within one process in the diagram. All
processes with choose in italic also have this option of the user adding a non-
listed response. The additional question has been added to further clarify and

34

classify the requirement. If a requirement is written in a manner that is unclear
or ambiguous, it might be solved by placing it in the context of a component.
Moreover, it would make sorting requirements easier if ones concerning com-
parable components could automatically be sorted together. This question is
only triggered if the user requests a change as a change, per definition applies
to something existing. On the other hand, a new idea can be but does not have
to be part of an existing component. With software development in mind, we
wanted to keep it as high-level as possible, so the user would have a realistic
chance to identify where the change should apply to. Therefore, we opted for
components and made the suggestions broad and clear such as account, login
or menu.

Figure. 14: BPMN model of ReqBot 2/3

After picking a component or answering Suggest an idea, the user is asked
the means, the ends and the role, as depicted in Figure 14 which has been con-
nected to the other parts of the model via link events. The role is choice based
with the option Other... to write down a role if it is not one of the options.
The order of these three is based on importance and the train of thought of
the user. Asking why one would want something before asking what they would
want would clash with this train of thought. How can you answer why you want
something if you have not yet formulated what you want? This results in the
means being placed before the ends. The role is less intertwined with those and
could thus be placed before or after the means and ends. By putting the role
last, ReqBot starts to ask what the user wants, which is probably the reason
someone would use the chatbot in the first place: they want to add or change
something. Therefore, we deemed it best to start with the means to keep the
user engaged.

35

Figure. 15: BPMN model of ambiguity detection and resolution

After entering the means and after entering the ends an ambiguity control
takes place. This sub-process is visualised in more detail in Figure 15. Once the
user enters the means, this text will be analysed for vague words. These vague
words are stored in a separate CSV file and are largely based on the words used
to detect vagueness in QuARS tool, originally proposed by Lami [42]. We com-
bined an initial list of vague adjectives and their comparatives and superlatives
used for testing with the complete list from the QuARS tool to get the final list
of vague words. Once a vague word is detected, ReqBot asks the user if it would
be possible to specify that word, preferably using units. After the user enters
this, the bot proceeds to ask the ends. If more vague words are used in one
sentence, only the first one will be detected as we decided that no more than
1 disambiguation attempt can be made per response of the user. By asking 2
or more questions, we might discourage the user to continue and lower their
satisfaction. Detection of referential ambiguity does not occur in this process
as this would be the first full sentence the user would type, meaning that there
is little to refer to at this point.

The ambiguity control that occurs after the ends are entered works similar
to the one after the means is entered. The check for vagueness works exactly the
same, however, before this check is initiated a check for referential ambiguity is
performed. If a referential ambiguity is found, no detection for vagueness will be
done keeping in line with a maximum of 1 disambiguation attempt per response
of the user. The detection of referential ambiguity works as follows:

1. Means and ends are POS tagged via an API by NLTK [7]

2. Check if 2 or more nouns exist in the means

3. Check if 2 or more nouns exist in an earlier sentence in the ends (only
applies if multiple sentences are used in the ends)

36

4. Check for personal pronouns in the ends

5. If 4 and either 2 or 3 are true, the disambiguation process is triggered

ReqBot asks in the disambiguation process to what the personal pronoun
refers and gives all nouns from 2 and/or 3 as options. The options None of the
options and Multiple words. . . are added. The former continues the conversa-
tion directly to the request for the role, while the latter gives the user the option
to type in an answer.

Figure. 16: BPMN model of ReqBot 3/3

Once the role is entered, ReqBot will give an overview of what the user has
entered for the means, ends, role and possibly component. Thereafter it asks
if the user wants to submit the requirement or make changes. The option of
making changes lets the user choose what part should be changed: the means,
ends or role. After changes are made, ReqBot shows the overview again with
the same question. Once the requirement is submitted, the bot tells the user
on how to track the requirement using a code and asks if the user wants to be
notified by email. If the user chooses to be notified by email, the bot will ask
for the email address. These interactions were added to give the bot a sense
of more realism and to show the users that their input is being used. In this
version, those options are available but have no consequences. So no one will be
emailed if they enter their email address. Lastly, ReqBot asks if the user wants
to enter another requirement or end the conversation. If the user chooses to
enter another one, they are taken back to the first question: whether this one
is a new idea or a change. Once the user chooses to end the conversation, all
requirements in that session will be written to a CSV file and the conversation
will end.

37

4.4 Other artifacts

4.4.1 Requirements form

We created several other artifacts besides the main artifact, ReqBot, to conduct
the experiment. We created a Google form containing the same questions as
the chatbot, as can be seen in Figure 17. This is the artifact with which the
chatbot will be compared. The Google form, also referred to as the require-
ments form, represents current non-interactive methods of gathering end-user
requirements. The questions and the formulation of each question remained
the same in both the chatbot and the form to improve comparability between
the two. If in one the questions were phrased differently or combined in larger
questions, the difference in any results could be contributed to the formulation
of questions instead of the method.

Figure. 17: A screenshot of a section of the requirements form

38

The form starts with an explanation and then asks the name, notification
preference and email of the user. After which, each page consists of one re-
quirement, consisting in turn of means, ends and role. For each of these three
parts of the requirement, the exact same wording was used as in the chatbot.
Each requirements page contained a fourth question, asking whether the user
would want to add another requirement. If they answered yes, they could enter
another requirement with a maximum of 7 and on a no, the form jumps to the
final page. This way we made it possible for users to enter as many requirements
as they deem necessary.

4.4.2 Scenarios

We also created scenarios that participants would use during the experiment.
A scenario is a fictive story about a fictive individual that uses a real system.
In the scenario, the fictive user addresses some of the problems he or she has
with that system.

We created the scenarios for several reasons. First, scenarios ensure that
participants enter requirements that should be semantically similar for each sce-
nario. Without scenarios, participants could come up with wild ideas or things
that are not actually requirements making analysis harder. Second, thinking
up requirements on the spot can be hard and time consuming for participants.
According to Bloom’s taxonomy [19], later revised by Kratwohl [40], 6 levels
of learning exist hierarchically. The highest and thus hardest level is to create
something, which is what we ask from participants, namely to create a require-
ment. By making sure that all the pieces are present to make a requirement
we lower the cognitive load compared to if participants would have to come up
with requirements on their own. Last, scenarios make it possible to measure the
correctness of a certain requirement. A participant either did fill in a certain
part of the requirement or did not. The main drawback of using scenarios is
that it creates an artificial situation far removed from reality.

We created 5 scenarios, 1 for the sessions during the development of the
chatbot and 4 to be used during the experiment, all can be found in Appendix
D. A scenario starts with the name of the system. In the experiment, we used
Google Maps, Facebook, Youtube and Thuisbezorg.nl (a Dutch food delivery
app). After that, the fictive person is introduced and the way that person uses
the system and with which goals. This part contains no requirements. Below
the introduction are 5 stories, each entailing one requirement. Each story con-
tains 1 thing the person would want to change or add and at least one reason
why. In other words, the means and the ends. Take this story on Google Maps:

While looking at the map, he cannot read all of the street names.
Bran does not want to zoom in to enlarge them as that would lower
his overview. He thinks there should be a way to increase or double
the size of these characters.

39

In this story the fictive person wants to increase the size of the characters of
the street names (without zooming in) (=means) so that he can read the street
names (=ends).

All scenarios concern relatively well-known systems so that participants can
visualise what each requirement means. A more niche system might deter par-
ticipants that have never heard of the system as they might not know the system
and have trouble understanding the scenario. However, participants do not have
to be users of the system in the scenario to be able to use it in the experiment.
The way the scenarios are written only requires the most basic of knowledge
of that system to complete the scenario. The application of a fictive person is
applied to avoid the possibility that participants do not see these requirements
as their own ideas and react to that. By making them part of someone else’s
wishes and only let the participant translate those, we hope to create a level
of detachment, preventing interpretation and input from out of the scope of
the scenario. Final, all scenarios were kept at approximately the same length
preventing large fluctuations in results by the sheer size of the scenario.

40

5 Experiment and results

In this chapter, the experiment and the obtained results are discussed. First,
the experiment is described in detail, followed by the selection and contacting of
participants. Whereafter, the method of analysis, the hypotheses and statistical
results following the experiment are described.

5.1 Experiment

In this section, the experiment is described in detail. First, the preparations and
set-up are described, followed by the experiment procedure including handling
questions, see Appendix F for a step-wise version of the procedure. Last, the
participants are discussed and how they were contacted. The results of the
experiment are discussed in Section 5.2

5.1.1 Set-up

During the experiment, we used participants to test 3 different conditions of en-
tering requirements: the requirements form, the chatbot with ambiguity detec-
tion enabled (hereafter referred to as ReqBot+) and the chatbot with ambiguity
detection disabled (hereafter referred to as ReqBot regular). Each participant
completed the requirements form and one of the chatbots using 2 different sce-
narios during the session. We decided to let every participant do 2 conditions
to gain more data from the same number of participants while simultaneously
gathering paired data. To counter influence on the results based on which con-
dition was done first and which was done second, they were assigned using a
randomised planning. So one participant starts with the form and then does
one of the chatbots, while the other could start with one of the chatbots. The
scenarios were also assigned using the same randomised planning.

With 4 scenarios and 3 different conditions, there are 12 combinations, dis-
counting which of the 2 scenarios comes first. The planning ensures that every
combination is evenly distributed. This means that e.g. the scenario Facebook
in combination with ReqBot regular will be as frequent as the scenario Google
Maps with ReqBot+. The exception is the combinations with the requirements
form as they are as frequent as both versions of the chatbot combined and thus
twice as frequent as one of the versions of the chatbot. See Appendix E for the
resulting planning.

5.1.2 Experiment procedure

Each experiment started with a short explanation of the experiment after wel-
coming the participant. After this, they were given an informed consent form
and a written down introduction to the experiment. After they signed and read
these, they were given their first scenario and condition. Once they entered all

41

requirements, they were given the system usability scale (SUS) questionnaire
[20]. Once they completed this, they were given the second scenario and con-
dition followed by the second SUS questionnaire. Hereafter, the participants
would be thanked for their participation and the session ends. The detailed
approach and the aforementioned description of the experiment can be found in
Appendix F and Appendix G, respectively.

We started with a pilot, which involved 2 participants and was used to deter-
mine whether the experimental approach needed any changes. After evaluation,
we concluded that no changes were required. Therefore, the experiment ap-
proach remained unchanged and the data from the pilot was used as regular
data in the analysis. Each session was performed one-on-one with a participant
in rooms with as little as possible external stimuli, meaning no crowded or noisy
locations were used. This was to minimise distractions for the participants dur-
ing the experiment, which could influence the results. A session took about 20
to 40 minutes from beginning to end.

During a session, participants were able to ask questions. The thesis’ author
answered all linguistic questions, such as what a specific word means. All ques-
tions on the proceedings before a participant received the condition and scenario
were also answered. If a participant were to ask questions such as whether they
should add another requirement or what the role of the fictive user is, the an-
swer would be more generic e.g. “do what you think is best” or “both options
are fine”. This way, the resulting influence of questions from participants was
attempted to be minimised.

5.1.3 Participants

Participants were not selected based on demographics as anyone using a system
can be an end-user who could submit a requirement. The only people that were
excluded were those who do not use the internet on a regular basis, have no
affinity with technology at all or can not read and write English. We gathered
participants from my personal and study network, combined with the network
of the supervisor. In their invitation, potential participants were given a short
explanation of the experiment and an indication of the time it would take. They
could select a time and date over a period of 3 weeks, using a calendar tool.
The aim was to reach 40 participants so we could do a meaningful quantitative
analysis.

42

5.2 Results

The results of the experiment described in Section 5.1 are presented. First, an
introduction to the analysis of the data is presented along with general descrip-
tive results. Then, the results from the system usability scale questionnaire
yielding the usability scores are described. Whereafter, the correctness of the
requirements that are entered by the participants is described. Finally, the qual-
ity aspects of the requirements are analysed. This focuses on the detection and
resolving of ambiguities in the requirements. In the sections on usability and
correctness, the applied metrics are described first. Whereafter, the hypotheses
are given and explained, followed by the statistical results. The implications of
these results are presented and discussed in Chapter 6.

5.2.1 Collected outputs

Over a period of 4 weeks, 40 participants took part in this research. Each of
them completed 2 of the 3 conditions (Form, ReqBot regular and ReqBot+).
This resulted in a total of 395 requirements produced by the participants. 197
of them came from the form, 98 from ReqBot regular and 100 from ReqBot+.
This does not add up to 400 (40 participants * 2 conditions * 5 requirements per
condition) as participants were practically free to enter as many requirements
as they perceived.

The Google form had an upper bound of 7 requirements, which was not
reached as no participant entered more than 5 requirements in any condition.
The data that has been collected on one requirement consists of the participant
number, the condition, the means, the ends and the role. Both chatbot condi-
tions also gathered the component the requirement relates to if it is a change
and old means, ends and role if the participant used the make changes function.
Last, ReqBot+ also contains detected ambiguities and their resolution.

Concerning the SUS questionnaire, the condition and participant number
combined with the scores of all 10 questions was collected and stored. These
scores range from 1 to 5, with 0 representing the answer completely disagree and
5 representing completely agree. Each participant filled in 2 questionnaires, one
for each condition. This resulted in 40 SUS scores on the form, 20 on ReqBot
regular and 20 on ReqBot+.

5.2.2 Usability

The system usability scale is a 10 item scale that gives a subjective assessment
of the usability of a system [20]. It was proposed by Brooke and adheres to
a 5 point Likert scale. The scale yields a score between 0 and 100, which is
computed as follows:

43

• The results were transformed into numerical scores ranging from 1 to 5,
with 1 representing the option completely disagree and 5 representing the
option completely agree.

• For questions 1, 3, 5, 7 and 9, 1 is subtracted from the numerical score.

• For questions 2, 4, 6, 8 and 10, the numerical score is subtracted from 5.

• The resulting scores are added and multiplied by 2.5 creating a scale from
0 to 100

Lewis and Sauro argue that the system usability scale can be divided into
both usability and learnability. They make the case that question 4; “I think
that I would need the support of a technical person to be able to use this system”
and question 10; “I needed to learn a lot of things before I could get going with
this system” measure learnability, while the other 8 questions measure usability
[46]. The 8 question usability variant will be referred to as restricted usabil-
ity and the original approach by Brooke as usability.

Lacking a proper scale for restricted usability and learnability, both are put
on a 0 to 100 scale to be more comparable with regular usability. To accomplish
this, restricted usability scores are multiplied by 3.125 instead of 2.5 and the
scores of learnability with 12.5 instead of 2.5. To ensure completeness, both
approaches, thus Brooke’s and Lewis and Sauro’s approach, are used in this
analysis.

5.2.2.1 Hypotheses

With 3 conditions (form, ReqBot regular and ReqBot+) tested on participants
and 2 usability plus another learnability interpretation, there will be 4 compar-
isons made on the SUS score for each interpretation. These are form - ReqBot
regular, form - ReqBot+ , form - chatbot combined and ReqBot regular - Re-
qBot+. By applying statistical tests, the research aims to draw conclusions on
which condition is rated highest in terms of usability.

4 hypotheses were created which would be tested to determine whether a
condition yields a significantly higher score than another. Both interpretations
of usability were grouped together in these hypotheses as they were the hy-
potheses same for each interpretation.

U1: Form - Chatbots combined

H0 There is no significant difference between the usability/learnability score
of the form and the chatbots combined

H1 The chatbots combined have a significantly higher usability/learnability
score than the form

44

U2: Form - ReqBot regular

H0 There is no significant difference between the usability/learnability score
of the form and the chatbot

H1 The chatbot has a significantly higher usability/learnability score than the
form

U3: Form - ReqBot+

H0 There is no significant difference between the usability/learnability score
of the form and ReqBot+

H1 ReqBot+ has a significantly higher usability/learnability score than the
form

U4: ReqBot regular - ReqBot+

H0 There is no significant difference between the usability/learnability score
of ReqBot regular and ReqBot+

H1 ReqBot regular has a significantly higher usability/learnability score than
ReqBot+

The rationale behind these hypotheses is that a user would prefer to interact
with a chatbot, rather than a one-sided interaction with a form. As for U4, it is
expected that the interaction will be longer because if an ambiguity is detected,
extra dialog will follow. In this dialog the user would be requested to clarify him
or herself, which would lower the usability due to this possibly being interpreted
as annoying or time-consuming.

5.2.2.2 Statistical results

Table 3 shows the mean usability scores of each condition and interpretation.
The scores are quite close to one another, but in each interpretation, ReqBot
regular has the highest scores. So ReqBot+ was also rated slightly lower than
ReqBot regular. It should also be noted that the learnability scores are higher
than the restricted usability scores, almost to the point of perfect scores. This
indicates that the learnability of each condition was deemed high by the partic-
ipants, which can be caused by e.g. the conditions being simplistic, intuitive or
well explained. Whether the high learnability scores were due to one of these
factors, a combination or other factors could not be concluded from the data.

Condition\Interpretation Usability Restricted usability Learnability
Form 78.1 74.2 93.8
Chatbots combined 79.6 76.1 93.8
ReqBot regular 81.4 77.8 95.6
ReqBot+ 77.9 74.4 91.9

Table 3: Mean usability/learnability scores (scale 0 - 100)

45

To discover whether the difference in usability is statistically significant be-
tween the conditions, the related samples Wilcoxon signed-rank test was used
for U1, U2 and U3 as these deal with paired values. This is due to the partici-
pants completing 2 conditions each. For U4 the Mann-Whitney U signed rank
test was used as both versions of the chatbot are compared in this case and the
participants were assigned one version of the chatbot and the form, never both
versions. This means the samples of these are not paired.

Figure 18 shows the frequency of the differences in usability scores between
the form and both chatbots combined. In this chart, the scores from the form
are subtracted from the scores from the bots. This results in the bots scoring
25 times higher than the form; the form scoring 14 times higher than the bot
and 1 draw.

Figure. 18: Frequency in differences between usability scores between the bots and
the form

This apparent preference for the chatbots does, however, not translate into a
significant difference. In fact, U1, U2, U3 and U4 yield for every interpretation
a p-value well above 0.05, meaning H0 can not be rejected in any case. This

46

means that ReqBot regular, ReqBot+ and the form do not differ significantly in
terms of usability, restricted usability and learnability scores. All p-values can
be found in Appendix H.

5.2.3 Correctness

The correctness score of a participant on a condition ranges between 0 and 10.
It is made up of all the individual correctness scores of a requirement, each
varying between 0 and 2 points. 1 point can be scored for the means and 1
point can be scored for the ends. To determine whether a means or an ends
was correct, we, this thesis’ supervisor and this thesis’ author, created a golden
standard for each scenario.

The golden standard consists of tagged parts of sentences of the story making
up a requirement. It represents the essence of the means and the ends that has
to be included in the requirement of the participant for it to be tagged as cor-
rect. To get this golden standard, we individually tagged the parts of sentences
that contain the means or the ends for each requirement from every scenario.
After which, we compared and discussed the results ending in a consensus being
the golden standard.

Using the golden standard, we individually tagged every means and ends
of the participants’ responses as either correct or incorrect. Whereafter, we
deliberated all disagreements resulting in a consensus on whether a means or
an ends was correct. In a few cases, a participant combined 2 requirements in
1, thus only entering 4 in a scenario. If it was clear that this was the case and
both the means and ends from both requirements were present in that single
requirement, it would get full points for both requirements.

5.2.3.1 Hypotheses

Comparable hypotheses were made to usability were made for correctness as
the same conditions are compared, just a different aspect of it. However, unlike
usability correctness is not split up but remains as one variable. By testing the
following 4 hypotheses, differences in correctness could come to light.

C1: Form - Chatbots combined

H0 There is no significant difference between the correctness score of the form
and the chatbots combined

H1 The chatbots combined have a significantly higher correctness score than
the form

C2: Form - ReqBot regular

H0 There is no significant difference between the correctness score of the form
and ReqBot regular

47

H1 ReqBot regular has a significantly higher correctness score than the form

C3: Form - ReqBot+

H0 There is no significant difference between the correctness score of the form
and ReqBot+

H1 ReqBot+ has a significantly higher correctness score than the form

C4: ReqBot regular- ReqBot+

H0 There is no significant difference between the correctness score of ReqBot
regular and ReqBot+

H1 ReqBot+ has a significantly higher correctness score than ReqBot regular

These hypotheses are based on the rationale that it is expected that with a
chatbot asking for blocks of information (means, ends and role), the participant
stays focused on the task of providing this information and that this would
trigger the participants to actively search for this information in the scenarios.
This would result in a higher correctness score for both chatbots compared to
the form. There is not a significant difference expected in terms of correctness
score between both chatbots. If it exists, it is expected that the correctness
score in ReqBot+ would be higher as it keeps the participants longer engaged.
This gives them more time to recognise a mistake and correct it.

5.2.3.2 Statistical results

Table 4 shows the mean correctness scores for each condition. There is not that
much difference between the correctness scores, but overall the chatbots score
combined better than the form. This is largely due to ReqBot regular yielding
the highest correctness score.

Condition Correctness score
Form 8.1
Chatbots combined 8.3
ReqBot regular 8.7
ReqBot+ 7.9

Table 4: Mean correctness scores

To discover if there would be a significant difference between the conditions
in term of correctness, the related samples Wilcoxon signed-rank test was used
for C1, C2 and C3. Comparably to the usability analysis, these concern paired
scores, while C4 has unpaired scores. For that hypothesis, the Mann-Whitney
U signed rank test was used.

Figure 19 shows the frequency of the differences in correctness scores between
the form and both chatbots combined. The scores from the form are subtracted

48

from the scores from both bots for each participant and the frequency of the
result is displayed. Interestingly, there are 10 ties, meaning a quarter of the
participants scored equally high in both conditions. Furthermore, most of the
differences are minimal, concentrated at 0 and there seems to be little between
both conditions.

Figure. 19: Frequency in differences between correctness scores between the bots
and the form

The similarity in scores can also be traced to the results of the statistical
tests. In all 4 cases, the p-value was too high to reject H0, meaning none of the
conditions are significantly different from one another in terms of correctness.
Interestingly, the comparison between both chatbots came closest to significant
results with a p-value of 0.13. With the mean correctness scores of ReqBot
regular being higher than those of ReqBot+, it almost rejected both H0 and
H1, defying the expectation from C4. See Appendix H for all p-values.

49

5.2.4 Quality

ReqBot+ detects and resolves ambiguities as described in Section 4.3. The 2
major parts are detection and resolution and are evaluated separately. ReqBot+
processed 200 means and ends from 100 requirements created by 20 participants
in total. All means and ends were individually analysed for referential ambigu-
ity and vagueness to check whether all were detected or detected correctly.

For each response, the bot could either (i) correctly detect an ambiguity; (ii)
incorrectly detect an ambiguity; (iii) correctly detect no ambiguity; or (iv) in-
correctly detect no ambiguity. These options result in (i) true positives; (ii) false
positives; (iii) true negatives; and (iv) false negatives respectively. These results
are listed in Table 5. The 3 ambiguities that can be detected are vagueness in
the means; vagueness in the ends and referential ambiguity

Vague means Vague ends Referential ambiguity Total
True positive 3 2 1 6
True negative 91 97 86 274
False positive 1 0 13 14
False negative 5 1 0 6

Table 5: Detection of ambiguity in the ReqBot+ condition

This yields an overall precision of 0.3 and a recall of 0.5. These are
not great scores but they are highly influenced by the detection of referential
ambiguity, which has a quite basic algorithm for detection. Only looking at the
detection of vagueness would yield a precision of 0.8 and a recall of 0.5.

In the other two conditions, the form and ReqBot regular, there are also
ambiguities. However, these were not automatically detected and resolved as
there was no mechanism active to do this nor was this desired for these con-
ditions. The ambiguities were detected using the same manual analysis as for
ReqBot+. This results in a total of 29 ambiguities in all conditions combined.
20 of these are vague means, 5 are vague ends and 4 are referential ambiguities.
For this dataset of 395 requirements, it means that 7.3% of them contains one
of the researched ambiguities.

50

6 Conclusion

In this chapter, we discuss the results of our study and use them to answer
the research questions. We first address the sub-questions and then answer the
main research question.

6.1 Conclusion of sub-questions

To provide structure to the research process, 4 sub-questions were formulated.
The first sub-question is fully based in the theoretical foundation and the second
is partially based in literature and partially an own design. The third is mainly
focused on an iterative design process with links to the theory and the fourth is
based on the results of the experiment.

SQ1 What measures determine the quality of a requirement?

What measures determine the quality of a requirement depends on the type of
requirement. As there are many formats to write requirements, not all formats
can adhere to the same detailed measures. More generic measures such as Phol’s
three dimensions framework can be used for any format [58, 57]. However, to
get easier-to-assess measures, the requirements format needs to be specified.
For this research, that format was user stories. For user stories, the quality
user story framework provides 13 measures, so-called criteria, to determine the
quality, see Figure 6 in Section 3.1.1. These criteria are not always the most
atomic measures but can consist of measures of their own. The criteria this
research focuses on, ambiguity, has multiple different types each with its own
implications, see Figure 7 in Section 3.2.1. This research zooms in on two types
of ambiguity that can be measured in a requirement:

• Vagueness: When it is not clear or impossible to measure whether the
requirement is fulfilled

• Referential ambiguity: When an anaphor can take its reference from more
than one element, each playing the role of the antecedent

Concluding, there are multiple ways of measuring the quality of a requirement.
Picking the right one depends on the requirement format and where you want
to place the emphasis. In this thesis, because the expected impact of these
ambiguities on the requirements was high and the practicality of detecting and
resolving them seemed achievable, we chose vagueness and referential ambiguity.

SQ2 What techniques can be used to automate the detection of defects in a
requirement for a selected measure, as defined in SQ1?

The two measures for ambiguity and thus quality, have to be detected after
an interaction to be resolved during the conversation. Vagueness and especially

51

vagueness of words can be detected using a list of vague words [69, 42]. If a word
on that list occurs during a conversation, the detection should trigger a response.

Referential ambiguity can be resolved by implementing coreference tagging.
However, the free-to-use tools focus on coreference resolution instead of just
tagging all the possible words an anaphor can take its reference from. This
resulted in the creating of a new algorithm, that focuses on finding nouns in
sentences placed before a pronoun, see Section 4.3 for the algorithm.

SQ3 How to design and construct a requirements elicitation chatbot for improv-
ing the quality of requirements?

Designing a requirements elicitation chatbot starts with understanding what
kind of chatbot should be made. First, a set of requirements must be chosen for
the chatbot, whereafter a platform or framework can be chosen based on those
requirements. After which development can start, using prototypes in iterations
to see what works and adjust the chatbot accordingly.

With the use of this approach, we constructed ReqBot. ReqBot leads the
conversation with the user by asking questions to the user in a specific order.
These questions include the means, the ends and the role, which are needed
to construct a requirement. Depending on the answer or choice of the user,
ReqBot can give alternate responses or ask additional questions. By applying
the methods from SQ2, ReqBot checks for ambiguity after the user enters the
means and the ends. If an ambiguity is detected, ReqBot will ask for clarifica-
tion. In the case of vagueness, ReqBot asks the user to specify that vague word,
preferably with units. For referential ambiguity, ReqBot asks to which noun
the pronoun refers, providing a selection of nouns the user used earlier. In this
manner, ReqBot attempts to improve the quality of requirements, by resolving
certain types of ambiguity.

SQ4 How effective is the chatbot, as created in SQ3, in eliciting high-quality
requirements?

The elicitation process of both versions of the chatbot (ReqBot+ and ReqBot
regular) has been contrasted with a Google Form, which is a representation of a
current non-interactive method of gathering end-user requirements. The analy-
sis took 3 dimensions in account:

Usability
There is no significant difference detected in terms of usability between the bots
and the form, meaning none is deemed better in terms of usability. However,
this also indicates that none of them is deemed significantly worse. So even Re-
qBot+, which could and did falsely trigger a disambiguation process from time
to time did not harm its usability scores in a significant way. This indicates
that users are willing to clarify possible ambiguities, even if the subject matter

52

is not ambiguous at all, without letting it negatively impact their experience in
a significant way. Moreover, the usability scores in their own right were accept-
able to good, being 78.1 for the form and 79.6 for the chatbots combined.

Correctness
In terms of correctness, there was no significant difference between all condi-
tions. This indicates that the type of interaction, from stale as with the form to
interactive as with the chatbot, does not significantly affect how well users can
formulate requirements given a scenario. Individual differences in correctness
can occur, but these can have a variety of causes such as reading skill or the
concentration of the user.

Quality
The quality of the requirements, represented by vagueness and referential am-
biguity, is improved in a few cases of with ReqBot+. In 100 requirements, there
are 6 cases in which an ambiguity was correctly detected and resolved. This
indicates that it is possible to improve the quality of requirements using an
interactive chatbot with ambiguity detection. However, another 6 ambiguities
were missed and in 14 cases the detection was triggered wrongly. This resulted
in a precision of 0.3 and a recall of 0.5 for ReqBot+, which is quite low. Includ-
ing all conditions, there were 29 ambiguities in them combined, meaning 1 out
of every 13.6 requirements contained one of these two types of ambiguity. Con-
cluding, the principle of detecting and resolving ambiguities appears to works,
but improvements in the detection can and have to be made for it to be usable
in a product. This would be advantages though as even only these two types of
ambiguities do occur with some frequency.

6.2 Conclusion of main research question

MRQ To what degree could a requirements elicitation chatbot improve the quality
of end-user requirements and the experience of end-users while they express
these requirements for a software product?

The goal of this research was to investigate how well a requirements elicita-
tion chatbot could improve quality by reducing ambiguity in requirements and
improve usability. After designing ReqBot and especially the ReqBot+ variant,
it showed that selected quality defects can be detected and resolved within a
conversation. However, this detection lacks in both terms of precision and recall
and therefore it would have to be improved. There appears to be no difference
in usability between the Google form and ReqBot, so on that front, it would not
be beneficiary to create a chatbot as opposed to a form as long as the form has
the same questions. However, it also does not discourage from implementing
requirement elicitation chatbots as it did not score lower than a representa-
tion of a current method. Concluding, a requirements elicitation chatbot has
the ability and potential to improve the quality of requirements but does not
significantly improve current techniques in terms of usability.

53

7 Discussion

In this chapter, the research is discussed along with its limitations and threats.
Furthermore, ideas for new studies and continuations of this project are pro-
vided in future work.

7.1 Limitations and threats

Over the course of this thesis, several limiting factors were encountered, mainly
caused by practical limitations such as time or resources. These could, in turn,
threaten the validity of the research. While they were avoided or prevented as
much as possible, there still are some limitations and threats in this thesis.

Considering the experiment, the scenarios were set up as a way to give par-
ticipants the support to write requirements so they would not have to come up
with their own. However, these requirements were not their own ideas, making
the experiment less natural. In a natural situation, one would notice something
that could and should be changed in or added to a system in the opinion of that
person. When a certain threshold of e.g. irritation or desire to improve would
be reached, that person would look for a way of communicating the desired
change or addition. Whereafter, that person would write down the requirement
and send it along with possibly more requirements.

This unnatural situation can affect the results, especially those on usability
as the chatbot is not used in the environment in which it would be used in
practice. The results on quality, specifically on vagueness, could be impacted
by the wording in the scenarios as participants can pick words from the scenario
to form a requirement. Conversely, in a more natural situation, they would use
their own jargon which could result in the use of either more or less vague words.

Correctness depends on the scenario approach as this embodies the compar-
ison between the intended requirement from the scenario and the requirement
created by the participant. Removing the scenarios would nullify the results
from correctness. The idea behind correctness was that a more interactive man-
ner of asking questions would lead to better-formed requirements. But even if
there would be significant results in this area, it could be argued that these were
due to the participant’s concentration; proficiency in English; or capability to
read carefully.

The results on quality should not be generalised too much as ambiguity is
only one of 13 criteria of quality according to the QUS framework. Thus ambi-
guity should not be used to describe impacts on the overall quality. One quality
criterion might be changed for the better, but to understand quality as a whole,
the other criteria must be studied too. The same applies to referential ambi-
guity and vagueness compared to ambiguity as a whole. It is only a subset of

54

ambiguity and thus should not be generalised quickly to ambiguity. The choice
to use subsets was made to enable this research to focus on specific measures,
while we knowingly sacrificed generalisability.

To conduct the experiment, participants were needed. These ended up being
mainly friends, study acquaintances and family, so the sampling was not ran-
dom. However, it would not be possible from a practical view to have random
sampling for an experiment which is performed on location and takes 20 to 40
minutes without, e.g., a reward. On its own, this can threaten the validity of
the results but given their relation to the thesis’ author, they might have an in-
clination to be overly positive with their answers for the system usability scale.
Therefore this possibility of appeasing threatens the usability results. More-
over, the sample size of 40 participants is limited, but given the resources for
this thesis, it can be deemed sufficient.

7.2 Future work

This thesis provides multiple opportunities for future work. It is one of the first
times the fields of requirements engineering and chatbots have crossed and can
provide a starting point for further research at the intersection of these fields.
This thesis can be a reference point for new research or future research can be a
continuation of this thesis. A continuation can be done by either adopting and
changing ReqBot or starting over with a new chatbot.

First, it would be possible to broaden the scope from a quality point by re-
searching different or more forms of ambiguity or different quality criteria. This
would widen the range and, if successful, remove ambiguities from end-user re-
quirements as much as possible.

Second, with a focus more shifted towards NLP, it could be possible to im-
prove ambiguity detection and thus let fewer ambiguities go unnoticed while also
reducing the incorrect hits of the detection. Other tools have already achieved
these kinds of results using static data, the challenge with this would be to
ensure it works quickly on a continuously updating set of data as the detection
should happen in a conversation if it is to be resolved within that same conver-
sation.

Third, the scenarios and the forced environment were not ideal to simulate
real-world events. But with the basis of this thesis, ReqBot or a future variant
could be implemented in a running system and interact with actual end-users
of that system trying to communicate their requirements. This would enable an
in-depth comparison between the end-user requirements from before the imple-
mentation of the chatbot and after the implementation.

55

Last, this thesis can be seen as a basis for the combination of the user story
format with chatbots and could be expanded on by investigating whether other
requirement formats would better fit a chatbot.

In short, there are many follow-up directions which future research can take
and these are not mutually exclusive. The combined field of requirements engi-
neering and chatbots is wide open and many projects can look into the different
areas of this relatively new field.

56

References

[1] Azure bot service documentation. https://docs.microsoft.com/en-us/
azure/bot-service/?view=azure-bot-service-4.0. Accessed: 2020-
12-27.

[2] Definition of ambiguity in english. https://en.oxforddictionaries.

com/definition/ambiguity. Accessed: 2019-01-30.

[3] Definition of chatbot in english. https://en.oxforddictionaries.com/

definition/chatbot. Accessed: 2019-05-13.

[4] Github reqbot. https://github.com/marcvalkenier/ReqBot. Accessed:
2020-01-05.

[5] Google trends on ”chatbot”. https://trends.google.nl/trends/

explore?date=2009-04-09%202019-04-09&q=Chatbot. Accessed: 2019-
04-09.

[6] Meaning of “ambiguity” in the english dictionary. https://dictionary.

cambridge.org/dictionary/english/ambiguity. Accessed: 2019-01-30.

[7] Natural language processing apis and python nltk demos. http://

text-processing.com/. Accessed: 2020-01-05.

[8] Four types of bots. https://chatbotsmagazine.com/

four-types-of-bots-432501e79a2f, 2016. 2019-05-15.

[9] Types of bots: An overview. http://botnerds.com/types-of-bots/,
2017. 2019-05-12.

[10] Rajeev Agarwal and Lois Boggess. A simple but useful approach to conjunct
identification. In Proceedings of the 30th annual meeting on Association
for Computational Linguistics, pages 15–21. Association for Computational
Linguistics, 1992.

[11] Mohammed Javeed Ali. Metrics for requirements engineering. 2006.

[12] Imran Sarwar Bajwa, Mark Lee, and Behzad Bordbar. Resolving syntactic
ambiguities in natural language specification of constraints. In Interna-
tional Conference on Intelligent Text Processing and Computational Lin-
guistics, pages 178–187. Springer, 2012.

[13] R Barbosa, AEA Silva, and R Moraes. Use of similarity measure to suggest
the existence of duplicate user stories in the srum process. In Dependable
Systems and Networks Workshop, 2016 46th Annual IEEE/IFIP Interna-
tional Conference on, pages 2–5. IEEE, 2016.

[14] Bas Basten and Tijs Van Der Storm. Ambidexter: Practical ambiguity
detection. In 2010 10th IEEE Working Conference on Source Code Analysis
and Manipulation, pages 101–102. IEEE, 2010.

57

https://docs.microsoft.com/en-us/azure/bot-service/?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/?view=azure-bot-service-4.0
https://en.oxforddictionaries.com/definition/ambiguity
https://en.oxforddictionaries.com/definition/ambiguity
https://en.oxforddictionaries.com/definition/chatbot
https://en.oxforddictionaries.com/definition/chatbot
https://github.com/marcvalkenier/ReqBot
https://trends.google.nl/trends/explore?date=2009-04-09%202019-04-09&q=Chatbot
https://trends.google.nl/trends/explore?date=2009-04-09%202019-04-09&q=Chatbot
https://dictionary.cambridge.org/dictionary/english/ambiguity
https://dictionary.cambridge.org/dictionary/english/ambiguity
http://text-processing.com/
http://text-processing.com/
https://chatbotsmagazine.com/four-types-of-bots-432501e79a2f
https://chatbotsmagazine.com/four-types-of-bots-432501e79a2f
http://botnerds.com/types-of-bots/

[15] Hendrikus JS Basten. The usability of ambiguity detection methods for
context-free grammars. Electronic Notes in Theoretical Computer Science,
238(5):35–46, 2009.

[16] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. The agile manifesto, 2001.

[17] Alan Beretta, Robert Fiorentino, and David Poeppel. The effects of
homonymy and polysemy on lexical access: An meg study. Cognitive Brain
Research, 24(1):57–65, 2005.

[18] Daniel M Berry et al. From contract drafting to software specification:
Linguistic sources of ambiguity-a handbook version 1.0. 2000.

[19] Benjamin S Bloom et al. Taxonomy of educational objectives. vol. 1: Cog-
nitive domain. New York: McKay, pages 20–24, 1956.

[20] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[21] Harm Brouwer, Hartmut Fitz, and John CJ Hoeks. Modeling the noun
phrase versus sentence coordination ambiguity in dutch: evidence from
surprisal theory. In Proceedings of the 2010 Workshop on Cognitive Mod-
eling and Computational Linguistics, pages 72–80. Association for Compu-
tational Linguistics, 2010.

[22] Breno Dantas Cruz, Bargav Jayaraman, Anurag Dwarakanath, and Collin
McMillan. Detecting vague words & phrases in requirements documents in
a multilingual environment. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pages 233–242. IEEE, 2017.

[23] Fabiano Dalpiaz, Ivor Van Der Schalk, and Garm Lucassen. Pinpoint-
ing ambiguity and incompleteness in requirements engineering via informa-
tion visualization and nlp. In International Working Conference on Re-
quirements Engineering: Foundation for Software Quality, pages 119–135.
Springer, 2018.

[24] Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma Dan-
dashi, Anhtuan Dinh, Gary Kincaid, Glen Ledeboer, Patricia Reynolds,
Pradip Sitaram, et al. Identifying and measuring quality in a software re-
quirements specification. In [1993] Proceedings First International Software
Metrics Symposium, pages 141–152. IEEE, 1993.

[25] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian
Eder. Rapid quality assurance with requirements smells. Journal of Systems
and Software, 123:190–213, 2017.

[26] Lyn Frazier. Syntactic processing: evidence from dutch. Natural Language
& Linguistic Theory, 5(4):519–559, 1987.

58

[27] Edwin Friesen, Frederik Simon Bäumer, and Michaela Geierhos. Cordula:
Software requirements extraction utilizing chatbot as communication inter-
face. In REFSQ Workshops, 2018.

[28] Norbert E Fuchs and Rolf Schwitter. Attempto controlled english (ace).
arXiv preprint cmp-lg/9603003, 1996.

[29] Alex Galert. Chatbot report 2018: Global trends
and analysis. https://chatbotsmagazine.com/

chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b,
2018. 2019-04-09.

[30] Gonzalo Génova, José M Fuentes, Juan Llorens, Omar Hurtado, and Va-
lent́ın Moreno. A framework to measure and improve the quality of textual
requirements. Requirements engineering, 18(1):25–41, 2013.

[31] Benedikt Gleich, Oliver Creighton, and Leonid Kof. Ambiguity detection:
Towards a tool explaining ambiguity sources. In International Working
Conference on Requirements Engineering: Foundation for Software Qual-
ity, pages 218–232. Springer, 2010.

[32] Eduard C Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Do-
err, Emitza Guzman, Mahmood Hosseini, Jordi Marco, Marc Oriol, Anna
Perini, et al. The crowd in requirements engineering: The landscape and
challenges. IEEE software, 34(2):44–52, 2017.

[33] Emitza Guzman and Walid Maalej. How do users like this feature? a fine
grained sentiment analysis of app reviews. In Requirements Engineering
Conference (RE), 2014 IEEE 22nd International, pages 153–162. IEEE,
2014.

[34] Pawe l Ha labuda. What drives the growing popularity of chatbots? https:

//blog.apptension.com/2017/07/18/popularity-of-chatbots/, 2017.
2019-04-09.

[35] Mahmoud Hosseini, Keith T Phalp, Jacqui Taylor, and Raian Ali. Towards
crowdsourcing for requirements engineering. 2014.

[36] Jizhou Huang, Ming Zhou, and Dan Yang. Extracting chatbot knowledge
from online discussion forums. In IJCAI, volume 7, pages 423–428, 2007.

[37] Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, and Daniel M Berry.
Requirements for tools for ambiguity identification and measurement in
natural language requirements specifications. Requirements engineering,
13(3):207–239, 2008.

[38] Jyrki Kontio, Laura Lehtola, and Johanna Bragge. Using the focus group
method in software engineering: obtaining practitioner and user experi-
ences. In Empirical Software Engineering, 2004. ISESE’04. Proceedings.
2004 International Symposium on, pages 271–280. IEEE, 2004.

59

https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://blog.apptension.com/2017/07/18/popularity-of-chatbots/
https://blog.apptension.com/2017/07/18/popularity-of-chatbots/

[39] Sven J Korner and Torben Brumm. Resi-a natural language specification
improver. In 2009 IEEE International Conference on Semantic Computing,
pages 1–8. IEEE, 2009.

[40] David R Krathwohl. A revision of bloom’s taxonomy: An overview. Theory
into practice, 41(4):212–218, 2002.

[41] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Towards a deeper
understanding of quality in requirements engineering. In International
Conference on Advanced Information Systems Engineering, pages 82–95.
Springer, 1995.

[42] Giuseppe Lami. Quars: A tool for analyzing requirement. Technical Report
CMU/SEI-2005-TR-014, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2005.

[43] Carlene Lebeuf, Alexey Zagalsky, Matthieu Foucault, and Margaret-Anne
Storey. Defining and classifying software bots: A faceted taxonomy.

[44] Carlene R Lebeuf. A taxonomy of software bots: towards a deeper under-
standing of software bot characteristics. PhD thesis, 2018.

[45] Dean Leffingwell. Agile software requirements: lean requirements prac-
tices for teams, programs, and the enterprise. Addison-Wesley Professional,
2010.

[46] James R Lewis and Jeff Sauro. The factor structure of the system usability
scale. In International conference on human centered design, pages 94–103.
Springer, 2009.

[47] Odd Ivar Lindland, Guttorm Sindre, and Arne Solvberg. Understanding
quality in conceptual modeling. IEEE software, 11(2):42–49, 1994.

[48] Olga Liskin, Raphael Pham, Stephan Kiesling, and Kurt Schneider. Why
we need a granularity concept for user stories. In International Conference
on Agile Software Development, pages 110–125. Springer, 2014.

[49] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak
Brinkkemper. Forging high-quality user stories: towards a discipline for
agile requirements. In Requirements Engineering Conference (RE), 2015
IEEE 23rd International, pages 126–135. IEEE, 2015.

[50] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak
Brinkkemper. Improving agile requirements: the quality user story frame-
work and tool. Requirements Engineering, 21(3):383–403, 2016.

[51] Walid Maalej and Hadeer Nabil. Bug report, feature request, or simply
praise? on automatically classifying app reviews. In 2015 IEEE 23rd inter-
national requirements engineering conference (RE), pages 116–125. IEEE,
2015.

60

[52] Viljan Mahnič and Tomaž Hovelja. On using planning poker for estimating
user stories. Journal of Systems and Software, 85(9):2086–2095, 2012.

[53] Eduardo Miranda, Pierre Bourque, and Alain Abran. Sizing user stories us-
ing paired comparisons. Information and Software Technology, 51(9):1327–
1337, 2009.

[54] Mante S Nieuwland and Jos JA Van Berkum. The neurocognition of ref-
erential ambiguity in language comprehension. Language and Linguistics
Compass, 2(4):603–630, 2008.

[55] Ayan Nigam, Neeraj Arya, Bhawna Nigam, and Deepika Jain. Tool for
automatic discovery of ambiguity in requirements. International Journal
of Computer Science Issues (IJCSI), 9(5):350, 2012.

[56] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engi-
neering and agile software development. In Enabling Technologies: Infras-
tructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops on, pages 308–313. IEEE, 2003.

[57] Klaus Pohl. The three dimensions of requirements engineering: a frame-
work and its applications. Information systems, 19(3):243–258, 1994.

[58] Klaus Pohl and Nelufar Ulfat-Bunyadi. The three dimensions of require-
ments engineering: 20 years later. In Seminal Contributions to Information
Systems Engineering, pages 81–87. Springer, 2013.

[59] Linda Rosenberg, Theodore F Hammer, and Lenore L Huffman. Require-
ments, testing and metrics. In 15th Annual Pacific Northwest Software
Quality Conference. Citeseer, 1998.

[60] Sylvain Schmitz. An experimental ambiguity detection tool. Electronic
Notes in Theoretical Computer Science, 203(2):69–84, 2008.

[61] Roger W Schvaneveldt, David E Meyer, and Curtis A Becker. Lexical
ambiguity, semantic context, and visual word recognition. Journal of ex-
perimental psychology: human perception and performance, 2(2):243, 1976.

[62] Wilfrid Sellars. Presupposing. The Philosophical Review, 63(2):197–215,
1954.

[63] Unnati S Shah and Devesh C Jinwala. Resolving ambiguities in natural
language software requirements: a comprehensive survey. ACM SIGSOFT
Software Engineering Notes, 40(5):1–7, 2015.

[64] Bayan Abu Shawar and Eric Atwell. Different measurements metrics to
evaluate a chatbot system. In Proceedings of the workshop on bridging the
gap: Academic and industrial research in dialog technologies, pages 89–96.
Association for Computational Linguistics, 2007.

61

[65] Ian Sommerville, Peter Sawyer, and Stephen Viller. Viewpoints for re-
quirements elicitation: a practical approach. In Requirements Engineering,
1998. Proceedings. 1998 Third International Conference on, pages 74–81.
IEEE, 1998.

[66] Tor St̊alhane and Tormod Wien. The dodt tool applied to sub-sea software.
In 2014 IEEE 22nd International Requirements Engineering Conference
(RE), pages 420–427. IEEE, 2014.

[67] R Subha and S Palaniswami. Quality factor assessment and text summa-
rization of unambiguous natural language requirements. In Advances in
Computing, Communication, and Control, pages 131–146. Springer, 2013.

[68] Sri Fatimah Tjong. Avoiding ambiguity in requirements specifications. no.
February, 2008.

[69] Sri Fatimah Tjong and Daniel M Berry. The design of sree—a prototype po-
tential ambiguity finder for requirements specifications and lessons learned.
In International Working Conference on Requirements Engineering: Foun-
dation for Software Quality, pages 80–95. Springer, 2013.

[70] Yves Wautelet, Samedi Heng, Manuel Kolp, and Isabelle Mirbel. Unifying
and extending user story models. In International Conference on Advanced
Information Systems Engineering, pages 211–225. Springer, 2014.

[71] Roel J Wieringa. Design science methodology for information systems and
software engineering. Springer, 2014.

[72] Alistair Willis, Francis Chantree, and Anne De Roeck. Automatic iden-
tification of nocuous ambiguity. Research on Language and Computation,
6(3-4):355–374, 2008.

[73] Hui Yang, Anne De Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar
Nuseibeh. Analysing anaphoric ambiguity in natural language require-
ments. Requirements engineering, 16(3):163, 2011.

[74] Hui Yang, Alistair Willis, Anne De Roeck, and Bashar Nuseibeh. Auto-
matic detection of nocuous coordination ambiguities in natural language
requirements. In Proceedings of the IEEE/ACM international conference
on Automated software engineering, pages 53–62. ACM, 2010.

[75] Zheying Zhang. Effective requirements development-a comparison of re-
quirements elicitation techniques. Software Quality Management XV: Soft-
ware Quality in the Knowledge Society, E. Berki, J. Nummenmaa, I. Sun-
ley, M. Ross and G. Staples (Ed.) British Computer Society, pages 225–240,
2007.

[76] Shaojun Zhao and Dekang Lin. A nearest-neighbor method for resolving pp-
attachment ambiguity. In International Conference on Natural Language
Processing, pages 545–554. Springer, 2004.

62

A Considered platforms and frameworks for the
chatbot artifact

Platform/Framework Advantages Disadvantages
Microsoft Bot Framework Allows flows Has to be fully developed using code

Allows custom code Complex Azure environment
Highly customisable
Well documented
No costs (for this research)

Flow.ai Supports flows Limited customisability
Allows limited custom code Costs
Drag and drop to create bot
Some documentation

FlowXO Supports flows No customisation
Drag and drop to create bot Costs
Nice interface

Diaglogflow Supports flows Costs
Custom code via intents Intents do not seem to allow customisation

63

B Complete BPMN of ReqBot

64

C All dialog

Process Response Response 2 Response
3

Response
4

Introduction
& request
name

Hello there, I am ReqBot and
I will assist you in communicat-
ing your wishes for and problems
with *{appName}*
How can I call you? What is your name?

Explain Re-
qBot’s capa-
bilities

Okay {user.Name}, I can help
you in two ways: First to com-
municate a new idea or func-
tionality for *{appName}* and
second to request a change in
{appName} if for example
something doesn’t work (the way
you want it).

There are two ways in
which I can help you:
One is to communicate
a new idea or functional-
ity for *{appName}* and
the other is to request a
change in *{appName}*
if for example something
doesn’t work (the way you
want it).

Provide
choice “Sug-
gest an idea”
/ “Request a
change”

Do you want to suggest some-
thing new or request a change in
the app?

Request
component
regarding
change

Okay a change it is. What part
of *{appName}* you want to
change?

All right, what part do
you want to change?

Oh it seems like the part you
intended was not on the list.
What specific part do you want
to change?

Please name the specific
part of *{appName}* you
want to change.

Request
means

All right. Please describe in one
sentence what you want.

Please write one sentence
that describes what you
want.

All right. Please describe
what changes you want in the
{ExistingFeature} in one
sentence
So you want to make a change
in **{Means}**. Please retype
it the way you want it
All right, thanks. Noted it. Thank

you, I got
it.

Okay, I
got that.

65

All right, I changed
{OldMeans} into
{Means}.

Request ends Please describe why you want
this {ReqType} in one sentence.

Please describe what ben-
efit this {ReqType} would
bring?

So you want to make a change in
{Ends}. Please retype it the
way you want it.

It appears that
{Ends} was not
what you meant. Please
type it the way you
inteded it.

All right, thanks. Noted it. Thank
you, I got
it.

Okay, I
got that.

All right, I changed
{OldEnds} into
{Ends}.

Request role What is your role regarding the
system?
So you want to make a change in
{Role}. What is your role?
Oh it seems like the part you in-
tended was not on the list. What
role do you have?
Oh it seems like the part you in-
tended was not on the list. What
role do you have?
What is your role regarding the
system in one or two words?

Please describe your role
regarding the system in
one or two words?

All right, thanks. Noted it. Thank
you, I got
it.

Okay, I
got that.

All right, I changed
{OldRole} into **{Role}**.
All right, thanks. Noted it. Thank

you, I got
it.

Okay, I
got that.

All right, I changed
{OldRole} into **{Role}**.

66

Combine
means ends
and role (+
component)

So summarising, you told me
the following **{ReqType}**:
{CompleteUserStory}. {Enter}
Do you want to submit this or do
you want to make some changes?

I got the following infor-
mation concerning the
{ReqType} from you:
{CompleteUserStory}.
{Enter} Do you want
to submit this or do
you want to make some
changes?

Request
what should
be changed

Okay, what part do you want to
change?

So, which part shall we
change?

Provide in-
formation on
requirement

Thank you {user.Name}! With
this code {UserStoryCode} you
will be able to track your require-
ment on our forum.

All right {user.Name}!
You can track this
{ReqType} on our
website with the code
{UserStoryCode}.

Request no-
tification op-
tions

Do you want us to keep you
posted about the progression of
your requirement by mail?
The last time you
used the setting
{user.NotificationOption},
do you want to keep this setting
or change it in which case you
will be mailed?
The last time you
used the setting
{user.NotificationOption},
do you want to keep this setting
or change it in which case you
will not be mailed?
Okay, we will not mail you. All right, we shall not mail

you
All right {user.Name}, what is
your email adress?

To which email adress
shall we send the updates?

We will keep you posted on
{user.Email}
I am sorry to say but
{user.Email} is not an
email adress, maybe you made a
typo. Please retype your email
adress

{user.Email} can not
be an email adress, maybe
you made a typo. Please
retype your email adress.

67

Request
entering
another
require-
ment / end
conversation

Do you want to submit other new
ideas and changes or shall we end
this conversation?

Closing text Thank you for participating
{user.Name}. You can hand the
laptop back.

Request dis-
ambiguation
vagueness

I noticed that you used the
word **{DetectedVagueness}**,
which can have several meanings
or measures. To help us under-
stand your intent as good as pos-
sible, could you try to specify
it? If possible, please try to use
units. For instance, fast could be
specified by saying 0,5 sec or 500
ms.
Thank you.

Request dis-
ambiguation
referential

I noticed that you used the word
{DetectedTriggerReferential},
which can refer to several words.
To help me understand your
intent as good as possible,
please tell me to what word
{DetectedTriggerReferential}
refers
Apperantly I did not list to what
{DetectedTriggerReferential}
does refer. Please tell me to what
{DetectedTriggerReferential}
does refer.
Thank you for specifying this.

68

D Scenarios

Scenario: Google Maps

Person: Bran
Email: Bran@fictional.com

This scenario concerns a fictional person named Bran. He has just moved to
Utrecht and he knows almost nothing of the city. He does not own a car and
likes to walk to most places. If the walk takes too long, he will take his bike. To
plan routes, Bran uses Google Maps generally on his phone and sometimes on
his computer. Below, you can find 5 challenges Bran experienced while using
Google Maps:

• Bran has used Google Maps a lot in the past and he intends on using it
to explore this new city. To get to know the basics of the city he wants to
take a long walk along important buildings, parks, streets and monuments
in the city. Structured as Bran is, he wants to plan and plot the route in
google maps. He opens his laptop and looks for an option to automatically
generate a route along all important places, but he cannot find such an
option. So he painstakingly searches the web for these places and plots
them afterwards in Maps.

• While looking at the map, he cannot read all of the street names. Bran
does not want to zoom in to enlarge them as that would lower his overview.
He thinks there should be a way to increase or double the size of these
characters.

• After some months, he has explored most of the city with Maps always
recording his location. Bran wonders which areas he has not been yet. He
opens his laptop and searches for a visualisation on Maps, but sadly such
a functionality did not exist.

• Bran decided to create a walking route through the city, but he wanted
to avoid streets with cars as he wants to bring his dog along for the trip,
but he could not find which streets allow cars.

• Later that week he decided to pick up cycling again. He always hated
crowded intersections and traffic lights as these slow him down. If there
was only a way to create a route that avoid these as much as possible.

69

Scenario: Facebook

Person: Olivia
Email: Olivia@fictional.com

This scenario concerns a fictional person named Olivia. She is a very active
Facebook user and only uses her phone. She has friends in multiple countries
and uses Facebook to stay connected with them. Below, you can find 5 chal-
lenges Olivia experienced while using Facebook:

• One day Olivia sees a post that she immensely disagrees with. She wants
to downvote the post or give it a thumbs down as is possible on many
other websites, but then she remembers that this is not yet possible on
Facebook.

• This also got her thinking about likes and the posts or pictures she liked.
An overview of these positive posts might bring her in a better mood. She
wonders if she can see a list of those again, but she can’t find a way to do
this.

• Olivia gets more posts from pages she liked and posts from reactions from
her friends now, which becomes a bit tiring. She only wants to see posts
placed by her friends. She started wondering whether she can change her
Facebook homepage in a way that she only sees direct posts from her
friends. Maybe a solution will come in the near future.

• While uploading a photo to Facebook, Olivia wanted to draw something
on the photo to make her point clear. While she could apply filters and
add text among others, drawing was to her discontent not available.

• Her next post would be to all her friends, but some can’t speak English
very well. She wondered if she could write and send her post in multiple
languages, so that everyone of her friends would get a version they could
read. Sadly, there was no function to accomplish this.

70

Scenario: Youtube

Person: Tim
Email: Tim@fictional.com

This scenario concerns a fictional person named Tim. He uses Youtube almost
every day both on his phone and computer. He watches a great deal of videos
and uses Youtube to listen to music a lot. Below, you can find 5 challenges Tim
experienced while using Youtube:

• When he is listening to music on his phone, one thing still bothers him.
Everytime he turns his screen off to put his phone in his pocket, the video
with the music stops playing.

• When Tim has no wifi connection and watches videos on his phone, they
tend to load slow as he lives in an area with poor connectivity. Tim
wonders if the video could not start loading while the ads are playing.
Now, ads load and he still needs to wait for the rest of the video to load,
which bothers him.

• Tim has some difficulty finding some of the content he likes sometimes,
namely educative videos. He tried to use the categories in Youtube, but
there was only a handful of them and none on this topic so he closed his
laptop.

• Even if Tim finds a selection of possibly entertaining videos, he wants to
know how well they get rated by other youtubers, so he has an indication
on the quality. He knows that he can click on a video and see the likes
and dislikes, but shouldn’t that be made available earlier?

• As Tim is getting older, he notices that he finds it harder to read the titles
of videos. He does not yet want to get glasses, but maybe reading would
be easier with slightly larger text.

71

Scenario: Thuisbezorgd.nl

Person: Roger
Email: Roger@fictional.com

This scenario concerns a fictional person named Roger. He uses Thuisbezorgd.nl
quite often, as he has little time to cook. He always uses his smartphone to order
and tries to eat a bit diverse. Below, you can find 5 challenges Roger experienced
while using Thuisbezorgd.nl:

• Roger generally orders from 3 different locations as he does not always eat
at home. He hates to retype each address every time and that gets him
thinking: would it not be great if I can just save a few of these addresses?

• Sometimes ordering takes longer than expected, but as someone with
sometimes little time to eat this can be a problem for Roger. He would
not mind to pay extra if there was an option to have his order rushed.

• One thing that bothers Roger a lot is that even though there is a vast list
of categories for restaurants, there is no way to search for one specific dish.
If he wants that dish, he now would have to search sometimes multiple
restaurants to find it. There should be some function to fix this he thinks.

• Roger is allergic to peanuts, cashew nuts and apples. This makes eating
food that he did not cook himself always a bit risky. He thinks the app
could make use allergic information to better their service. In the Thuis-
bezorgd.nl app, he searches for a form or place in which he can register
all his allergies, but there is nothing like this available.

• The allergies part got Roger thinking, if the app has his allergies it could
help him a lot. Now he sometimes orders a dish that contains something
he is mildly allergic to without this being his intention. With his allergies,
the app would be able to warn him before he places the order.

72

Scenario: Open Spotify (Not used during the experiment)

You are a general user of Spotify, you have the app on your phone and Spo-
tify installed on your laptop. On most days you listen to music via the app,
oftentimes multiple hours a day. Since a week or two, you also use Spotify
at your association. The music boxes there can only be connected to one
specific desktop, which won’t allow you to install programs such as Spotify.
As a workaround you started using the web version of it called Open Spotify
(https://open.spotify.com/). However as you used it, you started having some
irritations on this version of Spotify.

The first time you used it, it was a bit confusing. It seemed like you could
play music, however that did not work because you had to be logged in. That
seemed reasonable, but when you clicked on the login button, you were trans-
ported to another site. It looked different in style and layout but had a lot of
spotify logos and the URL seemed alright too, so you logged in. Open Spotify
looked fairly similar to the program on your laptop, but some buttons and op-
tions were in different places, resulting in you having to search for them. While
searching, you noticed that you had to scroll a lot since only a bit of the con-
tent could be on the screen at once and the content on screen was quite large.
You wanted to let people hear some of the remixes that you made at home
and added to your own playlists. You added them to your spotify so that you
would not have to switch apps while listening to music. However, your remixes
were nowhere to be found on Open Spotify. At some point in time, you left the
association and went home forgetting to sign out on Spotify. The next week,
you started listening to your weekly recommended music at home and noticed
a lot of strange music in it. It was strange because it was not a genre you listen
to at all, could this be due to the music people listened that day?

73

E Experiment - scenario and condition planning

Scenario \ Method Form Chatbot Chatbot Ambiguity detection
Maps 1 5 9
Facebook 2 6 10
Youtube 3 7 11
Thuisbezorgd 4 8 12

74

Participant no First scenario & method Second scenario & method
1 1 6
2 9 2
3 11 4
4 3 10
5 8 1
6 4 10
7 12 2
8 1 6
9 8 3

10 2 9
11 10 3
12 4 11
13 8 1
14 3 10
15 7 4
16 3 6
17 7 1
18 4 6
19 7 2
20 2 5
21 10 1
22 3 12
23 8 3
24 4 6
25 5 3
26 2 7
27 5 4
28 2 11
29 11 2
30 4 5
31 5 2
32 2 9
33 9 3
34 1 7
35 9 4
36 1 12
37 12 1
38 1 8
39 11 4
40 3 12

75

F Experiment approach

1. Chatbot and form are set up

2. Welcome the participant

3. Basic explanation of the experiment

What are we researching?

What is a chatbot?

You will get 2 scenarios and for each a different condition

4. Offer the participant an informed consent form

5. Offer the participant the general introduction form

6. Ask if the participant has any questions so far

7. Give the participant one scenario and the tools to use the first condition
(laptop with chatbot or online form)

8. Participant works through the scenario using the first condition

9. Upon completion, the participant receives the SUS questionnaire

10. Upon completion, the participant receives the explanation of the second
condition

11. Steps 7 to 9 are repeated with the second condition

12. Upon completion, the experiment will end and the participant is thanked.

76

G Experiment introduction

General introduction

Dear participant,
Over the next 20 to 40 minutes, you will be creating requirements and entering
them via two conditions. The first one is described on the bottom of the page,
the other you will receive later. For each condition you will be given a scenario
from a relatively well-known system or app. It does not matter if you are not
familiar with this particular system. The scenario will describe a person who
uses this system and the challenges that this person has experienced. It is your
goal to act on that person’s behalf and imagine what changes or additions that
person would want in that specific system.

Example: This scenario describes John, who uses an app that shows differ-
ent maps of his country. However, John is colourblind and thus is not able to
distinguish all colours on the map.

You should imagine what John’s problem is, what he wants why. In this case,
he cannot use the app properly due to the colours. He would want (1) to add
a colourblind mode or (2) to change the colours the map uses, so that he can
use the map even though he is colourblind. In this case there are at least two
options, you only ever need to provide one per situation.

You use the condition to write these changes and additions down and send
them. You act on behalf of the person in the scenario, so that means that for
any question concerning personal information, you should use the information of
that person. So in this case if your name is requested, you should answer “John”.

After you finished each scenario, please contact the observer, you will receive a
questionnaire considering your experience with that given condition.

If you have any questions, feel free to ask them.
Thank you for participating in this research.

77

Condition: Form
You will be given a laptop with a google form containing several questions. It
is your task to answer these questions based on the scenario you receive. You
will be specifying a new idea for the system by answering 5 questions. In this
context, the idea is one of the desired changes or new functionalities the person
from the scenario would want. These changes or additions should always include
at least these 3 parts: what the fictional person wants; why the fictional person
wants this; and what type of user the fictional person is (general user, mobile
user, student, teacher, etc.).

Condition: Chatbot
You will be interacting with a chatbot. The chatbot will be asking you questions
and by answering these questions, you will be able to communicate the desired
changes and/or additions from the scenario. The chatbot communicates in
English and thus also expects your responses to be English. In the unlikely
event the chatbot gets stuck, please contact the observer.

78

H Results - significance values

Usability Restricted usability Learnability
Form - Chatbots combined 0.590 0.561 0.617
Form - ReqBot regular 0.231 0.231 1.000
Form - ReqBot+ 0.778 0.776 0.560
ReqBot regular - Chatbot + 0.532 0.523 0.873

Table 7: Significance values (p-values) for usability

Condition P-value
Form - Chatbots combined 0.559
Form - ReqBot regular 0.565
Form - ReqBot+ 0.610
ReqBot regular - Chatbot + 0.133

Table 8: Significance values (p-values) for Correctness

79

	Introduction
	Research Methodology
	Literature
	Frameworks for quality of requirements
	Frameworks in literature
	Selecting a requirements quality framework
	Criteria of the QUS framework
	Selecting a criterion

	Ambiguity
	Types of ambiguity
	Selecting type(s) of ambiguity
	Tools for detecting ambiguity

	Chatbot
	Introduction to chatbots
	Classification of chatbots

	Artifacts description
	Development of ReqBot
	ReqBot under the bot taxonomy lenses
	Functionality of ReqBot
	Other artifacts
	Requirements form
	Scenarios

	Experiment and results
	Experiment
	Set-up
	Experiment procedure
	Participants

	Results
	Collected outputs
	Usability
	Correctness
	Quality

	Conclusion
	Conclusion of sub-questions
	Conclusion of main research question

	Discussion
	Limitations and threats
	Future work

	Considered platforms and frameworks for the chatbot artifact
	Complete BPMN of ReqBot
	All dialog
	Scenarios
	Experiment - scenario and condition planning
	Experiment approach
	Experiment introduction
	Results - significance values

