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ABSTRACT

COMPUTER VISION BASED RECOGNITION OF

DOCTOR’S ACTIONS DURING MEDICAL

CONSULTATIONS

In the Netherlands, general practitioners have to prepare a report for each con-

sultation and store this in the electronic medical record. This is time-consuming and

automating the reporting procedure could solve this. However, recognising medical ac-

tions for the support of automatically storing patients information in the electronic

medical record is limited, since there are no publicly available medical databases.

Therefore, we present Video2Report, a database consisting of one-on-one medical con-

sultations between a general practitioner and a patient. We construct a method that

consists of selecting the most important medical actions and carefully recording and

annotating the sessions. From the videos, we extract the skeleton positions by utilizing

OpenPose. These skeleton positions are used to calculate useful mathematical infor-

mation and use this to create feature sets. With these feature sets we will train and

test three basic classifiers, i.e. a decision tree, random forest, and k-nearest neighbor

classifiers. Our database consists of 192 sessions recorded with up to three cameras,

accounting for a total of 451 videos, of which 332 consists of single actions and 119

consists of multiple action sequences. While Video2Report is too small for end-to-end

deep learning, the results on the basic classifiers show promising results.
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1. INTRODUCTION

In healthcare, the care providers (CPs) are obligated to accurately report on

the encounters and treatments with their patients in their electronic medical record

(EMR). These EMRs are designed for improved communication between CPs and

capture previous diseases, treatments, and observations (1; 2). Moreover, they serve to

comply with guidelines and can support medical decisions (3). Even though the EMRs

support the medical care for patients, accurately documenting all aspects of healthcare

is time consuming, since it is done manually by the CPs. A more efficient and less

time-consuming way of reporting medical consultations is necessary. Automatically

constructing and storing medical reports in the EMR may be a solution. Recognising

medical actions from videos could aid in automatically constructing these reports and

recent developments in human action recognition (HAR) provide promising results.

The proposed research is performed within the broader context of the Care2Report

(C2R) project. This project aims to automatically report and document the medical

documents in the Electronic Medical Record (EMR) by combining speech with ac-

tion recognition to recognise the relevant (medical) actions that are performed during

medical encounters. The C2R project is described more elaborately in Chapter 2.

This study aims for recognising medical actions from videos of medical consulta-

tions using Computer Vision. In order to do so, a suitable dataset on medical actions

is required. Since this is currently not publicly available, we design and collect one

ourselves. We conduct research to find the most relevant and occurring medical ac-

tions, such that we can record and annotate those. Then we retrieve the skeleton joints

from the persons in the videos. With these skeleton joints, we can calculate distances

between limbs and persons. These mathematical representations can be used to train

our classifiers, those will then be able to recognise medical actions from new and unseen

videos.
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1.1. Human action recognition

In the field of computer vision, recognising human actions from videos has been

extensively studied in the last years. Human actions can be detected, for instance, by

using object detection, pose detection, or action spotting. Recognising human actions

can be seen as finding a representation of the video and then classifying these into

the right actions (4). Online processing means that the videos are processed in real

time and this is useful in human-machine interaction, such as automatic surveillance,

support in smart homes for elderly people, human-robot interaction, and recognising

medical actions.

Recognising human actions started by recognising single actions from trimmed

videos, i.e. videos with single actions. These actions were mostly performed by one

actor per video, e.g. running, walking, and boxing. This focus has shifted towards

analysis of multiple people simultaneously (5). Moreover, the use of cameras has also

evolved. Starting with the use of a single fixed camera in 2000, this was expanded to

using multiple cameras simultaneously (2003) and to using smart cameras (2004) (6).

Activities can be detected on several levels of abstraction. In (7), the authors

defined different types of activity, namely action primitives, action, and activity, an

approach we adopt here. An action primitive is a singular movement that, combined

with other action primitives, results in an action. An activity is a combination of

actions and depends on the environment, used objects and (human) interaction. As an

example, in playing handball, an action primitive could be “running“, “catching the

ball”, “jumping”, and “throwing the ball”. Combining these into an action would result

in “jump shot”. Combining several actions like “jump shot”, “break out”, “stopping

the ball” etc., would create the activity “playing handball”.

Many applications with regard to HAR exist, such as surveillance, elderly care,

and healthcare. For instance, in healthcare, HAR can be used to recognise which

medical actions are performed by the medical staff. This can be used to assist CPs in

diagnosis of diseases or it can help in reporting medical information in the EMR, and
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we focus on the latter.

While detecting human activities, we can focus on recognising variances within a

movement to spot individuals, or on generalising over variances and recognise the action

(4). The aim of this research is not to implement a system that identifies individuals in

a patient-doctor scenario, rather our primary aim is to identify the actions of the GP,

to recognize which action is being performed, selected from a closed set of pre-defined

actions. The actions in a consultation session will be listed, and this will be the output

of the proposed system. Since the analysis is primarily targeting post-consultation

reporting, real time assessment is not required.

1.2. Automizing reporting in healthcare

In healthcare, CPs are obligated to report the encounters and treatments with

their patients in the EMR. Even though the EMRs support the medical care for pa-

tients, accurately documenting all aspects of healthcare is time consuming. Using

speech recognition to reduce the workload has been studied extensively. These vary

from dictation for reporting to automatically subtracting clinical meaning directly

(8; 9). Automatically subtracting clinical meaning consists of extracting relevant med-

ical information from the conversation between the CP and their patient. This rele-

vant information can be used for automatic reporting to the EMR. The developments

of HAR technology provide opportunities for improved reporting to EMR. However,

combining speech with medical action recognition has not yet been done.

Research in the domain of action recognition in healthcare has been limited to

detecting fine-grained movements during eye surgery (10) and assisting in medical

aid for elderly (6). However, it has not focused on recognising the medical actions

as performed during consultations. Applying HAR on consultations can serve as a

reinforcement to speech recognition.

Since the difficulty of recognising actions increases with the number of persons in

the videos, we focus on human-human interactions between general practitioners (GPs)
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and their patients, rather than a team of specialists operating simultaneously. More

precisely, we aim to recognise the medical actions performed by the GP during a medical

consultation, e.g. blood pressure measurement and auscultation of the heart and lungs.

This provides a proof of concept for future research. This information will be used to

automatically report all relevant information in the EMR. An example of different

abstractions in the medical field could be as follows. A medical action primitive could

be “get stethoscope”, “listen to heart at point x1”, “listen to heart at point x2”,

and “listen to heart at point x3”. Combining these medical action primitives would

create “auscultation of the heart”. Combining this medical action with “auscultation

of the lungs” and “informing the patient” would create the medical activity “medical

consultation”.

In order to recognise medical actions, a dataset that contains the correct subset of

medical actions is needed. Many datasets on human activities are currently available.

The activities found in these datasets range from running, jogging, and robbing to

checking watch, playing golf and getting out of the car (11; 12; 13; 14; 15; 16; 17; 18;

19; 20; 21). We discuss this in detail in Section 3.1.

However, to our knowledge, no datasets consisting of one-on-one interactions be-

tween GPs and their patients are publicly available. Therefore, in this work, we collect

and annotate a database of medical actions, with conditions similar to real medical con-

sultation scenarios. Challenges that arise when collecting a dataset are maintaining

variation in the videos, selecting the right recording settings, and eventually annotating

the data correctly. We go into more detail on these challenges in Chapter 3.3.

1.3. Research questions

For this work, we investigate within the healthcare domain, more specifically, we

focus on one-on-one interactions between GPs and their patients. We would like to

extract the relevant medical actions as performed by the GP. This information can

then be used in the C2R project to automatically store reports in the EMR. The main

research question (MRQ) that we want to address in this work is:
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‘Can we recognise the health practitioners’ actions during a medical consultation

from video recordings, using state-of-the-art human action recognition technology?’

To answer this question, we investigate what research has been done already in

healthcare settings, with regard to action recognition. Moreover, we investigate which

actions are relevant for reporting and decide which of these are most important to focus

on.

Furthermore, we conduct research in what techniques can be utilized to recognise

actions from videos and how we can recognise the different (medical) actions. We have

to find out what training and testing data we need, as well as annotations that are

needed in the dataset. Lastly, we have to find a decent validation method.

To make it more precise, the subquestions that we want to answer are:

• RQ1: What research has already been done within healthcare, in combination with

HAR?

• RQ2: Which actions during a treatment are relevant for reporting?

• RQ3: What kind of algorithms will be usable?

• RQ4: What basic techniques can be utilized to recognise medical actions?

• RQ5: How can we recognise different actions using HAR?

• RQ6: What will be the validation method?

1.4. Outline of the thesis

In Chapter 2, we give more information on the C2R project. In Chapter 3 we

first go into more detail on existing databases, then discuss how we designed our

experimental setup and collected Video2Report (V2R), our dataset. In Chapter 4, we

describe the machine learning preliminaries, such as neural networks (NNs), gradient

descent, backpropagation, classification, and convolutional neural networks (CNNs).

Then, in Chapter 5 we describe our method and approach to collecting V2R, and

training and testing our classifiers. In Chapter 6, we go into more detail on how we
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collected V2R and on the dataset itself. In Chapter 7, we discuss our machine learning

approach with regards to training and testing our classifiers. Subsequently, we describe

our experiments and results in Chapter 8. In Chapter 9 we discuss the limitations of

V2R and our machine learning approach. Finally, in Chapter 10 we conclude our work

by answering our research questions.
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2. Care2Report

In this Section, we provide more information on the C2R project, which forms the

context for the work performed in this thesis. This project1 is conducted by a research

team of Utrecht University, under the supervision of prof. dr. S. Brinkkemper2 .

Administration tasks in healthcare require over 100,000 full-time positions in

long-term care in the Netherlands. The total cost exceeds 5 billion euros per year3 . In

the United Stated, it sums up to about 13.5% of their time, for a total value of around

15.5 billion dollars (22).

The administrative costs have increased rather than decreased with the introduc-

tion of the EMR (1). This problem is experienced in most healthcare disciplines, e.g.

general practice, trauma surgery, medical specialty, and home care (1; 23; 24; 25). This

includes both recording and maintaining the patient medical information in the EMR.

This administrative load is experienced as a burden by the CPs and causes their job

satisfaction to drop. Two out of three CPs indicate that the administrative burden is

too high (24). Issues that arise are data inaccessibility, a difficult user interface, and

an overload of information (26).

Automated medical reporting via an innovative integration of state-of-the-art

speech and action recognition is the goal of the C2R research program. In order to

make the C2R device a solution, rather than more work, C2R aims for the following

eight goals, which are also listed in Table 2.1.

Firstly, using the C2R device should not interfere with any of the current working

procedures of the CPs (G1). In other words, it must be an easy to use device, that

does not require extra steps by the CPs. Secondly, the input of all medical devices

(these are called the ‘modalities’) should be easy (G2). So all modalities should be

1See the project website http://www.care2report.nl/
2http://www.cs.uu.nl/staff/sjaak.html
3https://www.berenschot.nl/actueel/2016/juli/administratieve-taken/
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able to be easily connected to the device. Thirdly, the report will be made in real

time (G3) and should give a complete and concise summary of the consultation (G4).

After the report has been made, the CP must be able to check it and, if necessary,

edit the report (G5) before it is uploaded to the EMR. The system will be able to

learn from the adjustments made by the CP, such that the need for these adjustments

will decrease overtime (G6). Furthermore, the device must be applicable as widely as

possible, such that it can be used in multiple domains within healthcare, e.g. general

practice, home care, and specialists in hospitals (G7). Lastly, privacy has a crucial role

in the project (G8). The rights and responsibilities as laid out in the General Data

Protection Regulation (27) are taken into account in the entire C2R project.

G1 No interference with current working procedures.

G2 Simple input control of all modalities.

G3 Report generation in real time.

G4 Complete and concise summary of consultations.

G5 Care provider must check and possibly edit report.

G6 System learns from edits by care provider.

G7 Applicable for multiple healthcare disciplines and languages.

G8 Compliant with privacy regulations.

Table 2.1: Design principles of the C2R system (28).

Many research challenges arise in the scope of the C2R program. Our research

focuses on automatically recognizing the medical actions that need to be reported and

that are performed by the GP in medical consultations. Therefore, when discussing the

architecture of C2R, we only discuss the parts that are required for action recognition,

rather than the entire architecture.

2.1. Functional architecture

Figure 2.1, shows the functional architecture of the C2R system. The input to

the system are the audio and video of the consultation, as well as information of the

medical devices that are used. These medical devices are also called the domotics, i.e.

the medical Bluetooth instruments, as found in the MySignals kit (29). These three
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inputs are processed individually, and serve as a support for each other as well. The

videos are preprocessed and then given to the action recognition pipeline. The output

of our algorithm will be the medical actions that have been performed by the GP.

The output of speech recognition can be used as an extra reinforcement that a certain

action (most likely) will be performed. The medical action as recognised by our action

recognition pipeline will serve as a reinforcement that certain medical instruments

(domotics) are used by the GP, represented in the Measurement Aggregator.

The information in the Measurement Aggregator combined with the textual di-

alogue will then serve as the Consultation Interpreter. This will then be transformed

into the correct information and format for the EMR. More information on the entire

functional architecture can be found in (28).

2.2. Technical architecture

In figure 2.2, the technical architecture of the system is shown. It contains the

linguistic software components of the system. On the left, the domotics are represented.

Once used, these instruments contain valuable medical information, that are stored in

the Client. The Client also stores information from the Audio and Video interface.

Here, the patient data for the EMR are stored temporally, such that reports can be

read back and adjusted until it is stored in the EMR.

The audio and video information is controlled in the Server Cluster, or more

precisely, in the Server Controller that interacts with the Client. The Microanalyzer

Controller in the Server Controller controls all analysis processes and invokes the needed

microanalyzer. In the Microanalyzers we find the audio and video preprocessing steps

and the information gained from the domotics, of which the dependencies are shown

with blue arrows. The audio and video input are preprocessed, such that the valuable

information in the form of triples can be extracted. Combined with the output of the

domotics, we can select the valuable information and then the reports can be generated,

which can be send back to the Client via the Server Controller. Details of the entire

technical architecture can be found in (28).
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Our research falls entirely within the Microanalyzer part. The videos are pre-

processed such that they all have the same resolution and frame rate in frames per

second (fps). Then we extract the skeleton joints with the use of OpenPose, of which

the working discussed in Section 4.3. This representation is further processed into a

meaningful mathematical representation, as be discussed in Section 4.4, and then fed

to a classifier, which will be trained to recognise the medical actions that are performed

by the GP. We go into more detail of this last step in Section 4.1.
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Figure 2.1: Functional architecture of the C2R system with components based on

microservices, from (28)
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Figure 2.2: Technical architecture of the C2R system, from (28).
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3. Activity Recognition datasets

In this Chapter, we first give an overview of publicly available dataset. The aim

is to get insight in how they are structured, rather than providing a complete overview

of all available datasets. Subsequently, we provide more insights in the challenges that

arise when we want to recognise actions from videos. Lastly, we provide details on our

own dataset.

3.1. Background in datasets

Over the years, the publicly available datasets have become more diverse. The

first datasets consisted of simple actions like walking and running, whereas nowadays

datasets consist of over 400 different human actions. Moreover, these datasets are less

controlled and recording settings are more realistic (4). Even though many datasets

are publicly available, to the extent of our knowledge, no such datasets are available on

medical consultations between general health practitioners and their patients. Subse-

quently, we collect an acted doctor-patient interaction dataset in a way that the videos

can be shared with researchers.

In order to do this, we first provide an overview of publicly available and relevant

datasets. We do not aim to create a complete coverage of all available datasets, but

rather to provide an overview and an inspiration to collect our own dataset. Impor-

tant factors are the number of actors in the videos and the number of actions in the

datasets. Furthermore, the viewpoint and number of cameras being used for recording

is important for creating our own dataset.

The first publicly available datasets consisted of only a few actions. These actions

were simple single-person actions, like walking, running, and clapping hands (30; 31;

32; 33; 34; 35), and simple two-person actions, like fighting and meeting (36; 37; 38; 39)

or a combination of single- and multiple person action (40; 41; 42; 43; 44; 45). These

actions became increasingly harder, involving multiple persons in an action, like playing
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sports (46; 47).

In addition, the amount of classes increased. Where the former datasets consisted

of 3-20 classes, this increased to more than hundreds of classes (48; 49; 50; 51; 52; 53; 54;

55; 56; 57), ranging from cooking, to sporting and householding activities. Naturally,

these datasets consisted of both single and multiple person action classes.

The first datasets had static backgrounds and were recorded with a single static

camera, since these actions consisted of actions that could be recorded while the actors

stayed in place, like jumping and clapping (30; 31; 36; 37). While over time, these

actions were recorded with multiple (calibrated) cameras (32; 40; 41; 42) and ((34; 47))

or recorded with a dynamic and cluttered background (33). Moreover, the source of the

videos in the datasets also evolved over time. From recording own datasets, this evolved

in retrieving videos from other sources, like movies or TV shows (38; 44; 45; 54) or from

YouTube and Google (48; 49; 51; 53; 55; 56; 57; 58), in which the cameras viewpoints

can both be static and dynamic. Naturally, these last datasets, as well as the datasets

recorded with multiple cameras, consists of multiple viewpoints, rather than a single

viewpoint. An overview of publicly available datasets can be found in Table 3.1
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3.2. Collecting dataset

To the extent of our knowledge, there is no publicly available (annotated) database

on medical encounters between general health practitioners and their patients. There-

fore, we present our own dataset. The sessions consist of one-on-one encounters between

GPs and their patients. In order to best represent a real consultation, we use existing

clinical guidelines for Dutch health practitioners. These are available online at the web-

site of the Dutch Health Practitioners Society (’Nederlandse Huisartsen Genootschap’)7

.

From these guidelines, we can find the typical medical actions and treatments

for ninety syndromes. A selection of these actions and treatments are used to record

one-on-one interactions. We utilise a publicly available video annotation tool, ELAN,

to annotate the data (76). We annotate the medical actions, as well as the posture

of the patient, contact between GP and their patient, and the area in which the GP

performs a medical action, i.e. the area of investigation.

3.3. Challenges in collecting a database

To extract the correct and meaningful features from the input videos, we have

to understand what the dataset consists of and what challenges we face. We describe

these in the following Sections.

3.3.1. Inter- and intra-class variation

Within a class of actions, variances occur in the performance of an action. For

instance, a GP may start palpating the abdomen on the left side of the body, as well as

on the right side. And she/he may move clockwise, or counterclockwise, or address the

area of the abdomen in a random order. These differences occur for the movements of

a GP compared to movements of other GPs. This is referred to as intra-class variation.

Conversely, inter-class variation refers to differences between actions of different types

7https://www.nhg.org/nhg-standaarden
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(i.e. different action classes). Notably, the classes palpating abdomen and auscultating

lungs are easier to distinguish than distinguishing auscultating lungs from auscultating

heart. A good action recognition algorithm should be able to account for these intra-

and inter-class variations. This becomes a bigger challenge as the total number of

classes increases (4).

3.3.2. Environment and recording settings

While filming the videos, the environment has an influence on the variation in

the recordings. It is harder to classify actions when the environment is dynamic rather

than static. Moreover, lighting conditions also play an important role in difficulty of

the dataset. Daylight has a different effect on the videos than indoor lighting and

indoor lighting can be influenced by outdoor lighting if there are windows in the room.

Furthermore, occlusions, both partly or a person/object as a whole, can make a dataset

more challenging to correctly classify.

The use of different angles for the cameras for the same action class, might cause

a different representation and therefore the classification algorithm has to be flexible.

On the other hand, by using multiple cameras simultaneously and from different angles,

occlusions can be alleviated. However, in order to do so, the exact location, height,

and distance of the cameras must be known (4).

In figure 3.1, three images of the same recording, at the same moment in time, are

shown. Even though the images are from the exact same moment, there are differences

in lighting conditions, camera angle, and zooming options. The left figure shows the

recordings of a camera that is slightly higher in the air, creating a bird’s eye view.

The lighting is warm, compared to the lighting created by the GoPro, as shown in the

middle. The GoPro has an 170◦angle camera and is zoomed out, creating an overview

of the entire setting. Lastly, the iPad, shown on the left, is more zoomed in and also

has a warmer lighting conditions. The zooming causes for occlusions in the videos, as

the GP may walk around the patient and disappear from sight.
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Figure 3.1: Images from the same session at the same moment in time, that were

captured by three different cameras. Left: camera, middle: GoPro, right: iPad

3.3.3. Temporal variations

It is important to note that variations may occur with regard to the length of

an action, as well as the rate at which it has been recorded. These play an important

role with regard to the temporal extent of an action (4). If the duration of an action

is 10 seconds and it has been recorded at a frame rate of 30 fps, then the action is

represented by 300 frames, whereas if it were recorded at 20 fps, this same action would

be represented by 200 frames.

In V2R, the duration of the medical actions differ. The average duration of the

singular medical actions are listed in Table 6.4, e.g. blood pressure measurements takes

on average 1 min 37 seconds, whereas palpation of the abdomen takes 34 seconds. The

movements that are performed by the GP during the medical treatments are discussed

in detail in Section 6.3.

3.3.4. Obtaining and labeling training data

An annotation task is the labeling of segments of the data. It gives information

about occurrences in the frames of the videos, and provides it with the correct infor-

mation, e.g. a label on ’Posture Patient’ can be either laying down or sitting. We

represent this as a binary label.

Annotating the videos can be done either automatically or manually. When anno-

tating the set manually, it is important to note that actions might be perceived differ-

ently across the annotators. Therefore, it is important to make sound and measurable



20

agreements on the annotations, such that that they have high inter-rater reliability..

Agreements on annotations are discussed in Section 6.6.

We use the online ELAN tool (76) for the annotations. It allows us to annotate

multiple videos simultaneously and to annotate several occurrences in the same file, as

shown in Figure 3.2. In a single file, the posture of the patient, the area of investigation,

and the corresponding medical action are annotated. After annotating the videos, we

can represent the annotations mathematically. We describe this more elaborately in

Section 6.6. By annotating these occurrences, we can ensure that we can start with

recognizing simple movements, like the posture of the patient, as well as recognizing

more complex actions like a medical action.
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Figure 3.2: Annotation mode of the ELAN tool
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3.3.5. Segmenting videos

Many of the algorithms that have been developed over the years, have been

trained on segmented videos, i.e. videos with action boundary annotations. Thereby,

the action detection part could be ignored, since it was done manually. However, for

online applications such as recognising and identifying medical actions on the spot as

found in this thesis, action detection is important. The aim of action detection, also

called action spotting, is to detect when and where an action begins in the video.

3.3.6. Distinguishing doctor from patient

In order to recognise medical actions being performed in the sessions, it is im-

portant to know which person is the GP and which person is the patient. However,

in the Netherlands, GPs wear regular clothes, rather than white coats, therefore, GPs

can not be distinguished by their clothing.

In most situations, the GP enters his/her office in the morning, without patients.

From that moment, we can detect the GP and she/he can then be tracked throughout

the day. In (77), the authors propose a method to locate and identify persons in

videos, by using multiple videos and by matching faces with the colors of their clothing.

Moreover, the position of the persons in the room might be an indicator as well. The

GP can be sitting behind the computer, whereas the patient will not, and the patient

may be laying or sitting on the bed, whereas the GP will not.

3.3.7. Privacy

Privacy is of great importance for the C2R project. While certain actions, such

as undressing, mostly happen behind a closed curtain, the intimacy of some medical

actions may also be inappropriate to film. Moreover, patients may feel uncomfortable

being recorded during their consultation, since they might be discussing private issues.

A solution to this might be to have a device with two buttons. A red button for turning

the camera off and a green button for recording with the camera.
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Note that the storage of the videos lasts until the report is stored in the EMR.

Since the aim is to save the reports in real time, the videos will be stored for a short

time only and deleted afterwards. It is important that this is known by the patients

as well, for this may influence their sense of feeling safe and secure.

3.4. Details of Video2Report

Our collected dataset consists of one-on-one interactions between GPs and their

patients. A total of four subjects acted as patient, of which three also acted as GP.

The distribution of GP/Patient is shown in Figure 3.3. We recorded V2R with at most

three different camera’s. In Figure 3.4, an overview of the three different cameras is

shown.

Figure 3.3: The distribution of GP/Patient for subjects W, X, Y, and Z. Subjects W,

X, and Z are female, while subject Y is male.

Figure 3.4: Setup of the cameras while recording.
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A total of six medical actions were recorded in V2R. These are blood pressure

measurement, auscultation of the heart, the lungs, and the abdomen, percussion of the

abdomen, and palpation of the abdomen. A detailed description of the medical actions

can be found in Section 6.3. We annotated the posture of the patient, the distance

from either the hands of the GP or the medical instrument to the patient, the area of

the patients body where the GP performs a medical action, and lastly of the medical

actions that is being performed. More details can be found in Section 6.6. Lastly, we

divide V2R into a training, a validation, and a test set. Details can be found in Section

6.9.
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4. Machine learning preliminaries

In this Chapter we describe more details on the machine learning aspects. First,

we discuss the classification step and several classifiers in Section 4.1. Second, we

describe neural networks (NNs) in Section 4.2, and while doing so we describe the

workings of gradient descent and backpropagation as well. Third, we discuss the work-

ings of convolutional neural networks (CNNs) in Section 4.3. Lastly, we describe how

we extract useful features to represent our videos in Section 4.4.

4.1. Classification

A classifier is a mathematical function that maps data to a certain class. We

do this by means of machine learning, as we do not want to manually fine tune the

parameters of the classifier. The classifier is first trained on a dataset and then it is

tested for the accuracy on a set that it has not been trained on. The algorithm, i.e.

the classifier, is trained to identify to which classes the data belongs, e.g. auscultation

of the lungs or auscultation of the heart.

Common algorithms for classification are decision trees (DTs), k-nearest neigh-

bors (k-nns), random forests (RFs), and NNs (78). Because we have a limited amount

of samples, we did not train end-to-end deep NN classifiers, but used simpler machine

learning algorithms, i.e. a k-nn, a DT, and an RF classifier.

K-Nearest Neighbor. A nonparametric approach is used when no assumptions

can be made with regard to the input density and it can be used to estimate the class-

conditional densities, p(x|Ci). The kernel density estimator of the class-conditional

density p̂ for Ni instances belonging to class i, and Ni =
∑

t r
t
i , is given in Eq. 4.1,

where rti is 1 if xt ∈ Ci and 0 otherwise.
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p̂(x|Ci) =
1

Nihd

N∑
t=1

K(
x− xt

h
)rti (4.1)

The maximum likelihood estimation of the prior density can be written as P̂ (Ci) =

Ni

N
and the discrimimant, gi, is represented in Eq. 4.2:

gi(x) = p̂(x|Ci)P̂ (Ci) =
1

Nhd

N∑
t=1

K(
x− xt

h
)rti (4.2)

and x will be assigned the class label for which gi(x) takes the maximum value.

For the k-nn classifier, the following equation holds, Eq. 4.3:

P̂ (Ci|x) =
p̂(x|Ci)P̂ (Ci)

p̂(x)
=
ki
k

(4.3)

A k-nn classifier assigns class labels to its input, by checking the examples sur-

rounding the input value and assigning it the label of the most occurring label of its

neighbors. The algorithm checks the labels of the k nearest neighbors of the input

value, and assigns the label of the most occurring label amongst these k neighbors.

To avoid ties, k is normally set as an odd number. The k-nn algorithm is intuitively

and simple and therefore easy to interpret. However, since it needs to calculate all

distances for every iteration, it is time consuming for more complex input data.
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Decision Tree. A DT classifier consists of a nodes, branches, and leaf nodes. In

the nodes, the input value is tested with some test function fn(x), which has a discrete

outcome, corresponding to one of its branches. At each node n in the DT, starting at

the root, the data is tested with its test function fn(x), until a leaf node is reached.

The algorithm is greedy, and in every node, it searches for the best split. The leaf node

corresponds to an output value, i.e. a class. Figure 4.1 shows a simplified example of

a dataset and a DT corresponding to it.

Figure 4.1: Simple scheme of a decision tree, image from (78).

Each fn(x) in the nodes divides the input space into smaller regions and represents

a discriminant in the d-dimensional input space. The boundaries of the regions are

defined in the discriminants.

The goodness of the split can be calculated by an impurity measure. A split is

considered to be pure, if all branches after the split, consists of instances belonging to

the same class. Consider node n, and the amount of training instances An reaching it.

Ai
n of An belong to class Ci, with

∑
iA

i
n = An. If an instance reaches node n, we can

calculate the probability P̂ (Ci) of that instance belonging to class Ci with Eq. 4.4:

P̂ (Ci|x, n) ≡ pin =
N i

n

Nn

(4.4)
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Node n is pure if ∀i, pin = 0, 1, i.e. it is 0 if none of the instances in the branch

belongs to class Ci and 1 is they all belong to it. If it is pure, we have reached the

leaf node, and can assign it a class label. A common function to measure the purity is

entropy (79), Eq. 4.5:

Im = −
K∑
i=1

pim log2 p
i
m (4.5)

with 0 log 0 ≡ 0.

One of the advantages of DTs is that due to the hierarchical structure, the DT

allows for a fast search of regions. However, DTs tend to overfit on the input data if

there are many classes and relatively little training data.

Random Forest. An RF is an ensemble of multiple DTs. While training an RF,

one is training multiple DTs simultaneously, each on a different subset of the input

set. The predictions of the individual trees are all combined and the average of the

predictions are calculated. By doing so, the overall accuracy of the algorithm can be

increased, compared to DTs. By taking the average of multiple DTs combined, the

tendency of overfitting of the DT is reduced.

4.2. Neural Networks

Convolutional neural networks (NNs) can be used to extract information from

videos to correctly classify them into one of finitely many classes. A CNN is a special

form of neural network (NN), in which the nodes in a layer are all connected to the

nodes in the consecutive layer, creating a fully connected NN. The output is a numerical

representation of the video, also known as a vector. Every layer in the network performs

their own set of calculations, by which corners and circular objects can be recognised
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and also object shapes. All nodes in the layers have certain weights. This weight

determines how much that specific node contributes in that layer and this can be

trained using back propagation. A NN is a multi-layered network of neurons that can

be used to correctly classify and predict certain classes. Figure 4.2 shows a NN with

an input layer, with four input features, one hidden layer, with five neurons, and an

output layer with one neuron.

Figure 4.2: A display of a NN with four input features, one hidden layer, and an output

layer, from (80).

The neurons j in hidden layer i get their input xk from its penultimate layer i−1.

The neuron performs a calculation and the output serves as the input for the neurons

in the consecutive layer that it is connected to. The connection between neuron k in

hidden layer i − 1 to neuron j in hidden layer i contains a weight wikj. This weight

is used by neuron j to multiply with the input xk from neuron k. The output yij of

neuron j in hidden layer i is some activation function φ over the summation of the

multiplication between the input from neuron k and its corresponding weight wikj, as

represented in Eq. 4.6. The bias of a hidden layer can be added to the summation by

means of an extra neuron x0 = 1 and the bias wik0 = bias for hidden layer i .
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yij = φ(
n∑

k=0

wikjxk) (4.6)

There exist several activation functions φ, whose main goal is to map the resulting

values for the neurons within a certain range, e.g. between 0 to 1, or -1 to 1, or ≥ 0.

The activation function adds non-linearity to the output, such that the performance of

the classifier can be improved. The most commonly used activation functions for NNs

are the Sigmoid (81), the ReLU (Rectivied Linear Unit) (82), and the Tanh function.

The Sigmoid function maps its input to a value between 0 and 1, as shown in Eq. 4.7:

ω(x) =
1

1 + e−x
(4.7)

The Sigmoid activation function has clear bounds, making it easy to use in the

neurons. Moreover, the Sigmoid function tends to map the inputs towards either 0 or

1, making the neuron more discriminatory. The Tanh activation function is similar to

the Sigmoid function, however maps its input to a value between -1 and 1, making the

neuron even more discriminative towards its input, as shown in Eq. 4.8:

ω(x) =
ex − e−x

ex + e−x
(4.8)

Lastly, the ReLU function maps the output as the input value, if the input value

is positive, otherwise it maps the input to 0, as shown in Eq. 4.9:



31

ω(x) =

 ifx ≥ 0 : x

else : 0

 (4.9)

Once the amount of hidden layers, neurons in these hidden layers, and activation

functions are chosen for the NN, the network needs to be trained to predict the output

as close to the ground truth as possible. This is done by a process called backpropa-

gation.

To start the backpropagation process, random weights and biases are assigned to

the network. With these settings, the network makes a prediction for the given input,

which is compared to the expected result. The error, i.e. the loss, is calculated with the

loss function, and backpropagation aims to minimize the loss by adjusting the weights

of the connections between the neurons.

Several loss functions can be used in the process, and a commonly used loss func-

tion is the Mean Square Error (MSE), in which the predicted output θ is subtracted

from the exact output θ̂ and the error is squared, resulting in Loss(θ̂, θ) = [θ̂−θ]2. Since

we need to calculate the derivative during backpropagation, we want to make it easier

to calculate the derivative. Therefore, this error is usually multiplied by 0.5, resulting

in Loss(θ̂, θ) = 0.5(θ̂ − θ)2. By squaring the difference, outliers have a great influence

in the loss function, which might influence the backpropagation algorithm strongly.

Another loss function may therefore be to calculate the absolute difference between

the predicted output θ and exact output θ̂, resulting in Loss(θ̂, θ) = [θ̂ − θ]. Even

though this reduces the influence of outliers, this function is non-differentiable, making

it harder to calculate the derivative. The error is averaged over all n examples in the

training batch, resulting in the error (E): E = 1
n

∑n
i=1(θ̂i− θi)2 or E = 1

n

∑n
i=1[θ̂i− θi],

depending on the chosen error function. Then the backpropagtion algorithm calcul-

tates which weights and biases it needs to adjust, to minimize the error. It does so by

means of gradient descent, in which the direction of the minimal loss is calculated.
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Gradient descent calculates the derivative of the loss function, in order to find

the impact of the changes in the network. Backpropagation starts at the end of the

network, i.e. the output, and calculates how changes in the previous layers influence

the output. Therefore, we calculate the derivative of the error function E with regards

to the changed weights w in hidden layer i from neuron k in layer i− 1 to neuron j in

layer i, as shown in Eq. 4.10:

∂E

∂wikj

=
∂E

∂yij

∂yij
∂netij

∂netij
∂wikj

(4.10)

In which ∂E
∂yij

represents the impact of neuron j in layer i, so for predicted output

yij this is ∂E
∂yij

= Loss(θ̂, yij), and this loss is back propagated to the network. Therefore,

we need the activation function for layer i, neuron j:
∂yij
∂netij

. Since all neurons are

connected and therefore influence each other, we need to propagate to all inputs of

the neuron with
∂netij
∂wikj

. We repeat this process for all output neurons, which creates a

list of impact for each weight in the network. Since we calculated the derivatives, this

list, i.e. a gradient vector ∇wE =
[

∂E
∂w1

, ∂E
∂w2

, ..., ∂E
∂wd

]T
, gives us the direction to change

the weights, for the best result on the loss function. The gradient descent procedure

updates the weights in the opposite direction of the gradient, as shown in Eq. 4.11:

∆wi = −η ∂E
∂wi

,∀i (4.11)

wi = wi + ∆wi (4.12)
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In which η is the learning rate of the backpropagation algorithm, usually 0 ≤

η ≤ 1. Once the derivative reaches 0, the procedure is terminated. Since the learning

rate influences the speed of convergence, it is important to find a good value η, as for

a large η the algorithms may miss the trends of the input, while for a small η, the

convergence may be too slow (78), which results in an increase of training time. A

solution may be to start with a high learning rate, which decreases over time. Thereby,

the results improve rapidly in the beginning, and gets more fine tuned towards the end

of the algorithm.

4.3. Convolutional Neural Network based action recognition

A convolutional neural network (CNN) is a type of NN, with specific special layers.

One such specific layer is the convolutional layer, in which a rectangular filter is placed

over the input array and slided over it. This layer has a certain activation function, as

depicted in Figure 4.3. With these simple calculations, lower level features, e.g. lines,

can be detected. These features can then serve as input for the next convolutional

layer, which can then detect higher level features, e.g. curves and edges.

Figure 4.3: The activation operation within the convolutional layer, image from (80).

Every filter in the convolutional layer adds a layer to the 2D input array, creating

a 3D filter space. Combined with a convolutional layer, we can add another special

layer, namely a pooling layer. This is used to reduce the features created in the
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convolutional layer. A commonly used pooling layer is the max pooling layer, in which

the maximum value in a certain area is saved as the value representing that specific area.

Other pooling options are minimum and average pooling, which take the minimum or

average value over a specific area respectively. The pooling layer assist in locating

features that are invariant to rotation (83). A CNN is a special type of NN with

convolutional and pooling layers, as depicted in Figure 4.4. The final layer is a fully

connected classification layer, whose goal is to provide a prediction with regard to the

input. It provides us with an n-dimensional array of predictions, in which n is the

amount of possible labels, indicating whether a certain object, e.g. a person, is in the

input.

Figure 4.4: Example of a CNN with two convolutional layers, followed by a pooling

layer, and a final, fully connected, classification layer, image from (80).

CNNs are a form of deep learning, as they consist of multiple layers. Since every

layer performs its own set of calculations, thereby allowing to detect and recognise

higher level features, e.g. persons and medical instruments, adding more layers to the

network, allows for the network to recognise increasingly difficult features. However, by

adding more layers to the network, more training data is needed to train the network

correctly, thereby also increasing the needed time and computing power to train the

network.
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4.4. Video representation using a trained CNN

We need to represent our input mathematically, such that we can train and

test our classifier. While doing so, we have to take into account the challenges as

described in Chapter 3.3. This representation should be able to generalise over inter-

class variability, and distinguish between intra-class variability. Thereby, it should be

able to overcome differences in backgrounds, viewpoints, lighting conditions, and the

appearance of individuals.

An open-source and trained CNN can be used to extract this valuable information.

OpenPose (84) is such a trained CNN, and is available for scientific purposes. OpenPose

has been trained on the COCO (85) and MPII (86) datasets and is trained to identify

persons in images and videos. Since it is pretrained on a big dataset, it is invariant to

background, camera viewpoints, and lighting conditions. After detecting the persons

in the videos, it generates the keypoints of these persons. These keypoints are the

location of the joints and limbs, e.g. the position of the neck, the hands, and the hip,

an example is shown in Figure 4.5.

The coordinates of the skeletons in itself may not contain valuable informtaion,

since the exact same movement recorded with the camera results in entirely different

coordinate points compared to the recordings of the GoPro, and a shift of the camera

may also result in entirely different coordinate points. However, from the coordinates

of these keypoints, we can subtract valuable information, such as the distances from

one person to the other, which can be used to train and test our classifiers.

The keypoints of the persons in the video represents the skeleton of these per-

sons. In the work of (87), depth sensors are used to create a complex human activity

dataset, consisting of two person interactions. Skeleton features are used to calculate

the distance between all pairs of joints, and using these as the representation yields

the best outcome of their Support Vector Machine (SVM) classifier.

In the work of (88), the authors use a regularized deep Long Short-Term Memory
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Figure 4.5: Extracted Keypoints using OpenPose.

(LSTM) network to recognize action from the 3D skeletons of the persons in the videos.

They use the co-occurence of joints that can characterize a human action, i.e. the joints

that are moved simultaneously while humans perform certain actions. They show that

the dropout algorithm ensures effective learning of the LSTM neurons.

In (89), the authors propose an approach using joint angles from three dimen-

sional (3D) skeleton features to recognise human actions with a linear SVM. From the

3D skeleton joints, spatial features and spatio-temporal features are extracted. The

algorithm was tested on the MSR-Action 3D Dataset ((90)), the MSR-Hand Gesture

Dataset ((91)), and the UCF-Kinect Dataset ((92) and achieved state-of-the-art re-

sults).

Skeleton data was used to extract spatial and temporal features in (93). In their

work, a Recurrent NN with Long Short-Term Memory was build. The model was

trained to recognise which joints were dominant in certain actions, using a temporal

attention module.

In (94), the authors extract geometric relations amongst all joints from the 3D

skeletons obtained from the dataset. The LSTM achitecture is able to capture the long-

term dependencies. From the 3D skeletons, both lines between two joints, as well as

planes between three joints were used to extract the geometric relations. Experiments

on the SBU-Kinect dataset (87), NTU-RGB+D dataset (95), Berkeley MHAD dataset

(96), and the UT-Kinect dataset (97) show that the distance between joints combined
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with selected lines achieve the best results amongst all the tested features, resulting in

stat-of-the-art results on these datasets.

For our dataset, we use the Euclidean distances between joints, as described in

(87; 94), as well as the angle between two joints (94). We describe this more thoroughly

in Section 7.2.
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5. A method for Human Medical Action Recognition

In Figure 5.1, our approach is shown. The processes are further specified in Table

5.1 and the deliverables of the product delivery diagram (PDD) are specified in Table

5.2.

Firstly, research is conducted with regards to the clinical guidelines of the GPs.

In these guidelines, we find the relevant medical actions as can be found at the GP’s

office. Secondly, a discussion with a medical student takes place, in order to find out

in which sequence multiple medical actions can occur in a single session, these actions

will be recorded in a session. A session can consist of a single medical action or of

a sequence of medical actions, i.e. auscultation of both the heart and the lungs. We

record multiple sessions in a row, and edit the videos into singular sessions. Thirdly, we

conduct research on how to place the cameras, such that the best viewpoint is created.

We use three different (offline) cameras, namely a Panasonic HC-V770, a GoPro Hero

5, and an iPad.

After thoroughly researching the relevant medical actions and recording settings,

we start filming. Since we film multiple sessions per recording, we cut them into singular

sessions in a later stadium. After editing the sessions, we annotate them, using the

tool ELAN (76). By doing so, we annotate different occurences, namely the ‘posture

of the patient’, the ‘area of investigation’, whether ‘the doctor touches the patient’ or

not, and lastly the ‘medical procedure’. The posture of the patient is either laying with

the legs flat, laying with the knees bend, or sitting upright. The area of investigation

is either chest, upper back, abdomen, or arm. Lastly, the medical procedure is either

auscultation of the heart, auscultation of the lungs, auscultation of the abdomen,

percussion of the abdomen, palpation of the abdomen, blood pressure measurement,

or heart rate measurement. Choices with regards to these medical actions are discussed

in Section 6.2.

After annotating the dataset, we can start with the medical action detection part.
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By using OpenPose we account for differences in viewpoints, changes in background

and lighting conditions and we can extract the body joints of the people in the videos,

we discuss this in more detail in Section 7.1. These keypoints can be used to obtain

valuable information, e.g. the angle of the body of the patient, as discussed in Section

7.2. With this mathematical representation, we can create feature sets, which will be

used to train our classifier, e.g. to distinguish the posture of the patient as either

sitting or laying down. Experiments and results are discussed in Chapter 8.

After dividing the dataset into a training, validation, and test set, we can train

the classifier with the training set. Then, we can use the validation set, to tune the

parameters of the classifiers. After finding the optimal parameter settings, we can test

the performance of the algorithm with the test set. It is important that none of the

videos in the test set have been used in the training and validation set, as this would

influence the accuracy of the algorithm.

For classification, we train and test three different classifiers, namely a k-nn, a

DT, and a RF classifier. We discuss this more elaborately in Section 4.1
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Figure 5.1: PDD that depicts the method used to create the dataset and to train and

test the classifier.
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Process Definition

Extract medical actions
From the MEDICAL GUIDELINES8 we extract the relevant MEDICAL ACTIONS

that can be represented in our DATASET.

Discuss with

institutions

The relevant MEDICAL ACTIONS are discussed with a senior medical student in order to find the

SEQUENCES in which multiple MEDICAL ACTIONS can occur. At the Kinder Kennis Centrum

(Child’s Knowledge Centre), we obtained more information using multiple CAMERAS simultaneously.

Divide medical

actions into

sequences

The MEDICAL ACTIONS are divided into SEQUENCES, such that a SEQUENCE consists of one

or more MEDICAL ACTIONS that are performed during a SESSION.

Plan variation We plan for variation in our DATASET, to create more intra-class variation. Explained in VARIATION.

Divide subjects We divided the SUBJECTS that act in our recordings, with regards to MALE and FEMALE.

Resize the

recordings
We resized the RECORDINGS such that they all have the same resolution and frame rate

Cut recordings

into sessions

After filming multiple SESSIONS in one RECORDING, we have to cut these RECORDINGS

into separate SESSIONS, such that every SESSION consists of one medical consultation between

a GP and a patient.

Annotate sessions
We make ANNOTATIONS of the SESSIONS, such that all the frames in the videos

have a label, as described in ANNOTATION.

Apply OpenPose
The SESSIONS are fed into the open source CNN OpenPose. This results in a 2D SKELETON

OF THE PERSON, i.e. the position of the joints of the persons in the videos.

Calculate distance
The distance between two joints from the 2D SKELETON are calculated and saved as a

MATHEMATICAL REPRESENTATION

Calculate angle
The angle between two joints from the 2D SKELETON are calculated and saved as a

MATHEMATICAL REPRESENTATION

Create feature sets The MATHEMATICAL REPRESENTATION is stored in FEATURE SETS

Create experimental

protocol

The DATASET is divided in TRAINING, VALIDATING, and TESTING sets, as represented

in our EXPERIMENTAL PROTOCOL, more details in Section 6.9.

Train Classifier

According to our EXPERIMENTAL PROTOCOL, we use our TRAINING SET to train our

CLASSIFIER. We train our CLASSIFIER, using a FEATURE SET, and the ANNOTATION

of the corresponding SESSIONS.

Validate Classifier

After training the CLASSIFIER, we validate it using the VALIDATING SET, as found

in the EXPERIMENTAL PROTOCOL. From the VALIDATING SET, we use the FEATURE

SET and the ANNOTATION of the corresponding SESSIONS.

Change parameter
If the performance increases for certain parameter settings, we update

the parameters of the CLASSIFIER accordingly.

Test Classifier

The optimal tuning as found in the validation phase is used to test the CLASSIFIER on

the TESTING SET of the DATASET, as found in the EXPERIMENTAL PROTOCOL. Note,

that the test set has not been previously used in the training or validation step.

Table 5.1: Definitions of the processes.
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MEDICAL

ACTION

These are the relevant MEDICAL ACTIONS that can be found in our DATASET. This is further

specified in Section 6.3.

MEDICAL

GUIDELINE
From the MEDICAL GUIDELINES 9 , we can extract the relevant MEDICAL ACTIONS.

SEQUENCE
A SEQUENCE is a combination of one or more MEDICAL ACTIONS. This is further

specified in Section 6.4

SESSION A SESSION is one medical consultation between a GP and a patient.

CAMERA
The CAMERAS are used to record the sessions. The camera is either a PANASONIC HC-V770,

a GOPRO HERO 5, or an IPAD.

RECORDING A RECORDING contains multiple SESSIONS as recorded with one of the CAMERAS.

SUBJECT The SUBJECTS are the actors in the videos. A SUBJECT is either a MALE or a FEMALE person.

VARIATION

The VARIATION in our dataset is created by using multiple CLOTHING and HAIR styles and the

use of JEWELRY per SUBJECT. VARIATION is also created by changing ROOMs for the SESSIONS,

by the POSITIONING of the CAMERAS, and by the PERFORMANCE of the MEDICAL ACTIONS.

ANNOTATION

An ANNOTATION is a labeling of a SESSION. There are four different annotations, namely the

POSTURE OF THE PATIENT, the AREA OF INVESTIGATION, the MEDICAL PROCEDURE,

and the DISTANCE TO THE PATIENT. See also Section 6.6

POSTURE

PATIENT

The annotated POSTURE OF THE PATIENT can be either LAYING WITH STRAIGHT LEGS,

LAYING WITH THE KNEES BEND, or SITTING.

AREA OF

INVESTIGATION

The AREA OF INVESTIGATION is the part of the patients’ body that the GP examines or where

the MEDICAL ACTION is being performed. The area of investigation can be either the CHEST,

the UPPER BACK, the ABDOMEN, or the left or right ARM of the patient.

TOUCH
The ANNOTATION ‘TOUCH’ shows whether the doctor touches the patient on a specific part of the

body or not, with either the hands or a medical instrument,.

MEDICAL

PROCEDURE

The MEDICAL PROCEDURE that the GP performs can be either AUSCULTATION OF THE HEART,

the LUNGS, or the ABDOMEN, PERCUSSION or PALPATION OF THE ABDOMEN, BLOOD,

or PRESSURE MEASUREMENT. The MEDICAL ACTIONS are further specified in Section 6.3.

2D SKELETON

PER PERSON

OpenPose (98) generates the 2D SKELETON OF THE PERSONS in the videos. This represents

the joints of the body, e.g. wrists, elbows, and shoulders.

MATHEMATICAL

REPRESENTATION

The MATHEMATICAL REPRESENTATION is obtained by a calculation with the 2D SKELETON OF

THE PERSONS in the video. This can either represent the DISTANCE between two joints, or the ANGLE of

these joints. This is further discussed in Section 7.2

FEATURE SET

The FEATURE SET consists of a combination of the MATHEMATICAL REPRESENTATION.

It either represents the 1. DISTANCE for a SELECTED SET, 2. DISTANCE of two joints of the SKELETON,

3. ANGLE of two joints of SKELETON, 4. DISTANCE between two PERSONS’ SKELETON, or

5. ANGLE between to joints of two PERSONS’ SKELETON and is explained in more detail in Section 4.4

DATASET Our created DATASET consists of all the SESSIONS with their corresponding ANNOTATIONS.

EXPERIMENTAL

PROTOCOL

We separate our DATASET according to our EXPERIMENTAL PROTOCOL in a TRAINING,

VALIDATING, and TESTING set.

CLASSIFIER

A CLASSIFIER is able to learn to predict a class, given some datapoints. The classifiers that we

use are a DECISION TREE, a RANDOM FOREST and a K-NEAREST NEIGHBOR CLASSIFIER.

These are specified in Section 4.1

DECISION

TREE
Explained in Section 4.1

RANDOM

FOREST
Explained in Section 4.1

K-NEAREST

NEIGHBOR
Explained in Section 4.1

PERFORMANCE

ACCURACY

After training and validating the CLASSIFIERS, it is tested on the TEST SET.

During the test phase, the CLASSIFIER predicts the classes of the input data.

These predictions are then compared to the ANNOTATIONS, that is considered the ground truth.

Table 5.2: Definitions of the deliverables.
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6. Collecting the dataset

We aim to collect and annotate a dataset of one-on-one medical encounters, which

will be used as a training and testing set for our action recognition pipeline. We start

by conducting research at Nivel and NHG. Nivel is the Dutch Institute for research in

healthcare (99). The institute researches the effectiveness and quality of healthcare in

the Netherlands and the relationships between healthcare providers, consumers, and in-

surers, and the government. NHG is the ’Nederlands Huisartsen Genootschap’ (Dutch

General Practitioners Society)10 . Their aim is to facilitate scientifically justified pro-

fessional practices by the GPs of the Netherlands. They have clinical guidelines for

various diseases and physical symptoms. The guidelines provide a basis for identifi-

cation of the relevant, and most occurring, medical actions to represent in V2R, as

characterized in Section 6.2. Furthermore, Section 6.3 addresses the consultation of

a senior medical student in the final phase of her Master education on the medical

actions, to assure a representative collection. From here on we will refer to her as the

medical student. After recording the relevant medical actions, they are be processed

and annotated. Finally, we have an annotated dataset that consists of one-on-one

medical consultations between GPs and their patients.

6.1. Gaining insights at NIVEL

To fully understand the type of actions that are performed in healthcare, we

examine the dataset of NIVEL (99). NIVEL has agreed upon a cooperation with

C2R and therefore, under certain (privacy) conditions, their dataset is available for

research in the scope of C2R. NIVEL has recorded data from healthcare providers in

the Netherlands, which can be used to gain a better insight in what kind of medical

care and treatments are provided. Examining their dataset increases our insights in the

difference of treatments, e.g. how they can be recognized, with regards to movements

and medical instruments that are used.

10https://www.nhg.org/nhg-standaarden
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The dataset consists of clinical encounters between GPs and their patients. After

examing the dataset, we found a lot of occlusion in the videos and a lot of medical

actions are performed outside the view of the camera. Therefore, this dataset is not

well suited for using it to train and test the action recognition model. Moreover, the

dataset is only available at NIVEL, under privacy constrictions, and no data is allowed

to leave the premises, making it less flexible to use for our work.

Even though the dataset of NIVEL is not usable for training and testing, we

gained insights in the different movements of the treatments. One treatment may

consist of different medical actions and the movements of the medical actions may vary

between health practitioners.

6.2. Selecting medical actions from the medical guidelines of NHG

The Dutch GPs have clinical guidelines available online, for ninety diseases11 .

The structure of the guidelines can be found in Figure 6.1. In the clinical guidelines, we

can find the diagnostic guidelines and the guidelines policy. The diagnostic guidelines

are specified in anamnesis, physical examination, additional research, and evaluation.

In the physical examination, information can be found on the medical actions that GPs

are supposed to perform, e.g. blood pressure measurement, auscultation of heart and

lungs, etc.

Figure 6.1: Structure of clinical guidelines at NHG.

We have examined the medical actions that occur in the clinical guidelines. While

11https://www.nhg.org/nhg-standaarden
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looking into these actions, we have to take into account that some of the actions

performed by the GPs are quite intimate and private. For privacy reasons, these

actions will most likely not be filmed during actual consultations. Therefore, we have

eliminated the examinations and treatments that we consider too private to film, e.g.

examinations in the genital area. Furthermore, some of the actions consist of inspection

(with the eyes) by the GP. This medical observation is not an active movement by the

doctor. For this stage of the C2R program, these actions are too advanced to identify.

Therefore, we leave these actions out of the relevant medical actions as well.

After manually eliminating the guidelines that contain only medical actions that

are either too intimate to record or are not ‘active’ medical treatments, we end up with

sixty one guidelines that contain medical actions that we can record. In Table 6.1, we

listed the medical actions, and their percentage of occurence in the guidelines, that

can be used to record in V2R. The percentage of occurrences in these guidelines have

been manually obtained. Measuring the blood pressure occurs most frequently, namely

in 44% of the 61 guidelines. Palpation of the abdomen is the runner up, with 28%,

followed by heart rate measurement in 25% of the 61 guidelines. Note that some of

the guidelines consist of multiple medical actions, e.g. the clinical guideline for ‘acute

coronary syndrome’ consists of heart rate measurement, blood pressure measurement,

auscultation of both the heart and the lungs, and palpation of the chest. In Section

6.4, we go into more detail of what medical actions may follow each other in a sequence

during a consultation.

For accurate collection of the dataset, medical instruments that GPs normally use

are indispensable. For this purpose, C2R has a MySignals kit, (29), at her disposal.

The MySignals kit consists of Bluetooth instruments, of which the output can be stored

on the computer. To use these instruments, they have to be installed and run on a

special program. Unfortunately, the MySignals kit that is at our disposal, does not

contain all the instruments that are needed for the medical actions as listed in Table

6.1. For instance, a screening audiometer (for checking the hearing) is not available,
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Medical action Occurrence

Bloodpressure measurement 44%

Palpation abdomen 28%

Heartrate measurement 25%

Percussion abdomen 21%

Body mass index 20%

Temperature measurement 18%

Auscultation lungs 16%

Auscultation heart 15%

Testing eyes 15%

Palpation other areas 13%

Testing ears 11%

ECG 7%

Auscultation abdomen 3%

Table 6.1: Percentage of actions in the 61 guidelines after eliminating guidelines that

do not contain usable medical actions.

nor is an electrical cardiogram monitor 12 (‘ECG’) or a thermometer13 . Therefore,

physical examinations and actions that involve these instruments are not taken into

account for the collection of V2R. At the time of writing this thesis, not all of the

instruments have been installed yet. However, we decided to use the blood pressure

monitor. Therefore, in order to still use it for the creation of V2R, when we use this

instrument, we put the cuff around the arm of the patient, wait for about 40-60 seconds,

since this is the time it normally takes to automatically pump and release the air in

the cuff, and then remove it, without it actually being turned on. This approach is

considered to be representative for real life usage.

For the creation of V2R, we have asked the medical student for assistance. She

agreed to help and to contribute to the videos by acting both as a GP and as a patient.

By asking her to act as a GP, we gain more insights in the movements of a real GP.

12for assessment of electric cardial acitivity
13GPs use a special ear thermometer: https://www.vipermedical.nl/38276 genius-3-tympanic-

thermometer?gclid=EAIaIQobChMI1eGXsqX-5gIVFYjVCh3HZAPXEAQYASABEgJj8 D BwE
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With the stethoscope we can perform auscultations of the heart, the lungs, and

the abdomen and with the blood pressure monitor we can measure the blood pressure.

Furthermore, we can perform percussion and palpation of the abdomen, since we do

not need instruments for those medical actions.

After a first trial shoot, we eliminated ‘heart rate measurement’ as a separate

action, because the action is quite subtle and often occluded from sight, since the GP

takes the pulse at the wrist of the patient or during heart auscultation. Therefore,

either the GP or the body of the patient may block the view. Whatsmore, heart

rate measurement occurs in 15 of the 61 guidelines. Out of these 15 occurrences, it is

combined with blood pressure measurement 12 times. In most blood pressure monitors,

the heart rate is also measured (29). Therefore, by measuring blood pressure, we also

capture the heart rate. Lastly, since ‘palpation other areas’ is too broad, e.g. palpation

of the chest, the arm, or the legs are a few examples, we also eliminated that from

possible actions in V2R. Therefore, our dataset consists of the medical actions that

are listed in Table 6.2. These medical actions occur in 42 of the medical guidelines,

accounting for a total 46% of all the medical guidelines. Note that in some of the

guidelines, other medical actions may also occur, which we have excluded from our

dataset. Therefore, a recorded session in V2R may not contain all medical actions that

a GP would perform during a consultation. In the Appendix 10, Chapter C, we find

an overview of the sequences of the medical actions from Table 6.1.

Medical action

1. Blood pressure measurement

2. Palpation abdomen

3. Percussion abdomen

4. Auscultation lungs

5. Auscultation heart

6. Auscultation abdomen

Table 6.2: Medical actions that are represented in V2R.



48

6.3. Overview of selected medical actions for V2R

After careful selection, a list of appropriate medical actions emerged, as displayed

in Table 6.2. The typical duration of the movements, the order in which the medical

actions are performed, and specific gestures and postures of the doctor and patient are

not specified in the medical guidelines. Therefore, we consulted the medical student.

In the Sections below, we specify which medical instruments are used for the

medical actions and the gestures by both the doctor and the patient. Note that each

action can be performed in several ways, e.g. auscultation of the lungs can start on

either the left or the right side of the body.

Blood pressure measurement. During blood pressure measurement, the blood

pressure is measured using a monitor. The cuff is put around either the left or the

right arm of the patient. After turning it on, the cuff is filled with air. Then, after

about 30-40 seconds the air is automatically released, and the blood pressure is shown

on a screen. The patient is preferably sitting upright during this medical action, or is

lying down, and may not talk or move during the measurement.

Palpation of the abdomen. Palpation of the abdomen can be done in two steps.

The first is the superficial palpation. The GP uses one hand to touch and press the

abdomen slightly on all six regions of the abdomen. The second part is deep palpation,

in which the GP places his/her dominant hand on the abdomen, and the other hand

on top of the first hand. He/She then exerts more pressure on the abdomen so that

he/she can feel internal structures. The abdomen is roughly divided into six regions,

as shown in Figure 6.2. All six regions of the abdomen are addressed, however the

order in which they are addressed depends on the complaints of the patient. The part

where the pain is experienced, is usually addressed lastly. The patient lays down on

their back during the palpation. If the GP can not palpate the abdomen due to active

or passive increased tension of the abdominal muscles, the patient is asked to bend the
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knees, since this helps to relax the abdominal muscles of the patient.

Figure 6.2: Division of the abdomen in six parts. Modified from image (100).

Percussion of the abdomen. Percussion of the abdomen is done using both

hands. One hand of the GP is placed on the abdomen, with the fingers spread out and

extended, applying slight tension on the skin. With the index or middle finger of the

other hand, the GP ticks on the middle finger of the first hand. This way, he/she can

hear a sound. The GP moves his/her hands around the abdomen and ticks in every

region of the abdomen. Again, all six regions of the abdomen are addressed, as shown

in Figure 6.2, and the order in which all six parts are touched differs per session, since

it depends on where the pain is experienced in the abdomen. The patients lay down

on their back during the percussion.

Auscultation of the lungs. Auscultation 14 of the lungs happens at approximately

eight different positions and can be performed on the front and the back of the patient.

These eight points are divided over the left and right side of the body. In other words,

on both the left side and the right side, there are at least four listening points. Starting

at the top of the lungs, the listening points are the same on both sides of the body, and

are shown in Figure 6.3. So point 1a and b, followed by 2a and b, then 3a,b and 4a,b.

The GP may start at point 1 on the left (a) or the right (b) side of the body. So the

sequence may be either 1a-1b-2a-2b-3a-3b-4a-4b or 1b-1a-2b-2a-3b-3a-4b-4a. These

listening points and sequences are the same for the back of the patient. The patient

14‘the process of listening to someone’s breathing using a stethoscope’,
https://www.oxfordlearnersdictionaries.com/definition/american english/auscultation
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is laying down during auscultation on the front of the body, and sitting upright when

the GP listens to the back of the lungs.

Figure 6.3: Auscultation of the lungs. Modified from image (101).

Auscultation of the heart. Auscultation of the heart is mostly similar in every

session. An overview of the listening points is shown in Figure 6.4. First the doctor

listens to point 1, then 2 followed by 3, 4, and 5, as shown in Figure 6.4. Depending

on the clothing of the person, point 4 and 5 may vary a bit in position. The patient

lays down during this medical action.

Auscultation of the abdomen. Auscultation of the abdomen consists of listening

for 30 seconds directly next to the belly button. Variation lies on the exact listening

spot, which can be both on the left or the right of the belly button. The patient lays

down during the auscultation, either with the knees bend or with straight legs.

6.4. Sessions in our recording

One session represents one medical consultation and this may contain multiple

medical actions in a sequence. Our dataset covers medical actions that occur in forty
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Figure 6.4: Auscultation of the heart. Modified from image (102).

two of the medical guidelines. In Table 6.3, we listed the combination of medical actions

as they occur in these guidelines. Since we want the dataset to represent the normal

doctor-patient interactions as accurately as possible, we included these sequences in

V2R. Medical actions that are combined most often during a consultation, are aus-

cultation of the heart and lungs, as well as auscultation, percussion, and palpation

of the abdomen. In an orienting physical examination, all these five medical actions

are combined in a single consultation. Moreover, measuring blood pressure is often

performed together with either auscultation of the heart or the lungs. Therefore, the

following sequences can be found in V2R:

(i) Blood pressure measurement

(ii) Palpation abdomen

(iii) Percussion abdomen

(iv) Auscultation lungs

• Front

• Back
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# Occurrences \medical action BPM PaA HRM PeA AL AH AA

11 times X

6 times X X

5 times X X X X

4 times X

4 times X X X X

2 times X X

2 times X X X

2 times X X X

1 time X

1 time X

1 time X X

1 time X X X

1 time X X X

1 time X X X X X X

Table 6.3: Total amount of occurrences per sequence in the ninety one medical guide-

lines, e.g. the combination Palpation Abdomen with Percussion Abdomen occurs six

times in the medical guidelines. BPM = Blood Pressure Measurement, PaA = Palpa-

tion Abdomen, HRM = Heart Rate Measurement, PeA = Percussion Abdomen, AL =

Auscultation Lungs, AH = Auscultation Heart, AA = Auscultation Abdomen.

(v) Auscultation heart

(vi) Auscultation abdomen

(vii) Blood pressure measurement and auscultation of the heart

(viii) Blood pressure measurement and auscultation of the lungs

(ix) Auscultation of heart and lungs

• Lungs front

• Lungs front and back

(x) Auscultation, percussion and palpation of abdomen

(xi) Auscultation of heart, lungs, and abdomen, percussion and palpation of abdomen

When a sequence of medical actions occurs in a session, the order in which they
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are performed are always the same per session. If the entire body is inspected in an

orienting physical examination, the order in which this happens is as follows: auscul-

tation heart - auscultation lungs (if the lungs are auscultated at both the front and the

back, then the front is auscultated first) - auscultation abdomen - percussion abdomen

- palpation abdomen. For the sequences that consists of a subset of these five actions,

this is the order in which they occur. So, during auscultation of the heart and lungs,

the GP first listens to the heart and then to the lungs. Lastly, an orienting examination

of the abdomen is done in the order auscultation, percussion, and then palpation of

the abdomen. When the blood pressure is measured in combination with auscultation,

then the measurement is performed first, followed by the auscultation of the specific

region.

6.5. Recordings of the one-on-one consultations

To easily increase the amount of videos, while keeping variety, we use multiple

cameras while filming. This way, we can also investigate what position of the camera

is most convenient to use for C2R. At the Kinderkenniscentrum15 , we have conducted

research about the use of multiple cameras. They told us that certain software could

synchronise online cameras that are linked to the computer. Unfortunately we do not

have such cameras at our disposal. Instead we used three different offline cameras.

These are a Panasonic HC-V770 (which we will refer to as the ‘camera’ from now on),

a GoPro Hero 5, and an iPad. During recording, the cameras ran for multiple sessions

in a row, creating recordings with multiple consultation sessions. With Adobe Pro, the

recordings were cut into separate sessions.

We decided to position the cameras at different heights and in different locations.

They remained at the same position for the entire shooting per day. We had a total of

five recording days, and since we could not leave the cameras in the room, the height

and positioning of the cameras differs per shooting day.

15https://www.uu.nl/organisatie/faculteit-sociale-wetenschappen/contact/ kinderkenniscentrum-
utrecht
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For filming, we reconstructed an approximate representation of a GPs’ room, by

using one of the classrooms of the university. To create an examination bank, we placed

two Tables next to each other and the walls of the room were white. Note that these

classrooms differ per day of shooting, but that the setup of the rooms are similar. In

Figure 6.5, the field of overview of the setup is shown. Differences between our setup

and a GPs’ office should not matter, since we focus on the medical actions that are

performed, rather than the room it is performed in.

In order to create the maximum overview with the least amount of occlusion, the

camera is positioned slightly higher, such that a bird’s eye view is created. The GoPro

has an 170 degree angle and is positioned at eye height. The iPad is positioned in the

corner at eye height.

Figure 6.5: Field of View for the setup of the recording sites.

Since we made use of different cameras, the settings per camera were different.

In order to get the same resolution, we edited the recordings with the Adobe Premiere

Pro. We set the resolution of the recordings at 1920 x 1080 pixels, with a frame rate of

30 fps, as shown in Figure A.1 in Section 10. Furthermore, Adobe Pro has the ability

to synchronise videos and then cut them into separate videos. We used this to cut the

recordings into separate sessions. In the end, we shot 192 unique sessions and a total

of 450 videos.
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6.6. Annotation

After cutting all the recordings into separate sessions, we annotated the videos

using ELAN (76), an online annotation tool. The synchronisation mode, as shown in

Figure B.1, can be used to synchronise multiple videos at once, such that they can

be annotated in a single file. This way, we can synchronise the sessions that were

recorded simultaneously. Since some consultations were recorded with a single camera

and others with two or three cameras, some of the sessions are annotated individually

while others are annotated in pairs or in triples. In Table 6.4 we can find the amount

of sessions and videos.

We annotated four different occurrences, as shown in Figure 3.2. Since the goal

is to recognise medical actions, we annotated the medical actions as consisting of one

of the six medical actions, as discussed in Section 6.3.

However, recognising medical actions can be subdivided into recognising the pos-

ture of the patient and the area of investigation. Therefore, we annotated the posture

of the patient, which could be either laying down with flat legs or with the knees bent,

or sitting upright. Thirdly, the area of investigation is annotated. The area of inves-

tigation can be either chest, upper back, abdomen, or arm. Lastly, we annotated the

distance of the GP to the patient, which could be either touching or not touching. All

these annotations are saved in a .CSV file.

The agreements on annotating the files were as follows:

(i) The medical action starts from the moment the GP touches the patient, either

with her hands or with a medical instrument. It lasts until the GP no longer

touches the patient with either the hands or the medical instrument.

(ii) The GP is considered to touch the patient either when the hands or a medical

instrument touches the patient at the part of the body where examination takes

place. For all medical actions, except blood pressure measurement, the GP is con-

sidered to touch the patient from the start until the end of the medical action,
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since moving the hands or medical instruments takes only a few seconds, and the

hands or instruments do not deviate from the patients’ body much. While mea-

suring the blood pressure, the GP touches the patient only while putting the cuff

around the arm, or while removing it. For the duration of this measurement, the

GP could be anywhere in the room, therefore, the distinction between touching

or not touching during the medical action is clearer, and we consider the GP to

touch the patient only when putting on the cuff and thus touching the patient

with the hands and the instrument, or when removing it.

(iii) The area of investigation is the part of the patients’ body where the medical

action takes place, and is annotated for the entire duration of the medical action.

An exception is made for blood pressure measurement, for which we annotate the

area of investigation for the duration of the medical action, as well as for only

when the GP is considered to touch the arm. We have annotated this as ‘Arm’

and ‘ArmTouch’ respectively.

(iv) The posture of the patient is only defined at the static moments, and not in the

transition phase. Sitting upright is annotated when the patient body is vertical,

while lying down is annotated when the patients’ body is horizontal.

Note that activities can be static (e.g. sitting and lying), dynamic (e.g. walking),

or transitional (e.g. lying to sitting) (6). We decided to annotate only the static

postures of the patient. The annotations of the medical action consist of static, dynamic

and transitional movements, since we annotated these actions from the moment the

GP start touching the patient, until he/she is done with the medical action.

6.7. Analysis

In Table 6.4, the statistics of the sessions are listed. In total, we shot 192 unique

sessions, which were recorded with either one, two, or three cameras. In total, we

recorded 451 videos. Moreover, in Figure 6.6, the distribution of the sessions is shown.

On the left, the distribution of medical actions is shown. Auscultation of the heart and

lungs occur most often, while the distribution amongst the other four medical actions

are evenly divided. In the middle, the distribution of the posture of the patient is
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Action
Unique

sessions

Total

videos
Average Shortest Longest

Blood pressure measurement 23 69 01:37 00:43 02:40

Palpation of abdomen 18 42 00:34 00:18 01:01

Percussion abdomen 14 32 00:23 00:18 00:28

Auscultation lungs 19 46 00:50 00:28 01:23

Auscultation lungs back 22 49 00:42 00:25 01:15

Auscultation heart 21 50 00:32 00:25 00:45

Auscultation of abdomen 18 44 00:23 00:14 00:35

Blood pressure measurement

and auscultation of heart
19 43 02:02 01:42 02:30

Blood pressure measurement

and auscultation of lungs
6 12 02:23 02:11 02:47

Auscultation, percussion,

and palpation of abdomen
7 14 01:25 01:04 01:58

Auscultation of heart and

lungs (front and back)
6 12 01:50 01:27 02:30

Entire body

(except blood pressure)
19 38 02:50 01:53 03:50

Subtotal 192 451

Table 6.4: List of the created videos, including their average time, and the shortest

and longest video of each session.

depicted. We see that the patient appears to be laying down most often. Lastly, on

the right, the distribution of area of investigation is depicted. Most medical action

appear to happen on the chest, while the abdomen is investigated least often.

6.8. Variations in the sessions

We aim to collect a dataset that best represents the natural way consultations

are held. While doing so, we tried to get as much variety as possible and also make

the setting as reflective of the GPs’ office as possible. Since we did not have an ex-
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Figure 6.6: Statistics in sessions. On the left, the distribution of medical actions is

shown, in the middle the posture of the patient, and on the right the area of inves-

tigation. Note that in one session, multiple medical actions, postures, and areas of

investigation can occur.

amination bank at our disposal, two tables were put together. This served as a good

representation of an examination bank. Furthermore, we made use of an official (red)

medical stethoscope from the medical student. Other common colours of stethoscopes

are blue and black. The official (red) stethoscope is used in the videos that do not con-

tain blood pressure measuring, while the sessions with a combination of blood pressure

measurements and auscultation are recorded using a black (toy) stethoscope.

In Figure 6.7, the three different views that were created for one of the sessions, at

the same time frame, is shown. As can be seen from the images, the lighting conditions

are different for all three different cameras. Also the angle in which the cameras was

recorded is different.

Figure 6.7: Images that were captured by the three different cameras. Left: camera,

middle: GoPro, right: iPad

A total of four subjects occur in the videos, and they switch positions and clothes,

to account for variety in the videos. The clothes were changed at least five times per

subject per day throughout the recording days, but remain the same for the duration
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of a session, and we also changed our hairdo accordingly. The GP needs to wear the

hair in a bun, but the patient is allowed to have the hair any way he/she likes. Also,

the patient is wearing a watch in some of the videos, whereas, the doctor is not allowed

to wear jewelry on his/her hands, for safety and hygienic reasons. We did make use of

glasses and switched those for both the GP and the patient. Moreover, variance also

occurs in the position of the patient. This can be either laying flat or with the knees

bend, or sitting upright. Figure 6.8 shows variances that occur within the sessions.

During the different actions, we changed the positions of both the GP and the

patient to account for variation. For instance, while listening to the lungs, the doctor

would listen to the patient from different positions alongside the patients’ body. Also,

the patient might have her legs bent or stretched out while the GP is performing the

examination. Moreover, even though the sequences are the same for multiple actions in

one session, there is room for some variation per medical action. For instance, during

auscultation of the lungs, the GP can start by either listening to the right or to the

left side of the patients’ body. This is represented in the videos.

Our dataset was recorded using multiple actors. The majority of the videos were

recorded with both a female GP and doctor (131 out of 192 sessions, 68,2%), while

15,6% of the videos had a female-GP/male-patient distribution (30 out of 192 session),

and 16,7% of the sessions had a male-GP/female-patient (32 out of 192).

6.9. Experimental protocol

For training and testing the classifiers, it is important to use separate subsets

of the dataset. Therefore we split the dataset into 60% training, 20% validation, and

20% test set. In Table 6.5, this division is shown. The sessions that were recorded

simultaneously, with different cameras, are put in the same subset. So for example, the

training set for blood pressure measurement consists of videos 1-14 (‘a’, ‘b’, and ‘c’),

the validation set consists of videos 15-18 (‘a’, ‘b’, and ‘c’), and the test set consists of

videos 19-23 (‘a’, ‘b’, and ‘c’).
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Figure 6.8: Images that were captured by the three different cameras; left: camera,

middle: GoPro, right: iPad. Variance can be found in position, clothing, and hairdo of

GP and patient. Moreover, the rooms in which the videos were recorded also provide

variation.
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Medical action
Training

# sessions

Training

# videos

Validation

# sessions

Validation

# videos

Testing

# sessions

Testing

# videos

Blood pressure

measurement
14 42 3 12 4 15

Palpation of

abdomen
10 30 3 7 5 5

Percussion

abdomen
8 14 3 9 3 9

Auscultation lungs 11 28 4 12 4 6

Auscultation

lungs back
13 31 4 8 5 10

Auscultation heart 13 29 4 11 4 10

Auscultation

of abdomen
11 25 3 9 4 10

Palpation

of abdomen
10 30 3 7 5 5

Blood pressure

measurement and

auscultation of heart

12 29 4 8 3 6

Blood pressure

measurement and

auscultation of lungs

4 8 1 2 1 2

Auscultation,

percussion, and

palpation of abdomen

4 8 2 4 1 2

Auscultation of

heart and lungs

(front and back)

4 8 1 2 1 2

Entire body (except

blood pressure

measurement)

11 22 4 8 4 8

Total 115 274 37 92 40 85

Table 6.5: Division of the dataset into 60% training set, 20% validation set, and 20%

test set.
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7. Action detection and recognition

We divided V2R in a training, a validation, and a test set. The training set is used

to train the classifier which features are most valuable. In the training step, we apply

supervised learning, in which we provide the algorithm with both the representation

of the data and the correct classes, in the form of the annotation. While learning,

the algorithm receives feedback on its performance by means of the annotation, and

thereby it can learn which variables contain the most relevant information and it can

give more weight to that input.

Each classifier comes with certain parameters that can be adjusted accordingly

to the user’s preference. After training, we use the validation set to optimize the

parameters of the classifier. When we find the optimal tuning for (a subset of) the

parameters, we can test the performance on the test set. It is important that none of

the input data in the test set has been used in either the training or validation step, for

this may influence the accuracy, such that the accuracy in the test step seems higher

than it actually is.

While training the parameters, we have to find the right balance between overfit-

ting and underfitting. Overfitting means that the classifier is too much tuned in on the

noise of a certain dataset, thereby, it loses the ability for generalization. On the other

hand, underfitting means that the classifier is not able to distinguish between certain

movements and features, and thereby it is not able to detect patterns in the data. The

validation step is used to resolve the problem of over- and underfitting.

Cross validation can also be used to reduce this problem. In k-fold cross-validation,

the dataset is split into a training and a testing set. The training set is further divided

into a training and validation set and this split is rotated for k times. Then the average

accuracy is taken for the parameters, and with these settings, the algorithm is tested

on the test set, which it has not been trained on.
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7.1. Extracting keypoints

We have used OpenPose (84) to extract the keypoints from the persons in the

video. OpenPose can accurately detect humans in videos. By extracting the keypoints

from the videos, we have a representation that is independent of the gender or ancestry

of the persons that occur in the video. Therefore, we account for the lack of variation

in actors with this representation.

We store the keypoints of the persons in the video, as shown in Figures 7.1 and

7.2. While doing so, we assume that there are at most 2 persons in the video. If there

is only one or no persons in the video, then we store the (X,Y)-coordinate keypoints

for the second person as being ‘(-1000, -1000)’. Thereby, we ensure that we can store

the same amount of features for all frames, which is necessary for classification, while

also keeping track of the video-frames that do not contain two persons.

Figure 7.1: Extracted 2D skeleton joints for auscultation of the lungs on the back of

the patient. Left: camera, middle: GoPro, right: iPad

Figure 7.2: Extracted 2D skeleton joints for measuring the blood pressure. Left: cam-

era, middle: GoPro, right: iPad.

However, Figure 7.3 shows two images of similar frames, filmed with the camera

and the GoPro, in which OpenPose did not correctly recognise the legs of the patient.
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We noticed that OpenPose sometimes has difficulty with correctly identifying the lower

body parts, e.g. the knees and feet of the persons. However, the upper body parts are

mostly correct. Since the medical actions in V2R all occur at the upper body of the

patient, we expect the effect of this error may remain minimal.

Figure 7.3: Wrongly obtained 2D skeleton for two camera positions. Especially the

legs of the patient are difficult to identify. Left: camera, right: GoPro

Since we recorded the sessions with three different camera’s, all from different

angles, and moved the cameras during the different days of shooting, the representation

of the keypoints do not contain valuable information. Even though the actions from

the same class are semantically similar, they are not necessarily numerically similar

(103). Therefore, we have to do some mathematical calculations, e.g. calculate the

distance or the angle between the keypoints (104).

7.2. Mathematical manipulation

The keypoints, as extracted using OpenPose, need mathematical manipulation in

order to be numerically meaningful. (94) suggests to use multiple geometric features

from skeleton based representations. One can use the relations between a selection of

joints, or between all joints. A relation of the joints can be the distance between the

joints of a person or the angle of the joints. We can calculate the Euclidean distance

between two (or more) joints for a person (94) and for the distances between the joints

of two persons (87).

Therefore, we store the 2D joint coordinates (Jc, Eq. 7.1) and calculate the
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Euclidean distances (JJd, Eq. 7.2) between two joints (J1 and J2) as follows:

Jc = Jc(J) = (Jx, Jy) (7.1)

JJd = J1J2d(X, Y ) =
−−−−→
||J1J2|| =

√
(J1(X)− J2(X))2 + (J1(Y )− J2(Y )2 (7.2)

The angle JJa of the body joints (J1 and J2) can be calculated as follows (105).

JJa = J1J2a(X, Y ) = tan−1(
J1(X)− J2(X)

J1(Y )− J2(Y )
) (7.3)

We can calculate the distances between body joints and their angles per person,

and we can store this between the body joints of two different persons as well. Both

of these set contain valuable information.

Adding temporal information may help increase the accuracy of the classifier.

We do so by segmenting our dataset, thereby we take multiple frames at once, and

calculate the average and variance of the feature set, as well as the minimum and

maximum value, e.g. the average angle of the upper body of a person and its variance,

minimum and maximum value. Thereby, we are reducing the dimensionality of V2R,

thus decreasing the training and testing time significantly.
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7.2.1. Sets of features

We choose to run experiments with the following sets of features, to experimen-

tally find which set contains the most valuable information.

Set 1. Pre-selected group of features, namely:

(i) Angle between the neck-midhip for both persons.

(ii) Distances between both hands for PersonA to a specific body part of PersonB,

and both hands of PersonB to a specific body part of PersonA. These specific

body parts are:

(a) Chest

(b) Abdomen

(c) Arm

(d) Left hand

(e) Right hand

Feature set 2. Distances of all keypoints within PersonA and within PersonB,

as shown in Figure 7.4.

Feature set 3. Angle between all keypoints within a person of both persons, as

shown in Figure 7.5.

Feature set 4. Distances between both hands of PersonA to all upper body part

of PersonB, and both hands of PersonB to all upper body part of PersonA, as shown

in Figure 7.6.
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Figure 7.4: Feature set 2: Distances between all keypoints for a person, image from

(94).

Figure 7.5: Feature set 3: The angle θ between two joints for a person, image from

(94).

Feature set 5. Angle between the hands of PersonA to upper body part of

PersonB and vice versa, as shown in Figure 7.7.
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Figure 7.6: Feature set 4: The distance between both hands of one person to the upper

body part of the other person. Image modified from (94).

Figure 7.7: Feature set 5: The angle θ between the hands of one person to an upper

body part of the other person. Image modified from (94).
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8. Experiments and results

To train and test our classifiers, we ran multiple experiments. Since we are most

interested in recognising the medical actions, rather than the posture of the patient,

distance to the patient or the area of interest, we describe the best performing classifiers,

i.e. the RF classifier, on these experiments and results first. The results that we have

obtained, and present in this Section, can be used as a baseline for future research. In

Section 8.2 we describe the experiments and results with all the classifiers.

Our dataset is split into 60% training-set, 20% validation-set, and a 20% test-set,

as described in Section 6.9. In order to divide the different medical actions evenly, we

first randomly select the medical actions, and divide these into the 60-20-20 sets. All

videos occur once and only in one of these training, validation, or test sets.

Normally, cross-validation is used, to ensure that a classifier is not overfit to

particular input features. However, since we do not have a a lot of computing power

at our disposal, the different medical actions are not evenly divided over the sessions,

and have limited time for the thesis, we will not apply a cross-validation. We report

on the accuracy on the validation and test set.

We did a grid search with the parameters, and ran experiments with the feature

sets individually, as well as combinations of them. In Table 8.1 we present the validation

and test accuracies on predicting the medical actions for the DT and RF classifier. The

RF achieves the best results, with 69,7% accuracy on the test set, on a combination of

feature sets, namely 3,4, and 5 combined.

We wanted to combine feature sets 2, 3, 4, and 5 as well, however, since we did

not have the computing power, and combining these 4 sets increases the input features

considerably, we were not able to run experiments on this combination of feature sets.

Figure 8.1 shows the corresponding CMs for the best performing classifier, i.e. RF
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Feature set Decision Tree Random Forest

Validate Test Difference Validate Test Difference

1 0.650 0.578 0.072 0.687 0.610 0.077

2 0.634 0.570 0.063 0.695 0.650 0.045

3 0.676 0.566 0.110 0.722 0.673 0.049

4 0.680 0.615 0.066 0.726 0.634 0.092

5 0.667 0.566 0.101 0.729 0.669 0.060

4,5 0.671 0.643 0.028 0.751 0.673 0.078

2,4,5 0.708 0.605 0.103 0.760 0.686 0.074

3,4,5 0.704 0.624 0.080 0.774 0.697 0.077

Table 8.1: Validation and test accuracies on the different feature sets for predicting

the Medical Actions.

classifier, for the test results. Note that normally, the CMs are rotated 45◦. However,

for our CMs, the diagonal from the left corner in the bottom, to the top on the right

are the true positives for our classes.

The classifier predicts the blood pressure measurement correctly most often,

whereas medical action in the abdomen area are more difficult to recognise. Distin-

guishing palpation from percussion of the abdomen is most often mixed up. These two

movements are rather similar if one is to look at the individual frames of the videos,

rather than a segment of it. During palpation, both hands are pressed on the abdomen,

while for percussion of the abdomen, one hand is not released from the abdomen, while

the other is. Therefore, percussion of the abdomen is more easily confused as being

palpation of the abdomen, as is also evident from the CMs.

Similarly, auscultation of the heart and the lungs are alike for individual frames

as well. Auscultation of the heart covers only the chest around the heart, whereas

auscultation of the lungs covers the entire chest. Therefore, auscultation of the heart

is more likely to be wrongly recognised as auscultation of the lungs, then vice versa.
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On feature set 1. On feature set 2. On feature set 3.

On feature set 4. On feature set 5. On feature set 4 and 5.

On feature set 2, 4, and 5. On feature set 3, 4, and 5.

Figure 8.1: Confusion Matrices for the RF classifier, on various feature sets.

This is also represented in the CMs, in which the true label auscultation of the heart

is wrongly predicted as being auscultation of the lungs, e.g. on feature set 3, 4, and

5 it correctly classifies it 51% of the instances and predicts it as being auscultation of

the lungs in 40% of the occurrences.
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8.1. Segmentation of the input features

V2R consists of videos rather than images. These have an extra dimension,

namely time. Certain medical actions will be easier to detect when we take in the

temporal aspect, e.g. auscultation of the heart compared to the lungs. To do so, we

can feed the classifier with multiple frames at once, say x frames. Then, we assign the

most occurring action among these x frames to all of them, e.g. x = 30 and 20 frames

have been detected as auscultation of the heart, then all of these 30 frames will be

assigned the label auscultation of the heart. By deciding on the segmenting length, we

have to take the frame rate of the videos into account. Since we set all our recorded

to have the same frame rate, we can use the same segments for all videos.

We ran experiments with the best performing combination of feature sets, i.e.

feature sets 3, 4, and 5 combined, and added the temporal aspect in our experiments.

Table 8.2 shows the training results, both for individual frames, as well as various

segmentation lengths. Table 8.3 lists the highest accuracies during the training phase

and the test results with these parameter settings. The test results increases with

roughly 6% when we use segments of 120 frames, i.e. 2 seconds, and a sliding window

of 20 frames.

The corresponding CMs for these results are shown in Figure 8.2. We see an

increase in accuracy on all medical actions. For comparison reasons, Figure 8.3 depicts

the CMs for feature sets 3, 4, and 5 combined for the individual frames, and for the

best performing segmentation window, i.e. 120 frames.
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Classifier Smoothing, N = Nodes Depth Accuracy

No segment
Skip: 15,

segment: 30

Skip: 20,

segment: 30

Skip: 20,

segment: 60

Skip: 20,

segment: 90

Skip: 20,

segment: 120

Skip: 20,

segment: 150

Decision Tree 5

200

15 0,704 0,702 0,691 0,683 0,700 0,707 0,711

20 0,704 0,703 0,690 0,684 0,703 0,713 0,712

25 0,704 0,702 0,690 0,685 0,695 0,711 0,711

400

15 0,695 0,693 0,689 0,677 0,691 0,694 0,704

20 0,695 0,694 0,690 0,673 0,695 0,692 0,705

25 0,695 0,697 0,684 0,671 0,694 0,696 0,702

600

15 0,693 0,693 0,690 0,660 0,678 0,685 0,689

20 0,692 0,687 0,690 0,663 0,680 0,690 0,700

25 0,692 0,690 0,679 0,667 0,685 0,684 0,689

800

15 0,683 0,685 0,678 0,662 0,681 0,698 0,696

20 0,682 0,686 0,677 0,655 0,672 0,679 0,685

25 0,682 0,687 0,679 0,647 0,671 0,686 0,690

Random Forest 5

200

15 0,750 0,756 0,767 0,760 0,770 0,773 0,768

20 0,750 0,758 0,767 0,759 0,774 0,771 0,770

25 0,750 0,758 0,767 0,759 0,774 0,771 0,770

400

15 0,764 0,763 0,768 0,770 0,775 0,783 0,777

20 0,769 0,765 0,770 0,769 0,775 0,787 0,769

25 0,769 0,764 0,770 0,770 0,776 0,787 0,768

600

15 0,768 0,762 0,768 0,775 0,776 0,781 0,774

20 0,770 0,769 0,775 0,765 0,780 0,785 0,768

25 0,770 0,765 0,777 0,767 0,780 0,783 0,768

800

15 0,771 0,763 0,769 0,773 0,774 0,777 0,773

20 0,773 0,766 0,776 0,775 0,779 0,782 0,773

25 0,774 0,761 0,777 0,769 0,779 0,781 0,775

Table 8.2: Training accuracies for the DT and RF classifier, on feature sets 3, 4, and

5 combined. The classifier achieves highest training results for a segmentation length

of 120 frames, with a skip length of 20 frames.

Decision Tree Random Forest

Skip Segments Validate Test Difference Validate Test Difference

15 30 frames 0.703 0.644 0.059 0.769 0.644 0.125

20 30 frames 0.691 0.614 0.077 0.777 0.740 0.037

20 60 frames 0.685 0.628 0.057 0.775 0.731 0.043

20 90 frames 0.703 0.670 0.033 0.780 0.749 0.031

20 120 frames 0.713 0.643 0.070 0.787 0.756 0.031

20 150 frames 0.712 0.684 0.028 0.777 0.727 0.050

Table 8.3: Validation and test accuracies for the RF classifier on the medical actions,

while taking into account the temporal aspect of the videos, by using segments of the

videos as input, rather than individual frames.
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With segments of 30 frames. With segments of 60 frames.

With segments of 90 frames. With segments of 120 frames.

With segments of 150 frames.

Figure 8.2: Confusion Matrices for the RF classifier, on feature sets 3, 4, and 5 com-

bined, while taking into account the temporal aspects of the videos. The sliding window

is 20 frames.
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No segmentation With segments of 120 frames.

Figure 8.3: CMs for the RF classifier, on feature sets 3, 4, and 5 combined.

We see an increase of nearly 10% on palpation of the abdomen, and a 6% increase

on percussion of the abdomen. Moreover, auscultation of the lungs is predicted cor-

rectly in 80% rather than 65% when we segment the input, and the classifier performs

better on auscultation of the heart with an increase of 4%. Furthermore, a remarkable

increase of ≤ 35% on auscultation of the abdomen for segmenting the video. This

indicates that the temporal aspect of the videos captures valuable information.

8.2. Other results

We ran multiple other experiments, with varying parameters. We ran experiments

to predict the posture of the patient, the distance from the GP to the patient, the area

of investigation, and the medical action. Since calculation of the k-nn was costly, and

did not result in better accuracies on the instances for the individual feature sets, we

decided further experiment only with the DT and RF classifier.

In Chapters ?? and D, we displayed the training parameters for the classifiers

with their results, and CMs on the testing results respectively, on the medical actions.

In Chapters ?? and E, we displayed this for the area of investigation as well. Table 8.4
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shows an overview of these acquired results, combined with the results on posture of

the patient, and distance to the patient.

In Table 8.4, we listed all the acquired best results on the training and testing

sets. From these results, we see that combining feature sets results in higher accuracies

on both the training and test sets. The RF classifier scores highest on all predictions

compared to the other classifiers. Combining feature sets 3, 4, and 5 achieves the best

results, both with and without the temporal aspect taken into account. The posture

of the patient, distance to the patient, and area of investigation is best predicted by

taking into account the temporal aspect, while for medical action, the RF classifier

achieves best results, by not taking into account the temporal aspect.
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Action Feature set Decision Tree Random Forest k-nn

Validate Test Validate Test Validate Test

1 0.650 0.578 0.687 0.610 0.688 0.596

2 0.634 0.570 0.695 0.650 0.612 0.570

3 0.676 0.566 0.722 0.673 NA NA

4 0.680 0.615 0.726 0.634 0.690 0.614

5 0.667 0.566 0.729 0.669 0.680 0.648

4,5 0.671 0.643 0.751 0.673 NA NA

2,4,5 0.708 0.605 0.760 0.686 NA NA

3,4,5 0.704 0.624 0.774 0.697 NA NA

Temp 4,5 0.695 0.654 0.748 0.684 NA NA

Temp 2,4,5 0.696 0.648 0.687 0.687 NA NA

Medical Action

Temp 3,4,5 0.703 0.644 0.769 0.644 NA NA

1 0.986 0.980 0.988 0.990 0.986 0.982

2 0.968 0.970 0.994 0.992 0.982 0.980

3 0.992 0.984 0.997 0.994 NA NA

4 0.981 0.972 0.989 0.988 0.990 0.988

5 0.983 0.974 0.991 0.988 0.984 0.983

4,5 0.983 0.973 0.992 0.993 NA NA

2,4,5 0.988 0.975 0.994 0.993 NA NA

3,4,5 0.992 0.988 0.997 0.995 NA NA

Temp 4,5 0.979 0.976 0.991 0.989 NA NA

Temp 2,4,5 0.975 0.973 0.994 0.992 NA NA

Posture Patient

Temp 3,4,5 0.988 0.980 0.998 0.996 NA NA

1 0.901 0.862 0.915 0.889 0.901 0.864

2 0.877 0.828 0.908 0.878 0.835 0.822

3 0.898 0.853 0.924 0.904 NA NA

4 0.899 0.880 0.919 0.887 0.902 0.871

5 0.888 0.880 0.916 0.904 0.891 0.865

4,5 0.907 0.888 0.927 0.901 NA NA

2,4,5 0.900 0.872 0.924 0.894 NA NA

3,4,5 0.910 0.876 0.933 0.906 NA NA

Temp 4,5 0.903 0.894 0.922 0.905 NA NA

Temp 2,4,5 0.905 0.857 0.930 0.913 NA NA

Distance to Patient

Temp 3,4,5 0.910 0.887 0.935 0.910 NA NA

1 0.859 0.832 0.876 0.846 0.868 0.833

2 0.804 0.760 0.847 0.807 0.783 0.762

3 0.860 0.781 0.882 0.863 NA NA

4 0.860 0.843 0.891 0.864 0.882 0.852

5 0.848 0.834 0.900 0.869 0.868 0.825

4,5 0.884 0.850 0.906 0.881 NA NA

2,4,5 0.891 0.856 0.910 0.883 NA NA

3,4,5 0.895 0.871 0.917 0.890 NA NA

Temp 4,5 0.866 0.838 0.904 0.885 NA NA

Temp 2,4,5 0.883 0.839 0.915 0.885 NA NA

Area of Investigation

Temp 3,4,5 0.892 0.847 0.926 0.908 NA NA

Table 8.4: Accuracy on the training and testing sets for the DT, RF, and k-nn classi-

fiers. The RF classifier achieves the highest accuracies on all feature sets, and on all

action classes. For the temporal aspect, we chose a sliding window of 15 frames, and

segmentation length of 30 frames
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9. Discussion

V2R consists of sequences of medical actions. The order of these sequences are

the same in all our sessions, however in real life the order might change a bit, with an

exception to the examination of the abdomen and the entire inspection of the body.

The order as found in V2R is also the order in real life for these sequences.

What is more, we do not track or identify the GP and patient in the recordings.

If we were to do so, this might have increased the accuracy of the classifier.

9.1. Limitations on our dataset

We carefully selected our medical actions, based on privacy issues, relevancy,

occurrence in medical guidelines, and available medical instruments. Since blood pres-

sure measurement was a frequently occurring medical action, and we did have a blood

pressure monitor at our disposal, we decided to use this as well. However, the blood

pressure monitor did not work. To use it, we put the cuff around the arm and waited

roughly 30 seconds, as if it were working. However, guessing the time while acting was

not as reliable as previously assumed. On average, measuring blood pressure took 1:37

min, with the shortest measurement being 0:43 min, while the longest took 2:40 min.

This is not representative for the real measurement, in which the measurement takes

around 40 seconds. Even though the measurement was not representative, measuring

blood pressure was correctly recognised 94% of its occurrences. Most likely, this is

the case since measuring blood pressure was the only medical action in V2R that was

performed on the arm of the patient.

Even though we tried to account for diversity in V2R, there were some limitations

while recording. For instance, the number of subject is limited and therefore, the

diversity in actors is also very limited. Most of the videos are recorded with two female

actors. So, there is limitation in the gender, as well as the age, body type, and origin

of the actors. Moreover, we have small variance in the set of movements, as one GP
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may move his/her body differently than other GPs. Moreover, we have a very limited

set of instruments that we use in V2R. This limited the amount of medical actions.

Furthermore, we were unable to schedule a proper facility for this study, therefore,

we had to create one ourselves, using classrooms of Utrecht University. Since we use

OpenPose to extract the movements of the persons in the video, rather than extract

features of the room, this will not interfere with our results.

9.2. Limitations on our Machine Learning approach

We decided to train and test three commonly used basic classifiers. Nowadays,

more complex classifiers are available, which could be able to pick up on more complex

and dynamic input.

We implemented segmentation of the frames, with a sliding window, to capture

the temporal information from the video. However, when training and validating our

classifiers, we used a randomly preselected training and validation set, rather than ap-

plying cross-validation. This limits the generalisability of our approach, and decreases

the certainty that our classifier is overfitted. However, when we apply segmentation for

our training and testing steps, the difference in prediction between training and testing

accuracy decreases, indicating that utilizing the temporal aspect, causes our model to

generalise better.

We utilize OpenPose (84) to extract the 2D skeletons on the persons in the videos.

While OpenPose is a pretrained CNN, with accurate results, it is not always able to

correctly produce all keypoints accurately. Figure 9.1 shows a sequence of the same

session, filmed by the camera, in which OpenPose has difficulty recognising the 2D

skeletons of the persons. Especially the legs are recognised wrongly, whereas the upper

body is recognised correctly in the majority of the frames.
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Figure 9.1: A sequence of a session with the acquired 2D skeletons in the video. Espe-

cially the legs are difficult to interpret for OpenPose. However, the upperbody remains

correctly recognised in most frames.
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10. Conclusion

While previous research in healthcare focused on providing aid for elderly care, or

detecting fine-grained movements during surgery, our research focuses on recognising

medical actions, to support automatically storing patients’ files to the EMR.

In order to do so, we focused on medical actions as found in the GPs office, during

one-on-one consultations between a GP and a patient. Since there was no available

dataset, we had to collect one ourselves. Therefore, we carefully selected the most

occurring and relevant medical actions. We recorded 192 individual sessions, and since

they were shot with multiple cameras simultaneously, we created 451 videos on these

sessions.

With the use of OpenPose, we were able to extract the 2D skeletons from the

persons. After mathematical manipulation, we obtained the distances and angles of the

skeleton joints. With these features, we trained three commonly used basic classifiers,

of which the RF classifier unanimously scored best on all feature sets.

We were able to correctly predict the posture of the patient with more than

99,5% from stand-alone frames. Moreover, we were also able to predict whether the

GP touches the patient or not, with a certainty of 90,6%. The RF classifier was able

to correctly recognise the area of interest with a certainty of over 89%, based on the

individual frames. When taking into account the temporal aspect of the videos, this

increased to 91,8%. Lastly, the RF classifier is trained to correctly predict 69,7% of the

medical actions, based on individual frames. If we take segments rather than individual

frames as the input, this increases to 75,6%.

Future research may increase these scores by identifying and tracking the GP

and the patient may increase the prediction scores, since medical actions might be

easier to detect. Moreover, ensuring generalizability of the model would achieved by

applying cross-validation. Furthermore, expanding the dataset with more sessions,
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using varying subjects, medical actions, and medical instruments will further increase

the generalizability of the results.
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APPENDIX A: Adobe Pro export settings

Figure A.1: Adobe Pro export settings



95

APPENDIX B: Synchronisation mode of ELAN

Figure B.1: Synchronisation mode of the ELAN tool
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APPENDIX C: Overview of the extracted and chosen

medical actions

Figure C.1: The abbreviations as used in the figures C.2, C.3, and C.4
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Figure C.2: The relevant and record-able medical actions as found in the medical

guidelines. The actions are listed as sequences, from most to least occurring sequences.
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Figure C.3: The recorded medical actions, listed from most occurring sequence to least

occurring sequence as found in the medical guidelines. These medical sequences cover

42 of the medical guidelines.
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Figure C.4: The eliminated medical actions, listed from most to least occurring se-

quences as found in the medical guidelines.
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APPENDIX D: CMs for the DT, RF, and k-nn classifiers for

various feature sets, trained and tested on medical actions

Figure D.1: CMs for the three classifiers on feature set 1.

Figure D.2: CMs for the three classifiers on feature set 2.

Figure D.3: CMs for the DT and RF classifiers on feature set 3.
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Figure D.4: CMs for the three classifiers on feature set 4.

Figure D.5: CMs for the three classifiers on feature set 5.

Figure D.6: CMs for the two classifiers on feature set 4 and 5.



102

Figure D.7: CMs for the two classifiers on feature set 2, 4, and 5.

Figure D.8: CMs for the two classifiers on feature set 3, 4, and 5.
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APPENDIX E: CMS for the DT, RF, and k-nn classifiers for

various feature sets, tested on Area of Investigation

Figure E.1: CMs for the three classifiers on feature set 1.

Figure E.2: CMs for the three classifiers on feature set 2.

Figure E.3: CMs for the DT and RF classifiers on feature set 3.
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Figure E.4: CMs for the three classifiers on feature set 4.

Figure E.5: CMs for the three classifiers on feature set 5.

Figure E.6: CMs for the two classifiers on feature set 4 and 5.
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Figure E.7: CMs for the two classifiers on feature set 2, 4, and 5.

Figure E.8: CMs for the two classifiers on feature set 3, 4, and 5.


