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Introduction

To any continuous function f : R×]0,∞[→ C we can associate a linear form on the space of
compactly supported smooth functions. Namely, the map

φ 7→
∫
R
f(x, y)φ(x) dx. (1)

We want to know what happens when we let y go to 0, or more precisely whether

lim
y↓0

∫
R
f(x, y)φ(x) dx (2)

exists for all φ ∈ C∞c (R). If this is the case, then the map

φ 7→ lim
y↓0

∫
R
f(x, y)φ(x) dx (3)

defines a linear form on C∞c (R) as well.
Now the map (1) defines a so called distribution. In the case that (2) exists for all φ ∈ C∞c (R),
the map (3) is also a distribution, which we will denote by f(·, 0). In this case we say that
f has a distributional boundary value.

It is a classical result that holomorphic functions on the upper half plane having a certain
growing behavior towards the real line, have a distributional boundary value. Let O∗(H+)
be the space of holomorphic functions on the upper half plane having such growing behavior
and let D′(R) denote the space of distributions on R. The assignment f 7→ f(· + i0) gives
us a linear operator

β : O∗(H+)→ D′(R). (4)

Erik van den Ban expected that the map β could be applied to embed the holomorphic
discrete series representations in the principal series representations of SL(2,R).

The aim of this thesis is to study the boundary value map (4) and to investigate its rela-
tion with the natural action of SL(2,R) on the upper half plane by Möbius transformations.
The second aim was to realize the mentioned embedding of the holomorphic discrete series
representations into the principal series representations.
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The first aim has been reached. With this result the mentioned embedding can indeed be
realized, as was shown to me by Erik van den Ban. Due to restrictions on the time available
to me, I have not been able to finish my study of the proof and to give a written account of
it.
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Chapter 1

Complex analysis

In this chapter we shall deal with some basic concepts of complex analysis. In the first
section we shall deal with one dimensional complex analysis. We shall go over the notion of
complex differentiability and analytic functions, derive the Cauchy-Riemann equations and
we shall state the Cauchy integral formula. This first section will be mainly based on the
book of Lang [11]. In the second section we will introduce the notion of a multidimensional
analytic function and a complex manifold. In the third section we shall look at the fractional
linear transformations.
The notion of a holomorphic function will be needed in Chapter 7. Section 2 is mainly
provided to justify the proceedings in Chapter 11.

1.1 Complex analysis in one variable

We shall begin by saying what it means for a function to be complex differentiable.

Definition 1.1. Let U be an open subset of C. Let f : U → C be a function and z ∈ U .
We say that f is complex differentiable in z if

lim
h→z

f(z + h)− f(z)

h

exists. In this case this limit is denoted by f ′(z) or df
dz

(z) as in the case of real differentiablity.
We say that f is differentiable or holomorphic if f is complex differentiable in all z ∈ U .
The space of holomorphic functions on U is denoted by O(U). If D is a closed subset of C
we say that f : D → C is holomorphic, if f is holomorphic on some open neighbourhood of
D.

Since C ' R2, we can ask ourselves about the relation of being complex differentiable
and being differentiable as function from R2 → R2. We shall now inquire into this. In our
approach we shall follow Lang [11]. Therefore first assume that f : U → C is a holomorphic
function. We write f = f1 + if2, where f1 = Re(f) and f2 = Im(f). Now let z = x+ iy ∈ U
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and let w = u+ iv. We write f ′(z) = a+ ib. Just as in the real case the condition of being
complex differentiable in a point z implies that there is a function ρ : C→ C such that

ρ(w) = f(z + w)− f(z)− wf ′(z),

and

lim
w→0

|ρ(w)|
|w|

= 0.

So we have that

f(z + w)− f(z) = wf ′(z) + ρ(w) = (au− bv) + i(av + bu) + ρ(w).

Now consider F : U → R2 the vector field associated with f , i.e. the function that is defined
as F (x, y) := (f1(x+ iy), f2(x+ iy)). We notice that

F (x+ u, y + v)− F (x, y) = (au− bv, av + bu) +R(x, y),

where R(u, v) := (Re(ρ(u+ iv)), Im(ρ(u+ iv))), with lim(u,v)→0 ‖(u, v)‖−1‖R(u, v)‖ = 0. We
thus conclude that F is differentiable in (x, y), with Jacobi matrix given by ∂f1

∂x
∂f1
∂y

∂f2
∂x

∂f2
∂y

 .

From this we conclude that the functions f1 and f2 have to satisfy the following differential
equations, known as the Cauchy-Riemann equations:

∂f1

∂x
=
∂f2

∂y

∂f1

∂y
= −∂f2

∂x
. (1.1)

Conversely a function f = f1 + if2 : U → C, with functions f1, f2 : U → R, is holomorphic
if f1 and f2 are continuously differentiable and satisfy the Cauchy-Riemann equations, see
[11] Chapter I.

For reasons that will become clear later, we introduce the differential operators

∂z =
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and ∂z̄ =

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (1.2)
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It follows from the Cauchy-Riemann equations that f : U → C is holomorphic if and only
if ∂z̄f = 0. If f is holomorphic it also follows from the Cauchy-Riemann equations that
f ′ = ∂zf .

A certain class of holomorphic functions are functions that are defined by a converging
power series. The derivative of such a function is given by the formal derivative of this power
series, where the formal derivative of a power serie

∑∞
n=0 anz

n is given by

∞∑
n=0

nanz
n−1.

Definition 1.2. We say that a function f : U → C is analytic in z0 ∈ U if there is a r > 0,
such that D(z0; r) ⊂ U , and a power series

∞∑
n=0

an(z − z0)n,

with an ∈ C, that is convergent on the disc D(z0; r), such that

f(z) =
∞∑
n=0

an(z − z0)n,

for all z ∈ D(z0; r). The function f is said to be analytic if f is analytic in every z ∈ U .

Notice that an alalytic function is holomorphic, as follows from the above discussion. As
a direct consequence of Definition 1.2 we have

Corollary 1.3. Let U be a connected subset of C and let f : U → C be analytic. Then if
there is a z ∈ U such that dk

dzk
f(z) = 0, for all k ≥ 0, then f = 0.

This means in particular that if f, g : U → C are analytic functions on some open and
connected subset U of C and f

∣∣
V

= g
∣∣
V

, for some open V ⊂ C, then f = g.
It turns out that every holomorphic function is also analytic, as can be proved with the
Cauchy integral formula.

Theorem 1.4 (Cauchy integral formula). Let D be a closed disc and let f : D → C be a
holomorphic function. Let ∂D denote the orientated boundary of D, orientated counter clock
wise. Then for every z ∈ D

f(z) =
1

2πi

∫
∂D

f(z)

z − ζ
dζ.

7



Another consequence of the Cauchy integral formula, which we shall need in Chapter 11,
is the following theorem.

Theorem 1.5 (Louville’s theorem). Let f : C → C be a bounded holomorphic function.
Then is f constant.

1.2 Multidimensional complex analysis

The material discussed in this section is draw from [15] Chapter 1 and Chapter 5.

Definition 1.6. Let U ⊂ Cn be open and let f : U → C be a function. Then f is said to be
analytic if each point z0 = (z0

1, ..., z0
n) has an open neighbourhood D on which f is given

by a convergent power series of the form∑
k1,...,kn≥1

ak1,...,kn(z1 − z0
1)k1 · · · (zn − z0

n)kn

Lemma 1.7 ([15], Lemma 1.3). Let U ⊂ Cn be open and let f : U → C be a continuous
function. Then is f on U analytic if and only if f is holomorphic in each of its variables.

Definition 1.8. Let U, V be open subsets of Cn and let f : U → V be a bijective holo-
morphic map. Then f is called a bi-holomorphic map or an analytic isomorphism if f−1 is
holomorphic.

Definition 1.9. Let X be a 2n dimensional topological manifold. Let A be an atlas of
X. We call A a holomorphic atlas if for any pair of charts (U, κ) and (V, λ), such that
U ∩ V 6= ∅, the map λ ◦ κ−1 : κ(U ∩ V )→ λ(U ∩ V ) is bi-holomorphic. A complex manifold
is a 2n dimensional topological manifold equipped with a holomorphic atlas. Notice that in
particular X is a smooth manifold.

Example 1.10. A classical example is the n-dimensional complex projective space Pn(C).
Recall that Pn(C) is the space of one dimensional linear subspaces of Cn+1. Let π :
Cn+1\{0} → P1(C) be the map that sends each point z to the subspace spanned by z.
We consider P1(C) with the quotient topology. Now for any z = (z0, ..., zn) ∈ Cn+1\{0} we
let

[z0 : ... : zn] = π(z).
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We consider the the subsets Ui = {[z0 : ... : zn] ∈ P1(C) | zi 6= 0}, for 0 ≤ i ≤ n. Then is the
map κi : Ui → Cn, given by

κi([z0 : ... : zn]) =

(
z0

zi
, ...,

zi−1

zi
,
zi+1

zi
, ...,

zn
zi

)
a well defined homeomorphism. By a straightforward computation we find that κj ◦ κ−1

i :
κi(Ui ∩ Uj)→ κj(Ui ∩ Uj), is given by

κj ◦ κ−1
i (w1, ..., wn) =

(
u1

uj
, ...,

uj−1

uj
,
uj+1

uj
, ...,

ui−1

uj
,

1

uj
,
ui
uj
, ...,

un
uj

)
,

where we have assumed that j > i for convenience. One immediately sees that this is a
bi-holomorphic function.
In the above example we have omitted some details, but for those I refer the reader to
Chapter 1 of [12].

Finally we want to mention that the inverse and implicit function theorem hold also
in the holomorphic setting (see [6]). The submersion and immersion theorems hold in the
holomorphic setting, as well.

1.2.1 Differential forms and the Dolbeault operator

We shall now briefly discuss de Rham operator on complex manifolds. The material discussed
in this subsection can be found in Chapter 9 of [15]. Let M be a n dimensional complex
manifold. We look at the complexification of the cotangnet space T ∗pM , of M at a point
p ∈M . We notice that T ∗pM ⊗ C ' (TpM ⊗ C)∗. We also have that

k∧
(T ∗pM ⊗ C) '

(
k∧
T ∗pM

)
⊗ C.

From this it then also follows that Ωk(M)⊗ C ' Γ∞((
∧k T ∗pM)⊗ C). We shall denote this

latter space by Ωk
C(M).

It follows that de Rham operator d extends to a map Ωk
C(M)→ Ωk+1

C (M), which has the
same properties as de Rham operator. Now given a coordinate chart (U, κ) of M we have the
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the local frame dx1, ..., dxn, dy1, ..., dyn of T ∗M , where zj = xj + iyj, for all 1 ≤ j ≤ n. This
is then also a frame of T ∗M⊗C. Instead of looking at the local frame dx1, ..., dxn, dy1, ..., dyn

we can also look at the frame dz1, ..., dzn, dz̄1, ..., dz̄n, where

dzj := dxj + idyj and dz̄j := dxj − idyj.

Now for any f ∈ C∞(M,C)

df = df1 + idf2,

where f1 = Re(f) and f2 = Im(f). On U we then have that

df =
n∑
j=1

∂f

∂zj
dzj +

∂f

∂z̄j
dz̄j.

It follows that for a smooth k-form ω ∈ Ωk
C(M) we have, on U ,

ω(z) =
∑

|I|+|J |=k

ωI,J(z)dzI ∧ dz̄J

And thus

dω(z) =
∑

|I|+|J |=k

dωI,J(z) ∧ dzI ∧ dz̄J

=
∑

|I|+|J |=k

n∑
l=1

∂ωI,J
∂zl

(z)dzl ∧ dzI ∧ dz̄J +
∑

|I|+|J |=k

n∑
l=1

∂ωI,J
∂z̄l

(z)dz̄l ∧ dzI ∧ dz̄J .

on U .

Definition 1.11. We say that ω ∈ Ωk
C(M) is of type (p, q) if, in a given coordinate chart, it

can be written as

ω(z) =
∑
|I|=p

∑
|J |=q

ωI,J(z)dzI ∧ dz̄J

The space of all forms of type (p, q) is denoted by Ω
(p,q)
C (M).

It follows from the following lemma that that the above definition is independent of the
choice of coordinates.
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Lemma 1.12. Let T : U → V be a bi-holomorphic map between open sets U, V ⊂ Cn. Then
T ∗dzj =

∑n
k=1

∂F j

∂wk
dwk and T ∗ dz̄j =

∑n
k=1

∂F j

∂w̄k
dw̄k.

The above lemma implies that T ∗(dzI) =
∑
|J |=|I| gJdw

J , for some functions gJ : U → C.
So we indeed see that Definition 1.11 is independent on the chosen coordinates.

It follows from Definition 1.11 that Ωk
C(M) decomposes as

Ωk
C(M) =

k⊕
l=0

Ω
(k−l,l)
C (M).

In particular for each k and each p, q such that p+ q = k, there is a canonical projection

πp,qk : Ωk
C(M)→ Ω

(p,q)
C (M).

We notice that

d : Ω
(p,q)
C (M)→ Ω

(p+1,q)
C (M)⊕ Ω

(p,q+1)
C (M).

Using de Rham operator and the projections, defined as above, we define the operators

∂ := πp+1,q ◦ d : Ω
(p,q)
C (M)→ Ω

(p+1,q)
C (M),

∂ := πp,q+1 ◦ d : Ω
(p,q)
C (M)→ Ω

(p,q+1)
C (M).

Notice that d = ∂ + ∂. The operator ∂ is known as the Dolbeault operator and will be
important for us later on. Given a chart (U, κ), we have that

∂ω(z) =
∑

|I|+|J |=k

n∑
l=1

∂ωI,J
∂zl

(z)dzl ∧ dzI ∧ dz̄J (1.3)

∂̄ω(z) =
∑

|I|+|J |=k

n∑
l=1

∂ωI,J
∂z̄l

(z)dz̄l ∧ dzI ∧ dz̄J (1.4)

for any ω ∈ Ω
(p,q)
C (M).
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1.3 Fractional linear transformations

In this section we shall discuss the fractional linear transformations. This section will be
based on [11] and a lecture given by Erik van den Ban in the 2018 summer school of Utrecht
University. In this section we will stick to the convention that for g ∈ GL(n,C)

g =

(
a b
c d

)
.

We shall now first introduce the Riemann sphere.

Consider P1(C). Let κ1 : U1 → C be as in the above example and let ϕ := κ1
−1. One

readily verifies that the complement of the image of C under ϕ consists of the single point
[1 : 0]. We now let Ĉ := C∪{∞} and we extend ϕ to a function ϕ̂ : Ĉ→ P1(C), by defining

ϕ̂(∞) = [1 : 0]. We can put a complex structure on Ĉ by requiring ϕ̂ to be a bi-holomorphic

map. The complex manifold Ĉ is called the Riemann sphere.

The group GL(2,C) acts in a natural way on C2 via the usual matrix multiplication. It
is clear that C2\{0} is an invariant under this action. We notice that this action maps lines
through the origin to lines through the origin, and hence the action of GL(2,C) on C2\{0}
induces an action on P1(C), given by

g · [z1 : z2] = [az1 + bz2 : cz1 + dz2] where g =

(
a b
c d

)
.

We see that the action of cg is the same as that of g, for any c ∈ C∗, so we can restrict
our attention to the action of SL(2,C) on P1(C). Now via the map ϕ̂ the action of SL(2,C)

transfers to an action on Ĉ, by transformations Fg, such that g · ϕ̂ = ϕ̂ ◦ Fg.

Lemma 1.13. Let g ∈ SL(2,C). The bi-holomorphic transformation Fg : Ĉ → Ĉ is given
by the following rules

(1) For z ∈ C

Fg(z) =
az + b

cz + d

if cz + d 6= 0 and Fg(z) =∞ if cz + d = 0

12



(2) For z =∞ we have that Fg(z) = a
c

if c 6= 0 and Fg(z) =∞ if c = 0.

Proof. We first assume that z ∈ C. We notice that

ϕ̂(Fg(z)) = g · ϕ̂(z) = g · [z : 1] = [az + b : cz + d]. (1.5)

If cz+d = 0 then ϕ̂(Fg(z)) = [az+ b : 0] and we thus conclude that Fg(z) =∞. If cz+d 6= 0
then

ϕ̂(Fg(z)) = [
az + b

cz + d
: 1]

and hence Fg(z) = az+b
cz+d

.
Now let z =∞. Then

ϕ̂(Fg(z)) = g · ϕ̂(z) = g · [1 : 0] = [a : c],

from which the last part of the lemma follows.

The transformations Fg as in the above lemma are known as the fractional linear trans-
formations.

For a, b ∈ C we define the maps Ma, Tb, J : Ĉ→ Ĉ as

Tb(z) := z + b

J(z) := −1

z
Ma(z) := az

Note that these are fractional linear transformations. The following theorem is an slightly
adapted version of theorem 5.1 in chapter VII in [11], and says that every fractional linear
transformation can be realized as a composition of the above maps.

Theorem 1.14. Given g ∈ GL(2,C) let Fg be the corresponding fractional linear transform-
ation. Then there exist complex numbers α, β, γ such that, either Fg = Tβ ◦Mα or

Fg = Tγ ◦Mα ◦ J ◦ Tβ.

Furthermore, if g ∈ GL(2,R), then α, β, γ can be chosen to be real. If in addition det(g) > 0,
then α can be chosen to be larger 0.
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Proof. First suppose c = 0. Then d 6= 0 and Fg(z) = (az + b)/d. We thus we see that
Fg = Tβ ◦Mα, with α = a/d and β = b/d. It is obvious that α and β are real, if g ∈ GL(2,R).
We also see that α > 0 if det(g) > 0.
We now consider the case that c 6= 0. We see that the map F 1

c
g = Fg. So without loss of

generality we can assume that c = 1. We set β = d. We then have to solve

az + b

z + d
=
−α
z + d

+ γ

or stated differently, we have to solve the equation az + b = −α+ γz + γd. We see that this
equation is solved for γ = a and α = ad − b. And again it follows that α, β and γ can be
chosen to be real, if g ∈ GL(2, R) and that α > 0 if det(g) > 0.

We can restrict the action of SL(2,C) on Ĉ to an action of SL(2,R).

Lemma 1.15. Let g ∈ SL(2,R) and z ∈ C then

ImFg(z) =
Im(z)

|cz + d|2
.

Proof. The proof is by a direct computation and is left for the reader.

From the above lemma it follows that the action of SL(2,R) on Ĉ is not transitive. We
let H+ = {z ∈ C | Im(z) > 0}, the upper half plane, H− = {z ∈ C | Im(z) < 0}, the lower
half plane, and R̂ = R ∪ {∞}, the extended real line.

Lemma 1.16. The orbits of the action SL(2,R) in Ĉ are H+, H− and R̂.

Proof. We first prove that given a z = x+iy ∈ H+ there is a g ∈ SL(2,R) such that Fg(i) = z.

Let a =
√
y, b = x

√
y−1, c = 0 and d =

√
y−1. Then we see that Fg(i) =

√
yi+x
√
y−1√

y−1
= x+ iy

and ad − cb = 1. The previous argument and Lemma 1.15 show that H+ is an orbit. By
applying complex conjugation we see that H− is also a SL(2,R) orbit.
We now notice that (

cos θ sin θ
− sin θ cos θ

)
· 0

is equal to tan θ if θ /∈ 1/2π + πZ and to ∞ when θ ∈ 1/2π + πZ . This and Lemma 1.15

show that R̂ is an orbit.
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Lemma 1.17. The stabalizer of i in SL(2,R) is SO(2).

Proof. Let g ∈ SL(2,R) such that fg(i) = i. Then ai+b
ci+d

= i or equivalently ai+ b = id− c or
(a− d)i + b + c = 0. Thus, since a, b, c, d ∈ R, we have that a = d and b = −c. Now notice
that 1 = det(M) = ad− bc = a2 + b2. This can only be the case if a = cos(θ) and b = sin(θ),
for some θ ∈ R.
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Chapter 2

Lie groups and Lie algebras

In chapters 11 and 12 we shall be interested in certain representations of SL(2,R). Therefore
a basic knowledge of Lie groups and their representations will be useful. In this chapter we
will focus our attention to Lie groups. We shall develop the theory along the lines of Chapters
2 and 3 of [1]. We shall first give a definition of a Lie group and show that SL(n,R) is a
Lie group. After that we shall work towards introducing the exponential map and the Lie
algebra. In section 2.2 we shall inquire about the conditions on a smooth group action of a
Lie group on a manifold that are sufficient to guaranty the existence of a smooth manifold
structure on the quotient space. This will be useful in the discussion of chapter 10 which is
essential for chapter 11 and 12.

2.1 Lie groups and Lie algebras

Definition 2.1. A smooth manifold G equipped with the structure of a group such that the
multiplication and inversion maps are smooth is called a Lie group.

Example 2.2. We notice that GL(n,R) is an open subset of Mat(n,R), so GL(n,R) is a
submanifold of Mat(n,R). We now notice that the multiplication map is the restriction of a
bilinear map, and hence smooth. Now the inverse map is also smooth, since the coefficients
of the inverse of an invertible matrix are rational functions of the coefficients of the matrix.
Hence GL(n,R) is a Lie group.

Example 2.3. The map det : Mat(n,R)→ R, given by A 7→ detA, is a polynomial function
in the coefficients of A ∈ Mat(n,R) and hence a smooth function. We notice that, for all
H ∈ Mat(n,R), we have

det(I + tH) = 1 + t tr(H) + t2R(t,H),

where R(t,H) is a polynomial in t and the coefficients of H. So we conclude that TI det(H) =
tr(H). From this it follows that

TA det(H) = det(A)tr(A−1H),
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for all A ∈ GL(n,R). It thus follows that det is a submersion on GL(n,R), and hence is
SL(n,R) = det−1(1) a submanifold of GL(n,R). It thus follows that SL(n,R) is a Lie group.

In this thesis we will focus our attention on the Lie group SL(2,R).

Definition 2.4. Let G and H be Lie groups. A map ϕ : G → H is called a Lie group
homomorphism if it is a smooth map that is also a homomorphism in the algebraic sense.
The map ϕ is called a Lie group isomorphism if it is a diffeomorphism and a Lie group
homomorphism.

Lemma 2.5. Let G and H be Lie groups and ϕ : G→ H a continuous group homomorphism.
Then is ϕ a smooth map and hence a Lie group homomorphism.

Let M be a smooth manifold and X : M → TM a smooth vector field. Recall that an
integral curve is a differentiable curve γ : I → G, with I an open interval, such that

dγ

dt
(t) = X(γ(t)), for all t ∈ I.

Now let G be a Lie group. Recall that a vector field V is left invariant if Tg′lgV (g′) = V (gg′),
for all g, g′ ∈ G, where lg : G → G, x 7→ gx is the left translation. For an X ∈ TeG we can
define a left invariant vector field VX : G→ TeG, by VX(g) = Telg(X). The map X 7→ VX is
actually a linear isomorphism from TeG to the space of left invariant vector fields on G. For
a proof I refer the reader to [12] Theorem 8.37 or [1] Lemma 3.1.

Lemma 2.6 ([1], lemma 3.2). Let X ∈ TeG. Then the domain of the integral curve αX equals
R. Moreover, αX(s + t) = αX(s)αX(t), for all s, t ∈ R. Finally, the map (t,X) 7→ αX(t) is
smooth.

With the previous lemma in mind, the following definition makes sense.

Definition 2.7. Let G be a Lie group. The exponential map exp : TeG→ G is defined by

exp(X) := αX(1),

where αX : R→ G is again the integral curve corresponding to the left invariant vector field
g 7→ TelgX.
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Lemma 2.8 ([1], lemma 3.6). Let G be a Lie group. Then for all t, s ∈ R and all X ∈ g we
have

exp(tX) = αX(t)

exp((t+ s)X) = exp(tX) exp(sX).

Consider the map Cx : G→ G given by Cx(g) = xgx−1. Notice that this is the composition
of smooth maps, namely the maps lx : G → G, g 7→ xg and rx−1 : G → G, g 7→ gx−1, and
hence smooth. So we can consider its differential at the identity element TeCx : TeG →
TeG. Since Cx is a diffeomorphism, TeCx ∈ GL(TeG). The assignment x 7→ TeCx is a map
G → GL(TeG). We denote this map by Ad. Lemma 4.4 of [1] says that Ad is a Lie group
homomorphism, and hence in particular that Ad is a smooth map.
Differentiating Ad at the identity element gives us a linear map TeAd : TeG → End(TeG),
which we denote by ad. We are now ready to give the following definition.

Definition 2.9. A Lie algebra is a vector space g equipped with a map [·, ·] : g × g → g,
called the bracket, that is bi-linear, anti-symmetric and satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, (for all X, Y, Z ∈ g).

Lemma 2.10 ([1], lemma 4.9 an corollary 4.11). The vectorspace TeG equipped with the map
[X, Y ] := ad(X)Y is a Lie algebra.

In the remaining of the text we shall refer to (TeG, [·, ·]) as the Lie algebra of G.

Example 2.11. Consider again SL(n,R). Recall that det : SL(n,R) → R is a smooth
submersion. Since SL(n,R) = det−1(1) we know that the tangent space of SL(n,R) in I is
ker(TI det) = {A ∈ Mat(n,R) | tr(A) = 0}.

Definition 2.12. Let g and h be Lie algebra’s and let ψ : g → h be a linear map. Then ψ
is called a Lie algebra homomorphism if ψ([X, Y ]) = [ψ(X), ψ(Y )], for all X, Y ∈ g.

Lemma 2.13 ([1], lemma 4.16). Let G and H be Lie groups and let ϕ : G → H be a Lie
group homomorphism. Then is the map φ∗ := Teφ a Lie algebra homomorphism. We further
have that the following diagram is commutative.

G H

g h

ϕ

exp

ϕ∗

exp
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In particular the above lemma implies that

G GL(g)

g End(g)

Ad

exp

ad

exp

is a commutative diagram. Stated differently we have, for X ∈ g, that Ad(exp(X)) =
exp(ad(X)).

2.2 Quotients of manifolds by group actions

In this section we will briefly discuss a few results concerning manifold structures on orbit
spaces of a smooth group actions. We will state the necessary definitions and main results.
For a more detailed discussion see [12] Chapter 21 or [1] Chapter 11 up to 15.

Definition 2.14. A topological group is a topological space with a group structure, such
that the multiplication map G × G → G, (x, y) 7→ xy and the inversion map G → G,
x 7→ x−1 are continuous.

Definition 2.15. An action of a topological group G on a manifold M is called a proper
action if the map G ×M → M ×M given by (g, p) 7→ (g · p, p) is proper, where we recall
that a continuous map is proper if the inverse image of a compact set is compact.

Definition 2.16. An action of a group G on a space X is called free if the only element of
G that fixes any element of X is the identity element. So stated differently if g · x = x, for
some x ∈ X, then g = e.

Theorem 2.17 ([12], Quotient manifold theorem). Let G be a Lie group that acts freely and
properly on a manifold M . Then the orbit space M/G, equipped with the quotient topology,
is a topological manifold and M/G has a unique smooth structure making the projection map
π : M →M/G into a submersion.

Lemma 2.18 ([1], Lemma 14.1). Let H be a closed subgroup of G. Then the right action of
H on G is proper and free.
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Corollary 2.19 ([1], Corollary 14.2). Let G be a Lie group and H a closed subgroup. Then
G/H has a unique structure of a smooth manifold such that the canonical projection π : G→
G/H is a smooth submersion.

Let M be a manifold equipped with a smooth left action of the Lie group G. For x ∈M
the stabilizer Gx, of x, is defined as

Gx := {g ∈ G | g · x = x}.

Since Gx is the pre-image of x under the map G → M , g 7→ gx, the stabilizer is a closed
subgroup. So G/Gx has the structure of a smooth manifold. The map αx : g 7→ gx factors
through a bijection ᾱx of G/Gx onto the orbit Gx.

Theorem 2.20 ([1], Orbit stabilizer theorem). Let the Lie group G act transitively on the
manifold M , and let x ∈ M . Then αx : G→ M , g 7→ gx induces a diffeomorphism between
G/Gx and M .
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Chapter 3

Vector bundles

In this chapter we shall introduce the notion of smooth vector bundles. Smooth vector
bundles will be needed to introduce the induction process in Chapter 10. They will also give
us a nice framework for introducing the generalized sections. We shall closely follow [12] in
formulation in the first part. The second part is based on some explanation given by Erik
van den Ban in some private meetings, but the basic definitions can also be found in [8]
Chapter 4.

Definition 3.1. Let M be a smooth manifold. A vector bundle of rank k over M , over the
field K = R,C, is a smooth manifold E together with a smooth surjective map p : E → M
such that

(i) For each x ∈ M , the fiber Ex = p−1(x) has the structure of a k dimensional vector
space over the field K.

(ii) For each x ∈ M there exists a neighbourhood U ⊂ M of x and a diffeomorphism
τ : p−1(U)→ U ×Kk, satisfying the conditions

• prU ◦ τ = p, where prU : U × Ck → U is is the projection;

• for each y ∈ U the restriction of τ to Ey is a vector space isomorphism from Ey
to {y} ×Kk.

The map τ is called a local trivialization over U .

If M and E are complex manifolds, p : E → M a holomorphic submersion and we can
chose the trivializations to be bi-holomorphic, we say that p : E → M is a holomorphic
vector bundle.
The most trivial example of a vector bundle is p : M × Ck → M , where M is a smooth
manifold and p the projection (m, v) 7→ m. Other examples are the tangent and the cotangent
bundle (see [12]).
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Lemma 3.2 ([12], Vector bundle chart lemma). Let M be a manifold and assume that for
every x ∈ M we are given a vector space Ex of dimension k. Let E =

∐
x∈M Ex, and let

π : E → M be the projection map that maps each element of Ex to x. Assume further that
we are given the following data:

(i) an open cover {Uα}α∈A of M

(ii) for each α ∈ A a bijective map τα : π−1(Uα)→ Uα ×Kk, whose restriction to each Ex
is a vector space isomorphism from Ex to {x} ×Kk.

(iii) for all α, β ∈ A such that Uα ∩Uβ 6= ∅, a smooth map Φαβ : Uα ∩Uβ → GL(K, k), such
that the map τα ◦ τ−1

β : (Uα ∩ Uβ)×Kk → (Uα ∩ Uβ)×Kk is of the form

τα ◦ τ−1
β (x, v) = (x, ταβ(x)v).

Then E has an unique topology and smooth structure making it into a manifold and a smooth
vector bundle of rank k over M , with π as projection and {(Uα, τα)} as local trivialization.

This lemma is very useful for constructing new vector bundles from existing ones. Let
p : E →M and q : F →M be vector bundles. From the lemma it follows that we can define
vector bundles

E ⊕ F, E ⊗ F, E∗,
k∧
E

in a canonical way. The fibers of these bundles are given by,

Ex ⊕ Fx, Ex ⊗ Fx, E∗x,

k∧
Ex,

respectively.

Definition 3.3. Let p : E → M and q : L→ N be smooth vector bundles. A smooth map
F : E → L is called a bundle homomorphism, if there is a f : M → N such that f ◦p = q◦F ,

E L

M N

p

F

q

f
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with the property that F |Ex : Ex → Lf(x) is a linear map. In this case we say that F is a
bundle homomorpism over f . We say that F is a bundle isomorphism when F is a bijection
and the inverse F−1 of F is also a bundle homomorphism.

Proposition 3.4. Let p : E → M and p′ : E ′ → M be smooth vector bundles over M and
let F : E → E ′ be a bijective smooth vector bundle homomorphism. Then F is a smooth
bundle isomorphism.

Proof. To establish smoothness of F−1 it is sufficient to proceed locally. We can thus assume
that E = U ×Kk and E ′ = U ×Kk. Since p = p′ ◦F , we conclude that F (x, v) = (x,A(x)v)
for some A : U → GL(Kk). It is readily confirmed that A is smooth and therefore also
x 7→ A(x)−1. We immediately conclude that F−1(y, w) = (y, A(y)−1w), which is a smooth
function.

3.1 Pull-back vector bundle

Let p : E → M be a vector bundle and let f : N → M be a smooth map. Now there is
a vector bundle q : E ′ → N , such that there is a bundle morphism F over f such that the
restriction of F on a fiber is a linear isomorphism. We let f ∗(E) be the submanifold of N×E
given by

f ∗(E) := {(x, v) ∈ N × E | p(v) = f(x)}.

We now claim that q : f ∗(E)→ N , given by the restriction of projection of N ×E → N , is a
vector bundle. We will therefore show the existence of local trivializations. For this take again
a local trivialization (U, τ) of E around f(x). We define the function τ̃ : f−1(U)×p−1(U)→
f−1(U)×U ×Kk, given by τ̃(x′, w) = (x, τ(w)). Restricting τ̃ to f ∗(E)∩ (f−1(U)× p−1(U))
gives us our trivialization. The fibers of q are given by {x} × Ef(x), where Ey denotes the

fiber over y ∈M . These fibers inherit a linear structure making the map f̃x : f ∗(E)x → Ef(x)

into a linear isomorphism, where f̃ : f ∗(E)→ E is given by the restriction of the projection
N ×E → E to f ∗(E). Accordingly f̃ is a vector bundle morphism over f and thus we have
the following commutative diagram
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f ∗(E) E

N M

q

f̃

p

f

Definition 3.5. The vector bundle q : f ∗(E)→ N is called the pull-back bundle.

Now the pull-back bundle is uniquely determined, up to a vector bundle isomorphism, by
the following universal property.

Lemma 3.6. Let q′ : L → N be a vector bundle and F : L → E a vector bundle homo-
morphism over f , then there exists an unique vector bundle homomorphism G : L→ f ∗(E)
such that the following diagram commutes

L

f ∗(E) E

N M

F

q′

G

q

f̃

p

f

In particular we have that if Fx is a linear isomorphism, for every x ∈ N , then G is a vector
bundle isomorphism.

Proof. First assume that G,G′ : L → f ∗(E) are both vector bundle morphisms such that
the above diagram commutes. Then q ◦ G′ = q′ = q ◦ G and f̃ ◦ G = F = f̃ ◦ G. Since
f̃ : (x, v) 7→ v and q : (x, v) 7→ x, we conclude that G(x, v) = G′(x, v) = (q′(w), F (w)).
Consider the function G : L→ N ×E, given by w 7→ (q′(w), F (w)). This is clearly a smooth
map. We further notice that, for w ∈ Lx, we have G(w) ∈ f ∗(E)x, so G is a function from L
to f ∗(E). It is now readily verified that, with G as just defined, the above diagram commutes.
We now are left to show that G|Ly is a linear map from Ly to f ∗(E)y, for y ∈ N . Therefore

we notice, that since F = f̃ ◦ G and G|Lx : Lx → f ∗(E)x, we have that F |Lx = f̃x ◦ G|Lx .
Since f̃x is a linear isomorphism we conclude that G|Lx = f̃−1

x ◦ F |Lx . Now F |Lx is a linear
map and hence G|Lx is the composition of linear maps and thus linear.
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Now assume that F |Lx is an isomorphism for all x ∈ N . It then follows that F is bijective.
The final statement thus follows from proposition 3.4.

Now for a smooth section s : M → E of p we can associate a smooth section N → f ∗(E)
of q given by

x 7→ (x, s(f(x))). (3.1)

A few words on the above expression. First we notice that (x, s(f(x))) ∈ f ∗(E), further
the above assignment is smooth, so the above rule indeed gives a smooth section. We now
notice that (x, s(f(x))) = f̃−1

x s(f(x)). It follows that f induces a map Γ(E) → Γ(f ∗(E))
given by f ∗(s)(x) = f̃−1

x s(f(x)). It clear that this is a linear map. We immediately see that
if s|f(N) = s′|f(N), then f ∗(s) = f ∗(s′). So f ∗ is injective in the case that f is surjective. We
have thus proven the following lemma:

Lemma 3.7. The map f ∗ : Γ(E) → Γ(f ∗(E)) as above is a linear map. Furthermore, if f
is surjective, then f ∗ is injective.
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Chapter 4

Densities

In this chapter we will focus our attention on densities on a smooth manifold. Densities give
us a way of integration, without needing an orientation on the considered manifold. This is
in contrast to the integration of top-forms, where we need an orientation. Our use for them
will be to introduce the generalized sections and the normalised induction procedure as will
be discussed in Section 6.2 and Section 10.3 respectively. The material of this chapter is
drawn from [1] Chapter 19, [2] Chapter 19 and [12] Chapter 16.

4.1 Densities

We shall first give a definition of an α-density on a finite dimensional vector space (over the
real or complex numbers). After that we define the density bundle and densities of a smooth
manifold.

Definition 4.1. Let V be a finite dimensional vector space over the field K = R,C of
dimension n and α > 0. An α-density on V is a map ω : V × · · · × V︸ ︷︷ ︸

n times

→ K such that, for all

v1, ..., vn ∈ V and all A ∈ End(V ), we have

ω(Av1, ..., Avn) = | det(A)|αω(v1, ..., vn). (4.1)

We denote the space of densities of V by DαV . One easily verifies that DαV is a linear
space.

Let b1, ..., bn a basis of V . For any v1, ..., vn ∈ V , there exists a unique A ∈ End(V )
such that A(bi) = vi. So from (4.1) we conclude that ω ∈ DαV is completely determined
by its value on (b1, ..., bn). From this it follows that DαV is a vector space of dimension at
most one. On the other hand to any λ ∈ K we have a density ω : V × · · · × V︸ ︷︷ ︸

n times

→ K, with

ω(b1, ..., bn) = λ, given by

ω(v1, ..., vn) = | detA|αλ,
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where A ∈ End(V ) is the unique linear transformation such that A(bj) = vj, for all 1 ≤ j ≤ n.
We thus see that DαV is a one dimensional linear space over the field K.

For a linear map A : V → W and ω : W × · · · ×W︸ ︷︷ ︸
n times

→ K, we define A∗ω : V × · · · × V︸ ︷︷ ︸
n times

→

K by

A∗ω(v1, ..., vn) = ω(Av1, ..., Avn), for all v1, ..., vn ∈ V.

Example 4.2. Let V be a n dimensional vector space over the field K. Consider the space∧n V ∗ of alternating n-fold multilinear forms. If ε1, ..., εn is a basis of V ∗ then is ε1 ∧ · · · ∧ εn
a basis of

∧n V ∗. We recall that for any linear transformation A : V → V we have that
A∗(ε1 ∧ · · · ∧ εn) = det(A)ε1 ∧ · · · ∧ εn, so we see that |ε1 ∧ · · · ∧ εn|α ∈ DαV .

Now letM be a smooth n dimensional manifold. Then we defineDαTM =
∐

x∈M DαTxM .
Let π : DαTM →M denote the projection. Given a coordinate chart (U,ϕ) of M a section
s : M → DαTM is, on U , equal to

fU |dx1 ∧ · · · ∧ dxn|

for some function f : U → K. We say that s is continuous if, for in coordinate charts (U, κ),
the function fU is continuous. The continuous sections, Γ(DαTM), of π are referred to as
densities.

For F : M → N a smooth map between manifolds M and N and µ a density we define
the pullback F ∗µ of µ under F by

(F ∗µ)x(v1, ..., vn) := µF (x)(TxFv1, ..., TxFvn), for all v1, ..., vn ∈ TF (x)N.

As mentioned in the introduction there is a way to integrate densities. We give a defini-
tion. Let M be a smooth manifold of dimension n and let (U, κ) be a chart. For a density
ω on M that is compactly supported in U . On U there is a unique f : U → K such that
ω = f | dx1 ∧ · · · ∧ dxn|. We define∫

U

ω :=

∫
κ−1(U)

(κ−1)∗ω =

∫
κ−1(U)

f(κ−1(x))| dx1 ∧ · · · ∧ dxn|.
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Now let U = {(Ui, κi)}I be a collection of charts of which the chart domains cover M . Let
{ψi} be a partition of unity subordinate to U . Then, for a density ω, we define∫

M

ω :=
∑
i∈I

∫
Ui

ψiω.

With the substitution of variables theorem, one can show that
∫
M
ω is independent on the

chosen cover. For a more detailed discussion see [12] Chapter 16.

4.2 Invariant densities

On Rn we have the Lebesgue measure, which is translation invariant. In terms of Lie groups
and densities that means that l∗g| dx1 ∧ · · · ∧ dxn| = | dx1 ∧ · · · ∧ dxn|, for all g ∈ Rn. This
can be formulated as that | dx1 ∧ · · · ∧ dxn| is left invariant. This notion can be generalized
to an arbitrary Lie Group. In this section we will discuss that every Lie group has a positive
left invariant density. The results and proofs of this section are drawn from [1] Chapter 19.

Recall that lg : G→ G, x 7→ gx and rg : G→ G, x 7→ xg.

Definition 4.3. Let G be a Lie group. We say that a density ω on G is left-invariant if
l∗gω = ω, for all g ∈ G. We say that ω is right-invariant if r∗gω = ω, for all g ∈ G. A
left-invariant density is also called a left Haar measure and a right-invariant density a right
Haar measure.

Theorem 4.4 ([1], Lemma 19.6 and Corollary 19.7). Let G be a Lie group. Then G has an
unique positive left-invariant density, up to a positive constant.

Let dx be a left invariant density on the Lie group G. We notice that for all g, h ∈ G,
we have that lh ◦ rg = rg ◦ lh, and thus r∗gl

∗
h = l∗hr

∗
g . It thus follows that r∗g(dx) is also a left

invariant density. From theorem 4.4, we conclude that r∗g( dx) = ∆(g)dx, for some ∆(g) ∈ C.
We notice that if dx is a positive density then is r∗g( dx) a positive density as well. It thus
follows that ∆(g) ∈ R>0. We thus have a function ∆ : G→ R>0 that assigns to g the value
∆(g). At last we notice that rgg′ = rg′ ◦ rg, so it follows that ∆(gg′) = ∆(g)∆(g′). We thus
conclude that the function ∆ : G → R>0 is a group homomorphism. The homomorphism
∆ is called the modular function of G. It turns out that ∆(g) = | det(Ad(g))|−1, as follows
from the following lemma.
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Lemma 4.5 ([1], lemma 19.12). Let dx be a left invariant density on the Lie group G. Then
for every g ∈ G,

r∗g(dx) = | det(Ad(g))|−1 dx.

Proof. We retain the notation of the above discussion. It follows from the above discussion
that C∗g−1(dx) = l∗g−1r∗g(dx) = r∗g(dx) = ∆(g) dx. Evaluating in the unit element e we find
that

∆(g)dx(e) = Te(Cg−1)∗ dx(e) = Ad(g−1)∗ dx(e) = | det(Ad(g))|−1 dx(e).

We thus conclude that ∆(g) = | det(Ad(g))|−1.
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Chapter 5

Locally convex vector space

In this chapter we will introduce a few notions of locally convex vector spaces. This has for us
two applications. Firstly in chapter Chapter 6 we want to realize the space of distributions,
on an open subset U ⊂ Rn, as the topological dual of the space of the smooth compactly
supported functions on U , of which the topology is locally convex. Secondly in Chapter 8
we will be considering continuous group actions of a Lie group on complete locally convex
vector spaces.
In this chapter we will only state the necessary definitions and results for our proceedings
in Chapter 6 and Chapter 8. We shall be following the structure of [4]. We first introduce
the more general notion of a topological vector space and have a brief discussion about
completeness of topological vector spaces. In the third section we will state the definition of
a locally convex vector space and discuss the relation of locally convex vector spaces with
collections of semi-norms. In the fourth section we will discuss to procedures to get a locally
convex topology on a space given a collection of locally convex vector spaces. This chapter
ends with a short discussion about the topology on the topological dual of a locally convex
vector space.

5.1 Topological vector spaces

Let V be a vector space over the field K = R,C and let T be a topology on V

Definition 5.1. The space (V, T ) is called a topological vector space if the maps the V ×V →
V , given by (v, w) 7→ v + w and K × V → V , given by (λ, v) 7→ λv, are continuous. In
other words the addition and scalar multiplication maps are continuous with respect to the
topology T .

Since for every x ∈ V the translation Tx : y 7→ y+x is an homeomorphism the topology is
already determined by the collection of open neighbourhoods of 0, i.e. the set T (0) = {D ∈
T | 0 ∈ D}. So we have that U ∈ T if and only if for all x ∈ U there is a D ∈ T (0) such
that x + D ⊂ U . But this means that the topology is uniquely determined by any basis of
neighbourhoods B(0). Conversely, a pair (V, T ), with V a vector space and T a translation
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invariant topology, does not need to be a topological vector space. One needs to put extra
conditions on the topology to ensure that (V, T ) is a topological vector space. Introducing
the necessary definitions will put us on a bit of a side track that has little further relevance
for us, so I refer the interested reader to result 1.2 in chapter one of [14].

5.2 Sequences and completeness

Since the representation spaces that we will consider in chapter chapter 8 are complete locally
convex vector spaces a short account on completeness seems in place. The material of this
section is drawn from [13] and [4].

We start our discussion by saying something about convergence of sequences in a topo-
logical vector space an let B(0) be a basis of neighbourhoods of 0. We consider a topological
vector space V . If (vn)N is a sequence that converges to v ∈ V , then vn − v → 0 as n→∞.
Or expressed in terms of B(0), (vn)N converges to v ∈ V if for all B ∈ B(0) there is an N
such that for all n ≥ N we have that vn − v ∈ B.

The basis B(0) gives us also a way to define a Cauchy sequence in V . Namely, a sequence
(vn)N in V is called a Cauchy sequence if for ever B ∈ B(0) there is an N such that for all
n,m ≥ N we have that vn− vm ∈ B. Now V is called sequentially complete if every Cauchy
sequence converges.

Before we can say what it means for a topological vector space to be complete we will
first need the following two definitions.

Definition 5.2. A directed set (A,≤) is a partially ordered set with the additional require-
ment that for all α, β ∈ A there is a γ ∈ A such that α, β ≤ γ.

Definition 5.3. Let X be a topological space and A a directed set. A function f : A→ X,
often denoted by (xα), is called a net. A net is said to be convergent if there is a x ∈ X such
that for every U ∈ T (x) there is a N ∈ A such that for all α ≥ N we have that xα ∈ U .

Definition 5.4. A Cauchy net is a net such that for all U ∈ B(0) there is a N ∈ A such
that for all α, β ≥ N we have that xα − xβ ∈ U . The space X is called complete if every
Cauchy net converges.
In a metric space (X, d) a Cauchy net is a net such that for all ε > 0 there is a N ∈ A such
that d(xα, xβ) < ε, for all α, β ≥ N .
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A complete space is always sequentially complete. We will state a partial converse.

Proposition 5.5. A metric space is complete if and only if it is sequentially complete

5.3 Locally convex vector spaces

We shall only be concerned with the topological vector spaces known as the locally convex
vector spaces. Before we come to the definition, recall that a convex subset of a vector space
is a subset C of V such that for all x, y ∈ C, (1− t)x+ ty ∈ C, for all t ∈ [0, 1].

Definition 5.6. A locally convex vector space is a topological vector space (V, T ) such that
every neighbourhood, of a point x ∈ V , contains a convex neighbourhood of x.

In all cases the topology on a locally convex vector space can be induced by a family
of semi-norms. Before continuing our discussion let us recall that a semi-norm, on a vector
space V , is a function p : V → R>0 satisfying

1. p(λx) = |λ|p(x), for all x ∈ V and λ ∈ K

2. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ V .

Let V be a vector space and let P be a collection of semi-norms on V . For p ∈ P , x0 ∈ V
and r > 0 consider

Bp(x0; r) := {x ∈ V | p(x− x0) < r}.

The topology induced by the collection of semi-norms P is the smallest topology containing
the collection {Bp(x; r) | p ∈ P, x ∈ V and r > 0}. A basis of neighbourhoods of 0 is then
given by all sets of the form

Bp1,...,pk(0; r) = {x ∈ V | p1(x), ..., pk(x) < r},

for some p1, ..., pk ∈ P and r > 0.

Notice that different sets of semi-norms may generate the same topology. Let P be a
collection of semi-norms and P0 ⊂ P . If for every p ∈ P there exists a p0 ∈ P0 such that
p(v) ≤ p0(v) for all v ∈ V , then the topologies generated by P and P0 coincide.
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Example 5.7. Let Ω be an open subset Rn. and consider the space C∞(Ω). For K ⊂ Ω
compact and k ∈ Z≥0 we consider the semi-norms

‖f‖K,Cr := sup
x∈K

max
|α|≤r
|∂αf(x)|. (5.1)

With the collection semi norms {‖·‖K,Ck | K ⊂ Ω compact and k ∈ Z≥0}, is C∞(Ω) a locally
convex vector space.
Let K ⊂ Rn be a compact set. Consider Ck

K(Ω) of k times continuous differentiable functions
on K. Equipping Ck

K(Ω) with the norm ‖ · ‖K,Ck , as defined (5.1), makes it into a Banach
space and thus in particular a locally convex space.

We have said that in a lot of cases the topology on a locally convex vector space is induced
by a given family of semi-norms. We also have that for every locally convex vector space
there is a collection of semi-norms that induces the topology on that space. We state this in
a theorem.

Theorem 5.8 ([4]). A topological vector space (V, T ) is locally convex if and only if there
exists a collection of semi-norms that generate the topology T .

For a sketch of the proof of this theorem see [4]. The following result will be quite useful
later on.

Proposition 5.9 ([4], Proposition 2.1.5). Let (V, P ) and (W,Q) be locally convex vector
spaces and let

A : V → W

be a linear map. Then A is continuous if and only if for every q ∈ Q there are p1, ..., pn ∈ P
and a C > 0 such that

q(A(v)) ≤ C max{p1(v), ..., pn(v)} (for all v ∈ V )

5.3.1 Inductive and projective topology

Not all locally convex vector spaces come with an initial collection of semi-norms that induce
the topology, as will be the case with the space C∞c (U), U ⊂ Rn open, which we shall consider
in the next chapter.
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Let X be a vector space and {(Xα, Tα)}α∈A a collection of locally convex vector spaces
such that Xα ⊂ X and X =

⋃
αXα. We further assume that A is a partially ordered set and

that Xα ⊂ Xβ, whenever α ≤ β. We endow X with the finest topology making it a locally
convex vector space such that the inclusions iα : Xα → X are continuous. This topology is
called the inductive topology. A basis of neighbourhoods of 0 is given by the set

B(0) = {B ⊂ X | B convex and B ∩Xα ∈ Tα(0)}.

We want to inquire about the nature of continuous maps and converging sequences. We
following result is immediate.

Proposition 5.10 ([4], Proposition 2.1.10). Let Y be a locally convex vector space and let
X be as above. A linear map A : X → Y is continuous if and only if Aα = A

∣∣
Xα

: Xα → Y
is continuous, for all α.

For the study of convergent sequences we will restrict to the the following setting: Let
X be a vector space and {(Xi, Ti) | i ∈ N} a collection locally convex vector space such that
Xα ⊂ X and

X1 ( X2 ( X3 ( · · · .

Further we assume that Xi is closed in Xi+1 and Ti = Ti+1

∣∣
Xi

. In this setting we have the
following result.

Proposition 5.11 ([4], Proposition 2.1.11). Let (xn)n∈N be a sequence in X converging to
a point x ∈ X. Then there is a n0 ∈ N such that xn, x ∈ Xn0, for all n ∈ N, and xn → x in
Xn0.

Proposition 5.12 ([14], Result 6.6). If (Xi, Ti) is complete for all i ∈ N, then also X,
equipped with the inductive topology, is complete.

Now consider the situation that X is a vector space and (Xα, Tα) a collection of locally
convex vector spaces such that X ⊂ Xα and X =

⋂
αXα. We assume again that A is

a partially ordered set, but this time we assume that Xβ ⊂ Xα, whenever α ≤ β. We
now endow X with the coarsest topology making it a locally convex vector space such that
the inclusions prα : X → Xα are continuous. This topology is called the projective limit
topology. We have a similar result as Theorem 5.10.

Proposition 5.13. Let Y be a locally convex vector space and let X be as above. A linear
map A : Y → X is continuous if and only if prα ◦ A is continuous for all α ∈ A.
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5.4 Topology on the dual space

Consider the topological dual V ∗ of a topological vector space V , where we recall that V ∗

is the space of continuous linear forms u : V → C. For our purposes later on we shall be
interested in the topology on V ∗. Now there is not a unique topology on V ∗. We will only
give the definition of the so called strong topology on V ∗, since that will be the one we are
interested in. We will only state the definition and then discuss this topology in the case
that the topology on V is induced by a collection of semi-norms and state a result for the
case that the topology on V is the inductive limit topology of some collection {(Vn, Tn)} of
locally convex vector spaces.

Definition 5.14. A set B ⊂ V is called bounded if for every U ∈ T (0) there is a λ > 0 such
that B ⊂ λU .

Definition 5.15. Let V be a locally convex vector space. For U ⊂ V the polar is defined
by

U◦ : {f ∈ V ∗ | |f(x)| ≤ 1 for all x ∈ U}.

Definition 5.16. We define the strong topology β on V ∗ as the topology generated by the
topology basis

{B◦ | B ⊂ V bounded}.

See [13] for a detailed account.

We discuss this topology in the case that the topology on V is induced by a collection
of semi-norms. If the topology on V is generated by a collection of semi-norms P , we have
that the ball Bp(r) = {v ∈ V | p(v) < r}, for p ∈ P , is an open neighbourhood of 0. So for
any p ∈ P there is a rp > 0 such that B ⊂ Bp(rp). It then follows from proposition 5.9 that

pB(u) := sup{|u(v)| | v ∈ B} <∞.

Then is {pB | B ⊂ V bounded} a collection of semi-norms. Notice that

BpB(0; 1) = B◦,

for all bounded sets B. We thus see that the topology induced by this collection of semi-
norms is the same as the strong topology.
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Now let X be a vector space and {(Xi, Ti) | i ∈ N} a collection locally convex vector
space such that Xα ⊂ X and X1 ( X2 ( X3 ( · · · , such that Xi is closed in Xi+1 and
Ti = Ti+1

∣∣
Xi

.

Proposition 5.17 ([16], Proposition 6.8). If X = lim→Xn is the strict inductive limit, then
there is a natural topological isomorphism

X∗β ' lim
←

(X∗n)β,

here lim←(X∗n)β denotes X∗ equipped with the inductive limit of X∗n equipped with the strong
topology.

36



Chapter 6

Distributions

In this chapter we shall be concerned with distributions and generalized sections. Distribu-
tions will play a major role in the discussion of chapter 7. We shall start our discussion with
the distributions on an open subset of Rn and after that we shall generalize the discussion
to the generalized or distributional sections of a smooth vector bundle. In doing so we will
follow [4].

6.1 Local theory

In this section we shall discuss distributions on an open subset Ω ⊂ Rn. We want to realize
the space of distributions as the topological dual of the space C∞c (Ω). It is thus natural to
start our discussion with the topology on C∞c (Ω), as we will do in subsection 6.1.1. Having
done that we give a definition of the space of distributions D′(Ω) on Ω, and we shall discuss
briefly some operations on the space of distributions. On the whole, the given account will
be brief. Fore a more detailed discussion we refer the reader to [4] and [7].

6.1.1 Test functions

Recall that for a continuous function f : Ω → C the support of f , supp(f) is defined as
the closure of {x ∈ Ω | f(x) 6= 0}. The space of compactly supported smooth functions,
in C∞(Ω), is denoted by C∞c (Ω) or in Schwartz’ notation D(Ω). The space C∞0 (Ω) is also
referred to as the space of test functions. 1

We now look into the topology on C∞c (Ω). We let C∞K (Ω) := {f ∈ C∞(Ω) | supp(f) ⊂ K}
the space of smooth functions with support contained in K. We shall consider C∞K (U) with
the topology induced by the collection of semi-norms {‖ · ‖K,Cr | r ∈ Z≥0}, with ‖ · ‖K,Cr
defined by (5.1).

1For the existence of compactly supported smooth functions see [7] Chapter 2.
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For the moment we agree to write EK(Ω) = C∞K (Ω) and D(Ω) = C∞c (Ω). We notice that

D(Ω) =
⋃
K⊂Ω,

Kcompact

EK(Ω).

We further notice that we have a partial order on the collection of compact subsets of Ω,
namely the inclusion of sets. We can thus equip D(Ω) with the inductive limit topology, as
we indeed do.

6.1.2 Distributions

We define the space of distributions D′(U) on U as

D′(U) := (C∞c (U))∗.

We then have as a direct consequence from Theorem 5.9 and Theorem 5.10 that:

Corollary 6.1. A linear form u : C∞c (Ω) → C is a distribution if and only if for every
compact subset K ⊂ Ω there is a constant C > 0 and an order of differentiation k ∈ Z≤0

such that for all φ ∈ C∞(K) we have

|u(φ)| ≤ C‖φ‖Ck,K . (6.1)

The equivalent condition in the above corollary is given as a definition in [9].

To any locally integrable 2 function f : Ω→ C we can associate a distribution, namely

uf (φ) :=

∫
Ω

fφ dx.

This is indeed a distribution, since for every compact subset K of Ω we have that

|uf (φ)| ≤
∫
K

|fφ| dx = ‖φ‖K,0
∫
K

|f | dx, (for all φ ∈ C∞K (Ω)).

It follows that mapping f 7→ uf restricted to C(Ω) defines an continuous inclusion of C(Ω)
into D′(Ω). For a detailed discussion on the injectivity of this assignment, see [7] lemma 3.6.

2Lebesgue integrable
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It then also follows that the map f 7→ uf is a continuous inclusion of C∞(U) into D′(Ω). It
turns out C∞(Ω) is dense in D′(Ω). We shall not go into this, but refer the reader to chapter
11 of [7] and in particular corollary 11.7.

The space C∞(U) is a ring. The C∞(U)-module structure of C∞(U) can be extended to
D′(U), by defining the multiplication of f with a distribution u as

(fu)(φ) := u(fφ), for φ ∈ C∞c (U).

We also have a notion of differentiability for distributions. We define

(∂iu)(φ) := −u(∂iφ), for φ ∈ C∞c (U).

Notice that this definition is compatible with the differentiation in C∞(U), we namely see
that

u∂if (φ) =

∫
U

(∂if)φ dx = −
∫
U

f∂iφ dx = (∂iuf )(φ),

where the second equality follows from integration by parts.

6.1.3 Sheaf property

Let U ⊂ V ⊂ Rn be open subsets. We notice that we have a continuous inclusion iV,U :
C∞c (U) ↪→ C∞c (V ) by extending a function f ∈ C∞c (U) to C∞c (V ), by setting f equal to 0
outside U . This inclusion induces a restriction resU,V : D′(V ) ↪→ D′(U), by resU,V (u)(φ) :=
u(iV,U(φ)), for φ ∈ C∞c (U). This says that Ω ⊃ U 7→ D′(U), with the restrictions resU,V , is
a presheaf on Ω. We will use the notation s 7→ s|U , for the restriction to U .

Lemma 6.2. Let {Ui} be an open cover of Ω. Then we have

1 (Locality) If s, t ∈ D′(U) such that s
∣∣
Ui

= t
∣∣
Ui

, then s = t.

2 (Gluing) If for every i we have a si ∈ D′(Ui) such that si
∣∣
Ui∩Uj

= sj
∣∣
Ui∩Uj

, then there

is a unique s ∈ D′(U) such that s
∣∣
Ui

= si.

Proof. The proof of both items follows from a partition of unity argument and is left for the
reader.
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From the above lemma it follows that the assignment Ω ⊃ U 7→ D′(U) is a sheaf on Ω.

6.1.4 Pullback of distributions

Let Φ : X → Y be an diffeomrophism from open subsets X, Y ⊂ Rn. We let Ψ := Φ−1. Now
notice that for any g ∈ C(Y ) we have that

uΦ∗g(φ) =

∫
X

g(Φ(x))φ(x) dx =

∫
Y

g(y)φ(Ψ(y))| detDΨ(y)| dy = | detDΨ|ug(Ψ∗φ),

for all φ ∈ C∞c (X). This suggests the following definition for the pullback of a distribution
u ∈ D′(Y ):

(Φ∗u)(φ) = jΨu(Ψ∗φ) for all φ ∈ C∞c (X).

Again I refer the reader for a more detailed account to chapter 10 of [7].

6.2 Global theory

We are now going to discuss generalized or distributional sections. We consider a smooth
vector bundle p : E → M . The space of distributional sections will be defined as the
topological dual of the space Γ∞c (E∨), of compactly supported smooth sections of p∨ : E∨ →
M . To do this we first need a topology on Γ∞c (E). Just as in the local case we will equip
Γ∞c (E) with the inductive topology originating from the spaces Γ∞K (E), of smooth sections
with support in K. So before we can really make sense of this we first need to know about
the topology on Γ∞(E). So that is where we shall start.

6.2.1 Topology on the space of smooth sections

Let {Ui} be an open cover of M such that Ui is both the domain of a chart κi : Ui → κi(Ui) ⊂
Rm and a domain of a local trivialization τi : EUi → Ui × Ck. This data induces a linear
isomorphism

φ′i : Γ(E
∣∣
Ui

)→ C∞(κi(Ui),Ck),
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given by s 7→ τi ◦ s ◦ κ−1
i . Now we define φi := φ′i ◦ resUi , where resUi : Γ(E) → Γ(E

∣∣
Ui

) is
the restriction map. We now define

φ : Γ(E)→
∏
j

C∞(κj(Uj),Ck)

to be the map uniquely determined by the property that pri◦φ = φi, where pri :
∏

j C
∞(κj(Uj),Ck)→

C∞(κi(Ui),Ck) is the projection map.
We now take the topology on Γ(E) induced by φ, where we endow

∏
j C
∞(κj(Uj),Ck) with

the product topology. Now this topology is also generated by the collection of semi-norms
given by

‖s‖γ := ‖φi(s)‖K,r,

where γ = (i,K, r), with K ⊂ κi(Ui) compact and r ∈ Z≥0.
We observe that the just defined topology is independent of the choice of cover of total
trivializations.

6.2.2 Generalized sections

Let p : E →M be a smooth vector bundle. We define

E∨ := E∗ ⊗DTM = Hom(E,DTM).

As in the local case we notice that

Γ∞c (E∨) =
⋃
K⊂M

Γ∞K (E∨),

where Γ∞K (E∨) is the space of sections of E∨ → M with their support contained in the
compact set K. We equip Γ∞c (E∨) with the inductive limit topology. We now define

Γ−∞(M,E) := (Γ∞c (E∨))∗.

In the case that E = M × C we shall just write D′(M) for Γ−∞(M,E), since we then have
a canonical identification Γ∞c (E) ' C∞c (M). Now the reason for defining Γ−∞(M,E) in this
way is that we have a canonical inclusion of Γ(E) into Γ−∞(M,E) as we shall now discuss.
We notice that we have a natural pairing

〈·, ·〉 : Γ∞(E∨)× Γ∞(E)→ Γ∞(DTM)
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given by point wise evaluation. This gives us a natural bi-linear map

[·, ·] : Γ∞c (E∨)× Γ∞(E)→ C, (ω, s) 7→
∫
M

ω(s)〈ω, s〉.

We thus see that the map Γ(E) → Γ−∞(M,E), given by s 7→ 〈·, s〉, is a continuous linear
embedding.

We notice that Γ∞(E) is a C∞(M)-module. Hence, as in the local case, we can extend
this module structure to Γ−∞(M,E), by defining for f ∈ C∞(M) and u ∈ Γ−∞(M,E), the
multiplication by the rule

fu(s) := u(fs), for all s ∈ Γ∞c (E∨).

From this it follows that the discussion of subsection 6.1.3 can be generalized for Γ−∞(M,E).

6.2.3 Invariance under vector bundle isomorphism

Let p : E → M and q : L → N be a smooth vector bundles. Let F : M → N be a vector
bundle homomorphism over f . Let F : M → N be a vector bundle homomorphism over f .
Now the homomorphism F induces an homomorphism F∨ : L∨ → E∨ given by the rule

F∨(ω)(v) := f ∗ω(F (v)), for all ω ∈ L∨f(x) and v ∈ Ex.

This thus gives a homomorphism Γ∞c (L∨)→ Γ∞c (E∨), also denoted by F∨. Hence F∨ induces
a homomorphism (F∨)∗ : Γ−∞(M,E)→ Γ−∞(N,L), given by

((F∨)∗u)(s) := u(F∨(s)), for all s ∈ Γ∞c (L∨).

In the case that F is an bundle isomorphism, F∨ will also be an isomorphism.
We can apply the above discussion to the restriction of a vector bundle p : E → M , to
the chart domain of the chart (U, κ) of M . We can then consider the pullback bundle

(κ−1)∗(EU) → κ(U). By the above discussion the corresponding bundle isomorphism κ̃−1

gives an isomorphism Γ−∞(κ(U), (κ−1)∗(EU))→ Γ−∞(U,E).
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Chapter 7

Boundary values of holomorphic functions on the upper

half plane

In this chapter we will discuss the existence of distributional boundary values of holomorphic
functions on the upper half plane. The first section will be concerned with the existence of
distributional boundary values. In our discussion we follow Section 3.1 of [9]. In the second
section we will apply the theory of the first section to define the, so-called, boundary value
operator. (See also [7] Chapter 12). In the third section we want to relate the results of the

first and second section to the natural action of SL(2,R) on Ĉ.

7.1 Boundary values

Let I be an open interval and γ > 0. Let Z := {z ∈ C | Re(z) ∈ I and 0 < Im(z) < γ} and
f : Z → C be a holomorphic function. For every 0 < y < γ we can associate a distribution
f(·+ iy) to f , given by

f(·+ iy)(φ) :=

∫
I

f(x+ iy)φ(x) dx, for all φ ∈ C∞c (I).

We can now ask ourselves what happens if we let y → 0. So if limy↓0 f(·+ iy)(φ) exists, for
all φ ∈ C∞c (I). In this case we will denote

f(·+ i0)(φ) = lim
y↓0

f(·+ iy)(φ).

Lemma 7.1. Let U ⊂ C be an open subset with a C1 boundary. Then for all g ∈ C1
c (C) we

have: ∫
∂U

g(z) dz = 2i

∫
U

∂z̄g(x+ iy) dx dy (7.1)
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Proof. By Stoke’s theorem we have that∫
∂U

g(z) dz =

∫
U

d(g(z) dz) =

∫
U

(∂zg(z) dz + ∂z̄g(z)dz̄) ∧ dz

= 2i

∫
U

∂z̄g(z) dx ∧ dy,

where we recall that dz = dx+ idy and dz̄ = dx− idy.

Theorem 7.2. Let I ⊂ R be an open interval and let γ > 0. Let Z := {z ∈ C | Re(z) ∈
I and 0 < Im(z) < γ}. Assume that f : Z → C is a holomorphic function, such that there
is a C > 0 and a non negative integer N such that

|f(x+ iy)| ≤ Cy−N (7.2)

for all x+ iy = z ∈ Z. Then for all φ ∈ C∞c (I) the limit

lim
y↓0

∫
I

f(x+ iy)φ(x) dx

exists and f(·+ i0) : C∞c (I)→ C defines a distribution of order at most N + 1.

Proof. We will follow the proof given by Hörmander in [9]. Let φ ∈ C∞c (I). Define the
function φ̃N : Z → C by:

φ̃N(x+ iy) :=
N∑
k=0

φ(k)(x)

k!
(iy)k (7.3)

Notice that this expression would be equal to the Nth-order Taylor polynomial of the analytic
extension of φ to Z if such an extension would exist.
Now notice that

2
∂

∂z̄
φ̃N(x+ iy) =

N∑
k=0

φ(k+1)(x)

k!
(iy)k + i

N∑
k=1

φ(k)(x)

(k − 1)!
(iy)k−1i

=
N∑
k=0

φ(k+1)(x)

k!
(iy)k −

N−1∑
k=0

φ(k+1)(x)

k!
(iy)k =

φ(N+1)(x)

(N + 1)!
(iy)N
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We write w = u + iv and fix a 0 < Y < γ. For any 0 < y < γ − Y we find, by applying
lemma 7.1 to f(w + iy)φ̃N(w) with U = I × i ]0, Y [, that∫

I

f(u+ iy)φ̃N(u, 0) du−
∫
I

f(u+ iy + iY )φ̃N(u, Y ) du

= 2i

∫ Y

0

∫
I

∂w̄(f(w + iy)φ̃N(u, v)) du dv. (7.4)

Notice that for any open V ⊂ C, ψ ∈ C1(V ) and f ∈ O(V ), we have

∂

∂z̄
(ψf) =

(
∂

∂z̄
ψ

)
f + ψ

(
∂

∂z̄
f

)
=

∂

∂z̄
ψ,

since ∂z̄f = 0. So we find that∫
I

f(u+ iy)φ(u) du =

∫
I

f(u+ iy)φ̃N(u, 0) du

=

∫
I

f(u+ iy + iY )φ̃N(u, Y ) du+

∫ Y

0

∫
I

f(w + iy)∂w̄φ̃N(u, v) du dv

=

∫
I

f(u+ iy + iY )φ̃N(u, Y ) du+

∫ Y

0

∫
I

f(w + iy)φ(N+1)(u)
(iv)N

N !
du dv.

Since |vNf(u+ iv+ iy)| ≤ C(y+ v)−NvN ≤ C, we have that the double integral is uniformly
bounded as y ↓ 0. So we have that both integrals on the left hand side converge as y → 0.
It thus follows that

lim
y↓0

∫
I

f(x+ iy)φ(x) dx

=

∫
I

f(u+ iY )φ̃N(u, Y ) du+

∫
I

∫ Y

0

f(u+ iv)φ(N+1)(u)
(iv)N

N !
dv du. (7.5)

From this last expression one easily concludes that ... defines a distribution of order at most
N + 1.

7.2 Boundary value operator

We define the collection of semi-norms νN,a,b,h : O(H+)→ R≥0, for a < b, h > 0 and N ∈ N,
by

νN,a,b,h(f) := sup{yN |f(x+ iy)| |a ≤ x ≤ b, 0 < y ≤ h} (7.6)
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We then define the space

O(H+)N := {f ∈ O(H+) | νN,a,b,h(f) <∞, for all a < b, 0 < h},

and equip it with the topology induced by the semi-norms νN,a,b,h, for a < b and h > 0.

Let a < b and 0 < h. Then by assumption there exists, for any f ∈ O(H+)N , a C > 0
such that

|f(x+ iy)| ≤ Cy−N ,

for all a < x < b and 0 < y < h. It follows from Theorem 7.2 that the map

φ 7→ lim
y↓0

∫ b

a

f(x+ iy)φ(x) dx

defines a distribution on ]a, b[. For every f ∈ O(H+), we thus have a distribution on ]a, b[,
which we denote by βN,a,b,h(f). It follows that the assignment f 7→ βN,a,b,h(f) defines a map

βN,a,b,h : O(H+)N → D′(]a, b[).

Since the limit and integral are linear we conclude that βN,a,b,h is a linear operator.
We are now going to argue that this gives us a unique operator βN : O(H+)N → D′(R).
We first notice that for all 0 < h, h′, βN,a,b,h(f) = βN,a,b,h′(f), which is immediate of their
definitions. Hence we can just talk about the map βN,a,b. Now let a′ < b′ and assume
that ]a, b[∩ ]a′, b′[ 6= ∅. We then have, for every φ ∈ C∞c (]a′, b[), that βN,a,b(f)

∣∣
]a′,b[

(φ) =

βN,a′,b′(f)
∣∣
]a′,b[

(φ). So βN,a,b(f)
∣∣
]a′,b[

= βN,a′,b′(f)
∣∣
]a′,b[

. By Theorem 6.2 there is a unique

distribution βN(f) ∈ D′(R) such that βN(f)
∣∣
]a,b[

= βN,a,b(f), for all a < b. We thus have a

unique operator

βN : O(H+)→ D′(R)

such that βN(f)
∣∣
]a,b[

= βN,a,b(f), for all f ∈ O(H+), and all a < b.

Theorem 7.3. The operator βN is continuous.

Proof. Recall that C∞c (R) is the inductive limit of the spaces C∞K (R), with K ⊂ R com-
pact. So we have that the natural inclusions iK : C∞K (R) → C∞c (R) are continuous. Now
Proposition 5.17 says that D′(R), with the strong topology, is the projective limit of the
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spaces (C∞K (R))∗, equipped with the strong topology. This means that the projection maps
prK : D′(R) → (C∞K (R))∗, defined as prK(u)(φ) = u(iKφ), are continuous. By Proposi-
tion 5.17 and Proposition 5.13 it is thus sufficient to prove that

prK ◦ βN : O(H+)N → (C∞K (R))∗

is continuous for every compact subset K ⊂ R.
We know that the topology on C∞K (R) is induced by the collection of semi-norms as defined
in (5.1). From the discussion in Section 5.4 we know that the topology on (C∞K (R))∗ is
induced by the collection of semi-norms given by

pB(u) := sup
φ∈B
|u(φ)|,

for B a bounded subset of C∞K (R).
Let B ⊂ C∞K (R) be a bounded set. Then for every φ ∈ B we have that

| lim
y↓0

∫
R
f(x+ iy)φ(x) dx|

≤ |
∫
R
f(u+ iY )φ̃N(u, Y ) du|+ |

∫
R

∫ Y

0

f(u+ iv)φ(N+1)(u)
(iv)N

N !
dv du|

≤ ν(f)N,a,b,h

∫
R
| φ̃N(u, Y )

Y N
| du+ ν(f)N,a,b,h

∫
R

∫ Y

0

|φ
(N+1)(u)

N !
| dv du

≤ ν(f)N,a,b,h‖φ‖K,N+1C,

where

C =
1

N !

∫
K

∫ Y

0

dv du+
N∑
k=0

Y k−N

k!

∫
K

du.

Since B is a bounded set, we have that

sup
φ∈B
‖φ‖K,CN+1 <∞.

We thus conclude that

pB(prK ◦ βN(f)) ≤ C ′νN,a,b,h(f).

From Theorem 5.9 it then follows that prK ◦ βN : O(H+)→ (C∞K (R))∗ is continuous.
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A holomorphic function g on H+ is in particular a smooth function, so g
∣∣
Rβ(f), for

f ∈ O(H+)N , is again a distribution on R. On the other hand we have that gf ∈ O(H+)N ,
so we have the distribution β(gf). We can now ask ourselves whether gβ(f) = β(gf), or in
other words whether multiplication with g commutes with β. The answer is yes.

Lemma 7.4. Let g : H+ → C be a holomorphic function. Then

β(f)(gφ) = β(fg)(φ), for all φ ∈ C∞c (R) and all f ∈ O(H+)N .

Proof. We notice that, since g is differentiable,

g(x+ iy) = g(x) + i
∂g

∂y
(x)y +R(x, y),

where R ∈ C∞
(
H+

)
and limy→0R(x, y) = 0.∫

R
f(x+ iy)g(x+ iy)φ(x) dx

=

∫
R
f(x+ iy)g(x)φ(x) dx+ iy

∫
R
f(x+ iy)

∂g

∂y
(x)φ(x) dx+

∫
R
f(x+ iy)φ(x)R(x, y) dx.

Notice that R(x, y)→ 0, as y → 0, uniformly on every compact subset of R. So the last two
terms on the right hand side go to zero when y → 0, by theorem 7.2. We have thus proven
the assertion.

Lemma 7.5. The map ∂z : O(H+)N → O(H+)N+1, given by f 7→ ∂zf , is well defined and
continuous.

Proof. Let z = x + iy ∈ [a, b] × i]0, d], for a < b and d > 0. Let D be the disc with center
z and radius R = 1

2
y. Then D ⊂ [a − 2d, b + 2d] × i]0, 3d]. We thus have, by the Cauchy

integral formula, that

|df
dz

(z)| = 1

2π
|
∫
∂D

f(ζ)

ζ − z
dζ| ≤ 1

2π

∫
∂D

(Im(ζ))−N
|(Im(ζ))Nf(ζ)|

R
dζ

≤ R−N−1νN,a−d,b+d,3d(f) = 2N+1νN,a−d,b+d,3d(f)y−N−1,

from which the claim follows.
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We notice that O(H+)N ⊂ O(H+)N+1. We define

O∗(H+) =
⋃
N≥0

O(H+)N

and equip it with the inductive limit topology. We notice that βN(f) = βN+1(f), for all
f ∈ O(H+)N . There thus exists a unique operator

β : O∗(H+)→ D′(R),

such that β
∣∣
O(H+)N

= βN .

The following result is an immediate consequence of Proposition 5.10 and Theorem 7.3.

Corollary 7.6. The operator β is continuous.

Lemma 7.7. For all f ∈ O∗(H+) we have that

∂β(f) = β(∂xf) = β(∂zf).

Proof. It follows from the Cauchy-Riemann equations that ∂zf = ∂xf . We thus find that∫
R
∂zf(x+ iy)φ(x) dx =

∫
R
∂xf(x+ iy)φ(x) dx = −

∫
R
f(x+ iy)∂xφ(x) dx.

The last equality follows by integrating by parts. The result now follows by letting y → 0.

Theorem 7.8 ([9], Theorem 3.1.15). Let f ∈ O∗(H+). If f(· + i0) = 0, then f = 0. In
other words β is an injective operator.

Proof. We will follow Hörmander ([9]). Fix y > 0. For φ ∈ C∞c (R) we define

Fφ(w) :=

∫
R
φ(x)f(x+ wy) dx.

We notice that Fφ is an analytic function in w on H+. Since f(·+ i0) = 0 we conclude, form

Theorem 7.7, that Fφ(w) → 0 and dk

dwk
Fφ(w) → 0 as Im(w) → 0. We thus conclude that

the function Gφ, defined as Gφ = Fφ on H+ and Gφ = 0 on H− ∪ R, is an analytic function
that extends Fφ. On the other hand is Gφ the analytic continuation of the zero function on
H−∪R. Since an analytic continuation on a simply connected domain is unique, we conclude
that Fφ = 0. Since this holds for any φ ∈ C∞c (I) we conclude that f = 0.
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7.3 Boundary value operator revised

The action of SL(2,R) on H+, by fractional linear transformations, induces an action of
SL(2,R) on the space C(H+), namely the action given by

g · f = Fg−1
∗f = f ◦ Fg−1 , for all f ∈ C(H+).

Since the maps Fg are bi-holomorphic this action restricts to an action on the space O(H+).

Now SL(2,R) also acts by fractional linear transformations on R̂. So we also have an action
of SL(2,R) in D(R̂) = E(R̂), given by

g · ω :=
(
Fg−1

∣∣
R̂

)∗
ω.

Using the results of the previous sections we want to define a new operator from a
subspace of O∗(H+), that is invariant under the action of SL(2,R), to D′(R̂). Before we
come to the definition of this operator we first are going to have a look at ”that” subspace
of O∗(H+).

Recall that J : Ĉ→ Ĉ is the fractional linear transformation corresponding to the matrix(
0 −1
1 0

)
.

We define the space

O(H+)JN := {f ∈ O(H+) | νN,a,b,h(f) <∞ and νN,a,b,h(J
∗f) <∞, for all a < b, 0 < h}

We notice that a function f ∈ O(H+)N is in O(H+)JN if and only if J∗f ∈ O(H+)N .

Lemma 7.9. The space O(H+)JN is an invariant subspace of O(H+) under the action of
SL(2,R).

Proof. By Theorem 1.14 it is sufficient to prove O(H+)JN is invariant under the transforma-
tions J, Tβ,Mα, for β ∈ R and α > 0. It is evident that J∗f ∈ O(H+)JN , when f ∈ O(H+)JN .
We notice that, for z ∈ [a, b]× i]0, d], there are C,C ′ > 0 such that |f(x+ iy)| < Cy−N and
|f( −1

x+iy
)| < C ′y−N . For such z we also have then that

|M∗
αf(z)| = |f(αz)| ≤ Cα−Ny−N
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and

|J∗M∗
αf(z)| = |f

(
α
−1

z

)
| ≤ C ′αNy−N

showing that M∗
αf ∈ O(H+)JN .

We now go to the case of Tβ. It is readily verified that T ∗βf ∈ O(H+)N , whenever
f ∈ O(H+)JN . Now to prove that J∗T ∗βf ∈ O(H+)N notice that it is sufficient to prove that
|T ∗βf(x+ iy)| < C ′y−N , for a collection {Ui}i∈I , with Ui of the form [ai, bi]× i ]0, di], ai < bi
and di > 0, such that the collection {U ′i}i∈I covers R, where U ′i =]ai, bi[× i ]− di, di[.
We no notice that the map Tβ ◦ J : Ĉ → Ĉ is continuous and bijective. Let t ∈ R, then

r = (Tβ ◦ J)(t) ∈ Ĉ. Now take ε > 0. Now there is a δ > 0 such that

[t− δ, t+ δ]× i[−δ, δ] ⊂ (Tβ ◦ J)−1(]r − ε, r + ε[× i ]− ε, ε[).

We choose δ > 0, such that not both 0 and 1
b

are contained in [t− δ, t + δ]. We now notice
that for all z ∈ [r − ε, r + ε] × i]0, ε] there are C,C ′ > 0 such that |f(x + iy)| < Cy−N and
|f( −1

x+iy
)| < C ′y−N . Then for all z ∈ [t− δ, t+ δ]× i ]0, δ] we have that

|f(
−1

z
+ b)| = |f(

bz − 1

z
)| ≤ C|z|2Ny−N

and

|f(
−1

z
+ b)| = |f

(
−1/

−z
bz − 1

)
| ≤ C ′|bz − 1|2Ny−N

The result thus follows.

Lemma 7.10. If for f ∈ O(H+)N there exists a C > 0 such that |f(z)| ≤ C(Im z)−N , for
all z ∈ H+. Then f ∈ O(H+)JN .

Proof. We just notice that |f(−1
z

)| ≤ C(Im
(−1
z

)
)−N = C|z|2N(Im z)−N . From which the

result now easily follows.

We define the semi-norms

νJN,a,b,h(f) := νN,a,b,h(J
∗f).
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We equip O(H+)J with the topology induced by all semi-norms νJN,a,b,h and νN,a,b,h, for a < b
and h > 0. We then define

O∗(H+)J :=
⋃

N∈Z≥0

O(H+)JN ,

and equip it with the inductive limit topology.

We now hope that we can define am operator β : O∗(H+)J → D′(R̂). To define an

operator β : O∗(H+)J → D′(R̂) it is sufficient, given some open cover {Ui}i∈I of R̂, to
define operators βi : O∗(H+)J → D′(Ui), such that, for all f ∈ O∗(H+)J , we have that
βi(f)

∣∣
Ui∩Uj

= βj(f)
∣∣
Ui∩Uj

, when Ui∩Uj 6= ∅. Consider the charts (U1, κ1) and (U2, κ2), where

U1 = R ⊂ R̂, U2 = R̂\{0}, and κ1 : U1 → R is given by the identity, and κ2 : U2 → R is

given by κ1 ◦ J
∣∣
R̂. We notice that U = {U1, U2} is an open cover of R̂. We define

β1(f)(φ) := lim
y↓0

∫
R
f(x+ iy)(κ−1

1 )∗φ(x), φ ∈ D(U1)

β2(f)(φ) := lim
y↓0

∫
R
J∗f(x+ iy)(κ−1

2 )∗ψ(x) ψ ∈ D(U2).

A priori it is not clear that β1(f)
∣∣
U1∩U2

= β2(f)
∣∣
U1∩U2

. In the next section we will develop
the tools to show that this indeed holds. It then immediately follows from Corollary 7.6 that
β is a continuous operator.

7.3.1 Proof that the boundary value operator is well defined

The method that is going to be presented was suggested to me by Erik van den Ban. We
start by placing ourselves in a more flexible situation. The idea is based on the following
observation. We notice that

lim
y↓0

∫
R
f(x+ iy)φ(x) dx = lim

ε→0

∫
R
η∗ε f(t)φ(t) dt

for φ ∈ C∞c (R) and f ∈ O∗(H+), were ηε(t) := t + iε. We are first going to show that the
above equality still holds when we replace ηε by a series of C1-curves {η̃j}j∈N converging to
the map t 7→ t, with respect to the C1 semi-norms on C∞(R,C). We shall first state more
precisely the conditions on the curves {η̃}j.
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Assume that Ω is an open subset of H+ such that Ω ∩ R is an interval with non-empty
interior. We let ΩR := int(Ω̄ ∩ R). Let (ηj)j∈N be a family C1 curves, ΩR → Ω satisfying

1. ηj → idΩ1,R with respect to the C1 semi-norms on C1(ΩR,C).

2. ηj(ΩR) ⊂ Ω, for all j ∈ N.

In the proof of theorem 7.2 we defined for φ ∈ C∞c (ΩR) an extension φ̃N . Now for a
density φ dx ∈ DcTI we define an extension to ΩR × iR as φ̃N dz.

Lemma 7.11. Let (ηj)j∈R be a family of curves as above and φ ∈ C∞c (ΩR). Let f : Ω→ C
be a holomorphic function such that for all a, b ∈ ΩR, such that a < b, there is a h > 0 and
a C > 0 such that [a, b]× i]0, h] ⊂ Ω and

|f(x+ iy)| ≤ CyN (for all a ≤ x ≤ b, and 0 < y ≤ h).

Then we have that

lim
j→∞

∫
ΩR

η∗j (fφ̃ dz) and lim
y↓0

∫
ΩR

f(x+ iy)φ(x) dx

exist and are equal.

Proof. We shall first prove the assertion under the additional assumption that Re(ηj(t)) = t,
for all j ∈ N. Let φ ∈ C∞c (ΩR) and assume supp(φ) ⊂ [a, b], for a, b ∈ ΩR, such that a < b.
We notice that there is a δ > 0 such that K := [a− δ, b+ δ] ⊂ ΩR. Now since K is compact,
there is a Y > 0 such that the set

Z = {z ∈ H+ | a− δ ≤ Re(z) ≤ b− δ and 0 < Im(z) < Y }

is contained in Ω and such that there is a C > 0 such that (7.2) holds for all z in this set.
From theorem 7.2 we get that limy↓0

∫
ΩR
f(x + iy)φ(x) dx exists. Since ηj → idΩR in the C1

norm on compact sets there is a M ∈ N such that for all j ≥M we have that Im(ηj)(s) ≤ Y ,
for s ∈ K. Now, for j ≥ M , we let Zj := {z ∈ Z | Im(z) > Im(ηj(Re(z)))}. Now applying
lemma 7.1 we find that ∫

K

η∗j (fφ̃ dz)

=

∫
K

f(u+ iY )φ̃N(u, Y ) du+

∫ ∫
Zj

f(u+ iv)φ(N+1)(u)
(iv)N

N !
dv du.
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One readily confirms that

lim
j→∞

∫ ∫
Zj

f(u+ iv)φ(N+1)(u)
(iv)N

N !
dv du =

∫ ∫
Z

f(u+ iv)φ(N+1)(u)
(iv)N

N !
dv du

The claim thus follows from equation (7.5).
We shall now argue that given a φ ∈ C∞c (ΩR), we can, without loss of generality, assume
that the sequence (ηj)j∈N, restricted to suitable neighbourhood of the support of φ, consists
of functions ηj(t) = t+ g(t), for some g ∈ C1(ΩR,R>0).
Let φ ∈ C∞c (ΩR) and assume supp(φ) ⊂ [a, b], for a ≤ b ∈ ΩR. We notice that there is a
δ > 0 such that K := [a− δ, b+ δ] ⊂ ΩR. Since ηj → idΩ1,R with respect to the C1-norm on

C1(ΩR,Ω), for large enough j ∈ N we have that d
dt

Re(ηj) > 0 and int(K) ⊂ Re(ηj(ΩR)). It
thus follows that Re(ηj) has a C1 inverse on int(K). Replacing (ηj|int(K))j∈N by a subsequence,
we can thus assume without loss of generality that Re(ηj(t)) = t, for all t ∈ int(K). Indeed
we see that this sequence still converges to id, since |Im(η(s))| ≤ |η(s)− id| ≤ ‖η− id‖K , for
all s ∈ int(K). Let Z be as above and let I = [a− 1

2
δ, b− 1

2
δ]. We further let

Z ′ = {z ∈ H+ | Re(z) ∈ I and 0 < Im(z) < Y }.

The general result now follows by replacing Z with Z ′ in the definition of Zj.

Lemma 7.12. Let X, X̃ ⊂ Rd and Y, Ỹ ⊂ Rm be open. Let Φ : X̃ → X and Ψ : Y → Ỹ be
C1 diffeomorphisms. Let fk : X → Y be a sequence of C1 functions converging to f : X → Y
in the C1 norm on every compact subset of X. Then the sequence gn := Ψ ◦ fn ◦Φ converges
to Ψ ◦ f ◦ Φ on compact subsets of X̃ with respect to the C1 norms.

Proof. We first prove the claim under the additional assumption that Ψ = idY . Let K ⊂ X̃
be compact. Then is Φ(K) also a compact subset of X. Now

‖f ◦ Φ(x)− fk ◦ Φ(x)‖ ≤ ‖f − fn‖Φ(K) (x ∈ K)

From the chain rule it follows that

‖∂x̃j(f ◦ Φ)(x̃)− ∂x̃j(fk ◦ Φ)(x̃)‖ ≤
∑
‖∂xif(Φ(x̃))− ∂xifk(Φ(x̃))‖‖∂x̃jΦ(x̃)‖.

We thus conclude that fk ◦ Φ→ f ◦ Φ on K with respect to the C1-norm.
We now prove the claim under the assumption that Φ = id. Let C ⊂ X be compact. Since
the f is continuous f(C) is compact. Then there is an ε′ > 0 such that C ′ = f(C)ε′ ⊂ Y
is compact, where f(C)ε′ = {x ∈ Rm | infx′∈f(C) ‖x − x′‖ < ε′}. Since Ψ is continuous it is
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uniformly continuous on C ′. So given an ε > 0 there is a δ > 0 such that if y, y′ ∈ Ψ(K),
and ‖y − y′‖ < δ, then ‖Ψ(y)−Ψ(y′)‖ < ε. Now since fn → f uniformly on C, Ψ ◦ fn goes
to Ψ ◦ f on C with respect to the C0-norm on C. Now notice that

‖∂xj(Ψ ◦ f)(x)− ∂xj(Ψ ◦ f)(x)‖ = ‖
∑

∂yiΨ(f(x))∂xjf(x)−
∑

∂yiΨ(fk(x))∂xjfk(x)‖

≤
∑
‖∂yiΨ(f(x))∂xjf(x)− ∂yiΨ(fk(x))∂xjfk(x)‖

≤
∑
‖∂yiΨ(f(x))∂xjf(x)− ∂yiΨ(f(x))∂xjfk(x)‖+ ‖∂yiΨ(fn(x))∂xjfk(x)− ∂yiΨ(f(x))∂xjfk(x)‖

≤
∑
‖∂yiΨ(f(x))‖‖∂xjf(x)− ∂xjfk(x)‖+ ‖∂yiΨ(fn(x))− ∂yiΨ(f(x))‖‖∂xjfk(x)‖.

Now, since C and C ′ are compact there is an A > 0 such that ‖∂yiΨ(f(x))‖, ‖∂xjfk(x)‖ ≤ A,
for all 1 ≤ i ≤ m, and 1 ≤ j ≤ n. Invoking the uniform continuity of Ψ on C ′ and the
uniform convergence of fk to f on C, with respect to the C1-norm on C, we conclude that
for every ε > 0, there is an N ∈ N such that for all n ≥ N we have that

‖∂xj(Ψ ◦ f)(x)− ∂xj(Ψ ◦ f)(x)‖ < ε.

We thus conclude that Ψ ◦ fk → Ψ ◦ f uniformly on C with respect to the C1-norm.

In the remaining of this section we will assume that Ω1 and Ω2 are open subset of H+

such that Ωi ∩ R is a nonempty connected set with non-empty interior, for i = 1, 2. We let
Ωi,R := int(Ω̄i ∩ R). We further assume that Φ : Ω1 → Ω2 is a biholomorphic map that can
be extended to Ω1 ∪ Ω1,R in such a way that Φ|Ω1,R is a diffeomorphism from Ω1,R to Ω2,R.
Let (ηj)j∈N be a sequence of curves as described in the beginning of this section. Then it
follows from the above lemma that Φ−1 ◦ ηj ◦ Φ|Ω1,R is again a sequence of curves satisfying
the conditions. The following result thus makes sense.

Lemma 7.13. Let (ηj)j∈N be a sequence of C1 curves as above, f : Ω2 → C a function as
in Theorem 7.11, with the additional assumption that Φ∗f satisfies the same conditions, and
φ ∈ C∞c (Ω1,R). Then

lim
j→∞

∫
Ω2,R

η∗j (f
˜(Φ−1

R )∗(φ dx)) = lim
j→∞

∫
Ω1,R

(Φ−1 ◦ ηj ◦ Φ|R)∗(Φ∗(f)φ̃ dx).

Corollary 7.14. In the setting of Lemma 7.13

lim
y↓0

∫
Ω2,R

f(x+ iy)φ(x) = lim
y↓0

∫
Ω1,R

Φ∗f(x+ iy)
(
Φ
∣∣
R

)∗
φ(x).
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Proof. This follows from combining Lemma 7.13 and Lemma 7.11.

It follows form corollary 7.14 that β1(f)(φ) = β2(f)(φ), whenever φ ∈ D(U1 ∩ U2). It

thus follows that there exists a distribution β(f) on R̂. Hence there is a unique operator

β : O∗(H+)J → D′(R̂), such that β
∣∣
U1

= β1 and β
∣∣
U2

= β2.
The goal of the remainder of this section is to develop the tools to prove the above result.

Lemma 7.15. Let φ ∈ C∞(ΩR) and ψ ∈ C∞(ΩR + iR) s.t. ψ|R = φ and ∂z̄ψ(z) = O(|y|N),
then

ψ(z) =
N∑
k=0

φ(k)(x)
(iy)k

k!
+ ρ(x, y)yN+1

with ρ ∈ C∞(R2) such that ρ(x, y)→ 0 as y → 0.

Proof. By Taylor’s theorem we have that

ψ(z) =
N∑
k=0

ck(x)
(iy)k

k!
+ ρ(x, y)yN+1

with ck ∈ C∞(R), and ρ ∈ C∞(R2) such that ρ(x, y)→ 0 as y → 0. Since ψ|ΩR = φ we have
that c0(x) = φ(x). Now notice that

∂z̄ψ(z) =
N∑
k=0

c′k(x)
(iy)k

k!
−

N∑
k=1

ck(x)
(iy)k−1

(k − 1)!
+ ∂z̄

(
ρ(x, y)yN+1

)
=

N−1∑
k=0

[c′k(x)− ck+1(x)]
(iy)k

k!
+ cN(x)

(iy)N

N !
+ ∂z̄

(
ρ(x, y)yN+1

)
Now since ∂z̄ψ(z) = O(|y|N) we have that

N−1∑
k=0

[c′k(x)− ck+1(x)]
(iy)k

k!
= 0

So we conclude that ck+1 = c′k. Since c0(x) = φ(x), it follows that ck = φ(k). This concludes
the proof.
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Lemma 7.16. Let U, V ⊂ C be open and let T : U → V be a biholomorphic map. Then

∂T

∂z

∂T

∂z̄
= | detDT (z)|,

where DT (z) is the derivative of the associated vector field of T .

Lemma 7.17. Let U, V ⊂ C be open and let T : U → V be a biholomorphic map and
ψ ∈ C1(V,C). Then

∂ψ ◦ T
∂w̄

(w) =
∂ψ

∂z̄
(T (w))

∂T

∂w̄
(w).

Lemma 7.18. Let U, V ⊂ C be open and let T : U → V be a biholomorphic map. Then

∂̄T ∗(ψ dz) = T ∗(∂̄(ψ dz))

Proof. First notice that T ∗(ψ dz) = T ∗(ψ)T ′ dw. Now

∂̄T ∗(ψ dz)(w) =
∂T ∗(ψ)

∂w̄
(w)T ′(w) dw̄ ∧ dw

=
∂ψ

∂z̄
(T (w))

∂T̄

∂w̄
(w)T ′(w) dw̄ ∧ dw =

∂ψ

∂z̄
(T (w))| detDT (w)| dw̄ ∧ dw,

where we invoked lemma 7.17 to obtain the third equality and lemma 7.16 to obtain the
fourth. Now notice that

T ∗(∂̄(ψ dz)) = T ∗(∂z̄ψ dz̄ ∧ dz) = T ∗(∂z̄ψ 2i dx ∧ dy)

= T ∗(∂z̄ψ)| detDT |2i du ∧ dv = T ∗(∂z̄ψ)| detDT | dw̄ ∧ dw.

We have thus proven the lemma.

Claim 1. Let φ ∈ C∞(ΩR) and ψ ∈ C∞(ΩR + iR) as in lemma 7.15. Let T : Ω1 → Ω2 be a
biholomorphic map, then

∂w̄T
∗(ψ dz) = O(|Im(w)|N) dw̄ ∧ dw.

Proof. Notice that we have T (x+ iy) = T (x) +O(y), by Taylor’s theorem. Since T |Ω1,R was
assumed to be a diffeomorphism from Ω1,R to Ω2,R, we have that Im(T (x+ iy)) = O(y). By
assumption we have that

∂z̄ψ(z) = O(Im(z)N).
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So then

∂z̄ψ(T (w)) = O(Im(T (w))N) = O(O(Im(w))N).

Now notice that detDT (w) ≥ 0 and is defined on ΩR. The claim thus follows from lemma
7.18.

Claim 2. Let φ ∈ C∞(ΩR). Then

T ∗(φ̃ dx)− ˜T |∗R(φ dx) = O(yN+1) dw.

Proof. Notice that

T ∗(φ̃ dz)|Ω1,R = φ̃ ◦ T |Ω1,RT
′|Ω1,R du = φ ◦ T |Ω1,RT

′|Ω1,R du

and

˜T |∗R(φ dx)|Ω1,R = ˜φ ◦ T |Ω1,R |Ω1,R
˜T ′|Ω1,R du|Ω1,R = φ ◦ T |Ω1,RT

′|Ω1,R du.

It thus follows that

T ∗(φ̃ dx)|Ω1,R = ˜T |∗R(φ dx)|Ω1,R

From claim 1 follows that ∂w̄T
∗(φ̃ dz)(w) = O(|Im(w)|N) dw̄ ∧ dw and it follows from the

definition of ˜T |∗R(φ dx) that ∂w̄ ˜T |∗R(φ dx)(w) = O(|Im(w)|N) dw̄ ∧ dw. So from lemma 7.15
the claim follows.

We now have all the tools that are necessary to prove lemma 7.13.

Proof of lemma 7.13. Notice that by claim 2 we have∫
R
η∗j (f

˜(Φ−1
R )∗(φ dx)) =

∫
R
η∗j (f(Φ−1)∗(φ̃ dx)) +

∫
R
η∗j (fO(yN+1) dw).

Now notice that∫
R
η∗j (f(Φ−1)∗(φ̃ dx)) =

∫
R
η∗j (Φ

−1)∗(Φ∗(f)φ̃ dx) =

∫
R
(Φ|R)∗η∗j (Φ

−1)∗(Φ∗(f)φ̃ dx)

=

∫
R
(Φ−1 ◦ ηj ◦ Φ|R)∗(Φ∗(f)φ̃ dx),

where the third equality holds by the change of variables formula. One readily confirms that

lim
j→∞

∫
R
η∗j (fO(yN+1) dw) = 0.

The result thus follows.
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7.3.2 Boundary value operator and SL(2,R)

Theorem 7.19. The operator β intertwines the actions of SL(2,R) on D′(R̂) and O∗(H+)J ,
i.e.

g · β(f) = β(g · f),

for all f ∈ O∗(H+)J and g ∈ SL(2,R).

Proof. By Theorem 1.14 it is sufficient to show that β(Fg−1
∗f)(φ) = β(f)(Fg

∗φ), for Fg =
J,Ma, Tb, a ∈ R\{0} and b ∈ R.
By definition we have that

β1(J∗f)(φ) = β2(f)(
(
J
∣∣
R̂

)∗
φ), for all φ ∈ D(U1),

and

β2(J∗f)(φ) = β1(f)(
(
J
∣∣
R̂

)∗
φ), for all φ ∈ D(U2).

Hence β(J∗f)(φ) = β(f)(
(
J
∣∣
R̂

)∗
φ).

In the case that Fg = Mα we can apply Corollary 7.14 with Φ = Fg−1 and Φ = J ◦ Fg−1 , to
conclude that

β1((Fg−1)∗ f)(φ) = β1(f)(
(
Fg
∣∣
R̂

)∗
φ), for all φ ∈ D(U1),

and

β2((Fg−1)∗ f)(ψ) = β2(f)(
(
Fg
∣∣
R̂

)∗
ψ), for all ψ ∈ D(U2).

Hence β((Fg−1)∗ f)(φ) = β(f)(
(
Fg
∣∣
R̂

)∗
φ), for all φ ∈ D(R̂).

Finally we consider the case that Fg = Tb. We consider the cases that b > 0 and b < 0.

First assume that b > 0. Since R̂ ⊃ U → D′(U) is a sheaf it is sufficient to prove that

β(T ∗−bf)
∣∣
Vj

(φ) = β(f)
∣∣
Vj

(T ∗b φ), for all φ ∈ D(Vj), for some open cover {Vj} of R̂. We

consider the cover consisting of V1 = U1 and V2 = (κ−1
2 )∗]− 1

b
,∞[. It follows from the change

of variables that

β1((T−b)
∗f)(φ) = β1(f)((Tb)

∗φ), for allφ ∈ D(U1).
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Now notice that

β(f)
∣∣
V2

(φ) = β2(f)
∣∣
V2

(φ) = lim
y↓0

∫ ∞
− 1
b

J∗f(x+ iy)(κ−1
2 )∗φ(x)

Also notice that (J ◦ T−b ◦ J)
∣∣
R(] − 1

b
,∞[) =] − 1

b
,∞[. So applying Corollary 7.14 with

Φ = J ◦ T−b ◦ J we find

lim
y↓0

∫ ∞
− 1
b

J∗(T−b)
∗f(x+ iy)(κ−1

2 )∗φ(x) = lim
y↓0

∫ ∞
− 1
b

J∗f(x+ iy)(Φ
∣∣
R)∗(κ−1

2 )∗φ(x).

Now notice that (Φ
∣∣
R)∗(κ−1

2 )∗ = (κ−1
2 )∗(Tb)

∗. Hence we conclude that

β((T−b)
∗f)
∣∣
V2

(φ) = β(f)
∣∣
V2

((Tb)
∗φ).

The argumentation for the case that b < 0 is similar as the above. Now instead of taking
V2 = (κ−1

2 )∗]− 1
b
,∞[ we take V2 = (κ−1

2 )∗]−∞,−1
b
[.
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Chapter 8

Representations

As mentioned earlier, we shall be interested in two particular representations of SL(2,R),
namely holomorphic discrete series representations and the principal series representations.
In this chapter we develop some theory along the lines of Chapter 20 of [1].

Definition 8.1. Let V be a locally convex vector space. With a continuous representation
(π, V ) of G we shall mean a continuous left action π : G× V → V such that the map π(x) :
v 7→ π(x, v) is a linear automorphism of V , for all x ∈ G. We say that the representation is
finite dimensional if dimV <∞.

From now on when we talk about a representation, we will always assume that it is
continuous.

Example 8.2. Let M be a manifold and G an Lie group that acts smoothly on M . We
consider the space C(M) of continuous complex valued functions. We equip C(M) with the
locally convex topology induced by the family of semi-norms

‖f‖K := sup
x∈K
|f(x)|

with K ⊂ M compact. Now G has a natural representation L in C(M), known as the left
regular representation, and is given by

[L(g)f ](x) = f(g−1x), for all g ∈ G and f ∈ C(M).

To see that L is continuous notice that ‖L(g)f‖K = ‖f‖g−1K , for all g ∈ G, f ∈ C(M)
and K ⊂ M compact. So it is sufficient to show that L is continuous in (e, f0), for any
f0 ∈ C(M). Now notice that

‖L(g)f − f0‖K ≤ ‖L(g)f − L(g)f0‖K + ‖L(g)f0 − f0‖K ≤ ‖f − f0‖g−1K + ‖L(g)f0 − f0‖K .

Since f0 is uniformly continuous on K it follows that L is continuous.

Let (π, V ) be a representation and W a linear subspace of V . We say that W is invariant
if π(x)W ⊂ W , for all x ∈ G. The representation (π, V ) is called irreducible, when dimV > 0
and the only invariant subspaces of V are {0} and V itself.
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Definition 8.3. By an unitary representation we shall mean a representation (π, V ), where
V is a complex Hilbert space, such that π(x) is an unitary operator, for all x ∈ G.

Definition 8.4. Let (π, V ) and (ρ,W ) be two representations of the group G. A continuous
linear map T : V → W is said to be equivariant if T ◦ π(x) = ρ(x) ◦ T , for all x ∈ G. In
other words, we have that the following diagram commutes, for every x ∈ G.

V W

V W

π(x)

T

ρ(x)

T

With this definition we are able to state the following result.

Theorem 8.5 (Schur’s lemma). Let (π, V ) be a finite dimensional irreducible representation
of the group G. Then EndG(V ) = CIV .

The proof of Schur’s lemma makes use of the following lemma and can be found in
Chapter 20 of [1].

Lemma 8.6. Let V be a linear space and A,B : V → V linear maps. If A ◦B = B ◦A then
are kerA, imA and the eigenspaces of A are B-invariant subspaces, i.e. B(kerA) ⊂ kerA
and B(imA) ⊂ imA.

Corollary 8.7. If G is a commutative Lie group and (π, V ) is a finite dimensional repres-
entation of G, then dimV = 1.

As a application we can classify the finite dimensional irreducible representations of
SO(2). This classification will be useful when introducing the holomorphic discrete series
representations.
We first notice that SO(2) is a commutative group. From this it follows that all finite
dimensional irreducible representations of SO(2) are one dimensional.
We now notice that SO(2) is compact, so for any continuous homomorphism ϕ : SO(2)→ C∗
we have that ϕ(SO(2)) ⊂ C∗ is a compact subgroup, so then ϕ(SO(2)) ⊂ S1. We now
recall that SO(2) is isomorphic to S1, so with the following lemma we have completed our
classification:
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Lemma 8.8. Every continuous homomorphism ϕ : S1 → S1 is of the form z 7→ zn, for some
n ∈ Z.

Proof. By lemma ... ϕ is a Lie group homomorphism, so ϕ∗ = T1ϕ is a Lie algebra homo-
morphism. We notice that Lie(S1) = iR, since S1 ⊂ C. Since End(iR) = R, we conclude
that ϕ∗(X) = cX, for some c ∈ R and all X ∈ iR. Now exp : iR → S1 is the usual expo-
nential it 7→ eit. By theorem ... we have that ϕ(exp(X)) = exp(ϕ∗(X)) = exp(cX). Since
ei2π = 1, it follows that exp(ϕ∗(i2π)) = 1. So exp(i2πc) = 1, and hence c ∈ Z.
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Chapter 9

Iwasawa decomposition

In this chapter we shall consider the Iwasawa decomposition of SL(2,R). The Iwasawa
decomposition says that SL(2,R) is diffeomorphic to N×A×SO(2), via the map (n, a, k) 7→
nak, where N is the subgroup of upper triangular matrices in SL(2,R), with all diagonal
elements equal to one, and A the subgroup with the off-diagonal elements equal to zero
and positive diagonal entries. We shall start our discussion with the Lie algebra sl(2,R) of
SL(2,R), as [5], but we shall start somewhat ad hoc. After that we state and prove the
Iwasawa decomposition.

Recall that sl(2,R) = {X ∈ Mat(2,R) | tr(X) = 0}. One readily verifies that a linear
basis for sl(2,R) is given by

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Notice that these satisfy the relations 1

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

We set

k = R(Y −X) = so(2)

p = RH ⊕ R(X + Y )

a = RH
n = RX
n = RY.

It is then immediate that, as a linear space, sl(2,R) decomposes as k⊕a⊕n. This composition

1This is a so called sl2-triple.
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of the Lie algebra is known as the infinitesimal Iwasawa decomposition. We now let

K = exp(R(Y −X)) = {kϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)
| ϕ ∈ R}

A = exp(RH) = {at =

(
et 0
0 e−t

)
| x ∈ R}

N = exp(RX) = {nx =

(
1 x
0 1

)
| x ∈ R}

M = {±I}

P = MAN = {
(
±et x
0 ±e−t

)
| x, t ∈ R}

We shall now state and prove the Iwasawa decomposition. The proof will make use of
the action of SL(2,R) on H+ as defined in Section 1.3. The first part of the proof I have
from a lecture by Erik van den Ban and the second part of the proof comes from the proof
of lemma 17.8 of [2].

Theorem 9.1 (Iwasawa decomposition for SL(2,R)). The map Ψ : N ×A×K → SL(2,R)
given by

Ψ(nx, at, k) = nxatk (9.1)

is a diffeomorphism.

Proof. We shall first prove that Ψ is bijective. Notice that the maps R → A, t 7→ at and
R→ N , x 7→ nx are diffeomorphisms, so it suffices to show that the map

ψ : R× R×K → SL(2,R), (x, t, k) 7→ nxatk

is a bijection. Therefore we consider the action of SL(2,R) on H+ by fractional linear
transformations. Notice that

ψ(x, t, k) · i = nxatk · i = nxat · i = x+ ie2t.

From this we see that ψ is injective. Now let g ∈ SL(2,R). We write g · i = x + iy.
We notice that there is a t ∈ R such that y = e2t, namely t = 1

2
log(y). We then have
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that ψ(x, t, e) · i = g · i. We thus conclude that g−1ψ(x, t, e) stabilizes i and therefore
k−1 := g−1ψ(x, t, e) ∈ K. Thus ψ(x, t, e) = gk−1 and hence ψ(x, t, k) = g. We thus conclude
that ψ is bijective.
From the above discussion follows that the map Φ : K × A × N → SL(2,R), given by
(k, a, n) 7→ kan is also a bijection, since Φ(k, a, n) = Ψ−1(n−1, a−1, k−1). We shall show that
Φ has a bijective derivative everywhere. It then follows from the inverse function theorem
that Φ is a diffeomorphism and hence also Ψ.
We notice that it is sufficient to prove that Φ has a bijective derivative in the element
(e, a, e), for a ∈ A. We indeed notice that he maps lk : g 7→ kg, the left translation by k,
and rn : g 7→ gn, right translation by n, are diffeomorphisms and that

Φ(k, a, n) = kΦ(e, a, e)n = lk ◦ rn ◦ Φ(e, a, e).

Let U ∈ k, W ∈ a and V ∈ n. Then for t ∈ R we have that

Φ(exp(tU), exp(tW )a, exp(tV ))a−1 = exp(tU) exp(tW ) exp(tAd(a)V )

Differentiating the above expression gives us

(Tara−1 ◦ T(e,a,e)Φ)(U + TeraW + Ad(a)V ) = U +W + Ad(a)V.

It thus suffices to show that the map (U,W, V ) 7→ U + W + Ad(a)V is a linear isomorph-
ism. Since [H,X] = 2X it follows that Ad(a)n ⊂ n, for all a ∈ A. It thus follows from
the infinitesimal Iwasawa decomposition that (U,W, V ) 7→ U + W + Ad(a)V is a linear
isomorphism.

Lemma 9.2 ([2], Lemma 20.1). The subgroup P is closed and the map M × A × N → P ,
given by (m, a, n) 7→ man is a diffeomorphism.

Proof. That (m, a, n) 7→ man is a diffeomorphism follows from Theorem 9.1. We now notice
that P = pr−1

K (M), where prK := pr1 ◦Ψ−1. Hence, since M is closed, P is closed.
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From the proof of Theorem 9.1 we can conclude that the map

j : NA→ H+

given by na 7→ na · i, is a diffeomorphism. Requiring j to be a bi-holomorphic map, gives us
a complex structure on NA.
Now let

KC = exp(C(Y −X)) = {
(
α β
−β α

)
| α, β ∈ C, α2 + β2 = 1}

AC = exp(CH) = {
(
ez 0
0 e−z

)
| z ∈ C}

NC = exp(CX) = {
(

1 w
0 1

)
| w ∈ C}

NC = exp(CX) = {
(

1 0
w 1

)
| w ∈ C}

PC = ACNC = {
(
ez w
0 e−z

)
| w, z ∈ C}

PC = ACNC = {
(
ez 0
w e−z

)
| w, z ∈ C}

BC = (SL(2,C))i = {g ∈ SL(2,C) | g · i = i}.

Since SL(2,C) acts on Ĉ. One readily verifies that this actions is transitive. Applying the
orbit stabilizer theorem (Theorem 2.20), we see that the map g 7→ gi induces a diffeomorph-

ism SL(2,C)/BC → Ĉ. One can show that this is actually a bi-holomorphic map.
We notice that K = SL(2,R) ∩BC, so we have an inclusion G/K → GC/BC. We thus have
the following commuting diagram

G/K GC/BC

H+ Ĉ

This implies in particular that G/K is an open subset of GC/BC.

Lemma 9.3 ([5], Lemma 1.1.11). There exists a g0 ∈ SL(2,C) such that
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(1) g0 · i = 0.

(2) KC = g0ACg
−1
0

(3) BC ' KC × g0NCg
−1
0

Proof. Notice that for any element c ∈ SL(2,C), such that c · i = 0, we have

BC = cPCc
−1 = cACNCc

−1 ' cACc
−1 × cNCc

−1.

This means that Lie(BC) ' Ad(c)aC ⊕ Ad(c)n̄C. We notice that KC and AC are both the
image of their respected Lie algebra’s under the exponential map. So it is sufficient to find
a c such that kC = Ad(c)aC. We can find such a c by diagonalizing Y − X. We find that
Y −X = g0(−iH)g−1

0 , for

g0 =
1√
2

(
i 1
1 i

)
.

One readily verifies that g0 · i = 0.
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Chapter 10

Induced representation

Given a finite dimensional representation (π, V ) of the Lie group G, we have a representation
on any closed subgroup H, namely the restriction of π to H. In this chapter we consider
the reversed case. Given a representation (ξ, Vξ) of a closed subgroup H of G we give a
representation on G, denoted by indGH(ξ). This will be the so called induced representation
of G. We shall give two different realizations of this induced representation, the so called
induced picture and the vector bundle picture. We shall start with the induced picture, since
this one is the most direct. In the final section we will discuss the process of normalized or
unitary induction. This process ensures us that when we start with a unitary representation
H, that the resulting representation of G is also unitary.
The material for this chapter is drawn from Chapter 19 of [2], and sections 1.1. and 1.2 of
[3]

10.1 Induced picture

Let G be a Lie group and let H be a closed subgroup. Let (ξ, Vξ) be a finite dimensional
continuous representation of H. Consider the space of continuous functions ϕ : G→ Vξ that
transform according to the rule

ϕ(xh) = ξ(h−1)ϕ(x), (fore all x ∈ G, and h ∈ H).

We denote the space of these functions by C(G : H : ξ). The induced representation on G
is the pair (L,C(G : H : ξ)), where

[L(g)ϕ](x) = ϕ(g−1x), (fore all g, x ∈ G).

10.2 Associated bundle

In the vector bundle picture the induced representation of G is realized in the space of
continuous sections of the so called associated bundle. We shall thus firstly have to define
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what an associated bundle is. We shall do this for a general smooth manifold M .

Let M be a smooth manifold equipped with a smooth free and proper right action of the
Lie group H. Let (ξ, Vξ) be a finite dimensional representation of H, in the complex vector
space Vξ. Consider the right action of H on M × Vξ given by

(g, v) · h = (gh, ξ(h−1)v)

We notice that this action is also free and proper, so M×H Vξ := M×Vξ/H can be equipped
with a smooth structure making the projection map π̃ : M × Vξ → M ×H Vξ a smooth
submersion. Let pr : M × Vξ → M be the natural projection. Now there is an unique map
p : M ×H Vξ →M/H such that the following diagram commutes.

M × Vξ M ×H Vξ

M M/H

pr

π̃

p

π

One readily verifies that this map is given by [(m, v)] 7→ mH. Now the map ϕm : Vξ →
M ×H Vξ given by v 7→ [(m, v)], defines a diffeomorphism from Vξ onto p−1(gH). Requiring
that the maps ϕg be linear induces a vector space structure on p−1(gH) and thus a vector
bundle structure on p : M ×H Vξ → G/H. We notice that ϕm is a linear isomorphism and
hence it follows that π̃m : {m}×Vξ → (M×H Vξ)π(m) is a linear isomorphism. It thus follows
from the universal property of the pull back bundle that the bundles pr : M × Vξ →M and
π∗(M ×H Vξ)→M are isomorphic in a canonical way.

Lemma 10.1. The map s 7→ π∗(s) defines a linear isomorphism from Γ(M ×H Vξ) onto
Γ(M × Vξ)H , where

Γ(M × Vξ)H = {t ∈ Γ(M × Vξ) | t(xh) · h−1 = t(x), for all h ∈ H}.

Furthermore, π∗ restricted to Γ∞(M ×H Vξ) is a linear isomorphism onto Γ∞(M × Vξ)H

Proof. From lemma 3.7 we know that π∗ : Γ(M ×H Vξ) → Γ(M × Vξ), given by π∗(s)(x) =
π̃−1
x s(π(x)), for s ∈ Γ(M ×H V ), is an injective linear map.

We still have to prove that π∗ is onto. We first prove that π∗ maps Γ(M ×H Vξ) into
Γ(M × Vξ)H . Let s ∈ Γ(M ×H Vξ). Then π∗(s) is the unique section such that the diagram
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M × Vξ M ×H Vξ

M M/H

π̃

π∗(s)

π

s

commutes. Given h ∈ H, let th : M →M × Vξ be defined by t(x) = π∗(s)(xh) · h−1. Notice
that

π̃(th(x)) = π̃(π∗(s)(xh) · h−1) = π̃(π∗(s)(xh)) = s(π(xh)) = s(π(x)).

Hence th = π∗(s), for all h ∈ H. We thus conclude that π∗(s) ∈ Γ(M × Vξ)H .
We now prove that π∗ maps Γ(M ×H Vξ) onto Γ(M × Vξ)H . Let t ∈ Γ(M × Vξ)H . Since t
commutes with the right action of H, t induces a section t̄ : M/H → M ×H Vξ. It is clear
that t = π∗(t̄).
We are now left to prove that π∗(s) ∈ Γ∞(M × Vξ)H , if s ∈ Γ∞(M ×H Vξ). For this we just
notice that s ◦ π is smooth and that π̃ is a smooth submersion. From which it follows that
π∗(s) is smooth.

Now consider a Lie group G and a finite dimensional representation (ξ, Vξ) of H. We
have that G acts on itself by left translation lg and on G× Vξ, by the rule (x, v) 7→ (gx, v).
These actions induce actions of G on G/H and G×H Vξ, which we shall denote by lg and l̃g
respectively, and we thus have the following commutative diagram:

G×H Vξ G×H Vξ

G/H G/H

p

l̃g

p

lg

The group G has a natural representation π in Γ(G×H Vξ) given by

Ξ(g)(s) = lg ◦ s ◦ l̃−1
g (g ∈ G). (10.1)

This representation of G is called the representation induced from the representation ξ of H.

We have thus far considered two representations of G that we both call the induced
representation. The following lemma says that these representations are equivalent.
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Lemma 10.2. The representations (L,C(G : H : ξ)) and (Ξ,Γ(G×H Vξ)) are equivalent.

Proof. We first notice that there is a natural representation of G in Γ(G× Vξ). Namely the
one given by

iξ(g)s = lg ◦ s ◦ l−1
g , for all g ∈ G and s ∈ Γ(G× Vξ).

The diagram

M × Vξ M ×H Vξ

M M/H

pr

π̃

p

π

is G-equivariant. So we have that the following diagram commutes

M × Vξ M ×H Vξ

M M/H

π̃

lg◦π∗(s)◦l−1
g

π

lg◦s◦l−1
g

Since π∗(lg ◦ s ◦ l−1
g ) is the unique section such that

lg ◦ s ◦ l−1
g ◦ π = π̃ ◦ π∗(lg ◦ s ◦ l−1

g )

we conclude that π∗(lg ◦ s ◦ l−1
g ) = lg ◦ π∗(s) ◦ l−1

g . Hence π∗ is G-equivariant.
Now define j : C(G, Vξ) → Γ(G × Vξ) by j(f)(x) := (x, f(x)). This is clearly a linear
isomorphism. We notice that

[ixi(g)j(f)](x) = (x, f(g−1x)) = j(L(g)f)(x)

and j(f)(xh) = j(f)(x) · h. So j induces a G-equivariant isomorphism j̄ : C(G : H : ξ) →
Γ(G×Vξ)H . Our desired intertwining isomorphism is then given by j̄−1 ◦π∗ : Γ(G×H Vξ)→
C(G : H : ξ).
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10.3 Normalised induction

In this section we discuss an adapted induction process known as normalised or unitary
induction. This process will guarantee that when we start whit a unitary representation
(ξ, Vξ) of H that the representation of G obtained in this process is also unitary. This need
not be true for the ordinary induction process. See [2] Chapter 19 for a detailed discussion.

Let ξ be a representation of H in the Hilbert space Vξ. Consider the modular function
∆ : H → R>0 as discussed in section section 4.2. As discussed in section 4.2 is ∆ a group
homomorphism. Thence ∆1/2 : H → R>0, given by ∆1/2(h) = ∆(h)1/2, for h ∈ H, is also a
group homomorphism. It follows that (∆1/2,C) is a representation of H. We now consider
the representation ξ ⊗∆1/2 in Vξ ⊗C∆1/2 . This representation is naturally isomorphic to Vξ
with the representation ξ ⊗∆1/2 given by

(ξ ⊗∆1/2)(h)v = ∆(h)1/2ξ(h)v, (for all v ∈ Vξ and all h ∈ H).

We agree to write Vξ⊗∆1/2 for Vξ equipped with the representation ξ ⊗∆1/2. We define the
representation

IndGH(ξ) := indGH(ξ ⊗∆1/2)

This adapted procedure is known as normalized or unitary induction.
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Chapter 11

Holomorphic discrete series representation

In this chapter we will apply the induction process to define the discrete series representa-
tions of SL(2,R). This shall be done along the lines of [5] Section 1.4. In the second section
of this chapter we will study complex line bundles over P1(C) to gain some insights in the
representation spaces. After that we will realize the holomorphic discrete series represent-
ations in O(H+). The discussion is mainly based on explanations provided to me by Erik
van den Ban in private meetings. For convenience we shall agree to write G = SL(2,R) and
GC = SL(2, C).

We consider the characters K̂ = {τn : K → C | τn(kϕ) = e−inϕ, n ∈ Z} of SO(2). By
Lemma 9.3 these characters can be extended to characters on BC, given by

τn(exp iz(Y −X) expwAd(g0)Y ) = enz

We will consider the the restriction of induced representation of (τn,Cn) to the space of
holomorphic sections Γhol(GC ×BC

Cn). Note that we are now considering the induced rep-
resentation in the vector bundle picture, so we have the following commutative diagram

GC × Cn GC ×BC
Cn

GC GC/BC

pr

π̃

p

π

It turns out that the space of holomorphic sections of p : GC ×BC
Cn → GC/BC is trivial

for n ≤ 1. We must thus restrict ourselves to an open subset U0 of GC/BC and induce locally
to get a non trivial representation space. Let U be the preimage of U0 in GC/BC, under the
projection π : GC → GC/BC. With similar arguments as in the proof of Lemma 10.1, we
can identify the space Γhol(U0,Ln) with

O(U : BC : τn) = {f ∈ O(U) | Rb̄f = τ−1
n (b̄)f for all b̄ ∈ BC}.

For our purposes it turns out that U0 = G/K will be a good choice. In Chapter 9 we indeed
saw that G/K ' NA is an open subset of GC/BC, and in particular a complex submanifold
of GC/BC. In this case U = GBC. We thus have the following commutative diagram
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GBC × Cn GBC ×BC
Cn

GBC NA

pr p

For any f ∈ O(U : BC : τn) we have that

f(nakb̄) = τn(b̄)−1τn(k)−1f(na), for all n ∈ N, a ∈ A, k ∈ K, b̄ ∈ BC.

The following theorem and its proof are drawn from [5] (Lemma 1.4.2).

Lemma 11.1. The function σn : U → C defined as

σn(nxatkϕb̄) := a−nρτn(b̄)−1τn(k)−1 = einρ(log(at))τn(b̄)−1τn(k)−1

defines a nowhere vanishing function in O(U : BC : τn). Further we have that O(U : BC :
τn) = σnπ

∗O(NA).

Proof. We consider the bi-linear map β : C2 × C2 → C, given by (w, z) 7→ wtz. One
readily confirms that the function β(w, ·), given by z 7→ wtz is an holomorphic map. Now,
the natural action of SL(2,C) on C2 is holomorphic and therefore is the map g 7→ g · w
holomorphic, for all w ∈ C2. We thus have that the map mw,z : g 7→ β(w, g·z) is holomorphic,
for all w, z ∈ C2. So if σ1 = mw,z, for some w, z ∈ C2, then we have that σ1 is holomorphic.
This is indeed possible. We define the function m : U → C as

m(nxatkϕb̄) := β(e2, nxatkϕb̄(ie1 + e2)).

We notice that kϕ(ie1 + e2) = τ1(k)−1(ie1 + e2) for all k ∈ KC. It follows from a direct
computation that g0n̄wg

−1
0 (ie1 +e2) = ie1 +e2, for all n̄w ∈ NC. So it follows from Lemma 9.3

that b̄(ie1 + e2) = τ1(b̄)−1(ie1 + e2), for all b̄ ∈ BC. We further notice that nx
te2 = e2 and

at
te2 = at

−ρe2. So we conclude that

m(nxatkϕb̄) = at
−ρτ1(b̄)−1τ1(kϕ)−1.

So we see that σ1 = m, and thus by the above discussion we have that σ1 is holomorphic.
We shall now prove that O(U : BC : τn) = σnπ

∗O(NA). Therefore recall that π : GC →
GC/BC is a holomorphic submersion. So for every f ∈ O(NA) we have that π∗f = f ◦ π :
GBC → C is a holomorphic function. It is then clear that σnπ

∗h ∈ O(U : BC : τn), for
any h ∈ O(NA). For the other inclusion we observe That π∗(σn

−1f) ∈ O(NA), for any
f ∈ O(U : BC : τn).
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Since A and N are Lie groups there exist left Haar measures da and dn of A and N
respectively. Now recall that NA ' N × A, so dn da = dn × da is a measure on NA.
We then also have that a−2ρ dn da is a measure on NA. We can thus consider the space
L2(NA, a−2ρ da dn). We now define the spaces Xn as the f ∈ O(U : BC : τn) such that
σ−1
n f ∈ L2(NA, a−2ρ da dn).

Definition 11.2. The discrete series representations of SL(2,R) are the G-modules (L,Xn),
for n ≥ 2.

11.1 Bundles over P1(C)

For n ∈ Z we consider the representation of C∗ in C given by ζ 7→ ζ−n. We shall denote the
representation space C in this case by Cn. We define

Ln := C2\{0} ×C∗ Cn.

We consider the natural action of SL(2,C) on C2\{0}. This action is transitive and commutes
with the action of C∗ on C2\{0}. This action of SL(2,C) induces an action on Ln. We also
saw that this action of SL(2,C) induces an action on P1(C). We get the the following
commutative diagram of SL(2,C)-equivariant maps

C2\{0} × Cn Ln

C2\{0} P1(C)

pr

π̃

p

π

It follows that SL(2,C) acts on Γhol(Ln), (n ≥ 0), by

(g · s)(z) = g · s(g−1z)

This defines a continuous representation of SL(2,C) in the space Γhol(Ln), which we shall
denote by πn.

The space of holomorphic sections of Ln → P1C can be identified with the space of
holomorphic functions on C2\{0}, which are H invariant, i.e. the space

O(C2/{0})C∗ = {f ∈ O(C2/{0}) | f(zζ) = ζnf(z)}.
We now have the following result.
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Lemma 11.3. Let Ln be as above. If n < 0, then Γhol(Ln) = {0}. If n ≥ 0, then Γhol(Ln) '
Pn(C2), where Pn(C2) is the space of homogeneous polynomials on C2 of degree n.

Proof. For n = 0 we have for f ∈ O(C2\{0}) that f(λz) = f(z), for all z ∈ C2\{0} and
λ ∈ C. So f ∈ O(C2\{0}) ' O(P1(C)). But by Louville’s theorem O(P1(C)) is the space of
constant functions.
Let n > 0. Let f ∈ O(C2\{0} : C∗ : n). Since f(λz) = λnf(z) we have that limz→0 f(z) = 0.
So we can extend f continuously to C2. One now also readily confirms that this extension
is holomorphic. Now f is entire, so f(z) =

∑
k,l=n al,kz

k
1z

l
2. We conclude that f(z) =∑

k+l=n ak,lz
k
1z

l
2.

Now let n < 0 and f ∈ O(C2\{0} : C∗ : n). We notice that for g : C2\{0} → C, given by
g(z) := zn1 f(z), we have g(λz) = g(z), for all λ ∈ C\{0}. So this means we can interpret g

as a holomorphic function on Ĉ. It thus follows from Louvile’s theorem that g is constant,
and thus f(z) = c

z1n
, for some c ∈ C. But this function can only be defined on C2\{0} if

c = 0. So we conclude that O(C2\{0} : C∗ : n) = {0}.

We now want to relate the spaces Γhol(Ln) and Γhol(GC×BC
Cτn). Therefore let β ∈ C2/

{0}. Then [β] ∈ P1(C) and let Bβ = SL(2,C)[β]. Now let α : SL(2,C)/Bβ → P1(C) be the
diffeomorphism induced by the map αβ : SL(2,C)→ P1(C), given by g 7→ g · [β]. It follows
from the orbit stabilizer theorem that

P1(C) ' SL(2,C)/Bβ.

It then follows that q = p ◦ α−1 : Ln → SL(2,C)/Bβ is also a vector bundle. We claim that
q : Ln → SL(2,C)/Bβ is an equivariant vector bundle. To see this, let Fg be the fractional
linear transformation corresponding to g. We notice that we have the following commutative
diagram

C2\{0} ×C∗ Cn C2\{0} ×C∗ Cn

P1(C) P1(C)

p

g·

p

Fg

We also have the following commutative diagram
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SL(2,C)/B[β] SL(2,C)/B[β]

P1(C) P1(C)

α

lg

α

Fg

From which we conclude that the diagram

C2\{0} ×C∗ Cn C2\{0} ×C∗ Cn

SL(2,C)/Bβ SL(2,C)/Bβ

q

g·

q

lg

commutes. It is readily verified that g· : (Ln)x → (Ln)gx. So we conclude that q : Ln →
SL(2,C)/Bβ is an equivariant vector bundle. So Ln ' SL(2,C)×Bβ V , where V := q−1(eBβ).
But one readily verifies that V = (Ln)β.

Now C∗β is invariant under the action of Bβ, by definition of Bβ. But this implies that
b · x = χβ(b)x, for all x ∈ C∗β and b ∈ Bβ, for some homomorphism χβ : Bβ → C∗. In other
words χβ is a character of Bβ. We now conclude that

b · [(β, w)] = [(b · β, w)] = [(χβ(b)β, w)] = [(β, χβ(b)−nw)].

So (Ln)[β] is an invariant subspace of the action of Bβ on Ln. We thus conclude that
V ' Cχ−nβ

, as representations of Bβ. So we conclude Ln ' SL(2,C) ×Bβ Cχ−nβ
as vector

bundles.

11.1.1 Borel group

We now fix β = β0 = (0, 1). Then one readily sees that

Bβ0 = {
(
a 0
c a−1

)
| a ∈ C∗ and c ∈ C}.
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Now the character χβ0 was determined by the equation

χβ0(

(
a 0
c a−1

)
)

(
0
1

)
=

(
a 0
c a−1

)(
0
1

)
=

(
0
a−1

)
= a−1

(
0
1

)
.

So

χβ0(

(
a 0
c a−1

)
) = a−1.

We relate this to the Lie algebra structure of gC = CY ⊕ CH ⊕ CX. We notice that
Bβ0 = PC = ACNC, so Lie(Bβ0) = aC ⊕ n̄C. The character χβ0 is given by(

ez 0
e−zw e−z

)
7→ e−z.

Hence χβ0(exp(zH)) = e−z and χβ0 = 1 on N̄C. It follows that

(χβ0)∗(H) =
d

dt

∣∣∣∣
t=0

χβ0(exp(tH)) = −1.

We agree to write χβ0 = χ−ρ and χ−nβ0 = χnρ.

The results of this section and the previous section are summarized in the following
commutative diagram

SL(2,C)×Bβ Cχnρ Ln

SL(2,C)/Bβ0 P1(C)

p

We thus have that Γhol(SL(2,C)×Bβ Cχnρ) ' Γhol(Ln) ' Pn(C2).

11.1.2 Conjugate of a Borel subgroup

Now let β ∈ C2/{0} be arbitrary. Now there is a γ ∈ SL(2,C) such that β = γβ0. It thus
follows that Bβ = γBβ0γ

−1. For a character χ of Bβ0 we define

γ(χ) := χ ◦ Cγ−1 .
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We then see that γ : B̂β0 → B̂β is a bijection.

For our purposes it will turn out that β = 1√
2
(i, 1) is a good choice. Namely, we notice

that [β] = [i : 1], which corresponds to i ∈ Ĉ. We see that

1√
2

(
i
1

)
=

1√
2

(
1 i
i 1

)(
0
1

)
.

So we take

γ0 =
1√
2

(
1 i
i 1

)
.

We then have that Ad(γ0)H = i(Y − X). We thus see that the functional γ0(ρ) : kC ⊕
Ad(γ0)n̄C → C is given by γ0(ρ)(i(Y −X)) = 1. Accordingly we have that χnγ0(ρ)(exp(iϕ(Y −
X))) = e−inϕ. We notice that this is an extension of the character exp(ϕ(X − Y )) 7→ e−inϕ

on SO(2).

11.2 Realisation in C(H+)

We now want to realize the representations (L,Xn) in the space C(H+). We notice that
we have an embedding NA ↪→ U , so we we have a restriction map res : O(U : BC : τn) →
C(NA).

Lemma 11.4. For all f ∈ O(U : BC : τn) we have that

f(g−1j−1(z)) =

(
cz + d

|cz + d|

)n
f(j−1(g−1z)), where g−1 =

(
a b
c d

)
.

Proof. By the Iwasawa decomposition there is a unique κ(g−1, z) ∈ K such that g−1j−1(z) =
j−1(g−1z)κ(g−1, z). In particular we have that the Iwasawa decomposition implies that the
map κ : G×H+ → K, given by (g, z) 7→ κ(g, z) is a smooth map. We thus have that

f(g−1j−1(z)) = f(j−1(g−1z)κ(g−1, z)) = τn(κ(g−1, z))−1f(j−1(g−1z)).

We compute τn(κ(g−1, z)). We notice that τn(kϕ) = τ1(kϕ)n, for all kϕ ∈ K, so it is sufficient
to compute τ1(κ(g−1, z)). Therefore notice that kϕ(ie1 + e2) = eiϕ(ie1 + e2) = τ1(kϕ)−1(ie1 +

80



e2). We further notice that nx
te2 = e2 and at

te2 = e−te2 = at
−ρe2. So we have that

〈e2, nxatkϕ(ie1 + e2)〉 = at
−ρτ1(kϕ)−1

〈e2, g
−1j−1(z)(ie1 + e2)〉 = 〈e2,

(
a b
c d

)(
1 x
0 1

)(√
y 0

0
√
y−1

)
(ie1 + e2)〉

= 〈
(
c
d

)
,

(√
y
√
y−1x

0
√
y−1

)
(ie1 + e2)〉 =

√
y−1(cz + d).

We thus conclude that τ1(κ(g−1, z))−1 = (ag−1z)
ρ√y−1(cz + d). We notice that

(ag−1z)
ρ =

√
Im(g−1z) =

√
y

|cz + d|
,

so we conclude that

τn(κ(g−1, z))−1 =

(
cz + d

|cz + d|

)n
.

To complete the picture we want to realize the representations .... in the space O(H+).
Therefore notice that image((j−1)∗ ◦ res) = ((j−1)∗σn)O(H+). It is then readily verified that
... is realized in O(H+) by

[πn(g)f ](z) = (cz + d)nf(g−1z)

11.3 Another realization

For m ≥ 2 we consider the measure ym−2 dx dy on H+. We now consider the space Hm :=
O(H+) ∩ L2(H+, y

m−2 dx dy). For f ∈ Hm, z ∈ H+, we define

D+
m(g)f(z) = (a− cz)−mf(g−1z).

We notice that (D+
m, Hm) is a representation of SL(2,R). It turns out that Hm, with the

pairing

〈ϕ, ψ〉 =

∫ ∞
0

∫ ∞
−∞

ϕ(x+ iy)ψ(x+ iy)ym−2 dx dy,

inherited from L2(H+, y
m−2 dx dy), is actually a closed subspace of L2(H+, y

m−2 dx dy) and
therefore a Hilbert space.
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Lemma 11.5. The representations (L,X−n) and (D+
n , Hn) are equivalent. The map T :

X−n → Hn, defined as

T (f) =
1√
2
fσ−1

n

∣∣
NA
◦ j−1, (f ∈ X−n),

is a surjective linear isometry that intertwines the representations.

Proof. We notice that

2‖T (f)‖2
Hn =

∫ ∞
0

∫ ∞
−∞
|f(j−1(z))|2y−nyn−2 dx dy =

∫
NA

|f(na)|2j∗(y−2 dx dy).

We now have that

j∗(y−2 dx dy) = 2a−2ρ da dn.

So we have that ∫
NA

|f(na)|2j∗(y−2 dx dy) = 2

∫
NA

|f(na)|2a−2ρ da dn.

We thus have that ‖T (f)‖Hn = ‖f‖X−n , and hence we conclude that T is well defined and
an isometry.
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Chapter 12

Principal series representation

In the present chapter we will apply the Iwasawa decomposition and the induction process
to define the, so called, principal series representations of SL(2,R). The material in this
chapter is drawn from [2] Chapter 20.

Lemma 12.1. The group MA normalizes N , i.e. gN = Ng, for all g ∈ MA, and N is a
normal subgroup of P .

Proof. The result follows from a direct computation and is left to the reader.

Let (ξ, Vξ) and (λ, Vλ) finite dimensional representations of M and A respectively. Con-
sider furthermore the representation (1,C) on N , that is trivial. In the view of the Iwasawa
decomposition and the above lemma we can define a representation of P on Vξ ⊗ Vλ ⊗ C '
Vξ ⊗ Vλ. Indeed, let m,m′ ∈ M , a, a′ ∈ A and n, n′ ∈ N . Since MA normalizes N , there is
an ñ ∈ N such that nm′a′ = m′a′ñ. We further notice that M commutes with A and thence
that the map M × A → MA given by (m, a) 7→ ma a Lie group isomorphism. We thus see
that manm′a′n′ = mm′aa′ñn′. So we see that the representation

(ξ ⊗ λ⊗ 1)(man) = ξ(m)⊗ λ(a) ((m, a, n) ∈M × A×N),

in Vξ ⊗ Vλ is well defined.

Let λ ∈ a∗C. We have seen that A = exp(a), and that exp : a → A is a Lie group
isomorphism. Therefore exp has a smooth inverse which we shall denote by log, for obvious
reasons. We define aλ := eλ(log a). It is clear that the map A× C defined by (a, v) 7→ aλv is
a continuous representation. We have

(ξ ⊗ λ⊗ 1)(man) = ξ(m)⊗ λ(a) = aλξ(m) ((m, a, n) ∈M × A×N). (12.1)

Definition 12.2. The Principal series representation of SL(2,R) is the representation

IndGP (ξ ⊗ λ⊗ 1), (12.2)

where (ξ, Vξ) is an irreducible and unitary representation of M and λ ∈ a∗C.
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We notice that M̂ = {1, ε}, where ε(−I) = −1. We also notice that all irreducible
representations of M = {±I} are unitarizible, i.e. there exists a G invariant Hermitian inner
product 〈·, ·〉ξ, namely

〈v, w〉ξ := 〈v, w〉+ 〈ξ(−I)v, ξ(−I)w〉,

where 〈·, ·〉 : C× C→ C is the Hermitian inner product (v, w) 7→ w̄v.
This implies that IndGP (ξ ⊗ λ⊗ 1) is unitary if λ is a unitary representation of A.

Lemma 12.3 ([2], Lemma 20.3). The modular function of P is given by

∆(man) = a2ρ, (m ∈M, a ∈ A and n ∈ N).

It follows from the above lemma that

(ξ ⊗ λ⊗ 1)⊗∆1/2 = ξ ⊗ (λ+ ρ)⊗ 1,

so that

IndGP (ξ ⊗ λ⊗ 1) = indGP (ξ ⊗ (λ+ ρ)⊗ 1).

We shall from now on denote the representation space C(G : P : (ξ ⊗ λ ⊗ 1) ⊗ ∆1/2) with
C(P : ξ : λ)
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