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1 Introduction

In mathematics, prime numbers have always played a major role, especially in number theory. The definition
of such a prime number is a number greater than 1 that is divisible solely by one and itself. Numbers which
are not prime are called composite numbers. The importance of prime numbers in mathematics has been
immortalized in the Fundamental Theorem of Arithmetic:

Theorem 1.1 (Fundamental Theorem of Arithmetic) Any whole number n greater than 1 is either
prime or can be written uniquely as a product of prime numbers:

n = pr11 p
r2
2 · · · p

rk
k (1)

where p1 < p2 < · · · < pk are prime numbers and their exponents ri are whole positive numbers. We refer to
this unique product as the prime factorization of n.

The proof of this theorem splits into two parts; the first part is to show that such a factorization exists,
the second is to show its uniqueness. To show that such a factorization exists we shall use induction. For the
case that n ∈ {2, 3} we know naturally that these are prime numbers. Now assume that for all numbers less
than n+ 1 we have proven that such numbers are either prime or have their factorization. If n+ 1 is itself
prime then the theorem quickly follows, so now consider that n+ 1 is not prime. Then there must exist two
numbers a, b, not necessarily prime, such that a · b = n + 1. These two numbers are less than n + 1 so by
our induction hypothesis they must have their factorization, whence we can conclude that the factorization
of n+ 1 is the product of the factorization of a and b.

Now that we have proven such a factorization exists we are left with the uniqueness. We will prove this
through contradiction but we will need the help of the following Lemma:

Lemma 1.2 Let a, b, p ∈ Z>0 with p prime and let p be a divisor of ab, then p divides at least one of a and
b.

Proof: Without loss of generality we shall assume that p does not divide a and show that then, p divides
b. By Bézout’s identity we know that for any integers x, y which share only 1 as their common divisors, we
can find integers r, s such that rx+ sy = 1. As p is only divisible by 1 and itself and p does not divide a we
can see that a and p must be such a pair, so that we can find r, s such that rp+ sa = 1. If we now multiply
both sides by b, we obtain rpb + sab = b. Now p obviously divides the first term, and the second term sab
is divisible by p by assumption that p divides ab. We therefore see that the entire left-hand-side must be
divisible by p and therefore so must b, so we may conclude that p divides b. �

Suppose n is smallest number to have two different factorizations, namely

n =

k∏
i=1

prii and n =

l∏
j=1

q
sj
j . (2)

As p1 divides n it must therefore divide at least one of the prime numbers qj , this follows from the aforemen-
tioned Lemma. By definition of prime numbers qj can only be divisible by 1 and itself so we can conclude
that p1 = qj . As p1 has to be the smallest (prime) number greater than 1 to divide n, therefore qk must also
be the smallest (prime) number of the second factorization so we know that p1 = q1. Then we can divide
both sides by p1 exactly once to end up with a new number n′ which has two different factorizations, namely

n′ = pr1−11

k∏
i=2

prii and n′ = qs1−11

l∏
j=2

q
sj
j . This however contradicts the assumption that n was the smallest
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number with this property, so we can conclude that the factorization of any whole number greater than 1
must be unique. �

The study of these building blocks of number theory can be traced back to the Greeks, where Euclid had
been studying such numbers. In his own work he had already proven the infinitude of prime numbers. His
proof is as follows:

Theorem 1.3 (Euclid’s proof for the infinitude of prime numbers) There exist infinitely many
prime numbers.

Proof: Suppose we have a finite set of prime numbers, namely {p1, p2, . . . , pr}. Let P be the product of all
our prime numbers in this set, plus one. So P = p1 · p2 · pr + 1. Then P is either prime or composite. If it
is prime then it can’t equal any of our initial primes, so we have found a new prime number we can add to
our set. If P is composite, then there is at least one prime number p such that p divides P . This p can not
be equal to any of our initial primes, otherwise we would come to the conclusion that p divides 1, which we
know is impossible. Thus again we can add a prime number to our set of primes and we can keep doing this
indefinitely, so there exist infinitely many primes. �

I first encountered this proof in secondary school, aged around 16. Whether it was the simplicity of this
proof or how intuitive it felt, this proof has always stuck with me and fueled my interest in number theory.
Soon thereafter while bored in class I started to calculate the first few terms, starting with the smallest
prime 2, then 3, 7 and 43. As 5 was skipped here, I wanted to know whether it would ever reoccur, however
at the time I neither had the knowledge nor the resources to look into this. It would be a few years later
that I had the opportunity to delve further into this matter with this thesis. What I did manage to find out
at the time was that sequence of course had already been looked at and is known as Sylvester’s Sequence,
defined as:

an = 1 +

n−1∏
i=1

ai with a1 = 2 (3)

It is important to note that this sequence does not generate only prime numbers, as a5 = 1807 = 13 · 139.
This sequence however generates numbers coprime, i.e. the only shared divisor is 1, to all previous numbers.
The numbers in this sequence and their prime factors have been researched with provable result; it can be
shown that infinitely many primes are omitted which we will show with our own proof in Section 4.1.4.

Of the many proofs for the infinitude of primes, there are two more, in my opinion, intriguing ways to
show the this result which I will briefly mention here. The first follows from the Riemann zeta function:

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
(4)

If we take s = 1, we see that we end up with the harmonic series:

∞∑
n=1

1

n
=

∏
p prime

1

1− 1
p

(5)

As we know that the harmonic series diverges to infinity, we can therefore conclude that the right-hand-side
must too, which is impossible if there are only finitely many primes. Therefore we can use the harmonic
series to show that there must exist infinitely many prime numbers. The second method originates from
Euler’s formula for π which can be derived from the Leibniz series:

π

4
=

3

4
· 5

4
· 7

8
· 11

12
· 13

12
· 17

16
· 19

20
· 23

24
· · · (6)
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where the numerators are the odd primes and the denominators are the multiples of 4 closest to the respective
prime. As π is proven to be irrational, this must be an infinite product as otherwise we would have a rational
representation of π, so therefore we can again conclude that there exist infinitely many prime numbers.
Another contribution, albeit more recreational, made by Euler was the polynomial

n2 − n+ 41 (7)

which produces 40 prime numbers for 1 ≤ n ≤ 40. Sadly this polynomial and the two proofs above are
merely interesting and offer no fruitful way of producing more primes. For polynomials this one turns out
to be the most rewarding with 40 primes, with the arithmetic progression

L(n) = 43142746595714191 + 5283234035979900n (8)

taking the second place for producing 26 primes for 0 ≤ n ≤ 25. Even though it has been proven in 2008
by Green and Tao in [29] that for any k there exists a pair a, b such that L(n) = an + b gives primes for
0 ≤ n ≤ k−1, few actual linear or polynomial examples are known which possess such progression of primes.

Later I would discover Mullin had modified Euclid’s proof into a construction to generate exclusively prime
numbers. His construction is as follows; let p1 = 2, then for all k ≥ 1 we can choose pk+1 prime such that
pk+1 divides (p1p2 · · · pk) + 1. As this sequence still is dependent on choice, Mullin decided to focus on two
of these sequences. Firstly, choose pk+1 as small as possible at each step; resulting in the following sequence

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, . . . (9)

known in the OEIS[4] as A000945. The second possibility is to do the opposite, choose pk+1 as large as
possible to obtain the sequence

2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, . . . (10)

which can be found in the OEIS as A000946. We call these the first and second Euclid-Mullin sequence
respectively. The natural question raised by Mullin was whether these sequences would include every prime.
His main question was actually more general than this.

Question 1 (Mullin’s Question) For any given set of primes {p1, . . . , pn} and choose pk+1 as the small-

est, or largest, prime to divide 1 +
k∏
i=1

pi for k ≥ n, will every prime number eventually appear in these

sequences?

Most effort into the understanding of such sequences went into variants in a hope to give us a better idea
how to even tackle this simply stated but complex question. Sadly, for the sequence mentioned in Mullin’s
question little is known. Even though empirical evidence by Vardi[10] and a compelling heuristic argument
by Shanks [18] would suggest all primes do occur in this first Euclid-Mullin sequence, no real progress has
been made in the understanding of the behaviour of this sequence. What more makes this problem so difficult
is the apparent randomness in the order of primes and how, after only a few steps, are required to find the
factorization of very large numbers; for the 44th term a 180-digit number had to be factored of which the
smallest factor is a 68-digit prime. So far only 51 indices of this sequence are known and the smallest prime
yet to appear is 41. For the second sequence Cox and van der Poorten [23] were able to show for some small
primes that they would never appear and conjectured that infinitely many primes would not appear in the
second sequence. This result would later be proven by Andrew R. Booker in [8].

Inspiration for this thesis started with Wooley’s article [2], in which he briefly discusses two constructions
by Pomerance and Booker which both provably contain every prime in their respective sequences given any
starting set, sometimes called the seed of the sequence. Wooley mentions that both of these require a factor
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of choice for terms pk+1 and proceeds by introducing his own construction which provably generates every
prime number and where each pk is also the k-th smallest prime. We ourselves then delve further into a
refined variant merely mentioned in Wooley’s variant. From this article we then examined more questions
similar to the question raised by Mullin with results from e.g. Booker and Pomerance. We conclude our
work with our very own sequence and question:

Question 2 For any given set of primes {p1, . . . , pn} and choose pk+1 as the smallest prime to divide∏
i∈I

pi +
∏

i∈{1,...,k}\I
pi for some I ⊆ {1, . . . , k} and k ≥ n, will every prime number of the form 4m + 1

eventually appear in this sequence?

2 Background

In this section we discuss some essential background knowledge.

It is important to point out slight difference in notation which will be used in this document. Most notably
for the cardinality of sets we use:

#S := |S|

where S is any set. This choice was made to improve readability when used in combination with “a | b”, the
symbol to show that a divides b. For the absolute value however we will still use the notation |n|.

2.1 Group theory

The following result from group theory which we will make us of is that of Lagrange which is as follows:

Theorem 2.1 (Lagrange’s Theorem) The order of a subgroup of a finite group must divide the order of
the group.

The index of such a subgroup is defined as the order of the group divided by the order of the subgroup. This
theorem gives us the following useful corollaries:

Corollary 2.1.1 The order of every element of a group G divides the order of G.

Corollary 2.1.2 If x ∈ G then x#G = e, where e denotes the identity element.

Another observation from group theory is on cyclic groups, namely: let G be a cyclic group, then there exists
an element x ∈ G which generates G. This means that for any other element y ∈ G, there exists a positive
integer r ≤ #G such that y = xr and we can thus represent G as G = {1, x, x2, . . . , x#G−1}.

2.2 Number theory

The motivation for using congruence is that it allows for generalization on theorems when dealing with
divisibility. We call two numbers a, b ∈ Z congruent modulo M if their difference is a multiple of M . Note
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that this is an equivalence relation, with common notation for the aforementioned being a ≡ b mod M .
These congruence classes are denoted with (Z/MZ) with representatives of the classes being {0, 1, . . . ,M−1}.
Under addition we see that (Z/MZ) is a group, however for multiplication alone we instead need a subset
of these classes. For those familiar with rings, (Z/MZ) is of course an example of a ring.

2.2.1 The set of invertible congruence classes

We denote the set of invertible congruence classes modulo M as (Z/MZ)×. A number a is invertible modulo
M if there exists a number b such that a · b ≡ 1 mod M . This happens to be the case if and only if such a
is coprime to M . If we take M to be 6, then we see we get (Z/6Z)× = {1, 5}. If we take M to be prime, say
7, then for its invertible congruence classes we are left with all except zero: {1, . . . ,M − 1}.

2.2.2 Euler’s totient function

Euler’s totient function, φ(M), is defined to denote the number of invertible congruence classes modulo M ,
i.e. the amount of numbers less than M coprime to M , so φ(M) = #(Z/MZ)×. Again we are mostly
interested in M prime, for which we know:

φ(M) = #{1, 2, . . . ,M − 1} = M − 1. (11)

2.2.3 Legendre’s symbol

Not only are we interested in the congruence classes but also in the quadratic character of a number modulo
p, with p an odd prime. This is where Legendre’s symbol comes into play, which is defined as follows: for p

an odd prime and a ∈ Z,
(
a
p

)
= 1 if there exists an r ∈ Z such that r2 ≡ a mod p,

(
a
p

)
= −1 if such r does

not exist and
(
a
p

)
= 0 if p | a. It is important to point out that whilst a

b is used for fractions, in this article(
a
b

)
instead is used solely to denote Legendre’s Symbol.

An important property of this symbol is that it is multiplicative, i.e. for all a, b ∈ Z and p an odd prime,(
ab
p

)
=
(
a
p

)(
b
p

)
. It is also useful to remind oneself of the following property: for a, b ∈ Z and p an odd prime,(

a
p

)
=
(
b
p

)
if a ≡ b mod p.

The following theorem was proven by Euler and later used by Legendre as a definition for his symbol for the
quadratic character:

Theorem 2.2 (Euler) Let p be an odd prime and a ∈ Z not a multiple of p. Then we have that(
a

p

)
≡ a

p−1
2 mod p. (12)

This theorem especially is interesting with the following corollary for the special case that a = −1:

Corollary 2.2.1 Let p be an odd prime. Then
(
−1
p

)
=1 if and only if p ≡ 1 mod 4.

We only use the special case a = −1 however this theorem 2.2 can be useful for other choices of a. We would
be remiss if we were to leave out one of the more famous results considering the quadratic character, namely
the law of quadratic reciprocity:
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Theorem 2.3 (The law of quadratic reciprocity) If p, q are odd distinct primes then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 . (13)

This law is attributed to Gauss, as he was the first to prove it, which he did in 6 different ways. From this

law we can see that
(
p
q

)
=
(
q
p

)
if and only if at least one of p and q is equivalent to 1 modulo 4, as then

the exponent is an even number.

2.2.4 The primorial p#

The name primorial originates from Dubner. Where factorial is defined as

n! =

n∏
i=1

i (14)

for n ∈ Z≥1, or the product of all integers less than or equal to n, the factorial is defined as

p# =
∏

q prime
q≤p

q (15)

or the product of all prime numbers less than or equal to p.

2.2.5 The p-adic valuation

The p-adic valuation νp(m), with p prime and m ∈ Z≥0, is defined to be the exponent of p in the prime
factorization of n; it is the exponent such that pνp(m) divides m, but pνp(m)+1 does not.
It is important to note that for a, b ∈ Z≥0:

νp(a · b) = νp(a) + νp(b) (16)

and that
νp(

a

b
) = νp(a)− νp(b). (17)

2.2.6 Legendre’s Formula

Also known as De Polignac’s Formula, the p-adic valuation of factorials, so νp(n!) with n ∈ Z≥0, can be
expressed as the following series:

νp(n!) =

∞∑
i=1

⌊
n

pi

⌋
. (18)

We will not prove this formula but instead show its workings with the following neat question:
What is the number of closing zeroes of 2020!, i.e. what is the number of zeroes at the end of
this number?
To tackle this problem recall that the number of closing zeroes depends on what number of times 10 is a
divisor of our number 2020!. As 10 = 2 · 5 and 2 will definitely occur as a factor in 2020! more often than
5 will, this reduces the question to how many times 5 divides 2020!, or ν5(2020!). The number of multiples
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of 5 less than 2020 has to be b 20205 c so we can add one factor of 5 for each of those. However 25 not only is
a multiple of 5, it contributes two factors of 5, so we still need to count an extra factor for the multiples of
25 = 52, which in turn will equal b 202052 c. We repeat this for 125 = 53 and 625 = 54 and see that the number
of factors 5 in 2020! must equal b 20205 c+ b 202052 c+ b 202053 c+ b 202054 c = 404 + 80 + 16 + 3 = 503.

2.2.7 p-smooth

We call a number n p-smooth if all prime factors in its factorization are less than or equal to p. We will
also consider squarefree p-smooth numbers, where each of the prime factors in the prime factorization can
only occur once. An interesting relation between the primorial and squarefree p-smooth numbers is that the
divisors of the primorial p# and squarefree p-smooth numbers are the same.

2.2.8 Dirichlet’s theorem

There are many proofs to show there exist infinitely many primes of some specific form, e.g. for primes
4k − 1 or 6k − 1, however in 1837 Dirichlet managed to prove this for all forms a+ nd,

Theorem 2.4 (Dirichlet’s theorem on arithmetic progressions) For a, d coprime, there exist infinitely
many prime numbers in the arithmetic progression a+ nd.

2.3 Prime Number Theorem

It would be wrong to discuss prime numbers and never mention the Prime Number Theorem (PNT).

Theorem 2.5 (Prime Number Theorem) Let π(x) denote the prime counting function, i.e. the number
of primes less than or equal to x. Then π(x) ∼ x

ln x . In asymptotic notation this is equivalent to saying
π(x) = O( x

ln x ) = x
ln x + o( x

ln x ).

Because of the prime number theorem we can interestingly obtain an asymptotic formula for the afore-
mentioned primorial pn#. We do this by taking the logarithm of the primorial so we can instead consider
the following sum

ln

(
n∏
i=1

pi

)
=

n∑
i=1

ln pi (19)

We first calculate
∑
p≤x

(lnx− ln p) as we will need it in the following result:

∑
p≤x prime

(lnx− ln p) =
∑

p≤x prime

∫ x

p

1

t
dt (20)

This step we obtain from the Fundamental Theorem of Calculus

Theorem 2.6 (Fundamental Theorem of Calculus)

F (b)− F (a) =

∫ b

a

f(x)dx (21)

where f(x) = F ′(x).
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If we consider the summation in 20,
∑

p≤x prime

∫ x
p

1
t dt, we see that a number k between 1 and x is included

in the summation exactly the same number of times we take the integral such that p ≤ k ≤ x, which occurs
π(k) times, once for every prime less than k. This means we can rewrite the the summation to:∑

p≤x prime

∫ x

p

1

t
dt =

∫ x

1

π(t)

t
dt (22)

From the prime number theorem we know there exists a c > 0 such that π(t) ≤ ct
ln t , as π(x) = O( t

ln t ), so we

can bound the integral with π(t)
t = c

ln t :∑
p≤x prime

(lnx− ln p) =

∫ x

1

π(t)

t
dt = O

(∫ x

1

1

ln t
dt

)
= o(x) (23)

Now we can return to calculating our original sum from 19

n∑
i=1

ln pi =

n∑
i=1

(ln pn − ln pn + ln pi) = π(pn) ln pn −
n∑
i=1

(ln pn − ln pi) (24)

The PNT gives us the estimation that π(pn) = pn
ln pn

+ o( pn
ln pn

) and for the sum we calculated the estimation
above.

n∑
i=1

ln pi =

(
pn

ln pn
+ o(

pn
ln pn

)

)
ln pn − o(pn) = pn + o(pn) = pn(1 + o(1)) (25)

The PNT too allows us to estimate the above with pn = n lnn+ o(n lnn)

ln(pn#) =

n∑
i=1

ln pi = n lnn(1 + o(1)) (26)

Now we can take the exponents of the left and right-hand-side to obtain an asymptotic formula for the
primorial:

pn# = en lnn(1+o(1)) (27)

2.4 Bertrand-Chebyshev Theorem

The following theorem will show essential in our proof in Section 3.1. This actually follows from the PNT,

too: pn+1

pn
→ (n+1) ln(n+1)

n lnn → 1 as n → ∞, however the This result was first proven by Chebyshev in 1850,

however our proof will follow Erdös’ proof, as described in [5] by Victor H. Moll.

Theorem 2.7 (Bertrand-Chebyshev Theorem) For all n ∈ Z≥1, there exists a prime number p such
that n < p ≤ 2n.

We shall prove this result by examining the following product:∏
n<p≤2n

p,

where this product, and further products in this proof, runs over p prime. According to the stated theory
this is never an empty product, i.e. it is always greater than 1. We will show that this is the case through
contradiction; assume for a certain n that there is no prime p such that n < p ≤ 2n and show that this
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leads to an impossible situation. More precisely, we will show that an upper bound will be less than a lower
bound.
We will examine this product with the help of the prime factorization of

(
2n
n

)
. In this proof with use νp(m),

the p-adic valuation of a number m, as defined in 2.2.5:

(
2n

n

)
=
∏
p≤2n

pνp((
2n
n ))

=
∏

p≤
√
2n

pνp((
2n
n ))

∏
√
2n<p≤ 2

3n

pνp((
2n
n ))

∏
2
3n<p≤n

pνp((
2n
n ))

∏
n<p≤2n

pνp((
2n
n )).

Where it now may seem we arbitrarily split up this product, we hope to show why it makes sense to split
the range up into these pieces. For each of these products, our aim is to find a closed expression by which
the products are bounded so that we may find a closed form upper bound for

(
2n
n

)
.

For p ≤
√

2n, we will use the following inequality:∏
p≤
√
2n

pνp((
2n
n )) ≤ (2n)

√
2n. (28)

This inequality follows from the following lemma:

Lemma 2.8 If p is prime and divides
(
2n
n

)
, then pνp((

2n
n )) ≤ 2n.

Proof : Let l ∈ Z≥0 such that pl ≤ 2n < pl+1. Then

νp

((
2n

n

))
= νp((2n)!)− νp(n!) (29)

=
∑
i≥1

⌊
2n

pi

⌋
− 2

∑
i≥1

⌊
n

pi

⌋
(30)

=

l∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
(31)

By choice of l we know that
⌊

2n
pm

⌋
= 0 for m > l, so we know it makes no sense to sum any further than

i = l. Moreover for the floor function, there are two cases to distinguish for x ∈ Q (note that the following
also holds true for x ∈ R but that Q is sufficient): let bxc = n for some n ∈ Z, then either x ∈

[
n, n+ 1

2

)
or

x ∈
[
n+ 1

2 , n+ 1
)
. These two cases give us different outcomes for b2xc − 2bxc:

For x ∈
[
n, n+ 1

2

)
:

b2xc − 2bxc = 2n− 2n = 0 (32)

and for x ∈
[
n+ 1

2 , n+ 1
)
:

b2xc − 2bxc = 2n+ 1− 2n = 1 (33)

which means that we can bound every
(⌊

2n
pi

⌋
− 2

⌊
n
pi

⌋)
by 1:

νp

((
2n

n

))
≤

l∑
i=1

1

≤ l. (34)
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So indeed we have

νp

((
2n

n

))
≤ l (35)

pνp((
2n
n )) ≤ pl ≤ 2n (36)∏

p≤
√
2n

pνp((
2n
n )) ≤

∏
p≤
√
2n

2n = (2n)
√
2n �

which concludes the upper bound for the first product.

Note that by Lemma 2.8 we now see that for all p >
√

2n we have 0 ≤ νp(
(
2n
n

)
) ≤ 1, as for νp(

(
2n
n

)
) ≥ 2

we have that pνp(
(
2n
n

)
) > 2n. Whence we can ignore the p-adic valuation by simply bounding the p-adic

valuation by 1: ∏
√
2n<p≤ 2

3n

pνp((
2n
n )) ≤

∏
√
2n<p≤ 2

3n

p (37)

For the second of the products we will make us of the following bound:∏
√
2n<p≤ 2

3n

p ≤ 2
4
3n (38)

which will follow from the following Lemma:

Lemma 2.9 For all m ∈ Z≥1 ∏
p≤m

p ≤ 22m (39)

We will prove this through induction. We can check by hand that this is true for m = 2 and that it also
holds true for m = 1 as we have an empty product on the left-hand-side; which equals 1. As is usual for
induction we now assume the statement holds true for values less than m.
In the case that m is even, we know that m itself can’t be prime:∏

p≤m

p =
∏

p≤m−1

p (40)

and because we know that the Lemma holds true for values less than m:∏
p≤m

p ≤ 22(m−1) (41)

≤ 22m (42)

which concludes the case when m is even.
We are left with the case that m is odd, i.e. m = 2k+ 1 for some k ∈ Z≥1. Note that for k+ 2 ≤ p ≤ 2k+ 1

we have that νp(
(
2k+1
k

)
) = 1. We will use this fact as follows; as for all k + 2 ≤ p ≤ 2k + 1 we have that

p |
(
2k+1
k

)
, we know that the product of all these primes p must divide

(
2k+1
k

)
and therefore we have that:∏

k+2≤p≤2k+1

p ≤
(

2k + 1

k

)
(43)

Moreover, for the binomial we have that

2

(
2k + 1

k

)
=

(
2k + 1

k

)
+

(
2k + 1

k + 1

)
(44)

≤
2k+1∑
i=0

(
2k + 1

i

)
= 22k+1 (45)
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so that we have
(
2k+1
k

)
≤ 22k. Now we have all tools necessary for the case that m = 2k + 1:∏

p≤m

p =
∏

p≤k+1

p
∏

k+2≤p≤2k+1

p (46)

≤ 22(k+1)
∏

k+2≤p≤2k+1

p (47)

We use our induction hypothesis here as k+ 1 < m. We will now use the last two bounds from equations 43
and 45: ∏

p≤m

p ≤ 22(k+1)

(
2k + 1

k

)
(48)

≤ 22(k+1) · 22k (49)

≤ 22(2k+1) = 22m (50)∏
p≤m

p ≤ 22m �

This means that our inequality indeed holds true:∏
√
2n<p≤ 2

3n

p ≤
∏
p≤ 2

3n

p ≤ 2
4
3n. (51)

The third product follows quite quickly, as for p prime and 2
3n < p ≤ n we know that νp(2n!) = 2 and that

νp(n!) = 1, so νp(
(
2n
n

)
) = 0. This means that

∏
2
3n<p≤n

pνp((
2n
n )) =

∏
2
3n<p≤n

p0 = 1.

The fourth and final product happens to be the core of our prove, which we assume to be the empty product;
an assumption which will result in a falsehood.
We can now replace all product with previously discussed inequalities:(

2n

n

)
=

∏
p≤
√
2n

pνp((
2n
n ))

∏
√
2n<p≤ 2

3n

pνp((
2n
n ))

∏
2
3n<p≤n

pνp((
2n
n ))

∏
n<p≤2n

pνp((
2n
n )) (52)

≤ (2n)
√
2n · 2 4

3n (53)

Now that we have nothing but closed-form expressions we can check when this inequality fails. As we pointed
out in the beginning we wish to prove an upper bound for this binomial to be less than a lower bound. We
will use the following lower bound to manipulate the inequality:

22n = (1 + 1)2n =

2n∑
i=0

(
2n

i

)
≤

2n∑
i=0

(
2n

n

)
= (2n+ 1)

(
2n

n

)
Which will give us our last inequality to work with:

22n

2n+ 1
≤
(

2n

n

)
≤ (2n)

√
2n · 2 4

3n (54)

22n

2n+ 1
≤ (2n)

√
2n · 2 4

3n (55)

2
2
3n ≤ (2n)

√
2n(2n+ 1) (56)

2
2
3n < (2n)

√
2n(2n)2 (57)

(58)
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In the step above we used the fact that (2n)2 > 2n+ 1 for n ≥ 1. In the following line we will use a similar
result but to show that for n ≥ 18 we have that 1

3

√
2n ≥ 2, which will be applied to the exponent of the last

(2n):

2
2
3n < (2n)

√
2n(2n)

1
3

√
2n (59)

22n < (2n)4
√
2n (60)

2
√
2n <

√
2n

8
(61)

This final inequality definitely fails for
√

2n ≥ 26 as that results in 2(2
6) = 264 ≤ (26)8 = 248. As the left-

hand-side grows quicker than the right-hand-side, this means we have proven the theorem for n ≥ 211 = 2048.
Note that this also justifies the choice to use the inequality 1

3

√
2n ≥ 2 for n ≥ 18.

For n less than 2048 we can simply see that the set of primes {2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503}
is enough to prove the case for n < 2047, as each prime in this set is less than or equal to double the previous
prime. This means that for all n ∈ Z≥1 there exists a prime such that n < p ≤ 2n. �

3 Wooley’s article

In his article [2], Wooley discusses two alternate iterative methods to generate not only an infinite amount
of prime numbers, but all prime numbers. This article is aptly named “A Superpowered Euclidean Prime
Generator.”

Theorem 3.1 (Theorem) Let π1 = 2 and for k ≥ 1, define πk+1 to be the least prime divisor of nn
n − 1,

where n =
∏k
i=1 πi. Then for all k, πk will be the k-th smallest prime.

In order to prove this theorem, we will first prove the following:

Lemma 3.2 (Euler’s congruence theorem) Let M ∈ Z≥2. Then for all a ∈ Z with gcd(a,M) = 1:

aφ(M) ≡ 1 mod M (62)

If the reader wishes to refresh their knowledge on φ(M) and congruence classes, this can be found under
Section 2. This Lemma follows directly from 2.1.2, however the following proof is surprisingly elegant and
worth mentioning.

Proof : Consider (Z/MZ)× with the representatives of the congruence classes b1, b2, . . . , bφ(M). Because
gcd(a,M) = 1, we know that a is invertible. This means that for all 1 ≤ i ≤ φ(M), a · bi again is invertible
modulo M . So if we multiply all representatives of (Z/MZ)× with a, we will still be left with (Z/MZ)× but
now with representatives ab1, ab2, . . . .abφ(M). Because these represent the same congruence classes modulo
M , the product of these multiplications will also be equivalent modulo M:

φ(M)∏
i=1

bi ≡
φ(M)∏
i=1

abi mod M (63)

≡ aφ(M)

φ(M)∏
i=1

bi mod M (64)

Because for all i these bi ∈ (Z/MZ)×, we know that the products are unequal to zero and therefore we can
conclude from this that 1 ≡ aφ(M) mod M . Again, for our sake we are more interested in M prime, so:
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Corollary 3.2.1 For p prime, we have:
1 ≡ ap−1 mod p

For any a not a multiple of p.

One might be familiar with this result as it is also known as Fermat’s little theorem.

In order to prove Theorem 3.1, we have to show that the smallest prime π that doesn’t divide n does
divide nn

n − 1. We can rewrite this to the equivalence nn
n ≡ 1 mod π. Our goal here is to prove that π− 1

divides nn, as we can then rewrite nn to be λ(π − 1) for some λ ∈ Z≥0 and apply Corollary 3.2.1.

Proof of Theorem 3.1: Let π be the smallest prime that doesn’t divide n, where n was defined as n =
k∏
i=1

πi

with πi the i-th smallest prime. As π is the smallest prime to not divide n, all prime divisors of π − 1 must
also divide n. Similarly to n = π1 · π2 · · ·πk, π − 1 must have its representation as product of primes as
π − 1 = πr11 · π

r2
2 · · ·π

rk
k , where rk ∈ Z≥0 represents the multiplicity of that prime factor. For nn, the prime

representation would be nn = πn1 · πn2 · · ·πnk . As we stated above, our goal is to show that π − 1 divides nn.
This can be done by considering the multiplicity of the prime factors of π− 1; if for all i, or all prime factors
of π − 1, we have ri ≤ n then π − 1 must divide nn, with

nn

π − 1
= πn−r11 · πn−r22 · · ·πn−rkk (65)

where this fraction of course is a whole number if n ≥ ri for all i. Now obviously, for any k, n ≥ 2 we have
kn ≥ n+ 1. As all prime numbers are greater than or equal to 2, we have πni ≥ n+ 1 ≥ π− 1. This shows us
that for all prime divisors πi of π− 1, ri ≤ n so we can indeed conclude that π− 1 divides nn. Consequently
we may write that nn = λ(π − 1) for some λ ∈ Z≥0. Now, what we wanted to check was if the equivalence
nn

n ≡ 1 mod π holds:
nn

n

≡ nλ(π−1) ≡ (nλ)π−1 mod π (66)

Now as π is a prime number not dividing n by construction, 3.2.1 indeed shows that the above is equivalent
to 1 mod π, so the smallest prime number that does not divide n does divide nn

n − 1. Now as n already
was the product of the k smallest primes, this new prime number π must be the k + 1-th smallest prime. �

As one may have noted, in this iterative process we need knowledge of the prime factorization of n.
However, for computational or theoretical reasons we could also wonder if we could identify a prime with
any given lower bound N ∈ Z≥0. Of course, a very inefficient way to use our previously proven theorem is to

choose n to be N !, then the smallest prime number to divide N !N !N! − 1 will be the smallest prime number
to exceed N . In the article[2] a refinement to the above was given as a comment by Andrew Booker and
Andrew Granville, which stated:

Theorem 3.3 (Refinement) Let N be any whole number greater than 1. Then the smallest prime to exceed
N is the least prime divisor of N !N ! − 1

As this theorem was merely stated and not proven in this article, we have given our own proof.

3.1 Our proof of the zero-knowledge refinement

Our aim is to prove that the smallest prime π to exceed N divides N !N ! − 1. Analogous to the proof of
Theorem 1.2, we will rewrite this to the equivalence:

N !N ! ≡ 1 mod π (67)
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Again, we will use Corollary 3.2.1 and prove that π − 1 divides N ! as we can then rewrite our equivalence
to N !λ(π−1) ≡ 1 mod π (for N > 3). For N = 2, 3 we will simply skip this Lemma and check the theorem
by hand:

2!2! − 1 = 22 − 1 = 3 (68)

which checks out as 3 is indeed the smallest prime to exceed 2.

3!3! − 1 = 66 − 1 = 35 = 5 · 7 (69)

which also checks out as 5 is indeed the smallest prime to exceed 3. In order to prove this for N ≥ 4 we will
use the following Lemma:

Lemma 3.4 (Bertrand-Chebyshev Theorem) For all n ∈ Z≥1, there exists a prime number p with
n < p ≤ 2n.

We will prove 3.3 for different cases considering the factorization of π − 1. Firstly, the case when π − 1
is divisible by more than one prime. Let p be any prime number that divides π − 1. From Lemma 3.4, we
know that π − 1 < 2N . From this we can deduce that π−1

p < 2
pN . This means that both π−1

p and p are
less than N and thus are both factors of N !, meaning π − 1 divides N ! if π − 1 has more than one prime
number in its factorization. The only cases left to prove now are when π − 1 has only one prime number in
its factorization, or: there exists a q ∈ Z≥0 prime such that for some k ∈ Z≥2, π − 1 = qk. We can rule out
k = 1 as we know that π must be odd and greater than 3. If we are to observe the parity of this equations,
i.e. the equivalence mod 2, we see that the left-hand-side π − 1 has to be even. The right-hand-side must
therefore also be even, which implies that q must be 2. Now we distinguish another two cases, k > 2 and
k = 2.

The first case, k > 2. From our assumptions we know that qk = π − 1. Similarly as before,
qk−1 = π−1

q < 2
qN < N . Moreover, as k > 2 and q > 1 we know q 6= qk−1 and again both of these are less

than N , which means that they both are factors of N !, so this case too follows our theorem. Now the case
when k = 2. Then, π− 1 = 22 = 4 and π = 5. As we stated that π must be the smallest prime to exceed N ,
and as N ≥ 4 we see the only possible value for this case to occur is when N = 4. This gives us N ! = 24,
which is divisible by π − 1 = 4 so we can also check this one by hand:

N !N ! ≡ 4!4! mod π (70)

≡ 246·4 mod π (71)

≡
(
246
)π−1

mod π (72)

≡ 1 mod π (73)

This means that for any number N we indeed find that the smallest prime to exceed N , π − 1 does divide
N !, which means that we can use 3.2.1 to prove the theorem. �

4 Prime generating sequences

As the infinitude of prime numbers is so important, many different proofs of this Fundamental Theorem are
known. Many of these follow in the steps of Euclid, i.e. given a finite set, or seed, of prime numbers, show
we can construct a number coprime to all prime numbers in our seed. As it turns out such variations on
Euclid’s proof have been the inspiration for the upcoming generating sequences. The previous generator by
Wooley also uses this fact as any prime to divide n is obviously coprime to nn

n − 1 and has the advantage
of generating all primes in order. In general such constructions generate infinitely many (co)prime numbers,
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however whether such Euclidean Sequences1 contain all prime numbers is a natural question that arises and
was first posed by Mullin in [16].

4.1 Sequences analogous to Euclid’s proof

There are three sequences which most resemble Euclid’s proof which we will focus on in this section. These
sequences are the first and second Euclid-Mullin sequences and Sylvester’s sequence.

4.1.1 The first Euclid-Mullin sequence

Recall that the first Euclid-Mullin sequence is defined as follows: let p1 = 2 and let pk+1 be the smallest

divisor of Pk = 1+
k∏
i=1

pi. In 1974 the first 9 terms were known through computation by Guy and Nowakowski

[15] and it would be Shanks in 1991 who conjectured that this sequence would contain every prime [18]. He
did this with the following heuristic argument; consider the product of all primes in our sequence modulo
p for some p prime not yet in our sequence. As more terms get added to our sequence, our product should
attain random values modulo p. Once our product is equivalent to −1 modulo p for some n we know that p
then divides Pn and therefore must occur in the sequence. If however p were to be a prime such that it never
occurs in our sequence, the product will never be equivalent to −1 which would not follow the randomness of
the product modulo p. As it indeed seems that the values modulo p are random, it is compelling to believe
this heuristic argument. More terms have been calculated since then with a lot of credit to Wagstaff [17],
not only for the first Euclid-Mullin sequence but also for the second and the two sequences most akin to the
Euclid-Mullin sequences where the leading +1 is substituted by −1.

4.1.2 The second Euclid-Mullin sequence

The second sequence is similar to the first, except that for the choice of pk+1 instead the largest divisor
is chosen. In 1968 the question whether all prime numbers appear was answered negatively; Cox and van
der Poorten had been able to show in [23] that 2, 3, 7 and 43 are the only primes less than 53 not omitted
from this sequence. After Naur showed in [21] that the sequence is not monotone increasing (he calculated
that p10 < p9) the question whether infinitely many primes would be omitted remained open and would be
answered in the affirmative by Booker in 2013 [8]. This proof has its core in finding an upper bound for an
omitted prime qn in terms of all primes less than qn also omitted. An alternate proof to Booker’s can be
found in [12], where Pollack and Treviño presented a proof less dependent on analytic number theory and
more based around the distributions of (non)quadratic residues.

4.1.3 Alternative results

The two other sequences of which Wagstaff [17] had calculated multiple terms are very similar to the Euclid-

Mullin sequences; let r1 = 3 and let rk+1 be some prime factor of
k∏
i=1

ri − 1. For the variant where the

smallest prime divisor is chosen each step it is also conjectured it will contain all primes. For the variant
where the choice of prime is the largest prime divisor, thanks to Selfridge2 it is known that some primes are
omitted, however the question whether infinitely many primes are omitted remains unanswered.

1The term Euclidean Sequences is used here following Ribenboim [19] to denote sequences closely resembling Euclid’s proof.
2This was never published but mentioned by Guy and Nowakowski in [15]
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4.1.4 Sylvester’s sequence

The final sequence is exactly Euclid’s construction, i.e. not all numbers in the sequence are prime. Instead
of asking whether all primes occur in the sequence, one could ask whether all prime numbers divide one of
the numbers in this sequence. Even though we essentially don’t exclude any primes at any step, Odoni had
already showed in 1985 in [27] that infinitely many primes do not divide any of the an.

Theorem 4.1 Let a1 = 2 and for n ≥ 1

an+1 = 1 +

n∏
i=1

ai (74)

then any prime p that divides some an must be equivalent to 1 modulo 6.

Proof: The first step in our proof is to see that our Sylvester’s Sequence can also be defined as the recurrence
relation

an+1 = a2n − an + 1 (75)

and let q be an odd prime such that q | an+1, then we have the following equivalence:

a2n − an + 1 ≡ 0 mod q (76)

4a2n − 4an + 4 ≡ 0 mod q (77)

(2an − 1)2 ≡ −3 mod q (78)

This means that for q to divide an+1,
(
−3
q

)
= 1, so by multiplicity of Legendre’s symbol,

(
−1
q

)(
3
q

)
= 1.

This can only happen if both are 1 or both -1. For the first, we know that
(
−1
q

)
= 1 if and only if q ≡ 1

mod 4. Now we use quadratic reciprocity to see that 1 =
(

3
q

)
=
(
q
3

)
, which only occurs when q ≡ 1 mod 3.

So when q ≡ 1 mod 12 we know that
(
−3
q

)
= 1.

For the second case, when both Legendre symbols are -1, we now know that
(
−1
q

)
= −1 and therefore

that −1 =
(

3
q

)
= −

(
q
3

)
, again by quadratic reciprocity but now both q and 3 are 3 mod 4 so we see a

change of sign. Just as before we must have
(
q
3

)
= 1 so q ≡ 1 mod 3, so in this case for q ≡ 7 mod 12 we

have that
(
−3
q

)
= 1. Combining the two gives us that all primes that divide any an must be of the form

6k + 1. This concludes the proof of the theorem. �

From this we can also see that any prime of the form 6k + 5 divides none of the an and by Dirichlet’s
theorem on arithmetic progression we know that there must be infinitely many primes of this form, which is
sufficient to show that there are infinitely many primes which divide none of the an.

Guy and Nowakowski had already shown this in 1974 [15], however they went one step further. As
Sylverster’s Sequence is recursive, the values of an mod p for any prime p must be periodical. They used
this fact to identify that the only primes less than 1000 to divide any an are

7, 13, 43, 73, 139, 181, 547, 607. (79)

Vardi [10] has contributed to this specific sequence by finding all primes less than 2× 108 to divide some an
for n ≤ 200.
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4.2 Alternate sequences of coprime numbers

As mentioned before there are proofs which vary from Euclid’s proof but with the same principle of generating
coprime numbers. In this section we discuss some specific kinds of (prime) numbers and whether they can
or have been used to construct such a sequence of coprime numbers.

4.2.1 Factorial

Looking back at Wooley’s construction to find the smallest prime larger than a given N , one can also instead
consider N ! + 1 for a more general construction. Obviously, N ! + 1 is coprime to all numbers less than or
equal to N . Here we discard the property to generate the smallest next prime however we don’t have to deal
with the explosiveness of N !N !. One could ask too if all primes divide some aN = N ! + 1 and the answer in
this case is yes. This follows directly from Wilson’s theorem:

Theorem 4.2 (Wilson’s theorem) For every prime p the equivalence (p− 1)! ≡ −1 mod p holds true.

Proof: Consider the congruence classes in (Z/pZ)×. Every one of these classes has its unique inverse, so we
can pair up factors in (p− 1)!. However, only 1 and p− 1 don’t pair up with any other as they are their own
inverses. This means that (p− 1)! ≡ 1 · (p− 1) ≡ −1 mod p. �

Therefore for every prime p, we see that they must divide ap−1 = (p − 1)! + 1. This sequence however
does not have the property that all elements are coprime, i.e. N ! + 1 need not be coprime to n! + 1 for some
N,n ∈ Z>0. For a sequence of coprime numbers based on factorials, we thought of our own construction.
Let a1 = 2 and for k ≥ 1 let ak+1 = d!+1, where d is the largest prime factor of ak. Then all ak are coprime.
This sequence too has an absurd growth rate, as a5 = 71! + 1, a number with over a hundred digits. Sadly
this sequence is not very interesting as it leaves out quite a lot of primes, whichever way you look at it.

Another question considering such factorials is whether there are infinitely many numbers N for each of
the forms N !± 1 such that they are prime. The answer to this, too, is still unknown and too conjectured to
be true by Chris Caldwell and Yves Gallot.[22]

4.2.2 Primorial

Not only did Caldwell investigate such factorial primes, he also investigated primorial primes, so primes of
the form p# ± 1. This again closely resembles Wooley’s method but now for nn

n − 1. Because his method
found the k-th smallest prime in the k-th step, n became the product of the first k primes, i.e. n = pk#. For
this too Caldwell and Gallot conjectured that there are infinitely many primes of each of the forms p#± 1.
Interestingly, it is also unknown but suspected that there are infinitely many composite numbers of the form
p#± 1.

4.2.3 Pomerance’s variant

While Pomerance’s variant differs slightly from Euclid’s method as all the choices in each step need not be
coprime to all previous primes in the starting seed, it is worth mentioning as it provably generates all prime
numbers, in order from a certain point. Let p1 = 2. We choose pk+1 as follows. Let n =

∏k
i=1 pi. Then we

choose pk+1 as the smallest prime to divide d+1 for some d | n. As the choice for d is very liberal Pomerance
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proved but never published that for k ≥ 5, pk is the k-th smallest prime. One can see that this d indeed
need not be coprime to all pj for 0 ≤ j ≤ k.

In [11] Crandall and Pomerance swiftly pointed out another sequence which is a slight restriction on
Pomerance’s variant, raised by M. Newman from the Australian National University. Let p1 = 2 and p2 = 3,
and choose pk+1 as the least prime not yet in our sequence to divide pipj+1 for some 1 ≤ i < j ≤ k. This
sequence has yet to be tackled, from some minor computations we see that e.g. 19 and 5 do not appear in
order, however whether this sequence generates infinitely many primes is still unknown. It is even unknown
but highly suspected whether this sequence is even infinite. The first few terms of this sequence are:

2, 3, 7, 5, 11, 13, 17, 23, 29, 19, 31, 37, 41, 43, 47, 53, 59, . . . (80)

4.2.4 Stieltje’s proof

Stieltje’s proof for the infinitude of primes is as follows.
Proof: Assume that p1, . . . , pk is a finite set of all the primes, and let N = p1 · p2 · · · pk be their product.
Choose any factorization for N = d ·d′, then every prime pi divides either d or d′. However, then m+n is not
divisible by any of the pi, which contradicts the assumption that the number of primes is finite, as m+n > 1.
Again, this proof for the infinitude of primes can be used to generate a sequence of prime numbers which is
exactly what Chua’s sequence entails.

Booker has shown in [6] that a sequence constructed with the method of Stieltje’s proof does generate all
primes, the proof of which we will discuss in full.

4.3 A variant of the Euclid-Mullin sequence containing every prime

Using Stieltje’s proof as a baseline, Chua’s sequence is as follows. With P = {p1, . . . , pk} a finite set of
primes, we now choose pk+1 as the smallest prime to divide

NI =
∏
i∈I

pi +
∏

i∈{1,...,k}\I

pi (81)

where I ⊆ {1, . . . , k}, i.e. we consider all I ⊆ {1, . . . , k} with their subsequent NI and choose pk+1 as the
smallest prime to divide some NI . Chua’s sequence starts with the seed P = {2} to give us the following
sequence:

2, 3, 5, 11, 37, 13, 7, 29, 17, 19 (82)

It can be easily seen that this construction allows for a more steady growth and leaves out fewer primes
than the first Euclid-Mullin sequence, as the original Euclid-Mullin sequence has a 14-digit-number as its
9th element. Chua considered the sequence where the choice of pk+1 is fixed as the smallest prime divisor,
however allowing for the choice of any prime divisor of any NI to be pk+1 we obtain what we will refer to
from now on as a generalized Euclid sequence. The freedom of choice in the Euclid-Mullin sequence only
applied to the choice of which prime divisors we select as pk+1, whereas the generalized Euclid sequences
grant us more freedom for choosing our next prime pk+1 as the number of choices for I and thus NI is
proportional to P(I), where P is the powerset. This freedom proves to be sufficient that this construction
will eventually contain every prime.

Theorem 4.3 For any finite set P of prime numbers, there exists a generalized Euclid sequence with seed
P containing every prime.
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We will examine the following set Sq =

{
d+ qZ : d ∈ Z>0, d |

∏
p<q

p

}
. This set is a subset of (Z/qZ)×, more

precisely the residue classes of squarefree, (q − 1)-smooth, positive integers. We will use the fact that this
set is large, large enough that it is impossible to avoid q showing up in this sequence. Preferably we would
like Sq to be equal to the multiplicative residue classes, however it is sufficient to have that #Sq >

1
2 (q− 1).

Lemma 4.4 For any prime q, #Sq >
1
2 (q − 1).

In article [28] Kenneth Roger has shown that this lower bound can actually be set to 53
88 (q − 1), however for

our proof 1
2 (q − 1) will suffice.

Lemma 4.5 For q an odd prime and a ∈ (Z/qZ)×

(i) If q = 5 or q 6= 5 and a = 3 + 5Z then there exists an x ∈ (Z/qZ)× such that
(
x+a/x
q

)
6= 1

(ii) If q 6∈ {7, 13}, then there exist x ∈ (Z/qZ)× such that
(
x6+a
q

)
6= 1

Proof of (i): If it were the case that such x doesn’t exist, then that would mean that for all x ∈ (Z/qZ)×,(
x+a/x
q

)
= 1. Then the following identical sum would be:

∑
x∈(Z/qZ)×

(
x+ a/x

q

)
= #(Z/qZ)× = q − 1 (83)

So our goal to prove (i) will be to show that the equality above will not hold but instead that the sum is

less than q − 1. Note that
(
x2

q

)
=1, so that we instead can consider the following sum:

∑
x∈(Z/qZ)×

(
x+ a/x

q

)
=

∑
x∈(Z/qZ)×

(
x(x2 + a)

q

)
(84)

The Legendre symbol in this context can also be interpreted to be 1 when there exists a solution to the
curve y2 = x(x2 + a), with (x, y) ∈ (Z/qZ)2. This curve happens to be an elliptic curve with one point at
infinity. This means we can use the Hasse-bound for the number of affine points on an elliptic curve if this
curve has no repeated root mod q. Recall that for a repeated root its derivative will have the same root.
Let f(x) = x(x2 + a), then f ′(x) = 3x2 + a. See that the roots of f(x) are x = 0 and x such that x2 = −a.
Note that these values are not roots for f ′(x) for mod q when q ≥ 3. So indeed we have no repeated roots
and we can use the Hasse-bound[3]:

|N − q| ≤ 2
√
q (85)

where N is the number of solutions to our curve. We will use the following resulting bound N ≤ q + 2
√
q.

We can translate our sum to number of solution as follows; if for x we find that
(
x(x2+a)

q

)
= 1, then there

exists a solution y such that y2 = x(x2 + a). As q is an odd prime, y and −y are two unique solutions to

this equation. If instead we find
(
x(x2+a)

q

)
= 0 then that means that q | x(x2 + a) and thus q | y. In (Z/qZ)

however this gives us exactly one solution, namely y = qZ. Lastly, if
(
x(x2+a)

q

)
= −1 then there exist no

solution. The number of solutions for any x ∈ (Z/qZ) therefore must equal
(
x(x2+a)

q

)
+ 1 and so the total
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number of solutions N can be written as:

N =
∑

x∈(Z/qZ)

[(
x(x2 + a)

q

)
+ 1

]
≤ 2
√
q + q (86)

∑
x∈(Z/qZ)

[(
x(x2 + a)

q

)
+ 1

]
≤ 2
√
q + q (87)

∑
x∈(Z/qZ)×

(
x(x2 + a)

q

)
+

∑
x∈(Z/qZ)

1 ≤ 2
√
q + q (88)

∑
x∈(Z/qZ)×

(
x(x2 + a)

q

)
≤ 2
√
q (89)

After equation 87 we switched from x ∈ (Z/qZ) to x ∈ (Z/qZ)×. This leaves out x = qZ but in this case(
x(x2+a)

q

)
=
(
x
q

)(
x2+a
q

)
= 0, so it doesn’t influence the sum. Our goal was to show that the left-hand-side

is less than q−1, and for its upper bound 2
√
q this is true for q ≥ 7. For q ∈ {3, 5} it can be checked directly

that
(
x(x2+a)

q

)
6= 1 for some x ∈ (Z/qZ)×. This concludes the proof of (i).

For (ii) the proof is the same but for the fact that we no longer have an elliptic curve but a curve of genus
2, with two points at infinity, so instead we can use the Weil bound[3]:

N + 1− q ≤ 2g
√
q (90)

where g is the genus of the curve. To apply this bound we again need that our function f(x) = x6 + a has
no repeated roots mod q. We will check this with its derivative f ′(x) = 6x5. Note that this function has
roots mod q only for x = 0, or when 6 ≡ 0 mod q, as then f ′(x) becomes the zero function. For x = 0
we see that this is not a zero of f(x) as a ∈ (Z/qZ)× 63 0 so we are not dealing with a repeated root. The
case when 6 ≡ 0 mod q only happens for q ∈ {2, 3} so for q ≥ 5 our function f has no repeated roots. This
means we can indeed apply the Weil bound:∑

x∈(Z/qZ)

[(
x6 + a

q

)
+ 1

]
≤ 4
√
q + q − 1 (91)

∑
x∈(Z/qZ)×

(
x6 + a

q

)
+

(
a

q

)
+

∑
x∈(Z/qZ)

1 ≤ 4
√
q + q − 1 (92)

∑
x∈(Z/qZ)×

(
x6 + a

q

)
≤ 4
√
q − 1−

(
a

q

)
(93)

∑
x∈(Z/qZ)×

(
x6 + a

q

)
≤ 4
√
q (94)

Just as before we left x = qZ out of the sum, which now affects our equation with the addition of
(
a
q

)
. The

bound on the right-hand-side now is less than q − 1 for q ≥ 19 and just as before for q ∈ {3, 5, 11, 17} it can
be checked directly. This concludes the proof of (ii) and with that 4.5. �

From here on we let n =
∏
p∈P

p, where P = {p1, . . . , pk}. It can be seen empirically that construction

81 doesn’t necessarily generate primes in order, i.e. pk+1 is not the smallest prime not in P . As Sq is
(q − 1)-smooth it does not cover all our options for NI , so we shall consider the following set S instead:

S = {d+ qZ : d ∈ Z>0, d | n} (95)
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where Sq ⊆ S ⊆ (Z/qZ)×. For future reference it will be easier to consider NI as follows:

Nd := NI = d+
n

d
(96)

where d =
∏
i∈I

pi. Our aim is to show that for any finite set of primes P not containing q, we will encounter

an Nd such that q | Nd, or equivalently that d+ n/d ≡ 0 mod q. If q = 2, then both n and d will be odd,
so that d+ n/d must be even and so we can set pk+1 to be q. Thus we may assume q to be an odd prime.
Firstly we will prove that a d ∈ S can be chosen such that d+ n/d ≡ 0 mod q in the case that S = (Z/qZ)×.
Important to see is that we can rewrite the equivalence to:

d+ n/d ≡ 0 mod q (97)

d ≡ −n
d

mod q (98)

d2 ≡ −n mod q (99)

which means we can instead consider the quadratic character of −n, or
(
−n
q

)
. If

(
−n
q

)
happens to be 1,

that means that there exists an r ∈ (Z/qZ)× such that r2 ≡ −n mod q. As S = (Z/qZ)×, there exists
a d ≡ r mod q and therefore q | d+ n/d, our desired result. On the other hand, the case could be that(
−n
q

)
= −1. By Lemma 4.5(i) we know that not all of

(
d+ n/d

q

)
can equal 1 and thus that there exists a d

such that
(
d+ n/d

q

)
= −1 given that q 6= 5 or that n 6= 3 + 5Z. However if

(
d+ n/d

q

)
= −1 then there must

be a prime p in the prime factorization of d+ n/d such that
(
p
q

)
= −1. As we set out to prove that q would

eventually pop up in our sequence, we are free to choose pk+1 as the aforementioned p. This means we find
ourselves a new n′ = pn, for which(

−n′

q

)
=

(
p

q

)(
−n
q

)
= (−1)(−1) = 1 (100)

This result lands us back in the case that
(
−n′
q

)
= 1 which we have proven above. 3 What’s left to prove for

S = (Z/qZ)× is the case that q = 5 and that n = 3 + 5Z, which can be resolved through the same method,
namely to choose d to be 1. Due to the fact that n ≡ 3 mod 5 and therefore n+ 1 ≡ −1 mod 5 there exists
a p | (n+ 1) for which p 6≡ −1 mod 5 and by again choosing n′ = pn we no longer have that n′ ≡ 3 mod 5
which feeds back to what we have proven above. Note that this p is necessarily coprime to n as d = 1 so
Nd = n+ 1 and as n =

∏
π∈P

π we find that we can indeed choose pk+1 = p.

Secondly rests us the case that S 6= (Z/qZ)×. Just as above we must choose intermediary primes to add
to our set P . We will define the set of primes from which we can choose our new prime p = pk+1 as follows:

T = {p : p prime and p | (d+ n/d) for some d | n}. (101)

Having chosen this p, we thus replace P , n and S by P ∪{p}, pn and S∪{pS} respectively. As S ⊆ (Z/qZ)×

is finite there are two cases upon which this procedure can come to a standstill; q ∈ T for which we can
choose q = pk+1 and are done, or that S can’t be increased any more, meaning that for every p ∈ T our
pS ⊆ S and thus S = S ∪ pS. In this second case we can see that S must contain sG, where s ∈ S and G is
the subgroup of (Z/qZ)× generated by:

G := {p+ qZ : p ∈ T}. (102)

This means that S must be a union of cosets sG and that #G | #S. In order to conclude something about
#G it is useful to first look at subgroups of (Z/qZ)× in general, in particular their index.

3Observant reader might notice that in [6] the author instead wrote
(

−n′

p

)
; this is a typo.
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Let H be a subgroup of (Z/qZ)× with an index of at least 4. For any h ∈ H we know that the number
of d such that d+ n/d = h must be less than or equal to 2 as d and d′ = n/d both have the same result.
therefore we can relate the cardinality of the set of these d and H as follows:

#{d ∈ (Z/qZ)× : d+ n/d ∈ H} ≤ 2#H ≤ 1

2
(q − 1), (103)

where the final inequality stems from the choice that the index of H is at least 4. We know from Lemma
4.4 that the number of d+ n/d is too large such that all d+ n/d ∈ H, so there exists d | n such that
(d+ n/d) + qZ /∈ H. This also implies that there exists p ∈ T such that p+ qZ /∈ H. As #(Z/qZ)× = (q−1)
and that the index of a subgroup must always divide the size of the supergroup, we can define specific
subgroups through the prime representation of the size of (Z/qZ)×:

Hr := {h ∈ (Z/qZ)× : h
q−1
r = 1} = {xr : x ∈ (Z/qZ)×}, (104)

where r | (q − 1). Note that r is then index of h with respect to (Z/qZ)×. This can be more intuitive with
the fact that (Z/qZ)× is cyclic for q prime, so we can represent (Z/qZ)× with {am : a(Z/qZ)×} for some
a. Then Hr = {xr : x ∈ (Z/qZ)×} becomes {arm : a ∈ (Z/qZ)×}, which now only attains unique values for

0 ≤ m < q−1
r so indeed we see the index of Hr is r. Let q − 1 =

m∏
i=1

reii be the prime factorization of q − 1

with ei = νri(q − 1). For ri ≥ 5 we find we can use the same reasoning as in 103 to show for

H = Hri = {h ∈ (Z/qZ)× : reii - ord(h)} (105)

that there exist some prime p ∈ T such that p has order divisible by reii . This means that G, which was the
subgroup generated by {p+ qZ : p ∈ T}, also has order divisible by re1i . For ri ∈ {2, 3} however the index of
Hri would be less than 4, however we instead use the same argument as above for Hr2i

to see that the order

of G is divisible by rei−1i for ri ∈ {2, 3}. The index of G can be calculated as follows:

#(Z/qZ)×

#G
, (106)

and as we’ve seen for all ri ≥ 5 these prime numbers divide both #(Z/qZ)× and G, except for ri ∈ {2, 3}.
From this we can then conclude that the order of the subgroup G must divide 6. In the case that q 6= 1+3Z,
3 does not divide the order of (Z/qZ)×, which is q − 1. Therefore the index of G must divide 2 which
implies that 1

2 (q − 1) | #G | #S. As 1
2 < #Sq by Lemma 4.4, therefore 1

2 < #S which would imply that
#S = (q − 1). This however contradicts our assumption that #S 6= (Z/qZ)×, so we know this case, namely
that q 6≡ 1 mod 3, cannot occur. In the case that q ≡ 1 mod 3, we can use the same reasoning for H as
above, however we now take r = 6 to see that there exists a prime p ∈ T such that p

q−1
6 6≡ 1 mod q. As

q−1
6 = q−1

2 −
q−1
3 , we can conclude from p

q−1
6 = p

q−1
2 /p

q−1
3 that at least one of H2 and H3 does not contain

this p. If p /∈ H3 we find ourselves in the same situation as before when we assumed that q 6≡ 1 mod 3,
namely that G has order divisible by 2 which again would lead to the conclusion that #S = q − 1. This
means we can assume that it is H2 which does not include p+qZ. Hence the index of G must divide 3. If the
index of G were to be 1, then that would mean G = (Z/qZ)× which in turn would imply that S = (Z/qZ)×,
again contradicting our assumption that S 6= (Z/qZ)×, so we can safely assume that the index of G is 3, i.e.
G = H3 and #G = 1

3 (q − 1). Combining Lemma 4.4 with the fact that S =
⋃
s∈S

sG i.e. that S is a union of

cosets sG, we find that S = G ∪ sG for some s /∈ G. Note here that #S = 2#G = 2#H3. We now observe
the function f : d 7→ d+ n/d. We know that p ∈ H3, however we also know that S has stabilized and that
by our construction of T and consequently G, f : S → H3, where this mapping must be 2-1 onto if we wish
to avoid p+ qZ /∈ H3, i.e. for h ∈ H3 we can find d such that d+ n/d = h+ qZ. We can rewrite this to give
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us the following result:

d+ n/d ≡ h mod q (107)

d2 + n ≡ dh mod q (108)

4d2 − 4dh+ 4n ≡ 0 mod q (109)

(2d− h)2 + 4n− h2 ≡ 0 mod q (110)

(2d− h)2 ≡ h2 − 4n mod q (111)

As we want this to have a solution for every h ∈ H3, we must therefore have that
(
h2−4n
q

)
=1. However, as

we might recall from 104, we know that H3 = {x3 : x ∈ (Z/qZ)×}, meaning that for every x ∈ (Z/qZ)×,(
x6−4n
q

)
=1. This contradicts our Lemma 4.5 for q /∈ {7, 13} so for q /∈ {7, 13} we have proven that we

cannot avoid there being a p ∈ T such that p+ qZ /∈ H3 and thus we find ourselves again at the conclusion
that S = (Z/qZ)×. Lastly for q ∈ {7, 13} we can directly check that #S7 = #{1, 2, 3, 5, 6} > 2

3 (7 − 1) and
that #S13 = #(Z/qZ)× = q− 1 > 2

3 (13− 1), where the fact that #Sq >
2
3 (q− 1) in turn implies that S does

not map 2-1 onto H3 and thus that there exists p ∈ T such that p+ qZ /∈ H3. For every case we have thus
shown that S = (Z/qZ)×, which was sufficient to show that q will show up as a choice for pk+1 in T . �

This means we have proven that for any starting seed and any prime q not yet in the sequence, there exists
a sequence in which this q appears. We can do this for every smallest prime q not yet in our sequence so we
may state that there exists a sequence containing every prime number. The question whether Chua’s specific
sequence, choosing the smallest prime each step, will contain every prime however still remains unanswered.

4.4 Recent development

As we mentioned at the start of the proof in the section above we would like Sq to be equal to the multiplica-
tive residue classes as that would shorten the proof considerably; the case S 6= (Z/qZ)× would be ruled out.
This result was not known at the time this proof had been established, however it has since been proven by
Booker and Pomerance in [13] and stated here verbatim.

Theorem 4.6 (Theorem 1 in [13]) Let p be a prime different from 5 and 7, and a ∈ Z. Then there is a
squarefree, p-smooth, positive integer n such that n ≡ a mod p.

With its corollary

Corollary 4.6.1 Let p be a prime different from 5 and 7, and a ∈ (Z/pZ)×. Then there is a squarefree,
(p− 1)-smooth, positive integer n such that n ≡ a mod p.

This corollary states exactly that Sq = (Z/qZ)× for q /∈ {5, 7}. With this development, there now exists a
published proof that Pomerance’s variant generates all primes in order as it follows quite quickly from this.
Proof of Pomerance’s variant: First, observe that the first few terms are, respectively, 2,3,7 and 5. Now let
p be the smallest prime not yet in our sequence, and let n be the product of all primes less than p. Notice
that the set of squarefree, (p− 1)-smooth, positive integers is a subset of the set of the divisors of n so our
Corollary states that we can choose a d | n such that d ≡ −1 mod p and thus that we can indeed choose
pk+1 = p | d+ 1. �
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5 A new attempt

In my attempt to make yet another variant of the Euclid-Mullin sequence I was inspired by the previous
construction, the generalized Euclid sequence, which provably contains every prime. One question that
arose was whether it would be possible to focus on a property which some primes shared. The following
construction is the one we focus on:
With P = {p1, . . . , pk} a finite set of primes, we choose pk+1 to be the smallest prime that divides

NI =
∏
i∈I

p2i +
∏

i∈{1,...,k}\I

p2i (112)

for some I ⊆ {1, . . . , k}, which is almost the same as the previous construction. This particular construction
was chosen to focus on primes of the form 4k+ 1 for some k ∈ Z≥1. After considering various forms to focus
on, primes equivalent to 1 modulo 4 became the choice mainly because of the following property noted in

2.2.1:
(
−1
p

)
= 1 if and only if p is equivalent to 1 modulo 4. We use this property to ensure that all divisors

of NI are such primes equivalent to 1 modulo 4. To show this we again look at the following expression
equivalent to 112:

Nd := NI = d2 +
n2

d2
(113)

where d =
∏
i∈I

pi. Let q be a prime such that q | Nd, then we have:

d2 +
n2

d2
≡ 0 mod q (114)

After rearranging the terms we end up with the following equivalence:

d4 ≡ −n2 mod q (115)

What is significant here is that the left-hand-side is definitely a quadratic residue mod q and that the right-

hand-side can only be a quadratic residue if and only if
(
−1
q

)
= 1. As q divides d2 + n2

d2 , −1 must be a

quadratic residue modulo q so q is a prime such that q ≡ 1 mod 4. Choosing pk+1 = q where q is the
smallest prime to divide Nd, we end up with the following sequence:

2, 5, 29, 17, 41, 13, 37, 53, 61, 97, 101, 73, 89, 109, 149, 137, 113, 181, 173, 157, 229, 197, 241, 257, 233 . . . (116)

Contrary to the Euclid-Mullin sequence, these primes appear almost in order; with 13 being 4 indices away
from being in numerical order. We have a heuristic argument to explain why our sequence picks up the
smallest prime close to numerical order which is similar to Shank’s [18] heuristic argument for the first
Euclid-Mullin sequence. Shank’s reasoning was that n, the product of all found primes so far, should attain
random values modulo a prime p not yet in our sequence thus there is no reason to believe n ≡ −1 mod p
will never occur. We can make the same argument here if we were to fix d at some point. For every prime
we find from thereon now n2/d2 will presumably attain random values modulo p, where p is the smallest
prime yet to be found. Again there is no reason to believe n2/d2 will never be equivalent to −d2 for some
p. Now as our sequence only obtains values which are square residues, our n2/d2 can only attain half the
equivalences modulo p, which is exactly why we expect our sequence picks up primes at a faster rate than
the first Euclid-Mullin sequence. Moreso, this is for only one fixed d | n and we have many d to choose from.

If we were to follow the same steps taken in Booker’s proof for the generalized Euclid, to try and show that
a general case, i.e. pk+1 does not have to be the smallest prime but could be any prime dividing d2 +n2/d2,
our proof will already diverge at the case where Sq = (Z/qZ)×, where q is the smallest prime of the form
4k + 1 not yet in our sequence. In fact, because our n by our construction can only be divisible by finitely
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many primes of the form 4k + 3, we can’t guarantee Sq will ever equal (Z/qZ)× as we never add primes of
the form 4k+ 3. This also means we can’t use the newer result by Booker and Pomerance, as we are not free
to choose from all squarefree (p−1)-smooth numbers. Another essential part in their proof is to disprove the
case that S stabilizes as anything less than (Z/qZ)×. Essential in disproving this is that for any h ∈ H the
number of d such that d+ n/d = h must be less than or equal to 2 to allow the proof to focus on subgroups

of (Z/qZ)× with index less than 4, however in our case we would have d2 + n2

d2 = h, where the number of
d for any h must be less than or equal to 4. This would result in our version having to focus on index less
than 8, which we have been unable to prove. The main difficulty this presents is that for H7 we do not have
a way to disprove that S ever stabilizes as anything less than (Z/qZ)×, which is required to show we can
choose a sequence in which every q not yet in our sequence will be included. If we however were able to
disprove S stabilizes as anything less than (Z/qZ)× our proof would be as follows:

This will be the setup for a proof of the generalized variant of our sequence, so where we have freedom to

choose any p dividing d2 + n2

d2 for some d | n and n the product of all primes in our sequence. The aim is
to prove our generalized sequence will attain every prime p of the form 4k + 1 not yet in our sequence. As
stated above we assume S = (Z/pZ)× at some point, which is the only step we were unable to prove.

Setup for the proof: Let p be the smallest prime yet to appear in our seed and n = p1p2 · · · pk. By our

construction we know that
(
−n2

p

)
= 1, so there exists some k such that k + n2

k ≡ 0 mod p. However our

construction has d2 instead of k, so if we wish to choose a d such that this is the case we need that
(
k
p

)
= 1.

If
(
k
p

)
= 1 then we can choose this d, from the assumption that S = (Z/pZ)×, such that d2 ≡ k mod p. If(

k
p

)
= −1 then we can’t choose such d, as k (and therefore also −k) are not square residues modulo p.

Lemma 5.1 For q an odd prime and a ∈ (Z/qZ)× there exists an x ∈ (Z/qZ)× such that
(
x2+a/x2

q

)
6= 1

The proof for this is the same as Lemma 4.5(ii) so we will not repeat it, except we now have the curve
y2 = x4 + a which only has repeated roots for q = 3. This however won’t be a problem as we only focus
on primes equivalent to 1 modulo 4 anyway. From this lemma we know that there must exist a d such that(
d2+n2/d2

p

)
= −1. By multiplicity of Legendre’s symbol there must therefore be a prime divisor q of d2 + n2

d2

for which
(
q
p

)
= −1. This is the prime we choose to add to our sequence of primes, so we now continue not

only with n′ = nq but also with k′ = kq and we keep the equivalence k′ + n′2

k′ ≡ 0 mod p. Now we find

that
(
k′

p

)
= 1 so we may now choose a d, by our assumption that S = (Z/pZ)×, such that d2 ≡ k′ mod p

and therefore there now exists a d such that p divides d2 + n2

d2 . Notice here that it could even be sufficient
to show that S2 := {s2 : s ∈ S} attains all square residues modulo p; because we square our choice of d it
doesn’t matter whether −d was even an option to begin with.

Even though we were unable to fully prove that our general sequence provably will contain every prime of
the form 4k + 1, we do believe this to be the case.

6 Conclusion

In this thesis, we have investigated various methods to generate infinitely many primes through iterative
methods. After understanding these sequences and why some show better or more provable results than
others we came up with our own sequence. Even though we were unable to prove the general case for our
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sequence we still conjecture the following

Conjecture 6.1 Let P = {p1, . . . , pk} be a finite set of prime numbers and choose pk+1 as the smallest
prime to, for some I ⊆ {1, . . . , k}, divide

NI =
∏
i∈I

pi +
∏

{1,...,k}\I

pi (117)

Then this sequence omits no prime equivalent to 1 modulo 4.
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A Appendix

The following code, written in Python, is the very naive and manual code used to generate our own sequence
112. Small refinements we made to the code are e.g. checking only half the combinations, as the set I and
IC give the same NI in our sequence.

x = [ int ( x ) for x in input ( ” Enter seed : ” ) . s p l i t ( ) ]

from i t e r t o o l s import combinat ions

def d i f f ( f i r s t , second ) :
second = set ( second )
return [ item for item in f i r s t i f item not in second ]

modnum = 13

l = len ( x )
for i in range ( int ( l /2)+1):

prod = 1
k = combinat ions (x , i )
for j in k :

d1 = 1
d2 = 1
for l in j :

d1 ∗= l
d1 %= modnum

d1 = d1∗d1
d1 %= modnum
opp = d i f f (x , j )
for m in opp :

d2 ∗= m
d2 %= modnum

d2 = d2∗d2
d2 %= modnum
r e s = ( d1+d2)%modnum
i f r e s == 0 :

print ( res , j , opp )
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